1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "llvm/ADT/Hashing.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/Support/ConvertUTF.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/Path.h"
41 #include "llvm/Support/SaveAndRestore.h"
42 #include "llvm/Transforms/Utils/SanitizerStats.h"
43
44 #include <string>
45
46 using namespace clang;
47 using namespace CodeGen;
48
49 //===--------------------------------------------------------------------===//
50 // Miscellaneous Helper Methods
51 //===--------------------------------------------------------------------===//
52
EmitCastToVoidPtr(llvm::Value * value)53 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
54 unsigned addressSpace =
55 cast<llvm::PointerType>(value->getType())->getAddressSpace();
56
57 llvm::PointerType *destType = Int8PtrTy;
58 if (addressSpace)
59 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
60
61 if (value->getType() == destType) return value;
62 return Builder.CreateBitCast(value, destType);
63 }
64
65 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
66 /// block.
CreateTempAllocaWithoutCast(llvm::Type * Ty,CharUnits Align,const Twine & Name,llvm::Value * ArraySize)67 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
68 CharUnits Align,
69 const Twine &Name,
70 llvm::Value *ArraySize) {
71 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
72 Alloca->setAlignment(Align.getAsAlign());
73 return Address(Alloca, Align);
74 }
75
76 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
77 /// block. The alloca is casted to default address space if necessary.
CreateTempAlloca(llvm::Type * Ty,CharUnits Align,const Twine & Name,llvm::Value * ArraySize,Address * AllocaAddr)78 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
79 const Twine &Name,
80 llvm::Value *ArraySize,
81 Address *AllocaAddr) {
82 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
83 if (AllocaAddr)
84 *AllocaAddr = Alloca;
85 llvm::Value *V = Alloca.getPointer();
86 // Alloca always returns a pointer in alloca address space, which may
87 // be different from the type defined by the language. For example,
88 // in C++ the auto variables are in the default address space. Therefore
89 // cast alloca to the default address space when necessary.
90 if (getASTAllocaAddressSpace() != LangAS::Default) {
91 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
92 llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
93 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
94 // otherwise alloca is inserted at the current insertion point of the
95 // builder.
96 if (!ArraySize)
97 Builder.SetInsertPoint(AllocaInsertPt);
98 V = getTargetHooks().performAddrSpaceCast(
99 *this, V, getASTAllocaAddressSpace(), LangAS::Default,
100 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
101 }
102
103 return Address(V, Align);
104 }
105
106 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
107 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
108 /// insertion point of the builder.
CreateTempAlloca(llvm::Type * Ty,const Twine & Name,llvm::Value * ArraySize)109 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
110 const Twine &Name,
111 llvm::Value *ArraySize) {
112 if (ArraySize)
113 return Builder.CreateAlloca(Ty, ArraySize, Name);
114 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
115 ArraySize, Name, AllocaInsertPt);
116 }
117
118 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
119 /// default alignment of the corresponding LLVM type, which is *not*
120 /// guaranteed to be related in any way to the expected alignment of
121 /// an AST type that might have been lowered to Ty.
CreateDefaultAlignTempAlloca(llvm::Type * Ty,const Twine & Name)122 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
123 const Twine &Name) {
124 CharUnits Align =
125 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
126 return CreateTempAlloca(Ty, Align, Name);
127 }
128
InitTempAlloca(Address Var,llvm::Value * Init)129 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
130 auto *Alloca = Var.getPointer();
131 assert(isa<llvm::AllocaInst>(Alloca) ||
132 (isa<llvm::AddrSpaceCastInst>(Alloca) &&
133 isa<llvm::AllocaInst>(
134 cast<llvm::AddrSpaceCastInst>(Alloca)->getPointerOperand())));
135
136 auto *Store = new llvm::StoreInst(Init, Alloca, /*volatile*/ false,
137 Var.getAlignment().getAsAlign());
138 llvm::BasicBlock *Block = AllocaInsertPt->getParent();
139 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
140 }
141
CreateIRTemp(QualType Ty,const Twine & Name)142 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
143 CharUnits Align = getContext().getTypeAlignInChars(Ty);
144 return CreateTempAlloca(ConvertType(Ty), Align, Name);
145 }
146
CreateMemTemp(QualType Ty,const Twine & Name,Address * Alloca)147 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
148 Address *Alloca) {
149 // FIXME: Should we prefer the preferred type alignment here?
150 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
151 }
152
CreateMemTemp(QualType Ty,CharUnits Align,const Twine & Name,Address * Alloca)153 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
154 const Twine &Name, Address *Alloca) {
155 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
156 /*ArraySize=*/nullptr, Alloca);
157
158 if (Ty->isConstantMatrixType()) {
159 auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
160 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
161 ArrayTy->getNumElements());
162
163 Result = Address(
164 Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
165 Result.getAlignment());
166 }
167 return Result;
168 }
169
CreateMemTempWithoutCast(QualType Ty,CharUnits Align,const Twine & Name)170 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
171 const Twine &Name) {
172 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
173 }
174
CreateMemTempWithoutCast(QualType Ty,const Twine & Name)175 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
176 const Twine &Name) {
177 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
178 Name);
179 }
180
181 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
182 /// expression and compare the result against zero, returning an Int1Ty value.
EvaluateExprAsBool(const Expr * E)183 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
184 PGO.setCurrentStmt(E);
185 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
186 llvm::Value *MemPtr = EmitScalarExpr(E);
187 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
188 }
189
190 QualType BoolTy = getContext().BoolTy;
191 SourceLocation Loc = E->getExprLoc();
192 CGFPOptionsRAII FPOptsRAII(*this, E);
193 if (!E->getType()->isAnyComplexType())
194 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
195
196 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
197 Loc);
198 }
199
200 /// EmitIgnoredExpr - Emit code to compute the specified expression,
201 /// ignoring the result.
EmitIgnoredExpr(const Expr * E)202 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
203 if (E->isRValue())
204 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
205
206 // Just emit it as an l-value and drop the result.
207 EmitLValue(E);
208 }
209
210 /// EmitAnyExpr - Emit code to compute the specified expression which
211 /// can have any type. The result is returned as an RValue struct.
212 /// If this is an aggregate expression, AggSlot indicates where the
213 /// result should be returned.
EmitAnyExpr(const Expr * E,AggValueSlot aggSlot,bool ignoreResult)214 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
215 AggValueSlot aggSlot,
216 bool ignoreResult) {
217 switch (getEvaluationKind(E->getType())) {
218 case TEK_Scalar:
219 return RValue::get(EmitScalarExpr(E, ignoreResult));
220 case TEK_Complex:
221 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
222 case TEK_Aggregate:
223 if (!ignoreResult && aggSlot.isIgnored())
224 aggSlot = CreateAggTemp(E->getType(), "agg-temp");
225 EmitAggExpr(E, aggSlot);
226 return aggSlot.asRValue();
227 }
228 llvm_unreachable("bad evaluation kind");
229 }
230
231 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
232 /// always be accessible even if no aggregate location is provided.
EmitAnyExprToTemp(const Expr * E)233 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
234 AggValueSlot AggSlot = AggValueSlot::ignored();
235
236 if (hasAggregateEvaluationKind(E->getType()))
237 AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
238 return EmitAnyExpr(E, AggSlot);
239 }
240
241 /// EmitAnyExprToMem - Evaluate an expression into a given memory
242 /// location.
EmitAnyExprToMem(const Expr * E,Address Location,Qualifiers Quals,bool IsInit)243 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
244 Address Location,
245 Qualifiers Quals,
246 bool IsInit) {
247 // FIXME: This function should take an LValue as an argument.
248 switch (getEvaluationKind(E->getType())) {
249 case TEK_Complex:
250 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
251 /*isInit*/ false);
252 return;
253
254 case TEK_Aggregate: {
255 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
256 AggValueSlot::IsDestructed_t(IsInit),
257 AggValueSlot::DoesNotNeedGCBarriers,
258 AggValueSlot::IsAliased_t(!IsInit),
259 AggValueSlot::MayOverlap));
260 return;
261 }
262
263 case TEK_Scalar: {
264 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
265 LValue LV = MakeAddrLValue(Location, E->getType());
266 EmitStoreThroughLValue(RV, LV);
267 return;
268 }
269 }
270 llvm_unreachable("bad evaluation kind");
271 }
272
273 static void
pushTemporaryCleanup(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * E,Address ReferenceTemporary)274 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
275 const Expr *E, Address ReferenceTemporary) {
276 // Objective-C++ ARC:
277 // If we are binding a reference to a temporary that has ownership, we
278 // need to perform retain/release operations on the temporary.
