1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Analysis/ObjCARCUtil.h"
27 #include "llvm/BinaryFormat/MachO.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/InlineAsm.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
34 static TryEmitResult
35 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
36 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
37                                    QualType ET,
38                                    RValue Result);
39 
40 /// Given the address of a variable of pointer type, find the correct
41 /// null to store into it.
getNullForVariable(Address addr)42 static llvm::Constant *getNullForVariable(Address addr) {
43   llvm::Type *type = addr.getElementType();
44   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
45 }
46 
47 /// Emits an instance of NSConstantString representing the object.
EmitObjCStringLiteral(const ObjCStringLiteral * E)48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
49 {
50   llvm::Constant *C =
51       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
52   // FIXME: This bitcast should just be made an invariant on the Runtime.
53   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
54 }
55 
56 /// EmitObjCBoxedExpr - This routine generates code to call
57 /// the appropriate expression boxing method. This will either be
58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
59 /// or [NSValue valueWithBytes:objCType:].
60 ///
61 llvm::Value *
EmitObjCBoxedExpr(const ObjCBoxedExpr * E)62 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
63   // Generate the correct selector for this literal's concrete type.
64   // Get the method.
65   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
66   const Expr *SubExpr = E->getSubExpr();
67 
68   if (E->isExpressibleAsConstantInitializer()) {
69     ConstantEmitter ConstEmitter(CGM);
70     return ConstEmitter.tryEmitAbstract(E, E->getType());
71   }
72 
73   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
74   Selector Sel = BoxingMethod->getSelector();
75 
76   // Generate a reference to the class pointer, which will be the receiver.
77   // Assumes that the method was introduced in the class that should be
78   // messaged (avoids pulling it out of the result type).
79   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
80   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
81   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
82 
83   CallArgList Args;
84   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
85   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
86 
87   // ObjCBoxedExpr supports boxing of structs and unions
88   // via [NSValue valueWithBytes:objCType:]
89   const QualType ValueType(SubExpr->getType().getCanonicalType());
90   if (ValueType->isObjCBoxableRecordType()) {
91     // Emit CodeGen for first parameter
92     // and cast value to correct type
93     Address Temporary = CreateMemTemp(SubExpr->getType());
94     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
95     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
96     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
97 
98     // Create char array to store type encoding
99     std::string Str;
100     getContext().getObjCEncodingForType(ValueType, Str);
101     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
102 
103     // Cast type encoding to correct type
104     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
105     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
106     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
107 
108     Args.add(RValue::get(Cast), EncodingQT);
109   } else {
110     Args.add(EmitAnyExpr(SubExpr), ArgQT);
111   }
112 
113   RValue result = Runtime.GenerateMessageSend(
114       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
115       Args, ClassDecl, BoxingMethod);
116   return Builder.CreateBitCast(result.getScalarVal(),
117                                ConvertType(E->getType()));
118 }
119 
EmitObjCCollectionLiteral(const Expr * E,const ObjCMethodDecl * MethodWithObjects)120 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
121                                     const ObjCMethodDecl *MethodWithObjects) {
122   ASTContext &Context = CGM.getContext();
123   const ObjCDictionaryLiteral *DLE = nullptr;
124   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
125   if (!ALE)
126     DLE = cast<ObjCDictionaryLiteral>(E);
127 
128   // Optimize empty collections by referencing constants, when available.
129   uint64_t NumElements =
130     ALE ? ALE->getNumElements() : DLE->getNumElements();
131   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
132     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
133     QualType IdTy(CGM.getContext().getObjCIdType());
134     llvm::Constant *Constant =
135         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
136     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
137     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
138     cast<llvm::LoadInst>(Ptr)->setMetadata(
139         CGM.getModule().getMDKindID("invariant.load"),
140         llvm::MDNode::get(getLLVMContext(), None));
141     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
142   }
143 
144   // Compute the type of the array we're initializing.
145   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
146                             NumElements);
147   QualType ElementType = Context.getObjCIdType().withConst();
148   QualType ElementArrayType
149     = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
150                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
151 
152   // Allocate the temporary array(s).
153   Address Objects = CreateMemTemp(ElementArrayType, "objects");
154   Address Keys = Address::invalid();
155   if (DLE)
156     Keys = CreateMemTemp(ElementArrayType, "keys");
157 
158   // In ARC, we may need to do extra work to keep all the keys and
159   // values alive until after the call.
160   SmallVector<llvm::Value *, 16> NeededObjects;
161   bool TrackNeededObjects =
162     (getLangOpts().ObjCAutoRefCount &&
163     CGM.getCodeGenOpts().OptimizationLevel != 0);
164 
165   // Perform the actual initialialization of the array(s).
166   for (uint64_t i = 0; i < NumElements; i++) {
167     if (ALE) {
168       // Emit the element and store it to the appropriate array slot.
169       const Expr *Rhs = ALE->getElement(i);
170       LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
171                                  ElementType, AlignmentSource::Decl);
172 
173       llvm::Value *value = EmitScalarExpr(Rhs);
174       EmitStoreThroughLValue(RValue::get(value), LV, true);
175       if (TrackNeededObjects) {
176         NeededObjects.push_back(value);
177       }
178     } else {
179       // Emit the key and store it to the appropriate array slot.
180       const Expr *Key = DLE->getKeyValueElement(i).Key;
181       LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
182                                     ElementType, AlignmentSource::Decl);
183       llvm::Value *keyValue = EmitScalarExpr(Key);
184       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
185 
186       // Emit the value and store it to the appropriate array slot.
187       const Expr *Value = DLE->getKeyValueElement(i).Value;
188       LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
189                                       ElementType, AlignmentSource::Decl);
190       llvm::Value *valueValue = EmitScalarExpr(Value);
191       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
192       if (TrackNeededObjects) {
193         NeededObjects.push_back(keyValue);
194         NeededObjects.push_back(valueValue);
195       }
196     }
197   }
198 
199   // Generate the argument list.
200   CallArgList Args;
201   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
202   const ParmVarDecl *argDecl = *PI++;
203   QualType ArgQT = argDecl->getType().getUnqualifiedType();
204   Args.add(RValue::get(Objects.getPointer()), ArgQT);
205   if (DLE) {
206     argDecl = *PI++;
207     ArgQT = argDecl->getType().getUnqualifiedType();
208     Args.add(RValue::get(Keys.getPointer()), ArgQT);
209   }
210   argDecl = *PI;
211   ArgQT = argDecl->getType().getUnqualifiedType();
212   llvm::Value *Count =
213     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
214   Args.add(RValue::get(Count), ArgQT);
215 
216   // Generate a reference to the class pointer, which will be the receiver.
217   Selector Sel = MethodWithObjects->getSelector();
218   QualType ResultType = E->getType();
219   const ObjCObjectPointerType *InterfacePointerType
220     = ResultType->getAsObjCInterfacePointerType();
221   ObjCInterfaceDecl *Class
222     = InterfacePointerType->getObjectType()->getInterface();
223   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
224   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
225 
226   // Generate the message send.
227   RValue result = Runtime.GenerateMessageSend(
228       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
229       Receiver, Args, Class, MethodWithObjects);
230 
231   // The above message send needs these objects, but in ARC they are
232   // passed in a buffer that is essentially __unsafe_unretained.
233   // Therefore we must prevent the optimizer from releasing them until
234   // after the call.
235   if (TrackNeededObjects) {
236     EmitARCIntrinsicUse(NeededObjects);
237   }
238 
239   return Builder.CreateBitCast(result.getScalarVal(),
240                                ConvertType(E->getType()));
241 }
242 
EmitObjCArrayLiteral(const ObjCArrayLiteral * E)243 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
244   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
245 }
246 
EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral * E)247 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
248                                             const ObjCDictionaryLiteral *E) {
249   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
250 }
251 
252 /// Emit a selector.
EmitObjCSelectorExpr(const ObjCSelectorExpr * E)253 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
254   // Untyped selector.
255   // Note that this implementation allows for non-constant strings to be passed
256   // as arguments to @selector().  Currently, the only thing preventing this
257   // behaviour is the type checking in the front end.
258   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
259 }
260 
EmitObjCProtocolExpr(const ObjCProtocolExpr * E)261 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
262   // FIXME: This should pass the Decl not the name.
263   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
264 }
265 
266 /// Adjust the type of an Objective-C object that doesn't match up due
267 /// to type erasure at various points, e.g., related result types or the use
268 /// of parameterized classes.
AdjustObjCObjectType(CodeGenFunction & CGF,QualType ExpT,RValue Result)269 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
270                                    RValue Result) {
271   if (!ExpT->isObjCRetainableType())
272     return Result;
273 
274   // If the converted types are the same, we're done.
275   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
276   if (ExpLLVMTy == Result.getScalarVal()->getType())
277     return Result;
278 
279   // We have applied a substitution. Cast the rvalue appropriately.
280   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
281                                                ExpLLVMTy));
282 }
283 
284 /// Decide whether to extend the lifetime of the receiver of a
285 /// returns-inner-pointer message.
286 static bool
shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr * message)287 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
288   switch (message->getReceiverKind()) {
289 
290   // For a normal instance message, we should extend unless the
291   // receiver is loaded from a variable with precise lifetime.
292   case ObjCMessageExpr::Instance: {
293     const Expr *receiver = message->getInstanceReceiver();
294 
295     // Look through OVEs.
296     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
297       if (opaque->getSourceExpr())
298         receiver = opaque->getSourceExpr()->IgnoreParens();
299     }
300 
301     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
302     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
303     receiver = ice->getSubExpr()->IgnoreParens();
304 
305     // Look through OVEs.
306     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
307       if (opaque->getSourceExpr())
308         receiver = opaque->getSourceExpr()->IgnoreParens();
309     }
310 
311     // Only __strong variables.
312     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
313       return true;
314 
315     // All ivars and fields have precise lifetime.
316     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
317       return false;
318 
319     // Otherwise, check for variables.
320     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
321     if (!declRef) return true;
322     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
323     if (!var) return true;
324 
325     // All variables have precise lifetime except local variables with
326     // automatic storage duration that aren't specially marked.
327     return (var->hasLocalStorage() &&
328             !var->hasAttr<ObjCPreciseLifetimeAttr>());
329   }
330 
331   case ObjCMessageExpr::Class:
332   case ObjCMessageExpr::SuperClass:
333     // It's never necessary for class objects.
334     return false;
335 
336   case ObjCMessageExpr::SuperInstance:
337     // We generally assume that 'self' lives throughout a method call.
338     return false;
339   }
340 
341   llvm_unreachable("invalid receiver kind");
342 }
343 
344 /// Given an expression of ObjC pointer type, check whether it was
345 /// immediately loaded from an ARC __weak l-value.
findWeakLValue(const Expr * E)346 static const Expr *findWeakLValue(const Expr *E) {
347   assert(E->getType()->isObjCRetainableType());
348   E = E->IgnoreParens();
349   if (auto CE = dyn_cast<CastExpr>(E)) {
350     if (CE->getCastKind() == CK_LValueToRValue) {
351       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
352         return CE->getSubExpr();
353     }
354   }
355 
356   return nullptr;
357 }
358 
359 /// The ObjC runtime may provide entrypoints that are likely to be faster
360 /// than an ordinary message send of the appropriate selector.
361 ///
362 /// The entrypoints are guaranteed to be equivalent to just sending the
363 /// corresponding message.  If the entrypoint is implemented naively as just a
364 /// message send, using it is a trade-off: it sacrifices a few cycles of
365 /// overhead to save a small amount of code.  However, it's possible for
366 /// runtimes to detect and special-case classes that use "standard"
367 /// behavior; if that's dynamically a large proportion of all objects, using
368 /// the entrypoint will also be faster than using a message send.
369 ///
370 /// If the runtime does support a required entrypoint, then this method will
371 /// generate a call and return the resulting value.  Otherwise it will return
372 /// None and the caller can generate a msgSend instead.
373 static Optional<llvm::Value *>
tryGenerateSpecializedMessageSend(CodeGenFunction & CGF,QualType ResultType,llvm::Value * Receiver,const CallArgList & Args,Selector Sel,const ObjCMethodDecl * method,bool isClassMessage)374 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
375                                   llvm::Value *Receiver,
376                                   const CallArgList& Args, Selector Sel,
377                                   const ObjCMethodDecl *method,
378                                   bool isClassMessage) {
379   auto &CGM = CGF.CGM;
380   if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
381     return None;
382 
383   auto &Runtime = CGM.getLangOpts().ObjCRuntime;
384   switch (Sel.getMethodFamily()) {
385   case OMF_alloc:
386     if (isClassMessage &&
387         Runtime.shouldUseRuntimeFunctionsForAlloc() &&
388         ResultType->isObjCObjectPointerType()) {
389         // [Foo alloc] -> objc_alloc(Foo) or
390         // [self alloc] -> objc_alloc(self)
391         if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
392           return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
393         // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
394         // [self allocWithZone:nil] -> objc_allocWithZone(self)
395         if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
396             Args.size() == 1 && Args.front().getType()->isPointerType() &&
397             Sel.getNameForSlot(0) == "allocWithZone") {
398           const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
399           if (isa<llvm::ConstantPointerNull>(arg))
400             return CGF.EmitObjCAllocWithZone(Receiver,
401                                              CGF.ConvertType(ResultType));
402           return None;
403         }
404     }
405     break;
406 
407   case OMF_autorelease:
408     if (ResultType->isObjCObjectPointerType() &&
409         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
410         Runtime.shouldUseARCFunctionsForRetainRelease())
411       return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
412     break;
413 
414   case OMF_retain:
415     if (ResultType->isObjCObjectPointerType() &&
416         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
417         Runtime.shouldUseARCFunctionsForRetainRelease())
418       return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
419     break;
420 
421   case OMF_release:
422     if (ResultType->isVoidType() &&
423         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
424         Runtime.shouldUseARCFunctionsForRetainRelease()) {
425       CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
426       return nullptr;
427     }
428     break;
429 
430   default:
431     break;
432   }
433   return None;
434 }
435 
GeneratePossiblySpecializedMessageSend(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,llvm::Value * Receiver,const CallArgList & Args,const ObjCInterfaceDecl * OID,const ObjCMethodDecl * Method,bool isClassMessage)436 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
437     CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
438     Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
439     const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
440     bool isClassMessage) {
441   if (Optional<llvm::Value *> SpecializedResult =
442           tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
443                                             Sel, Method, isClassMessage)) {
444     return RValue::get(SpecializedResult.getValue());
445   }
446   return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
447                              Method);
448 }
449 
AppendFirstImpliedRuntimeProtocols(const ObjCProtocolDecl * PD,llvm::UniqueVector<const ObjCProtocolDecl * > & PDs)450 static void AppendFirstImpliedRuntimeProtocols(
451     const ObjCProtocolDecl *PD,
452     llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
453   if (!PD->isNonRuntimeProtocol()) {
454     const auto *Can = PD->getCanonicalDecl();
455     PDs.insert(Can);
456     return;
457   }
458 
459   for (const auto *ParentPD : PD->protocols())
460     AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
461 }
462 
463 std::vector<const ObjCProtocolDecl *>
GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,ObjCProtocolDecl::protocol_iterator end)464 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
465                                       ObjCProtocolDecl::protocol_iterator end) {
466   std::vector<const ObjCProtocolDecl *> RuntimePds;
467   llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
468 
469   for (; begin != end; ++begin) {
470     const auto *It = *begin;
471     const auto *Can = It->getCanonicalDecl();
472     if (Can->isNonRuntimeProtocol())
473       NonRuntimePDs.insert(Can);
474     else
475       RuntimePds.push_back(Can);
476   }
477 
478   // If there are no non-runtime protocols then we can just stop now.
479   if (NonRuntimePDs.empty())
480     return RuntimePds;
481 
482   // Else we have to search through the non-runtime protocol's inheritancy
483   // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
484   // a non-runtime protocol without any parents. These are the "first-implied"
485   // protocols from a non-runtime protocol.
486   llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
487   for (const auto *PD : NonRuntimePDs)
488     AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
489 
490   // Walk the Runtime list to get all protocols implied via the inclusion of
491   // this protocol, e.g. all protocols it inherits from including itself.
492   llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
493   for (const auto *PD : RuntimePds) {
494     const auto *Can = PD->getCanonicalDecl();
495     AllImpliedProtocols.insert(Can);
496     Can->getImpliedProtocols(AllImpliedProtocols);
497   }
498 
499   // Similar to above, walk the list of first-implied protocols to find the set
500   // all the protocols implied excluding the listed protocols themselves since
501   // they are not yet a part of the `RuntimePds` list.
502   for (const auto *PD : FirstImpliedProtos) {
503     PD->getImpliedProtocols(AllImpliedProtocols);
504   }
505 
506   // From the first-implied list we have to finish building the final protocol
507   // list. If a protocol in the first-implied list was already implied via some
508   // inheritance path through some other protocols then it would be redundant to
509   // add it here and so we skip over it.
510   for (const auto *PD : FirstImpliedProtos) {
511     if (!AllImpliedProtocols.contains(PD)) {
512       RuntimePds.push_back(PD);
513     }
514   }
515 
516   return RuntimePds;
517 }
518 
519 /// Instead of '[[MyClass alloc] init]', try to generate
520 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
521 /// caller side, as well as the optimized objc_alloc.
