xref: /openbsd/gnu/llvm/clang/lib/CodeGen/CGExprAgg.cpp (revision 12c85518)
1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 //===----------------------------------------------------------------------===//
33 //                        Aggregate Expression Emitter
34 //===----------------------------------------------------------------------===//
35 
36 namespace  {
37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
38   CodeGenFunction &CGF;
39   CGBuilderTy &Builder;
40   AggValueSlot Dest;
41   bool IsResultUnused;
42 
EnsureSlot(QualType T)43   AggValueSlot EnsureSlot(QualType T) {
44     if (!Dest.isIgnored()) return Dest;
45     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
46   }
EnsureDest(QualType T)47   void EnsureDest(QualType T) {
48     if (!Dest.isIgnored()) return;
49     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52   // Calls `Fn` with a valid return value slot, potentially creating a temporary
53   // to do so. If a temporary is created, an appropriate copy into `Dest` will
54   // be emitted, as will lifetime markers.
55   //
56   // The given function should take a ReturnValueSlot, and return an RValue that
57   // points to said slot.
58   void withReturnValueSlot(const Expr *E,
59                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
60 
61 public:
AggExprEmitter(CodeGenFunction & cgf,AggValueSlot Dest,bool IsResultUnused)62   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
63     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64     IsResultUnused(IsResultUnused) { }
65 
66   //===--------------------------------------------------------------------===//
67   //                               Utilities
68   //===--------------------------------------------------------------------===//
69 
70   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71   /// represents a value lvalue, this method emits the address of the lvalue,
72   /// then loads the result into DestPtr.
73   void EmitAggLoadOfLValue(const Expr *E);
74 
75   enum ExprValueKind {
76     EVK_RValue,
77     EVK_NonRValue
78   };
79 
80   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
81   /// SrcIsRValue is true if source comes from an RValue.
82   void EmitFinalDestCopy(QualType type, const LValue &src,
83                          ExprValueKind SrcValueKind = EVK_NonRValue);
84   void EmitFinalDestCopy(QualType type, RValue src);
85   void EmitCopy(QualType type, const AggValueSlot &dest,
86                 const AggValueSlot &src);
87 
88   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
89 
90   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, QualType ArrayQTy,
91                      Expr *ExprToVisit, ArrayRef<Expr *> Args,
92                      Expr *ArrayFiller);
93 
needsGC(QualType T)94   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
95     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
96       return AggValueSlot::NeedsGCBarriers;
97     return AggValueSlot::DoesNotNeedGCBarriers;
98   }
99 
100   bool TypeRequiresGCollection(QualType T);
101 
102   //===--------------------------------------------------------------------===//
103   //                            Visitor Methods
104   //===--------------------------------------------------------------------===//
105 
Visit(Expr * E)106   void Visit(Expr *E) {
107     ApplyDebugLocation DL(CGF, E);
108     StmtVisitor<AggExprEmitter>::Visit(E);
109   }
110 
VisitStmt(Stmt * S)111   void VisitStmt(Stmt *S) {
112     CGF.ErrorUnsupported(S, "aggregate expression");
113   }
VisitParenExpr(ParenExpr * PE)114   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)115   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
116     Visit(GE->getResultExpr());
117   }
VisitCoawaitExpr(CoawaitExpr * E)118   void VisitCoawaitExpr(CoawaitExpr *E) {
119     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
120   }
VisitCoyieldExpr(CoyieldExpr * E)121   void VisitCoyieldExpr(CoyieldExpr *E) {
122     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
123   }
VisitUnaryCoawait(UnaryOperator * E)124   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
VisitUnaryExtension(UnaryOperator * E)125   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)126   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
127     return Visit(E->getReplacement());
128   }
129 
VisitConstantExpr(ConstantExpr * E)130   void VisitConstantExpr(ConstantExpr *E) {
131     EnsureDest(E->getType());
132 
133     if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
134       CGF.EmitAggregateStore(Result, Dest.getAddress(),
135                              E->getType().isVolatileQualified());
136       return;
137     }
138     return Visit(E->getSubExpr());
139   }
140 
141   // l-values.
VisitDeclRefExpr(DeclRefExpr * E)142   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
VisitMemberExpr(MemberExpr * ME)143   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
VisitUnaryDeref(UnaryOperator * E)144   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
VisitStringLiteral(StringLiteral * E)145   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
146   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
VisitArraySubscriptExpr(ArraySubscriptExpr * E)147   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
148     EmitAggLoadOfLValue(E);
149   }
VisitPredefinedExpr(const PredefinedExpr * E)150   void VisitPredefinedExpr(const PredefinedExpr *E) {
151     EmitAggLoadOfLValue(E);
152   }
153 
154   // Operators.
155   void VisitCastExpr(CastExpr *E);
156   void VisitCallExpr(const CallExpr *E);
157   void VisitStmtExpr(const StmtExpr *E);
158   void VisitBinaryOperator(const BinaryOperator *BO);
159   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
160   void VisitBinAssign(const BinaryOperator *E);
161   void VisitBinComma(const BinaryOperator *E);
162   void VisitBinCmp(const BinaryOperator *E);
VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator * E)163   void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
164     Visit(E->getSemanticForm());
165   }
166 
167   void VisitObjCMessageExpr(ObjCMessageExpr *E);
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)168   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
169     EmitAggLoadOfLValue(E);
170   }
171 
172   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
173   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
174   void VisitChooseExpr(const ChooseExpr *CE);
175   void VisitInitListExpr(InitListExpr *E);
176   void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args,
177                                        FieldDecl *InitializedFieldInUnion,
178                                        Expr *ArrayFiller);
179   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
180                               llvm::Value *outerBegin = nullptr);
181   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
VisitNoInitExpr(NoInitExpr * E)182   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)183   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
184     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
185     Visit(DAE->getExpr());
186   }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)187   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
188     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
189     Visit(DIE->getExpr());
190   }
191   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
192   void VisitCXXConstructExpr(const CXXConstructExpr *E);
193   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
194   void VisitLambdaExpr(LambdaExpr *E);
195   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
196   void VisitExprWithCleanups(ExprWithCleanups *E);
197   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
VisitCXXTypeidExpr(CXXTypeidExpr * E)198   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
199   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
200   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
201 
VisitPseudoObjectExpr(PseudoObjectExpr * E)202   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
203     if (E->isGLValue()) {
204       LValue LV = CGF.EmitPseudoObjectLValue(E);
205       return EmitFinalDestCopy(E->getType(), LV);
206     }
207 
208     AggValueSlot Slot = EnsureSlot(E->getType());
209     bool NeedsDestruction =
210         !Slot.isExternallyDestructed() &&
211         E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
212     if (NeedsDestruction)
213       Slot.setExternallyDestructed();
214     CGF.EmitPseudoObjectRValue(E, Slot);
215     if (NeedsDestruction)
216       CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Slot.getAddress(),
217                       E->getType());
218   }
219 
220   void VisitVAArgExpr(VAArgExpr *E);
221   void VisitCXXParenListInitExpr(CXXParenListInitExpr *E);
222   void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args,
223                                        Expr *ArrayFiller);
224 
225   void EmitInitializationToLValue(Expr *E, LValue Address);
226   void EmitNullInitializationToLValue(LValue Address);
227   //  case Expr::ChooseExprClass:
VisitCXXThrowExpr(const CXXThrowExpr * E)228   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
VisitAtomicExpr(AtomicExpr * E)229   void VisitAtomicExpr(AtomicExpr *E) {
230     RValue Res = CGF.EmitAtomicExpr(E);
231     EmitFinalDestCopy(E->getType(), Res);
232   }
233 };
234 }  // end anonymous namespace.
235 
236 //===----------------------------------------------------------------------===//
237 //                                Utilities
238 //===----------------------------------------------------------------------===//
239 
240 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
241 /// represents a value lvalue, this method emits the address of the lvalue,
242 /// then loads the result into DestPtr.
EmitAggLoadOfLValue(const Expr * E)243 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
244   LValue LV = CGF.EmitLValue(E);
245 
246   // If the type of the l-value is atomic, then do an atomic load.
247   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
248     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
249     return;
250   }
251 
252   EmitFinalDestCopy(E->getType(), LV);
253 }
254 
255 /// True if the given aggregate type requires special GC API calls.
TypeRequiresGCollection(QualType T)256 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
257   // Only record types have members that might require garbage collection.
258   const RecordType *RecordTy = T->getAs<RecordType>();
259   if (!RecordTy) return false;
260 
261   // Don't mess with non-trivial C++ types.
262   RecordDecl *Record = RecordTy->getDecl();
263   if (isa<CXXRecordDecl>(Record) &&
264       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
265        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
266     return false;
267 
268   // Check whether the type has an object member.
269   return Record->hasObjectMember();
270 }
271 
withReturnValueSlot(const Expr * E,llvm::function_ref<RValue (ReturnValueSlot)> EmitCall)272 void AggExprEmitter::withReturnValueSlot(
273     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
274   QualType RetTy = E->getType();
275   bool RequiresDestruction =
276       !Dest.isExternallyDestructed() &&
277       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
278 
279   // If it makes no observable difference, save a memcpy + temporary.
280   //
281   // We need to always provide our own temporary if destruction is required.
282   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
283   // its lifetime before we have the chance to emit a proper destructor call.