279 //
280 // FIXME: This should be looking at E, not M.
281 if (auto Lifetime = M->getType().getObjCLifetime()) {
282 switch (Lifetime) {
283 case Qualifiers::OCL_None:
284 case Qualifiers::OCL_ExplicitNone:
285 // Carry on to normal cleanup handling.
286 break;
287
288 case Qualifiers::OCL_Autoreleasing:
289 // Nothing to do; cleaned up by an autorelease pool.
290 return;
291
292 case Qualifiers::OCL_Strong:
293 case Qualifiers::OCL_Weak:
294 switch (StorageDuration Duration = M->getStorageDuration()) {
295 case SD_Static:
296 // Note: we intentionally do not register a cleanup to release
297 // the object on program termination.
298 return;
299
300 case SD_Thread:
301 // FIXME: We should probably register a cleanup in this case.
302 return;
303
304 case SD_Automatic:
305 case SD_FullExpression:
306 CodeGenFunction::Destroyer *Destroy;
307 CleanupKind CleanupKind;
308 if (Lifetime == Qualifiers::OCL_Strong) {
309 const ValueDecl *VD = M->getExtendingDecl();
310 bool Precise =
311 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
312 CleanupKind = CGF.getARCCleanupKind();
313 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
314 : &CodeGenFunction::destroyARCStrongImprecise;
315 } else {
316 // __weak objects always get EH cleanups; otherwise, exceptions
317 // could cause really nasty crashes instead of mere leaks.
318 CleanupKind = NormalAndEHCleanup;
319 Destroy = &CodeGenFunction::destroyARCWeak;
320 }
321 if (Duration == SD_FullExpression)
322 CGF.pushDestroy(CleanupKind, ReferenceTemporary,
323 M->getType(), *Destroy,
324 CleanupKind & EHCleanup);
325 else
326 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
327 M->getType(),
328 *Destroy, CleanupKind & EHCleanup);
329 return;
330
331 case SD_Dynamic:
332 llvm_unreachable("temporary cannot have dynamic storage duration");
333 }
334 llvm_unreachable("unknown storage duration");
335 }
336 }
337
338 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
339 if (const RecordType *RT =
340 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
341 // Get the destructor for the reference temporary.
342 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
343 if (!ClassDecl->hasTrivialDestructor())
344 ReferenceTemporaryDtor = ClassDecl->getDestructor();
345 }
346
347 if (!ReferenceTemporaryDtor)
348 return;
349
350 // Call the destructor for the temporary.
351 switch (M->getStorageDuration()) {
352 case SD_Static:
353 case SD_Thread: {
354 llvm::FunctionCallee CleanupFn;
355 llvm::Constant *CleanupArg;
356 if (E->getType()->isArrayType()) {
357 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
358 ReferenceTemporary, E->getType(),
359 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
360 dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
361 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
362 } else {
363 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
364 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
365 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
366 }
367 CGF.CGM.getCXXABI().registerGlobalDtor(
368 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
369 break;
370 }
371
372 case SD_FullExpression:
373 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
374 CodeGenFunction::destroyCXXObject,
375 CGF.getLangOpts().Exceptions);
376 break;
377
378 case SD_Automatic:
379 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
380 ReferenceTemporary, E->getType(),
381 CodeGenFunction::destroyCXXObject,
382 CGF.getLangOpts().Exceptions);
383 break;
384
385 case SD_Dynamic:
386 llvm_unreachable("temporary cannot have dynamic storage duration");
387 }
388 }
389
createReferenceTemporary(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * Inner,Address * Alloca=nullptr)390 static Address createReferenceTemporary(CodeGenFunction &CGF,
391 const MaterializeTemporaryExpr *M,
392 const Expr *Inner,
393 Address *Alloca = nullptr) {
394 auto &TCG = CGF.getTargetHooks();
395 switch (M->getStorageDuration()) {
396 case SD_FullExpression:
397 case SD_Automatic: {
398 // If we have a constant temporary array or record try to promote it into a
399 // constant global under the same rules a normal constant would've been
400 // promoted. This is easier on the optimizer and generally emits fewer
401 // instructions.
402 QualType Ty = Inner->getType();
403 if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
404 (Ty->isArrayType() || Ty->isRecordType()) &&
405 CGF.CGM.isTypeConstant(Ty, true))
406 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
407 auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
408 auto *GV = new llvm::GlobalVariable(
409 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
410 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
411 llvm::GlobalValue::NotThreadLocal,
412 CGF.getContext().getTargetAddressSpace(AS));
413 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
414 GV->setAlignment(alignment.getAsAlign());
415 llvm::Constant *C = GV;
416 if (AS != LangAS::Default)
417 C = TCG.performAddrSpaceCast(
418 CGF.CGM, GV, AS, LangAS::Default,
419 GV->getValueType()->getPointerTo(
420 CGF.getContext().getTargetAddressSpace(LangAS::Default)));
421 // FIXME: Should we put the new global into a COMDAT?
422 return Address(C, alignment);
423 }
424 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
425 }
426 case SD_Thread:
427 case SD_Static:
428 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
429
430 case SD_Dynamic:
431 llvm_unreachable("temporary can't have dynamic storage duration");
432 }
433 llvm_unreachable("unknown storage duration");
434 }
435
436 /// Helper method to check if the underlying ABI is AAPCS
isAAPCS(const TargetInfo & TargetInfo)437 static bool isAAPCS(const TargetInfo &TargetInfo) {
438 return TargetInfo.getABI().startswith("aapcs");
439 }
440
441 LValue CodeGenFunction::
EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * M)442 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
443 const Expr *E = M->getSubExpr();
444
445 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
446 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
447 "Reference should never be pseudo-strong!");
448
449 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
450 // as that will cause the lifetime adjustment to be lost for ARC
451 auto ownership = M->getType().getObjCLifetime();
452 if (ownership != Qualifiers::OCL_None &&
453 ownership != Qualifiers::OCL_ExplicitNone) {
454 Address Object = createReferenceTemporary(*this, M, E);
455 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
456 Object = Address(llvm::ConstantExpr::getBitCast(Var,
457 ConvertTypeForMem(E->getType())
458 ->getPointerTo(Object.getAddressSpace())),
459 Object.getAlignment());
460
461 // createReferenceTemporary will promote the temporary to a global with a
462 // constant initializer if it can. It can only do this to a value of
463 // ARC-manageable type if the value is global and therefore "immune" to
464 // ref-counting operations. Therefore we have no need to emit either a
465 // dynamic initialization or a cleanup and we can just return the address
466 // of the temporary.
467 if (Var->hasInitializer())
468 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
469
470 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
471 }
472 LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
473 AlignmentSource::Decl);
474
475 switch (getEvaluationKind(E->getType())) {
476 default: llvm_unreachable("expected scalar or aggregate expression");
477 case TEK_Scalar:
478 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
479 break;
480 case TEK_Aggregate: {
481 EmitAggExpr(E, AggValueSlot::forAddr(Object,
482 E->getType().getQualifiers(),
483 AggValueSlot::IsDestructed,
484 AggValueSlot::DoesNotNeedGCBarriers,
485 AggValueSlot::IsNotAliased,
486 AggValueSlot::DoesNotOverlap));
487 break;
488 }
489 }
490
491 pushTemporaryCleanup(*this, M, E, Object);
492 return RefTempDst;
493 }
494
495 SmallVector<const Expr *, 2> CommaLHSs;
496 SmallVector<SubobjectAdjustment, 2> Adjustments;
497 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
498
499 for (const auto &Ignored : CommaLHSs)
500 EmitIgnoredExpr(Ignored);
501
502 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
503 if (opaque->getType()->isRecordType()) {
504 assert(Adjustments.empty());
505 return EmitOpaqueValueLValue(opaque);
506 }
507 }
508
509 // Create and initialize the reference temporary.
