1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Analysis/ObjCARCUtil.h"
27 #include "llvm/BinaryFormat/MachO.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/InlineAsm.h"
30 using namespace clang;
31 using namespace CodeGen;
32
33 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
34 static TryEmitResult
35 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
36 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
37 QualType ET,
38 RValue Result);
39
40 /// Given the address of a variable of pointer type, find the correct
41 /// null to store into it.
getNullForVariable(Address addr)42 static llvm::Constant *getNullForVariable(Address addr) {
43 llvm::Type *type = addr.getElementType();
44 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
45 }
46
47 /// Emits an instance of NSConstantString representing the object.
EmitObjCStringLiteral(const ObjCStringLiteral * E)48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
49 {
50 llvm::Constant *C =
51 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
52 // FIXME: This bitcast should just be made an invariant on the Runtime.
53 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
54 }
55
56 /// EmitObjCBoxedExpr - This routine generates code to call
57 /// the appropriate expression boxing method. This will either be
58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
59 /// or [NSValue valueWithBytes:objCType:].
60 ///
61 llvm::Value *
EmitObjCBoxedExpr(const ObjCBoxedExpr * E)62 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
63 // Generate the correct selector for this literal's concrete type.
64 // Get the method.
65 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
66 const Expr *SubExpr = E->getSubExpr();
67
68 if (E->isExpressibleAsConstantInitializer()) {
69 ConstantEmitter ConstEmitter(CGM);
70 return ConstEmitter.tryEmitAbstract(E, E->getType());
71 }
72
73 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
74 Selector Sel = BoxingMethod->getSelector();
75
76 // Generate a reference to the class pointer, which will be the receiver.
77 // Assumes that the method was introduced in the class that should be
78 // messaged (avoids pulling it out of the result type).
79 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
80 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
81 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
82
83 CallArgList Args;
84 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
85 QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
86
87 // ObjCBoxedExpr supports boxing of structs and unions
88 // via [NSValue valueWithBytes:objCType:]
89 const QualType ValueType(SubExpr->getType().getCanonicalType());
90 if (ValueType->isObjCBoxableRecordType()) {
91 // Emit CodeGen for first parameter
92 // and cast value to correct type
93 Address Temporary = CreateMemTemp(SubExpr->getType());
94 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
95 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
96 Args.add(RValue::get(BitCast.getPointer()), ArgQT);
97
98 // Create char array to store type encoding
99 std::string Str;
100 getContext().getObjCEncodingForType(ValueType, Str);
101 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
102
103 // Cast type encoding to correct type
104 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
105 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
106 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
107
108 Args.add(RValue::get(Cast), EncodingQT);
109 } else {
110 Args.add(EmitAnyExpr(SubExpr), ArgQT);
111 }
112
113 RValue result = Runtime.GenerateMessageSend(
114 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
115 Args, ClassDecl, BoxingMethod);
116 return Builder.CreateBitCast(result.getScalarVal(),
117 ConvertType(E->getType()));
118 }
119
EmitObjCCollectionLiteral(const Expr * E,const ObjCMethodDecl * MethodWithObjects)120 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
121 const ObjCMethodDecl *MethodWithObjects) {
122 ASTContext &Context = CGM.getContext();
123 const ObjCDictionaryLiteral *DLE = nullptr;
124 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
125 if (!ALE)
126 DLE = cast<ObjCDictionaryLiteral>(E);
127
128 // Optimize empty collections by referencing constants, when available.
129 uint64_t NumElements =
130 ALE ? ALE->getNumElements() : DLE->getNumElements();
131 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
132 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
133 QualType IdTy(CGM.getContext().getObjCIdType());
134 llvm::Constant *Constant =
135 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
136 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
137 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
138 cast<llvm::LoadInst>(Ptr)->setMetadata(
139 CGM.getModule().getMDKindID("invariant.load"),
140 llvm::MDNode::get(getLLVMContext(), None));
141 return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
142 }
143
144 // Compute the type of the array we're initializing.
145 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
146 NumElements);
147 QualType ElementType = Context.getObjCIdType().withConst();
148 QualType ElementArrayType
149 = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
150 ArrayType::Normal, /*IndexTypeQuals=*/0);
151
152 // Allocate the temporary array(s).
153 Address Objects = CreateMemTemp(ElementArrayType, "objects");
154 Address Keys = Address::invalid();
155 if (DLE)
156 Keys = CreateMemTemp(ElementArrayType, "keys");
157
158 // In ARC, we may need to do extra work to keep all the keys and
159 // values alive until after the call.
160 SmallVector<llvm::Value *, 16> NeededObjects;
161 bool TrackNeededObjects =
162 (getLangOpts().ObjCAutoRefCount &&
163 CGM.getCodeGenOpts().OptimizationLevel != 0);
164
165 // Perform the actual initialialization of the array(s).
166 for (uint64_t i = 0; i < NumElements; i++) {
167 if (ALE) {
168 // Emit the element and store it to the appropriate array slot.
169 const Expr *Rhs = ALE->getElement(i);
170 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
171 ElementType, AlignmentSource::Decl);
172
173 llvm::Value *value = EmitScalarExpr(Rhs);
174 EmitStoreThroughLValue(RValue::get(value), LV, true);
175 if (TrackNeededObjects) {
176 NeededObjects.push_back(value);
177 }
178 } else {
179 // Emit the key and store it to the appropriate array slot.
180 const Expr *Key = DLE->getKeyValueElement(i).Key;
181 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
182 ElementType, AlignmentSource::Decl);
183 llvm::Value *keyValue = EmitScalarExpr(Key);
184 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
185
186 // Emit the value and store it to the appropriate array slot.
187 const Expr *Value = DLE->getKeyValueElement(i).Value;
188 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
189 ElementType, AlignmentSource::Decl);
190 llvm::Value *valueValue = EmitScalarExpr(Value);
191 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
192 if (TrackNeededObjects) {
193 NeededObjects.push_back(keyValue);
194 NeededObjects.push_back(valueValue);
195 }
196 }
197 }
198
199 // Generate the argument list.
200 CallArgList Args;
201 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
202 const ParmVarDecl *argDecl = *PI++;
203 QualType ArgQT = argDecl->getType().getUnqualifiedType();
204 Args.add(RValue::get(Objects.getPointer()), ArgQT);
205 if (DLE) {
206 argDecl = *PI++;
207 ArgQT = argDecl->getType().getUnqualifiedType();
208 Args.add(RValue::get(Keys.getPointer()), ArgQT);
209 }
210 argDecl = *PI;
211 ArgQT = argDecl->getType().getUnqualifiedType();
212 llvm::Value *Count =
213 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
214 Args.add(RValue::get(Count), ArgQT);
215
216 // Generate a reference to the class pointer, which will be the receiver.
217 Selector Sel = MethodWithObjects->getSelector();
218 QualType ResultType = E->getType();
219 const ObjCObjectPointerType *InterfacePointerType
220 = ResultType->getAsObjCInterfacePointerType();
221 ObjCInterfaceDecl *Class
222 = InterfacePointerType->getObjectType()->getInterface();
223 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
224 llvm::Value *Receiver = Runtime.GetClass(*this, Class);
225
226 // Generate the message send.
227 RValue result = Runtime.GenerateMessageSend(
228 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
229 Receiver, Args, Class, MethodWithObjects);
230
231 // The above message send needs these objects, but in ARC they are
232 // passed in a buffer that is essentially __unsafe_unretained.
233 // Therefore we must prevent the optimizer from releasing them until
234 // after the call.
235 if (TrackNeededObjects) {
236 EmitARCIntrinsicUse(NeededObjects);
237 }
238
239 return Builder.CreateBitCast(result.getScalarVal(),
240 ConvertType(E->getType()));
241 }
242
EmitObjCArrayLiteral(const ObjCArrayLiteral * E)243 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
244 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
245 }
246
EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral * E)247 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
248 const ObjCDictionaryLiteral *E) {
249 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
250 }
251
252 /// Emit a selector.
EmitObjCSelectorExpr(const ObjCSelectorExpr * E)253 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
254 // Untyped selector.
255 // Note that this implementation allows for non-constant strings to be passed
256 // as arguments to @selector(). Currently, the only thing preventing this
257 // behaviour is the type checking in the front end.
258 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
259 }
260
EmitObjCProtocolExpr(const ObjCProtocolExpr * E)261 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
262 // FIXME: This should pass the Decl not the name.
263 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
264 }
265
266 /// Adjust the type of an Objective-C object that doesn't match up due
267 /// to type erasure at various points, e.g., related result types or the use
268 /// of parameterized classes.
AdjustObjCObjectType(CodeGenFunction & CGF,QualType ExpT,RValue Result)269 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
270 RValue Result) {
271 if (!ExpT->isObjCRetainableType())
272 return Result;
273
274 // If the converted types are the same, we're done.
275 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
276 if (ExpLLVMTy == Result.getScalarVal()->getType())
277 return Result;
278
279 // We have applied a substitution. Cast the rvalue appropriately.
280 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
281 ExpLLVMTy));
282 }
283
284 /// Decide whether to extend the lifetime of the receiver of a
285 /// returns-inner-pointer message.
286 static bool
shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr * message)287 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
288 switch (message->getReceiverKind()) {
289
290 // For a normal instance message, we should extend unless the
291 // receiver is loaded from a variable with precise lifetime.
292 case ObjCMessageExpr::Instance: {
293 const Expr *receiver = message->getInstanceReceiver();
294
295 // Look through OVEs.
296 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
297 if (opaque->getSourceExpr())
298 receiver = opaque->getSourceExpr()->IgnoreParens();
299 }
300
301 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
302 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
303 receiver = ice->getSubExpr()->IgnoreParens();
304
305 // Look through OVEs.
306 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
307 if (opaque->getSourceExpr())
308 receiver = opaque->getSourceExpr()->IgnoreParens();
309 }
310
311 // Only __strong variables.
312 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
313 return true;
314
315 // All ivars and fields have precise lifetime.
316 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
317 return false;
318
319 // Otherwise, check for variables.
320 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
321 if (!declRef) return true;
322 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
323 if (!var) return true;
324
325 // All variables have precise lifetime except local variables with
326 // automatic storage duration that aren't specially marked.
327 return (var->hasLocalStorage() &&
328 !var->hasAttr<ObjCPreciseLifetimeAttr>());
329 }
330
331 case ObjCMessageExpr::Class:
332 case ObjCMessageExpr::SuperClass:
333 // It's never necessary for class objects.
334 return false;
335
336 case ObjCMessageExpr::SuperInstance:
337 // We generally assume that 'self' lives throughout a method call.
338 return false;
339 }
340
341 llvm_unreachable("invalid receiver kind");
342 }
343
344 /// Given an expression of ObjC pointer type, check whether it was
345 /// immediately loaded from an ARC __weak l-value.
findWeakLValue(const Expr * E)346 static const Expr *findWeakLValue(const Expr *E) {
347 assert(E->getType()->isObjCRetainableType());
348 E = E->IgnoreParens();
349 if (auto CE = dyn_cast<CastExpr>(E)) {
350 if (CE->getCastKind() == CK_LValueToRValue) {
351 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
352 return CE->getSubExpr();
353 }
354 }
355
356 return nullptr;
357 }
358
359 /// The ObjC runtime may provide entrypoints that are likely to be faster
360 /// than an ordinary message send of the appropriate selector.
361 ///
362 /// The entrypoints are guaranteed to be equivalent to just sending the
363 /// corresponding message. If the entrypoint is implemented naively as just a
364 /// message send, using it is a trade-off: it sacrifices a few cycles of
365 /// overhead to save a small amount of code. However, it's possible for
366 /// runtimes to detect and special-case classes that use "standard"
367 /// behavior; if that's dynamically a large proportion of all objects, using
368 /// the entrypoint will also be faster than using a message send.
369 ///
370 /// If the runtime does support a required entrypoint, then this method will
371 /// generate a call and return the resulting value. Otherwise it will return
372 /// None and the caller can generate a msgSend instead.
373 static Optional<llvm::Value *>
tryGenerateSpecializedMessageSend(CodeGenFunction & CGF,QualType ResultType,llvm::Value * Receiver,const CallArgList & Args,Selector Sel,const ObjCMethodDecl * method,bool isClassMessage)374 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
375 llvm::Value *Receiver,
376 const CallArgList& Args, Selector Sel,
377 const ObjCMethodDecl *method,
378 bool isClassMessage) {
379 auto &CGM = CGF.CGM;
380 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
381 return None;
382
383 auto &Runtime = CGM.getLangOpts().ObjCRuntime;
384 switch (Sel.getMethodFamily()) {
385 case OMF_alloc:
386 if (isClassMessage &&
387 Runtime.shouldUseRuntimeFunctionsForAlloc() &&
388 ResultType->isObjCObjectPointerType()) {
389 // [Foo alloc] -> objc_alloc(Foo) or
390 // [self alloc] -> objc_alloc(self)
391 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
392 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
393 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
394 // [self allocWithZone:nil] -> objc_allocWithZone(self)
395 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
396 Args.size() == 1 && Args.front().getType()->isPointerType() &&
397 Sel.getNameForSlot(0) == "allocWithZone") {
398 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
399 if (isa<llvm::ConstantPointerNull>(arg))
400 return CGF.EmitObjCAllocWithZone(Receiver,
401 CGF.ConvertType(ResultType));
402 return None;
403 }
404 }
405 break;
406
407 case OMF_autorelease:
408 if (ResultType->isObjCObjectPointerType() &&
409 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
410 Runtime.shouldUseARCFunctionsForRetainRelease())
411 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
412 break;
413
414 case OMF_retain:
415 if (ResultType->isObjCObjectPointerType() &&
416 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
417 Runtime.shouldUseARCFunctionsForRetainRelease())
418 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
419 break;
420
421 case OMF_release:
422 if (ResultType->isVoidType() &&
423 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
424 Runtime.shouldUseARCFunctionsForRetainRelease()) {
425 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
426 return nullptr;
427 }
428 break;
429
430 default:
431 break;
432 }
433 return None;
434 }
435
GeneratePossiblySpecializedMessageSend(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,llvm::Value * Receiver,const CallArgList & Args,const ObjCInterfaceDecl * OID,const ObjCMethodDecl * Method,bool isClassMessage)436 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
437 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
438 Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
439 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
440 bool isClassMessage) {
441 if (Optional<llvm::Value *> SpecializedResult =
442 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
443 Sel, Method, isClassMessage)) {
444 return RValue::get(SpecializedResult.getValue());
445 }
446 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
447 Method);
448 }
449
AppendFirstImpliedRuntimeProtocols(const ObjCProtocolDecl * PD,llvm::UniqueVector<const ObjCProtocolDecl * > & PDs)450 static void AppendFirstImpliedRuntimeProtocols(
451 const ObjCProtocolDecl *PD,
452 llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
453 if (!PD->isNonRuntimeProtocol()) {
454 const auto *Can = PD->getCanonicalDecl();
455 PDs.insert(Can);
456 return;
457 }
458
459 for (const auto *ParentPD : PD->protocols())
460 AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
461 }
462
463 std::vector<const ObjCProtocolDecl *>
GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,ObjCProtocolDecl::protocol_iterator end)464 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
465 ObjCProtocolDecl::protocol_iterator end) {
466 std::vector<const ObjCProtocolDecl *> RuntimePds;
467 llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
468
469 for (; begin != end; ++begin) {
470 const auto *It = *begin;
471 const auto *Can = It->getCanonicalDecl();
472 if (Can->isNonRuntimeProtocol())
473 NonRuntimePDs.insert(Can);
474 else
475 RuntimePds.push_back(Can);
476 }
477
478 // If there are no non-runtime protocols then we can just stop now.
479 if (NonRuntimePDs.empty())
480 return RuntimePds;
481
482 // Else we have to search through the non-runtime protocol's inheritancy
483 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
484 // a non-runtime protocol without any parents. These are the "first-implied"
485 // protocols from a non-runtime protocol.
486 llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
487 for (const auto *PD : NonRuntimePDs)
488 AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
489
490 // Walk the Runtime list to get all protocols implied via the inclusion of
491 // this protocol, e.g. all protocols it inherits from including itself.
492 llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
493 for (const auto *PD : RuntimePds) {
494 const auto *Can = PD->getCanonicalDecl();
495 AllImpliedProtocols.insert(Can);
496 Can->getImpliedProtocols(AllImpliedProtocols);
497 }
498
499 // Similar to above, walk the list of first-implied protocols to find the set
500 // all the protocols implied excluding the listed protocols themselves since
501 // they are not yet a part of the `RuntimePds` list.
502 for (const auto *PD : FirstImpliedProtos) {
503 PD->getImpliedProtocols(AllImpliedProtocols);
504 }
505
506 // From the first-implied list we have to finish building the final protocol
507 // list. If a protocol in the first-implied list was already implied via some
508 // inheritance path through some other protocols then it would be redundant to
509 // add it here and so we skip over it.
510 for (const auto *PD : FirstImpliedProtos) {
511 if (!AllImpliedProtocols.contains(PD)) {
512 RuntimePds.push_back(PD);
513 }
514 }
515
516 return RuntimePds;
517 }
518
519 /// Instead of '[[MyClass alloc] init]', try to generate
520 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
521 /// caller side, as well as the optimized objc_alloc.