284   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
285                  (RequiresDestruction && !Dest.getAddress().isValid());
286 
287   Address RetAddr = Address::invalid();
288   Address RetAllocaAddr = Address::invalid();
289 
290   EHScopeStack::stable_iterator LifetimeEndBlock;
291   llvm::Value *LifetimeSizePtr = nullptr;
292   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
293   if (!UseTemp) {
294     RetAddr = Dest.getAddress();
295   } else {
296     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
297     llvm::TypeSize Size =
298         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
299     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
300     if (LifetimeSizePtr) {
301       LifetimeStartInst =
302           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
303       assert(LifetimeStartInst->getIntrinsicID() ==
304                  llvm::Intrinsic::lifetime_start &&
305              "Last insertion wasn't a lifetime.start?");
306 
307       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
308           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
309       LifetimeEndBlock = CGF.EHStack.stable_begin();
310     }
311   }
312 
313   RValue Src =
314       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
315                                Dest.isExternallyDestructed()));
316 
317   if (!UseTemp)
318     return;
319 
320   assert(Dest.isIgnored() || Dest.getPointer() != Src.getAggregatePointer());
321   EmitFinalDestCopy(E->getType(), Src);
322 
323   if (!RequiresDestruction && LifetimeStartInst) {
324     // If there's no dtor to run, the copy was the last use of our temporary.
325     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
326     // eagerly.
327     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
328     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
329   }
330 }
331 
332 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,RValue src)333 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
334   assert(src.isAggregate() && "value must be aggregate value!");
335   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
336   EmitFinalDestCopy(type, srcLV, EVK_RValue);
337 }
338 
339 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,const LValue & src,ExprValueKind SrcValueKind)340 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
341                                        ExprValueKind SrcValueKind) {
342   // If Dest is ignored, then we're evaluating an aggregate expression
343   // in a context that doesn't care about the result.  Note that loads
344   // from volatile l-values force the existence of a non-ignored
345   // destination.
346   if (Dest.isIgnored())
347     return;
348 
349   // Copy non-trivial C structs here.
350   LValue DstLV = CGF.MakeAddrLValue(
351       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
352 
353   if (SrcValueKind == EVK_RValue) {
354     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
355       if (Dest.isPotentiallyAliased())
356         CGF.callCStructMoveAssignmentOperator(DstLV, src);
357       else
358         CGF.callCStructMoveConstructor(DstLV, src);
359       return;
360     }
361   } else {
362     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
363       if (Dest.isPotentiallyAliased())
364         CGF.callCStructCopyAssignmentOperator(DstLV, src);
365       else
366         CGF.callCStructCopyConstructor(DstLV, src);
367       return;
368     }
369   }
370 
371   AggValueSlot srcAgg = AggValueSlot::forLValue(
372       src, CGF, AggValueSlot::IsDestructed, needsGC(type),
373       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
374   EmitCopy(type, Dest, srcAgg);
375 }
376 
377 /// Perform a copy from the source into the destination.
378 ///
379 /// \param type - the type of the aggregate being copied; qualifiers are
380 ///   ignored
EmitCopy(QualType type,const AggValueSlot & dest,const AggValueSlot & src)381 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
382                               const AggValueSlot &src) {
383   if (dest.requiresGCollection()) {
384     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
385     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
386     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
387                                                       dest.getAddress(),
388                                                       src.getAddress(),
389                                                       size);
390     return;
391   }
392 
393   // If the result of the assignment is used, copy the LHS there also.
394   // It's volatile if either side is.  Use the minimum alignment of
395   // the two sides.
396   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
397   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
398   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
399                         dest.isVolatile() || src.isVolatile());
400 }
401 
402 /// Emit the initializer for a std::initializer_list initialized with a
403 /// real initializer list.
404 void
VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr * E)405 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
406   // Emit an array containing the elements.  The array is externally destructed
407   // if the std::initializer_list object is.
408   ASTContext &Ctx = CGF.getContext();
409   LValue Array = CGF.EmitLValue(E->getSubExpr());
410   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
411   Address ArrayPtr = Array.getAddress(CGF);
412 
413   const ConstantArrayType *ArrayType =
414       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
415   assert(ArrayType && "std::initializer_list constructed from non-array");
416 
417   // FIXME: Perform the checks on the field types in SemaInit.
418   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
419   RecordDecl::field_iterator Field = Record->field_begin();
420   if (Field == Record->field_end()) {
421     CGF.ErrorUnsupported(E, "weird std::initializer_list");
422     return;
423   }
424 
425   // Start pointer.
426   if (!Field->getType()->isPointerType() ||
427       !Ctx.hasSameType(Field->getType()->getPointeeType(),
428                        ArrayType->getElementType())) {
429     CGF.ErrorUnsupported(E, "weird std::initializer_list");
430     return;
431   }
432 
433   AggValueSlot Dest = EnsureSlot(E->getType());
434   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
435   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
436   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
437   llvm::Value *IdxStart[] = { Zero, Zero };
438   llvm::Value *ArrayStart = Builder.CreateInBoundsGEP(
439       ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxStart, "arraystart");
440   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
441   ++Field;
442 
443   if (Field == Record->field_end()) {
444     CGF.ErrorUnsupported(E, "weird std::initializer_list");
445     return;
446   }
447 
448   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
449   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
450   if (Field->getType()->isPointerType() &&
451       Ctx.hasSameType(Field->getType()->getPointeeType(),
452                       ArrayType->getElementType())) {
453     // End pointer.
454     llvm::Value *IdxEnd[] = { Zero, Size };
455     llvm::Value *ArrayEnd = Builder.CreateInBoundsGEP(
456         ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxEnd, "arrayend");
457     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
458   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
459     // Length.
460     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
461   } else {
462     CGF.ErrorUnsupported(E, "weird std::initializer_list");
463     return;
464   }
465 }
466 
467 /// Determine if E is a trivial array filler, that is, one that is
468 /// equivalent to zero-initialization.
isTrivialFiller(Expr * E)469 static bool isTrivialFiller(Expr *E) {
470   if (!E)
471     return true;
472 
473   if (isa<ImplicitValueInitExpr>(E))
474     return true;
475 
476   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
477     if (ILE->getNumInits())
478       return false;
479     return isTrivialFiller(ILE->getArrayFiller());
480   }
481 
482   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
483     return Cons->getConstructor()->isDefaultConstructor() &&
484            Cons->getConstructor()->isTrivial();
485 
486   // FIXME: Are there other cases where we can avoid emitting an initializer?
487   return false;
488 }
489 
490 /// Emit initialization of an array from an initializer list. ExprToVisit must
491 /// be either an InitListEpxr a CXXParenInitListExpr.
EmitArrayInit(Address DestPtr,llvm::ArrayType * AType,QualType ArrayQTy,Expr * ExprToVisit,ArrayRef<Expr * > Args,Expr * ArrayFiller)492 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
493                                    QualType ArrayQTy, Expr *ExprToVisit,
494                                    ArrayRef<Expr *> Args, Expr *ArrayFiller) {
495   uint64_t NumInitElements = Args.size();
496 
497   uint64_t NumArrayElements = AType->getNumElements();
498   assert(NumInitElements <= NumArrayElements);
499 
500   QualType elementType =
501       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
502 
503   // DestPtr is an array*.  Construct an elementType* by drilling
504   // down a level.
505   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
506   llvm::Value *indices[] = { zero, zero };
507   llvm::Value *begin = Builder.CreateInBoundsGEP(
508       DestPtr.getElementType(), DestPtr.getPointer(), indices,
509       "arrayinit.begin");
510 
511   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
512   CharUnits elementAlign =
513     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
514   llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
515 
516   // Consider initializing the array by copying from a global. For this to be
517   // more efficient than per-element initialization, the size of the elements
518   // with explicit initializers should be large enough.
519   if (NumInitElements * elementSize.getQuantity() > 16 &&
520       elementType.isTriviallyCopyableType(CGF.getContext())) {
521     CodeGen::CodeGenModule &CGM = CGF.CGM;
522     ConstantEmitter Emitter(CGF);
523     LangAS AS = ArrayQTy.getAddressSpace();
524     if (llvm::Constant *C =
525             Emitter.tryEmitForInitializer(ExprToVisit, AS, ArrayQTy)) {
526       auto GV = new llvm::GlobalVariable(
527           CGM.getModule(), C->getType(),
528           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
529           llvm::GlobalValue::PrivateLinkage, C, "constinit",
530           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
531           CGM.getContext().getTargetAddressSpace(AS));
532       Emitter.finalize(GV);
533       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
534       GV->setAlignment(Align.getAsAlign());
535       Address GVAddr(GV, GV->getValueType(), Align);
536       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GVAddr, ArrayQTy));
537       return;
538     }
539   }
540 
541   // Exception safety requires us to destroy all the
542   // already-constructed members if an initializer throws.
543   // For that, we'll need an EH cleanup.
544   QualType::DestructionKind dtorKind = elementType.isDestructedType();
545   Address endOfInit = Address::invalid();
546   EHScopeStack::stable_iterator cleanup;
547   llvm::Instruction *cleanupDominator = nullptr;
548   if (CGF.needsEHCleanup(dtorKind)) {
549     // In principle we could tell the cleanup where we are more
550     // directly, but the control flow can get so varied here that it
551     // would actually be quite complex.  Therefore we go through an
552     // alloca.
553     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
554                                      "arrayinit.endOfInit");
555     cleanupDominator = Builder.CreateStore(begin, endOfInit);
556     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
557                                          elementAlign,
558                                          CGF.getDestroyer(dtorKind));
559     cleanup = CGF.EHStack.stable_begin();
560 
561   // Otherwise, remember that we didn't need a cleanup.