510 Address Alloca = Address::invalid();
511 Address Object = createReferenceTemporary(*this, M, E, &Alloca);
512 if (auto *Var = dyn_cast<llvm::GlobalVariable>(
513 Object.getPointer()->stripPointerCasts())) {
514 Object = Address(llvm::ConstantExpr::getBitCast(
515 cast<llvm::Constant>(Object.getPointer()),
516 ConvertTypeForMem(E->getType())->getPointerTo()),
517 Object.getAlignment());
518 // If the temporary is a global and has a constant initializer or is a
519 // constant temporary that we promoted to a global, we may have already
520 // initialized it.
521 if (!Var->hasInitializer()) {
522 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
523 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
524 }
525 } else {
526 switch (M->getStorageDuration()) {
527 case SD_Automatic:
528 if (auto *Size = EmitLifetimeStart(
529 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
530 Alloca.getPointer())) {
531 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
532 Alloca, Size);
533 }
534 break;
535
536 case SD_FullExpression: {
537 if (!ShouldEmitLifetimeMarkers)
538 break;
539
540 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
541 // marker. Instead, start the lifetime of a conditional temporary earlier
542 // so that it's unconditional. Don't do this with sanitizers which need
543 // more precise lifetime marks.
544 ConditionalEvaluation *OldConditional = nullptr;
545 CGBuilderTy::InsertPoint OldIP;
546 if (isInConditionalBranch() && !E->getType().isDestructedType() &&
547 !SanOpts.has(SanitizerKind::HWAddress) &&
548 !SanOpts.has(SanitizerKind::Memory) &&
549 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
550 OldConditional = OutermostConditional;
551 OutermostConditional = nullptr;
552
553 OldIP = Builder.saveIP();
554 llvm::BasicBlock *Block = OldConditional->getStartingBlock();
555 Builder.restoreIP(CGBuilderTy::InsertPoint(
556 Block, llvm::BasicBlock::iterator(Block->back())));
557 }
558
559 if (auto *Size = EmitLifetimeStart(
560 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
561 Alloca.getPointer())) {
562 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
563 Size);
564 }
565
566 if (OldConditional) {
567 OutermostConditional = OldConditional;
568 Builder.restoreIP(OldIP);
569 }
570 break;
571 }
572
573 default:
574 break;
575 }
576 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
577 }
578 pushTemporaryCleanup(*this, M, E, Object);
579
580 // Perform derived-to-base casts and/or field accesses, to get from the
581 // temporary object we created (and, potentially, for which we extended
582 // the lifetime) to the subobject we're binding the reference to.
583 for (unsigned I = Adjustments.size(); I != 0; --I) {
584 SubobjectAdjustment &Adjustment = Adjustments[I-1];
585 switch (Adjustment.Kind) {
586 case SubobjectAdjustment::DerivedToBaseAdjustment:
587 Object =
588 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
589 Adjustment.DerivedToBase.BasePath->path_begin(),
590 Adjustment.DerivedToBase.BasePath->path_end(),
591 /*NullCheckValue=*/ false, E->getExprLoc());
592 break;
593
594 case SubobjectAdjustment::FieldAdjustment: {
595 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
596 LV = EmitLValueForField(LV, Adjustment.Field);
597 assert(LV.isSimple() &&
598 "materialized temporary field is not a simple lvalue");
599 Object = LV.getAddress(*this);
600 break;
601 }
602
603 case SubobjectAdjustment::MemberPointerAdjustment: {
604 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
605 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
606 Adjustment.Ptr.MPT);
607 break;
608 }
609 }
610 }
611
612 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
613 }
614
615 RValue
EmitReferenceBindingToExpr(const Expr * E)616 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
617 // Emit the expression as an lvalue.
618 LValue LV = EmitLValue(E);
619 assert(LV.isSimple());
620 llvm::Value *Value = LV.getPointer(*this);
621
622 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
623 // C++11 [dcl.ref]p5 (as amended by core issue 453):
624 // If a glvalue to which a reference is directly bound designates neither
625 // an existing object or function of an appropriate type nor a region of
626 // storage of suitable size and alignment to contain an object of the
627 // reference's type, the behavior is undefined.
628 QualType Ty = E->getType();
629 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
630 }
631
632 return RValue::get(Value);
633 }
634
635
636 /// getAccessedFieldNo - Given an encoded value and a result number, return the
637 /// input field number being accessed.
getAccessedFieldNo(unsigned Idx,const llvm::Constant * Elts)638 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
639 const llvm::Constant *Elts) {
640 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
641 ->getZExtValue();
642 }
643
644 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
emitHash16Bytes(CGBuilderTy & Builder,llvm::Value * Low,llvm::Value * High)645 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
646 llvm::Value *High) {
647 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
648 llvm::Value *K47 = Builder.getInt64(47);
649 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
650 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
651 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
652 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
653 return Builder.CreateMul(B1, KMul);
654 }
655
isNullPointerAllowed(TypeCheckKind TCK)656 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
657 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
658 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
659 }
660
isVptrCheckRequired(TypeCheckKind TCK,QualType Ty)661 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
662 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
663 return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
664 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
665 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
666 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
667 }
668
sanitizePerformTypeCheck() const669 bool CodeGenFunction::sanitizePerformTypeCheck() const {
670 return SanOpts.has(SanitizerKind::Null) |
671 SanOpts.has(SanitizerKind::Alignment) |
672 SanOpts.has(SanitizerKind::ObjectSize) |
673 SanOpts.has(SanitizerKind::Vptr);
674 }
675
EmitTypeCheck(TypeCheckKind TCK,SourceLocation Loc,llvm::Value * Ptr,QualType Ty,CharUnits Alignment,SanitizerSet SkippedChecks,llvm::Value * ArraySize)676 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
677 llvm::Value *Ptr, QualType Ty,
678 CharUnits Alignment,
679 SanitizerSet SkippedChecks,
680 llvm::Value *ArraySize) {
681 if (!sanitizePerformTypeCheck())
682 return;
683
684 // Don't check pointers outside the default address space. The null check
685 // isn't correct, the object-size check isn't supported by LLVM, and we can't
686 // communicate the addresses to the runtime handler for the vptr check.
687 if (Ptr->getType()->getPointerAddressSpace())
688 return;
689
690 // Don't check pointers to volatile data. The behavior here is implementation-
691 // defined.
692 if (Ty.isVolatileQualified())
693 return;
694
695 SanitizerScope SanScope(this);
696
697 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
698 llvm::BasicBlock *Done = nullptr;
699
700 // Quickly determine whether we have a pointer to an alloca. It's possible
701 // to skip null checks, and some alignment checks, for these pointers. This
702 // can reduce compile-time significantly.
703 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
704
705 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
706 llvm::Value *IsNonNull = nullptr;
707 bool IsGuaranteedNonNull =
708 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
709 bool AllowNullPointers = isNullPointerAllowed(TCK);
710 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
711 !IsGuaranteedNonNull) {
712 // The glvalue must not be an empty glvalue.
713 IsNonNull = Builder.CreateIsNotNull(Ptr);
714
715 // The IR builder can constant-fold the null check if the pointer points to
716 // a constant.
717 IsGuaranteedNonNull = IsNonNull == True;
718
719 // Skip the null check if the pointer is known to be non-null.
720 if (!IsGuaranteedNonNull) {
721 if (AllowNullPointers) {
722 // When performing pointer casts, it's OK if the value is null.
723 // Skip the remaining checks in that case.
724 Done = createBasicBlock("null");
725 llvm::BasicBlock *Rest = createBasicBlock("not.null");
726 Builder.CreateCondBr(IsNonNull, Rest, Done);
727 EmitBlock(Rest);
728 } else {
729 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
730 }
731 }
732 }
733
734 if (SanOpts.has(SanitizerKind::ObjectSize) &&
735 !SkippedChecks.has(SanitizerKind::ObjectSize) &&
736 !Ty->isIncompleteType()) {
737 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
738 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
739 if (ArraySize)
740 Size = Builder.CreateMul(Size, ArraySize);
741
742 // Degenerate case: new X[0] does not need an objectsize check.
743 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
744 if (!ConstantSize || !ConstantSize->isNullValue()) {
745 // The glvalue must refer to a large enough storage region.
746 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
747 // to check this.