522 static Optional<llvm::Value *>
tryEmitSpecializedAllocInit(CodeGenFunction & CGF,const ObjCMessageExpr * OME)523 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
524 auto &Runtime = CGF.getLangOpts().ObjCRuntime;
525 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
526 return None;
527
528 // Match the exact pattern '[[MyClass alloc] init]'.
529 Selector Sel = OME->getSelector();
530 if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
531 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
532 Sel.getNameForSlot(0) != "init")
533 return None;
534
535 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
536 // with 'cls' a Class.
537 auto *SubOME =
538 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
539 if (!SubOME)
540 return None;
541 Selector SubSel = SubOME->getSelector();
542
543 if (!SubOME->getType()->isObjCObjectPointerType() ||
544 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
545 return None;
546
547 llvm::Value *Receiver = nullptr;
548 switch (SubOME->getReceiverKind()) {
549 case ObjCMessageExpr::Instance:
550 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
551 return None;
552 Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
553 break;
554
555 case ObjCMessageExpr::Class: {
556 QualType ReceiverType = SubOME->getClassReceiver();
557 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
558 const ObjCInterfaceDecl *ID = ObjTy->getInterface();
559 assert(ID && "null interface should be impossible here");
560 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
561 break;
562 }
563 case ObjCMessageExpr::SuperInstance:
564 case ObjCMessageExpr::SuperClass:
565 return None;
566 }
567
568 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
569 }
570
EmitObjCMessageExpr(const ObjCMessageExpr * E,ReturnValueSlot Return)571 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
572 ReturnValueSlot Return) {
573 // Only the lookup mechanism and first two arguments of the method
574 // implementation vary between runtimes. We can get the receiver and
575 // arguments in generic code.
576
577 bool isDelegateInit = E->isDelegateInitCall();
578
579 const ObjCMethodDecl *method = E->getMethodDecl();
580
581 // If the method is -retain, and the receiver's being loaded from
582 // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
583 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
584 method->getMethodFamily() == OMF_retain) {
585 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
586 LValue lvalue = EmitLValue(lvalueExpr);
587 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
588 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
589 }
590 }
591
592 if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
593 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
594
595 // We don't retain the receiver in delegate init calls, and this is
596 // safe because the receiver value is always loaded from 'self',
597 // which we zero out. We don't want to Block_copy block receivers,
598 // though.
599 bool retainSelf =
600 (!isDelegateInit &&
601 CGM.getLangOpts().ObjCAutoRefCount &&
602 method &&
603 method->hasAttr<NSConsumesSelfAttr>());
604
605 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
606 bool isSuperMessage = false;
607 bool isClassMessage = false;
608 ObjCInterfaceDecl *OID = nullptr;
609 // Find the receiver
610 QualType ReceiverType;
611 llvm::Value *Receiver = nullptr;
612 switch (E->getReceiverKind()) {
613 case ObjCMessageExpr::Instance:
614 ReceiverType = E->getInstanceReceiver()->getType();
615 isClassMessage = ReceiverType->isObjCClassType();
616 if (retainSelf) {
617 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
618 E->getInstanceReceiver());
619 Receiver = ter.getPointer();
620 if (ter.getInt()) retainSelf = false;
621 } else
622 Receiver = EmitScalarExpr(E->getInstanceReceiver());
623 break;
624
625 case ObjCMessageExpr::Class: {
626 ReceiverType = E->getClassReceiver();
627 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
628 assert(OID && "Invalid Objective-C class message send");
629 Receiver = Runtime.GetClass(*this, OID);
630 isClassMessage = true;
631 break;
632 }
633
634 case ObjCMessageExpr::SuperInstance:
635 ReceiverType = E->getSuperType();
636 Receiver = LoadObjCSelf();
637 isSuperMessage = true;
638 break;
639
640 case ObjCMessageExpr::SuperClass:
641 ReceiverType = E->getSuperType();
642 Receiver = LoadObjCSelf();
643 isSuperMessage = true;
644 isClassMessage = true;
645 break;
646 }
647
648 if (retainSelf)
649 Receiver = EmitARCRetainNonBlock(Receiver);
650
651 // In ARC, we sometimes want to "extend the lifetime"
652 // (i.e. retain+autorelease) of receivers of returns-inner-pointer
653 // messages.
654 if (getLangOpts().ObjCAutoRefCount && method &&
655 method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
656 shouldExtendReceiverForInnerPointerMessage(E))
657 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
658
659 QualType ResultType = method ? method->getReturnType() : E->getType();
660
661 CallArgList Args;
662 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
663
664 // For delegate init calls in ARC, do an unsafe store of null into
665 // self. This represents the call taking direct ownership of that
666 // value. We have to do this after emitting the other call
667 // arguments because they might also reference self, but we don't
668 // have to worry about any of them modifying self because that would
669 // be an undefined read and write of an object in unordered
670 // expressions.
671 if (isDelegateInit) {
672 assert(getLangOpts().ObjCAutoRefCount &&
673 "delegate init calls should only be marked in ARC");
674
675 // Do an unsafe store of null into self.
676 Address selfAddr =
677 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
678 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
679 }
680
681 RValue result;
682 if (isSuperMessage) {
683 // super is only valid in an Objective-C method
684 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
685 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
686 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
687 E->getSelector(),
688 OMD->getClassInterface(),
689 isCategoryImpl,
690 Receiver,
691 isClassMessage,
692 Args,
693 method);
694 } else {
695 // Call runtime methods directly if we can.
696 result = Runtime.GeneratePossiblySpecializedMessageSend(
697 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
698 method, isClassMessage);
699 }
700
701 // For delegate init calls in ARC, implicitly store the result of
702 // the call back into self. This takes ownership of the value.
703 if (isDelegateInit) {
704 Address selfAddr =
705 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
706 llvm::Value *newSelf = result.getScalarVal();
707
708 // The delegate return type isn't necessarily a matching type; in
709 // fact, it's quite likely to be 'id'.
710 llvm::Type *selfTy = selfAddr.getElementType();
711 newSelf = Builder.CreateBitCast(newSelf, selfTy);
712
713 Builder.CreateStore(newSelf, selfAddr);
714 }
715
716 return AdjustObjCObjectType(*this, E->getType(), result);
717 }
718
719 namespace {
720 struct FinishARCDealloc final : EHScopeStack::Cleanup {
Emit__anon82b769870111::FinishARCDealloc721 void Emit(CodeGenFunction &CGF, Flags flags) override {
722 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
723
724 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
725 const ObjCInterfaceDecl *iface = impl->getClassInterface();
726 if (!iface->getSuperClass()) return;
727
728 bool isCategory = isa<ObjCCategoryImplDecl>(impl);
729
730 // Call [super dealloc] if we have a superclass.
731 llvm::Value *self = CGF.LoadObjCSelf();
732
733 CallArgList args;
734 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
735 CGF.getContext().VoidTy,
736 method->getSelector(),
737 iface,
738 isCategory,
739 self,
740 /*is class msg*/ false,
741 args,
742 method);
743 }
744 };
745 }
746
747 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
748 /// the LLVM function and sets the other context used by
749 /// CodeGenFunction.
StartObjCMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)750 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
751 const ObjCContainerDecl *CD) {
752 SourceLocation StartLoc = OMD->getBeginLoc();
753 FunctionArgList args;
754 // Check if we should generate debug info for this method.
755 if (OMD->hasAttr<NoDebugAttr>())
756 DebugInfo = nullptr; // disable debug info indefinitely for this function
757
758 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
759
760 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
761 if (OMD->isDirectMethod()) {
762 Fn->setVisibility(llvm::Function::HiddenVisibility);
763 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false);
764 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
765 } else {
766 CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
767 }
768
769 args.push_back(OMD->getSelfDecl());
770 args.push_back(OMD->getCmdDecl());
771
772 args.append(OMD->param_begin(), OMD->param_end());
773
774 CurGD = OMD;
775 CurEHLocation = OMD->getEndLoc();
776
777 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
778 OMD->getLocation(), StartLoc);
779
780 if (OMD->isDirectMethod()) {
781 // This function is a direct call, it has to implement a nil check
782 // on entry.
783 //
784 // TODO: possibly have several entry points to elide the check
785 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
786 }
787
788 // In ARC, certain methods get an extra cleanup.
789 if (CGM.getLangOpts().ObjCAutoRefCount &&
790 OMD->isInstanceMethod() &&
791 OMD->getSelector().isUnarySelector()) {
792 const IdentifierInfo *ident =
793 OMD->getSelector().getIdentifierInfoForSlot(0);
794 if (ident->isStr("dealloc"))
795 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
796 }
797 }
798
799 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
800 LValue lvalue, QualType type);
801
802 /// Generate an Objective-C method. An Objective-C method is a C function with
803 /// its pointer, name, and types registered in the class structure.
GenerateObjCMethod(const ObjCMethodDecl * OMD)804 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
805 StartObjCMethod(OMD, OMD->getClassInterface());
806 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
807 assert(isa<CompoundStmt>(OMD->getBody()));
808 incrementProfileCounter(OMD->getBody());
809 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
810 FinishFunction(OMD->getBodyRBrace());
811 }
812
813 /// emitStructGetterCall - Call the runtime function to load a property
814 /// into the return value slot.
emitStructGetterCall(CodeGenFunction & CGF,ObjCIvarDecl * ivar,bool isAtomic,bool hasStrong)815 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
816 bool isAtomic, bool hasStrong) {
817 ASTContext &Context = CGF.getContext();
818
819 Address src =
820 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
821 .getAddress(CGF);
822
823 // objc_copyStruct (ReturnValue, &structIvar,
824 // sizeof (Type of Ivar), isAtomic, false);
825 CallArgList args;
826
827 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
828 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
829
830 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
831 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
832
833 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
834 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
835 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
836 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
837
838 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
839 CGCallee callee = CGCallee::forDirect(fn);
840 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
841 callee, ReturnValueSlot(), args);
842 }
843
844 /// Determine whether the given architecture supports unaligned atomic
845 /// accesses. They don't have to be fast, just faster than a function
846 /// call and a mutex.
hasUnalignedAtomics(llvm::Triple::ArchType arch)847 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
848 // FIXME: Allow unaligned atomic load/store on x86. (It is not
849 // currently supported by the backend.)
850 return 0;
851 }
852
853 /// Return the maximum size that permits atomic accesses for the given
854 /// architecture.
getMaxAtomicAccessSize(CodeGenModule & CGM,llvm::Triple::ArchType arch)855 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
856 llvm::Triple::ArchType arch) {
857 // ARM has 8-byte atomic accesses, but it's not clear whether we
858 // want to rely on them here.
859
860 // In the default case, just assume that any size up to a pointer is
861 // fine given adequate alignment.
862 return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
863 }
864
865 namespace {
866 class PropertyImplStrategy {
867 public:
868 enum StrategyKind {
869 /// The 'native' strategy is to use the architecture's provided
870 /// reads and writes.
871 Native,
872
873 /// Use objc_setProperty and objc_getProperty.
874 GetSetProperty,
875
876 /// Use objc_setProperty for the setter, but use expression
877 /// evaluation for the getter.
878 SetPropertyAndExpressionGet,
879
880 /// Use objc_copyStruct.
881 CopyStruct,
882
883 /// The 'expression' strategy is to emit normal assignment or
884 /// lvalue-to-rvalue expressions.
885 Expression
886 };
887
getKind() const888 StrategyKind getKind() const { return StrategyKind(Kind); }
889
hasStrongMember() const890 bool hasStrongMember() const { return HasStrong; }
isAtomic() const891 bool isAtomic() const { return IsAtomic; }
isCopy() const892 bool isCopy() const { return IsCopy; }
893
getIvarSize() const894 CharUnits getIvarSize() const { return IvarSize; }
getIvarAlignment() const895 CharUnits getIvarAlignment() const { return IvarAlignment; }
896
897 PropertyImplStrategy(CodeGenModule &CGM,
898 const ObjCPropertyImplDecl *propImpl);
899
900 private:
901 unsigned Kind : 8;
902 unsigned IsAtomic : 1;
903 unsigned IsCopy : 1;
904 unsigned HasStrong : 1;
905
906 CharUnits IvarSize;
907 CharUnits IvarAlignment;
908 };
909 }
910
911 /// Pick an implementation strategy for the given property synthesis.
PropertyImplStrategy(CodeGenModule & CGM,const ObjCPropertyImplDecl * propImpl)912 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
913 const ObjCPropertyImplDecl *propImpl) {
914 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
915 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
916
917 IsCopy = (setterKind == ObjCPropertyDecl::Copy);
918 IsAtomic = prop->isAtomic();
919 HasStrong = false; // doesn't matter here.
920
921 // Evaluate the ivar's size and alignment.
922 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
923 QualType ivarType = ivar->getType();
924 auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
925 IvarSize = TInfo.Width;
926 IvarAlignment = TInfo.Align;
927
928 // If we have a copy property, we always have to use getProperty/setProperty.
929 // TODO: we could actually use setProperty and an expression for non-atomics.
930 if (IsCopy) {
931 Kind = GetSetProperty;
932 return;
933 }
934
935 // Handle retain.
936 if (setterKind == ObjCPropertyDecl::Retain) {
937 // In GC-only, there's nothing special that needs to be done.
938 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
939 // fallthrough
940
941 // In ARC, if the property is non-atomic, use expression emission,
942 // which translates to objc_storeStrong. This isn't required, but
943 // it's slightly nicer.
944 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
945 // Using standard expression emission for the setter is only
946 // acceptable if the ivar is __strong, which won't be true if
947 // the property is annotated with __attribute__((NSObject)).
948 // TODO: falling all the way back to objc_setProperty here is
949 // just laziness, though; we could still use objc_storeStrong
950 // if we hacked it right.
951 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
952 Kind = Expression;
953 else
954 Kind = SetPropertyAndExpressionGet;
955 return;
956
957 // Otherwise, we need to at least use setProperty. However, if
958 // the property isn't atomic, we can use normal expression
959 // emission for the getter.
960 } else if (!IsAtomic) {
961 Kind = SetPropertyAndExpressionGet;
962 return;
963
964 // Otherwise, we have to use both setProperty and getProperty.
965 } else {
966 Kind = GetSetProperty;
967 return;
968 }
969 }
970
971 // If we're not atomic, just use expression accesses.
972 if (!IsAtomic) {
973 Kind = Expression;
974 return;
975 }
976
977 // Properties on bitfield ivars need to be emitted using expression
978 // accesses even if they're nominally atomic.
979 if (ivar->isBitField()) {
980 Kind = Expression;
981 return;
982 }
983
984 // GC-qualified or ARC-qualified ivars need to be emitted as
985 // expressions. This actually works out to being atomic anyway,
986 // except for ARC __strong, but that should trigger the above code.
987 if (ivarType.hasNonTrivialObjCLifetime() ||
988 (CGM.getLangOpts().getGC() &&
989 CGM.getContext().getObjCGCAttrKind(ivarType))) {
990 Kind = Expression;
991 return;
992 }
993
994 // Compute whether the ivar has strong members.
995 if (CGM.getLangOpts().getGC())
996 if (const RecordType *recordType = ivarType->getAs<RecordType>())
997 HasStrong = recordType->getDecl()->hasObjectMember();
998
999 // We can never access structs with object members with a native
1000 // access, because we need to use write barriers. This is what
1001 // objc_copyStruct is for.
1002 if (HasStrong) {
1003 Kind = CopyStruct;
1004 return;
1005 }
1006
1007 // Otherwise, this is target-dependent and based on the size and
1008 // alignment of the ivar.
1009
1010 // If the size of the ivar is not a power of two, give up. We don't
1011 // want to get into the business of doing compare-and-swaps.
1012 if (!IvarSize.isPowerOfTwo()) {
1013 Kind = CopyStruct;
1014 return;
1015 }
1016
1017 llvm::Triple::ArchType arch =
1018 CGM.getTarget().getTriple().getArch();
1019
1020 // Most architectures require memory to fit within a single cache
1021 // line, so the alignment has to be at least the size of the access.
1022 // Otherwise we have to grab a lock.
1023 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1024 Kind = CopyStruct;
1025 return;
1026 }
1027
1028 // If the ivar's size exceeds the architecture's maximum atomic
1029 // access size, we have to use CopyStruct.
1030 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1031 Kind = CopyStruct;
1032 return;
1033 }
1034
1035 // Otherwise, we can use native loads and stores.
1036 Kind = Native;
1037 }
1038
1039 /// Generate an Objective-C property getter function.
1040 ///
1041 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1042 /// is illegal within a category.
GenerateObjCGetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)1043 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1044 const ObjCPropertyImplDecl *PID) {
1045 llvm::Constant *AtomicHelperFn =
1046 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1047 ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1048 assert(OMD && "Invalid call to generate getter (empty method)");
1049 StartObjCMethod(OMD, IMP->getClassInterface());
1050
1051 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1052
1053 FinishFunction(OMD->getEndLoc());
1054 }
1055
hasTrivialGetExpr(const ObjCPropertyImplDecl * propImpl)1056 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1057 const Expr *getter = propImpl->getGetterCXXConstructor();
1058 if (!getter) return true;
1059
1060 // Sema only makes only of these when the ivar has a C++ class type,
1061 // so the form is pretty constrained.
