1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with complex types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/MDBuilder.h"
24 #include "llvm/IR/Metadata.h"
25 #include <algorithm>
26 using namespace clang;
27 using namespace CodeGen;
28
29 //===----------------------------------------------------------------------===//
30 // Complex Expression Emitter
31 //===----------------------------------------------------------------------===//
32
33 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
34
35 /// Return the complex type that we are meant to emit.
getComplexType(QualType type)36 static const ComplexType *getComplexType(QualType type) {
37 type = type.getCanonicalType();
38 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
39 return comp;
40 } else {
41 return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
42 }
43 }
44
45 namespace {
46 class ComplexExprEmitter
47 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
48 CodeGenFunction &CGF;
49 CGBuilderTy &Builder;
50 bool IgnoreReal;
51 bool IgnoreImag;
52 public:
ComplexExprEmitter(CodeGenFunction & cgf,bool ir=false,bool ii=false)53 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
54 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
55 }
56
57
58 //===--------------------------------------------------------------------===//
59 // Utilities
60 //===--------------------------------------------------------------------===//
61
TestAndClearIgnoreReal()62 bool TestAndClearIgnoreReal() {
63 bool I = IgnoreReal;
64 IgnoreReal = false;
65 return I;
66 }
TestAndClearIgnoreImag()67 bool TestAndClearIgnoreImag() {
68 bool I = IgnoreImag;
69 IgnoreImag = false;
70 return I;
71 }
72
73 /// EmitLoadOfLValue - Given an expression with complex type that represents a
74 /// value l-value, this method emits the address of the l-value, then loads
75 /// and returns the result.
EmitLoadOfLValue(const Expr * E)76 ComplexPairTy EmitLoadOfLValue(const Expr *E) {
77 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
78 }
79
80 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
81
82 /// EmitStoreOfComplex - Store the specified real/imag parts into the
83 /// specified value pointer.
84 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
85
86 /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType.
87 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
88 QualType DestType);
89 /// EmitComplexToComplexCast - Emit a cast from scalar value Val to DestType.
90 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
91 QualType DestType);
92
93 //===--------------------------------------------------------------------===//
94 // Visitor Methods
95 //===--------------------------------------------------------------------===//
96
Visit(Expr * E)97 ComplexPairTy Visit(Expr *E) {
98 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
99 }
100
VisitStmt(Stmt * S)101 ComplexPairTy VisitStmt(Stmt *S) {
102 S->dump(CGF.getContext().getSourceManager());
103 llvm_unreachable("Stmt can't have complex result type!");
104 }
105 ComplexPairTy VisitExpr(Expr *S);
VisitParenExpr(ParenExpr * PE)106 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
VisitGenericSelectionExpr(GenericSelectionExpr * GE)107 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
108 return Visit(GE->getResultExpr());
109 }
110 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
111 ComplexPairTy
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * PE)112 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
113 return Visit(PE->getReplacement());
114 }
115
116 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)117 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
118 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
119 if (result.isReference())
120 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
121 E->getExprLoc());
122
123 llvm::Constant *pair = result.getValue();
124 return ComplexPairTy(pair->getAggregateElement(0U),
125 pair->getAggregateElement(1U));
126 }
127 return EmitLoadOfLValue(E);
128 }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)129 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
130 return EmitLoadOfLValue(E);
131 }
VisitObjCMessageExpr(ObjCMessageExpr * E)132 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
133 return CGF.EmitObjCMessageExpr(E).getComplexVal();
134 }
VisitArraySubscriptExpr(Expr * E)135 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitMemberExpr(const Expr * E)136 ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); }
VisitOpaqueValueExpr(OpaqueValueExpr * E)137 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
138 if (E->isGLValue())
139 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
140 return CGF.getOpaqueRValueMapping(E).getComplexVal();
141 }
142
VisitPseudoObjectExpr(PseudoObjectExpr * E)143 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
144 return CGF.EmitPseudoObjectRValue(E).getComplexVal();
145 }
146
147 // FIXME: CompoundLiteralExpr
148
149 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
VisitImplicitCastExpr(ImplicitCastExpr * E)150 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
151 // Unlike for scalars, we don't have to worry about function->ptr demotion
152 // here.
153 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
154 }
VisitCastExpr(CastExpr * E)155 ComplexPairTy VisitCastExpr(CastExpr *E) {
156 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
157 }
158 ComplexPairTy VisitCallExpr(const CallExpr *E);
159 ComplexPairTy VisitStmtExpr(const StmtExpr *E);
160
161 // Operators.