748 // FIXME: Get object address space
749 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
750 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
751 llvm::Value *Min = Builder.getFalse();
752 llvm::Value *NullIsUnknown = Builder.getFalse();
753 llvm::Value *Dynamic = Builder.getFalse();
754 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
755 llvm::Value *LargeEnough = Builder.CreateICmpUGE(
756 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
757 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
758 }
759 }
760
761 uint64_t AlignVal = 0;
762 llvm::Value *PtrAsInt = nullptr;
763
764 if (SanOpts.has(SanitizerKind::Alignment) &&
765 !SkippedChecks.has(SanitizerKind::Alignment)) {
766 AlignVal = Alignment.getQuantity();
767 if (!Ty->isIncompleteType() && !AlignVal)
768 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
769 /*ForPointeeType=*/true)
770 .getQuantity();
771
772 // The glvalue must be suitably aligned.
773 if (AlignVal > 1 &&
774 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
775 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
776 llvm::Value *Align = Builder.CreateAnd(
777 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
778 llvm::Value *Aligned =
779 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
780 if (Aligned != True)
781 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
782 }
783 }
784
785 if (Checks.size() > 0) {
786 // Make sure we're not losing information. Alignment needs to be a power of
787 // 2
788 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
789 llvm::Constant *StaticData[] = {
790 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
791 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
792 llvm::ConstantInt::get(Int8Ty, TCK)};
793 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
794 PtrAsInt ? PtrAsInt : Ptr);
795 }
796
797 // If possible, check that the vptr indicates that there is a subobject of
798 // type Ty at offset zero within this object.
799 //
800 // C++11 [basic.life]p5,6:
801 // [For storage which does not refer to an object within its lifetime]
802 // The program has undefined behavior if:
803 // -- the [pointer or glvalue] is used to access a non-static data member
804 // or call a non-static member function
805 if (SanOpts.has(SanitizerKind::Vptr) &&
806 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
807 // Ensure that the pointer is non-null before loading it. If there is no
808 // compile-time guarantee, reuse the run-time null check or emit a new one.
809 if (!IsGuaranteedNonNull) {
810 if (!IsNonNull)
811 IsNonNull = Builder.CreateIsNotNull(Ptr);
812 if (!Done)
813 Done = createBasicBlock("vptr.null");
814 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
815 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
816 EmitBlock(VptrNotNull);
817 }
818
819 // Compute a hash of the mangled name of the type.
820 //
821 // FIXME: This is not guaranteed to be deterministic! Move to a
822 // fingerprinting mechanism once LLVM provides one. For the time
823 // being the implementation happens to be deterministic.
824 SmallString<64> MangledName;
825 llvm::raw_svector_ostream Out(MangledName);
826 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
827 Out);
828
829 // Contained in NoSanitizeList based on the mangled type.
830 if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
831 Out.str())) {
832 llvm::hash_code TypeHash = hash_value(Out.str());
833
834 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
835 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
836 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
837 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
838 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
839 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
840
841 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
842 Hash = Builder.CreateTrunc(Hash, IntPtrTy);
843
844 // Look the hash up in our cache.
845 const int CacheSize = 128;
846 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
847 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
848 "__ubsan_vptr_type_cache");
849 llvm::Value *Slot = Builder.CreateAnd(Hash,
850 llvm::ConstantInt::get(IntPtrTy,
851 CacheSize-1));
852 llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
853 llvm::Value *CacheVal = Builder.CreateAlignedLoad(
854 IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
855 getPointerAlign());
856
857 // If the hash isn't in the cache, call a runtime handler to perform the
858 // hard work of checking whether the vptr is for an object of the right
859 // type. This will either fill in the cache and return, or produce a
860 // diagnostic.
861 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
862 llvm::Constant *StaticData[] = {
863 EmitCheckSourceLocation(Loc),
864 EmitCheckTypeDescriptor(Ty),
865 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
866 llvm::ConstantInt::get(Int8Ty, TCK)
867 };
868 llvm::Value *DynamicData[] = { Ptr, Hash };
869 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
870 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
871 DynamicData);
872 }
873 }
874
875 if (Done) {
876 Builder.CreateBr(Done);
877 EmitBlock(Done);
878 }
879 }
880
881 /// Determine whether this expression refers to a flexible array member in a
882 /// struct. We disable array bounds checks for such members.
isFlexibleArrayMemberExpr(const Expr * E)883 static bool isFlexibleArrayMemberExpr(const Expr *E) {
884 // For compatibility with existing code, we treat arrays of length 0 or
885 // 1 as flexible array members.
886 // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
887 // the two mechanisms.
888 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
889 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
890 // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
891 // was produced by macro expansion.
892 if (CAT->getSize().ugt(1))
893 return false;
894 } else if (!isa<IncompleteArrayType>(AT))
895 return false;
896
897 E = E->IgnoreParens();
898
899 // A flexible array member must be the last member in the class.
900 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
901 // FIXME: If the base type of the member expr is not FD->getParent(),
902 // this should not be treated as a flexible array member access.
903 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
904 // FIXME: Sema doesn't treat a T[1] union member as a flexible array
905 // member, only a T[0] or T[] member gets that treatment.
906 if (FD->getParent()->isUnion())
907 return true;
908 RecordDecl::field_iterator FI(
909 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
910 return ++FI == FD->getParent()->field_end();
911 }
912 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
913 return IRE->getDecl()->getNextIvar() == nullptr;
914 }
915
916 return false;
917 }
918
LoadPassedObjectSize(const Expr * E,QualType EltTy)919 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
920 QualType EltTy) {
921 ASTContext &C = getContext();
922 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
923 if (!EltSize)
924 return nullptr;
925
926 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
927 if (!ArrayDeclRef)
928 return nullptr;
929
930 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
931 if (!ParamDecl)
932 return nullptr;
933
934 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
935 if (!POSAttr)
936 return nullptr;
937
938 // Don't load the size if it's a lower bound.
939 int POSType = POSAttr->getType();
940 if (POSType != 0 && POSType != 1)
941 return nullptr;
942
943 // Find the implicit size parameter.
944 auto PassedSizeIt = SizeArguments.find(ParamDecl);
945 if (PassedSizeIt == SizeArguments.end())
946 return nullptr;
947
948 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
949 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
950 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
951 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
952 C.getSizeType(), E->getExprLoc());
953 llvm::Value *SizeOfElement =
954 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
955 return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
956 }
957
958 /// If Base is known to point to the start of an array, return the length of
959 /// that array. Return 0 if the length cannot be determined.
getArrayIndexingBound(CodeGenFunction & CGF,const Expr * Base,QualType & IndexedType)960 static llvm::Value *getArrayIndexingBound(
961 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
962 // For the vector indexing extension, the bound is the number of elements.
963 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
964 IndexedType = Base->getType();
965 return CGF.Builder.getInt32(VT->getNumElements());
966 }
967
968 Base = Base->IgnoreParens();
969
970 if (const auto *CE = dyn_cast<CastExpr>(Base)) {
971 if (CE->getCastKind() == CK_ArrayToPointerDecay &&
972 !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
973 IndexedType = CE->getSubExpr()->getType();
974 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
975 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
976 return CGF.Builder.getInt(CAT->getSize());
977 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
978 return CGF.getVLASize(VAT).NumElts;
979 // Ignore pass_object_size here. It's not applicable on decayed pointers.
980 }
981 }
982
983 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
984 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
985 IndexedType = Base->getType();
986 return POS;
987 }
988
989 return nullptr;
990 }
991
EmitBoundsCheck(const Expr * E,const Expr * Base,llvm::Value * Index,QualType IndexType,bool Accessed)992 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
993 llvm::Value *Index, QualType IndexType,
994 bool Accessed) {
995 assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
996 "should not be called unless adding bounds checks");
997 SanitizerScope SanScope(this);
998
999 QualType IndexedType;
1000 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
1001 if (!Bound)
1002 return;
1003
1004 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
1005 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1006 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1007
1008 llvm::Constant *StaticData[] = {
1009 EmitCheckSourceLocation(E->getExprLoc()),
1010 EmitCheckTypeDescriptor(IndexedType),
1011 EmitCheckTypeDescriptor(IndexType)
1012 };
1013 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1014 : Builder.CreateICmpULE(IndexVal, BoundVal);
1015 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1016 SanitizerHandler::OutOfBounds, StaticData, Index);
1017 }
1018
1019
1020 CodeGenFunction::ComplexPairTy CodeGenFunction::
EmitComplexPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)1021 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1022 bool isInc, bool isPre) {
1023 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1024
1025 llvm::Value *NextVal;
1026 if (isa<llvm::IntegerType>(InVal.first->getType())) {
1027 uint64_t AmountVal = isInc ? 1 : -1;
1028 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1029
1030 // Add the inc/dec to the real part.