1062
1063 // If the property has a reference type, we might just be binding a
1064 // reference, in which case the result will be a gl-value. We should
1065 // treat this as a non-trivial operation.
1066 if (getter->isGLValue())
1067 return false;
1068
1069 // If we selected a trivial copy-constructor, we're okay.
1070 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1071 return (construct->getConstructor()->isTrivial());
1072
1073 // The constructor might require cleanups (in which case it's never
1074 // trivial).
1075 assert(isa<ExprWithCleanups>(getter));
1076 return false;
1077 }
1078
1079 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1080 /// copy the ivar into the resturn slot.
emitCPPObjectAtomicGetterCall(CodeGenFunction & CGF,llvm::Value * returnAddr,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)1081 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1082 llvm::Value *returnAddr,
1083 ObjCIvarDecl *ivar,
1084 llvm::Constant *AtomicHelperFn) {
1085 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1086 // AtomicHelperFn);
1087 CallArgList args;
1088
1089 // The 1st argument is the return Slot.
1090 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1091
1092 // The 2nd argument is the address of the ivar.
1093 llvm::Value *ivarAddr =
1094 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1095 .getPointer(CGF);
1096 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1097 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1098
1099 // Third argument is the helper function.
1100 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1101
1102 llvm::FunctionCallee copyCppAtomicObjectFn =
1103 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1104 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1105 CGF.EmitCall(
1106 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1107 callee, ReturnValueSlot(), args);
1108 }
1109
1110 void
generateObjCGetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,const ObjCMethodDecl * GetterMethodDecl,llvm::Constant * AtomicHelperFn)1111 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1112 const ObjCPropertyImplDecl *propImpl,
1113 const ObjCMethodDecl *GetterMethodDecl,
1114 llvm::Constant *AtomicHelperFn) {
1115 // If there's a non-trivial 'get' expression, we just have to emit that.
1116 if (!hasTrivialGetExpr(propImpl)) {
1117 if (!AtomicHelperFn) {
1118 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1119 propImpl->getGetterCXXConstructor(),
1120 /* NRVOCandidate=*/nullptr);
1121 EmitReturnStmt(*ret);
1122 }
1123 else {
1124 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1125 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1126 ivar, AtomicHelperFn);
1127 }
1128 return;
1129 }
1130
1131 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1132 QualType propType = prop->getType();
1133 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1134
1135 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1136
1137 // Pick an implementation strategy.
1138 PropertyImplStrategy strategy(CGM, propImpl);
1139 switch (strategy.getKind()) {
1140 case PropertyImplStrategy::Native: {
1141 // We don't need to do anything for a zero-size struct.
1142 if (strategy.getIvarSize().isZero())
1143 return;
1144
1145 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1146
1147 // Currently, all atomic accesses have to be through integer
1148 // types, so there's no point in trying to pick a prettier type.
1149 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1150 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1151 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1152
1153 // Perform an atomic load. This does not impose ordering constraints.
1154 Address ivarAddr = LV.getAddress(*this);
1155 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1156 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1157 load->setAtomic(llvm::AtomicOrdering::Unordered);
1158
1159 // Store that value into the return address. Doing this with a
1160 // bitcast is likely to produce some pretty ugly IR, but it's not
1161 // the *most* terrible thing in the world.
1162 llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1163 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1164 llvm::Value *ivarVal = load;
1165 if (ivarSize > retTySize) {
1166 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1167 ivarVal = Builder.CreateTrunc(load, newTy);
1168 bitcastType = newTy->getPointerTo();
1169 }
1170 Builder.CreateStore(ivarVal,
1171 Builder.CreateBitCast(ReturnValue, bitcastType));
1172
1173 // Make sure we don't do an autorelease.
1174 AutoreleaseResult = false;
1175 return;
1176 }
1177
1178 case PropertyImplStrategy::GetSetProperty: {
1179 llvm::FunctionCallee getPropertyFn =
1180 CGM.getObjCRuntime().GetPropertyGetFunction();
1181 if (!getPropertyFn) {
1182 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1183 return;
1184 }
1185 CGCallee callee = CGCallee::forDirect(getPropertyFn);
1186
1187 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1188 // FIXME: Can't this be simpler? This might even be worse than the
1189 // corresponding gcc code.
1190 llvm::Value *cmd =
1191 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1192 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1193 llvm::Value *ivarOffset =
1194 EmitIvarOffset(classImpl->getClassInterface(), ivar);
1195
1196 CallArgList args;
1197 args.add(RValue::get(self), getContext().getObjCIdType());
1198 args.add(RValue::get(cmd), getContext().getObjCSelType());
1199 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1200 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1201 getContext().BoolTy);
1202
1203 // FIXME: We shouldn't need to get the function info here, the
1204 // runtime already should have computed it to build the function.
1205 llvm::CallBase *CallInstruction;
1206 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1207 getContext().getObjCIdType(), args),
1208 callee, ReturnValueSlot(), args, &CallInstruction);
1209 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1210 call->setTailCall();
1211
1212 // We need to fix the type here. Ivars with copy & retain are
1213 // always objects so we don't need to worry about complex or
1214 // aggregates.
1215 RV = RValue::get(Builder.CreateBitCast(
1216 RV.getScalarVal(),
1217 getTypes().ConvertType(getterMethod->getReturnType())));
1218
1219 EmitReturnOfRValue(RV, propType);
1220
1221 // objc_getProperty does an autorelease, so we should suppress ours.
1222 AutoreleaseResult = false;
1223
1224 return;
1225 }
1226
1227 case PropertyImplStrategy::CopyStruct:
1228 emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1229 strategy.hasStrongMember());
1230 return;
1231
1232 case PropertyImplStrategy::Expression:
1233 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1234 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1235
1236 QualType ivarType = ivar->getType();
1237 switch (getEvaluationKind(ivarType)) {
1238 case TEK_Complex: {
1239 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1240 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1241 /*init*/ true);
1242 return;
1243 }
1244 case TEK_Aggregate: {
1245 // The return value slot is guaranteed to not be aliased, but
1246 // that's not necessarily the same as "on the stack", so
1247 // we still potentially need objc_memmove_collectable.
1248 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1249 /* Src= */ LV, ivarType, getOverlapForReturnValue());
1250 return;
1251 }
1252 case TEK_Scalar: {
1253 llvm::Value *value;
1254 if (propType->isReferenceType()) {
1255 value = LV.getAddress(*this).getPointer();
1256 } else {
1257 // We want to load and autoreleaseReturnValue ARC __weak ivars.
1258 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1259 if (getLangOpts().ObjCAutoRefCount) {
1260 value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1261 } else {
1262 value = EmitARCLoadWeak(LV.getAddress(*this));
1263 }
1264
1265 // Otherwise we want to do a simple load, suppressing the
1266 // final autorelease.
1267 } else {
1268 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1269 AutoreleaseResult = false;
1270 }
1271
1272 value = Builder.CreateBitCast(
1273 value, ConvertType(GetterMethodDecl->getReturnType()));
1274 }
1275
1276 EmitReturnOfRValue(RValue::get(value), propType);
1277 return;
1278 }
1279 }
1280 llvm_unreachable("bad evaluation kind");
1281 }
1282
1283 }
1284 llvm_unreachable("bad @property implementation strategy!");
1285 }
1286
1287 /// emitStructSetterCall - Call the runtime function to store the value
1288 /// from the first formal parameter into the given ivar.
emitStructSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar)1289 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1290 ObjCIvarDecl *ivar) {
1291 // objc_copyStruct (&structIvar, &Arg,
1292 // sizeof (struct something), true, false);
1293 CallArgList args;
1294
1295 // The first argument is the address of the ivar.
1296 llvm::Value *ivarAddr =
1297 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1298 .getPointer(CGF);
1299 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1300 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1301
1302 // The second argument is the address of the parameter variable.
1303 ParmVarDecl *argVar = *OMD->param_begin();
1304 DeclRefExpr argRef(CGF.getContext(), argVar, false,
1305 argVar->getType().getNonReferenceType(), VK_LValue,
1306 SourceLocation());
1307 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1308 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1309 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1310
1311 // The third argument is the sizeof the type.
1312 llvm::Value *size =
1313 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1314 args.add(RValue::get(size), CGF.getContext().getSizeType());
1315
1316 // The fourth argument is the 'isAtomic' flag.
1317 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1318
1319 // The fifth argument is the 'hasStrong' flag.
1320 // FIXME: should this really always be false?
1321 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1322
1323 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1324 CGCallee callee = CGCallee::forDirect(fn);
1325 CGF.EmitCall(
1326 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1327 callee, ReturnValueSlot(), args);
1328 }
1329
1330 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1331 /// the value from the first formal parameter into the given ivar, using
1332 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
emitCPPObjectAtomicSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)1333 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1334 ObjCMethodDecl *OMD,
1335 ObjCIvarDecl *ivar,
1336 llvm::Constant *AtomicHelperFn) {
1337 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1338 // AtomicHelperFn);
1339 CallArgList args;
1340
1341 // The first argument is the address of the ivar.
1342 llvm::Value *ivarAddr =
1343 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1344 .getPointer(CGF);
1345 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1346 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1347
1348 // The second argument is the address of the parameter variable.
1349 ParmVarDecl *argVar = *OMD->param_begin();
1350 DeclRefExpr argRef(CGF.getContext(), argVar, false,
1351 argVar->getType().getNonReferenceType(), VK_LValue,
1352 SourceLocation());
1353 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1354 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1355 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1356
1357 // Third argument is the helper function.
1358 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1359
1360 llvm::FunctionCallee fn =
1361 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1362 CGCallee callee = CGCallee::forDirect(fn);
1363 CGF.EmitCall(
1364 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1365 callee, ReturnValueSlot(), args);
1366 }
1367
1368
hasTrivialSetExpr(const ObjCPropertyImplDecl * PID)1369 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1370 Expr *setter = PID->getSetterCXXAssignment();
1371 if (!setter) return true;
1372
1373 // Sema only makes only of these when the ivar has a C++ class type,
1374 // so the form is pretty constrained.
1375
1376 // An operator call is trivial if the function it calls is trivial.
1377 // This also implies that there's nothing non-trivial going on with
1378 // the arguments, because operator= can only be trivial if it's a
1379 // synthesized assignment operator and therefore both parameters are
1380 // references.
1381 if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1382 if (const FunctionDecl *callee
1383 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1384 if (callee->isTrivial())
1385 return true;
1386 return false;
1387 }
1388
1389 assert(isa<ExprWithCleanups>(setter));
1390 return false;
1391 }
1392
UseOptimizedSetter(CodeGenModule & CGM)1393 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1394 if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1395 return false;
1396 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1397 }
1398
1399 void
generateObjCSetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,llvm::Constant * AtomicHelperFn)1400 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1401 const ObjCPropertyImplDecl *propImpl,
1402 llvm::Constant *AtomicHelperFn) {
1403 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1404 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1405
1406 // Just use the setter expression if Sema gave us one and it's
1407 // non-trivial.
1408 if (!hasTrivialSetExpr(propImpl)) {
1409 if (!AtomicHelperFn)
1410 // If non-atomic, assignment is called directly.
1411 EmitStmt(propImpl->getSetterCXXAssignment());
1412 else
1413 // If atomic, assignment is called via a locking api.
1414 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1415 AtomicHelperFn);
1416 return;
1417 }
1418
1419 PropertyImplStrategy strategy(CGM, propImpl);
1420 switch (strategy.getKind()) {
1421 case PropertyImplStrategy::Native: {
1422 // We don't need to do anything for a zero-size struct.
1423 if (strategy.getIvarSize().isZero())
1424 return;
1425
1426 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1427
1428 LValue ivarLValue =
1429 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1430 Address ivarAddr = ivarLValue.getAddress(*this);
1431
1432 // Currently, all atomic accesses have to be through integer
1433 // types, so there's no point in trying to pick a prettier type.
1434 llvm::Type *bitcastType =
1435 llvm::Type::getIntNTy(getLLVMContext(),
1436 getContext().toBits(strategy.getIvarSize()));
1437
1438 // Cast both arguments to the chosen operation type.
1439 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1440 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1441
1442 // This bitcast load is likely to cause some nasty IR.
1443 llvm::Value *load = Builder.CreateLoad(argAddr);
1444
1445 // Perform an atomic store. There are no memory ordering requirements.
1446 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1447 store->setAtomic(llvm::AtomicOrdering::Unordered);
1448 return;
1449 }
1450
1451 case PropertyImplStrategy::GetSetProperty:
1452 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1453
1454 llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1455 llvm::FunctionCallee setPropertyFn = nullptr;
1456 if (UseOptimizedSetter(CGM)) {
1457 // 10.8 and iOS 6.0 code and GC is off
1458 setOptimizedPropertyFn =
1459 CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1460 strategy.isAtomic(), strategy.isCopy());
1461 if (!setOptimizedPropertyFn) {
1462 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1463 return;
1464 }
1465 }
1466 else {
1467 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1468 if (!setPropertyFn) {
1469 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1470 return;
1471 }
1472 }
1473
1474 // Emit objc_setProperty((id) self, _cmd, offset, arg,
1475 // <is-atomic>, <is-copy>).
1476 llvm::Value *cmd =
1477 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1478 llvm::Value *self =
1479 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1480 llvm::Value *ivarOffset =
1481 EmitIvarOffset(classImpl->getClassInterface(), ivar);
1482 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1483 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1484 arg = Builder.CreateBitCast(arg, VoidPtrTy);
1485
1486 CallArgList args;
1487 args.add(RValue::get(self), getContext().getObjCIdType());
1488 args.add(RValue::get(cmd), getContext().getObjCSelType());
1489 if (setOptimizedPropertyFn) {
1490 args.add(RValue::get(arg), getContext().getObjCIdType());
1491 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1492 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1493 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1494 callee, ReturnValueSlot(), args);
1495 } else {
1496 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1497 args.add(RValue::get(arg), getContext().getObjCIdType());
1498 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1499 getContext().BoolTy);
1500 args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1501 getContext().BoolTy);
1502 // FIXME: We shouldn't need to get the function info here, the runtime
1503 // already should have computed it to build the function.
1504 CGCallee callee = CGCallee::forDirect(setPropertyFn);
1505 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1506 callee, ReturnValueSlot(), args);
1507 }
1508
1509 return;
1510 }
1511
1512 case PropertyImplStrategy::CopyStruct:
1513 emitStructSetterCall(*this, setterMethod, ivar);
1514 return;
1515
1516 case PropertyImplStrategy::Expression:
1517 break;
1518 }
1519
1520 // Otherwise, fake up some ASTs and emit a normal assignment.
1521 ValueDecl *selfDecl = setterMethod->getSelfDecl();
1522 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1523 VK_LValue, SourceLocation());
1524 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1525 CK_LValueToRValue, &self, VK_RValue,
1526 FPOptionsOverride());
1527 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1528 SourceLocation(), SourceLocation(),
1529 &selfLoad, true, true);
1530
1531 ParmVarDecl *argDecl = *setterMethod->param_begin();
1532 QualType argType = argDecl->getType().getNonReferenceType();
1533 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1534 SourceLocation());
1535 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1536 argType.getUnqualifiedType(), CK_LValueToRValue,
1537 &arg, VK_RValue, FPOptionsOverride());
1538
1539 // The property type can differ from the ivar type in some situations with
1540 // Objective-C pointer types, we can always bit cast the RHS in these cases.
1541 // The following absurdity is just to ensure well-formed IR.
1542 CastKind argCK = CK_NoOp;
1543 if (ivarRef.getType()->isObjCObjectPointerType()) {
1544 if (argLoad.getType()->isObjCObjectPointerType())
1545 argCK = CK_BitCast;
1546 else if (argLoad.getType()->isBlockPointerType())
1547 argCK = CK_BlockPointerToObjCPointerCast;
1548 else
1549 argCK = CK_CPointerToObjCPointerCast;
1550 } else if (ivarRef.getType()->isBlockPointerType()) {
1551 if (argLoad.getType()->isBlockPointerType())
1552 argCK = CK_BitCast;
1553 else
1554 argCK = CK_AnyPointerToBlockPointerCast;
1555 } else if (ivarRef.getType()->isPointerType()) {
1556 argCK = CK_BitCast;
1557 }
1558 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1559 &argLoad, VK_RValue, FPOptionsOverride());
1560 Expr *finalArg = &argLoad;
1561 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1562 argLoad.getType()))
1563 finalArg = &argCast;
1564
1565 BinaryOperator *assign = BinaryOperator::Create(
1566 getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), VK_RValue,
1567 OK_Ordinary, SourceLocation(), FPOptionsOverride());
1568 EmitStmt(assign);
1569 }
1570
1571 /// Generate an Objective-C property setter function.
1572 ///
1573 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1574 /// is illegal within a category.
GenerateObjCSetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)1575 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1576 const ObjCPropertyImplDecl *PID) {
1577 llvm::Constant *AtomicHelperFn =
1578 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1579 ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1580 assert(OMD && "Invalid call to generate setter (empty method)");
1581 StartObjCMethod(OMD, IMP->getClassInterface());
1582
1583 generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1584
1585 FinishFunction(OMD->getEndLoc());
1586 }
1587
1588 namespace {
1589 struct DestroyIvar final : EHScopeStack::Cleanup {
1590 private:
1591 llvm::Value *addr;
1592 const ObjCIvarDecl *ivar;
1593 CodeGenFunction::Destroyer *destroyer;
1594 bool useEHCleanupForArray;
1595 public:
DestroyIvar__anon82b769870311::DestroyIvar1596 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1597 CodeGenFunction::Destroyer *destroyer,
1598 bool useEHCleanupForArray)
1599 : addr(addr), ivar(ivar), destroyer(destroyer),
1600 useEHCleanupForArray(useEHCleanupForArray) {}
1601
Emit__anon82b769870311::DestroyIvar1602 void Emit(CodeGenFunction &CGF, Flags flags) override {
1603 LValue lvalue
1604 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1605 CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1606 flags.isForNormalCleanup() && useEHCleanupForArray);
1607 }
1608 };
1609 }
1610
1611 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
destroyARCStrongWithStore(CodeGenFunction & CGF,Address addr,QualType type)1612 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1613 Address addr,
1614 QualType type) {
1615 llvm::Value *null = getNullForVariable(addr);
1616 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1617 }
1618
emitCXXDestructMethod(CodeGenFunction & CGF,ObjCImplementationDecl * impl)1619 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1620 ObjCImplementationDecl *impl) {
1621 CodeGenFunction::RunCleanupsScope scope(CGF);
1622
1623 llvm::Value *self = CGF.LoadObjCSelf();
1624
1625 const ObjCInterfaceDecl *iface = impl->getClassInterface();
1626 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1627 ivar; ivar = ivar->getNextIvar()) {
1628 QualType type = ivar->getType();
1629
1630 // Check whether the ivar is a destructible type.
1631 QualType::DestructionKind dtorKind = type.isDestructedType();
1632 if (!dtorKind) continue;
1633
1634 CodeGenFunction::Destroyer *destroyer = nullptr;
1635
1636 // Use a call to objc_storeStrong to destroy strong ivars, for the
1637 // general benefit of the tools.
1638 if (dtorKind == QualType::DK_objc_strong_lifetime) {
1639 destroyer = destroyARCStrongWithStore;
1640
1641 // Otherwise use the default for the destruction kind.
1642 } else {
1643 destroyer = CGF.getDestroyer(dtorKind);
1644 }
1645
1646 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1647
1648 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1649 cleanupKind & EHCleanup);
1650 }
1651
1652 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1653 }
1654
GenerateObjCCtorDtorMethod(ObjCImplementationDecl * IMP,ObjCMethodDecl * MD,bool ctor)1655 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1656 ObjCMethodDecl *MD,
1657 bool ctor) {
1658 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1659 StartObjCMethod(MD, IMP->getClassInterface());
1660
1661 // Emit .cxx_construct.
1662 if (ctor) {
1663 // Suppress the final autorelease in ARC.
1664 AutoreleaseResult = false;
1665
1666 for (const auto *IvarInit : IMP->inits()) {
1667 FieldDecl *Field = IvarInit->getAnyMember();
1668 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1669 LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1670 LoadObjCSelf(), Ivar, 0);
1671 EmitAggExpr(IvarInit->getInit(),
1672 AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1673 AggValueSlot::DoesNotNeedGCBarriers,
1674 AggValueSlot::IsNotAliased,
1675 AggValueSlot::DoesNotOverlap));
1676 }
1677 // constructor returns 'self'.
1678 CodeGenTypes &Types = CGM.getTypes();
1679 QualType IdTy(CGM.getContext().getObjCIdType());
1680 llvm::Value *SelfAsId =
1681 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1682 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1683
1684 // Emit .cxx_destruct.
1685 } else {
1686 emitCXXDestructMethod(*this, IMP);
1687 }
1688 FinishFunction();
1689 }
1690
LoadObjCSelf()1691 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1692 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1693 DeclRefExpr DRE(getContext(), Self,
1694 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1695 Self->getType(), VK_LValue, SourceLocation());
1696 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1697 }
1698
TypeOfSelfObject()1699 QualType CodeGenFunction::TypeOfSelfObject() {
1700 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1701 ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1702 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1703 getContext().getCanonicalType(selfDecl->getType()));
1704 return PTy->getPointeeType();
1705 }
1706
EmitObjCForCollectionStmt(const ObjCForCollectionStmt & S)1707 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1708 llvm::FunctionCallee EnumerationMutationFnPtr =
1709 CGM.getObjCRuntime().EnumerationMutationFunction();
1710 if (!EnumerationMutationFnPtr) {
1711 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1712 return;
1713 }
1714 CGCallee EnumerationMutationFn =
1715 CGCallee::forDirect(EnumerationMutationFnPtr);
1716
1717 CGDebugInfo *DI = getDebugInfo();
1718 if (DI)
1719 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1720
1721 RunCleanupsScope ForScope(*this);
1722
1723 // The local variable comes into scope immediately.
1724 AutoVarEmission variable = AutoVarEmission::invalid();
1725 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1726 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1727
1728 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1729
1730 // Fast enumeration state.
1731 QualType StateTy = CGM.getObjCFastEnumerationStateType();
1732 Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1733 EmitNullInitialization(StatePtr, StateTy);
1734
1735 // Number of elements in the items array.
1736 static const unsigned NumItems = 16;
1737
1738 // Fetch the countByEnumeratingWithState:objects:count: selector.
1739 IdentifierInfo *II[] = {
1740 &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1741 &CGM.getContext().Idents.get("objects"),
1742 &CGM.getContext().Idents.get("count")
1743 };
1744 Selector FastEnumSel =
1745 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1746
1747 QualType ItemsTy =
1748 getContext().getConstantArrayType(getContext().getObjCIdType(),
1749 llvm::APInt(32, NumItems), nullptr,
1750 ArrayType::Normal, 0);
1751 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1752
1753 // Emit the collection pointer. In ARC, we do a retain.
1754 llvm::Value *Collection;
1755 if (getLangOpts().ObjCAutoRefCount) {
1756 Collection = EmitARCRetainScalarExpr(S.getCollection());
1757
1758 // Enter a cleanup to do the release.
1759 EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1760 } else {
1761 Collection = EmitScalarExpr(S.getCollection());
1762 }
1763
1764 // The 'continue' label needs to appear within the cleanup for the
1765 // collection object.
1766 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1767
1768 // Send it our message:
1769 CallArgList Args;
1770
1771 // The first argument is a temporary of the enumeration-state type.
1772 Args.add(RValue::get(StatePtr.getPointer()),
1773 getContext().getPointerType(StateTy));
1774
1775 // The second argument is a temporary array with space for NumItems
1776 // pointers. We'll actually be loading elements from the array
1777 // pointer written into the control state; this buffer is so that
1778 // collections that *aren't* backed by arrays can still queue up
1779 // batches of elements.
1780 Args.add(RValue::get(ItemsPtr.getPointer()),
1781 getContext().getPointerType(ItemsTy));
1782
1783 // The third argument is the capacity of that temporary array.
1784 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1785 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1786 Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1787
1788 // Start the enumeration.
1789 RValue CountRV =
1790 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1791 getContext().getNSUIntegerType(),
1792 FastEnumSel, Collection, Args);
1793
1794 // The initial number of objects that were returned in the buffer.
1795 llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1796
1797 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1798 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1799
1800 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1801
1802 // If the limit pointer was zero to begin with, the collection is
1803 // empty; skip all this. Set the branch weight assuming this has the same
1804 // probability of exiting the loop as any other loop exit.
1805 uint64_t EntryCount = getCurrentProfileCount();
1806 Builder.CreateCondBr(
1807 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1808 LoopInitBB,
1809 createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1810
1811 // Otherwise, initialize the loop.
1812 EmitBlock(LoopInitBB);
1813
1814 // Save the initial mutations value. This is the value at an
1815 // address that was written into the state object by
1816 // countByEnumeratingWithState:objects:count:.
1817 Address StateMutationsPtrPtr =
1818 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1819 llvm::Value *StateMutationsPtr
1820 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1821
1822 llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1823 llvm::Value *initialMutations =
1824 Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1825 getPointerAlign(), "forcoll.initial-mutations");
1826
1827 // Start looping. This is the point we return to whenever we have a
1828 // fresh, non-empty batch of objects.
1829 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1830 EmitBlock(LoopBodyBB);
1831
1832 // The current index into the buffer.
1833 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1834 index->addIncoming(zero, LoopInitBB);
1835
1836 // The current buffer size.
1837 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1838 count->addIncoming(initialBufferLimit, LoopInitBB);
1839
1840 incrementProfileCounter(&S);
1841
1842 // Check whether the mutations value has changed from where it was
1843 // at start. StateMutationsPtr should actually be invariant between
1844 // refreshes.
1845 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1846 llvm::Value *currentMutations
1847 = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1848 getPointerAlign(), "statemutations");
1849
1850 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1851 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1852
1853 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1854 WasNotMutatedBB, WasMutatedBB);
1855
1856 // If so, call the enumeration-mutation function.
1857 EmitBlock(WasMutatedBB);
1858 llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType());
1859 llvm::Value *V =
1860 Builder.CreateBitCast(Collection, ObjCIdType);
1861 CallArgList Args2;
1862 Args2.add(RValue::get(V), getContext().getObjCIdType());
1863 // FIXME: We shouldn't need to get the function info here, the runtime already
1864 // should have computed it to build the function.
1865 EmitCall(
1866 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1867 EnumerationMutationFn, ReturnValueSlot(), Args2);
1868
1869 // Otherwise, or if the mutation function returns, just continue.
1870 EmitBlock(WasNotMutatedBB);
1871
1872 // Initialize the element variable.
1873 RunCleanupsScope elementVariableScope(*this);
1874 bool elementIsVariable;
1875 LValue elementLValue;
1876 QualType elementType;
1877 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1878 // Initialize the variable, in case it's a __block variable or something.
1879 EmitAutoVarInit(variable);
1880
1881 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1882 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1883 D->getType(), VK_LValue, SourceLocation());
1884 elementLValue = EmitLValue(&tempDRE);
1885 elementType = D->getType();
1886 elementIsVariable = true;
1887
1888 if (D->isARCPseudoStrong())
1889 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1890 } else {
1891 elementLValue = LValue(); // suppress warning
1892 elementType = cast<Expr>(S.getElement())->getType();
1893 elementIsVariable = false;
1894 }
1895 llvm::Type *convertedElementType = ConvertType(elementType);
1896
1897 // Fetch the buffer out of the enumeration state.
1898 // TODO: this pointer should actually be invariant between
1899 // refreshes, which would help us do certain loop optimizations.
1900 Address StateItemsPtr =
1901 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1902 llvm::Value *EnumStateItems =
1903 Builder.CreateLoad(StateItemsPtr, "stateitems");
1904
1905 // Fetch the value at the current index from the buffer.
1906 llvm::Value *CurrentItemPtr =
1907 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1908 llvm::Value *CurrentItem =
1909 Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1910
1911 if (SanOpts.has(SanitizerKind::ObjCCast)) {
1912 // Before using an item from the collection, check that the implicit cast
1913 // from id to the element type is valid. This is done with instrumentation
1914 // roughly corresponding to:
1915 //
1916 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1917 const ObjCObjectPointerType *ObjPtrTy =
1918 elementType->getAsObjCInterfacePointerType();
1919 const ObjCInterfaceType *InterfaceTy =
1920 ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1921 if (InterfaceTy) {
1922 SanitizerScope SanScope(this);
1923 auto &C = CGM.getContext();
1924 assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1925 Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1926 CallArgList IsKindOfClassArgs;
1927 llvm::Value *Cls =
1928 CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1929 IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1930 llvm::Value *IsClass =
1931 CGM.getObjCRuntime()
1932 .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1933 IsKindOfClassSel, CurrentItem,
1934 IsKindOfClassArgs)
1935 .getScalarVal();
1936 llvm::Constant *StaticData[] = {
1937 EmitCheckSourceLocation(S.getBeginLoc()),
1938 EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1939 EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1940 SanitizerHandler::InvalidObjCCast,
1941 ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1942 }
1943 }
1944
1945 // Cast that value to the right type.
1946 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1947 "currentitem");
1948
1949 // Make sure we have an l-value. Yes, this gets evaluated every
1950 // time through the loop.
1951 if (!elementIsVariable) {
1952 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1953 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1954 } else {
1955 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1956 /*isInit*/ true);
1957 }
1958
1959 // If we do have an element variable, this assignment is the end of
1960 // its initialization.
1961 if (elementIsVariable)
1962 EmitAutoVarCleanups(variable);
1963
1964 // Perform the loop body, setting up break and continue labels.
1965 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1966 {
1967 RunCleanupsScope Scope(*this);
1968 EmitStmt(S.getBody());
1969 }
1970 BreakContinueStack.pop_back();
1971
1972 // Destroy the element variable now.
1973 elementVariableScope.ForceCleanup();
1974
1975 // Check whether there are more elements.
1976 EmitBlock(AfterBody.getBlock());
1977
1978 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1979
1980 // First we check in the local buffer.
1981 llvm::Value *indexPlusOne =
1982 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1983
1984 // If we haven't overrun the buffer yet, we can continue.
1985 // Set the branch weights based on the simplifying assumption that this is
1986 // like a while-loop, i.e., ignoring that the false branch fetches more
1987 // elements and then returns to the loop.
1988 Builder.CreateCondBr(
1989 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1990 createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1991
1992 index->addIncoming(indexPlusOne, AfterBody.getBlock());
1993 count->addIncoming(count, AfterBody.getBlock());
1994
1995 // Otherwise, we have to fetch more elements.
1996 EmitBlock(FetchMoreBB);
1997
1998 CountRV =
1999 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2000 getContext().getNSUIntegerType(),
2001 FastEnumSel, Collection, Args);
2002
2003 // If we got a zero count, we're done.
2004 llvm::Value *refetchCount = CountRV.getScalarVal();
2005
2006 // (note that the message send might split FetchMoreBB)
2007 index->addIncoming(zero, Builder.GetInsertBlock());
2008 count->addIncoming(refetchCount, Builder.GetInsertBlock());
2009
2010 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2011 EmptyBB, LoopBodyBB);
2012
2013 // No more elements.
2014 EmitBlock(EmptyBB);
2015
2016 if (!elementIsVariable) {
2017 // If the element was not a declaration, set it to be null.
2018
2019 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2020 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2021 EmitStoreThroughLValue(RValue::get(null), elementLValue);
2022 }
2023
2024 if (DI)
2025 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2026
2027 ForScope.ForceCleanup();
2028 EmitBlock(LoopEnd.getBlock());
2029 }
2030
EmitObjCAtTryStmt(const ObjCAtTryStmt & S)2031 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2032 CGM.getObjCRuntime().EmitTryStmt(*this, S);
2033 }
2034
EmitObjCAtThrowStmt(const ObjCAtThrowStmt & S)2035 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2036 CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2037 }
2038
EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt & S)2039 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2040 const ObjCAtSynchronizedStmt &S) {
2041 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2042 }
2043
2044 namespace {
2045 struct CallObjCRelease final : EHScopeStack::Cleanup {
CallObjCRelease__anon82b769870411::CallObjCRelease2046 CallObjCRelease(llvm::Value *object) : object(object) {}
2047 llvm::Value *object;
2048
Emit__anon82b769870411::CallObjCRelease2049 void Emit(CodeGenFunction &CGF, Flags flags) override {
2050 // Releases at the end of the full-expression are imprecise.
2051 CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2052 }
2053 };
2054 }
2055
2056 /// Produce the code for a CK_ARCConsumeObject. Does a primitive
2057 /// release at the end of the full-expression.
EmitObjCConsumeObject(QualType type,llvm::Value * object)2058 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2059 llvm::Value *object) {
2060 // If we're in a conditional branch, we need to make the cleanup
2061 // conditional.
2062 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2063 return object;
2064 }
2065
EmitObjCExtendObjectLifetime(QualType type,llvm::Value * value)2066 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2067 llvm::Value *value) {
2068 return EmitARCRetainAutorelease(type, value);
2069 }
2070
2071 /// Given a number of pointers, inform the optimizer that they're
2072 /// being intrinsically used up until this point in the program.
EmitARCIntrinsicUse(ArrayRef<llvm::Value * > values)2073 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2074 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2075 if (!fn)
2076 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2077
2078 // This isn't really a "runtime" function, but as an intrinsic it
2079 // doesn't really matter as long as we align things up.
2080 EmitNounwindRuntimeCall(fn, values);
2081 }
2082
2083 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2084 /// that has operand bundle "clang.arc.attachedcall".
EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value * > values)2085 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) {
2086 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2087 if (!fn)
2088 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2089 EmitNounwindRuntimeCall(fn, values);
2090 }
2091
setARCRuntimeFunctionLinkage(CodeGenModule & CGM,llvm::Value * RTF)2092 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2093 if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2094 // If the target runtime doesn't naturally support ARC, emit weak
2095 // references to the runtime support library. We don't really
2096 // permit this to fail, but we need a particular relocation style.