VisitPrePostIncDec(const UnaryOperator * E,bool isInc,bool isPre)162 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
163 bool isInc, bool isPre) {
164 LValue LV = CGF.EmitLValue(E->getSubExpr());
165 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
166 }
VisitUnaryPostDec(const UnaryOperator * E)167 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
168 return VisitPrePostIncDec(E, false, false);
169 }
VisitUnaryPostInc(const UnaryOperator * E)170 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
171 return VisitPrePostIncDec(E, true, false);
172 }
VisitUnaryPreDec(const UnaryOperator * E)173 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
174 return VisitPrePostIncDec(E, false, true);
175 }
VisitUnaryPreInc(const UnaryOperator * E)176 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
177 return VisitPrePostIncDec(E, true, true);
178 }
VisitUnaryDeref(const Expr * E)179 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
VisitUnaryPlus(const UnaryOperator * E)180 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) {
181 TestAndClearIgnoreReal();
182 TestAndClearIgnoreImag();
183 return Visit(E->getSubExpr());
184 }
185 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E);
186 ComplexPairTy VisitUnaryNot (const UnaryOperator *E);
187 // LNot,Real,Imag never return complex.
VisitUnaryExtension(const UnaryOperator * E)188 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
189 return Visit(E->getSubExpr());
190 }
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)191 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
192 return Visit(DAE->getExpr());
193 }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)194 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
195 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
196 return Visit(DIE->getExpr());
197 }
VisitExprWithCleanups(ExprWithCleanups * E)198 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
199 CGF.enterFullExpression(E);
200 CodeGenFunction::RunCleanupsScope Scope(CGF);
201 return Visit(E->getSubExpr());
202 }
VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)203 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
204 assert(E->getType()->isAnyComplexType() && "Expected complex type!");
205 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
206 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
207 return ComplexPairTy(Null, Null);
208 }
VisitImplicitValueInitExpr(ImplicitValueInitExpr * E)209 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
210 assert(E->getType()->isAnyComplexType() && "Expected complex type!");
211 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
212 llvm::Constant *Null =
213 llvm::Constant::getNullValue(CGF.ConvertType(Elem));
214 return ComplexPairTy(Null, Null);
215 }
216
217 struct BinOpInfo {
218 ComplexPairTy LHS;
219 ComplexPairTy RHS;
220 QualType Ty; // Computation Type.
221 };
222
223 BinOpInfo EmitBinOps(const BinaryOperator *E);
224 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
225 ComplexPairTy (ComplexExprEmitter::*Func)
226 (const BinOpInfo &),
227 RValue &Val);
228 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
229 ComplexPairTy (ComplexExprEmitter::*Func)
230 (const BinOpInfo &));
231
232 ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
233 ComplexPairTy EmitBinSub(const BinOpInfo &Op);
234 ComplexPairTy EmitBinMul(const BinOpInfo &Op);
235 ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
236
237 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
238 const BinOpInfo &Op);
239
VisitBinAdd(const BinaryOperator * E)240 ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
241 return EmitBinAdd(EmitBinOps(E));
242 }
VisitBinSub(const BinaryOperator * E)243 ComplexPairTy VisitBinSub(const BinaryOperator *E) {
244 return EmitBinSub(EmitBinOps(E));
245 }
VisitBinMul(const BinaryOperator * E)246 ComplexPairTy VisitBinMul(const BinaryOperator *E) {
247 return EmitBinMul(EmitBinOps(E));
248 }
VisitBinDiv(const BinaryOperator * E)249 ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
250 return EmitBinDiv(EmitBinOps(E));
251 }
252
253 // Compound assignments.
VisitBinAddAssign(const CompoundAssignOperator * E)254 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
255 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
256 }
VisitBinSubAssign(const CompoundAssignOperator * E)257 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
258 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
259 }
VisitBinMulAssign(const CompoundAssignOperator * E)260 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
261 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
262 }
VisitBinDivAssign(const CompoundAssignOperator * E)263 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
264 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
265 }
266
267 // GCC rejects rem/and/or/xor for integer complex.
268 // Logical and/or always return int, never complex.
269
270 // No comparisons produce a complex result.
271
272 LValue EmitBinAssignLValue(const BinaryOperator *E,
273 ComplexPairTy &Val);
274 ComplexPairTy VisitBinAssign (const BinaryOperator *E);
275 ComplexPairTy VisitBinComma (const BinaryOperator *E);
276
277
278 ComplexPairTy
279 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
280 ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
281
282 ComplexPairTy VisitInitListExpr(InitListExpr *E);
283
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)284 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
285 return EmitLoadOfLValue(E);
286 }
287
288 ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
289
VisitAtomicExpr(AtomicExpr * E)290 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
291 return CGF.EmitAtomicExpr(E).getComplexVal();
292 }
293 };
294 } // end anonymous namespace.
295
296 //===----------------------------------------------------------------------===//
297 // Utilities
298 //===----------------------------------------------------------------------===//
299
300 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
301 /// load the real and imaginary pieces, returning them as Real/Imag.