1031 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1032 } else {
1033 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1034 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1035 if (!isInc)
1036 FVal.changeSign();
1037 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1038
1039 // Add the inc/dec to the real part.
1040 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1041 }
1042
1043 ComplexPairTy IncVal(NextVal, InVal.second);
1044
1045 // Store the updated result through the lvalue.
1046 EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1047 if (getLangOpts().OpenMP)
1048 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1049 E->getSubExpr());
1050
1051 // If this is a postinc, return the value read from memory, otherwise use the
1052 // updated value.
1053 return isPre ? IncVal : InVal;
1054 }
1055
EmitExplicitCastExprType(const ExplicitCastExpr * E,CodeGenFunction * CGF)1056 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1057 CodeGenFunction *CGF) {
1058 // Bind VLAs in the cast type.
1059 if (CGF && E->getType()->isVariablyModifiedType())
1060 CGF->EmitVariablyModifiedType(E->getType());
1061
1062 if (CGDebugInfo *DI = getModuleDebugInfo())
1063 DI->EmitExplicitCastType(E->getType());
1064 }
1065
1066 //===----------------------------------------------------------------------===//
1067 // LValue Expression Emission
1068 //===----------------------------------------------------------------------===//
1069
1070 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1071 /// derive a more accurate bound on the alignment of the pointer.
EmitPointerWithAlignment(const Expr * E,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)1072 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1073 LValueBaseInfo *BaseInfo,
1074 TBAAAccessInfo *TBAAInfo) {
1075 // We allow this with ObjC object pointers because of fragile ABIs.
1076 assert(E->getType()->isPointerType() ||
1077 E->getType()->isObjCObjectPointerType());
1078 E = E->IgnoreParens();
1079
1080 // Casts:
1081 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1082 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1083 CGM.EmitExplicitCastExprType(ECE, this);
1084
1085 switch (CE->getCastKind()) {
1086 // Non-converting casts (but not C's implicit conversion from void*).
1087 case CK_BitCast:
1088 case CK_NoOp:
1089 case CK_AddressSpaceConversion:
1090 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1091 if (PtrTy->getPointeeType()->isVoidType())
1092 break;
1093
1094 LValueBaseInfo InnerBaseInfo;
1095 TBAAAccessInfo InnerTBAAInfo;
1096 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1097 &InnerBaseInfo,
1098 &InnerTBAAInfo);
1099 if (BaseInfo) *BaseInfo = InnerBaseInfo;
1100 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1101
1102 if (isa<ExplicitCastExpr>(CE)) {
1103 LValueBaseInfo TargetTypeBaseInfo;
1104 TBAAAccessInfo TargetTypeTBAAInfo;
1105 CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1106 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1107 if (TBAAInfo)
1108 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1109 TargetTypeTBAAInfo);
1110 // If the source l-value is opaque, honor the alignment of the
1111 // casted-to type.
1112 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1113 if (BaseInfo)
1114 BaseInfo->mergeForCast(TargetTypeBaseInfo);
1115 Addr = Address(Addr.getPointer(), Align);
1116 }
1117 }
1118
1119 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1120 CE->getCastKind() == CK_BitCast) {
1121 if (auto PT = E->getType()->getAs<PointerType>())
1122 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1123 /*MayBeNull=*/true,
1124 CodeGenFunction::CFITCK_UnrelatedCast,
1125 CE->getBeginLoc());
1126 }
1127 return CE->getCastKind() != CK_AddressSpaceConversion
1128 ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1129 : Builder.CreateAddrSpaceCast(Addr,
1130 ConvertType(E->getType()));
1131 }
1132 break;
1133
1134 // Array-to-pointer decay.
1135 case CK_ArrayToPointerDecay:
1136 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1137
1138 // Derived-to-base conversions.
1139 case CK_UncheckedDerivedToBase:
1140 case CK_DerivedToBase: {
1141 // TODO: Support accesses to members of base classes in TBAA. For now, we
1142 // conservatively pretend that the complete object is of the base class
1143 // type.
1144 if (TBAAInfo)
1145 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1146 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1147 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1148 return GetAddressOfBaseClass(Addr, Derived,
1149 CE->path_begin(), CE->path_end(),
1150 ShouldNullCheckClassCastValue(CE),
1151 CE->getExprLoc());
1152 }
1153
1154 // TODO: Is there any reason to treat base-to-derived conversions
1155 // specially?
1156 default:
1157 break;
1158 }
1159 }
1160
1161 // Unary &.
1162 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1163 if (UO->getOpcode() == UO_AddrOf) {
1164 LValue LV = EmitLValue(UO->getSubExpr());
1165 if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1166 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1167 return LV.getAddress(*this);
1168 }
1169 }
1170
1171 // TODO: conditional operators, comma.
1172
1173 // Otherwise, use the alignment of the type.
1174 CharUnits Align =
1175 CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1176 return Address(EmitScalarExpr(E), Align);
1177 }
1178
EmitNonNullRValueCheck(RValue RV,QualType T)1179 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1180 llvm::Value *V = RV.getScalarVal();
1181 if (auto MPT = T->getAs<MemberPointerType>())
1182 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1183 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1184 }
1185
GetUndefRValue(QualType Ty)1186 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1187 if (Ty->isVoidType())
1188 return RValue::get(nullptr);
1189
1190 switch (getEvaluationKind(Ty)) {
1191 case TEK_Complex: {
1192 llvm::Type *EltTy =
1193 ConvertType(Ty->castAs<ComplexType>()->getElementType());
1194 llvm::Value *U = llvm::UndefValue::get(EltTy);
1195 return RValue::getComplex(std::make_pair(U, U));
1196 }
1197
1198 // If this is a use of an undefined aggregate type, the aggregate must have an
1199 // identifiable address. Just because the contents of the value are undefined
1200 // doesn't mean that the address can't be taken and compared.
1201 case TEK_Aggregate: {
1202 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1203 return RValue::getAggregate(DestPtr);
1204 }
1205
1206 case TEK_Scalar:
1207 return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1208 }
1209 llvm_unreachable("bad evaluation kind");
1210 }
1211
EmitUnsupportedRValue(const Expr * E,const char * Name)1212 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1213 const char *Name) {
1214 ErrorUnsupported(E, Name);
1215 return GetUndefRValue(E->getType());
1216 }
1217
EmitUnsupportedLValue(const Expr * E,const char * Name)1218 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1219 const char *Name) {
1220 ErrorUnsupported(E, Name);
1221 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1222 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1223 E->getType());
1224 }
1225
IsWrappedCXXThis(const Expr * Obj)1226 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1227 const Expr *Base = Obj;
1228 while (!isa<CXXThisExpr>(Base)) {
1229 // The result of a dynamic_cast can be null.
1230 if (isa<CXXDynamicCastExpr>(Base))
1231 return false;
1232
1233 if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1234 Base = CE->getSubExpr();
1235 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1236 Base = PE->getSubExpr();
1237 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1238 if (UO->getOpcode() == UO_Extension)
1239 Base = UO->getSubExpr();
1240 else
1241 return false;
1242 } else {
1243 return false;
1244 }
1245 }
1246 return true;
1247 }
1248
EmitCheckedLValue(const Expr * E,TypeCheckKind TCK)1249 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1250 LValue LV;
1251 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1252 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1253 else
1254 LV = EmitLValue(E);
1255 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1256 SanitizerSet SkippedChecks;
1257 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1258 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1259 if (IsBaseCXXThis)
1260 SkippedChecks.set(SanitizerKind::Alignment, true);
1261 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1262 SkippedChecks.set(SanitizerKind::Null, true);
1263 }
1264 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1265 LV.getAlignment(), SkippedChecks);
1266 }
1267 return LV;
1268 }
1269
1270 /// EmitLValue - Emit code to compute a designator that specifies the location
1271 /// of the expression.