522 static Optional<llvm::Value *>
tryEmitSpecializedAllocInit(CodeGenFunction & CGF,const ObjCMessageExpr * OME)523 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
524   auto &Runtime = CGF.getLangOpts().ObjCRuntime;
525   if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
526     return None;
527 
528   // Match the exact pattern '[[MyClass alloc] init]'.
529   Selector Sel = OME->getSelector();
530   if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
531       !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
532       Sel.getNameForSlot(0) != "init")
533     return None;
534 
535   // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
536   // with 'cls' a Class.
537   auto *SubOME =
538       dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
539   if (!SubOME)
540     return None;
541   Selector SubSel = SubOME->getSelector();
542 
543   if (!SubOME->getType()->isObjCObjectPointerType() ||
544       !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
545     return None;
546 
547   llvm::Value *Receiver = nullptr;
548   switch (SubOME->getReceiverKind()) {
549   case ObjCMessageExpr::Instance:
550     if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
551       return None;
552     Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
553     break;
554 
555   case ObjCMessageExpr::Class: {
556     QualType ReceiverType = SubOME->getClassReceiver();
557     const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
558     const ObjCInterfaceDecl *ID = ObjTy->getInterface();
559     assert(ID && "null interface should be impossible here");
560     Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
561     break;
562   }
563   case ObjCMessageExpr::SuperInstance:
564   case ObjCMessageExpr::SuperClass:
565     return None;
566   }
567 
568   return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
569 }
570 
EmitObjCMessageExpr(const ObjCMessageExpr * E,ReturnValueSlot Return)571 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
572                                             ReturnValueSlot Return) {
573   // Only the lookup mechanism and first two arguments of the method
574   // implementation vary between runtimes.  We can get the receiver and
575   // arguments in generic code.
576 
577   bool isDelegateInit = E->isDelegateInitCall();
578 
579   const ObjCMethodDecl *method = E->getMethodDecl();
580 
581   // If the method is -retain, and the receiver's being loaded from
582   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
583   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
584       method->getMethodFamily() == OMF_retain) {
585     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
586       LValue lvalue = EmitLValue(lvalueExpr);
587       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
588       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
589     }
590   }
591 
592   if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
593     return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
594 
595   // We don't retain the receiver in delegate init calls, and this is
596   // safe because the receiver value is always loaded from 'self',
597   // which we zero out.  We don't want to Block_copy block receivers,
598   // though.
599   bool retainSelf =
600     (!isDelegateInit &&
601      CGM.getLangOpts().ObjCAutoRefCount &&
602      method &&
603      method->hasAttr<NSConsumesSelfAttr>());
604 
605   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
606   bool isSuperMessage = false;
607   bool isClassMessage = false;
608   ObjCInterfaceDecl *OID = nullptr;
609   // Find the receiver
610   QualType ReceiverType;
611   llvm::Value *Receiver = nullptr;
612   switch (E->getReceiverKind()) {
613   case ObjCMessageExpr::Instance:
614     ReceiverType = E->getInstanceReceiver()->getType();
615     isClassMessage = ReceiverType->isObjCClassType();
616     if (retainSelf) {
617       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
618                                                    E->getInstanceReceiver());
619       Receiver = ter.getPointer();
620       if (ter.getInt()) retainSelf = false;
621     } else
622       Receiver = EmitScalarExpr(E->getInstanceReceiver());
623     break;
624 
625   case ObjCMessageExpr::Class: {
626     ReceiverType = E->getClassReceiver();
627     OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
628     assert(OID && "Invalid Objective-C class message send");
629     Receiver = Runtime.GetClass(*this, OID);
630     isClassMessage = true;
631     break;
632   }
633 
634   case ObjCMessageExpr::SuperInstance:
635     ReceiverType = E->getSuperType();
636     Receiver = LoadObjCSelf();
637     isSuperMessage = true;
638     break;
639 
640   case ObjCMessageExpr::SuperClass:
641     ReceiverType = E->getSuperType();
642     Receiver = LoadObjCSelf();
643     isSuperMessage = true;
644     isClassMessage = true;
645     break;
646   }
647 
648   if (retainSelf)
649     Receiver = EmitARCRetainNonBlock(Receiver);
650 
651   // In ARC, we sometimes want to "extend the lifetime"
652   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
653   // messages.
654   if (getLangOpts().ObjCAutoRefCount && method &&
655       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
656       shouldExtendReceiverForInnerPointerMessage(E))
657     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
658 
659   QualType ResultType = method ? method->getReturnType() : E->getType();
660 
661   CallArgList Args;
662   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
663 
664   // For delegate init calls in ARC, do an unsafe store of null into
665   // self.  This represents the call taking direct ownership of that
666   // value.  We have to do this after emitting the other call
667   // arguments because they might also reference self, but we don't
668   // have to worry about any of them modifying self because that would
669   // be an undefined read and write of an object in unordered
670   // expressions.
671   if (isDelegateInit) {
672     assert(getLangOpts().ObjCAutoRefCount &&
673            "delegate init calls should only be marked in ARC");
674 
675     // Do an unsafe store of null into self.
676     Address selfAddr =
677       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
678     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
679   }
680 
681   RValue result;
682   if (isSuperMessage) {
683     // super is only valid in an Objective-C method
684     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
685     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
686     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
687                                               E->getSelector(),
688                                               OMD->getClassInterface(),
689                                               isCategoryImpl,
690                                               Receiver,
691                                               isClassMessage,
692                                               Args,
693                                               method);
694   } else {
695     // Call runtime methods directly if we can.
696     result = Runtime.GeneratePossiblySpecializedMessageSend(
697         *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
698         method, isClassMessage);
699   }
700 
701   // For delegate init calls in ARC, implicitly store the result of
702   // the call back into self.  This takes ownership of the value.
703   if (isDelegateInit) {
704     Address selfAddr =
705       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
706     llvm::Value *newSelf = result.getScalarVal();
707 
708     // The delegate return type isn't necessarily a matching type; in
709     // fact, it's quite likely to be 'id'.
710     llvm::Type *selfTy = selfAddr.getElementType();
711     newSelf = Builder.CreateBitCast(newSelf, selfTy);
712 
713     Builder.CreateStore(newSelf, selfAddr);
714   }
715 
716   return AdjustObjCObjectType(*this, E->getType(), result);
717 }
718 
719 namespace {
720 struct FinishARCDealloc final : EHScopeStack::Cleanup {
Emit__anon82b769870111::FinishARCDealloc721   void Emit(CodeGenFunction &CGF, Flags flags) override {
722     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
723 
724     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
725     const ObjCInterfaceDecl *iface = impl->getClassInterface();
726     if (!iface->getSuperClass()) return;
727 
728     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
729 
730     // Call [super dealloc] if we have a superclass.
731     llvm::Value *self = CGF.LoadObjCSelf();
732 
733     CallArgList args;
734     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
735                                                       CGF.getContext().VoidTy,
736                                                       method->getSelector(),
737                                                       iface,
738                                                       isCategory,
739                                                       self,
740                                                       /*is class msg*/ false,
741                                                       args,
742                                                       method);
743   }
744 };
745 }
746 
747 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
748 /// the LLVM function and sets the other context used by
749 /// CodeGenFunction.
StartObjCMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)750 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
751                                       const ObjCContainerDecl *CD) {
752   SourceLocation StartLoc = OMD->getBeginLoc();
753   FunctionArgList args;
754   // Check if we should generate debug info for this method.
755   if (OMD->hasAttr<NoDebugAttr>())
756     DebugInfo = nullptr; // disable debug info indefinitely for this function
757 
758   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
759 
760   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
761   if (OMD->isDirectMethod()) {
762     Fn->setVisibility(llvm::Function::HiddenVisibility);
763     CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false);
764     CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
765   } else {
766     CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
767   }
768 
769   args.push_back(OMD->getSelfDecl());
770   args.push_back(OMD->getCmdDecl());
771 
772   args.append(OMD->param_begin(), OMD->param_end());
773 
774   CurGD = OMD;
775   CurEHLocation = OMD->getEndLoc();
776 
777   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
778                 OMD->getLocation(), StartLoc);
779 
780   if (OMD->isDirectMethod()) {
781     // This function is a direct call, it has to implement a nil check
782     // on entry.
783     //
784     // TODO: possibly have several entry points to elide the check
785     CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
786   }
787 
788   // In ARC, certain methods get an extra cleanup.
789   if (CGM.getLangOpts().ObjCAutoRefCount &&
790       OMD->isInstanceMethod() &&
791       OMD->getSelector().isUnarySelector()) {
792     const IdentifierInfo *ident =
793       OMD->getSelector().getIdentifierInfoForSlot(0);
794     if (ident->isStr("dealloc"))
795       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
796   }
797 }
798 
799 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
800                                               LValue lvalue, QualType type);
801 
802 /// Generate an Objective-C method.  An Objective-C method is a C function with
803 /// its pointer, name, and types registered in the class structure.
GenerateObjCMethod(const ObjCMethodDecl * OMD)804 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
805   StartObjCMethod(OMD, OMD->getClassInterface());
806   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
807   assert(isa<CompoundStmt>(OMD->getBody()));
808   incrementProfileCounter(OMD->getBody());
809   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
810   FinishFunction(OMD->getBodyRBrace());
811 }
812 
813 /// emitStructGetterCall - Call the runtime function to load a property
814 /// into the return value slot.
emitStructGetterCall(CodeGenFunction & CGF,ObjCIvarDecl * ivar,bool isAtomic,bool hasStrong)815 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
816                                  bool isAtomic, bool hasStrong) {
817   ASTContext &Context = CGF.getContext();
818 
819   Address src =
820       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
821           .getAddress(CGF);
822 
823   // objc_copyStruct (ReturnValue, &structIvar,
824   //                  sizeof (Type of Ivar), isAtomic, false);
825   CallArgList args;
826 
827   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
828   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
829 
830   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
831   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
832 
833   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
834   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
835   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
836   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
837 
838   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
839   CGCallee callee = CGCallee::forDirect(fn);
840   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
841                callee, ReturnValueSlot(), args);
842 }
843 
844 /// Determine whether the given architecture supports unaligned atomic
845 /// accesses.  They don't have to be fast, just faster than a function
846 /// call and a mutex.
hasUnalignedAtomics(llvm::Triple::ArchType arch)847 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
848   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
849   // currently supported by the backend.)
850   return 0;
851 }
852 
853 /// Return the maximum size that permits atomic accesses for the given
854 /// architecture.
getMaxAtomicAccessSize(CodeGenModule & CGM,llvm::Triple::ArchType arch)855 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
856                                         llvm::Triple::ArchType arch) {
857   // ARM has 8-byte atomic accesses, but it's not clear whether we
858   // want to rely on them here.
859 
860   // In the default case, just assume that any size up to a pointer is
861   // fine given adequate alignment.
862   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
863 }
864 
865 namespace {
866   class PropertyImplStrategy {
867   public:
868     enum StrategyKind {
869       /// The 'native' strategy is to use the architecture's provided
870       /// reads and writes.
871       Native,
872 
873       /// Use objc_setProperty and objc_getProperty.
874       GetSetProperty,
875 
876       /// Use objc_setProperty for the setter, but use expression
877       /// evaluation for the getter.
878       SetPropertyAndExpressionGet,
879 
880       /// Use objc_copyStruct.
881       CopyStruct,
882 
883       /// The 'expression' strategy is to emit normal assignment or
884       /// lvalue-to-rvalue expressions.
885       Expression
886     };
887 
getKind() const888     StrategyKind getKind() const { return StrategyKind(Kind); }
889 
hasStrongMember() const890     bool hasStrongMember() const { return HasStrong; }
isAtomic() const891     bool isAtomic() const { return IsAtomic; }
isCopy() const892     bool isCopy() const { return IsCopy; }
893 
getIvarSize() const894     CharUnits getIvarSize() const { return IvarSize; }
getIvarAlignment() const895     CharUnits getIvarAlignment() const { return IvarAlignment; }
896 
897     PropertyImplStrategy(CodeGenModule &CGM,
898                          const ObjCPropertyImplDecl *propImpl);
899 
900   private:
901     unsigned Kind : 8;
902     unsigned IsAtomic : 1;
903     unsigned IsCopy : 1;
904     unsigned HasStrong : 1;
905 
906     CharUnits IvarSize;
907     CharUnits IvarAlignment;
908   };
909 }
910 
911 /// Pick an implementation strategy for the given property synthesis.
PropertyImplStrategy(CodeGenModule & CGM,const ObjCPropertyImplDecl * propImpl)912 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
913                                      const ObjCPropertyImplDecl *propImpl) {
914   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
915   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
916 
917   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
918   IsAtomic = prop->isAtomic();
919   HasStrong = false; // doesn't matter here.
920 
921   // Evaluate the ivar's size and alignment.
922   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
923   QualType ivarType = ivar->getType();
924   auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
925   IvarSize = TInfo.Width;
926   IvarAlignment = TInfo.Align;
927 
928   // If we have a copy property, we always have to use getProperty/setProperty.
929   // TODO: we could actually use setProperty and an expression for non-atomics.
930   if (IsCopy) {
931     Kind = GetSetProperty;
932     return;
933   }
934 
935   // Handle retain.
936   if (setterKind == ObjCPropertyDecl::Retain) {
937     // In GC-only, there's nothing special that needs to be done.
938     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
939       // fallthrough
940 
941     // In ARC, if the property is non-atomic, use expression emission,
942     // which translates to objc_storeStrong.  This isn't required, but
943     // it's slightly nicer.
944     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
945       // Using standard expression emission for the setter is only
946       // acceptable if the ivar is __strong, which won't be true if
947       // the property is annotated with __attribute__((NSObject)).
948       // TODO: falling all the way back to objc_setProperty here is
949       // just laziness, though;  we could still use objc_storeStrong
950       // if we hacked it right.
951       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
952         Kind = Expression;
953       else
954         Kind = SetPropertyAndExpressionGet;
955       return;
956 
957     // Otherwise, we need to at least use setProperty.  However, if
958     // the property isn't atomic, we can use normal expression
959     // emission for the getter.
960     } else if (!IsAtomic) {
961       Kind = SetPropertyAndExpressionGet;
962       return;
963 
964     // Otherwise, we have to use both setProperty and getProperty.
965     } else {
966       Kind = GetSetProperty;
967       return;
968     }
969   }
970 
971   // If we're not atomic, just use expression accesses.
972   if (!IsAtomic) {
973     Kind = Expression;
974     return;
975   }
976 
977   // Properties on bitfield ivars need to be emitted using expression
978   // accesses even if they're nominally atomic.
979   if (ivar->isBitField()) {
980     Kind = Expression;
981     return;
982   }
983 
984   // GC-qualified or ARC-qualified ivars need to be emitted as
985   // expressions.  This actually works out to being atomic anyway,
986   // except for ARC __strong, but that should trigger the above code.
987   if (ivarType.hasNonTrivialObjCLifetime() ||
988       (CGM.getLangOpts().getGC() &&
989        CGM.getContext().getObjCGCAttrKind(ivarType))) {
990     Kind = Expression;
991     return;
992   }
993 
994   // Compute whether the ivar has strong members.
995   if (CGM.getLangOpts().getGC())
996     if (const RecordType *recordType = ivarType->getAs<RecordType>())
997       HasStrong = recordType->getDecl()->hasObjectMember();
998 
999   // We can never access structs with object members with a native
1000   // access, because we need to use write barriers.  This is what
1001   // objc_copyStruct is for.
1002   if (HasStrong) {
1003     Kind = CopyStruct;
1004     return;
1005   }
1006 
1007   // Otherwise, this is target-dependent and based on the size and
1008   // alignment of the ivar.
1009 
1010   // If the size of the ivar is not a power of two, give up.  We don't
1011   // want to get into the business of doing compare-and-swaps.
1012   if (!IvarSize.isPowerOfTwo()) {
1013     Kind = CopyStruct;
1014     return;
1015   }
1016 
1017   llvm::Triple::ArchType arch =
1018     CGM.getTarget().getTriple().getArch();
1019 
1020   // Most architectures require memory to fit within a single cache
1021   // line, so the alignment has to be at least the size of the access.
1022   // Otherwise we have to grab a lock.
1023   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1024     Kind = CopyStruct;
1025     return;
1026   }
1027 
1028   // If the ivar's size exceeds the architecture's maximum atomic
1029   // access size, we have to use CopyStruct.
1030   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1031     Kind = CopyStruct;
1032     return;
1033   }
1034 
1035   // Otherwise, we can use native loads and stores.
1036   Kind = Native;
1037 }
1038 
1039 /// Generate an Objective-C property getter function.
1040 ///
1041 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1042 /// is illegal within a category.
GenerateObjCGetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)1043 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1044                                          const ObjCPropertyImplDecl *PID) {
1045   llvm::Constant *AtomicHelperFn =
1046       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1047   ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1048   assert(OMD && "Invalid call to generate getter (empty method)");
1049   StartObjCMethod(OMD, IMP->getClassInterface());
1050 
1051   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1052 
1053   FinishFunction(OMD->getEndLoc());
1054 }
1055 
hasTrivialGetExpr(const ObjCPropertyImplDecl * propImpl)1056 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1057   const Expr *getter = propImpl->getGetterCXXConstructor();
1058   if (!getter) return true;
1059 
1060   // Sema only makes only of these when the ivar has a C++ class type,
1061   // so the form is pretty constrained.
1062 
1063   // If the property has a reference type, we might just be binding a
1064   // reference, in which case the result will be a gl-value.  We should
1065   // treat this as a non-trivial operation.
1066   if (getter->isGLValue())
1067     return false;
1068 
1069   // If we selected a trivial copy-constructor, we're okay.
1070   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1071     return (construct->getConstructor()->isTrivial());
1072 
1073   // The constructor might require cleanups (in which case it's never
1074   // trivial).
1075   assert(isa<ExprWithCleanups>(getter));
1076   return false;
1077 }
1078 
1079 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1080 /// copy the ivar into the resturn slot.
emitCPPObjectAtomicGetterCall(CodeGenFunction & CGF,llvm::Value * returnAddr,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)1081 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1082                                           llvm::Value *returnAddr,
1083                                           ObjCIvarDecl *ivar,
1084                                           llvm::Constant *AtomicHelperFn) {
1085   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1086   //                           AtomicHelperFn);
1087   CallArgList args;
1088 
1089   // The 1st argument is the return Slot.
1090   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1091 
1092   // The 2nd argument is the address of the ivar.
1093   llvm::Value *ivarAddr =
1094       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1095           .getPointer(CGF);
1096   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1097   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1098 
1099   // Third argument is the helper function.
1100   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1101 
1102   llvm::FunctionCallee copyCppAtomicObjectFn =
1103       CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1104   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1105   CGF.EmitCall(
1106       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1107                callee, ReturnValueSlot(), args);
1108 }
1109 
1110 void
generateObjCGetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,const ObjCMethodDecl * GetterMethodDecl,llvm::Constant * AtomicHelperFn)1111 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1112                                         const ObjCPropertyImplDecl *propImpl,
1113                                         const ObjCMethodDecl *GetterMethodDecl,
1114                                         llvm::Constant *AtomicHelperFn) {
1115   // If there's a non-trivial 'get' expression, we just have to emit that.
1116   if (!hasTrivialGetExpr(propImpl)) {
1117     if (!AtomicHelperFn) {
1118       auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1119                                      propImpl->getGetterCXXConstructor(),
1120                                      /* NRVOCandidate=*/nullptr);
1121       EmitReturnStmt(*ret);
1122     }
1123     else {
1124       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1125       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1126                                     ivar, AtomicHelperFn);
1127     }
1128     return;
1129   }
1130 
1131   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1132   QualType propType = prop->getType();
1133   ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1134 
1135   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1136 
1137   // Pick an implementation strategy.
1138   PropertyImplStrategy strategy(CGM, propImpl);
1139   switch (strategy.getKind()) {
1140   case PropertyImplStrategy::Native: {
1141     // We don't need to do anything for a zero-size struct.
1142     if (strategy.getIvarSize().isZero())
1143       return;
1144 
1145     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1146 
1147     // Currently, all atomic accesses have to be through integer
1148     // types, so there's no point in trying to pick a prettier type.
1149     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1150     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1151     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1152 
1153     // Perform an atomic load.  This does not impose ordering constraints.
1154     Address ivarAddr = LV.getAddress(*this);
1155     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1156     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1157     load->setAtomic(llvm::AtomicOrdering::Unordered);
1158 
1159     // Store that value into the return address.  Doing this with a
1160     // bitcast is likely to produce some pretty ugly IR, but it's not
1161     // the *most* terrible thing in the world.
1162     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1163     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1164     llvm::Value *ivarVal = load;
1165     if (ivarSize > retTySize) {
1166       llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1167       ivarVal = Builder.CreateTrunc(load, newTy);
1168       bitcastType = newTy->getPointerTo();
1169     }
1170     Builder.CreateStore(ivarVal,
1171                         Builder.CreateBitCast(ReturnValue, bitcastType));
1172 
1173     // Make sure we don't do an autorelease.
1174     AutoreleaseResult = false;
1175     return;
1176   }
1177 
1178   case PropertyImplStrategy::GetSetProperty: {
1179     llvm::FunctionCallee getPropertyFn =
1180         CGM.getObjCRuntime().GetPropertyGetFunction();
1181     if (!getPropertyFn) {
1182       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1183       return;
1184     }
1185     CGCallee callee = CGCallee::forDirect(getPropertyFn);
1186 
1187     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1188     // FIXME: Can't this be simpler? This might even be worse than the
1189     // corresponding gcc code.
1190     llvm::Value *cmd =
1191       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1192     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1193     llvm::Value *ivarOffset =
1194       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1195 
1196     CallArgList args;
1197     args.add(RValue::get(self), getContext().getObjCIdType());
1198     args.add(RValue::get(cmd), getContext().getObjCSelType());
1199     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1200     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1201              getContext().BoolTy);
1202 
1203     // FIXME: We shouldn't need to get the function info here, the
1204     // runtime already should have computed it to build the function.
1205     llvm::CallBase *CallInstruction;
1206     RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1207                              getContext().getObjCIdType(), args),
1208                          callee, ReturnValueSlot(), args, &CallInstruction);
1209     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1210       call->setTailCall();
1211 
1212     // We need to fix the type here. Ivars with copy & retain are
1213     // always objects so we don't need to worry about complex or
1214     // aggregates.
1215     RV = RValue::get(Builder.CreateBitCast(
1216         RV.getScalarVal(),
1217         getTypes().ConvertType(getterMethod->getReturnType())));
1218 
1219     EmitReturnOfRValue(RV, propType);
1220 
1221     // objc_getProperty does an autorelease, so we should suppress ours.
1222     AutoreleaseResult = false;
1223 
1224     return;
1225   }
1226 
1227   case PropertyImplStrategy::CopyStruct:
1228     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1229                          strategy.hasStrongMember());
1230     return;
1231 
1232   case PropertyImplStrategy::Expression:
1233   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1234     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1235 
1236     QualType ivarType = ivar->getType();
1237     switch (getEvaluationKind(ivarType)) {
1238     case TEK_Complex: {
1239       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1240       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1241                          /*init*/ true);
1242       return;
1243     }
1244     case TEK_Aggregate: {
1245       // The return value slot is guaranteed to not be aliased, but
1246       // that's not necessarily the same as "on the stack", so
1247       // we still potentially need objc_memmove_collectable.
1248       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1249                         /* Src= */ LV, ivarType, getOverlapForReturnValue());
1250       return;
1251     }
1252     case TEK_Scalar: {
1253       llvm::Value *value;
1254       if (propType->isReferenceType()) {
1255         value = LV.getAddress(*this).getPointer();
1256       } else {
1257         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1258         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1259           if (getLangOpts().ObjCAutoRefCount) {
1260             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1261           } else {
1262             value = EmitARCLoadWeak(LV.getAddress(*this));
1263           }
1264 
1265         // Otherwise we want to do a simple load, suppressing the
1266         // final autorelease.
1267         } else {
1268           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1269           AutoreleaseResult = false;
1270         }
1271 
1272         value = Builder.CreateBitCast(
1273             value, ConvertType(GetterMethodDecl->getReturnType()));
1274       }
1275 
1276       EmitReturnOfRValue(RValue::get(value), propType);
1277       return;
1278     }
1279     }
1280     llvm_unreachable("bad evaluation kind");
1281   }
1282 
1283   }
1284   llvm_unreachable("bad @property implementation strategy!");
1285 }
1286 
1287 /// emitStructSetterCall - Call the runtime function to store the value
1288 /// from the first formal parameter into the given ivar.
emitStructSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar)1289 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1290                                  ObjCIvarDecl *ivar) {
1291   // objc_copyStruct (&structIvar, &Arg,
1292   //                  sizeof (struct something), true, false);
1293   CallArgList args;
1294 
1295   // The first argument is the address of the ivar.
1296   llvm::Value *ivarAddr =
1297       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1298           .getPointer(CGF);
1299   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1300   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1301 
1302   // The second argument is the address of the parameter variable.
1303   ParmVarDecl *argVar = *OMD->param_begin();
1304   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1305                      argVar->getType().getNonReferenceType(), VK_LValue,
1306                      SourceLocation());
1307   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1308   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1309   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1310 
1311   // The third argument is the sizeof the type.
1312   llvm::Value *size =
1313     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1314   args.add(RValue::get(size), CGF.getContext().getSizeType());
1315 
1316   // The fourth argument is the 'isAtomic' flag.
1317   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1318 
1319   // The fifth argument is the 'hasStrong' flag.
1320   // FIXME: should this really always be false?
1321   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1322 
1323   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1324   CGCallee callee = CGCallee::forDirect(fn);
1325   CGF.EmitCall(
1326       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1327                callee, ReturnValueSlot(), args);
1328 }
1329 
1330 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1331 /// the value from the first formal parameter into the given ivar, using
1332 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
emitCPPObjectAtomicSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)1333 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1334                                           ObjCMethodDecl *OMD,
1335                                           ObjCIvarDecl *ivar,
1336                                           llvm::Constant *AtomicHelperFn) {
1337   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1338   //                           AtomicHelperFn);
1339   CallArgList args;
1340 
1341   // The first argument is the address of the ivar.
1342   llvm::Value *ivarAddr =
1343       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1344           .getPointer(CGF);
1345   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1346   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1347 
1348   // The second argument is the address of the parameter variable.
1349   ParmVarDecl *argVar = *OMD->param_begin();
1350   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1351                      argVar->getType().getNonReferenceType(), VK_LValue,
1352                      SourceLocation());
1353   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1354   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1355   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1356 
1357   // Third argument is the helper function.
1358   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1359 
1360   llvm::FunctionCallee fn =
1361       CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1362   CGCallee callee = CGCallee::forDirect(fn);
1363   CGF.EmitCall(
1364       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1365                callee, ReturnValueSlot(), args);
1366 }
1367 
1368 
hasTrivialSetExpr(const ObjCPropertyImplDecl * PID)1369 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1370   Expr *setter = PID->getSetterCXXAssignment();
1371   if (!setter) return true;
1372 
1373   // Sema only makes only of these when the ivar has a C++ class type,
1374   // so the form is pretty constrained.
1375 
1376   // An operator call is trivial if the function it calls is trivial.
1377   // This also implies that there's nothing non-trivial going on with
1378   // the arguments, because operator= can only be trivial if it's a
1379   // synthesized assignment operator and therefore both parameters are
1380   // references.
1381   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1382     if (const FunctionDecl *callee
1383           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1384       if (callee->isTrivial())
1385         return true;
1386     return false;
1387   }
1388 
1389   assert(isa<ExprWithCleanups>(setter));
1390   return false;
1391 }
1392 
UseOptimizedSetter(CodeGenModule & CGM)1393 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1394   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1395     return false;
1396   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1397 }
1398 
1399 void
generateObjCSetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,llvm::Constant * AtomicHelperFn)1400 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1401                                         const ObjCPropertyImplDecl *propImpl,
1402                                         llvm::Constant *AtomicHelperFn) {
1403   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1404   ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1405 
1406   // Just use the setter expression if Sema gave us one and it's
1407   // non-trivial.
1408   if (!hasTrivialSetExpr(propImpl)) {
1409     if (!AtomicHelperFn)
1410       // If non-atomic, assignment is called directly.
1411       EmitStmt(propImpl->getSetterCXXAssignment());
1412     else
1413       // If atomic, assignment is called via a locking api.
1414       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1415                                     AtomicHelperFn);
1416     return;
1417   }
1418 
1419   PropertyImplStrategy strategy(CGM, propImpl);
1420   switch (strategy.getKind()) {
1421   case PropertyImplStrategy::Native: {
1422     // We don't need to do anything for a zero-size struct.
1423     if (strategy.getIvarSize().isZero())
1424       return;
1425 
1426     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1427 
1428     LValue ivarLValue =
1429       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1430     Address ivarAddr = ivarLValue.getAddress(*this);
1431 
1432     // Currently, all atomic accesses have to be through integer
1433     // types, so there's no point in trying to pick a prettier type.
1434     llvm::Type *bitcastType =
1435       llvm::Type::getIntNTy(getLLVMContext(),
1436                             getContext().toBits(strategy.getIvarSize()));
1437 
1438     // Cast both arguments to the chosen operation type.
1439     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1440     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1441 
1442     // This bitcast load is likely to cause some nasty IR.
1443     llvm::Value *load = Builder.CreateLoad(argAddr);
1444 
1445     // Perform an atomic store.  There are no memory ordering requirements.
1446     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1447     store->setAtomic(llvm::AtomicOrdering::Unordered);
1448     return;
1449   }
1450 
1451   case PropertyImplStrategy::GetSetProperty:
1452   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1453 
1454     llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1455     llvm::FunctionCallee setPropertyFn = nullptr;
1456     if (UseOptimizedSetter(CGM)) {
1457       // 10.8 and iOS 6.0 code and GC is off
1458       setOptimizedPropertyFn =
1459           CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1460               strategy.isAtomic(), strategy.isCopy());
1461       if (!setOptimizedPropertyFn) {
1462         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1463         return;
1464       }
1465     }
1466     else {
1467       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1468       if (!setPropertyFn) {
1469         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1470         return;
1471       }
1472     }
1473 
1474     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1475     //                       <is-atomic>, <is-copy>).
1476     llvm::Value *cmd =
1477       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1478     llvm::Value *self =
1479       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1480     llvm::Value *ivarOffset =
1481       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1482     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1483     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1484     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1485 
1486     CallArgList args;
1487     args.add(RValue::get(self), getContext().getObjCIdType());
1488     args.add(RValue::get(cmd), getContext().getObjCSelType());
1489     if (setOptimizedPropertyFn) {
1490       args.add(RValue::get(arg), getContext().getObjCIdType());
1491       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1492       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1493       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1494                callee, ReturnValueSlot(), args);
1495     } else {
1496       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1497       args.add(RValue::get(arg), getContext().getObjCIdType());
1498       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1499                getContext().BoolTy);
1500       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1501                getContext().BoolTy);
1502       // FIXME: We shouldn't need to get the function info here, the runtime
1503       // already should have computed it to build the function.
1504       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1505       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1506                callee, ReturnValueSlot(), args);
1507     }
1508 
1509     return;
1510   }
1511 
1512   case PropertyImplStrategy::CopyStruct:
1513     emitStructSetterCall(*this, setterMethod, ivar);
1514     return;
1515 
1516   case PropertyImplStrategy::Expression:
1517     break;
1518   }
1519 
1520   // Otherwise, fake up some ASTs and emit a normal assignment.
1521   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1522   DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1523                    VK_LValue, SourceLocation());
1524   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1525                             CK_LValueToRValue, &self, VK_RValue,
1526                             FPOptionsOverride());
1527   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1528                           SourceLocation(), SourceLocation(),
1529                           &selfLoad, true, true);
1530 
1531   ParmVarDecl *argDecl = *setterMethod->param_begin();
1532   QualType argType = argDecl->getType().getNonReferenceType();
1533   DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1534                   SourceLocation());
1535   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1536                            argType.getUnqualifiedType(), CK_LValueToRValue,
1537                            &arg, VK_RValue, FPOptionsOverride());
1538 
1539   // The property type can differ from the ivar type in some situations with
1540   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1541   // The following absurdity is just to ensure well-formed IR.
1542   CastKind argCK = CK_NoOp;
1543   if (ivarRef.getType()->isObjCObjectPointerType()) {
1544     if (argLoad.getType()->isObjCObjectPointerType())
1545       argCK = CK_BitCast;
1546     else if (argLoad.getType()->isBlockPointerType())
1547       argCK = CK_BlockPointerToObjCPointerCast;
1548     else
1549       argCK = CK_CPointerToObjCPointerCast;
1550   } else if (ivarRef.getType()->isBlockPointerType()) {
1551      if (argLoad.getType()->isBlockPointerType())
1552       argCK = CK_BitCast;
1553     else
1554       argCK = CK_AnyPointerToBlockPointerCast;
1555   } else if (ivarRef.getType()->isPointerType()) {
1556     argCK = CK_BitCast;
1557   }
1558   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1559                            &argLoad, VK_RValue, FPOptionsOverride());
1560   Expr *finalArg = &argLoad;
1561   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1562                                            argLoad.getType()))
1563     finalArg = &argCast;
1564 
1565   BinaryOperator *assign = BinaryOperator::Create(
1566       getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), VK_RValue,
1567       OK_Ordinary, SourceLocation(), FPOptionsOverride());
1568   EmitStmt(assign);
1569 }
1570 
1571 /// Generate an Objective-C property setter function.
1572 ///
1573 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1574 /// is illegal within a category.
GenerateObjCSetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)1575 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1576                                          const ObjCPropertyImplDecl *PID) {
1577   llvm::Constant *AtomicHelperFn =
1578       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1579   ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1580   assert(OMD && "Invalid call to generate setter (empty method)");
1581   StartObjCMethod(OMD, IMP->getClassInterface());
1582 
1583   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1584 
1585   FinishFunction(OMD->getEndLoc());
1586 }
1587 
1588 namespace {
1589   struct DestroyIvar final : EHScopeStack::Cleanup {
1590   private:
1591     llvm::Value *addr;
1592     const ObjCIvarDecl *ivar;
1593     CodeGenFunction::Destroyer *destroyer;
1594     bool useEHCleanupForArray;
1595   public:
DestroyIvar__anon82b769870311::DestroyIvar1596     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1597                 CodeGenFunction::Destroyer *destroyer,
1598                 bool useEHCleanupForArray)
1599       : addr(addr), ivar(ivar), destroyer(destroyer),
1600         useEHCleanupForArray(useEHCleanupForArray) {}
1601 
Emit__anon82b769870311::DestroyIvar1602     void Emit(CodeGenFunction &CGF, Flags flags) override {
1603       LValue lvalue
1604         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1605       CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1606                       flags.isForNormalCleanup() && useEHCleanupForArray);
1607     }
1608   };
1609 }
1610 
1611 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
destroyARCStrongWithStore(CodeGenFunction & CGF,Address addr,QualType type)1612 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1613                                       Address addr,
1614                                       QualType type) {
1615   llvm::Value *null = getNullForVariable(addr);
1616   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1617 }
1618 
emitCXXDestructMethod(CodeGenFunction & CGF,ObjCImplementationDecl * impl)1619 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1620                                   ObjCImplementationDecl *impl) {
1621   CodeGenFunction::RunCleanupsScope scope(CGF);
1622 
1623   llvm::Value *self = CGF.LoadObjCSelf();
1624 
1625   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1626   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1627        ivar; ivar = ivar->getNextIvar()) {
1628     QualType type = ivar->getType();
1629 
1630     // Check whether the ivar is a destructible type.
1631     QualType::DestructionKind dtorKind = type.isDestructedType();
1632     if (!dtorKind) continue;
1633 
1634     CodeGenFunction::Destroyer *destroyer = nullptr;
1635 
1636     // Use a call to objc_storeStrong to destroy strong ivars, for the
1637     // general benefit of the tools.
1638     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1639       destroyer = destroyARCStrongWithStore;
1640 
1641     // Otherwise use the default for the destruction kind.
1642     } else {
1643       destroyer = CGF.getDestroyer(dtorKind);
1644     }
1645 
1646     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1647 
1648     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1649                                          cleanupKind & EHCleanup);
1650   }
1651 
1652   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1653 }
1654 
GenerateObjCCtorDtorMethod(ObjCImplementationDecl * IMP,ObjCMethodDecl * MD,bool ctor)1655 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1656                                                  ObjCMethodDecl *MD,
1657                                                  bool ctor) {
1658   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1659   StartObjCMethod(MD, IMP->getClassInterface());
1660 
1661   // Emit .cxx_construct.
1662   if (ctor) {
1663     // Suppress the final autorelease in ARC.
1664     AutoreleaseResult = false;
1665 
1666     for (const auto *IvarInit : IMP->inits()) {
1667       FieldDecl *Field = IvarInit->getAnyMember();
1668       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1669       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1670                                     LoadObjCSelf(), Ivar, 0);
1671       EmitAggExpr(IvarInit->getInit(),
1672                   AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1673                                           AggValueSlot::DoesNotNeedGCBarriers,
1674                                           AggValueSlot::IsNotAliased,
1675                                           AggValueSlot::DoesNotOverlap));
1676     }
1677     // constructor returns 'self'.
1678     CodeGenTypes &Types = CGM.getTypes();
1679     QualType IdTy(CGM.getContext().getObjCIdType());
1680     llvm::Value *SelfAsId =
1681       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1682     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1683 
1684   // Emit .cxx_destruct.
1685   } else {
1686     emitCXXDestructMethod(*this, IMP);
1687   }
1688   FinishFunction();
1689 }
1690 
LoadObjCSelf()1691 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1692   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1693   DeclRefExpr DRE(getContext(), Self,
1694                   /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1695                   Self->getType(), VK_LValue, SourceLocation());
1696   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1697 }
1698 
TypeOfSelfObject()1699 QualType CodeGenFunction::TypeOfSelfObject() {
1700   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1701   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1702   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1703     getContext().getCanonicalType(selfDecl->getType()));
1704   return PTy->getPointeeType();
1705 }
1706 
EmitObjCForCollectionStmt(const ObjCForCollectionStmt & S)1707 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1708   llvm::FunctionCallee EnumerationMutationFnPtr =
1709       CGM.getObjCRuntime().EnumerationMutationFunction();
1710   if (!EnumerationMutationFnPtr) {
1711     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1712     return;
1713   }
1714   CGCallee EnumerationMutationFn =
1715     CGCallee::forDirect(EnumerationMutationFnPtr);
1716 
1717   CGDebugInfo *DI = getDebugInfo();
1718   if (DI)
1719     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1720 
1721   RunCleanupsScope ForScope(*this);
1722 
1723   // The local variable comes into scope immediately.
1724   AutoVarEmission variable = AutoVarEmission::invalid();
1725   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1726     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1727 
1728   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1729 
1730   // Fast enumeration state.
1731   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1732   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1733   EmitNullInitialization(StatePtr, StateTy);
1734 
1735   // Number of elements in the items array.
1736   static const unsigned NumItems = 16;
1737 
1738   // Fetch the countByEnumeratingWithState:objects:count: selector.
1739   IdentifierInfo *II[] = {
1740     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1741     &CGM.getContext().Idents.get("objects"),
1742     &CGM.getContext().Idents.get("count")
1743   };
1744   Selector FastEnumSel =
1745     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1746 
1747   QualType ItemsTy =
1748     getContext().getConstantArrayType(getContext().getObjCIdType(),
1749                                       llvm::APInt(32, NumItems), nullptr,
1750                                       ArrayType::Normal, 0);
1751   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1752 
1753   // Emit the collection pointer.  In ARC, we do a retain.
1754   llvm::Value *Collection;
1755   if (getLangOpts().ObjCAutoRefCount) {
1756     Collection = EmitARCRetainScalarExpr(S.getCollection());
1757 
1758     // Enter a cleanup to do the release.
1759     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1760   } else {
1761     Collection = EmitScalarExpr(S.getCollection());
1762   }
1763 
1764   // The 'continue' label needs to appear within the cleanup for the
1765   // collection object.
1766   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1767 
1768   // Send it our message:
1769   CallArgList Args;
1770 
1771   // The first argument is a temporary of the enumeration-state type.
1772   Args.add(RValue::get(StatePtr.getPointer()),
1773            getContext().getPointerType(StateTy));
1774 
1775   // The second argument is a temporary array with space for NumItems
1776   // pointers.  We'll actually be loading elements from the array
1777   // pointer written into the control state; this buffer is so that
1778   // collections that *aren't* backed by arrays can still queue up
1779   // batches of elements.
1780   Args.add(RValue::get(ItemsPtr.getPointer()),
1781            getContext().getPointerType(ItemsTy));
1782 
1783   // The third argument is the capacity of that temporary array.
1784   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1785   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1786   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1787 
1788   // Start the enumeration.
1789   RValue CountRV =
1790       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1791                                                getContext().getNSUIntegerType(),
1792                                                FastEnumSel, Collection, Args);
1793 
1794   // The initial number of objects that were returned in the buffer.
1795   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1796 
1797   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1798   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1799 
1800   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1801 
1802   // If the limit pointer was zero to begin with, the collection is
1803   // empty; skip all this. Set the branch weight assuming this has the same
1804   // probability of exiting the loop as any other loop exit.
1805   uint64_t EntryCount = getCurrentProfileCount();
1806   Builder.CreateCondBr(
1807       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1808       LoopInitBB,
1809       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1810 
1811   // Otherwise, initialize the loop.
1812   EmitBlock(LoopInitBB);
1813 
1814   // Save the initial mutations value.  This is the value at an
1815   // address that was written into the state object by
1816   // countByEnumeratingWithState:objects:count:.
1817   Address StateMutationsPtrPtr =
1818       Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1819   llvm::Value *StateMutationsPtr
1820     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1821 
1822   llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1823   llvm::Value *initialMutations =
1824     Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1825                               getPointerAlign(), "forcoll.initial-mutations");
1826 
1827   // Start looping.  This is the point we return to whenever we have a
1828   // fresh, non-empty batch of objects.
1829   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1830   EmitBlock(LoopBodyBB);
1831 
1832   // The current index into the buffer.
1833   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1834   index->addIncoming(zero, LoopInitBB);
1835 
1836   // The current buffer size.
1837   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1838   count->addIncoming(initialBufferLimit, LoopInitBB);
1839 
1840   incrementProfileCounter(&S);
1841 
1842   // Check whether the mutations value has changed from where it was
1843   // at start.  StateMutationsPtr should actually be invariant between
1844   // refreshes.
1845   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1846   llvm::Value *currentMutations
1847     = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1848                                 getPointerAlign(), "statemutations");
1849 
1850   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1851   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1852 
1853   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1854                        WasNotMutatedBB, WasMutatedBB);
1855 
1856   // If so, call the enumeration-mutation function.
1857   EmitBlock(WasMutatedBB);
1858   llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType());
1859   llvm::Value *V =
1860     Builder.CreateBitCast(Collection, ObjCIdType);
1861   CallArgList Args2;
1862   Args2.add(RValue::get(V), getContext().getObjCIdType());
1863   // FIXME: We shouldn't need to get the function info here, the runtime already
1864   // should have computed it to build the function.
1865   EmitCall(
1866           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1867            EnumerationMutationFn, ReturnValueSlot(), Args2);
1868 
1869   // Otherwise, or if the mutation function returns, just continue.
1870   EmitBlock(WasNotMutatedBB);
1871 
1872   // Initialize the element variable.
1873   RunCleanupsScope elementVariableScope(*this);
1874   bool elementIsVariable;
1875   LValue elementLValue;
1876   QualType elementType;
1877   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1878     // Initialize the variable, in case it's a __block variable or something.
1879     EmitAutoVarInit(variable);
1880 
1881     const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1882     DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1883                         D->getType(), VK_LValue, SourceLocation());
1884     elementLValue = EmitLValue(&tempDRE);
1885     elementType = D->getType();
1886     elementIsVariable = true;
1887 
1888     if (D->isARCPseudoStrong())
1889       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1890   } else {
1891     elementLValue = LValue(); // suppress warning
1892     elementType = cast<Expr>(S.getElement())->getType();
1893     elementIsVariable = false;
1894   }
1895   llvm::Type *convertedElementType = ConvertType(elementType);
1896 
1897   // Fetch the buffer out of the enumeration state.
1898   // TODO: this pointer should actually be invariant between
1899   // refreshes, which would help us do certain loop optimizations.
1900   Address StateItemsPtr =
1901       Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1902   llvm::Value *EnumStateItems =
1903     Builder.CreateLoad(StateItemsPtr, "stateitems");
1904 
1905   // Fetch the value at the current index from the buffer.
1906   llvm::Value *CurrentItemPtr =
1907     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1908   llvm::Value *CurrentItem =
1909     Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1910 
1911   if (SanOpts.has(SanitizerKind::ObjCCast)) {
1912     // Before using an item from the collection, check that the implicit cast
1913     // from id to the element type is valid. This is done with instrumentation
1914     // roughly corresponding to:
1915     //
1916     //   if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1917     const ObjCObjectPointerType *ObjPtrTy =
1918         elementType->getAsObjCInterfacePointerType();
1919     const ObjCInterfaceType *InterfaceTy =
1920         ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1921     if (InterfaceTy) {
1922       SanitizerScope SanScope(this);
1923       auto &C = CGM.getContext();
1924       assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1925       Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1926       CallArgList IsKindOfClassArgs;
1927       llvm::Value *Cls =
1928           CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1929       IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1930       llvm::Value *IsClass =
1931           CGM.getObjCRuntime()
1932               .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1933                                    IsKindOfClassSel, CurrentItem,
1934                                    IsKindOfClassArgs)
1935               .getScalarVal();
1936       llvm::Constant *StaticData[] = {
1937           EmitCheckSourceLocation(S.getBeginLoc()),
1938           EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1939       EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1940                 SanitizerHandler::InvalidObjCCast,
1941                 ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1942     }
1943   }
1944 
1945   // Cast that value to the right type.
1946   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1947                                       "currentitem");
1948 
1949   // Make sure we have an l-value.  Yes, this gets evaluated every
1950   // time through the loop.
1951   if (!elementIsVariable) {
1952     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1953     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1954   } else {
1955     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1956                            /*isInit*/ true);
1957   }
1958 
1959   // If we do have an element variable, this assignment is the end of
1960   // its initialization.
1961   if (elementIsVariable)
1962     EmitAutoVarCleanups(variable);
1963 
1964   // Perform the loop body, setting up break and continue labels.
1965   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1966   {
1967     RunCleanupsScope Scope(*this);
1968     EmitStmt(S.getBody());
1969   }
1970   BreakContinueStack.pop_back();
1971 
1972   // Destroy the element variable now.
1973   elementVariableScope.ForceCleanup();
1974 
1975   // Check whether there are more elements.
1976   EmitBlock(AfterBody.getBlock());
1977 
1978   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1979 
1980   // First we check in the local buffer.
1981   llvm::Value *indexPlusOne =
1982       Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1983 
1984   // If we haven't overrun the buffer yet, we can continue.
1985   // Set the branch weights based on the simplifying assumption that this is
1986   // like a while-loop, i.e., ignoring that the false branch fetches more
1987   // elements and then returns to the loop.
1988   Builder.CreateCondBr(
1989       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1990       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1991 
1992   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1993   count->addIncoming(count, AfterBody.getBlock());
1994 
1995   // Otherwise, we have to fetch more elements.
1996   EmitBlock(FetchMoreBB);
1997 
1998   CountRV =
1999       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2000                                                getContext().getNSUIntegerType(),
2001                                                FastEnumSel, Collection, Args);
2002 
2003   // If we got a zero count, we're done.
2004   llvm::Value *refetchCount = CountRV.getScalarVal();
2005 
2006   // (note that the message send might split FetchMoreBB)
2007   index->addIncoming(zero, Builder.GetInsertBlock());
2008   count->addIncoming(refetchCount, Builder.GetInsertBlock());
2009 
2010   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2011                        EmptyBB, LoopBodyBB);
2012 
2013   // No more elements.
2014   EmitBlock(EmptyBB);
2015 
2016   if (!elementIsVariable) {
2017     // If the element was not a declaration, set it to be null.
2018 
2019     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2020     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2021     EmitStoreThroughLValue(RValue::get(null), elementLValue);
2022   }
2023 
2024   if (DI)
2025     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2026 
2027   ForScope.ForceCleanup();
2028   EmitBlock(LoopEnd.getBlock());
2029 }
2030 
EmitObjCAtTryStmt(const ObjCAtTryStmt & S)2031 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2032   CGM.getObjCRuntime().EmitTryStmt(*this, S);
2033 }
2034 
EmitObjCAtThrowStmt(const ObjCAtThrowStmt & S)2035 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2036   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2037 }
2038 
EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt & S)2039 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2040                                               const ObjCAtSynchronizedStmt &S) {
2041   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2042 }
2043 
2044 namespace {
2045   struct CallObjCRelease final : EHScopeStack::Cleanup {
CallObjCRelease__anon82b769870411::CallObjCRelease2046     CallObjCRelease(llvm::Value *object) : object(object) {}
2047     llvm::Value *object;
2048 
Emit__anon82b769870411::CallObjCRelease2049     void Emit(CodeGenFunction &CGF, Flags flags) override {
2050       // Releases at the end of the full-expression are imprecise.
2051       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2052     }
2053   };
2054 }
2055 
2056 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
2057 /// release at the end of the full-expression.
EmitObjCConsumeObject(QualType type,llvm::Value * object)2058 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2059                                                     llvm::Value *object) {
2060   // If we're in a conditional branch, we need to make the cleanup
2061   // conditional.
2062   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2063   return object;
2064 }
2065 
EmitObjCExtendObjectLifetime(QualType type,llvm::Value * value)2066 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2067                                                            llvm::Value *value) {
2068   return EmitARCRetainAutorelease(type, value);
2069 }
2070 
2071 /// Given a number of pointers, inform the optimizer that they're
2072 /// being intrinsically used up until this point in the program.
EmitARCIntrinsicUse(ArrayRef<llvm::Value * > values)2073 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2074   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2075   if (!fn)
2076     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2077 
2078   // This isn't really a "runtime" function, but as an intrinsic it
2079   // doesn't really matter as long as we align things up.
2080   EmitNounwindRuntimeCall(fn, values);
2081 }
2082 
2083 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2084 /// that has operand bundle "clang.arc.attachedcall".
EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value * > values)2085 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) {
2086   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2087   if (!fn)
2088     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2089   EmitNounwindRuntimeCall(fn, values);
2090 }
2091 
setARCRuntimeFunctionLinkage(CodeGenModule & CGM,llvm::Value * RTF)2092 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2093   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2094     // If the target runtime doesn't naturally support ARC, emit weak
2095     // references to the runtime support library.  We don't really
2096     // permit this to fail, but we need a particular relocation style.