562   } else {
563     dtorKind = QualType::DK_none;
564   }
565 
566   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
567 
568   // The 'current element to initialize'.  The invariants on this
569   // variable are complicated.  Essentially, after each iteration of
570   // the loop, it points to the last initialized element, except
571   // that it points to the beginning of the array before any
572   // elements have been initialized.
573   llvm::Value *element = begin;
574 
575   // Emit the explicit initializers.
576   for (uint64_t i = 0; i != NumInitElements; ++i) {
577     // Advance to the next element.
578     if (i > 0) {
579       element = Builder.CreateInBoundsGEP(
580           llvmElementType, element, one, "arrayinit.element");
581 
582       // Tell the cleanup that it needs to destroy up to this
583       // element.  TODO: some of these stores can be trivially
584       // observed to be unnecessary.
585       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
586     }
587 
588     LValue elementLV = CGF.MakeAddrLValue(
589         Address(element, llvmElementType, elementAlign), elementType);
590     EmitInitializationToLValue(Args[i], elementLV);
591   }
592 
593   // Check whether there's a non-trivial array-fill expression.
594   bool hasTrivialFiller = isTrivialFiller(ArrayFiller);
595 
596   // Any remaining elements need to be zero-initialized, possibly
597   // using the filler expression.  We can skip this if the we're
598   // emitting to zeroed memory.
599   if (NumInitElements != NumArrayElements &&
600       !(Dest.isZeroed() && hasTrivialFiller &&
601         CGF.getTypes().isZeroInitializable(elementType))) {
602 
603     // Use an actual loop.  This is basically
604     //   do { *array++ = filler; } while (array != end);
605 
606     // Advance to the start of the rest of the array.
607     if (NumInitElements) {
608       element = Builder.CreateInBoundsGEP(
609           llvmElementType, element, one, "arrayinit.start");
610       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
611     }
612 
613     // Compute the end of the array.
614     llvm::Value *end = Builder.CreateInBoundsGEP(
615         llvmElementType, begin,
616         llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), "arrayinit.end");
617 
618     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
619     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
620 
621     // Jump into the body.
622     CGF.EmitBlock(bodyBB);
623     llvm::PHINode *currentElement =
624       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
625     currentElement->addIncoming(element, entryBB);
626 
627     // Emit the actual filler expression.
628     {
629       // C++1z [class.temporary]p5:
630       //   when a default constructor is called to initialize an element of
631       //   an array with no corresponding initializer [...] the destruction of
632       //   every temporary created in a default argument is sequenced before
633       //   the construction of the next array element, if any
634       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
635       LValue elementLV = CGF.MakeAddrLValue(
636           Address(currentElement, llvmElementType, elementAlign), elementType);
637       if (ArrayFiller)
638         EmitInitializationToLValue(ArrayFiller, elementLV);
639       else
640         EmitNullInitializationToLValue(elementLV);
641     }
642 
643     // Move on to the next element.
644     llvm::Value *nextElement = Builder.CreateInBoundsGEP(
645         llvmElementType, currentElement, one, "arrayinit.next");
646 
647     // Tell the EH cleanup that we finished with the last element.
648     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
649 
650     // Leave the loop if we're done.
651     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
652                                              "arrayinit.done");
653     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
654     Builder.CreateCondBr(done, endBB, bodyBB);
655     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
656 
657     CGF.EmitBlock(endBB);
658   }
659 
660   // Leave the partial-array cleanup if we entered one.
661   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
662 }
663 
664 //===----------------------------------------------------------------------===//
665 //                            Visitor Methods
666 //===----------------------------------------------------------------------===//
667 
VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr * E)668 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
669   Visit(E->getSubExpr());
670 }
671 
VisitOpaqueValueExpr(OpaqueValueExpr * e)672 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
673   // If this is a unique OVE, just visit its source expression.
674   if (e->isUnique())
675     Visit(e->getSourceExpr());
676   else
677     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
678 }
679 
680 void
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)681 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
682   if (Dest.isPotentiallyAliased() &&
683       E->getType().isPODType(CGF.getContext())) {
684     // For a POD type, just emit a load of the lvalue + a copy, because our
685     // compound literal might alias the destination.
686     EmitAggLoadOfLValue(E);
687     return;
688   }
689 
690   AggValueSlot Slot = EnsureSlot(E->getType());
691 
692   // Block-scope compound literals are destroyed at the end of the enclosing
693   // scope in C.
694   bool Destruct =
695       !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
696   if (Destruct)
697     Slot.setExternallyDestructed();
698 
699   CGF.EmitAggExpr(E->getInitializer(), Slot);
700 
701   if (Destruct)
702     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
703       CGF.pushLifetimeExtendedDestroy(
704           CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
705           CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
706 }
707 
708 /// Attempt to look through various unimportant expressions to find a
709 /// cast of the given kind.
findPeephole(Expr * op,CastKind kind,const ASTContext & ctx)710 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) {
711   op = op->IgnoreParenNoopCasts(ctx);
712   if (auto castE = dyn_cast<CastExpr>(op)) {
713     if (castE->getCastKind() == kind)
714       return castE->getSubExpr();
715   }
716   return nullptr;
717 }
718 
VisitCastExpr(CastExpr * E)719 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
720   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
721     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
722   switch (E->getCastKind()) {
723   case CK_Dynamic: {
724     // FIXME: Can this actually happen? We have no test coverage for it.
725     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
726     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
727                                       CodeGenFunction::TCK_Load);
728     // FIXME: Do we also need to handle property references here?
729     if (LV.isSimple())
730       CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
731     else
732       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
733 
734     if (!Dest.isIgnored())
735       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
736     break;
737   }
738 
739   case CK_ToUnion: {
740     // Evaluate even if the destination is ignored.
741     if (Dest.isIgnored()) {
742       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
743                       /*ignoreResult=*/true);
744       break;
745     }
746 
747     // GCC union extension
748     QualType Ty = E->getSubExpr()->getType();
749     Address CastPtr =
750       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
751     EmitInitializationToLValue(E->getSubExpr(),
752                                CGF.MakeAddrLValue(CastPtr, Ty));
753     break;
754   }
755 
756   case CK_LValueToRValueBitCast: {
757     if (Dest.isIgnored()) {
758       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
759                       /*ignoreResult=*/true);
760       break;
761     }
762 
763     LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
764     Address SourceAddress =
765         Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty);
766     Address DestAddress =
767         Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
768     llvm::Value *SizeVal = llvm::ConstantInt::get(
769         CGF.SizeTy,
770         CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
771     Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
772     break;
773   }
774 
775   case CK_DerivedToBase:
776   case CK_BaseToDerived:
777   case CK_UncheckedDerivedToBase: {
778     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
779                 "should have been unpacked before we got here");
780   }
781 
782   case CK_NonAtomicToAtomic:
783   case CK_AtomicToNonAtomic: {
784     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
785 
786     // Determine the atomic and value types.
787     QualType atomicType = E->getSubExpr()->getType();
788     QualType valueType = E->getType();
789     if (isToAtomic) std::swap(atomicType, valueType);
790 
791     assert(atomicType->isAtomicType());
792     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
793                           atomicType->castAs<AtomicType>()->getValueType()));
794 
795     // Just recurse normally if we're ignoring the result or the
796     // atomic type doesn't change representation.
797     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
798       return Visit(E->getSubExpr());
799     }
800 
801     CastKind peepholeTarget =
802       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
803 
804     // These two cases are reverses of each other; try to peephole them.
805     if (Expr *op =
806             findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) {
807       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
808                                                      E->getType()) &&
809            "peephole significantly changed types?");
810       return Visit(op);
811     }
812 
813     // If we're converting an r-value of non-atomic type to an r-value
814     // of atomic type, just emit directly into the relevant sub-object.
815     if (isToAtomic) {
816       AggValueSlot valueDest = Dest;
817       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
818         // Zero-initialize.  (Strictly speaking, we only need to initialize
819         // the padding at the end, but this is simpler.)
820         if (!Dest.isZeroed())
821           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
822 
823         // Build a GEP to refer to the subobject.
824         Address valueAddr =
825             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
826         valueDest = AggValueSlot::forAddr(valueAddr,
827                                           valueDest.getQualifiers(),
828                                           valueDest.isExternallyDestructed(),
829                                           valueDest.requiresGCollection(),
830                                           valueDest.isPotentiallyAliased(),
831                                           AggValueSlot::DoesNotOverlap,
832                                           AggValueSlot::IsZeroed);
833       }
834 
835       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
836       return;
837     }
838 
839     // Otherwise, we're converting an atomic type to a non-atomic type.
840     // Make an atomic temporary, emit into that, and then copy the value out.
841     AggValueSlot atomicSlot =
842       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
843     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
844 
845     Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
846     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
847     return EmitFinalDestCopy(valueType, rvalue);
848   }
849   case CK_AddressSpaceConversion:
850      return Visit(E->getSubExpr());
851 
852   case CK_LValueToRValue:
853     // If we're loading from a volatile type, force the destination
854     // into existence.