1272 ///
1273 /// This can return one of two things: a simple address or a bitfield reference.
1274 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1275 /// an LLVM pointer type.
1276 ///
1277 /// If this returns a bitfield reference, nothing about the pointee type of the
1278 /// LLVM value is known: For example, it may not be a pointer to an integer.
1279 ///
1280 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1281 /// this method guarantees that the returned pointer type will point to an LLVM
1282 /// type of the same size of the lvalue's type. If the lvalue has a variable
1283 /// length type, this is not possible.
1284 ///
EmitLValue(const Expr * E)1285 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1286 ApplyDebugLocation DL(*this, E);
1287 switch (E->getStmtClass()) {
1288 default: return EmitUnsupportedLValue(E, "l-value expression");
1289
1290 case Expr::ObjCPropertyRefExprClass:
1291 llvm_unreachable("cannot emit a property reference directly");
1292
1293 case Expr::ObjCSelectorExprClass:
1294 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1295 case Expr::ObjCIsaExprClass:
1296 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1297 case Expr::BinaryOperatorClass:
1298 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1299 case Expr::CompoundAssignOperatorClass: {
1300 QualType Ty = E->getType();
1301 if (const AtomicType *AT = Ty->getAs<AtomicType>())
1302 Ty = AT->getValueType();
1303 if (!Ty->isAnyComplexType())
1304 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1305 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1306 }
1307 case Expr::CallExprClass:
1308 case Expr::CXXMemberCallExprClass:
1309 case Expr::CXXOperatorCallExprClass:
1310 case Expr::UserDefinedLiteralClass:
1311 return EmitCallExprLValue(cast<CallExpr>(E));
1312 case Expr::CXXRewrittenBinaryOperatorClass:
1313 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1314 case Expr::VAArgExprClass:
1315 return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1316 case Expr::DeclRefExprClass:
1317 return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1318 case Expr::ConstantExprClass: {
1319 const ConstantExpr *CE = cast<ConstantExpr>(E);
1320 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1321 QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1322 ->getCallReturnType(getContext());
1323 return MakeNaturalAlignAddrLValue(Result, RetType);
1324 }
1325 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1326 }
1327 case Expr::ParenExprClass:
1328 return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1329 case Expr::GenericSelectionExprClass:
1330 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1331 case Expr::PredefinedExprClass:
1332 return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1333 case Expr::StringLiteralClass:
1334 return EmitStringLiteralLValue(cast<StringLiteral>(E));
1335 case Expr::ObjCEncodeExprClass:
1336 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1337 case Expr::PseudoObjectExprClass:
1338 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1339 case Expr::InitListExprClass:
1340 return EmitInitListLValue(cast<InitListExpr>(E));
1341 case Expr::CXXTemporaryObjectExprClass:
1342 case Expr::CXXConstructExprClass:
1343 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1344 case Expr::CXXBindTemporaryExprClass:
1345 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1346 case Expr::CXXUuidofExprClass:
1347 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1348 case Expr::LambdaExprClass:
1349 return EmitAggExprToLValue(E);
1350
1351 case Expr::ExprWithCleanupsClass: {
1352 const auto *cleanups = cast<ExprWithCleanups>(E);
1353 RunCleanupsScope Scope(*this);
1354 LValue LV = EmitLValue(cleanups->getSubExpr());
1355 if (LV.isSimple()) {
1356 // Defend against branches out of gnu statement expressions surrounded by
1357 // cleanups.
1358 llvm::Value *V = LV.getPointer(*this);
1359 Scope.ForceCleanup({&V});
1360 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1361 getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1362 }
1363 // FIXME: Is it possible to create an ExprWithCleanups that produces a
1364 // bitfield lvalue or some other non-simple lvalue?
1365 return LV;
1366 }
1367
1368 case Expr::CXXDefaultArgExprClass: {
1369 auto *DAE = cast<CXXDefaultArgExpr>(E);
1370 CXXDefaultArgExprScope Scope(*this, DAE);
1371 return EmitLValue(DAE->getExpr());
1372 }
1373 case Expr::CXXDefaultInitExprClass: {
1374 auto *DIE = cast<CXXDefaultInitExpr>(E);
1375 CXXDefaultInitExprScope Scope(*this, DIE);
1376 return EmitLValue(DIE->getExpr());
1377 }
1378 case Expr::CXXTypeidExprClass:
1379 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1380
1381 case Expr::ObjCMessageExprClass:
1382 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1383 case Expr::ObjCIvarRefExprClass:
1384 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1385 case Expr::StmtExprClass:
1386 return EmitStmtExprLValue(cast<StmtExpr>(E));
1387 case Expr::UnaryOperatorClass:
1388 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1389 case Expr::ArraySubscriptExprClass:
1390 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1391 case Expr::MatrixSubscriptExprClass:
1392 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1393 case Expr::OMPArraySectionExprClass:
1394 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1395 case Expr::ExtVectorElementExprClass:
1396 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1397 case Expr::MemberExprClass:
1398 return EmitMemberExpr(cast<MemberExpr>(E));
1399 case Expr::CompoundLiteralExprClass:
1400 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1401 case Expr::ConditionalOperatorClass:
1402 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1403 case Expr::BinaryConditionalOperatorClass:
1404 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1405 case Expr::ChooseExprClass:
1406 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1407 case Expr::OpaqueValueExprClass:
1408 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1409 case Expr::SubstNonTypeTemplateParmExprClass:
1410 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1411 case Expr::ImplicitCastExprClass:
1412 case Expr::CStyleCastExprClass:
1413 case Expr::CXXFunctionalCastExprClass:
1414 case Expr::CXXStaticCastExprClass:
1415 case Expr::CXXDynamicCastExprClass:
1416 case Expr::CXXReinterpretCastExprClass:
1417 case Expr::CXXConstCastExprClass:
1418 case Expr::CXXAddrspaceCastExprClass:
1419 case Expr::ObjCBridgedCastExprClass:
1420 return EmitCastLValue(cast<CastExpr>(E));
1421
1422 case Expr::MaterializeTemporaryExprClass:
1423 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1424
1425 case Expr::CoawaitExprClass:
1426 return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1427 case Expr::CoyieldExprClass:
1428 return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1429 }
1430 }
1431
1432 /// Given an object of the given canonical type, can we safely copy a
1433 /// value out of it based on its initializer?
isConstantEmittableObjectType(QualType type)1434 static bool isConstantEmittableObjectType(QualType type) {
1435 assert(type.isCanonical());
1436 assert(!type->isReferenceType());
1437
1438 // Must be const-qualified but non-volatile.
1439 Qualifiers qs = type.getLocalQualifiers();
1440 if (!qs.hasConst() || qs.hasVolatile()) return false;
1441
1442 // Otherwise, all object types satisfy this except C++ classes with
1443 // mutable subobjects or non-trivial copy/destroy behavior.
1444 if (const auto *RT = dyn_cast<RecordType>(type))
1445 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1446 if (RD->hasMutableFields() || !RD->isTrivial())
1447 return false;
1448
1449 return true;
1450 }
1451
1452 /// Can we constant-emit a load of a reference to a variable of the
1453 /// given type? This is different from predicates like
1454 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1455 /// in situations that don't necessarily satisfy the language's rules
1456 /// for this (e.g. C++'s ODR-use rules). For example, we want to able
1457 /// to do this with const float variables even if those variables
1458 /// aren't marked 'constexpr'.
1459 enum ConstantEmissionKind {
1460 CEK_None,
1461 CEK_AsReferenceOnly,
1462 CEK_AsValueOrReference,
1463 CEK_AsValueOnly
1464 };
checkVarTypeForConstantEmission(QualType type)1465 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1466 type = type.getCanonicalType();
1467 if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1468 if (isConstantEmittableObjectType(ref->getPointeeType()))
1469 return CEK_AsValueOrReference;
1470 return CEK_AsReferenceOnly;
1471 }
1472 if (isConstantEmittableObjectType(type))
1473 return CEK_AsValueOnly;
1474 return CEK_None;
1475 }
1476
1477 /// Try to emit a reference to the given value without producing it as
1478 /// an l-value. This is just an optimization, but it avoids us needing
1479 /// to emit global copies of variables if they're named without triggering
1480 /// a formal use in a context where we can't emit a direct reference to them,
1481 /// for instance if a block or lambda or a member of a local class uses a
1482 /// const int variable or constexpr variable from an enclosing function.