2097     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2098         !CGM.getTriple().isOSBinFormatCOFF()) {
2099       F->setLinkage(llvm::Function::ExternalWeakLinkage);
2100     }
2101   }
2102 }
2103 
setARCRuntimeFunctionLinkage(CodeGenModule & CGM,llvm::FunctionCallee RTF)2104 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2105                                          llvm::FunctionCallee RTF) {
2106   setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2107 }
2108 
2109 /// Perform an operation having the signature
2110 ///   i8* (i8*)
2111 /// where a null input causes a no-op and returns null.
emitARCValueOperation(CodeGenFunction & CGF,llvm::Value * value,llvm::Type * returnType,llvm::Function * & fn,llvm::Intrinsic::ID IntID,llvm::CallInst::TailCallKind tailKind=llvm::CallInst::TCK_None)2112 static llvm::Value *emitARCValueOperation(
2113     CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2114     llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2115     llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2116   if (isa<llvm::ConstantPointerNull>(value))
2117     return value;
2118 
2119   if (!fn) {
2120     fn = CGF.CGM.getIntrinsic(IntID);
2121     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2122   }
2123 
2124   // Cast the argument to 'id'.
2125   llvm::Type *origType = returnType ? returnType : value->getType();
2126   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2127 
2128   // Call the function.
2129   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2130   call->setTailCallKind(tailKind);
2131 
2132   // Cast the result back to the original type.
2133   return CGF.Builder.CreateBitCast(call, origType);
2134 }
2135 
2136 /// Perform an operation having the following signature:
2137 ///   i8* (i8**)
emitARCLoadOperation(CodeGenFunction & CGF,Address addr,llvm::Function * & fn,llvm::Intrinsic::ID IntID)2138 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2139                                          llvm::Function *&fn,
2140                                          llvm::Intrinsic::ID IntID) {
2141   if (!fn) {
2142     fn = CGF.CGM.getIntrinsic(IntID);
2143     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2144   }
2145 
2146   // Cast the argument to 'id*'.
2147   llvm::Type *origType = addr.getElementType();
2148   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2149 
2150   // Call the function.
2151   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2152 
2153   // Cast the result back to a dereference of the original type.
2154   if (origType != CGF.Int8PtrTy)
2155     result = CGF.Builder.CreateBitCast(result, origType);
2156 
2157   return result;
2158 }
2159 
2160 /// Perform an operation having the following signature:
2161 ///   i8* (i8**, i8*)
emitARCStoreOperation(CodeGenFunction & CGF,Address addr,llvm::Value * value,llvm::Function * & fn,llvm::Intrinsic::ID IntID,bool ignored)2162 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2163                                           llvm::Value *value,
2164                                           llvm::Function *&fn,
2165                                           llvm::Intrinsic::ID IntID,
2166                                           bool ignored) {
2167   assert(addr.getElementType() == value->getType());
2168 
2169   if (!fn) {
2170     fn = CGF.CGM.getIntrinsic(IntID);
2171     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2172   }
2173 
2174   llvm::Type *origType = value->getType();
2175 
2176   llvm::Value *args[] = {
2177     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2178     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2179   };
2180   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2181 
2182   if (ignored) return nullptr;
2183 
2184   return CGF.Builder.CreateBitCast(result, origType);
2185 }
2186 
2187 /// Perform an operation having the following signature:
2188 ///   void (i8**, i8**)
emitARCCopyOperation(CodeGenFunction & CGF,Address dst,Address src,llvm::Function * & fn,llvm::Intrinsic::ID IntID)2189 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2190                                  llvm::Function *&fn,
2191                                  llvm::Intrinsic::ID IntID) {
2192   assert(dst.getType() == src.getType());
2193 
2194   if (!fn) {
2195     fn = CGF.CGM.getIntrinsic(IntID);
2196     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2197   }
2198 
2199   llvm::Value *args[] = {
2200     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2201     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2202   };
2203   CGF.EmitNounwindRuntimeCall(fn, args);
2204 }
2205 
2206 /// Perform an operation having the signature
2207 ///   i8* (i8*)
2208 /// where a null input causes a no-op and returns null.
emitObjCValueOperation(CodeGenFunction & CGF,llvm::Value * value,llvm::Type * returnType,llvm::FunctionCallee & fn,StringRef fnName)2209 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2210                                            llvm::Value *value,
2211                                            llvm::Type *returnType,
2212                                            llvm::FunctionCallee &fn,
2213                                            StringRef fnName) {
2214   if (isa<llvm::ConstantPointerNull>(value))
2215     return value;
2216 
2217   if (!fn) {
2218     llvm::FunctionType *fnType =
2219       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2220     fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2221 
2222     // We have Native ARC, so set nonlazybind attribute for performance
2223     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2224       if (fnName == "objc_retain")
2225         f->addFnAttr(llvm::Attribute::NonLazyBind);
2226   }
2227 
2228   // Cast the argument to 'id'.
2229   llvm::Type *origType = returnType ? returnType : value->getType();
2230   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2231 
2232   // Call the function.
2233   llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2234 
2235   // Mark calls to objc_autorelease as tail on the assumption that methods
2236   // overriding autorelease do not touch anything on the stack.
2237   if (fnName == "objc_autorelease")
2238     if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2239       Call->setTailCall();
2240 
2241   // Cast the result back to the original type.
2242   return CGF.Builder.CreateBitCast(Inst, origType);
2243 }
2244 
2245 /// Produce the code to do a retain.  Based on the type, calls one of:
2246 ///   call i8* \@objc_retain(i8* %value)
2247 ///   call i8* \@objc_retainBlock(i8* %value)
EmitARCRetain(QualType type,llvm::Value * value)2248 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2249   if (type->isBlockPointerType())
2250     return EmitARCRetainBlock(value, /*mandatory*/ false);
2251   else
2252     return EmitARCRetainNonBlock(value);
2253 }
2254 
2255 /// Retain the given object, with normal retain semantics.
2256 ///   call i8* \@objc_retain(i8* %value)
EmitARCRetainNonBlock(llvm::Value * value)2257 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2258   return emitARCValueOperation(*this, value, nullptr,
2259                                CGM.getObjCEntrypoints().objc_retain,
2260                                llvm::Intrinsic::objc_retain);
2261 }
2262 
2263 /// Retain the given block, with _Block_copy semantics.
2264 ///   call i8* \@objc_retainBlock(i8* %value)
2265 ///
2266 /// \param mandatory - If false, emit the call with metadata
2267 /// indicating that it's okay for the optimizer to eliminate this call
2268 /// if it can prove that the block never escapes except down the stack.
EmitARCRetainBlock(llvm::Value * value,bool mandatory)2269 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2270                                                  bool mandatory) {
2271   llvm::Value *result
2272     = emitARCValueOperation(*this, value, nullptr,
2273                             CGM.getObjCEntrypoints().objc_retainBlock,
2274                             llvm::Intrinsic::objc_retainBlock);
2275 
2276   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2277   // tell the optimizer that it doesn't need to do this copy if the
2278   // block doesn't escape, where being passed as an argument doesn't
2279   // count as escaping.
2280   if (!mandatory && isa<llvm::Instruction>(result)) {
2281     llvm::CallInst *call
2282       = cast<llvm::CallInst>(result->stripPointerCasts());
2283     assert(call->getCalledOperand() ==
2284            CGM.getObjCEntrypoints().objc_retainBlock);
2285 
2286     call->setMetadata("clang.arc.copy_on_escape",
2287                       llvm::MDNode::get(Builder.getContext(), None));
2288   }
2289 
2290   return result;
2291 }
2292 
emitAutoreleasedReturnValueMarker(CodeGenFunction & CGF)2293 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2294   // Fetch the void(void) inline asm which marks that we're going to
2295   // do something with the autoreleased return value.
2296   llvm::InlineAsm *&marker
2297     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2298   if (!marker) {
2299     StringRef assembly
2300       = CGF.CGM.getTargetCodeGenInfo()
2301            .getARCRetainAutoreleasedReturnValueMarker();
2302 
2303     // If we have an empty assembly string, there's nothing to do.
2304     if (assembly.empty()) {
2305 
2306     // Otherwise, at -O0, build an inline asm that we're going to call
2307     // in a moment.
2308     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2309       llvm::FunctionType *type =
2310         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2311 
2312       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2313 
2314     // If we're at -O1 and above, we don't want to litter the code
2315     // with this marker yet, so leave a breadcrumb for the ARC
2316     // optimizer to pick up.
2317     } else {
2318       const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2319       if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) {
2320         auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2321         CGF.CGM.getModule().addModuleFlag(llvm::Module::Error,
2322                                           retainRVMarkerKey, str);
2323       }
2324     }
2325   }
2326 
2327   // Call the marker asm if we made one, which we do only at -O0.
2328   if (marker)
2329     CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2330 }
2331 
emitOptimizedARCReturnCall(llvm::Value * value,bool IsRetainRV,CodeGenFunction & CGF)2332 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2333                                                bool IsRetainRV,
2334                                                CodeGenFunction &CGF) {
2335   emitAutoreleasedReturnValueMarker(CGF);
2336 
2337   // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2338   // retainRV or claimRV calls in the IR. We currently do this only when the
2339   // optimization level isn't -O0 since global-isel, which is currently run at
2340   // -O0, doesn't know about the operand bundle.
2341 
2342   // FIXME: Do this when the target isn't aarch64.
2343   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2344       CGF.CGM.getTarget().getTriple().isAArch64()) {
2345     llvm::Value *bundleArgs[] = {llvm::ConstantInt::get(
2346         CGF.Int64Ty,
2347         llvm::objcarc::getAttachedCallOperandBundleEnum(IsRetainRV))};
2348     llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2349     auto *oldCall = cast<llvm::CallBase>(value);
2350     llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2351         oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall);
2352     newCall->copyMetadata(*oldCall);
2353     oldCall->replaceAllUsesWith(newCall);
2354     oldCall->eraseFromParent();
2355     CGF.EmitARCNoopIntrinsicUse(newCall);
2356     return newCall;
2357   }
2358 
2359   bool isNoTail =
2360       CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2361   llvm::CallInst::TailCallKind tailKind =
2362       isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2363   ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2364   llvm::Function *&EP = IsRetainRV
2365                             ? EPs.objc_retainAutoreleasedReturnValue
2366                             : EPs.objc_unsafeClaimAutoreleasedReturnValue;
2367   llvm::Intrinsic::ID IID =
2368       IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2369                  : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2370   return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind);
2371 }
2372 
2373 /// Retain the given object which is the result of a function call.
2374 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2375 ///
2376 /// Yes, this function name is one character away from a different
2377 /// call with completely different semantics.
2378 llvm::Value *
EmitARCRetainAutoreleasedReturnValue(llvm::Value * value)2379 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2380   return emitOptimizedARCReturnCall(value, true, *this);
2381 }
2382 
2383 /// Claim a possibly-autoreleased return value at +0.  This is only
2384 /// valid to do in contexts which do not rely on the retain to keep
2385 /// the object valid for all of its uses; for example, when
2386 /// the value is ignored, or when it is being assigned to an
2387 /// __unsafe_unretained variable.
2388 ///
2389 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2390 llvm::Value *
EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value * value)2391 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2392   return emitOptimizedARCReturnCall(value, false, *this);
2393 }
2394 
2395 /// Release the given object.
2396 ///   call void \@objc_release(i8* %value)
EmitARCRelease(llvm::Value * value,ARCPreciseLifetime_t precise)2397 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2398                                      ARCPreciseLifetime_t precise) {
2399   if (isa<llvm::ConstantPointerNull>(value)) return;
2400 
2401   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2402   if (!fn) {
2403     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
2404     setARCRuntimeFunctionLinkage(CGM, fn);
2405   }
2406 
2407   // Cast the argument to 'id'.
2408   value = Builder.CreateBitCast(value, Int8PtrTy);
2409 
2410   // Call objc_release.
2411   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2412 
2413   if (precise == ARCImpreciseLifetime) {
2414     call->setMetadata("clang.imprecise_release",
2415                       llvm::MDNode::get(Builder.getContext(), None));
2416   }
2417 }
2418 
2419 /// Destroy a __strong variable.
2420 ///
2421 /// At -O0, emit a call to store 'null' into the address;
2422 /// instrumenting tools prefer this because the address is exposed,
2423 /// but it's relatively cumbersome to optimize.
2424 ///
2425 /// At -O1 and above, just load and call objc_release.
2426 ///
2427 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
EmitARCDestroyStrong(Address addr,ARCPreciseLifetime_t precise)2428 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2429                                            ARCPreciseLifetime_t precise) {
2430   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2431     llvm::Value *null = getNullForVariable(addr);
2432     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2433     return;
2434   }
2435 
2436   llvm::Value *value = Builder.CreateLoad(addr);
2437   EmitARCRelease(value, precise);
2438 }
2439 
2440 /// Store into a strong object.  Always calls this:
2441 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
EmitARCStoreStrongCall(Address addr,llvm::Value * value,bool ignored)2442 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2443                                                      llvm::Value *value,
2444                                                      bool ignored) {
2445   assert(addr.getElementType() == value->getType());
2446 
2447   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2448   if (!fn) {
2449     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
2450     setARCRuntimeFunctionLinkage(CGM, fn);
2451   }
2452 
2453   llvm::Value *args[] = {
2454     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2455     Builder.CreateBitCast(value, Int8PtrTy)
2456   };
2457   EmitNounwindRuntimeCall(fn, args);
2458 
2459   if (ignored) return nullptr;
2460   return value;
2461 }
2462 
2463 /// Store into a strong object.  Sometimes calls this:
2464 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2465 /// Other times, breaks it down into components.
EmitARCStoreStrong(LValue dst,llvm::Value * newValue,bool ignored)2466 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2467                                                  llvm::Value *newValue,
2468                                                  bool ignored) {
2469   QualType type = dst.getType();
2470   bool isBlock = type->isBlockPointerType();
2471 
2472   // Use a store barrier at -O0 unless this is a block type or the
2473   // lvalue is inadequately aligned.
2474   if (shouldUseFusedARCCalls() &&
2475       !isBlock &&
2476       (dst.getAlignment().isZero() ||
2477        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2478     return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2479   }
2480 
2481   // Otherwise, split it out.
2482 
2483   // Retain the new value.
2484   newValue = EmitARCRetain(type, newValue);
2485 
2486   // Read the old value.
2487   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2488 
2489   // Store.  We do this before the release so that any deallocs won't
2490   // see the old value.
2491   EmitStoreOfScalar(newValue, dst);
2492 
2493   // Finally, release the old value.
2494   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2495 
2496   return newValue;
2497 }
2498 
2499 /// Autorelease the given object.
2500 ///   call i8* \@objc_autorelease(i8* %value)
EmitARCAutorelease(llvm::Value * value)2501 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2502   return emitARCValueOperation(*this, value, nullptr,
2503                                CGM.getObjCEntrypoints().objc_autorelease,
2504                                llvm::Intrinsic::objc_autorelease);
2505 }
2506 
2507 /// Autorelease the given object.
2508 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2509 llvm::Value *
EmitARCAutoreleaseReturnValue(llvm::Value * value)2510 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2511   return emitARCValueOperation(*this, value, nullptr,
2512                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2513                                llvm::Intrinsic::objc_autoreleaseReturnValue,
2514                                llvm::CallInst::TCK_Tail);
2515 }
2516 
2517 /// Do a fused retain/autorelease of the given object.
2518 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2519 llvm::Value *
EmitARCRetainAutoreleaseReturnValue(llvm::Value * value)2520 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2521   return emitARCValueOperation(*this, value, nullptr,
2522                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2523                              llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2524                                llvm::CallInst::TCK_Tail);
2525 }
2526 
2527 /// Do a fused retain/autorelease of the given object.
2528 ///   call i8* \@objc_retainAutorelease(i8* %value)
2529 /// or
2530 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2531 ///   call i8* \@objc_autorelease(i8* %retain)
EmitARCRetainAutorelease(QualType type,llvm::Value * value)2532 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2533                                                        llvm::Value *value) {
2534   if (!type->isBlockPointerType())
2535     return EmitARCRetainAutoreleaseNonBlock(value);
2536 
2537   if (isa<llvm::ConstantPointerNull>(value)) return value;
2538 
2539   llvm::Type *origType = value->getType();
2540   value = Builder.CreateBitCast(value, Int8PtrTy);
2541   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2542   value = EmitARCAutorelease(value);
2543   return Builder.CreateBitCast(value, origType);
2544 }
2545 
2546 /// Do a fused retain/autorelease of the given object.
2547 ///   call i8* \@objc_retainAutorelease(i8* %value)
2548 llvm::Value *
EmitARCRetainAutoreleaseNonBlock(llvm::Value * value)2549 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2550   return emitARCValueOperation(*this, value, nullptr,
2551                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2552                                llvm::Intrinsic::objc_retainAutorelease);
2553 }
2554 
2555 /// i8* \@objc_loadWeak(i8** %addr)
2556 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
EmitARCLoadWeak(Address addr)2557 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2558   return emitARCLoadOperation(*this, addr,
2559                               CGM.getObjCEntrypoints().objc_loadWeak,
2560                               llvm::Intrinsic::objc_loadWeak);
2561 }
2562 
2563 /// i8* \@objc_loadWeakRetained(i8** %addr)
EmitARCLoadWeakRetained(Address addr)2564 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2565   return emitARCLoadOperation(*this, addr,
2566                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2567                               llvm::Intrinsic::objc_loadWeakRetained);
2568 }
2569 
2570 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2571 /// Returns %value.