2097 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2098 !CGM.getTriple().isOSBinFormatCOFF()) {
2099 F->setLinkage(llvm::Function::ExternalWeakLinkage);
2100 }
2101 }
2102 }
2103
setARCRuntimeFunctionLinkage(CodeGenModule & CGM,llvm::FunctionCallee RTF)2104 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2105 llvm::FunctionCallee RTF) {
2106 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2107 }
2108
2109 /// Perform an operation having the signature
2110 /// i8* (i8*)
2111 /// where a null input causes a no-op and returns null.
emitARCValueOperation(CodeGenFunction & CGF,llvm::Value * value,llvm::Type * returnType,llvm::Function * & fn,llvm::Intrinsic::ID IntID,llvm::CallInst::TailCallKind tailKind=llvm::CallInst::TCK_None)2112 static llvm::Value *emitARCValueOperation(
2113 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2114 llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2115 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2116 if (isa<llvm::ConstantPointerNull>(value))
2117 return value;
2118
2119 if (!fn) {
2120 fn = CGF.CGM.getIntrinsic(IntID);
2121 setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2122 }
2123
2124 // Cast the argument to 'id'.
2125 llvm::Type *origType = returnType ? returnType : value->getType();
2126 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2127
2128 // Call the function.
2129 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2130 call->setTailCallKind(tailKind);
2131
2132 // Cast the result back to the original type.
2133 return CGF.Builder.CreateBitCast(call, origType);
2134 }
2135
2136 /// Perform an operation having the following signature:
2137 /// i8* (i8**)
emitARCLoadOperation(CodeGenFunction & CGF,Address addr,llvm::Function * & fn,llvm::Intrinsic::ID IntID)2138 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2139 llvm::Function *&fn,
2140 llvm::Intrinsic::ID IntID) {
2141 if (!fn) {
2142 fn = CGF.CGM.getIntrinsic(IntID);
2143 setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2144 }
2145
2146 // Cast the argument to 'id*'.
2147 llvm::Type *origType = addr.getElementType();
2148 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2149
2150 // Call the function.
2151 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2152
2153 // Cast the result back to a dereference of the original type.
2154 if (origType != CGF.Int8PtrTy)
2155 result = CGF.Builder.CreateBitCast(result, origType);
2156
2157 return result;
2158 }
2159
2160 /// Perform an operation having the following signature:
2161 /// i8* (i8**, i8*)
emitARCStoreOperation(CodeGenFunction & CGF,Address addr,llvm::Value * value,llvm::Function * & fn,llvm::Intrinsic::ID IntID,bool ignored)2162 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2163 llvm::Value *value,
2164 llvm::Function *&fn,
2165 llvm::Intrinsic::ID IntID,
2166 bool ignored) {
2167 assert(addr.getElementType() == value->getType());
2168
2169 if (!fn) {
2170 fn = CGF.CGM.getIntrinsic(IntID);
2171 setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2172 }
2173
2174 llvm::Type *origType = value->getType();
2175
2176 llvm::Value *args[] = {
2177 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2178 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2179 };
2180 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2181
2182 if (ignored) return nullptr;
2183
2184 return CGF.Builder.CreateBitCast(result, origType);
2185 }
2186
2187 /// Perform an operation having the following signature:
2188 /// void (i8**, i8**)
emitARCCopyOperation(CodeGenFunction & CGF,Address dst,Address src,llvm::Function * & fn,llvm::Intrinsic::ID IntID)2189 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2190 llvm::Function *&fn,
2191 llvm::Intrinsic::ID IntID) {
2192 assert(dst.getType() == src.getType());
2193
2194 if (!fn) {
2195 fn = CGF.CGM.getIntrinsic(IntID);
2196 setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2197 }
2198
2199 llvm::Value *args[] = {
2200 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2201 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2202 };
2203 CGF.EmitNounwindRuntimeCall(fn, args);
2204 }
2205
2206 /// Perform an operation having the signature
2207 /// i8* (i8*)
2208 /// where a null input causes a no-op and returns null.
emitObjCValueOperation(CodeGenFunction & CGF,llvm::Value * value,llvm::Type * returnType,llvm::FunctionCallee & fn,StringRef fnName)2209 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2210 llvm::Value *value,
2211 llvm::Type *returnType,
2212 llvm::FunctionCallee &fn,
2213 StringRef fnName) {
2214 if (isa<llvm::ConstantPointerNull>(value))
2215 return value;
2216
2217 if (!fn) {
2218 llvm::FunctionType *fnType =
2219 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2220 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2221
2222 // We have Native ARC, so set nonlazybind attribute for performance
2223 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2224 if (fnName == "objc_retain")
2225 f->addFnAttr(llvm::Attribute::NonLazyBind);
2226 }
2227
2228 // Cast the argument to 'id'.
2229 llvm::Type *origType = returnType ? returnType : value->getType();
2230 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2231
2232 // Call the function.
2233 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2234
2235 // Mark calls to objc_autorelease as tail on the assumption that methods
2236 // overriding autorelease do not touch anything on the stack.
2237 if (fnName == "objc_autorelease")
2238 if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2239 Call->setTailCall();
2240
2241 // Cast the result back to the original type.
2242 return CGF.Builder.CreateBitCast(Inst, origType);
2243 }
2244
2245 /// Produce the code to do a retain. Based on the type, calls one of:
2246 /// call i8* \@objc_retain(i8* %value)
2247 /// call i8* \@objc_retainBlock(i8* %value)
EmitARCRetain(QualType type,llvm::Value * value)2248 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2249 if (type->isBlockPointerType())
2250 return EmitARCRetainBlock(value, /*mandatory*/ false);
2251 else
2252 return EmitARCRetainNonBlock(value);
2253 }
2254
2255 /// Retain the given object, with normal retain semantics.
2256 /// call i8* \@objc_retain(i8* %value)
EmitARCRetainNonBlock(llvm::Value * value)2257 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2258 return emitARCValueOperation(*this, value, nullptr,
2259 CGM.getObjCEntrypoints().objc_retain,
2260 llvm::Intrinsic::objc_retain);
2261 }
2262
2263 /// Retain the given block, with _Block_copy semantics.
2264 /// call i8* \@objc_retainBlock(i8* %value)
2265 ///
2266 /// \param mandatory - If false, emit the call with metadata
2267 /// indicating that it's okay for the optimizer to eliminate this call
2268 /// if it can prove that the block never escapes except down the stack.
EmitARCRetainBlock(llvm::Value * value,bool mandatory)2269 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2270 bool mandatory) {
2271 llvm::Value *result
2272 = emitARCValueOperation(*this, value, nullptr,
2273 CGM.getObjCEntrypoints().objc_retainBlock,
2274 llvm::Intrinsic::objc_retainBlock);
2275
2276 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2277 // tell the optimizer that it doesn't need to do this copy if the
2278 // block doesn't escape, where being passed as an argument doesn't
2279 // count as escaping.
2280 if (!mandatory && isa<llvm::Instruction>(result)) {
2281 llvm::CallInst *call
2282 = cast<llvm::CallInst>(result->stripPointerCasts());
2283 assert(call->getCalledOperand() ==
2284 CGM.getObjCEntrypoints().objc_retainBlock);
2285
2286 call->setMetadata("clang.arc.copy_on_escape",
2287 llvm::MDNode::get(Builder.getContext(), None));
2288 }
2289
2290 return result;
2291 }
2292
emitAutoreleasedReturnValueMarker(CodeGenFunction & CGF)2293 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2294 // Fetch the void(void) inline asm which marks that we're going to
2295 // do something with the autoreleased return value.
2296 llvm::InlineAsm *&marker
2297 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2298 if (!marker) {
2299 StringRef assembly
2300 = CGF.CGM.getTargetCodeGenInfo()
2301 .getARCRetainAutoreleasedReturnValueMarker();
2302
2303 // If we have an empty assembly string, there's nothing to do.
2304 if (assembly.empty()) {
2305
2306 // Otherwise, at -O0, build an inline asm that we're going to call
2307 // in a moment.
2308 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2309 llvm::FunctionType *type =
2310 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2311
2312 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2313
2314 // If we're at -O1 and above, we don't want to litter the code
2315 // with this marker yet, so leave a breadcrumb for the ARC
2316 // optimizer to pick up.
2317 } else {
2318 const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2319 if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) {
2320 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2321 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error,
2322 retainRVMarkerKey, str);
2323 }
2324 }
2325 }
2326
2327 // Call the marker asm if we made one, which we do only at -O0.
2328 if (marker)
2329 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2330 }
2331
emitOptimizedARCReturnCall(llvm::Value * value,bool IsRetainRV,CodeGenFunction & CGF)2332 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2333 bool IsRetainRV,
2334 CodeGenFunction &CGF) {
2335 emitAutoreleasedReturnValueMarker(CGF);
2336
2337 // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2338 // retainRV or claimRV calls in the IR. We currently do this only when the
2339 // optimization level isn't -O0 since global-isel, which is currently run at
2340 // -O0, doesn't know about the operand bundle.
2341
2342 // FIXME: Do this when the target isn't aarch64.
2343 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2344 CGF.CGM.getTarget().getTriple().isAArch64()) {
2345 llvm::Value *bundleArgs[] = {llvm::ConstantInt::get(
2346 CGF.Int64Ty,
2347 llvm::objcarc::getAttachedCallOperandBundleEnum(IsRetainRV))};
2348 llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2349 auto *oldCall = cast<llvm::CallBase>(value);
2350 llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2351 oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall);
2352 newCall->copyMetadata(*oldCall);
2353 oldCall->replaceAllUsesWith(newCall);
2354 oldCall->eraseFromParent();
2355 CGF.EmitARCNoopIntrinsicUse(newCall);
2356 return newCall;
2357 }
2358
2359 bool isNoTail =
2360 CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2361 llvm::CallInst::TailCallKind tailKind =
2362 isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2363 ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2364 llvm::Function *&EP = IsRetainRV
2365 ? EPs.objc_retainAutoreleasedReturnValue
2366 : EPs.objc_unsafeClaimAutoreleasedReturnValue;
2367 llvm::Intrinsic::ID IID =
2368 IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2369 : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2370 return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind);
2371 }
2372
2373 /// Retain the given object which is the result of a function call.
2374 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2375 ///
2376 /// Yes, this function name is one character away from a different
2377 /// call with completely different semantics.
2378 llvm::Value *
EmitARCRetainAutoreleasedReturnValue(llvm::Value * value)2379 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2380 return emitOptimizedARCReturnCall(value, true, *this);
2381 }
2382
2383 /// Claim a possibly-autoreleased return value at +0. This is only
2384 /// valid to do in contexts which do not rely on the retain to keep
2385 /// the object valid for all of its uses; for example, when
2386 /// the value is ignored, or when it is being assigned to an
2387 /// __unsafe_unretained variable.
2388 ///
2389 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2390 llvm::Value *
EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value * value)2391 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2392 return emitOptimizedARCReturnCall(value, false, *this);
2393 }
2394
2395 /// Release the given object.
2396 /// call void \@objc_release(i8* %value)
EmitARCRelease(llvm::Value * value,ARCPreciseLifetime_t precise)2397 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2398 ARCPreciseLifetime_t precise) {
2399 if (isa<llvm::ConstantPointerNull>(value)) return;
2400
2401 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2402 if (!fn) {
2403 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
2404 setARCRuntimeFunctionLinkage(CGM, fn);
2405 }
2406
2407 // Cast the argument to 'id'.
2408 value = Builder.CreateBitCast(value, Int8PtrTy);
2409
2410 // Call objc_release.
2411 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2412
2413 if (precise == ARCImpreciseLifetime) {
2414 call->setMetadata("clang.imprecise_release",
2415 llvm::MDNode::get(Builder.getContext(), None));
2416 }
2417 }
2418
2419 /// Destroy a __strong variable.
2420 ///
2421 /// At -O0, emit a call to store 'null' into the address;
2422 /// instrumenting tools prefer this because the address is exposed,
2423 /// but it's relatively cumbersome to optimize.
2424 ///
2425 /// At -O1 and above, just load and call objc_release.
2426 ///
2427 /// call void \@objc_storeStrong(i8** %addr, i8* null)
EmitARCDestroyStrong(Address addr,ARCPreciseLifetime_t precise)2428 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2429 ARCPreciseLifetime_t precise) {
2430 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2431 llvm::Value *null = getNullForVariable(addr);
2432 EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2433 return;
2434 }
2435
2436 llvm::Value *value = Builder.CreateLoad(addr);
2437 EmitARCRelease(value, precise);
2438 }
2439
2440 /// Store into a strong object. Always calls this:
2441 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
EmitARCStoreStrongCall(Address addr,llvm::Value * value,bool ignored)2442 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2443 llvm::Value *value,
2444 bool ignored) {
2445 assert(addr.getElementType() == value->getType());
2446
2447 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2448 if (!fn) {
2449 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
2450 setARCRuntimeFunctionLinkage(CGM, fn);
2451 }
2452
2453 llvm::Value *args[] = {
2454 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2455 Builder.CreateBitCast(value, Int8PtrTy)
2456 };
2457 EmitNounwindRuntimeCall(fn, args);
2458
2459 if (ignored) return nullptr;
2460 return value;
2461 }
2462
2463 /// Store into a strong object. Sometimes calls this:
2464 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2465 /// Other times, breaks it down into components.
EmitARCStoreStrong(LValue dst,llvm::Value * newValue,bool ignored)2466 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2467 llvm::Value *newValue,
2468 bool ignored) {
2469 QualType type = dst.getType();
2470 bool isBlock = type->isBlockPointerType();
2471
2472 // Use a store barrier at -O0 unless this is a block type or the
2473 // lvalue is inadequately aligned.
2474 if (shouldUseFusedARCCalls() &&
2475 !isBlock &&
2476 (dst.getAlignment().isZero() ||
2477 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2478 return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2479 }
2480
2481 // Otherwise, split it out.
2482
2483 // Retain the new value.
2484 newValue = EmitARCRetain(type, newValue);
2485
2486 // Read the old value.
2487 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2488
2489 // Store. We do this before the release so that any deallocs won't
2490 // see the old value.
2491 EmitStoreOfScalar(newValue, dst);
2492
2493 // Finally, release the old value.
2494 EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2495
2496 return newValue;
2497 }
2498
2499 /// Autorelease the given object.
2500 /// call i8* \@objc_autorelease(i8* %value)
EmitARCAutorelease(llvm::Value * value)2501 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2502 return emitARCValueOperation(*this, value, nullptr,
2503 CGM.getObjCEntrypoints().objc_autorelease,
2504 llvm::Intrinsic::objc_autorelease);
2505 }
2506
2507 /// Autorelease the given object.
2508 /// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2509 llvm::Value *
EmitARCAutoreleaseReturnValue(llvm::Value * value)2510 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2511 return emitARCValueOperation(*this, value, nullptr,
2512 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2513 llvm::Intrinsic::objc_autoreleaseReturnValue,
2514 llvm::CallInst::TCK_Tail);
2515 }
2516
2517 /// Do a fused retain/autorelease of the given object.
2518 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2519 llvm::Value *
EmitARCRetainAutoreleaseReturnValue(llvm::Value * value)2520 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2521 return emitARCValueOperation(*this, value, nullptr,
2522 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2523 llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2524 llvm::CallInst::TCK_Tail);
2525 }
2526
2527 /// Do a fused retain/autorelease of the given object.
2528 /// call i8* \@objc_retainAutorelease(i8* %value)
2529 /// or
2530 /// %retain = call i8* \@objc_retainBlock(i8* %value)
2531 /// call i8* \@objc_autorelease(i8* %retain)
EmitARCRetainAutorelease(QualType type,llvm::Value * value)2532 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2533 llvm::Value *value) {
2534 if (!type->isBlockPointerType())
2535 return EmitARCRetainAutoreleaseNonBlock(value);
2536
2537 if (isa<llvm::ConstantPointerNull>(value)) return value;
2538
2539 llvm::Type *origType = value->getType();
2540 value = Builder.CreateBitCast(value, Int8PtrTy);
2541 value = EmitARCRetainBlock(value, /*mandatory*/ true);
2542 value = EmitARCAutorelease(value);
2543 return Builder.CreateBitCast(value, origType);
2544 }
2545
2546 /// Do a fused retain/autorelease of the given object.
2547 /// call i8* \@objc_retainAutorelease(i8* %value)
2548 llvm::Value *
EmitARCRetainAutoreleaseNonBlock(llvm::Value * value)2549 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2550 return emitARCValueOperation(*this, value, nullptr,
2551 CGM.getObjCEntrypoints().objc_retainAutorelease,
2552 llvm::Intrinsic::objc_retainAutorelease);
2553 }
2554
2555 /// i8* \@objc_loadWeak(i8** %addr)
2556 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
EmitARCLoadWeak(Address addr)2557 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2558 return emitARCLoadOperation(*this, addr,
2559 CGM.getObjCEntrypoints().objc_loadWeak,
2560 llvm::Intrinsic::objc_loadWeak);
2561 }
2562
2563 /// i8* \@objc_loadWeakRetained(i8** %addr)
EmitARCLoadWeakRetained(Address addr)2564 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2565 return emitARCLoadOperation(*this, addr,
2566 CGM.getObjCEntrypoints().objc_loadWeakRetained,
2567 llvm::Intrinsic::objc_loadWeakRetained);
2568 }
2569
2570 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2571 /// Returns %value.