EmitLoadOfLValue(LValue lvalue,SourceLocation loc)302 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
303 SourceLocation loc) {
304 assert(lvalue.isSimple() && "non-simple complex l-value?");
305 if (lvalue.getType()->isAtomicType())
306 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
307
308 llvm::Value *SrcPtr = lvalue.getAddress();
309 bool isVolatile = lvalue.isVolatileQualified();
310 unsigned AlignR = lvalue.getAlignment().getQuantity();
311 ASTContext &C = CGF.getContext();
312 QualType ComplexTy = lvalue.getType();
313 unsigned ComplexAlign = C.getTypeAlignInChars(ComplexTy).getQuantity();
314 unsigned AlignI = std::min(AlignR, ComplexAlign);
315
316 llvm::Value *Real=nullptr, *Imag=nullptr;
317
318 if (!IgnoreReal || isVolatile) {
319 llvm::Value *RealP = Builder.CreateStructGEP(SrcPtr, 0,
320 SrcPtr->getName() + ".realp");
321 Real = Builder.CreateAlignedLoad(RealP, AlignR, isVolatile,
322 SrcPtr->getName() + ".real");
323 }
324
325 if (!IgnoreImag || isVolatile) {
326 llvm::Value *ImagP = Builder.CreateStructGEP(SrcPtr, 1,
327 SrcPtr->getName() + ".imagp");
328 Imag = Builder.CreateAlignedLoad(ImagP, AlignI, isVolatile,
329 SrcPtr->getName() + ".imag");
330 }
331 return ComplexPairTy(Real, Imag);
332 }
333
334 /// EmitStoreOfComplex - Store the specified real/imag parts into the
335 /// specified value pointer.
EmitStoreOfComplex(ComplexPairTy Val,LValue lvalue,bool isInit)336 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
337 bool isInit) {
338 if (lvalue.getType()->isAtomicType())
339 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
340
341 llvm::Value *Ptr = lvalue.getAddress();
342 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, "real");
343 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, "imag");
344 unsigned AlignR = lvalue.getAlignment().getQuantity();
345 ASTContext &C = CGF.getContext();
346 QualType ComplexTy = lvalue.getType();
347 unsigned ComplexAlign = C.getTypeAlignInChars(ComplexTy).getQuantity();
348 unsigned AlignI = std::min(AlignR, ComplexAlign);
349
350 Builder.CreateAlignedStore(Val.first, RealPtr, AlignR,
351 lvalue.isVolatileQualified());
352 Builder.CreateAlignedStore(Val.second, ImagPtr, AlignI,
353 lvalue.isVolatileQualified());
354 }
355
356
357
358 //===----------------------------------------------------------------------===//
359 // Visitor Methods
360 //===----------------------------------------------------------------------===//
361
VisitExpr(Expr * E)362 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
363 CGF.ErrorUnsupported(E, "complex expression");
364 llvm::Type *EltTy =
365 CGF.ConvertType(getComplexType(E->getType())->getElementType());
366 llvm::Value *U = llvm::UndefValue::get(EltTy);
367 return ComplexPairTy(U, U);
368 }
369
370 ComplexPairTy ComplexExprEmitter::
VisitImaginaryLiteral(const ImaginaryLiteral * IL)371 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
372 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
373 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
374 }
375
376
VisitCallExpr(const CallExpr * E)377 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
378 if (E->getCallReturnType()->isReferenceType())
379 return EmitLoadOfLValue(E);
380
381 return CGF.EmitCallExpr(E).getComplexVal();
382 }
383
VisitStmtExpr(const StmtExpr * E)384 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
385 CodeGenFunction::StmtExprEvaluation eval(CGF);
386 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
387 assert(RetAlloca && "Expected complex return value");
388 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
389 E->getExprLoc());
390 }
391
392 /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType.
EmitComplexToComplexCast(ComplexPairTy Val,QualType SrcType,QualType DestType)393 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
394 QualType SrcType,
395 QualType DestType) {
396 // Get the src/dest element type.
397 SrcType = SrcType->castAs<ComplexType>()->getElementType();
398 DestType = DestType->castAs<ComplexType>()->getElementType();
399
400 // C99 6.3.1.6: When a value of complex type is converted to another
401 // complex type, both the real and imaginary parts follow the conversion
402 // rules for the corresponding real types.
403 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType);
404 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType);
405 return Val;
406 }
407
EmitScalarToComplexCast(llvm::Value * Val,QualType SrcType,QualType DestType)408 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
409 QualType SrcType,
410 QualType DestType) {
411 // Convert the input element to the element type of the complex.