855     if (E->getSubExpr()->getType().isVolatileQualified()) {
856       bool Destruct =
857           !Dest.isExternallyDestructed() &&
858           E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
859       if (Destruct)
860         Dest.setExternallyDestructed();
861       EnsureDest(E->getType());
862       Visit(E->getSubExpr());
863 
864       if (Destruct)
865         CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
866                         E->getType());
867 
868       return;
869     }
870 
871     [[fallthrough]];
872 
873 
874   case CK_NoOp:
875   case CK_UserDefinedConversion:
876   case CK_ConstructorConversion:
877     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
878                                                    E->getType()) &&
879            "Implicit cast types must be compatible");
880     Visit(E->getSubExpr());
881     break;
882 
883   case CK_LValueBitCast:
884     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
885 
886   case CK_Dependent:
887   case CK_BitCast:
888   case CK_ArrayToPointerDecay:
889   case CK_FunctionToPointerDecay:
890   case CK_NullToPointer:
891   case CK_NullToMemberPointer:
892   case CK_BaseToDerivedMemberPointer:
893   case CK_DerivedToBaseMemberPointer:
894   case CK_MemberPointerToBoolean:
895   case CK_ReinterpretMemberPointer:
896   case CK_IntegralToPointer:
897   case CK_PointerToIntegral:
898   case CK_PointerToBoolean:
899   case CK_ToVoid:
900   case CK_VectorSplat:
901   case CK_IntegralCast:
902   case CK_BooleanToSignedIntegral:
903   case CK_IntegralToBoolean:
904   case CK_IntegralToFloating:
905   case CK_FloatingToIntegral:
906   case CK_FloatingToBoolean:
907   case CK_FloatingCast:
908   case CK_CPointerToObjCPointerCast:
909   case CK_BlockPointerToObjCPointerCast:
910   case CK_AnyPointerToBlockPointerCast:
911   case CK_ObjCObjectLValueCast:
912   case CK_FloatingRealToComplex:
913   case CK_FloatingComplexToReal:
914   case CK_FloatingComplexToBoolean:
915   case CK_FloatingComplexCast:
916   case CK_FloatingComplexToIntegralComplex:
917   case CK_IntegralRealToComplex:
918   case CK_IntegralComplexToReal:
919   case CK_IntegralComplexToBoolean:
920   case CK_IntegralComplexCast:
921   case CK_IntegralComplexToFloatingComplex:
922   case CK_ARCProduceObject:
923   case CK_ARCConsumeObject:
924   case CK_ARCReclaimReturnedObject:
925   case CK_ARCExtendBlockObject:
926   case CK_CopyAndAutoreleaseBlockObject:
927   case CK_BuiltinFnToFnPtr:
928   case CK_ZeroToOCLOpaqueType:
929   case CK_MatrixCast:
930 
931   case CK_IntToOCLSampler:
932   case CK_FloatingToFixedPoint:
933   case CK_FixedPointToFloating:
934   case CK_FixedPointCast:
935   case CK_FixedPointToBoolean:
936   case CK_FixedPointToIntegral:
937   case CK_IntegralToFixedPoint:
938     llvm_unreachable("cast kind invalid for aggregate types");
939   }
940 }
941 
VisitCallExpr(const CallExpr * E)942 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
943   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
944     EmitAggLoadOfLValue(E);
945     return;
946   }
947 
948   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
949     return CGF.EmitCallExpr(E, Slot);
950   });
951 }
952 
VisitObjCMessageExpr(ObjCMessageExpr * E)953 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
954   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
955     return CGF.EmitObjCMessageExpr(E, Slot);
956   });
957 }
958 
VisitBinComma(const BinaryOperator * E)959 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
960   CGF.EmitIgnoredExpr(E->getLHS());
961   Visit(E->getRHS());
962 }
963 
VisitStmtExpr(const StmtExpr * E)964 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
965   CodeGenFunction::StmtExprEvaluation eval(CGF);
966   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
967 }
968 
969 enum CompareKind {
970   CK_Less,
971   CK_Greater,
972   CK_Equal,
973 };
974 
EmitCompare(CGBuilderTy & Builder,CodeGenFunction & CGF,const BinaryOperator * E,llvm::Value * LHS,llvm::Value * RHS,CompareKind Kind,const char * NameSuffix="")975 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
976                                 const BinaryOperator *E, llvm::Value *LHS,
977                                 llvm::Value *RHS, CompareKind Kind,
978                                 const char *NameSuffix = "") {
979   QualType ArgTy = E->getLHS()->getType();
980   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
981     ArgTy = CT->getElementType();
982 
983   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
984     assert(Kind == CK_Equal &&
985            "member pointers may only be compared for equality");
986     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
987         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
988   }
989 
990   // Compute the comparison instructions for the specified comparison kind.
991   struct CmpInstInfo {
992     const char *Name;
993     llvm::CmpInst::Predicate FCmp;
994     llvm::CmpInst::Predicate SCmp;
995     llvm::CmpInst::Predicate UCmp;
996   };
997   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
998     using FI = llvm::FCmpInst;
999     using II = llvm::ICmpInst;
1000     switch (Kind) {
1001     case CK_Less:
1002       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
1003     case CK_Greater:
1004       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
1005     case CK_Equal:
1006       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
1007     }
1008     llvm_unreachable("Unrecognised CompareKind enum");
1009   }();
1010 
1011   if (ArgTy->hasFloatingRepresentation())
1012     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
1013                               llvm::Twine(InstInfo.Name) + NameSuffix);
1014   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
1015     auto Inst =
1016         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
1017     return Builder.CreateICmp(Inst, LHS, RHS,
1018                               llvm::Twine(InstInfo.Name) + NameSuffix);
1019   }
1020 
1021   llvm_unreachable("unsupported aggregate binary expression should have "
1022                    "already been handled");
1023 }
1024 
VisitBinCmp(const BinaryOperator * E)1025 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
1026   using llvm::BasicBlock;
1027   using llvm::PHINode;
1028   using llvm::Value;
1029   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1030                                       E->getRHS()->getType()));
1031   const ComparisonCategoryInfo &CmpInfo =
1032       CGF.getContext().CompCategories.getInfoForType(E->getType());
1033   assert(CmpInfo.Record->isTriviallyCopyable() &&
1034          "cannot copy non-trivially copyable aggregate");
1035 
1036   QualType ArgTy = E->getLHS()->getType();
1037 
1038   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1039       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1040       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1041     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1042   }
1043   bool IsComplex = ArgTy->isAnyComplexType();
1044 
1045   // Evaluate the operands to the expression and extract their values.
1046   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1047     RValue RV = CGF.EmitAnyExpr(E);
1048     if (RV.isScalar())
1049       return {RV.getScalarVal(), nullptr};
1050     if (RV.isAggregate())
1051       return {RV.getAggregatePointer(), nullptr};
1052     assert(RV.isComplex());
1053     return RV.getComplexVal();
1054   };
1055   auto LHSValues = EmitOperand(E->getLHS()),
1056        RHSValues = EmitOperand(E->getRHS());
1057 
1058   auto EmitCmp = [&](CompareKind K) {
1059     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1060                              K, IsComplex ? ".r" : "");
1061     if (!IsComplex)
1062       return Cmp;
1063     assert(K == CompareKind::CK_Equal);
1064     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1065                                  RHSValues.second, K, ".i");
1066     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1067   };
1068   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1069     return Builder.getInt(VInfo->getIntValue());
1070   };
1071 
1072   Value *Select;
1073   if (ArgTy->isNullPtrType()) {
1074     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1075   } else if (!CmpInfo.isPartial()) {
1076     Value *SelectOne =
1077         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1078                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1079     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1080                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1081                                   SelectOne, "sel.eq");
1082   } else {
1083     Value *SelectEq = Builder.CreateSelect(
1084         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1085         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1086     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1087                                            EmitCmpRes(CmpInfo.getGreater()),
1088                                            SelectEq, "sel.gt");
1089     Select = Builder.CreateSelect(
1090         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1091   }
1092   // Create the return value in the destination slot.
1093   EnsureDest(E->getType());
1094   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1095 
1096   // Emit the address of the first (and only) field in the comparison category
1097   // type, and initialize it from the constant integer value selected above.
1098   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1099       DestLV, *CmpInfo.Record->field_begin());
1100   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1101 
1102   // All done! The result is in the Dest slot.
1103 }
1104 
VisitBinaryOperator(const BinaryOperator * E)1105 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1106   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1107     VisitPointerToDataMemberBinaryOperator(E);
1108   else
1109     CGF.ErrorUnsupported(E, "aggregate binary expression");
1110 }
1111 
VisitPointerToDataMemberBinaryOperator(const BinaryOperator * E)1112 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1113                                                     const BinaryOperator *E) {
1114   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1115   EmitFinalDestCopy(E->getType(), LV);
1116 }
1117 
1118 /// Is the value of the given expression possibly a reference to or
1119 /// into a __block variable?
isBlockVarRef(const Expr * E)1120 static bool isBlockVarRef(const Expr *E) {
1121   // Make sure we look through parens.
1122   E = E->IgnoreParens();
1123 
1124   // Check for a direct reference to a __block variable.
1125   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1126     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1127     return (var && var->hasAttr<BlocksAttr>());
1128   }
1129 
1130   // More complicated stuff.
1131 
1132   // Binary operators.
1133   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1134     // For an assignment or pointer-to-member operation, just care
1135     // about the LHS.
1136     if (op->isAssignmentOp() || op->isPtrMemOp())
1137       return isBlockVarRef(op->getLHS());
1138 
1139     // For a comma, just care about the RHS.
1140     if (op->getOpcode() == BO_Comma)
1141       return isBlockVarRef(op->getRHS());
1142 
1143     // FIXME: pointer arithmetic?
1144     return false;
1145 
1146   // Check both sides of a conditional operator.
1147   } else if (const AbstractConditionalOperator *op
1148                = dyn_cast<AbstractConditionalOperator>(E)) {
1149     return isBlockVarRef(op->getTrueExpr())
1150         || isBlockVarRef(op->getFalseExpr());
1151 
1152   // OVEs are required to support BinaryConditionalOperators.