EmitARCStoreWeak(Address addr,llvm::Value * value,bool ignored)2572 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2573 llvm::Value *value,
2574 bool ignored) {
2575 return emitARCStoreOperation(*this, addr, value,
2576 CGM.getObjCEntrypoints().objc_storeWeak,
2577 llvm::Intrinsic::objc_storeWeak, ignored);
2578 }
2579
2580 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2581 /// Returns %value. %addr is known to not have a current weak entry.
2582 /// Essentially equivalent to:
2583 /// *addr = nil; objc_storeWeak(addr, value);
EmitARCInitWeak(Address addr,llvm::Value * value)2584 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2585 // If we're initializing to null, just write null to memory; no need
2586 // to get the runtime involved. But don't do this if optimization
2587 // is enabled, because accounting for this would make the optimizer
2588 // much more complicated.
2589 if (isa<llvm::ConstantPointerNull>(value) &&
2590 CGM.getCodeGenOpts().OptimizationLevel == 0) {
2591 Builder.CreateStore(value, addr);
2592 return;
2593 }
2594
2595 emitARCStoreOperation(*this, addr, value,
2596 CGM.getObjCEntrypoints().objc_initWeak,
2597 llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2598 }
2599
2600 /// void \@objc_destroyWeak(i8** %addr)
2601 /// Essentially objc_storeWeak(addr, nil).
EmitARCDestroyWeak(Address addr)2602 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2603 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2604 if (!fn) {
2605 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
2606 setARCRuntimeFunctionLinkage(CGM, fn);
2607 }
2608
2609 // Cast the argument to 'id*'.
2610 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2611
2612 EmitNounwindRuntimeCall(fn, addr.getPointer());
2613 }
2614
2615 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2616 /// Disregards the current value in %dest. Leaves %src pointing to nothing.
2617 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
EmitARCMoveWeak(Address dst,Address src)2618 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2619 emitARCCopyOperation(*this, dst, src,
2620 CGM.getObjCEntrypoints().objc_moveWeak,
2621 llvm::Intrinsic::objc_moveWeak);
2622 }
2623
2624 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2625 /// Disregards the current value in %dest. Essentially
2626 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
EmitARCCopyWeak(Address dst,Address src)2627 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2628 emitARCCopyOperation(*this, dst, src,
2629 CGM.getObjCEntrypoints().objc_copyWeak,
2630 llvm::Intrinsic::objc_copyWeak);
2631 }
2632
emitARCCopyAssignWeak(QualType Ty,Address DstAddr,Address SrcAddr)2633 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2634 Address SrcAddr) {
2635 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2636 Object = EmitObjCConsumeObject(Ty, Object);
2637 EmitARCStoreWeak(DstAddr, Object, false);
2638 }
2639
emitARCMoveAssignWeak(QualType Ty,Address DstAddr,Address SrcAddr)2640 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2641 Address SrcAddr) {
2642 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2643 Object = EmitObjCConsumeObject(Ty, Object);
2644 EmitARCStoreWeak(DstAddr, Object, false);
2645 EmitARCDestroyWeak(SrcAddr);
2646 }
2647
2648 /// Produce the code to do a objc_autoreleasepool_push.
2649 /// call i8* \@objc_autoreleasePoolPush(void)
EmitObjCAutoreleasePoolPush()2650 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2651 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2652 if (!fn) {
2653 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
2654 setARCRuntimeFunctionLinkage(CGM, fn);
2655 }
2656
2657 return EmitNounwindRuntimeCall(fn);
2658 }
2659
2660 /// Produce the code to do a primitive release.
2661 /// call void \@objc_autoreleasePoolPop(i8* %ptr)
EmitObjCAutoreleasePoolPop(llvm::Value * value)2662 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2663 assert(value->getType() == Int8PtrTy);
2664
2665 if (getInvokeDest()) {
2666 // Call the runtime method not the intrinsic if we are handling exceptions
2667 llvm::FunctionCallee &fn =
2668 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2669 if (!fn) {
2670 llvm::FunctionType *fnType =
2671 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2672 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2673 setARCRuntimeFunctionLinkage(CGM, fn);
2674 }
2675
2676 // objc_autoreleasePoolPop can throw.
2677 EmitRuntimeCallOrInvoke(fn, value);
2678 } else {
2679 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2680 if (!fn) {
2681 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
2682 setARCRuntimeFunctionLinkage(CGM, fn);
2683 }
2684
2685 EmitRuntimeCall(fn, value);
2686 }
2687 }
2688
2689 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2690 /// Which is: [[NSAutoreleasePool alloc] init];
2691 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2692 /// init is declared as: - (id) init; in its NSObject super class.
2693 ///
EmitObjCMRRAutoreleasePoolPush()2694 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2695 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2696 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2697 // [NSAutoreleasePool alloc]
2698 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2699 Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2700 CallArgList Args;
2701 RValue AllocRV =
2702 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2703 getContext().getObjCIdType(),
2704 AllocSel, Receiver, Args);
2705
2706 // [Receiver init]
2707 Receiver = AllocRV.getScalarVal();
2708 II = &CGM.getContext().Idents.get("init");
2709 Selector InitSel = getContext().Selectors.getSelector(0, &II);
2710 RValue InitRV =
2711 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2712 getContext().getObjCIdType(),
2713 InitSel, Receiver, Args);
2714 return InitRV.getScalarVal();
2715 }
2716
2717 /// Allocate the given objc object.
2718 /// call i8* \@objc_alloc(i8* %value)
EmitObjCAlloc(llvm::Value * value,llvm::Type * resultType)2719 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2720 llvm::Type *resultType) {
2721 return emitObjCValueOperation(*this, value, resultType,
2722 CGM.getObjCEntrypoints().objc_alloc,
2723 "objc_alloc");
2724 }
2725
2726 /// Allocate the given objc object.
2727 /// call i8* \@objc_allocWithZone(i8* %value)
EmitObjCAllocWithZone(llvm::Value * value,llvm::Type * resultType)2728 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2729 llvm::Type *resultType) {
2730 return emitObjCValueOperation(*this, value, resultType,
2731 CGM.getObjCEntrypoints().objc_allocWithZone,
2732 "objc_allocWithZone");
2733 }
2734
EmitObjCAllocInit(llvm::Value * value,llvm::Type * resultType)2735 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2736 llvm::Type *resultType) {
2737 return emitObjCValueOperation(*this, value, resultType,
2738 CGM.getObjCEntrypoints().objc_alloc_init,
2739 "objc_alloc_init");
2740 }
2741
2742 /// Produce the code to do a primitive release.
2743 /// [tmp drain];
EmitObjCMRRAutoreleasePoolPop(llvm::Value * Arg)2744 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2745 IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2746 Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2747 CallArgList Args;
2748 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2749 getContext().VoidTy, DrainSel, Arg, Args);
2750 }
2751
destroyARCStrongPrecise(CodeGenFunction & CGF,Address addr,QualType type)2752 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2753 Address addr,
2754 QualType type) {
2755 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2756 }
2757
destroyARCStrongImprecise(CodeGenFunction & CGF,Address addr,QualType type)2758 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2759 Address addr,
2760 QualType type) {
2761 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2762 }
2763
destroyARCWeak(CodeGenFunction & CGF,Address addr,QualType type)2764 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2765 Address addr,
2766 QualType type) {
2767 CGF.EmitARCDestroyWeak(addr);
2768 }
2769
emitARCIntrinsicUse(CodeGenFunction & CGF,Address addr,QualType type)2770 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2771 QualType type) {
2772 llvm::Value *value = CGF.Builder.CreateLoad(addr);
2773 CGF.EmitARCIntrinsicUse(value);
2774 }
2775
2776 /// Autorelease the given object.
2777 /// call i8* \@objc_autorelease(i8* %value)
EmitObjCAutorelease(llvm::Value * value,llvm::Type * returnType)2778 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2779 llvm::Type *returnType) {
2780 return emitObjCValueOperation(
2781 *this, value, returnType,
2782 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2783 "objc_autorelease");
2784 }
2785
2786 /// Retain the given object, with normal retain semantics.
2787 /// call i8* \@objc_retain(i8* %value)
EmitObjCRetainNonBlock(llvm::Value * value,llvm::Type * returnType)2788 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2789 llvm::Type *returnType) {
2790 return emitObjCValueOperation(
2791 *this, value, returnType,
2792 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2793 }
2794
2795 /// Release the given object.
2796 /// call void \@objc_release(i8* %value)
EmitObjCRelease(llvm::Value * value,ARCPreciseLifetime_t precise)2797 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2798 ARCPreciseLifetime_t precise) {
2799 if (isa<llvm::ConstantPointerNull>(value)) return;
2800
2801 llvm::FunctionCallee &fn =
2802 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2803 if (!fn) {
2804 llvm::FunctionType *fnType =
2805 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2806 fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2807 setARCRuntimeFunctionLinkage(CGM, fn);
2808 // We have Native ARC, so set nonlazybind attribute for performance
2809 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2810 f->addFnAttr(llvm::Attribute::NonLazyBind);
2811 }
2812
2813 // Cast the argument to 'id'.
2814 value = Builder.CreateBitCast(value, Int8PtrTy);
2815
2816 // Call objc_release.
2817 llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2818
2819 if (precise == ARCImpreciseLifetime) {
2820 call->setMetadata("clang.imprecise_release",
2821 llvm::MDNode::get(Builder.getContext(), None));
2822 }
2823 }
2824
2825 namespace {
2826 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2827 llvm::Value *Token;
2828
CallObjCAutoreleasePoolObject__anon82b769870511::CallObjCAutoreleasePoolObject2829 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2830
Emit__anon82b769870511::CallObjCAutoreleasePoolObject2831 void Emit(CodeGenFunction &CGF, Flags flags) override {
2832 CGF.EmitObjCAutoreleasePoolPop(Token);
2833 }
2834 };
2835 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2836 llvm::Value *Token;
2837
CallObjCMRRAutoreleasePoolObject__anon82b769870511::CallObjCMRRAutoreleasePoolObject2838 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2839
Emit__anon82b769870511::CallObjCMRRAutoreleasePoolObject2840 void Emit(CodeGenFunction &CGF, Flags flags) override {
2841 CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2842 }
2843 };
2844 }
2845
EmitObjCAutoreleasePoolCleanup(llvm::Value * Ptr)2846 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2847 if (CGM.getLangOpts().ObjCAutoRefCount)
2848 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2849 else
2850 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2851 }
2852
shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime)2853 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2854 switch (lifetime) {
2855 case Qualifiers::OCL_None:
2856 case Qualifiers::OCL_ExplicitNone:
2857 case Qualifiers::OCL_Strong:
2858 case Qualifiers::OCL_Autoreleasing:
2859 return true;
2860
2861 case Qualifiers::OCL_Weak:
2862 return false;
2863 }
2864
2865 llvm_unreachable("impossible lifetime!");
2866 }
2867
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)2868 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2869 LValue lvalue,
2870 QualType type) {
2871 llvm::Value *result;
2872 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2873 if (shouldRetain) {
2874 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2875 } else {
2876 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2877 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2878 }
2879 return TryEmitResult(result, !shouldRetain);
2880 }
2881
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,const Expr * e)2882 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2883 const Expr *e) {
2884 e = e->IgnoreParens();
2885 QualType type = e->getType();
2886
2887 // If we're loading retained from a __strong xvalue, we can avoid
2888 // an extra retain/release pair by zeroing out the source of this
2889 // "move" operation.
2890 if (e->isXValue() &&
2891 !type.isConstQualified() &&
2892 type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2893 // Emit the lvalue.
2894 LValue lv = CGF.EmitLValue(e);
2895
2896 // Load the object pointer.
2897 llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2898 SourceLocation()).getScalarVal();
2899
2900 // Set the source pointer to NULL.
2901 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2902
2903 return TryEmitResult(result, true);
2904 }
2905
2906 // As a very special optimization, in ARC++, if the l-value is the
2907 // result of a non-volatile assignment, do a simple retain of the
2908 // result of the call to objc_storeWeak instead of reloading.
2909 if (CGF.getLangOpts().CPlusPlus &&
2910 !type.isVolatileQualified() &&
2911 type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2912 isa<BinaryOperator>(e) &&
2913 cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2914 return TryEmitResult(CGF.EmitScalarExpr(e), false);
2915
2916 // Try to emit code for scalar constant instead of emitting LValue and
2917 // loading it because we are not guaranteed to have an l-value. One of such
2918 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2919 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2920 auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2921 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2922 return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2923 !shouldRetainObjCLifetime(type.getObjCLifetime()));
2924 }
2925
2926 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2927 }
2928
2929 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2930 llvm::Value *value)>
2931 ValueTransform;
2932
2933 /// Insert code immediately after a call.
2934
2935 // FIXME: We should find a way to emit the runtime call immediately
2936 // after the call is emitted to eliminate the need for this function.
emitARCOperationAfterCall(CodeGenFunction & CGF,llvm::Value * value,ValueTransform doAfterCall,ValueTransform doFallback)2937 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2938 llvm::Value *value,
2939 ValueTransform doAfterCall,
2940 ValueTransform doFallback) {
2941 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2942
2943 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2944 // Place the retain immediately following the call.
2945 CGF.Builder.SetInsertPoint(call->getParent(),
2946 ++llvm::BasicBlock::iterator(call));
2947 value = doAfterCall(CGF, value);
2948 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2949 // Place the retain at the beginning of the normal destination block.
2950 llvm::BasicBlock *BB = invoke->getNormalDest();
2951 CGF.Builder.SetInsertPoint(BB, BB->begin());
2952 value = doAfterCall(CGF, value);
2953
2954 // Bitcasts can arise because of related-result returns. Rewrite
2955 // the operand.
2956 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2957 // Change the insert point to avoid emitting the fall-back call after the
2958 // bitcast.
2959 CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator());
2960 llvm::Value *operand = bitcast->getOperand(0);
2961 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2962 bitcast->setOperand(0, operand);
2963 value = bitcast;
2964 } else {
2965 auto *phi = dyn_cast<llvm::PHINode>(value);
2966 if (phi && phi->getNumIncomingValues() == 2 &&
2967 isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) &&
2968 isa<llvm::CallBase>(phi->getIncomingValue(0))) {
2969 // Handle phi instructions that are generated when it's necessary to check
2970 // whether the receiver of a message is null.
2971 llvm::Value *inVal = phi->getIncomingValue(0);
2972 inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback);
2973 phi->setIncomingValue(0, inVal);
2974 value = phi;
2975 } else {
2976 // Generic fall-back case.
2977 // Retain using the non-block variant: we never need to do a copy
2978 // of a block that's been returned to us.
2979 value = doFallback(CGF, value);
2980 }
2981 }
2982
2983 CGF.Builder.restoreIP(ip);
2984 return value;
2985 }
2986
2987 /// Given that the given expression is some sort of call (which does
2988 /// not return retained), emit a retain following it.
emitARCRetainCallResult(CodeGenFunction & CGF,const Expr * e)2989 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2990 const Expr *e) {
2991 llvm::Value *value = CGF.EmitScalarExpr(e);
2992 return emitARCOperationAfterCall(CGF, value,
2993 [](CodeGenFunction &CGF, llvm::Value *value) {
2994 return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2995 },
2996 [](CodeGenFunction &CGF, llvm::Value *value) {
2997 return CGF.EmitARCRetainNonBlock(value);
2998 });
2999 }
3000
3001 /// Given that the given expression is some sort of call (which does
3002 /// not return retained), perform an unsafeClaim following it.
emitARCUnsafeClaimCallResult(CodeGenFunction & CGF,const Expr * e)3003 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
3004 const Expr *e) {
3005 llvm::Value *value = CGF.EmitScalarExpr(e);
3006 return emitARCOperationAfterCall(CGF, value,
3007 [](CodeGenFunction &CGF, llvm::Value *value) {
3008 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
3009 },
3010 [](CodeGenFunction &CGF, llvm::Value *value) {
3011 return value;
3012 });
3013 }
3014
EmitARCReclaimReturnedObject(const Expr * E,bool allowUnsafeClaim)3015 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
3016 bool allowUnsafeClaim) {
3017 if (allowUnsafeClaim &&
3018 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3019 return emitARCUnsafeClaimCallResult(*this, E);
3020 } else {
3021 llvm::Value *value = emitARCRetainCallResult(*this, E);
3022 return EmitObjCConsumeObject(E->getType(), value);
3023 }
3024 }
3025
3026 /// Determine whether it might be important to emit a separate
3027 /// objc_retain_block on the result of the given expression, or
3028 /// whether it's okay to just emit it in a +1 context.
shouldEmitSeparateBlockRetain(const Expr * e)3029 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3030 assert(e->getType()->isBlockPointerType());
3031 e = e->IgnoreParens();
3032
3033 // For future goodness, emit block expressions directly in +1
3034 // contexts if we can.