412 DestType = DestType->castAs<ComplexType>()->getElementType();
413 Val = CGF.EmitScalarConversion(Val, SrcType, DestType);
414
415 // Return (realval, 0).
416 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
417 }
418
EmitCast(CastKind CK,Expr * Op,QualType DestTy)419 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
420 QualType DestTy) {
421 switch (CK) {
422 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
423
424 // Atomic to non-atomic casts may be more than a no-op for some platforms and
425 // for some types.
426 case CK_AtomicToNonAtomic:
427 case CK_NonAtomicToAtomic:
428 case CK_NoOp:
429 case CK_LValueToRValue:
430 case CK_UserDefinedConversion:
431 return Visit(Op);
432
433 case CK_LValueBitCast: {
434 LValue origLV = CGF.EmitLValue(Op);
435 llvm::Value *V = origLV.getAddress();
436 V = Builder.CreateBitCast(V,
437 CGF.ConvertType(CGF.getContext().getPointerType(DestTy)));
438 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy,
439 origLV.getAlignment()),
440 Op->getExprLoc());
441 }
442
443 case CK_BitCast:
444 case CK_BaseToDerived:
445 case CK_DerivedToBase:
446 case CK_UncheckedDerivedToBase:
447 case CK_Dynamic:
448 case CK_ToUnion:
449 case CK_ArrayToPointerDecay:
450 case CK_FunctionToPointerDecay:
451 case CK_NullToPointer:
452 case CK_NullToMemberPointer:
453 case CK_BaseToDerivedMemberPointer:
454 case CK_DerivedToBaseMemberPointer:
455 case CK_MemberPointerToBoolean:
456 case CK_ReinterpretMemberPointer:
457 case CK_ConstructorConversion:
458 case CK_IntegralToPointer:
459 case CK_PointerToIntegral:
460 case CK_PointerToBoolean:
461 case CK_ToVoid:
462 case CK_VectorSplat:
463 case CK_IntegralCast:
464 case CK_IntegralToBoolean:
465 case CK_IntegralToFloating:
466 case CK_FloatingToIntegral:
467 case CK_FloatingToBoolean:
468 case CK_FloatingCast:
469 case CK_CPointerToObjCPointerCast:
470 case CK_BlockPointerToObjCPointerCast:
471 case CK_AnyPointerToBlockPointerCast:
472 case CK_ObjCObjectLValueCast:
473 case CK_FloatingComplexToReal:
474 case CK_FloatingComplexToBoolean:
475 case CK_IntegralComplexToReal:
476 case CK_IntegralComplexToBoolean:
477 case CK_ARCProduceObject:
478 case CK_ARCConsumeObject:
479 case CK_ARCReclaimReturnedObject:
480 case CK_ARCExtendBlockObject:
481 case CK_CopyAndAutoreleaseBlockObject:
482 case CK_BuiltinFnToFnPtr:
483 case CK_ZeroToOCLEvent:
484 case CK_AddressSpaceConversion:
485 llvm_unreachable("invalid cast kind for complex value");
486
487 case CK_FloatingRealToComplex:
488 case CK_IntegralRealToComplex:
489 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op),
490 Op->getType(), DestTy);
491
492 case CK_FloatingComplexCast:
493 case CK_FloatingComplexToIntegralComplex:
494 case CK_IntegralComplexCast:
495 case CK_IntegralComplexToFloatingComplex:
496 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy);
497 }
498
499 llvm_unreachable("unknown cast resulting in complex value");
500 }
501
VisitUnaryMinus(const UnaryOperator * E)502 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
503 TestAndClearIgnoreReal();
504 TestAndClearIgnoreImag();
505 ComplexPairTy Op = Visit(E->getSubExpr());
506
507 llvm::Value *ResR, *ResI;
508 if (Op.first->getType()->isFloatingPointTy()) {
509 ResR = Builder.CreateFNeg(Op.first, "neg.r");
510 ResI = Builder.CreateFNeg(Op.second, "neg.i");
511 } else {
512 ResR = Builder.CreateNeg(Op.first, "neg.r");
513 ResI = Builder.CreateNeg(Op.second, "neg.i");
514 }
515 return ComplexPairTy(ResR, ResI);
516 }
517
VisitUnaryNot(const UnaryOperator * E)518 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
519 TestAndClearIgnoreReal();
520 TestAndClearIgnoreImag();
521 // ~(a+ib) = a + i*-b
522 ComplexPairTy Op = Visit(E->getSubExpr());
523 llvm::Value *ResI;
524 if (Op.second->getType()->isFloatingPointTy())
525 ResI = Builder.CreateFNeg(Op.second, "conj.i");
526 else
527 ResI = Builder.CreateNeg(Op.second, "conj.i");
528
529 return ComplexPairTy(Op.first, ResI);
530 }
531
EmitBinAdd(const BinOpInfo & Op)532 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
533 llvm::Value *ResR, *ResI;
534
535 if (Op.LHS.first->getType()->isFloatingPointTy()) {
536 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r");
537 if (Op.LHS.second && Op.RHS.second)
538 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
539 else
540 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
541 assert(ResI && "Only one operand may be real!");
542 } else {
543 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r");
544 assert(Op.LHS.second && Op.RHS.second &&
545 "Both operands of integer complex operators must be complex!");
546 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
547 }
548 return ComplexPairTy(ResR, ResI);
549 }
550
EmitBinSub(const BinOpInfo & Op)551 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
552 llvm::Value *ResR, *ResI;
553 if (Op.LHS.first->getType()->isFloatingPointTy()) {
554 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
555 if (Op.LHS.second && Op.RHS.second)
556 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
557 else
558 ResI = Op.LHS.second ? Op.LHS.second
559 : Builder.CreateFNeg(Op.RHS.second, "sub.i");
560 assert(ResI && "Only one operand may be real!");
561 } else {
562 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
563 assert(Op.LHS.second && Op.RHS.second &&
564 "Both operands of integer complex operators must be complex!");
565 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
566 }
567 return ComplexPairTy(ResR, ResI);
568 }
569
570 /// \brief Emit a libcall for a binary operation on complex types.