1153   } else if (const OpaqueValueExpr *op
1154                = dyn_cast<OpaqueValueExpr>(E)) {
1155     if (const Expr *src = op->getSourceExpr())
1156       return isBlockVarRef(src);
1157 
1158   // Casts are necessary to get things like (*(int*)&var) = foo().
1159   // We don't really care about the kind of cast here, except
1160   // we don't want to look through l2r casts, because it's okay
1161   // to get the *value* in a __block variable.
1162   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1163     if (cast->getCastKind() == CK_LValueToRValue)
1164       return false;
1165     return isBlockVarRef(cast->getSubExpr());
1166 
1167   // Handle unary operators.  Again, just aggressively look through
1168   // it, ignoring the operation.
1169   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1170     return isBlockVarRef(uop->getSubExpr());
1171 
1172   // Look into the base of a field access.
1173   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1174     return isBlockVarRef(mem->getBase());
1175 
1176   // Look into the base of a subscript.
1177   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1178     return isBlockVarRef(sub->getBase());
1179   }
1180 
1181   return false;
1182 }
1183 
VisitBinAssign(const BinaryOperator * E)1184 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1185   // For an assignment to work, the value on the right has
1186   // to be compatible with the value on the left.
1187   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1188                                                  E->getRHS()->getType())
1189          && "Invalid assignment");
1190 
1191   // If the LHS might be a __block variable, and the RHS can
1192   // potentially cause a block copy, we need to evaluate the RHS first
1193   // so that the assignment goes the right place.
1194   // This is pretty semantically fragile.
1195   if (isBlockVarRef(E->getLHS()) &&
1196       E->getRHS()->HasSideEffects(CGF.getContext())) {
1197     // Ensure that we have a destination, and evaluate the RHS into that.
1198     EnsureDest(E->getRHS()->getType());
1199     Visit(E->getRHS());
1200 
1201     // Now emit the LHS and copy into it.
1202     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1203 
1204     // That copy is an atomic copy if the LHS is atomic.
1205     if (LHS.getType()->isAtomicType() ||
1206         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1207       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1208       return;
1209     }
1210 
1211     EmitCopy(E->getLHS()->getType(),
1212              AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1213                                      needsGC(E->getLHS()->getType()),
1214                                      AggValueSlot::IsAliased,
1215                                      AggValueSlot::MayOverlap),
1216              Dest);
1217     return;
1218   }
1219 
1220   LValue LHS = CGF.EmitLValue(E->getLHS());
1221 
1222   // If we have an atomic type, evaluate into the destination and then
1223   // do an atomic copy.
1224   if (LHS.getType()->isAtomicType() ||
1225       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1226     EnsureDest(E->getRHS()->getType());
1227     Visit(E->getRHS());
1228     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1229     return;
1230   }
1231 
1232   // Codegen the RHS so that it stores directly into the LHS.
1233   AggValueSlot LHSSlot = AggValueSlot::forLValue(
1234       LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1235       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1236   // A non-volatile aggregate destination might have volatile member.
1237   if (!LHSSlot.isVolatile() &&
1238       CGF.hasVolatileMember(E->getLHS()->getType()))
1239     LHSSlot.setVolatile(true);
1240 
1241   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1242 
1243   // Copy into the destination if the assignment isn't ignored.
1244   EmitFinalDestCopy(E->getType(), LHS);
1245 
1246   if (!Dest.isIgnored() && !Dest.isExternallyDestructed() &&
1247       E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
1248     CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1249                     E->getType());
1250 }
1251 
1252 void AggExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)1253 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1254   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1255   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1256   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1257 
1258   // Bind the common expression if necessary.
1259   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1260 
1261   CodeGenFunction::ConditionalEvaluation eval(CGF);
1262   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1263                            CGF.getProfileCount(E));
1264 
1265   // Save whether the destination's lifetime is externally managed.
1266   bool isExternallyDestructed = Dest.isExternallyDestructed();
1267   bool destructNonTrivialCStruct =
1268       !isExternallyDestructed &&
1269       E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
1270   isExternallyDestructed |= destructNonTrivialCStruct;
1271   Dest.setExternallyDestructed(isExternallyDestructed);
1272 
1273   eval.begin(CGF);
1274   CGF.EmitBlock(LHSBlock);
1275   CGF.incrementProfileCounter(E);
1276   Visit(E->getTrueExpr());
1277   eval.end(CGF);
1278 
1279   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1280   CGF.Builder.CreateBr(ContBlock);
1281 
1282   // If the result of an agg expression is unused, then the emission
1283   // of the LHS might need to create a destination slot.  That's fine
1284   // with us, and we can safely emit the RHS into the same slot, but
1285   // we shouldn't claim that it's already being destructed.
1286   Dest.setExternallyDestructed(isExternallyDestructed);
1287 
1288   eval.begin(CGF);
1289   CGF.EmitBlock(RHSBlock);
1290   Visit(E->getFalseExpr());
1291   eval.end(CGF);
1292 
1293   if (destructNonTrivialCStruct)
1294     CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1295                     E->getType());
1296 
1297   CGF.EmitBlock(ContBlock);
1298 }
1299 
VisitChooseExpr(const ChooseExpr * CE)1300 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1301   Visit(CE->getChosenSubExpr());
1302 }
1303 
VisitVAArgExpr(VAArgExpr * VE)1304 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1305   Address ArgValue = Address::invalid();
1306   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1307 
1308   // If EmitVAArg fails, emit an error.
1309   if (!ArgPtr.isValid()) {
1310     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1311     return;
1312   }
1313 
1314   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1315 }
1316 
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)1317 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1318   // Ensure that we have a slot, but if we already do, remember
1319   // whether it was externally destructed.
1320   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1321   EnsureDest(E->getType());
1322 
1323   // We're going to push a destructor if there isn't already one.
1324   Dest.setExternallyDestructed();
1325 
1326   Visit(E->getSubExpr());
1327 
1328   // Push that destructor we promised.
1329   if (!wasExternallyDestructed)
1330     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1331 }
1332 
1333 void
VisitCXXConstructExpr(const CXXConstructExpr * E)1334 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1335   AggValueSlot Slot = EnsureSlot(E->getType());
1336   CGF.EmitCXXConstructExpr(E, Slot);
1337 }
1338 
VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr * E)1339 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1340     const CXXInheritedCtorInitExpr *E) {
1341   AggValueSlot Slot = EnsureSlot(E->getType());
1342   CGF.EmitInheritedCXXConstructorCall(
1343       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1344       E->inheritedFromVBase(), E);
1345 }
1346 
1347 void
VisitLambdaExpr(LambdaExpr * E)1348 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1349   AggValueSlot Slot = EnsureSlot(E->getType());
1350   LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1351 
1352   // We'll need to enter cleanup scopes in case any of the element
1353   // initializers throws an exception.
1354   SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1355   llvm::Instruction *CleanupDominator = nullptr;
1356 
1357   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1358   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1359                                                e = E->capture_init_end();
1360        i != e; ++i, ++CurField) {
1361     // Emit initialization
1362     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1363     if (CurField->hasCapturedVLAType()) {
1364       CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1365       continue;
1366     }
1367 
1368     EmitInitializationToLValue(*i, LV);
1369 
1370     // Push a destructor if necessary.
1371     if (QualType::DestructionKind DtorKind =
1372             CurField->getType().isDestructedType()) {
1373       assert(LV.isSimple());
1374       if (CGF.needsEHCleanup(DtorKind)) {
1375         if (!CleanupDominator)
1376           CleanupDominator = CGF.Builder.CreateAlignedLoad(
1377               CGF.Int8Ty,
1378               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1379               CharUnits::One()); // placeholder
1380 
1381         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1382                         CGF.getDestroyer(DtorKind), false);
1383         Cleanups.push_back(CGF.EHStack.stable_begin());
1384       }
1385     }
1386   }
1387 
1388   // Deactivate all the partial cleanups in reverse order, which
1389   // generally means popping them.
1390   for (unsigned i = Cleanups.size(); i != 0; --i)
1391     CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1392 
1393   // Destroy the placeholder if we made one.
1394   if (CleanupDominator)
1395     CleanupDominator->eraseFromParent();
1396 }
1397 
VisitExprWithCleanups(ExprWithCleanups * E)1398 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1399   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1400   Visit(E->getSubExpr());
1401 }
1402 
VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)1403 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1404   QualType T = E->getType();
1405   AggValueSlot Slot = EnsureSlot(T);
1406   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1407 }
1408 
VisitImplicitValueInitExpr(ImplicitValueInitExpr * E)1409 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1410   QualType T = E->getType();
1411   AggValueSlot Slot = EnsureSlot(T);
1412   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1413 }
1414 
1415 /// Determine whether the given cast kind is known to always convert values
1416 /// with all zero bits in their value representation to values with all zero
1417 /// bits in their value representation.
castPreservesZero(const CastExpr * CE)1418 static bool castPreservesZero(const CastExpr *CE) {
1419   switch (CE->getCastKind()) {
1420     // No-ops.
1421   case CK_NoOp:
1422   case CK_UserDefinedConversion:
1423   case CK_ConstructorConversion:
1424   case CK_BitCast:
1425   case CK_ToUnion:
1426   case CK_ToVoid:
1427     // Conversions between (possibly-complex) integral, (possibly-complex)
1428     // floating-point, and bool.