EmitARCStoreWeak(Address addr,llvm::Value * value,bool ignored)2572 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2573                                                llvm::Value *value,
2574                                                bool ignored) {
2575   return emitARCStoreOperation(*this, addr, value,
2576                                CGM.getObjCEntrypoints().objc_storeWeak,
2577                                llvm::Intrinsic::objc_storeWeak, ignored);
2578 }
2579 
2580 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2581 /// Returns %value.  %addr is known to not have a current weak entry.
2582 /// Essentially equivalent to:
2583 ///   *addr = nil; objc_storeWeak(addr, value);
EmitARCInitWeak(Address addr,llvm::Value * value)2584 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2585   // If we're initializing to null, just write null to memory; no need
2586   // to get the runtime involved.  But don't do this if optimization
2587   // is enabled, because accounting for this would make the optimizer
2588   // much more complicated.
2589   if (isa<llvm::ConstantPointerNull>(value) &&
2590       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2591     Builder.CreateStore(value, addr);
2592     return;
2593   }
2594 
2595   emitARCStoreOperation(*this, addr, value,
2596                         CGM.getObjCEntrypoints().objc_initWeak,
2597                         llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2598 }
2599 
2600 /// void \@objc_destroyWeak(i8** %addr)
2601 /// Essentially objc_storeWeak(addr, nil).
EmitARCDestroyWeak(Address addr)2602 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2603   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2604   if (!fn) {
2605     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
2606     setARCRuntimeFunctionLinkage(CGM, fn);
2607   }
2608 
2609   // Cast the argument to 'id*'.
2610   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2611 
2612   EmitNounwindRuntimeCall(fn, addr.getPointer());
2613 }
2614 
2615 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2616 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2617 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
EmitARCMoveWeak(Address dst,Address src)2618 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2619   emitARCCopyOperation(*this, dst, src,
2620                        CGM.getObjCEntrypoints().objc_moveWeak,
2621                        llvm::Intrinsic::objc_moveWeak);
2622 }
2623 
2624 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2625 /// Disregards the current value in %dest.  Essentially
2626 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
EmitARCCopyWeak(Address dst,Address src)2627 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2628   emitARCCopyOperation(*this, dst, src,
2629                        CGM.getObjCEntrypoints().objc_copyWeak,
2630                        llvm::Intrinsic::objc_copyWeak);
2631 }
2632 
emitARCCopyAssignWeak(QualType Ty,Address DstAddr,Address SrcAddr)2633 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2634                                             Address SrcAddr) {
2635   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2636   Object = EmitObjCConsumeObject(Ty, Object);
2637   EmitARCStoreWeak(DstAddr, Object, false);
2638 }
2639 
emitARCMoveAssignWeak(QualType Ty,Address DstAddr,Address SrcAddr)2640 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2641                                             Address SrcAddr) {
2642   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2643   Object = EmitObjCConsumeObject(Ty, Object);
2644   EmitARCStoreWeak(DstAddr, Object, false);
2645   EmitARCDestroyWeak(SrcAddr);
2646 }
2647 
2648 /// Produce the code to do a objc_autoreleasepool_push.
2649 ///   call i8* \@objc_autoreleasePoolPush(void)
EmitObjCAutoreleasePoolPush()2650 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2651   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2652   if (!fn) {
2653     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
2654     setARCRuntimeFunctionLinkage(CGM, fn);
2655   }
2656 
2657   return EmitNounwindRuntimeCall(fn);
2658 }
2659 
2660 /// Produce the code to do a primitive release.
2661 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
EmitObjCAutoreleasePoolPop(llvm::Value * value)2662 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2663   assert(value->getType() == Int8PtrTy);
2664 
2665   if (getInvokeDest()) {
2666     // Call the runtime method not the intrinsic if we are handling exceptions
2667     llvm::FunctionCallee &fn =
2668         CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2669     if (!fn) {
2670       llvm::FunctionType *fnType =
2671         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2672       fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2673       setARCRuntimeFunctionLinkage(CGM, fn);
2674     }
2675 
2676     // objc_autoreleasePoolPop can throw.
2677     EmitRuntimeCallOrInvoke(fn, value);
2678   } else {
2679     llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2680     if (!fn) {
2681       fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
2682       setARCRuntimeFunctionLinkage(CGM, fn);
2683     }
2684 
2685     EmitRuntimeCall(fn, value);
2686   }
2687 }
2688 
2689 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2690 /// Which is: [[NSAutoreleasePool alloc] init];
2691 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2692 /// init is declared as: - (id) init; in its NSObject super class.
2693 ///
EmitObjCMRRAutoreleasePoolPush()2694 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2695   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2696   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2697   // [NSAutoreleasePool alloc]
2698   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2699   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2700   CallArgList Args;
2701   RValue AllocRV =
2702     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2703                                 getContext().getObjCIdType(),
2704                                 AllocSel, Receiver, Args);
2705 
2706   // [Receiver init]
2707   Receiver = AllocRV.getScalarVal();
2708   II = &CGM.getContext().Idents.get("init");
2709   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2710   RValue InitRV =
2711     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2712                                 getContext().getObjCIdType(),
2713                                 InitSel, Receiver, Args);
2714   return InitRV.getScalarVal();
2715 }
2716 
2717 /// Allocate the given objc object.
2718 ///   call i8* \@objc_alloc(i8* %value)
EmitObjCAlloc(llvm::Value * value,llvm::Type * resultType)2719 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2720                                             llvm::Type *resultType) {
2721   return emitObjCValueOperation(*this, value, resultType,
2722                                 CGM.getObjCEntrypoints().objc_alloc,
2723                                 "objc_alloc");
2724 }
2725 
2726 /// Allocate the given objc object.
2727 ///   call i8* \@objc_allocWithZone(i8* %value)
EmitObjCAllocWithZone(llvm::Value * value,llvm::Type * resultType)2728 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2729                                                     llvm::Type *resultType) {
2730   return emitObjCValueOperation(*this, value, resultType,
2731                                 CGM.getObjCEntrypoints().objc_allocWithZone,
2732                                 "objc_allocWithZone");
2733 }
2734 
EmitObjCAllocInit(llvm::Value * value,llvm::Type * resultType)2735 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2736                                                 llvm::Type *resultType) {
2737   return emitObjCValueOperation(*this, value, resultType,
2738                                 CGM.getObjCEntrypoints().objc_alloc_init,
2739                                 "objc_alloc_init");
2740 }
2741 
2742 /// Produce the code to do a primitive release.
2743 /// [tmp drain];
EmitObjCMRRAutoreleasePoolPop(llvm::Value * Arg)2744 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2745   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2746   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2747   CallArgList Args;
2748   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2749                               getContext().VoidTy, DrainSel, Arg, Args);
2750 }
2751 
destroyARCStrongPrecise(CodeGenFunction & CGF,Address addr,QualType type)2752 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2753                                               Address addr,
2754                                               QualType type) {
2755   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2756 }
2757 
destroyARCStrongImprecise(CodeGenFunction & CGF,Address addr,QualType type)2758 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2759                                                 Address addr,
2760                                                 QualType type) {
2761   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2762 }
2763 
destroyARCWeak(CodeGenFunction & CGF,Address addr,QualType type)2764 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2765                                      Address addr,
2766                                      QualType type) {
2767   CGF.EmitARCDestroyWeak(addr);
2768 }
2769 
emitARCIntrinsicUse(CodeGenFunction & CGF,Address addr,QualType type)2770 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2771                                           QualType type) {
2772   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2773   CGF.EmitARCIntrinsicUse(value);
2774 }
2775 
2776 /// Autorelease the given object.
2777 ///   call i8* \@objc_autorelease(i8* %value)
EmitObjCAutorelease(llvm::Value * value,llvm::Type * returnType)2778 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2779                                                   llvm::Type *returnType) {
2780   return emitObjCValueOperation(
2781       *this, value, returnType,
2782       CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2783       "objc_autorelease");
2784 }
2785 
2786 /// Retain the given object, with normal retain semantics.
2787 ///   call i8* \@objc_retain(i8* %value)
EmitObjCRetainNonBlock(llvm::Value * value,llvm::Type * returnType)2788 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2789                                                      llvm::Type *returnType) {
2790   return emitObjCValueOperation(
2791       *this, value, returnType,
2792       CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2793 }
2794 
2795 /// Release the given object.
2796 ///   call void \@objc_release(i8* %value)
EmitObjCRelease(llvm::Value * value,ARCPreciseLifetime_t precise)2797 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2798                                       ARCPreciseLifetime_t precise) {
2799   if (isa<llvm::ConstantPointerNull>(value)) return;
2800 
2801   llvm::FunctionCallee &fn =
2802       CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2803   if (!fn) {
2804     llvm::FunctionType *fnType =
2805         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2806     fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2807     setARCRuntimeFunctionLinkage(CGM, fn);
2808     // We have Native ARC, so set nonlazybind attribute for performance
2809     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2810       f->addFnAttr(llvm::Attribute::NonLazyBind);
2811   }
2812 
2813   // Cast the argument to 'id'.
2814   value = Builder.CreateBitCast(value, Int8PtrTy);
2815 
2816   // Call objc_release.
2817   llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2818 
2819   if (precise == ARCImpreciseLifetime) {
2820     call->setMetadata("clang.imprecise_release",
2821                       llvm::MDNode::get(Builder.getContext(), None));
2822   }
2823 }
2824 
2825 namespace {
2826   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2827     llvm::Value *Token;
2828 
CallObjCAutoreleasePoolObject__anon82b769870511::CallObjCAutoreleasePoolObject2829     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2830 
Emit__anon82b769870511::CallObjCAutoreleasePoolObject2831     void Emit(CodeGenFunction &CGF, Flags flags) override {
2832       CGF.EmitObjCAutoreleasePoolPop(Token);
2833     }
2834   };
2835   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2836     llvm::Value *Token;
2837 
CallObjCMRRAutoreleasePoolObject__anon82b769870511::CallObjCMRRAutoreleasePoolObject2838     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2839 
Emit__anon82b769870511::CallObjCMRRAutoreleasePoolObject2840     void Emit(CodeGenFunction &CGF, Flags flags) override {
2841       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2842     }
2843   };
2844 }
2845 
EmitObjCAutoreleasePoolCleanup(llvm::Value * Ptr)2846 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2847   if (CGM.getLangOpts().ObjCAutoRefCount)
2848     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2849   else
2850     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2851 }
2852 
shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime)2853 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2854   switch (lifetime) {
2855   case Qualifiers::OCL_None:
2856   case Qualifiers::OCL_ExplicitNone:
2857   case Qualifiers::OCL_Strong:
2858   case Qualifiers::OCL_Autoreleasing:
2859     return true;
2860 
2861   case Qualifiers::OCL_Weak:
2862     return false;
2863   }
2864 
2865   llvm_unreachable("impossible lifetime!");
2866 }
2867 
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)2868 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2869                                                   LValue lvalue,
2870                                                   QualType type) {
2871   llvm::Value *result;
2872   bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2873   if (shouldRetain) {
2874     result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2875   } else {
2876     assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2877     result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2878   }
2879   return TryEmitResult(result, !shouldRetain);
2880 }
2881 
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,const Expr * e)2882 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2883                                                   const Expr *e) {
2884   e = e->IgnoreParens();
2885   QualType type = e->getType();
2886 
2887   // If we're loading retained from a __strong xvalue, we can avoid
2888   // an extra retain/release pair by zeroing out the source of this
2889   // "move" operation.
2890   if (e->isXValue() &&
2891       !type.isConstQualified() &&
2892       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2893     // Emit the lvalue.
2894     LValue lv = CGF.EmitLValue(e);
2895 
2896     // Load the object pointer.
2897     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2898                                                SourceLocation()).getScalarVal();
2899 
2900     // Set the source pointer to NULL.
2901     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2902 
2903     return TryEmitResult(result, true);
2904   }
2905 
2906   // As a very special optimization, in ARC++, if the l-value is the
2907   // result of a non-volatile assignment, do a simple retain of the
2908   // result of the call to objc_storeWeak instead of reloading.
2909   if (CGF.getLangOpts().CPlusPlus &&
2910       !type.isVolatileQualified() &&
2911       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2912       isa<BinaryOperator>(e) &&
2913       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2914     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2915 
2916   // Try to emit code for scalar constant instead of emitting LValue and
2917   // loading it because we are not guaranteed to have an l-value. One of such
2918   // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2919   if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2920     auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2921     if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2922       return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2923                            !shouldRetainObjCLifetime(type.getObjCLifetime()));
2924   }
2925 
2926   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2927 }
2928 
2929 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2930                                          llvm::Value *value)>
2931   ValueTransform;
2932 
2933 /// Insert code immediately after a call.
2934 
2935 // FIXME: We should find a way to emit the runtime call immediately
2936 // after the call is emitted to eliminate the need for this function.
emitARCOperationAfterCall(CodeGenFunction & CGF,llvm::Value * value,ValueTransform doAfterCall,ValueTransform doFallback)2937 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2938                                               llvm::Value *value,
2939                                               ValueTransform doAfterCall,
2940                                               ValueTransform doFallback) {
2941   CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2942 
2943   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2944     // Place the retain immediately following the call.
2945     CGF.Builder.SetInsertPoint(call->getParent(),
2946                                ++llvm::BasicBlock::iterator(call));
2947     value = doAfterCall(CGF, value);
2948   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2949     // Place the retain at the beginning of the normal destination block.
2950     llvm::BasicBlock *BB = invoke->getNormalDest();
2951     CGF.Builder.SetInsertPoint(BB, BB->begin());
2952     value = doAfterCall(CGF, value);
2953 
2954   // Bitcasts can arise because of related-result returns.  Rewrite
2955   // the operand.
2956   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2957     // Change the insert point to avoid emitting the fall-back call after the
2958     // bitcast.
2959     CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator());
2960     llvm::Value *operand = bitcast->getOperand(0);
2961     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2962     bitcast->setOperand(0, operand);
2963     value = bitcast;
2964   } else {
2965     auto *phi = dyn_cast<llvm::PHINode>(value);
2966     if (phi && phi->getNumIncomingValues() == 2 &&
2967         isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) &&
2968         isa<llvm::CallBase>(phi->getIncomingValue(0))) {
2969       // Handle phi instructions that are generated when it's necessary to check
2970       // whether the receiver of a message is null.
2971       llvm::Value *inVal = phi->getIncomingValue(0);
2972       inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback);
2973       phi->setIncomingValue(0, inVal);
2974       value = phi;
2975     } else {
2976       // Generic fall-back case.
2977       // Retain using the non-block variant: we never need to do a copy
2978       // of a block that's been returned to us.
2979       value = doFallback(CGF, value);
2980     }
2981   }
2982 
2983   CGF.Builder.restoreIP(ip);
2984   return value;
2985 }
2986 
2987 /// Given that the given expression is some sort of call (which does
2988 /// not return retained), emit a retain following it.
emitARCRetainCallResult(CodeGenFunction & CGF,const Expr * e)2989 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2990                                             const Expr *e) {
2991   llvm::Value *value = CGF.EmitScalarExpr(e);
2992   return emitARCOperationAfterCall(CGF, value,
2993            [](CodeGenFunction &CGF, llvm::Value *value) {
2994              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2995            },
2996            [](CodeGenFunction &CGF, llvm::Value *value) {
2997              return CGF.EmitARCRetainNonBlock(value);
2998            });
2999 }
3000 
3001 /// Given that the given expression is some sort of call (which does
3002 /// not return retained), perform an unsafeClaim following it.
emitARCUnsafeClaimCallResult(CodeGenFunction & CGF,const Expr * e)3003 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
3004                                                  const Expr *e) {
3005   llvm::Value *value = CGF.EmitScalarExpr(e);
3006   return emitARCOperationAfterCall(CGF, value,
3007            [](CodeGenFunction &CGF, llvm::Value *value) {
3008              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
3009            },
3010            [](CodeGenFunction &CGF, llvm::Value *value) {
3011              return value;
3012            });
3013 }
3014 
EmitARCReclaimReturnedObject(const Expr * E,bool allowUnsafeClaim)3015 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
3016                                                       bool allowUnsafeClaim) {
3017   if (allowUnsafeClaim &&
3018       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3019     return emitARCUnsafeClaimCallResult(*this, E);
3020   } else {
3021     llvm::Value *value = emitARCRetainCallResult(*this, E);
3022     return EmitObjCConsumeObject(E->getType(), value);
3023   }
3024 }
3025 
3026 /// Determine whether it might be important to emit a separate
3027 /// objc_retain_block on the result of the given expression, or
3028 /// whether it's okay to just emit it in a +1 context.
shouldEmitSeparateBlockRetain(const Expr * e)3029 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3030   assert(e->getType()->isBlockPointerType());
3031   e = e->IgnoreParens();
3032 
3033   // For future goodness, emit block expressions directly in +1
3034   // contexts if we can.