EmitComplexBinOpLibCall(StringRef LibCallName,const BinOpInfo & Op)571 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
572 const BinOpInfo &Op) {
573 CallArgList Args;
574 Args.add(RValue::get(Op.LHS.first),
575 Op.Ty->castAs<ComplexType>()->getElementType());
576 Args.add(RValue::get(Op.LHS.second),
577 Op.Ty->castAs<ComplexType>()->getElementType());
578 Args.add(RValue::get(Op.RHS.first),
579 Op.Ty->castAs<ComplexType>()->getElementType());
580 Args.add(RValue::get(Op.RHS.second),
581 Op.Ty->castAs<ComplexType>()->getElementType());
582
583 // We *must* use the full CG function call building logic here because the
584 // complex type has special ABI handling. We also should not forget about
585 // special calling convention which may be used for compiler builtins.
586 const CGFunctionInfo &FuncInfo =
587 CGF.CGM.getTypes().arrangeFreeFunctionCall(
588 Op.Ty, Args, FunctionType::ExtInfo(/* No CC here - will be added later */),
589 RequiredArgs::All);
590 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
591 llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName);
592 llvm::Instruction *Call;
593
594 RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args,
595 nullptr, &Call);
596 cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC());
597 cast<llvm::CallInst>(Call)->setDoesNotThrow();
598
599 return Res.getComplexVal();
600 }
601
602 /// \brief Lookup the libcall name for a given floating point type complex
603 /// multiply.
getComplexMultiplyLibCallName(llvm::Type * Ty)604 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
605 switch (Ty->getTypeID()) {
606 default:
607 llvm_unreachable("Unsupported floating point type!");
608 case llvm::Type::HalfTyID:
609 return "__mulhc3";
610 case llvm::Type::FloatTyID:
611 return "__mulsc3";
612 case llvm::Type::DoubleTyID:
613 return "__muldc3";
614 case llvm::Type::PPC_FP128TyID:
615 return "__multc3";
616 case llvm::Type::X86_FP80TyID:
617 return "__mulxc3";
618 case llvm::Type::FP128TyID:
619 return "__multc3";
620 }
621 }
622
623 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
624 // typed values.
EmitBinMul(const BinOpInfo & Op)625 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
626 using llvm::Value;
627 Value *ResR, *ResI;
628 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
629
630 if (Op.LHS.first->getType()->isFloatingPointTy()) {
631 // The general formulation is:
632 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
633 //
634 // But we can fold away components which would be zero due to a real
635 // operand according to C11 Annex G.5.1p2.
636 // FIXME: C11 also provides for imaginary types which would allow folding
637 // still more of this within the type system.
638
639 if (Op.LHS.second && Op.RHS.second) {
640 // If both operands are complex, emit the core math directly, and then
641 // test for NaNs. If we find NaNs in the result, we delegate to a libcall
642 // to carefully re-compute the correct infinity representation if
643 // possible. The expectation is that the presence of NaNs here is
644 // *extremely* rare, and so the cost of the libcall is almost irrelevant.
645 // This is good, because the libcall re-computes the core multiplication
646 // exactly the same as we do here and re-tests for NaNs in order to be
647 // a generic complex*complex libcall.
648
649 // First compute the four products.
650 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
651 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
652 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
653 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
654
655 // The real part is the difference of the first two, the imaginary part is
656 // the sum of the second.