1429   case CK_BooleanToSignedIntegral:
1430   case CK_FloatingCast:
1431   case CK_FloatingComplexCast:
1432   case CK_FloatingComplexToBoolean:
1433   case CK_FloatingComplexToIntegralComplex:
1434   case CK_FloatingComplexToReal:
1435   case CK_FloatingRealToComplex:
1436   case CK_FloatingToBoolean:
1437   case CK_FloatingToIntegral:
1438   case CK_IntegralCast:
1439   case CK_IntegralComplexCast:
1440   case CK_IntegralComplexToBoolean:
1441   case CK_IntegralComplexToFloatingComplex:
1442   case CK_IntegralComplexToReal:
1443   case CK_IntegralRealToComplex:
1444   case CK_IntegralToBoolean:
1445   case CK_IntegralToFloating:
1446     // Reinterpreting integers as pointers and vice versa.
1447   case CK_IntegralToPointer:
1448   case CK_PointerToIntegral:
1449     // Language extensions.
1450   case CK_VectorSplat:
1451   case CK_MatrixCast:
1452   case CK_NonAtomicToAtomic:
1453   case CK_AtomicToNonAtomic:
1454     return true;
1455 
1456   case CK_BaseToDerivedMemberPointer:
1457   case CK_DerivedToBaseMemberPointer:
1458   case CK_MemberPointerToBoolean:
1459   case CK_NullToMemberPointer:
1460   case CK_ReinterpretMemberPointer:
1461     // FIXME: ABI-dependent.
1462     return false;
1463 
1464   case CK_AnyPointerToBlockPointerCast:
1465   case CK_BlockPointerToObjCPointerCast:
1466   case CK_CPointerToObjCPointerCast:
1467   case CK_ObjCObjectLValueCast:
1468   case CK_IntToOCLSampler:
1469   case CK_ZeroToOCLOpaqueType:
1470     // FIXME: Check these.
1471     return false;
1472 
1473   case CK_FixedPointCast:
1474   case CK_FixedPointToBoolean:
1475   case CK_FixedPointToFloating:
1476   case CK_FixedPointToIntegral:
1477   case CK_FloatingToFixedPoint:
1478   case CK_IntegralToFixedPoint:
1479     // FIXME: Do all fixed-point types represent zero as all 0 bits?
1480     return false;
1481 
1482   case CK_AddressSpaceConversion:
1483   case CK_BaseToDerived:
1484   case CK_DerivedToBase:
1485   case CK_Dynamic:
1486   case CK_NullToPointer:
1487   case CK_PointerToBoolean:
1488     // FIXME: Preserves zeroes only if zero pointers and null pointers have the
1489     // same representation in all involved address spaces.
1490     return false;
1491 
1492   case CK_ARCConsumeObject:
1493   case CK_ARCExtendBlockObject:
1494   case CK_ARCProduceObject:
1495   case CK_ARCReclaimReturnedObject:
1496   case CK_CopyAndAutoreleaseBlockObject:
1497   case CK_ArrayToPointerDecay:
1498   case CK_FunctionToPointerDecay:
1499   case CK_BuiltinFnToFnPtr:
1500   case CK_Dependent:
1501   case CK_LValueBitCast:
1502   case CK_LValueToRValue:
1503   case CK_LValueToRValueBitCast:
1504   case CK_UncheckedDerivedToBase:
1505     return false;
1506   }
1507   llvm_unreachable("Unhandled clang::CastKind enum");
1508 }
1509 
1510 /// isSimpleZero - If emitting this value will obviously just cause a store of
1511 /// zero to memory, return true.  This can return false if uncertain, so it just
1512 /// handles simple cases.
isSimpleZero(const Expr * E,CodeGenFunction & CGF)1513 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1514   E = E->IgnoreParens();
1515   while (auto *CE = dyn_cast<CastExpr>(E)) {
1516     if (!castPreservesZero(CE))
1517       break;
1518     E = CE->getSubExpr()->IgnoreParens();
1519   }
1520 
1521   // 0
1522   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1523     return IL->getValue() == 0;
1524   // +0.0
1525   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1526     return FL->getValue().isPosZero();
1527   // int()
1528   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1529       CGF.getTypes().isZeroInitializable(E->getType()))
1530     return true;
1531   // (int*)0 - Null pointer expressions.
1532   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1533     return ICE->getCastKind() == CK_NullToPointer &&
1534            CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1535            !E->HasSideEffects(CGF.getContext());
1536   // '\0'
1537   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1538     return CL->getValue() == 0;
1539 
1540   // Otherwise, hard case: conservatively return false.
1541   return false;
1542 }
1543 
1544 
1545 void
EmitInitializationToLValue(Expr * E,LValue LV)1546 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1547   QualType type = LV.getType();
1548   // FIXME: Ignore result?
1549   // FIXME: Are initializers affected by volatile?
1550   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1551     // Storing "i32 0" to a zero'd memory location is a noop.
1552     return;
1553   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1554     return EmitNullInitializationToLValue(LV);
1555   } else if (isa<NoInitExpr>(E)) {
1556     // Do nothing.
1557     return;
1558   } else if (type->isReferenceType()) {
1559     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1560     return CGF.EmitStoreThroughLValue(RV, LV);
1561   }
1562 
1563   switch (CGF.getEvaluationKind(type)) {
1564   case TEK_Complex:
1565     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1566     return;
1567   case TEK_Aggregate:
1568     CGF.EmitAggExpr(
1569         E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1570                                    AggValueSlot::DoesNotNeedGCBarriers,
1571                                    AggValueSlot::IsNotAliased,
1572                                    AggValueSlot::MayOverlap, Dest.isZeroed()));
1573     return;
1574   case TEK_Scalar:
1575     if (LV.isSimple()) {
1576       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1577     } else {
1578       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1579     }
1580     return;
1581   }
1582   llvm_unreachable("bad evaluation kind");
1583 }
1584 
EmitNullInitializationToLValue(LValue lv)1585 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1586   QualType type = lv.getType();
1587 
1588   // If the destination slot is already zeroed out before the aggregate is
1589   // copied into it, we don't have to emit any zeros here.
1590   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1591     return;
1592 
1593   if (CGF.hasScalarEvaluationKind(type)) {
1594     // For non-aggregates, we can store the appropriate null constant.
1595     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1596     // Note that the following is not equivalent to
1597     // EmitStoreThroughBitfieldLValue for ARC types.
1598     if (lv.isBitField()) {
1599       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1600     } else {
1601       assert(lv.isSimple());
1602       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1603     }
1604   } else {
1605     // There's a potential optimization opportunity in combining
1606     // memsets; that would be easy for arrays, but relatively
1607     // difficult for structures with the current code.
1608     CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1609   }
1610 }
1611 
VisitCXXParenListInitExpr(CXXParenListInitExpr * E)1612 void AggExprEmitter::VisitCXXParenListInitExpr(CXXParenListInitExpr *E) {
1613   VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
1614                                   E->getInitializedFieldInUnion(),
1615                                   E->getArrayFiller());
1616 }
1617 
VisitInitListExpr(InitListExpr * E)1618 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1619   if (E->hadArrayRangeDesignator())
1620     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1621 
1622   if (E->isTransparent())
1623     return Visit(E->getInit(0));
1624 
1625   VisitCXXParenListOrInitListExpr(
1626       E, E->inits(), E->getInitializedFieldInUnion(), E->getArrayFiller());
1627 }
1628 
VisitCXXParenListOrInitListExpr(Expr * ExprToVisit,ArrayRef<Expr * > InitExprs,FieldDecl * InitializedFieldInUnion,Expr * ArrayFiller)1629 void AggExprEmitter::VisitCXXParenListOrInitListExpr(
1630     Expr *ExprToVisit, ArrayRef<Expr *> InitExprs,
1631     FieldDecl *InitializedFieldInUnion, Expr *ArrayFiller) {
1632 #if 0
1633   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1634   // (Length of globals? Chunks of zeroed-out space?).
1635   //
1636   // If we can, prefer a copy from a global; this is a lot less code for long
1637   // globals, and it's easier for the current optimizers to analyze.
1638   if (llvm::Constant *C =
1639           CGF.CGM.EmitConstantExpr(ExprToVisit, ExprToVisit->getType(), &CGF)) {
1640     llvm::GlobalVariable* GV =
1641     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1642                              llvm::GlobalValue::InternalLinkage, C, "");
1643     EmitFinalDestCopy(ExprToVisit->getType(),
1644                       CGF.MakeAddrLValue(GV, ExprToVisit->getType()));
1645     return;
1646   }
1647 #endif
1648 
1649   AggValueSlot Dest = EnsureSlot(ExprToVisit->getType());
1650 
1651   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), ExprToVisit->getType());
1652 
1653   // Handle initialization of an array.
1654   if (ExprToVisit->getType()->isArrayType()) {
1655     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1656     EmitArrayInit(Dest.getAddress(), AType, ExprToVisit->getType(), ExprToVisit,
1657                   InitExprs, ArrayFiller);
1658     return;
1659   }
1660 
1661   assert(ExprToVisit->getType()->isRecordType() &&
1662          "Only support structs/unions here!");
1663 
1664   // Do struct initialization; this code just sets each individual member
1665   // to the approprate value.  This makes bitfield support automatic;
1666   // the disadvantage is that the generated code is more difficult for
1667   // the optimizer, especially with bitfields.
1668   unsigned NumInitElements = InitExprs.size();
1669   RecordDecl *record = ExprToVisit->getType()->castAs<RecordType>()->getDecl();
1670 
1671   // We'll need to enter cleanup scopes in case any of the element
1672   // initializers throws an exception.