1483 CodeGenFunction::ConstantEmission
tryEmitAsConstant(DeclRefExpr * refExpr)1484 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1485 ValueDecl *value = refExpr->getDecl();
1486
1487 // The value needs to be an enum constant or a constant variable.
1488 ConstantEmissionKind CEK;
1489 if (isa<ParmVarDecl>(value)) {
1490 CEK = CEK_None;
1491 } else if (auto *var = dyn_cast<VarDecl>(value)) {
1492 CEK = checkVarTypeForConstantEmission(var->getType());
1493 } else if (isa<EnumConstantDecl>(value)) {
1494 CEK = CEK_AsValueOnly;
1495 } else {
1496 CEK = CEK_None;
1497 }
1498 if (CEK == CEK_None) return ConstantEmission();
1499
1500 Expr::EvalResult result;
1501 bool resultIsReference;
1502 QualType resultType;
1503
1504 // It's best to evaluate all the way as an r-value if that's permitted.
1505 if (CEK != CEK_AsReferenceOnly &&
1506 refExpr->EvaluateAsRValue(result, getContext())) {
1507 resultIsReference = false;
1508 resultType = refExpr->getType();
1509
1510 // Otherwise, try to evaluate as an l-value.
1511 } else if (CEK != CEK_AsValueOnly &&
1512 refExpr->EvaluateAsLValue(result, getContext())) {
1513 resultIsReference = true;
1514 resultType = value->getType();
1515
1516 // Failure.
1517 } else {
1518 return ConstantEmission();
1519 }
1520
1521 // In any case, if the initializer has side-effects, abandon ship.
1522 if (result.HasSideEffects)
1523 return ConstantEmission();
1524
1525 // In CUDA/HIP device compilation, a lambda may capture a reference variable
1526 // referencing a global host variable by copy. In this case the lambda should
1527 // make a copy of the value of the global host variable. The DRE of the
1528 // captured reference variable cannot be emitted as load from the host
1529 // global variable as compile time constant, since the host variable is not
1530 // accessible on device. The DRE of the captured reference variable has to be
1531 // loaded from captures.
1532 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1533 refExpr->refersToEnclosingVariableOrCapture()) {
1534 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1535 if (MD && MD->getParent()->isLambda() &&
1536 MD->getOverloadedOperator() == OO_Call) {
1537 const APValue::LValueBase &base = result.Val.getLValueBase();
1538 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1539 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1540 if (!VD->hasAttr<CUDADeviceAttr>()) {
1541 return ConstantEmission();
1542 }
1543 }
1544 }
1545 }
1546 }
1547
1548 // Emit as a constant.
1549 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1550 result.Val, resultType);
1551
1552 // Make sure we emit a debug reference to the global variable.
1553 // This should probably fire even for
1554 if (isa<VarDecl>(value)) {
1555 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1556 EmitDeclRefExprDbgValue(refExpr, result.Val);
1557 } else {
1558 assert(isa<EnumConstantDecl>(value));
1559 EmitDeclRefExprDbgValue(refExpr, result.Val);
1560 }
1561
1562 // If we emitted a reference constant, we need to dereference that.
1563 if (resultIsReference)
1564 return ConstantEmission::forReference(C);
1565
1566 return ConstantEmission::forValue(C);
1567 }
1568
tryToConvertMemberExprToDeclRefExpr(CodeGenFunction & CGF,const MemberExpr * ME)1569 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1570 const MemberExpr *ME) {
1571 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1572 // Try to emit static variable member expressions as DREs.
1573 return DeclRefExpr::Create(
1574 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1575 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1576 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1577 }
1578 return nullptr;
1579 }
1580
1581 CodeGenFunction::ConstantEmission
tryEmitAsConstant(const MemberExpr * ME)1582 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1583 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1584 return tryEmitAsConstant(DRE);
1585 return ConstantEmission();
1586 }
1587
emitScalarConstant(const CodeGenFunction::ConstantEmission & Constant,Expr * E)1588 llvm::Value *CodeGenFunction::emitScalarConstant(
1589 const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1590 assert(Constant && "not a constant");
1591 if (Constant.isReference())
1592 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1593 E->getExprLoc())
1594 .getScalarVal();
1595 return Constant.getValue();
1596 }
1597
EmitLoadOfScalar(LValue lvalue,SourceLocation Loc)1598 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1599 SourceLocation Loc) {
1600 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1601 lvalue.getType(), Loc, lvalue.getBaseInfo(),
1602 lvalue.getTBAAInfo(), lvalue.isNontemporal());
1603 }
1604
hasBooleanRepresentation(QualType Ty)1605 static bool hasBooleanRepresentation(QualType Ty) {
1606 if (Ty->isBooleanType())
1607 return true;
1608
1609 if (const EnumType *ET = Ty->getAs<EnumType>())
1610 return ET->getDecl()->getIntegerType()->isBooleanType();
1611
1612 if (const AtomicType *AT = Ty->getAs<AtomicType>())
1613 return hasBooleanRepresentation(AT->getValueType());
1614
1615 return false;
1616 }
1617
getRangeForType(CodeGenFunction & CGF,QualType Ty,llvm::APInt & Min,llvm::APInt & End,bool StrictEnums,bool IsBool)1618 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1619 llvm::APInt &Min, llvm::APInt &End,
1620 bool StrictEnums, bool IsBool) {
1621 const EnumType *ET = Ty->getAs<EnumType>();
1622 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1623 ET && !ET->getDecl()->isFixed();
1624 if (!IsBool && !IsRegularCPlusPlusEnum)
1625 return false;
1626
1627 if (IsBool) {
1628 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1629 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1630 } else {
1631 const EnumDecl *ED = ET->getDecl();
1632 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1633 unsigned Bitwidth = LTy->getScalarSizeInBits();
1634 unsigned NumNegativeBits = ED->getNumNegativeBits();
1635 unsigned NumPositiveBits = ED->getNumPositiveBits();
1636
1637 if (NumNegativeBits) {
1638 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1639 assert(NumBits <= Bitwidth);
1640 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1641 Min = -End;
1642 } else {
1643 assert(NumPositiveBits <= Bitwidth);
1644 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1645 Min = llvm::APInt(Bitwidth, 0);
1646 }
1647 }
1648 return true;
1649 }
1650
getRangeForLoadFromType(QualType Ty)1651 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1652 llvm::APInt Min, End;
1653 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1654 hasBooleanRepresentation(Ty)))
1655 return nullptr;
1656
1657 llvm::MDBuilder MDHelper(getLLVMContext());
1658 return MDHelper.createRange(Min, End);
1659 }
1660
EmitScalarRangeCheck(llvm::Value * Value,QualType Ty,SourceLocation Loc)1661 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1662 SourceLocation Loc) {
1663 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1664 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1665 if (!HasBoolCheck && !HasEnumCheck)
1666 return false;
1667
1668 bool IsBool = hasBooleanRepresentation(Ty) ||
1669 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1670 bool NeedsBoolCheck = HasBoolCheck && IsBool;
1671 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1672 if (!NeedsBoolCheck && !NeedsEnumCheck)
1673 return false;
1674
1675 // Single-bit booleans don't need to be checked. Special-case this to avoid
1676 // a bit width mismatch when handling bitfield values. This is handled by
1677 // EmitFromMemory for the non-bitfield case.
1678 if (IsBool &&
1679 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1680 return false;
1681
1682 llvm::APInt Min, End;
1683 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1684 return true;
1685
1686 auto &Ctx = getLLVMContext();
1687 SanitizerScope SanScope(this);
1688 llvm::Value *Check;
1689 --End;
1690 if (!Min) {
1691 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1692 } else {
1693 llvm::Value *Upper =
1694 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1695 llvm::Value *Lower =
1696 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1697 Check = Builder.CreateAnd(Upper, Lower);
1698 }
1699 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1700 EmitCheckTypeDescriptor(Ty)};
1701 SanitizerMask Kind =
1702 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1703 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1704 StaticArgs, EmitCheckValue(Value));
1705 return true;
1706 }
1707
EmitLoadOfScalar(Address Addr,bool Volatile,QualType Ty,SourceLocation Loc,LValueBaseInfo BaseInfo,TBAAAccessInfo TBAAInfo,bool isNontemporal)1708 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1709 QualType Ty,
1710 SourceLocation Loc,
1711 LValueBaseInfo BaseInfo,
1712 TBAAAccessInfo TBAAInfo,
1713 bool isNontemporal) {
1714 if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1715 // For better performance, handle vector loads differently.