657 ResR = Builder.CreateFSub(AC, BD, "mul_r");
658 ResI = Builder.CreateFAdd(AD, BC, "mul_i");
659
660 // Emit the test for the real part becoming NaN and create a branch to
661 // handle it. We test for NaN by comparing the number to itself.
662 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
663 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
664 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
665 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
666 llvm::BasicBlock *OrigBB = Branch->getParent();
667
668 // Give hint that we very much don't expect to see NaNs.
669 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
670 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
671 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
672
673 // Now test the imaginary part and create its branch.
674 CGF.EmitBlock(INaNBB);
675 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
676 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
677 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
678 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
679
680 // Now emit the libcall on this slowest of the slow paths.
681 CGF.EmitBlock(LibCallBB);
682 Value *LibCallR, *LibCallI;
683 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
684 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
685 Builder.CreateBr(ContBB);
686
687 // Finally continue execution by phi-ing together the different
688 // computation paths.
689 CGF.EmitBlock(ContBB);
690 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
691 RealPHI->addIncoming(ResR, OrigBB);
692 RealPHI->addIncoming(ResR, INaNBB);
693 RealPHI->addIncoming(LibCallR, LibCallBB);
694 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
695 ImagPHI->addIncoming(ResI, OrigBB);
696 ImagPHI->addIncoming(ResI, INaNBB);
697 ImagPHI->addIncoming(LibCallI, LibCallBB);
698 return ComplexPairTy(RealPHI, ImagPHI);
699 }
700 assert((Op.LHS.second || Op.RHS.second) &&
701 "At least one operand must be complex!");
702
703 // If either of the operands is a real rather than a complex, the
704 // imaginary component is ignored when computing the real component of the
705 // result.
706 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
707
708 ResI = Op.LHS.second
709 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
710 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
711 } else {
712 assert(Op.LHS.second && Op.RHS.second &&
713 "Both operands of integer complex operators must be complex!");
714 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
715 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
716 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
717
718 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
719 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
720 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
721 }
722 return ComplexPairTy(ResR, ResI);
723 }
724
725 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
726 // typed values.
EmitBinDiv(const BinOpInfo & Op)727 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
728 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
729 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
730
731
732 llvm::Value *DSTr, *DSTi;
733 if (LHSr->getType()->isFloatingPointTy()) {
734 // If we have a complex operand on the RHS, we delegate to a libcall to
735 // handle all of the complexities and minimize underflow/overflow cases.
736 //
737 // FIXME: We would be able to avoid the libcall in many places if we
738 // supported imaginary types in addition to complex types.
739 if (RHSi) {
740 BinOpInfo LibCallOp = Op;
741 // If LHS was a real, supply a null imaginary part.
742 if (!LHSi)
743 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
744
745 StringRef LibCallName;
746 switch (LHSr->getType()->getTypeID()) {
747 default:
748 llvm_unreachable("Unsupported floating point type!");
749 case llvm::Type::HalfTyID:
750 return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
751 case llvm::Type::FloatTyID:
752 return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
753 case llvm::Type::DoubleTyID:
754 return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
755 case llvm::Type::PPC_FP128TyID:
756 return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
757 case llvm::Type::X86_FP80TyID:
758 return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
759 case llvm::Type::FP128TyID:
760 return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
761 }
762 }
763 assert(LHSi && "Can have at most one non-complex operand!");
764
765 DSTr = Builder.CreateFDiv(LHSr, RHSr);
766 DSTi = Builder.CreateFDiv(LHSi, RHSr);
767 } else {
768 assert(Op.LHS.second && Op.RHS.second &&
769 "Both operands of integer complex operators must be complex!");
770 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
771 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
772 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
773 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
774
775 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
776 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
777 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
778
779 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
780 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
781 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
782
783 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
784 DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
785 DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
786 } else {
787 DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
788 DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
789 }
790 }
791
792 return ComplexPairTy(DSTr, DSTi);
793 }
794
795 ComplexExprEmitter::BinOpInfo
EmitBinOps(const BinaryOperator * E)796 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
797 TestAndClearIgnoreReal();
798 TestAndClearIgnoreImag();
799 BinOpInfo Ops;
800 if (E->getLHS()->getType()->isRealFloatingType())
801 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
802 else
803 Ops.LHS = Visit(E->getLHS());
804 if (E->getRHS()->getType()->isRealFloatingType())
805 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
806 else
807 Ops.RHS = Visit(E->getRHS());
808
809 Ops.Ty = E->getType();
810 return Ops;
811 }
812
813
814 LValue ComplexExprEmitter::
EmitCompoundAssignLValue(const CompoundAssignOperator * E,ComplexPairTy (ComplexExprEmitter::* Func)(const BinOpInfo &),RValue & Val)815 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
816 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
817 RValue &Val) {
818 TestAndClearIgnoreReal();
819 TestAndClearIgnoreImag();
820 QualType LHSTy = E->getLHS()->getType();
821
822 BinOpInfo OpInfo;
823
824 // Load the RHS and LHS operands.