1673   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1674   llvm::Instruction *cleanupDominator = nullptr;
1675   auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1676     cleanups.push_back(cleanup);
1677     if (!cleanupDominator) // create placeholder once needed
1678       cleanupDominator = CGF.Builder.CreateAlignedLoad(
1679           CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1680           CharUnits::One());
1681   };
1682 
1683   unsigned curInitIndex = 0;
1684 
1685   // Emit initialization of base classes.
1686   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1687     assert(NumInitElements >= CXXRD->getNumBases() &&
1688            "missing initializer for base class");
1689     for (auto &Base : CXXRD->bases()) {
1690       assert(!Base.isVirtual() && "should not see vbases here");
1691       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1692       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1693           Dest.getAddress(), CXXRD, BaseRD,
1694           /*isBaseVirtual*/ false);
1695       AggValueSlot AggSlot = AggValueSlot::forAddr(
1696           V, Qualifiers(),
1697           AggValueSlot::IsDestructed,
1698           AggValueSlot::DoesNotNeedGCBarriers,
1699           AggValueSlot::IsNotAliased,
1700           CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1701       CGF.EmitAggExpr(InitExprs[curInitIndex++], AggSlot);
1702 
1703       if (QualType::DestructionKind dtorKind =
1704               Base.getType().isDestructedType()) {
1705         CGF.pushDestroy(dtorKind, V, Base.getType());
1706         addCleanup(CGF.EHStack.stable_begin());
1707       }
1708     }
1709   }
1710 
1711   // Prepare a 'this' for CXXDefaultInitExprs.
1712   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1713 
1714   if (record->isUnion()) {
1715     // Only initialize one field of a union. The field itself is
1716     // specified by the initializer list.
1717     if (!InitializedFieldInUnion) {
1718       // Empty union; we have nothing to do.
1719 
1720 #ifndef NDEBUG
1721       // Make sure that it's really an empty and not a failure of
1722       // semantic analysis.
1723       for (const auto *Field : record->fields())
1724         assert((Field->isUnnamedBitfield() || Field->isAnonymousStructOrUnion()) && "Only unnamed bitfields or ananymous class allowed");
1725 #endif
1726       return;
1727     }
1728 
1729     // FIXME: volatility
1730     FieldDecl *Field = InitializedFieldInUnion;
1731 
1732     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1733     if (NumInitElements) {
1734       // Store the initializer into the field
1735       EmitInitializationToLValue(InitExprs[0], FieldLoc);
1736     } else {
1737       // Default-initialize to null.
1738       EmitNullInitializationToLValue(FieldLoc);
1739     }
1740 
1741     return;
1742   }
1743 
1744   // Here we iterate over the fields; this makes it simpler to both
1745   // default-initialize fields and skip over unnamed fields.
1746   for (const auto *field : record->fields()) {
1747     // We're done once we hit the flexible array member.
1748     if (field->getType()->isIncompleteArrayType())
1749       break;
1750 
1751     // Always skip anonymous bitfields.
1752     if (field->isUnnamedBitfield())
1753       continue;
1754 
1755     // We're done if we reach the end of the explicit initializers, we
1756     // have a zeroed object, and the rest of the fields are
1757     // zero-initializable.
1758     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1759         CGF.getTypes().isZeroInitializable(ExprToVisit->getType()))
1760       break;
1761 
1762 
1763     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1764     // We never generate write-barries for initialized fields.
1765     LV.setNonGC(true);
1766 
1767     if (curInitIndex < NumInitElements) {
1768       // Store the initializer into the field.
1769       EmitInitializationToLValue(InitExprs[curInitIndex++], LV);
1770     } else {
1771       // We're out of initializers; default-initialize to null
1772       EmitNullInitializationToLValue(LV);
1773     }
1774 
1775     // Push a destructor if necessary.
1776     // FIXME: if we have an array of structures, all explicitly
1777     // initialized, we can end up pushing a linear number of cleanups.
1778     bool pushedCleanup = false;
1779     if (QualType::DestructionKind dtorKind
1780           = field->getType().isDestructedType()) {
1781       assert(LV.isSimple());
1782       if (CGF.needsEHCleanup(dtorKind)) {
1783         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1784                         CGF.getDestroyer(dtorKind), false);
1785         addCleanup(CGF.EHStack.stable_begin());
1786         pushedCleanup = true;
1787       }
1788     }
1789 
1790     // If the GEP didn't get used because of a dead zero init or something
1791     // else, clean it up for -O0 builds and general tidiness.
1792     if (!pushedCleanup && LV.isSimple())
1793       if (llvm::GetElementPtrInst *GEP =
1794               dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1795         if (GEP->use_empty())
1796           GEP->eraseFromParent();
1797   }
1798 
1799   // Deactivate all the partial cleanups in reverse order, which
1800   // generally means popping them.
1801   assert((cleanupDominator || cleanups.empty()) &&
1802          "Missing cleanupDominator before deactivating cleanup blocks");
1803   for (unsigned i = cleanups.size(); i != 0; --i)
1804     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1805 
1806   // Destroy the placeholder if we made one.
1807   if (cleanupDominator)
1808     cleanupDominator->eraseFromParent();
1809 }
1810 
VisitArrayInitLoopExpr(const ArrayInitLoopExpr * E,llvm::Value * outerBegin)1811 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1812                                             llvm::Value *outerBegin) {
1813   // Emit the common subexpression.
1814   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1815 
1816   Address destPtr = EnsureSlot(E->getType()).getAddress();
1817   uint64_t numElements = E->getArraySize().getZExtValue();
1818 
1819   if (!numElements)
1820     return;
1821 
1822   // destPtr is an array*. Construct an elementType* by drilling down a level.
1823   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1824   llvm::Value *indices[] = {zero, zero};
1825   llvm::Value *begin = Builder.CreateInBoundsGEP(
1826       destPtr.getElementType(), destPtr.getPointer(), indices,
1827       "arrayinit.begin");
1828 
1829   // Prepare to special-case multidimensional array initialization: we avoid
1830   // emitting multiple destructor loops in that case.
1831   if (!outerBegin)
1832     outerBegin = begin;
1833   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1834 
1835   QualType elementType =
1836       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1837   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1838   CharUnits elementAlign =
1839       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1840   llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
1841 
1842   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1843   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1844 
1845   // Jump into the body.
1846   CGF.EmitBlock(bodyBB);
1847   llvm::PHINode *index =
1848       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1849   index->addIncoming(zero, entryBB);
1850   llvm::Value *element =
1851       Builder.CreateInBoundsGEP(llvmElementType, begin, index);
1852 
1853   // Prepare for a cleanup.
1854   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1855   EHScopeStack::stable_iterator cleanup;
1856   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1857     if (outerBegin->getType() != element->getType())
1858       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1859     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1860                                        elementAlign,
1861                                        CGF.getDestroyer(dtorKind));
1862     cleanup = CGF.EHStack.stable_begin();
1863   } else {
1864     dtorKind = QualType::DK_none;
1865   }
1866 
1867   // Emit the actual filler expression.
1868   {
1869     // Temporaries created in an array initialization loop are destroyed
1870     // at the end of each iteration.
1871     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1872     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1873     LValue elementLV = CGF.MakeAddrLValue(
1874         Address(element, llvmElementType, elementAlign), elementType);
1875 
1876     if (InnerLoop) {
1877       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1878       auto elementSlot = AggValueSlot::forLValue(
1879           elementLV, CGF, AggValueSlot::IsDestructed,
1880           AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1881           AggValueSlot::DoesNotOverlap);
1882       AggExprEmitter(CGF, elementSlot, false)
1883           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1884     } else
1885       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1886   }
1887 
1888   // Move on to the next element.
1889   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1890       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1891   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1892 
1893   // Leave the loop if we're done.
1894   llvm::Value *done = Builder.CreateICmpEQ(
1895       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1896       "arrayinit.done");
1897   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1898   Builder.CreateCondBr(done, endBB, bodyBB);
1899 
1900   CGF.EmitBlock(endBB);
1901 
1902   // Leave the partial-array cleanup if we entered one.
1903   if (dtorKind)
1904     CGF.DeactivateCleanupBlock(cleanup, index);
1905 }
1906 
VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr * E)1907 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1908   AggValueSlot Dest = EnsureSlot(E->getType());
1909 
1910   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1911   EmitInitializationToLValue(E->getBase(), DestLV);
1912   VisitInitListExpr(E->getUpdater());
1913 }
1914 
1915 //===----------------------------------------------------------------------===//
1916 //                        Entry Points into this File
1917 //===----------------------------------------------------------------------===//
1918 
1919 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1920 /// non-zero bytes that will be stored when outputting the initializer for the
1921 /// specified initializer expression.
GetNumNonZeroBytesInInit(const Expr * E,CodeGenFunction & CGF)1922 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1923   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
1924     E = MTE->getSubExpr();
1925   E = E->IgnoreParenNoopCasts(CGF.getContext());
1926 
1927   // 0 and 0.0 won't require any non-zero stores!
1928   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1929 
1930   // If this is an initlist expr, sum up the size of sizes of the (present)
1931   // elements.  If this is something weird, assume the whole thing is non-zero.
1932   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1933   while (ILE && ILE->isTransparent())
1934     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1935   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1936     return CGF.getContext().getTypeSizeInChars(E->getType());
1937 
1938   // InitListExprs for structs have to be handled carefully.  If there are
1939   // reference members, we need to consider the size of the reference, not the
1940   // referencee.  InitListExprs for unions and arrays can't have references.