3035 if (isa<BlockExpr>(e))
3036 return false;
3037
3038 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
3039 switch (cast->getCastKind()) {
3040 // Emitting these operations in +1 contexts is goodness.
3041 case CK_LValueToRValue:
3042 case CK_ARCReclaimReturnedObject:
3043 case CK_ARCConsumeObject:
3044 case CK_ARCProduceObject:
3045 return false;
3046
3047 // These operations preserve a block type.
3048 case CK_NoOp:
3049 case CK_BitCast:
3050 return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3051
3052 // These operations are known to be bad (or haven't been considered).
3053 case CK_AnyPointerToBlockPointerCast:
3054 default:
3055 return true;
3056 }
3057 }
3058
3059 return true;
3060 }
3061
3062 namespace {
3063 /// A CRTP base class for emitting expressions of retainable object
3064 /// pointer type in ARC.
3065 template <typename Impl, typename Result> class ARCExprEmitter {
3066 protected:
3067 CodeGenFunction &CGF;
asImpl()3068 Impl &asImpl() { return *static_cast<Impl*>(this); }
3069
ARCExprEmitter(CodeGenFunction & CGF)3070 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3071
3072 public:
3073 Result visit(const Expr *e);
3074 Result visitCastExpr(const CastExpr *e);
3075 Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3076 Result visitBlockExpr(const BlockExpr *e);
3077 Result visitBinaryOperator(const BinaryOperator *e);
3078 Result visitBinAssign(const BinaryOperator *e);
3079 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3080 Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3081 Result visitBinAssignWeak(const BinaryOperator *e);
3082 Result visitBinAssignStrong(const BinaryOperator *e);
3083
3084 // Minimal implementation:
3085 // Result visitLValueToRValue(const Expr *e)
3086 // Result visitConsumeObject(const Expr *e)
3087 // Result visitExtendBlockObject(const Expr *e)
3088 // Result visitReclaimReturnedObject(const Expr *e)
3089 // Result visitCall(const Expr *e)
3090 // Result visitExpr(const Expr *e)
3091 //
3092 // Result emitBitCast(Result result, llvm::Type *resultType)
3093 // llvm::Value *getValueOfResult(Result result)
3094 };
3095 }
3096
3097 /// Try to emit a PseudoObjectExpr under special ARC rules.
3098 ///
3099 /// This massively duplicates emitPseudoObjectRValue.
3100 template <typename Impl, typename Result>
3101 Result
visitPseudoObjectExpr(const PseudoObjectExpr * E)3102 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3103 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3104
3105 // Find the result expression.
3106 const Expr *resultExpr = E->getResultExpr();
3107 assert(resultExpr);
3108 Result result;
3109
3110 for (PseudoObjectExpr::const_semantics_iterator
3111 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3112 const Expr *semantic = *i;
3113
3114 // If this semantic expression is an opaque value, bind it
3115 // to the result of its source expression.
3116 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3117 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3118 OVMA opaqueData;
3119
3120 // If this semantic is the result of the pseudo-object
3121 // expression, try to evaluate the source as +1.
3122 if (ov == resultExpr) {
3123 assert(!OVMA::shouldBindAsLValue(ov));
3124 result = asImpl().visit(ov->getSourceExpr());
3125 opaqueData = OVMA::bind(CGF, ov,
3126 RValue::get(asImpl().getValueOfResult(result)));
3127
3128 // Otherwise, just bind it.
3129 } else {
3130 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3131 }
3132 opaques.push_back(opaqueData);
3133
3134 // Otherwise, if the expression is the result, evaluate it
3135 // and remember the result.
3136 } else if (semantic == resultExpr) {
3137 result = asImpl().visit(semantic);
3138
3139 // Otherwise, evaluate the expression in an ignored context.
3140 } else {
3141 CGF.EmitIgnoredExpr(semantic);
3142 }
3143 }
3144
3145 // Unbind all the opaques now.
3146 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3147 opaques[i].unbind(CGF);
3148
3149 return result;
3150 }
3151
3152 template <typename Impl, typename Result>
visitBlockExpr(const BlockExpr * e)3153 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3154 // The default implementation just forwards the expression to visitExpr.
3155 return asImpl().visitExpr(e);
3156 }
3157
3158 template <typename Impl, typename Result>
visitCastExpr(const CastExpr * e)3159 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3160 switch (e->getCastKind()) {
3161
3162 // No-op casts don't change the type, so we just ignore them.
3163 case CK_NoOp:
3164 return asImpl().visit(e->getSubExpr());
3165
3166 // These casts can change the type.
3167 case CK_CPointerToObjCPointerCast:
3168 case CK_BlockPointerToObjCPointerCast:
3169 case CK_AnyPointerToBlockPointerCast:
3170 case CK_BitCast: {
3171 llvm::Type *resultType = CGF.ConvertType(e->getType());
3172 assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3173 Result result = asImpl().visit(e->getSubExpr());
3174 return asImpl().emitBitCast(result, resultType);
3175 }
3176
3177 // Handle some casts specially.
3178 case CK_LValueToRValue:
3179 return asImpl().visitLValueToRValue(e->getSubExpr());
3180 case CK_ARCConsumeObject:
3181 return asImpl().visitConsumeObject(e->getSubExpr());
3182 case CK_ARCExtendBlockObject:
3183 return asImpl().visitExtendBlockObject(e->getSubExpr());
3184 case CK_ARCReclaimReturnedObject:
3185 return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3186
3187 // Otherwise, use the default logic.
3188 default:
3189 return asImpl().visitExpr(e);
3190 }
3191 }
3192
3193 template <typename Impl, typename Result>
3194 Result
visitBinaryOperator(const BinaryOperator * e)3195 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3196 switch (e->getOpcode()) {
3197 case BO_Comma:
3198 CGF.EmitIgnoredExpr(e->getLHS());
3199 CGF.EnsureInsertPoint();
3200 return asImpl().visit(e->getRHS());
3201
3202 case BO_Assign:
3203 return asImpl().visitBinAssign(e);
3204
3205 default:
3206 return asImpl().visitExpr(e);
3207 }
3208 }
3209
3210 template <typename Impl, typename Result>
visitBinAssign(const BinaryOperator * e)3211 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3212 switch (e->getLHS()->getType().getObjCLifetime()) {
3213 case Qualifiers::OCL_ExplicitNone:
3214 return asImpl().visitBinAssignUnsafeUnretained(e);
3215
3216 case Qualifiers::OCL_Weak:
3217 return asImpl().visitBinAssignWeak(e);
3218
3219 case Qualifiers::OCL_Autoreleasing:
3220 return asImpl().visitBinAssignAutoreleasing(e);
3221
3222 case Qualifiers::OCL_Strong:
3223 return asImpl().visitBinAssignStrong(e);
3224
3225 case Qualifiers::OCL_None:
3226 return asImpl().visitExpr(e);
3227 }
3228 llvm_unreachable("bad ObjC ownership qualifier");
3229 }
3230
3231 /// The default rule for __unsafe_unretained emits the RHS recursively,
3232 /// stores into the unsafe variable, and propagates the result outward.
3233 template <typename Impl, typename Result>
3234 Result ARCExprEmitter<Impl,Result>::
visitBinAssignUnsafeUnretained(const BinaryOperator * e)3235 visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3236 // Recursively emit the RHS.
3237 // For __block safety, do this before emitting the LHS.
3238 Result result = asImpl().visit(e->getRHS());
3239
3240 // Perform the store.
3241 LValue lvalue =
3242 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3243 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3244 lvalue);
3245
3246 return result;
3247 }
3248
3249 template <typename Impl, typename Result>
3250 Result
visitBinAssignAutoreleasing(const BinaryOperator * e)3251 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3252 return asImpl().visitExpr(e);
3253 }
3254
3255 template <typename Impl, typename Result>
3256 Result
visitBinAssignWeak(const BinaryOperator * e)3257 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3258 return asImpl().visitExpr(e);
3259 }
3260
3261 template <typename Impl, typename Result>
3262 Result
visitBinAssignStrong(const BinaryOperator * e)3263 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3264 return asImpl().visitExpr(e);
3265 }
3266
3267 /// The general expression-emission logic.
3268 template <typename Impl, typename Result>
visit(const Expr * e)3269 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3270 // We should *never* see a nested full-expression here, because if
3271 // we fail to emit at +1, our caller must not retain after we close
3272 // out the full-expression. This isn't as important in the unsafe
3273 // emitter.
3274 assert(!isa<ExprWithCleanups>(e));
3275
3276 // Look through parens, __extension__, generic selection, etc.
3277 e = e->IgnoreParens();
3278
3279 // Handle certain kinds of casts.
3280 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3281 return asImpl().visitCastExpr(ce);
3282
3283 // Handle the comma operator.
3284 } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3285 return asImpl().visitBinaryOperator(op);
3286
3287 // TODO: handle conditional operators here
3288
3289 // For calls and message sends, use the retained-call logic.
3290 // Delegate inits are a special case in that they're the only
3291 // returns-retained expression that *isn't* surrounded by
3292 // a consume.
3293 } else if (isa<CallExpr>(e) ||
3294 (isa<ObjCMessageExpr>(e) &&
3295 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3296 return asImpl().visitCall(e);
3297
3298 // Look through pseudo-object expressions.
3299 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3300 return asImpl().visitPseudoObjectExpr(pseudo);
3301 } else if (auto *be = dyn_cast<BlockExpr>(e))
3302 return asImpl().visitBlockExpr(be);
3303
3304 return asImpl().visitExpr(e);
3305 }
3306
3307 namespace {
3308
3309 /// An emitter for +1 results.
3310 struct ARCRetainExprEmitter :
3311 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3312
ARCRetainExprEmitter__anon82b769870b11::ARCRetainExprEmitter3313 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3314
getValueOfResult__anon82b769870b11::ARCRetainExprEmitter3315 llvm::Value *getValueOfResult(TryEmitResult result) {
3316 return result.getPointer();
3317 }
3318
emitBitCast__anon82b769870b11::ARCRetainExprEmitter3319 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3320 llvm::Value *value = result.getPointer();
3321 value = CGF.Builder.CreateBitCast(value, resultType);
3322 result.setPointer(value);
3323 return result;
3324 }
3325
visitLValueToRValue__anon82b769870b11::ARCRetainExprEmitter3326 TryEmitResult visitLValueToRValue(const Expr *e) {
3327 return tryEmitARCRetainLoadOfScalar(CGF, e);
3328 }
3329
3330 /// For consumptions, just emit the subexpression and thus elide
3331 /// the retain/release pair.
visitConsumeObject__anon82b769870b11::ARCRetainExprEmitter3332 TryEmitResult visitConsumeObject(const Expr *e) {
3333 llvm::Value *result = CGF.EmitScalarExpr(e);
3334 return TryEmitResult(result, true);
3335 }
3336
visitBlockExpr__anon82b769870b11::ARCRetainExprEmitter3337 TryEmitResult visitBlockExpr(const BlockExpr *e) {
3338 TryEmitResult result = visitExpr(e);
3339 // Avoid the block-retain if this is a block literal that doesn't need to be
3340 // copied to the heap.
3341 if (e->getBlockDecl()->canAvoidCopyToHeap())
3342 result.setInt(true);
3343 return result;
3344 }
3345
3346 /// Block extends are net +0. Naively, we could just recurse on
3347 /// the subexpression, but actually we need to ensure that the
3348 /// value is copied as a block, so there's a little filter here.
visitExtendBlockObject__anon82b769870b11::ARCRetainExprEmitter3349 TryEmitResult visitExtendBlockObject(const Expr *e) {
3350 llvm::Value *result; // will be a +0 value
3351
3352 // If we can't safely assume the sub-expression will produce a
3353 // block-copied value, emit the sub-expression at +0.
3354 if (shouldEmitSeparateBlockRetain(e)) {
3355 result = CGF.EmitScalarExpr(e);
3356
3357 // Otherwise, try to emit the sub-expression at +1 recursively.
3358 } else {
3359 TryEmitResult subresult = asImpl().visit(e);
3360
3361 // If that produced a retained value, just use that.
3362 if (subresult.getInt()) {
3363 return subresult;
3364 }
3365
3366 // Otherwise it's +0.
3367 result = subresult.getPointer();
3368 }
3369
3370 // Retain the object as a block.
3371 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3372 return TryEmitResult(result, true);
3373 }
3374
3375 /// For reclaims, emit the subexpression as a retained call and
3376 /// skip the consumption.
visitReclaimReturnedObject__anon82b769870b11::ARCRetainExprEmitter3377 TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3378 llvm::Value *result = emitARCRetainCallResult(CGF, e);
3379 return TryEmitResult(result, true);
3380 }
3381
3382 /// When we have an undecorated call, retroactively do a claim.
visitCall__anon82b769870b11::ARCRetainExprEmitter3383 TryEmitResult visitCall(const Expr *e) {
3384 llvm::Value *result = emitARCRetainCallResult(CGF, e);
3385 return TryEmitResult(result, true);
3386 }
3387
3388 // TODO: maybe special-case visitBinAssignWeak?
3389
visitExpr__anon82b769870b11::ARCRetainExprEmitter3390 TryEmitResult visitExpr(const Expr *e) {
3391 // We didn't find an obvious production, so emit what we've got and
3392 // tell the caller that we didn't manage to retain.
3393 llvm::Value *result = CGF.EmitScalarExpr(e);
3394 return TryEmitResult(result, false);
3395 }
3396 };
3397 }
3398
3399 static TryEmitResult
tryEmitARCRetainScalarExpr(CodeGenFunction & CGF,const Expr * e)3400 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3401 return ARCRetainExprEmitter(CGF).visit(e);
3402 }
3403
emitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)3404 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3405 LValue lvalue,
3406 QualType type) {
3407 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3408 llvm::Value *value = result.getPointer();
3409 if (!result.getInt())
3410 value = CGF.EmitARCRetain(type, value);
3411 return value;
3412 }
3413
3414 /// EmitARCRetainScalarExpr - Semantically equivalent to
3415 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3416 /// best-effort attempt to peephole expressions that naturally produce
3417 /// retained objects.
EmitARCRetainScalarExpr(const Expr * e)3418 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3419 // The retain needs to happen within the full-expression.
3420 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3421 RunCleanupsScope scope(*this);
3422 return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3423 }
3424
3425 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3426 llvm::Value *value = result.getPointer();
3427 if (!result.getInt())
3428 value = EmitARCRetain(e->getType(), value);
3429 return value;
3430 }
3431
3432 llvm::Value *
EmitARCRetainAutoreleaseScalarExpr(const Expr * e)3433 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3434 // The retain needs to happen within the full-expression.
3435 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3436 RunCleanupsScope scope(*this);
3437 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3438 }
3439
3440 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3441 llvm::Value *value = result.getPointer();
3442 if (result.getInt())
3443 value = EmitARCAutorelease(value);
3444 else
3445 value = EmitARCRetainAutorelease(e->getType(), value);
3446 return value;
3447 }
3448
EmitARCExtendBlockObject(const Expr * e)3449 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3450 llvm::Value *result;
3451 bool doRetain;
3452
3453 if (shouldEmitSeparateBlockRetain(e)) {
3454 result = EmitScalarExpr(e);
3455 doRetain = true;
3456 } else {
3457 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3458 result = subresult.getPointer();
3459 doRetain = !subresult.getInt();
3460 }
3461
3462 if (doRetain)
3463 result = EmitARCRetainBlock(result, /*mandatory*/ true);
3464 return EmitObjCConsumeObject(e->getType(), result);
3465 }
3466
EmitObjCThrowOperand(const Expr * expr)3467 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3468 // In ARC, retain and autorelease the expression.
3469 if (getLangOpts().ObjCAutoRefCount) {
3470 // Do so before running any cleanups for the full-expression.
3471 // EmitARCRetainAutoreleaseScalarExpr does this for us.
3472 return EmitARCRetainAutoreleaseScalarExpr(expr);
3473 }
3474
3475 // Otherwise, use the normal scalar-expression emission. The
3476 // exception machinery doesn't do anything special with the
3477 // exception like retaining it, so there's no safety associated with
3478 // only running cleanups after the throw has started, and when it
3479 // matters it tends to be substantially inferior code.
3480 return EmitScalarExpr(expr);
3481 }
3482
3483 namespace {
3484
3485 /// An emitter for assigning into an __unsafe_unretained context.