3035   if (isa<BlockExpr>(e))
3036     return false;
3037 
3038   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
3039     switch (cast->getCastKind()) {
3040     // Emitting these operations in +1 contexts is goodness.
3041     case CK_LValueToRValue:
3042     case CK_ARCReclaimReturnedObject:
3043     case CK_ARCConsumeObject:
3044     case CK_ARCProduceObject:
3045       return false;
3046 
3047     // These operations preserve a block type.
3048     case CK_NoOp:
3049     case CK_BitCast:
3050       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3051 
3052     // These operations are known to be bad (or haven't been considered).
3053     case CK_AnyPointerToBlockPointerCast:
3054     default:
3055       return true;
3056     }
3057   }
3058 
3059   return true;
3060 }
3061 
3062 namespace {
3063 /// A CRTP base class for emitting expressions of retainable object
3064 /// pointer type in ARC.
3065 template <typename Impl, typename Result> class ARCExprEmitter {
3066 protected:
3067   CodeGenFunction &CGF;
asImpl()3068   Impl &asImpl() { return *static_cast<Impl*>(this); }
3069 
ARCExprEmitter(CodeGenFunction & CGF)3070   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3071 
3072 public:
3073   Result visit(const Expr *e);
3074   Result visitCastExpr(const CastExpr *e);
3075   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3076   Result visitBlockExpr(const BlockExpr *e);
3077   Result visitBinaryOperator(const BinaryOperator *e);
3078   Result visitBinAssign(const BinaryOperator *e);
3079   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3080   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3081   Result visitBinAssignWeak(const BinaryOperator *e);
3082   Result visitBinAssignStrong(const BinaryOperator *e);
3083 
3084   // Minimal implementation:
3085   //   Result visitLValueToRValue(const Expr *e)
3086   //   Result visitConsumeObject(const Expr *e)
3087   //   Result visitExtendBlockObject(const Expr *e)
3088   //   Result visitReclaimReturnedObject(const Expr *e)
3089   //   Result visitCall(const Expr *e)
3090   //   Result visitExpr(const Expr *e)
3091   //
3092   //   Result emitBitCast(Result result, llvm::Type *resultType)
3093   //   llvm::Value *getValueOfResult(Result result)
3094 };
3095 }
3096 
3097 /// Try to emit a PseudoObjectExpr under special ARC rules.
3098 ///
3099 /// This massively duplicates emitPseudoObjectRValue.
3100 template <typename Impl, typename Result>
3101 Result
visitPseudoObjectExpr(const PseudoObjectExpr * E)3102 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3103   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3104 
3105   // Find the result expression.
3106   const Expr *resultExpr = E->getResultExpr();
3107   assert(resultExpr);
3108   Result result;
3109 
3110   for (PseudoObjectExpr::const_semantics_iterator
3111          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3112     const Expr *semantic = *i;
3113 
3114     // If this semantic expression is an opaque value, bind it
3115     // to the result of its source expression.
3116     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3117       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3118       OVMA opaqueData;
3119 
3120       // If this semantic is the result of the pseudo-object
3121       // expression, try to evaluate the source as +1.
3122       if (ov == resultExpr) {
3123         assert(!OVMA::shouldBindAsLValue(ov));
3124         result = asImpl().visit(ov->getSourceExpr());
3125         opaqueData = OVMA::bind(CGF, ov,
3126                             RValue::get(asImpl().getValueOfResult(result)));
3127 
3128       // Otherwise, just bind it.
3129       } else {
3130         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3131       }
3132       opaques.push_back(opaqueData);
3133 
3134     // Otherwise, if the expression is the result, evaluate it
3135     // and remember the result.
3136     } else if (semantic == resultExpr) {
3137       result = asImpl().visit(semantic);
3138 
3139     // Otherwise, evaluate the expression in an ignored context.
3140     } else {
3141       CGF.EmitIgnoredExpr(semantic);
3142     }
3143   }
3144 
3145   // Unbind all the opaques now.
3146   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3147     opaques[i].unbind(CGF);
3148 
3149   return result;
3150 }
3151 
3152 template <typename Impl, typename Result>
visitBlockExpr(const BlockExpr * e)3153 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3154   // The default implementation just forwards the expression to visitExpr.
3155   return asImpl().visitExpr(e);
3156 }
3157 
3158 template <typename Impl, typename Result>
visitCastExpr(const CastExpr * e)3159 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3160   switch (e->getCastKind()) {
3161 
3162   // No-op casts don't change the type, so we just ignore them.
3163   case CK_NoOp:
3164     return asImpl().visit(e->getSubExpr());
3165 
3166   // These casts can change the type.
3167   case CK_CPointerToObjCPointerCast:
3168   case CK_BlockPointerToObjCPointerCast:
3169   case CK_AnyPointerToBlockPointerCast:
3170   case CK_BitCast: {
3171     llvm::Type *resultType = CGF.ConvertType(e->getType());
3172     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3173     Result result = asImpl().visit(e->getSubExpr());
3174     return asImpl().emitBitCast(result, resultType);
3175   }
3176 
3177   // Handle some casts specially.
3178   case CK_LValueToRValue:
3179     return asImpl().visitLValueToRValue(e->getSubExpr());
3180   case CK_ARCConsumeObject:
3181     return asImpl().visitConsumeObject(e->getSubExpr());
3182   case CK_ARCExtendBlockObject:
3183     return asImpl().visitExtendBlockObject(e->getSubExpr());
3184   case CK_ARCReclaimReturnedObject:
3185     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3186 
3187   // Otherwise, use the default logic.
3188   default:
3189     return asImpl().visitExpr(e);
3190   }
3191 }
3192 
3193 template <typename Impl, typename Result>
3194 Result
visitBinaryOperator(const BinaryOperator * e)3195 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3196   switch (e->getOpcode()) {
3197   case BO_Comma:
3198     CGF.EmitIgnoredExpr(e->getLHS());
3199     CGF.EnsureInsertPoint();
3200     return asImpl().visit(e->getRHS());
3201 
3202   case BO_Assign:
3203     return asImpl().visitBinAssign(e);
3204 
3205   default:
3206     return asImpl().visitExpr(e);
3207   }
3208 }
3209 
3210 template <typename Impl, typename Result>
visitBinAssign(const BinaryOperator * e)3211 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3212   switch (e->getLHS()->getType().getObjCLifetime()) {
3213   case Qualifiers::OCL_ExplicitNone:
3214     return asImpl().visitBinAssignUnsafeUnretained(e);
3215 
3216   case Qualifiers::OCL_Weak:
3217     return asImpl().visitBinAssignWeak(e);
3218 
3219   case Qualifiers::OCL_Autoreleasing:
3220     return asImpl().visitBinAssignAutoreleasing(e);
3221 
3222   case Qualifiers::OCL_Strong:
3223     return asImpl().visitBinAssignStrong(e);
3224 
3225   case Qualifiers::OCL_None:
3226     return asImpl().visitExpr(e);
3227   }
3228   llvm_unreachable("bad ObjC ownership qualifier");
3229 }
3230 
3231 /// The default rule for __unsafe_unretained emits the RHS recursively,
3232 /// stores into the unsafe variable, and propagates the result outward.
3233 template <typename Impl, typename Result>
3234 Result ARCExprEmitter<Impl,Result>::
visitBinAssignUnsafeUnretained(const BinaryOperator * e)3235                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3236   // Recursively emit the RHS.
3237   // For __block safety, do this before emitting the LHS.
3238   Result result = asImpl().visit(e->getRHS());
3239 
3240   // Perform the store.
3241   LValue lvalue =
3242     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3243   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3244                              lvalue);
3245 
3246   return result;
3247 }
3248 
3249 template <typename Impl, typename Result>
3250 Result
visitBinAssignAutoreleasing(const BinaryOperator * e)3251 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3252   return asImpl().visitExpr(e);
3253 }
3254 
3255 template <typename Impl, typename Result>
3256 Result
visitBinAssignWeak(const BinaryOperator * e)3257 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3258   return asImpl().visitExpr(e);
3259 }
3260 
3261 template <typename Impl, typename Result>
3262 Result
visitBinAssignStrong(const BinaryOperator * e)3263 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3264   return asImpl().visitExpr(e);
3265 }
3266 
3267 /// The general expression-emission logic.
3268 template <typename Impl, typename Result>
visit(const Expr * e)3269 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3270   // We should *never* see a nested full-expression here, because if
3271   // we fail to emit at +1, our caller must not retain after we close
3272   // out the full-expression.  This isn't as important in the unsafe
3273   // emitter.
3274   assert(!isa<ExprWithCleanups>(e));
3275 
3276   // Look through parens, __extension__, generic selection, etc.
3277   e = e->IgnoreParens();
3278 
3279   // Handle certain kinds of casts.
3280   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3281     return asImpl().visitCastExpr(ce);
3282 
3283   // Handle the comma operator.
3284   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3285     return asImpl().visitBinaryOperator(op);
3286 
3287   // TODO: handle conditional operators here
3288 
3289   // For calls and message sends, use the retained-call logic.
3290   // Delegate inits are a special case in that they're the only
3291   // returns-retained expression that *isn't* surrounded by
3292   // a consume.
3293   } else if (isa<CallExpr>(e) ||
3294              (isa<ObjCMessageExpr>(e) &&
3295               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3296     return asImpl().visitCall(e);
3297 
3298   // Look through pseudo-object expressions.
3299   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3300     return asImpl().visitPseudoObjectExpr(pseudo);
3301   } else if (auto *be = dyn_cast<BlockExpr>(e))
3302     return asImpl().visitBlockExpr(be);
3303 
3304   return asImpl().visitExpr(e);
3305 }
3306 
3307 namespace {
3308 
3309 /// An emitter for +1 results.
3310 struct ARCRetainExprEmitter :
3311   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3312 
ARCRetainExprEmitter__anon82b769870b11::ARCRetainExprEmitter3313   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3314 
getValueOfResult__anon82b769870b11::ARCRetainExprEmitter3315   llvm::Value *getValueOfResult(TryEmitResult result) {
3316     return result.getPointer();
3317   }
3318 
emitBitCast__anon82b769870b11::ARCRetainExprEmitter3319   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3320     llvm::Value *value = result.getPointer();
3321     value = CGF.Builder.CreateBitCast(value, resultType);
3322     result.setPointer(value);
3323     return result;
3324   }
3325 
visitLValueToRValue__anon82b769870b11::ARCRetainExprEmitter3326   TryEmitResult visitLValueToRValue(const Expr *e) {
3327     return tryEmitARCRetainLoadOfScalar(CGF, e);
3328   }
3329 
3330   /// For consumptions, just emit the subexpression and thus elide
3331   /// the retain/release pair.
visitConsumeObject__anon82b769870b11::ARCRetainExprEmitter3332   TryEmitResult visitConsumeObject(const Expr *e) {
3333     llvm::Value *result = CGF.EmitScalarExpr(e);
3334     return TryEmitResult(result, true);
3335   }
3336 
visitBlockExpr__anon82b769870b11::ARCRetainExprEmitter3337   TryEmitResult visitBlockExpr(const BlockExpr *e) {
3338     TryEmitResult result = visitExpr(e);
3339     // Avoid the block-retain if this is a block literal that doesn't need to be
3340     // copied to the heap.
3341     if (e->getBlockDecl()->canAvoidCopyToHeap())
3342       result.setInt(true);
3343     return result;
3344   }
3345 
3346   /// Block extends are net +0.  Naively, we could just recurse on
3347   /// the subexpression, but actually we need to ensure that the
3348   /// value is copied as a block, so there's a little filter here.
visitExtendBlockObject__anon82b769870b11::ARCRetainExprEmitter3349   TryEmitResult visitExtendBlockObject(const Expr *e) {
3350     llvm::Value *result; // will be a +0 value
3351 
3352     // If we can't safely assume the sub-expression will produce a
3353     // block-copied value, emit the sub-expression at +0.
3354     if (shouldEmitSeparateBlockRetain(e)) {
3355       result = CGF.EmitScalarExpr(e);
3356 
3357     // Otherwise, try to emit the sub-expression at +1 recursively.
3358     } else {
3359       TryEmitResult subresult = asImpl().visit(e);
3360 
3361       // If that produced a retained value, just use that.
3362       if (subresult.getInt()) {
3363         return subresult;
3364       }
3365 
3366       // Otherwise it's +0.
3367       result = subresult.getPointer();
3368     }
3369 
3370     // Retain the object as a block.
3371     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3372     return TryEmitResult(result, true);
3373   }
3374 
3375   /// For reclaims, emit the subexpression as a retained call and
3376   /// skip the consumption.
visitReclaimReturnedObject__anon82b769870b11::ARCRetainExprEmitter3377   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3378     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3379     return TryEmitResult(result, true);
3380   }
3381 
3382   /// When we have an undecorated call, retroactively do a claim.
visitCall__anon82b769870b11::ARCRetainExprEmitter3383   TryEmitResult visitCall(const Expr *e) {
3384     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3385     return TryEmitResult(result, true);
3386   }
3387 
3388   // TODO: maybe special-case visitBinAssignWeak?
3389 
visitExpr__anon82b769870b11::ARCRetainExprEmitter3390   TryEmitResult visitExpr(const Expr *e) {
3391     // We didn't find an obvious production, so emit what we've got and
3392     // tell the caller that we didn't manage to retain.
3393     llvm::Value *result = CGF.EmitScalarExpr(e);
3394     return TryEmitResult(result, false);
3395   }
3396 };
3397 }
3398 
3399 static TryEmitResult
tryEmitARCRetainScalarExpr(CodeGenFunction & CGF,const Expr * e)3400 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3401   return ARCRetainExprEmitter(CGF).visit(e);
3402 }
3403 
emitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)3404 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3405                                                 LValue lvalue,
3406                                                 QualType type) {
3407   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3408   llvm::Value *value = result.getPointer();
3409   if (!result.getInt())
3410     value = CGF.EmitARCRetain(type, value);
3411   return value;
3412 }
3413 
3414 /// EmitARCRetainScalarExpr - Semantically equivalent to
3415 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3416 /// best-effort attempt to peephole expressions that naturally produce
3417 /// retained objects.
EmitARCRetainScalarExpr(const Expr * e)3418 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3419   // The retain needs to happen within the full-expression.
3420   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3421     RunCleanupsScope scope(*this);
3422     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3423   }
3424 
3425   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3426   llvm::Value *value = result.getPointer();
3427   if (!result.getInt())
3428     value = EmitARCRetain(e->getType(), value);
3429   return value;
3430 }
3431 
3432 llvm::Value *
EmitARCRetainAutoreleaseScalarExpr(const Expr * e)3433 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3434   // The retain needs to happen within the full-expression.
3435   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3436     RunCleanupsScope scope(*this);
3437     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3438   }
3439 
3440   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3441   llvm::Value *value = result.getPointer();
3442   if (result.getInt())
3443     value = EmitARCAutorelease(value);
3444   else
3445     value = EmitARCRetainAutorelease(e->getType(), value);
3446   return value;
3447 }
3448 
EmitARCExtendBlockObject(const Expr * e)3449 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3450   llvm::Value *result;
3451   bool doRetain;
3452 
3453   if (shouldEmitSeparateBlockRetain(e)) {
3454     result = EmitScalarExpr(e);
3455     doRetain = true;
3456   } else {
3457     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3458     result = subresult.getPointer();
3459     doRetain = !subresult.getInt();
3460   }
3461 
3462   if (doRetain)
3463     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3464   return EmitObjCConsumeObject(e->getType(), result);
3465 }
3466 
EmitObjCThrowOperand(const Expr * expr)3467 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3468   // In ARC, retain and autorelease the expression.
3469   if (getLangOpts().ObjCAutoRefCount) {
3470     // Do so before running any cleanups for the full-expression.
3471     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3472     return EmitARCRetainAutoreleaseScalarExpr(expr);
3473   }
3474 
3475   // Otherwise, use the normal scalar-expression emission.  The
3476   // exception machinery doesn't do anything special with the
3477   // exception like retaining it, so there's no safety associated with
3478   // only running cleanups after the throw has started, and when it
3479   // matters it tends to be substantially inferior code.
3480   return EmitScalarExpr(expr);
3481 }
3482 
3483 namespace {
3484 
3485 /// An emitter for assigning into an __unsafe_unretained context.