825 // __block variables need to have the rhs evaluated first, plus this should
826 // improve codegen a little.
827 OpInfo.Ty = E->getComputationResultType();
828 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
829
830 // The RHS should have been converted to the computation type.
831 if (E->getRHS()->getType()->isRealFloatingType()) {
832 assert(
833 CGF.getContext()
834 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
835 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
836 } else {
837 assert(CGF.getContext()
838 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
839 OpInfo.RHS = Visit(E->getRHS());
840 }
841
842 LValue LHS = CGF.EmitLValue(E->getLHS());
843
844 // Load from the l-value and convert it.
845 if (LHSTy->isAnyComplexType()) {
846 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, E->getExprLoc());
847 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty);
848 } else {
849 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, E->getExprLoc());
850 // For floating point real operands we can directly pass the scalar form
851 // to the binary operator emission and potentially get more efficient code.
852 if (LHSTy->isRealFloatingType()) {
853 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
854 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy);
855 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
856 } else {
857 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty);
858 }
859 }
860
861 // Expand the binary operator.
862 ComplexPairTy Result = (this->*Func)(OpInfo);
863
864 // Truncate the result and store it into the LHS lvalue.
865 if (LHSTy->isAnyComplexType()) {
866 ComplexPairTy ResVal = EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy);
867 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
868 Val = RValue::getComplex(ResVal);
869 } else {
870 llvm::Value *ResVal =
871 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy);
872 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
873 Val = RValue::get(ResVal);
874 }
875
876 return LHS;
877 }
878
879 // Compound assignments.
880 ComplexPairTy ComplexExprEmitter::
EmitCompoundAssign(const CompoundAssignOperator * E,ComplexPairTy (ComplexExprEmitter::* Func)(const BinOpInfo &))881 EmitCompoundAssign(const CompoundAssignOperator *E,
882 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
883 RValue Val;
884 LValue LV = EmitCompoundAssignLValue(E, Func, Val);
885
886 // The result of an assignment in C is the assigned r-value.
887 if (!CGF.getLangOpts().CPlusPlus)
888 return Val.getComplexVal();
889
890 // If the lvalue is non-volatile, return the computed value of the assignment.
891 if (!LV.isVolatileQualified())
892 return Val.getComplexVal();
893
894 return EmitLoadOfLValue(LV, E->getExprLoc());
895 }
896
EmitBinAssignLValue(const BinaryOperator * E,ComplexPairTy & Val)897 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
898 ComplexPairTy &Val) {
899 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
900 E->getRHS()->getType()) &&
901 "Invalid assignment");
902 TestAndClearIgnoreReal();
903 TestAndClearIgnoreImag();
904
905 // Emit the RHS. __block variables need the RHS evaluated first.
906 Val = Visit(E->getRHS());
907
908 // Compute the address to store into.
909 LValue LHS = CGF.EmitLValue(E->getLHS());
910
911 // Store the result value into the LHS lvalue.
912 EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
913
914 return LHS;
915 }
916
VisitBinAssign(const BinaryOperator * E)917 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
918 ComplexPairTy Val;
919 LValue LV = EmitBinAssignLValue(E, Val);
920
921 // The result of an assignment in C is the assigned r-value.
922 if (!CGF.getLangOpts().CPlusPlus)
923 return Val;
924
925 // If the lvalue is non-volatile, return the computed value of the assignment.
926 if (!LV.isVolatileQualified())
927 return Val;
928
929 return EmitLoadOfLValue(LV, E->getExprLoc());
930 }
931
VisitBinComma(const BinaryOperator * E)932 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
933 CGF.EmitIgnoredExpr(E->getLHS());
934 return Visit(E->getRHS());
935 }
936
937 ComplexPairTy ComplexExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)938 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
939 TestAndClearIgnoreReal();
940 TestAndClearIgnoreImag();
941 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
942 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
943 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
944
945 // Bind the common expression if necessary.
946 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
947
948 RegionCounter Cnt = CGF.getPGORegionCounter(E);
949 CodeGenFunction::ConditionalEvaluation eval(CGF);
950 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
951
952 eval.begin(CGF);
953 CGF.EmitBlock(LHSBlock);
954 Cnt.beginRegion(Builder);
955 ComplexPairTy LHS = Visit(E->getTrueExpr());
956 LHSBlock = Builder.GetInsertBlock();
957 CGF.EmitBranch(ContBlock);
958 eval.end(CGF);
959
960 eval.begin(CGF);
961 CGF.EmitBlock(RHSBlock);
962 ComplexPairTy RHS = Visit(E->getFalseExpr());
963 RHSBlock = Builder.GetInsertBlock();
964 CGF.EmitBlock(ContBlock);
965 eval.end(CGF);
966
967 // Create a PHI node for the real part.