1941   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1942     if (!RT->isUnionType()) {
1943       RecordDecl *SD = RT->getDecl();
1944       CharUnits NumNonZeroBytes = CharUnits::Zero();
1945 
1946       unsigned ILEElement = 0;
1947       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1948         while (ILEElement != CXXRD->getNumBases())
1949           NumNonZeroBytes +=
1950               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1951       for (const auto *Field : SD->fields()) {
1952         // We're done once we hit the flexible array member or run out of
1953         // InitListExpr elements.
1954         if (Field->getType()->isIncompleteArrayType() ||
1955             ILEElement == ILE->getNumInits())
1956           break;
1957         if (Field->isUnnamedBitfield())
1958           continue;
1959 
1960         const Expr *E = ILE->getInit(ILEElement++);
1961 
1962         // Reference values are always non-null and have the width of a pointer.
1963         if (Field->getType()->isReferenceType())
1964           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1965               CGF.getTarget().getPointerWidth(LangAS::Default));
1966         else
1967           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1968       }
1969 
1970       return NumNonZeroBytes;
1971     }
1972   }
1973 
1974   // FIXME: This overestimates the number of non-zero bytes for bit-fields.
1975   CharUnits NumNonZeroBytes = CharUnits::Zero();
1976   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1977     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1978   return NumNonZeroBytes;
1979 }
1980 
1981 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1982 /// zeros in it, emit a memset and avoid storing the individual zeros.
1983 ///
CheckAggExprForMemSetUse(AggValueSlot & Slot,const Expr * E,CodeGenFunction & CGF)1984 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1985                                      CodeGenFunction &CGF) {
1986   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1987   // volatile stores.
1988   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1989     return;
1990 
1991   // C++ objects with a user-declared constructor don't need zero'ing.
1992   if (CGF.getLangOpts().CPlusPlus)
1993     if (const RecordType *RT = CGF.getContext()
1994                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1995       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1996       if (RD->hasUserDeclaredConstructor())
1997         return;
1998     }
1999 
2000   // If the type is 16-bytes or smaller, prefer individual stores over memset.
2001   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
2002   if (Size <= CharUnits::fromQuantity(16))
2003     return;
2004 
2005   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
2006   // we prefer to emit memset + individual stores for the rest.
2007   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
2008   if (NumNonZeroBytes*4 > Size)
2009     return;
2010 
2011   // Okay, it seems like a good idea to use an initial memset, emit the call.
2012   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
2013 
2014   Address Loc = Slot.getAddress();
2015   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
2016   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
2017 
2018   // Tell the AggExprEmitter that the slot is known zero.
2019   Slot.setZeroed();
2020 }
2021 
2022 
2023 
2024 
2025 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
2026 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
2027 /// the value of the aggregate expression is not needed.  If VolatileDest is
2028 /// true, DestPtr cannot be 0.
EmitAggExpr(const Expr * E,AggValueSlot Slot)2029 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
2030   assert(E && hasAggregateEvaluationKind(E->getType()) &&
2031          "Invalid aggregate expression to emit");
2032   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
2033          "slot has bits but no address");
2034 
2035   // Optimize the slot if possible.
2036   CheckAggExprForMemSetUse(Slot, E, *this);
2037 
2038   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
2039 }
2040 
EmitAggExprToLValue(const Expr * E)2041 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
2042   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
2043   Address Temp = CreateMemTemp(E->getType());
2044   LValue LV = MakeAddrLValue(Temp, E->getType());
2045   EmitAggExpr(E, AggValueSlot::forLValue(
2046                      LV, *this, AggValueSlot::IsNotDestructed,
2047                      AggValueSlot::DoesNotNeedGCBarriers,
2048                      AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
2049   return LV;
2050 }
2051 
2052 AggValueSlot::Overlap_t
getOverlapForFieldInit(const FieldDecl * FD)2053 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
2054   if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
2055     return AggValueSlot::DoesNotOverlap;
2056 
2057   // If the field lies entirely within the enclosing class's nvsize, its tail
2058   // padding cannot overlap any already-initialized object. (The only subobjects
2059   // with greater addresses that might already be initialized are vbases.)
2060   const RecordDecl *ClassRD = FD->getParent();
2061   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
2062   if (Layout.getFieldOffset(FD->getFieldIndex()) +
2063           getContext().getTypeSize(FD->getType()) <=
2064       (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
2065     return AggValueSlot::DoesNotOverlap;
2066 
2067   // The tail padding may contain values we need to preserve.
2068   return AggValueSlot::MayOverlap;
2069 }
2070 
getOverlapForBaseInit(const CXXRecordDecl * RD,const CXXRecordDecl * BaseRD,bool IsVirtual)2071 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
2072     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
2073   // If the most-derived object is a field declared with [[no_unique_address]],
2074   // the tail padding of any virtual base could be reused for other subobjects
2075   // of that field's class.
2076   if (IsVirtual)
2077     return AggValueSlot::MayOverlap;
2078 
2079   // If the base class is laid out entirely within the nvsize of the derived
2080   // class, its tail padding cannot yet be initialized, so we can issue
2081   // stores at the full width of the base class.
2082   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2083   if (Layout.getBaseClassOffset(BaseRD) +
2084           getContext().getASTRecordLayout(BaseRD).getSize() <=
2085       Layout.getNonVirtualSize())
2086     return AggValueSlot::DoesNotOverlap;
2087 
2088   // The tail padding may contain values we need to preserve.
2089   return AggValueSlot::MayOverlap;
2090 }
2091 
EmitAggregateCopy(LValue Dest,LValue Src,QualType Ty,AggValueSlot::Overlap_t MayOverlap,bool isVolatile)2092 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
2093                                         AggValueSlot::Overlap_t MayOverlap,
2094                                         bool isVolatile) {
2095   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
2096 
2097   Address DestPtr = Dest.getAddress(*this);
2098   Address SrcPtr = Src.getAddress(*this);
2099 
2100   if (getLangOpts().CPlusPlus) {
2101     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2102       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
2103       assert((Record->hasTrivialCopyConstructor() ||
2104               Record->hasTrivialCopyAssignment() ||
2105               Record->hasTrivialMoveConstructor() ||
2106               Record->hasTrivialMoveAssignment() ||
2107               Record->hasAttr<TrivialABIAttr>() || Record->isUnion()) &&
2108              "Trying to aggregate-copy a type without a trivial copy/move "
2109              "constructor or assignment operator");
2110       // Ignore empty classes in C++.
2111       if (Record->isEmpty())
2112         return;
2113     }
2114   }
2115 
2116   if (getLangOpts().CUDAIsDevice) {
2117     if (Ty->isCUDADeviceBuiltinSurfaceType()) {
2118       if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
2119                                                                   Src))
2120         return;
2121     } else if (Ty->isCUDADeviceBuiltinTextureType()) {
2122       if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
2123                                                                   Src))
2124         return;
2125     }
2126   }
2127 
2128   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
2129   // C99 6.5.16.1p3, which states "If the value being stored in an object is
2130   // read from another object that overlaps in anyway the storage of the first
2131   // object, then the overlap shall be exact and the two objects shall have
2132   // qualified or unqualified versions of a compatible type."
2133   //
2134   // memcpy is not defined if the source and destination pointers are exactly
2135   // equal, but other compilers do this optimization, and almost every memcpy
2136   // implementation handles this case safely.  If there is a libc that does not
2137   // safely handle this, we can add a target hook.
2138 
2139   // Get data size info for this aggregate. Don't copy the tail padding if this
2140   // might be a potentially-overlapping subobject, since the tail padding might
2141   // be occupied by a different object. Otherwise, copying it is fine.
2142   TypeInfoChars TypeInfo;
2143   if (MayOverlap)
2144     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
2145   else
2146     TypeInfo = getContext().getTypeInfoInChars(Ty);
2147 
2148   llvm::Value *SizeVal = nullptr;
2149   if (TypeInfo.Width.isZero()) {
2150     // But note that getTypeInfo returns 0 for a VLA.
2151     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
2152             getContext().getAsArrayType(Ty))) {
2153       QualType BaseEltTy;
2154       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
2155       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
2156       assert(!TypeInfo.Width.isZero());
2157       SizeVal = Builder.CreateNUWMul(
2158           SizeVal,
2159           llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()));
2160     }
2161   }
2162   if (!SizeVal) {
2163     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity());
2164   }
2165 
2166   // FIXME: If we have a volatile struct, the optimizer can remove what might
2167   // appear to be `extra' memory ops:
2168   //
2169   // volatile struct { int i; } a, b;
2170   //
2171   // int main() {
2172   //   a = b;
2173   //   a = b;
2174   // }
2175   //
2176   // we need to use a different call here.  We use isVolatile to indicate when
2177   // either the source or the destination is volatile.
2178 
2179   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
2180   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
2181 
2182   // Don't do any of the memmove_collectable tests if GC isn't set.
2183   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2184     // fall through
2185   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2186     RecordDecl *Record = RecordTy->getDecl();
2187     if (Record->hasObjectMember()) {
2188       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2189                                                     SizeVal);
2190       return;
2191     }
2192   } else if (Ty->isArrayType()) {
2193     QualType BaseType = getContext().getBaseElementType(Ty);
2194     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2195       if (RecordTy->getDecl()->hasObjectMember()) {
2196         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2197                                                       SizeVal);
2198         return;
2199       }
2200     }
2201   }
2202 
2203   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2204 
2205   // Determine the metadata to describe the position of any padding in this
2206   // memcpy, as well as the TBAA tags for the members of the struct, in case
2207   // the optimizer wishes to expand it in to scalar memory operations.
2208   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2209     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2210 
2211   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2212     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2213         Dest.getTBAAInfo(), Src.getTBAAInfo());
2214     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2215   }
2216 }
2217