3486 struct ARCUnsafeUnretainedExprEmitter :
3487   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3488 
ARCUnsafeUnretainedExprEmitter__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3489   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3490 
getValueOfResult__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3491   llvm::Value *getValueOfResult(llvm::Value *value) {
3492     return value;
3493   }
3494 
emitBitCast__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3495   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3496     return CGF.Builder.CreateBitCast(value, resultType);
3497   }
3498 
visitLValueToRValue__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3499   llvm::Value *visitLValueToRValue(const Expr *e) {
3500     return CGF.EmitScalarExpr(e);
3501   }
3502 
3503   /// For consumptions, just emit the subexpression and perform the
3504   /// consumption like normal.
visitConsumeObject__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3505   llvm::Value *visitConsumeObject(const Expr *e) {
3506     llvm::Value *value = CGF.EmitScalarExpr(e);
3507     return CGF.EmitObjCConsumeObject(e->getType(), value);
3508   }
3509 
3510   /// No special logic for block extensions.  (This probably can't
3511   /// actually happen in this emitter, though.)
visitExtendBlockObject__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3512   llvm::Value *visitExtendBlockObject(const Expr *e) {
3513     return CGF.EmitARCExtendBlockObject(e);
3514   }
3515 
3516   /// For reclaims, perform an unsafeClaim if that's enabled.
visitReclaimReturnedObject__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3517   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3518     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3519   }
3520 
3521   /// When we have an undecorated call, just emit it without adding
3522   /// the unsafeClaim.
visitCall__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3523   llvm::Value *visitCall(const Expr *e) {
3524     return CGF.EmitScalarExpr(e);
3525   }
3526 
3527   /// Just do normal scalar emission in the default case.
visitExpr__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3528   llvm::Value *visitExpr(const Expr *e) {
3529     return CGF.EmitScalarExpr(e);
3530   }
3531 };
3532 }
3533 
emitARCUnsafeUnretainedScalarExpr(CodeGenFunction & CGF,const Expr * e)3534 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3535                                                       const Expr *e) {
3536   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3537 }
3538 
3539 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3540 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3541 /// avoiding any spurious retains, including by performing reclaims
3542 /// with objc_unsafeClaimAutoreleasedReturnValue.
EmitARCUnsafeUnretainedScalarExpr(const Expr * e)3543 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3544   // Look through full-expressions.
3545   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3546     RunCleanupsScope scope(*this);
3547     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3548   }
3549 
3550   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3551 }
3552 
3553 std::pair<LValue,llvm::Value*>
EmitARCStoreUnsafeUnretained(const BinaryOperator * e,bool ignored)3554 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3555                                               bool ignored) {
3556   // Evaluate the RHS first.  If we're ignoring the result, assume
3557   // that we can emit at an unsafe +0.
3558   llvm::Value *value;
3559   if (ignored) {
3560     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3561   } else {
3562     value = EmitScalarExpr(e->getRHS());
3563   }
3564 
3565   // Emit the LHS and perform the store.
3566   LValue lvalue = EmitLValue(e->getLHS());
3567   EmitStoreOfScalar(value, lvalue);
3568 
3569   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3570 }
3571 
3572 std::pair<LValue,llvm::Value*>
EmitARCStoreStrong(const BinaryOperator * e,bool ignored)3573 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3574                                     bool ignored) {
3575   // Evaluate the RHS first.
3576   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3577   llvm::Value *value = result.getPointer();
3578 
3579   bool hasImmediateRetain = result.getInt();
3580 
3581   // If we didn't emit a retained object, and the l-value is of block
3582   // type, then we need to emit the block-retain immediately in case
3583   // it invalidates the l-value.
3584   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3585     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3586     hasImmediateRetain = true;
3587   }
3588 
3589   LValue lvalue = EmitLValue(e->getLHS());
3590 
3591   // If the RHS was emitted retained, expand this.
3592   if (hasImmediateRetain) {
3593     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3594     EmitStoreOfScalar(value, lvalue);
3595     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3596   } else {
3597     value = EmitARCStoreStrong(lvalue, value, ignored);
3598   }
3599 
3600   return std::pair<LValue,llvm::Value*>(lvalue, value);
3601 }
3602 
3603 std::pair<LValue,llvm::Value*>
EmitARCStoreAutoreleasing(const BinaryOperator * e)3604 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3605   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3606   LValue lvalue = EmitLValue(e->getLHS());
3607 
3608   EmitStoreOfScalar(value, lvalue);
3609 
3610   return std::pair<LValue,llvm::Value*>(lvalue, value);
3611 }
3612 
EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt & ARPS)3613 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3614                                           const ObjCAutoreleasePoolStmt &ARPS) {
3615   const Stmt *subStmt = ARPS.getSubStmt();
3616   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3617 
3618   CGDebugInfo *DI = getDebugInfo();
3619   if (DI)
3620     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3621 
3622   // Keep track of the current cleanup stack depth.
3623   RunCleanupsScope Scope(*this);
3624   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3625     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3626     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3627   } else {
3628     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3629     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3630   }
3631 
3632   for (const auto *I : S.body())
3633     EmitStmt(I);
3634 
3635   if (DI)
3636     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3637 }
3638 
3639 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3640 /// make sure it survives garbage collection until this point.
EmitExtendGCLifetime(llvm::Value * object)3641 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3642   // We just use an inline assembly.
3643   llvm::FunctionType *extenderType
3644     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3645   llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3646                                                    /* assembly */ "",
3647                                                    /* constraints */ "r",
3648                                                    /* side effects */ true);
3649 
3650   object = Builder.CreateBitCast(object, VoidPtrTy);
3651   EmitNounwindRuntimeCall(extender, object);
3652 }
3653 
3654 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3655 /// non-trivial copy assignment function, produce following helper function.
3656 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3657 ///
3658 llvm::Constant *
GenerateObjCAtomicSetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)3659 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3660                                         const ObjCPropertyImplDecl *PID) {
3661   if (!getLangOpts().CPlusPlus ||
3662       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3663     return nullptr;
3664   QualType Ty = PID->getPropertyIvarDecl()->getType();
3665   if (!Ty->isRecordType())
3666     return nullptr;
3667   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3668   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3669     return nullptr;
3670   llvm::Constant *HelperFn = nullptr;
3671   if (hasTrivialSetExpr(PID))
3672     return nullptr;
3673   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3674   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3675     return HelperFn;
3676 
3677   ASTContext &C = getContext();
3678   IdentifierInfo *II
3679     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3680 
3681   QualType ReturnTy = C.VoidTy;
3682   QualType DestTy = C.getPointerType(Ty);
3683   QualType SrcTy = Ty;
3684   SrcTy.addConst();
3685   SrcTy = C.getPointerType(SrcTy);
3686 
3687   SmallVector<QualType, 2> ArgTys;
3688   ArgTys.push_back(DestTy);
3689   ArgTys.push_back(SrcTy);
3690   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3691 
3692   FunctionDecl *FD = FunctionDecl::Create(
3693       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3694       FunctionTy, nullptr, SC_Static, false, false);
3695 
3696   FunctionArgList args;
3697   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3698                             ImplicitParamDecl::Other);
3699   args.push_back(&DstDecl);
3700   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3701                             ImplicitParamDecl::Other);
3702   args.push_back(&SrcDecl);
3703 
3704   const CGFunctionInfo &FI =
3705       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3706 
3707   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3708 
3709   llvm::Function *Fn =
3710     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3711                            "__assign_helper_atomic_property_",
3712                            &CGM.getModule());
3713 
3714   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3715 
3716   StartFunction(FD, ReturnTy, Fn, FI, args);
3717 
3718   DeclRefExpr DstExpr(C, &DstDecl, false, DestTy, VK_RValue, SourceLocation());
3719   UnaryOperator *DST = UnaryOperator::Create(
3720       C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3721       SourceLocation(), false, FPOptionsOverride());
3722 
3723   DeclRefExpr SrcExpr(C, &SrcDecl, false, SrcTy, VK_RValue, SourceLocation());
3724   UnaryOperator *SRC = UnaryOperator::Create(
3725       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3726       SourceLocation(), false, FPOptionsOverride());
3727 
3728   Expr *Args[2] = {DST, SRC};
3729   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3730   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3731       C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3732       VK_LValue, SourceLocation(), FPOptionsOverride());
3733 
3734   EmitStmt(TheCall);
3735 
3736   FinishFunction();
3737   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3738   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3739   return HelperFn;
3740 }
3741 
3742 llvm::Constant *
GenerateObjCAtomicGetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)3743 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3744                                             const ObjCPropertyImplDecl *PID) {
3745   if (!getLangOpts().CPlusPlus ||
3746       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3747     return nullptr;
3748   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3749   QualType Ty = PD->getType();
3750   if (!Ty->isRecordType())
3751     return nullptr;
3752   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3753     return nullptr;
3754   llvm::Constant *HelperFn = nullptr;
3755   if (hasTrivialGetExpr(PID))
3756     return nullptr;
3757   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3758   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3759     return HelperFn;
3760 
3761   ASTContext &C = getContext();
3762   IdentifierInfo *II =
3763       &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3764 
3765   QualType ReturnTy = C.VoidTy;
3766   QualType DestTy = C.getPointerType(Ty);
3767   QualType SrcTy = Ty;
3768   SrcTy.addConst();
3769   SrcTy = C.getPointerType(SrcTy);
3770 
3771   SmallVector<QualType, 2> ArgTys;
3772   ArgTys.push_back(DestTy);
3773   ArgTys.push_back(SrcTy);
3774   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3775 
3776   FunctionDecl *FD = FunctionDecl::Create(
3777       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3778       FunctionTy, nullptr, SC_Static, false, false);
3779 
3780   FunctionArgList args;
3781   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3782                             ImplicitParamDecl::Other);
3783   args.push_back(&DstDecl);
3784   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3785                             ImplicitParamDecl::Other);
3786   args.push_back(&SrcDecl);
3787 
3788   const CGFunctionInfo &FI =
3789       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3790 
3791   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3792 
3793   llvm::Function *Fn = llvm::Function::Create(
3794       LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3795       &CGM.getModule());
3796 
3797   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3798 
3799   StartFunction(FD, ReturnTy, Fn, FI, args);
3800 
3801   DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3802                       SourceLocation());
3803 
3804   UnaryOperator *SRC = UnaryOperator::Create(
3805       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3806       SourceLocation(), false, FPOptionsOverride());
3807 
3808   CXXConstructExpr *CXXConstExpr =
3809     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3810 
3811   SmallVector<Expr*, 4> ConstructorArgs;
3812   ConstructorArgs.push_back(SRC);
3813   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3814                          CXXConstExpr->arg_end());
3815 
3816   CXXConstructExpr *TheCXXConstructExpr =
3817     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3818                              CXXConstExpr->getConstructor(),
3819                              CXXConstExpr->isElidable(),
3820                              ConstructorArgs,
3821                              CXXConstExpr->hadMultipleCandidates(),
3822                              CXXConstExpr->isListInitialization(),
3823                              CXXConstExpr->isStdInitListInitialization(),
3824                              CXXConstExpr->requiresZeroInitialization(),
3825                              CXXConstExpr->getConstructionKind(),
3826                              SourceRange());
3827 
3828   DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3829                       SourceLocation());
3830 
3831   RValue DV = EmitAnyExpr(&DstExpr);
3832   CharUnits Alignment
3833     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3834   EmitAggExpr(TheCXXConstructExpr,
3835               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3836                                     Qualifiers(),
3837                                     AggValueSlot::IsDestructed,
3838                                     AggValueSlot::DoesNotNeedGCBarriers,
3839                                     AggValueSlot::IsNotAliased,
3840                                     AggValueSlot::DoesNotOverlap));
3841 
3842   FinishFunction();
3843   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3844   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3845   return HelperFn;
3846 }
3847 
3848 llvm::Value *
EmitBlockCopyAndAutorelease(llvm::Value * Block,QualType Ty)3849 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3850   // Get selectors for retain/autorelease.
3851   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3852   Selector CopySelector =
3853       getContext().Selectors.getNullarySelector(CopyID);
3854   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3855   Selector AutoreleaseSelector =
3856       getContext().Selectors.getNullarySelector(AutoreleaseID);
3857 
3858   // Emit calls to retain/autorelease.
3859   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3860   llvm::Value *Val = Block;
3861   RValue Result;
3862   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3863                                        Ty, CopySelector,
3864                                        Val, CallArgList(), nullptr, nullptr);
3865   Val = Result.getScalarVal();
3866   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3867                                        Ty, AutoreleaseSelector,
3868                                        Val, CallArgList(), nullptr, nullptr);
3869   Val = Result.getScalarVal();
3870   return Val;
3871 }
3872 
getBaseMachOPlatformID(const llvm::Triple & TT)3873 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3874   switch (TT.getOS()) {
3875   case llvm::Triple::Darwin:
3876   case llvm::Triple::MacOSX:
3877     return llvm::MachO::PLATFORM_MACOS;
3878   case llvm::Triple::IOS:
3879     return llvm::MachO::PLATFORM_IOS;
3880   case llvm::Triple::TvOS:
3881     return llvm::MachO::PLATFORM_TVOS;
3882   case llvm::Triple::WatchOS:
3883     return llvm::MachO::PLATFORM_WATCHOS;
3884   default:
3885     return /*Unknown platform*/ 0;
3886   }
3887 }
3888 
emitIsPlatformVersionAtLeast(CodeGenFunction & CGF,const VersionTuple & Version)3889 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3890                                                  const VersionTuple &Version) {
3891   CodeGenModule &CGM = CGF.CGM;
3892   // Note: we intend to support multi-platform version checks, so reserve
3893   // the room for a dual platform checking invocation that will be
3894   // implemented in the future.
3895   llvm::SmallVector<llvm::Value *, 8> Args;
3896 
3897   auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3898     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
3899     Args.push_back(
3900         llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3901     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3902     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0));
3903     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0));
3904   };
3905 
3906   assert(!Version.empty() && "unexpected empty version");
3907   EmitArgs(Version, CGM.getTarget().getTriple());
3908 
3909   if (!CGM.IsPlatformVersionAtLeastFn) {
3910     llvm::FunctionType *FTy = llvm::FunctionType::get(
3911         CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
3912         false);
3913     CGM.IsPlatformVersionAtLeastFn =
3914         CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
3915   }
3916 
3917   llvm::Value *Check =
3918       CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args);
3919   return CGF.Builder.CreateICmpNE(Check,
3920                                   llvm::Constant::getNullValue(CGM.Int32Ty));
3921 }
3922 
3923 llvm::Value *
EmitBuiltinAvailable(const VersionTuple & Version)3924 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
3925   // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3926   if (CGM.getTarget().getTriple().isOSDarwin())
3927     return emitIsPlatformVersionAtLeast(*this, Version);
3928 
3929   if (!CGM.IsOSVersionAtLeastFn) {
3930     llvm::FunctionType *FTy =
3931         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3932     CGM.IsOSVersionAtLeastFn =
3933         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3934   }
3935 
3936   Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
3937   llvm::Value *Args[] = {
3938       llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
3939       llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0),
3940       llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0),
3941   };
3942 
3943   llvm::Value *CallRes =
3944       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3945 
3946   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3947 }
3948 
isFoundationNeededForDarwinAvailabilityCheck(const llvm::Triple & TT,const VersionTuple & TargetVersion)3949 static bool isFoundationNeededForDarwinAvailabilityCheck(
3950     const llvm::Triple &TT, const VersionTuple &TargetVersion) {
3951   VersionTuple FoundationDroppedInVersion;
3952   switch (TT.getOS()) {
3953   case llvm::Triple::IOS:
3954   case llvm::Triple::TvOS:
3955     FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
3956     break;
3957   case llvm::Triple::WatchOS:
3958     FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
3959     break;
3960   case llvm::Triple::Darwin:
3961   case llvm::Triple::MacOSX:
3962     FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
3963     break;
3964   default:
3965     llvm_unreachable("Unexpected OS");
3966   }
3967   return TargetVersion < FoundationDroppedInVersion;
3968 }
3969 
emitAtAvailableLinkGuard()3970 void CodeGenModule::emitAtAvailableLinkGuard() {
3971   if (!IsPlatformVersionAtLeastFn)
3972     return;
3973   // @available requires CoreFoundation only on Darwin.
3974   if (!Target.getTriple().isOSDarwin())
3975     return;
3976   // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
3977   // watchOS 6+.
3978   if (!isFoundationNeededForDarwinAvailabilityCheck(
3979           Target.getTriple(), Target.getPlatformMinVersion()))
3980     return;
3981   // Add -framework CoreFoundation to the linker commands. We still want to
3982   // emit the core foundation reference down below because otherwise if
3983   // CoreFoundation is not used in the code, the linker won't link the
3984   // framework.
3985   auto &Context = getLLVMContext();
3986   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3987                              llvm::MDString::get(Context, "CoreFoundation")};
3988   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3989   // Emit a reference to a symbol from CoreFoundation to ensure that
3990   // CoreFoundation is linked into the final binary.
3991   llvm::FunctionType *FTy =
3992       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3993   llvm::FunctionCallee CFFunc =
3994       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3995 
3996   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3997   llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
3998       CheckFTy, "__clang_at_available_requires_core_foundation_framework",
3999       llvm::AttributeList(), /*Local=*/true);
4000   llvm::Function *CFLinkCheckFunc =
4001       cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4002   if (CFLinkCheckFunc->empty()) {
4003     CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4004     CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4005     CodeGenFunction CGF(*this);
4006     CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
4007     CGF.EmitNounwindRuntimeCall(CFFunc,
4008                                 llvm::Constant::getNullValue(VoidPtrTy));
4009     CGF.Builder.CreateUnreachable();
4010     addCompilerUsedGlobal(CFLinkCheckFunc);
4011   }
4012 }
4013 
~CGObjCRuntime()4014 CGObjCRuntime::~CGObjCRuntime() {}
4015