3486 struct ARCUnsafeUnretainedExprEmitter :
3487 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3488
ARCUnsafeUnretainedExprEmitter__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3489 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3490
getValueOfResult__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3491 llvm::Value *getValueOfResult(llvm::Value *value) {
3492 return value;
3493 }
3494
emitBitCast__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3495 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3496 return CGF.Builder.CreateBitCast(value, resultType);
3497 }
3498
visitLValueToRValue__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3499 llvm::Value *visitLValueToRValue(const Expr *e) {
3500 return CGF.EmitScalarExpr(e);
3501 }
3502
3503 /// For consumptions, just emit the subexpression and perform the
3504 /// consumption like normal.
visitConsumeObject__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3505 llvm::Value *visitConsumeObject(const Expr *e) {
3506 llvm::Value *value = CGF.EmitScalarExpr(e);
3507 return CGF.EmitObjCConsumeObject(e->getType(), value);
3508 }
3509
3510 /// No special logic for block extensions. (This probably can't
3511 /// actually happen in this emitter, though.)
visitExtendBlockObject__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3512 llvm::Value *visitExtendBlockObject(const Expr *e) {
3513 return CGF.EmitARCExtendBlockObject(e);
3514 }
3515
3516 /// For reclaims, perform an unsafeClaim if that's enabled.
visitReclaimReturnedObject__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3517 llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3518 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3519 }
3520
3521 /// When we have an undecorated call, just emit it without adding
3522 /// the unsafeClaim.
visitCall__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3523 llvm::Value *visitCall(const Expr *e) {
3524 return CGF.EmitScalarExpr(e);
3525 }
3526
3527 /// Just do normal scalar emission in the default case.
visitExpr__anon82b769870c11::ARCUnsafeUnretainedExprEmitter3528 llvm::Value *visitExpr(const Expr *e) {
3529 return CGF.EmitScalarExpr(e);
3530 }
3531 };
3532 }
3533
emitARCUnsafeUnretainedScalarExpr(CodeGenFunction & CGF,const Expr * e)3534 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3535 const Expr *e) {
3536 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3537 }
3538
3539 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3540 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3541 /// avoiding any spurious retains, including by performing reclaims
3542 /// with objc_unsafeClaimAutoreleasedReturnValue.
EmitARCUnsafeUnretainedScalarExpr(const Expr * e)3543 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3544 // Look through full-expressions.
3545 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3546 RunCleanupsScope scope(*this);
3547 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3548 }
3549
3550 return emitARCUnsafeUnretainedScalarExpr(*this, e);
3551 }
3552
3553 std::pair<LValue,llvm::Value*>
EmitARCStoreUnsafeUnretained(const BinaryOperator * e,bool ignored)3554 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3555 bool ignored) {
3556 // Evaluate the RHS first. If we're ignoring the result, assume
3557 // that we can emit at an unsafe +0.
3558 llvm::Value *value;
3559 if (ignored) {
3560 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3561 } else {
3562 value = EmitScalarExpr(e->getRHS());
3563 }
3564
3565 // Emit the LHS and perform the store.
3566 LValue lvalue = EmitLValue(e->getLHS());
3567 EmitStoreOfScalar(value, lvalue);
3568
3569 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3570 }
3571
3572 std::pair<LValue,llvm::Value*>
EmitARCStoreStrong(const BinaryOperator * e,bool ignored)3573 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3574 bool ignored) {
3575 // Evaluate the RHS first.
3576 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3577 llvm::Value *value = result.getPointer();
3578
3579 bool hasImmediateRetain = result.getInt();
3580
3581 // If we didn't emit a retained object, and the l-value is of block
3582 // type, then we need to emit the block-retain immediately in case
3583 // it invalidates the l-value.
3584 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3585 value = EmitARCRetainBlock(value, /*mandatory*/ false);
3586 hasImmediateRetain = true;
3587 }
3588
3589 LValue lvalue = EmitLValue(e->getLHS());
3590
3591 // If the RHS was emitted retained, expand this.
3592 if (hasImmediateRetain) {
3593 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3594 EmitStoreOfScalar(value, lvalue);
3595 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3596 } else {
3597 value = EmitARCStoreStrong(lvalue, value, ignored);
3598 }
3599
3600 return std::pair<LValue,llvm::Value*>(lvalue, value);
3601 }
3602
3603 std::pair<LValue,llvm::Value*>
EmitARCStoreAutoreleasing(const BinaryOperator * e)3604 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3605 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3606 LValue lvalue = EmitLValue(e->getLHS());
3607
3608 EmitStoreOfScalar(value, lvalue);
3609
3610 return std::pair<LValue,llvm::Value*>(lvalue, value);
3611 }
3612
EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt & ARPS)3613 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3614 const ObjCAutoreleasePoolStmt &ARPS) {
3615 const Stmt *subStmt = ARPS.getSubStmt();
3616 const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3617
3618 CGDebugInfo *DI = getDebugInfo();
3619 if (DI)
3620 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3621
3622 // Keep track of the current cleanup stack depth.
3623 RunCleanupsScope Scope(*this);
3624 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3625 llvm::Value *token = EmitObjCAutoreleasePoolPush();
3626 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3627 } else {
3628 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3629 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3630 }
3631
3632 for (const auto *I : S.body())
3633 EmitStmt(I);
3634
3635 if (DI)
3636 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3637 }
3638
3639 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3640 /// make sure it survives garbage collection until this point.
EmitExtendGCLifetime(llvm::Value * object)3641 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3642 // We just use an inline assembly.
3643 llvm::FunctionType *extenderType
3644 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3645 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3646 /* assembly */ "",
3647 /* constraints */ "r",
3648 /* side effects */ true);
3649
3650 object = Builder.CreateBitCast(object, VoidPtrTy);
3651 EmitNounwindRuntimeCall(extender, object);
3652 }
3653
3654 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3655 /// non-trivial copy assignment function, produce following helper function.
3656 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3657 ///
3658 llvm::Constant *
GenerateObjCAtomicSetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)3659 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3660 const ObjCPropertyImplDecl *PID) {
3661 if (!getLangOpts().CPlusPlus ||
3662 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3663 return nullptr;
3664 QualType Ty = PID->getPropertyIvarDecl()->getType();
3665 if (!Ty->isRecordType())
3666 return nullptr;
3667 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3668 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3669 return nullptr;
3670 llvm::Constant *HelperFn = nullptr;
3671 if (hasTrivialSetExpr(PID))
3672 return nullptr;
3673 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3674 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3675 return HelperFn;
3676
3677 ASTContext &C = getContext();
3678 IdentifierInfo *II
3679 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3680
3681 QualType ReturnTy = C.VoidTy;
3682 QualType DestTy = C.getPointerType(Ty);
3683 QualType SrcTy = Ty;
3684 SrcTy.addConst();
3685 SrcTy = C.getPointerType(SrcTy);
3686
3687 SmallVector<QualType, 2> ArgTys;
3688 ArgTys.push_back(DestTy);
3689 ArgTys.push_back(SrcTy);
3690 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3691
3692 FunctionDecl *FD = FunctionDecl::Create(
3693 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3694 FunctionTy, nullptr, SC_Static, false, false);
3695
3696 FunctionArgList args;
3697 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3698 ImplicitParamDecl::Other);
3699 args.push_back(&DstDecl);
3700 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3701 ImplicitParamDecl::Other);
3702 args.push_back(&SrcDecl);
3703
3704 const CGFunctionInfo &FI =
3705 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3706
3707 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3708
3709 llvm::Function *Fn =
3710 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3711 "__assign_helper_atomic_property_",
3712 &CGM.getModule());
3713
3714 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3715
3716 StartFunction(FD, ReturnTy, Fn, FI, args);
3717
3718 DeclRefExpr DstExpr(C, &DstDecl, false, DestTy, VK_RValue, SourceLocation());
3719 UnaryOperator *DST = UnaryOperator::Create(
3720 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3721 SourceLocation(), false, FPOptionsOverride());
3722
3723 DeclRefExpr SrcExpr(C, &SrcDecl, false, SrcTy, VK_RValue, SourceLocation());
3724 UnaryOperator *SRC = UnaryOperator::Create(
3725 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3726 SourceLocation(), false, FPOptionsOverride());
3727
3728 Expr *Args[2] = {DST, SRC};
3729 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3730 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3731 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3732 VK_LValue, SourceLocation(), FPOptionsOverride());
3733
3734 EmitStmt(TheCall);
3735
3736 FinishFunction();
3737 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3738 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3739 return HelperFn;
3740 }
3741
3742 llvm::Constant *
GenerateObjCAtomicGetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)3743 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3744 const ObjCPropertyImplDecl *PID) {
3745 if (!getLangOpts().CPlusPlus ||
3746 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3747 return nullptr;
3748 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3749 QualType Ty = PD->getType();
3750 if (!Ty->isRecordType())
3751 return nullptr;
3752 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3753 return nullptr;
3754 llvm::Constant *HelperFn = nullptr;
3755 if (hasTrivialGetExpr(PID))
3756 return nullptr;
3757 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3758 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3759 return HelperFn;
3760
3761 ASTContext &C = getContext();
3762 IdentifierInfo *II =
3763 &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3764
3765 QualType ReturnTy = C.VoidTy;
3766 QualType DestTy = C.getPointerType(Ty);
3767 QualType SrcTy = Ty;
3768 SrcTy.addConst();
3769 SrcTy = C.getPointerType(SrcTy);
3770
3771 SmallVector<QualType, 2> ArgTys;
3772 ArgTys.push_back(DestTy);
3773 ArgTys.push_back(SrcTy);
3774 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3775
3776 FunctionDecl *FD = FunctionDecl::Create(
3777 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3778 FunctionTy, nullptr, SC_Static, false, false);
3779
3780 FunctionArgList args;
3781 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3782 ImplicitParamDecl::Other);
3783 args.push_back(&DstDecl);
3784 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3785 ImplicitParamDecl::Other);
3786 args.push_back(&SrcDecl);
3787
3788 const CGFunctionInfo &FI =
3789 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3790
3791 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3792
3793 llvm::Function *Fn = llvm::Function::Create(
3794 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3795 &CGM.getModule());
3796
3797 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3798
3799 StartFunction(FD, ReturnTy, Fn, FI, args);
3800
3801 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3802 SourceLocation());
3803
3804 UnaryOperator *SRC = UnaryOperator::Create(
3805 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3806 SourceLocation(), false, FPOptionsOverride());
3807
3808 CXXConstructExpr *CXXConstExpr =
3809 cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3810
3811 SmallVector<Expr*, 4> ConstructorArgs;
3812 ConstructorArgs.push_back(SRC);
3813 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3814 CXXConstExpr->arg_end());
3815
3816 CXXConstructExpr *TheCXXConstructExpr =
3817 CXXConstructExpr::Create(C, Ty, SourceLocation(),
3818 CXXConstExpr->getConstructor(),
3819 CXXConstExpr->isElidable(),
3820 ConstructorArgs,
3821 CXXConstExpr->hadMultipleCandidates(),
3822 CXXConstExpr->isListInitialization(),
3823 CXXConstExpr->isStdInitListInitialization(),
3824 CXXConstExpr->requiresZeroInitialization(),
3825 CXXConstExpr->getConstructionKind(),
3826 SourceRange());
3827
3828 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3829 SourceLocation());
3830
3831 RValue DV = EmitAnyExpr(&DstExpr);
3832 CharUnits Alignment
3833 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3834 EmitAggExpr(TheCXXConstructExpr,
3835 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3836 Qualifiers(),
3837 AggValueSlot::IsDestructed,
3838 AggValueSlot::DoesNotNeedGCBarriers,
3839 AggValueSlot::IsNotAliased,
3840 AggValueSlot::DoesNotOverlap));
3841
3842 FinishFunction();
3843 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3844 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3845 return HelperFn;
3846 }
3847
3848 llvm::Value *
EmitBlockCopyAndAutorelease(llvm::Value * Block,QualType Ty)3849 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3850 // Get selectors for retain/autorelease.
3851 IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3852 Selector CopySelector =
3853 getContext().Selectors.getNullarySelector(CopyID);
3854 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3855 Selector AutoreleaseSelector =
3856 getContext().Selectors.getNullarySelector(AutoreleaseID);
3857
3858 // Emit calls to retain/autorelease.
3859 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3860 llvm::Value *Val = Block;
3861 RValue Result;
3862 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3863 Ty, CopySelector,
3864 Val, CallArgList(), nullptr, nullptr);
3865 Val = Result.getScalarVal();
3866 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3867 Ty, AutoreleaseSelector,
3868 Val, CallArgList(), nullptr, nullptr);
3869 Val = Result.getScalarVal();
3870 return Val;
3871 }
3872
getBaseMachOPlatformID(const llvm::Triple & TT)3873 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3874 switch (TT.getOS()) {
3875 case llvm::Triple::Darwin:
3876 case llvm::Triple::MacOSX:
3877 return llvm::MachO::PLATFORM_MACOS;
3878 case llvm::Triple::IOS:
3879 return llvm::MachO::PLATFORM_IOS;
3880 case llvm::Triple::TvOS:
3881 return llvm::MachO::PLATFORM_TVOS;
3882 case llvm::Triple::WatchOS:
3883 return llvm::MachO::PLATFORM_WATCHOS;
3884 default:
3885 return /*Unknown platform*/ 0;
3886 }
3887 }
3888
emitIsPlatformVersionAtLeast(CodeGenFunction & CGF,const VersionTuple & Version)3889 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3890 const VersionTuple &Version) {
3891 CodeGenModule &CGM = CGF.CGM;
3892 // Note: we intend to support multi-platform version checks, so reserve
3893 // the room for a dual platform checking invocation that will be
3894 // implemented in the future.
3895 llvm::SmallVector<llvm::Value *, 8> Args;
3896
3897 auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3898 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
3899 Args.push_back(
3900 llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3901 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3902 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0));
3903 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0));
3904 };
3905
3906 assert(!Version.empty() && "unexpected empty version");
3907 EmitArgs(Version, CGM.getTarget().getTriple());
3908
3909 if (!CGM.IsPlatformVersionAtLeastFn) {
3910 llvm::FunctionType *FTy = llvm::FunctionType::get(
3911 CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
3912 false);
3913 CGM.IsPlatformVersionAtLeastFn =
3914 CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
3915 }
3916
3917 llvm::Value *Check =
3918 CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args);
3919 return CGF.Builder.CreateICmpNE(Check,
3920 llvm::Constant::getNullValue(CGM.Int32Ty));
3921 }
3922
3923 llvm::Value *
EmitBuiltinAvailable(const VersionTuple & Version)3924 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
3925 // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3926 if (CGM.getTarget().getTriple().isOSDarwin())
3927 return emitIsPlatformVersionAtLeast(*this, Version);
3928
3929 if (!CGM.IsOSVersionAtLeastFn) {
3930 llvm::FunctionType *FTy =
3931 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3932 CGM.IsOSVersionAtLeastFn =
3933 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3934 }
3935
3936 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
3937 llvm::Value *Args[] = {
3938 llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
3939 llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0),
3940 llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0),
3941 };
3942
3943 llvm::Value *CallRes =
3944 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3945
3946 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3947 }
3948
isFoundationNeededForDarwinAvailabilityCheck(const llvm::Triple & TT,const VersionTuple & TargetVersion)3949 static bool isFoundationNeededForDarwinAvailabilityCheck(
3950 const llvm::Triple &TT, const VersionTuple &TargetVersion) {
3951 VersionTuple FoundationDroppedInVersion;
3952 switch (TT.getOS()) {
3953 case llvm::Triple::IOS:
3954 case llvm::Triple::TvOS:
3955 FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
3956 break;
3957 case llvm::Triple::WatchOS:
3958 FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
3959 break;
3960 case llvm::Triple::Darwin:
3961 case llvm::Triple::MacOSX:
3962 FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
3963 break;
3964 default:
3965 llvm_unreachable("Unexpected OS");
3966 }
3967 return TargetVersion < FoundationDroppedInVersion;
3968 }
3969
emitAtAvailableLinkGuard()3970 void CodeGenModule::emitAtAvailableLinkGuard() {
3971 if (!IsPlatformVersionAtLeastFn)
3972 return;
3973 // @available requires CoreFoundation only on Darwin.
3974 if (!Target.getTriple().isOSDarwin())
3975 return;
3976 // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
3977 // watchOS 6+.
3978 if (!isFoundationNeededForDarwinAvailabilityCheck(
3979 Target.getTriple(), Target.getPlatformMinVersion()))
3980 return;
3981 // Add -framework CoreFoundation to the linker commands. We still want to
3982 // emit the core foundation reference down below because otherwise if
3983 // CoreFoundation is not used in the code, the linker won't link the
3984 // framework.
3985 auto &Context = getLLVMContext();
3986 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3987 llvm::MDString::get(Context, "CoreFoundation")};
3988 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3989 // Emit a reference to a symbol from CoreFoundation to ensure that
3990 // CoreFoundation is linked into the final binary.
3991 llvm::FunctionType *FTy =
3992 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3993 llvm::FunctionCallee CFFunc =
3994 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3995
3996 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3997 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
3998 CheckFTy, "__clang_at_available_requires_core_foundation_framework",
3999 llvm::AttributeList(), /*Local=*/true);
4000 llvm::Function *CFLinkCheckFunc =
4001 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4002 if (CFLinkCheckFunc->empty()) {
4003 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4004 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4005 CodeGenFunction CGF(*this);
4006 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
4007 CGF.EmitNounwindRuntimeCall(CFFunc,
4008 llvm::Constant::getNullValue(VoidPtrTy));
4009 CGF.Builder.CreateUnreachable();
4010 addCompilerUsedGlobal(CFLinkCheckFunc);
4011 }
4012 }
4013
~CGObjCRuntime()4014 CGObjCRuntime::~CGObjCRuntime() {}
4015