968 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
969 RealPN->addIncoming(LHS.first, LHSBlock);
970 RealPN->addIncoming(RHS.first, RHSBlock);
971
972 // Create a PHI node for the imaginary part.
973 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
974 ImagPN->addIncoming(LHS.second, LHSBlock);
975 ImagPN->addIncoming(RHS.second, RHSBlock);
976
977 return ComplexPairTy(RealPN, ImagPN);
978 }
979
VisitChooseExpr(ChooseExpr * E)980 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
981 return Visit(E->getChosenSubExpr());
982 }
983
VisitInitListExpr(InitListExpr * E)984 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
985 bool Ignore = TestAndClearIgnoreReal();
986 (void)Ignore;
987 assert (Ignore == false && "init list ignored");
988 Ignore = TestAndClearIgnoreImag();
989 (void)Ignore;
990 assert (Ignore == false && "init list ignored");
991
992 if (E->getNumInits() == 2) {
993 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
994 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
995 return ComplexPairTy(Real, Imag);
996 } else if (E->getNumInits() == 1) {
997 return Visit(E->getInit(0));
998 }
999
1000 // Empty init list intializes to null
1001 assert(E->getNumInits() == 0 && "Unexpected number of inits");
1002 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1003 llvm::Type* LTy = CGF.ConvertType(Ty);
1004 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1005 return ComplexPairTy(zeroConstant, zeroConstant);
1006 }
1007
VisitVAArgExpr(VAArgExpr * E)1008 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1009 llvm::Value *ArgValue = CGF.EmitVAListRef(E->getSubExpr());
1010 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, E->getType());
1011
1012 if (!ArgPtr) {
1013 CGF.ErrorUnsupported(E, "complex va_arg expression");
1014 llvm::Type *EltTy =
1015 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1016 llvm::Value *U = llvm::UndefValue::get(EltTy);
1017 return ComplexPairTy(U, U);
1018 }
1019
1020 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(ArgPtr, E->getType()),
1021 E->getExprLoc());
1022 }
1023
1024 //===----------------------------------------------------------------------===//
1025 // Entry Point into this File
1026 //===----------------------------------------------------------------------===//
1027
1028 /// EmitComplexExpr - Emit the computation of the specified expression of
1029 /// complex type, ignoring the result.
EmitComplexExpr(const Expr * E,bool IgnoreReal,bool IgnoreImag)1030 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1031 bool IgnoreImag) {
1032 assert(E && getComplexType(E->getType()) &&
1033 "Invalid complex expression to emit");
1034
1035 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1036 .Visit(const_cast<Expr*>(E));
1037 }
1038
EmitComplexExprIntoLValue(const Expr * E,LValue dest,bool isInit)1039 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1040 bool isInit) {
1041 assert(E && getComplexType(E->getType()) &&
1042 "Invalid complex expression to emit");
1043 ComplexExprEmitter Emitter(*this);
1044 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1045 Emitter.EmitStoreOfComplex(Val, dest, isInit);
1046 }
1047
1048 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
EmitStoreOfComplex(ComplexPairTy V,LValue dest,bool isInit)1049 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1050 bool isInit) {
1051 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1052 }
1053
1054 /// EmitLoadOfComplex - Load a complex number from the specified address.
EmitLoadOfComplex(LValue src,SourceLocation loc)1055 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1056 SourceLocation loc) {
1057 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1058 }
1059
EmitComplexAssignmentLValue(const BinaryOperator * E)1060 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1061 assert(E->getOpcode() == BO_Assign);
1062 ComplexPairTy Val; // ignored
1063 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1064 }
1065
1066 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1067 const ComplexExprEmitter::BinOpInfo &);
1068
getComplexOp(BinaryOperatorKind Op)1069 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1070 switch (Op) {
1071 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1072 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1073 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1074 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1075 default:
1076 llvm_unreachable("unexpected complex compound assignment");
1077 }
1078 }
1079
1080 LValue CodeGenFunction::
EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator * E)1081 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1082 CompoundFunc Op = getComplexOp(E->getOpcode());
1083 RValue Val;
1084 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1085 }
1086
1087 LValue CodeGenFunction::
EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator * E,llvm::Value * & Result)1088 EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E,
1089 llvm::Value *&Result) {
1090 CompoundFunc Op = getComplexOp(E->getOpcode());
1091 RValue Val;
1092 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1093 Result = Val.getScalarVal();
1094 return Ret;
1095 }
1096