1716 if (Ty->isVectorType()) {
1717 const llvm::Type *EltTy = Addr.getElementType();
1718
1719 const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1720
1721 // Handle vectors of size 3 like size 4 for better performance.
1722 if (VTy->getNumElements() == 3) {
1723
1724 // Bitcast to vec4 type.
1725 auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
1726 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1727 // Now load value.
1728 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1729
1730 // Shuffle vector to get vec3.
1731 V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2},
1732 "extractVec");
1733 return EmitFromMemory(V, Ty);
1734 }
1735 }
1736 }
1737
1738 // Atomic operations have to be done on integral types.
1739 LValue AtomicLValue =
1740 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1741 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1742 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1743 }
1744
1745 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1746 if (isNontemporal) {
1747 llvm::MDNode *Node = llvm::MDNode::get(
1748 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1749 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1750 }
1751
1752 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1753
1754 if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1755 // In order to prevent the optimizer from throwing away the check, don't
1756 // attach range metadata to the load.
1757 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1758 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1759 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1760
1761 return EmitFromMemory(Load, Ty);
1762 }
1763
EmitToMemory(llvm::Value * Value,QualType Ty)1764 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1765 // Bool has a different representation in memory than in registers.
1766 if (hasBooleanRepresentation(Ty)) {
1767 // This should really always be an i1, but sometimes it's already
1768 // an i8, and it's awkward to track those cases down.
1769 if (Value->getType()->isIntegerTy(1))
1770 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1771 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1772 "wrong value rep of bool");
1773 }
1774
1775 return Value;
1776 }
1777
EmitFromMemory(llvm::Value * Value,QualType Ty)1778 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1779 // Bool has a different representation in memory than in registers.
1780 if (hasBooleanRepresentation(Ty)) {
1781 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1782 "wrong value rep of bool");
1783 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1784 }
1785
1786 return Value;
1787 }
1788
1789 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1790 // MatrixType), if it points to a array (the memory type of MatrixType).
MaybeConvertMatrixAddress(Address Addr,CodeGenFunction & CGF,bool IsVector=true)1791 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1792 bool IsVector = true) {
1793 auto *ArrayTy = dyn_cast<llvm::ArrayType>(
1794 cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1795 if (ArrayTy && IsVector) {
1796 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1797 ArrayTy->getNumElements());
1798
1799 return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1800 }
1801 auto *VectorTy = dyn_cast<llvm::VectorType>(
1802 cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1803 if (VectorTy && !IsVector) {
1804 auto *ArrayTy = llvm::ArrayType::get(
1805 VectorTy->getElementType(),
1806 cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1807
1808 return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1809 }
1810
1811 return Addr;
1812 }
1813
1814 // Emit a store of a matrix LValue. This may require casting the original
1815 // pointer to memory address (ArrayType) to a pointer to the value type
1816 // (VectorType).
EmitStoreOfMatrixScalar(llvm::Value * value,LValue lvalue,bool isInit,CodeGenFunction & CGF)1817 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1818 bool isInit, CodeGenFunction &CGF) {
1819 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1820 value->getType()->isVectorTy());
1821 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1822 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1823 lvalue.isNontemporal());
1824 }
1825
EmitStoreOfScalar(llvm::Value * Value,Address Addr,bool Volatile,QualType Ty,LValueBaseInfo BaseInfo,TBAAAccessInfo TBAAInfo,bool isInit,bool isNontemporal)1826 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1827 bool Volatile, QualType Ty,
1828 LValueBaseInfo BaseInfo,
1829 TBAAAccessInfo TBAAInfo,
1830 bool isInit, bool isNontemporal) {
1831 if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1832 // Handle vectors differently to get better performance.
1833 if (Ty->isVectorType()) {
1834 llvm::Type *SrcTy = Value->getType();
1835 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1836 // Handle vec3 special.
1837 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1838 // Our source is a vec3, do a shuffle vector to make it a vec4.
1839 Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
1840 "extractVec");
1841 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1842 }
1843 if (Addr.getElementType() != SrcTy) {
1844 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1845 }
1846 }
1847 }
1848
1849 Value = EmitToMemory(Value, Ty);
1850
1851 LValue AtomicLValue =
1852 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1853 if (Ty->isAtomicType() ||
1854 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1855 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1856 return;
1857 }
1858
1859 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1860 if (isNontemporal) {
1861 llvm::MDNode *Node =
1862 llvm::MDNode::get(Store->getContext(),
1863 llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1864 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1865 }
1866
1867 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1868 }
1869
EmitStoreOfScalar(llvm::Value * value,LValue lvalue,bool isInit)1870 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1871 bool isInit) {
1872 if (lvalue.getType()->isConstantMatrixType()) {
1873 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1874 return;
1875 }
1876
1877 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1878 lvalue.getType(), lvalue.getBaseInfo(),
1879 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1880 }
1881
1882 // Emit a load of a LValue of matrix type. This may require casting the pointer
1883 // to memory address (ArrayType) to a pointer to the value type (VectorType).
EmitLoadOfMatrixLValue(LValue LV,SourceLocation Loc,CodeGenFunction & CGF)1884 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1885 CodeGenFunction &CGF) {
1886 assert(LV.getType()->isConstantMatrixType());
1887 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1888 LV.setAddress(Addr);
1889 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1890 }
1891
1892 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1893 /// method emits the address of the lvalue, then loads the result as an rvalue,
1894 /// returning the rvalue.
EmitLoadOfLValue(LValue LV,SourceLocation Loc)1895 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1896 if (LV.isObjCWeak()) {
1897 // load of a __weak object.
1898 Address AddrWeakObj = LV.getAddress(*this);
1899 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1900 AddrWeakObj));
1901 }
1902 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1903 // In MRC mode, we do a load+autorelease.
1904 if (!getLangOpts().ObjCAutoRefCount) {
1905 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1906 }
1907
1908 // In ARC mode, we load retained and then consume the value.
1909 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1910 Object = EmitObjCConsumeObject(LV.getType(), Object);
1911 return RValue::get(Object);
1912 }
1913
1914 if (LV.isSimple()) {
1915 assert(!LV.getType()->isFunctionType());
1916
1917 if (LV.getType()->isConstantMatrixType())
1918 return EmitLoadOfMatrixLValue(LV, Loc, *this);
1919
1920 // Everything needs a load.
1921 return RValue::get(EmitLoadOfScalar(LV, Loc));
1922 }
1923
1924 if (LV.isVectorElt()) {
1925 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1926 LV.isVolatileQualified());
1927 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1928 "vecext"));
1929 }
1930
1931 // If this is a reference to a subset of the elements of a vector, either
1932 // shuffle the input or extract/insert them as appropriate.
1933 if (LV.isExtVectorElt()) {
1934 return EmitLoadOfExtVectorElementLValue(LV);
1935 }
1936
1937 // Global Register variables always invoke intrinsics
1938 if (LV.isGlobalReg())
1939 return EmitLoadOfGlobalRegLValue(LV);
1940
1941 if (LV.isMatrixElt()) {
1942 llvm::LoadInst *Load =
1943 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
1944 return RValue::get(
1945 Builder.CreateExtractElement(Load, LV.getMatrixIdx(), "matrixext"));
1946 }
1947
1948 assert(LV.isBitField() && "Unknown LValue type!");
1949 return EmitLoadOfBitfieldLValue(LV, Loc);
1950 }
1951
EmitLoadOfBitfieldLValue(LValue LV,SourceLocation Loc)1952 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1953 SourceLocation Loc) {
1954 const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1955
1956 // Get the output type.
1957 llvm::Type *ResLTy = ConvertType(LV.getType());
1958
1959 Address Ptr = LV.getBitFieldAddress();
1960 llvm::Value *Val =
1961 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1962
1963 bool UseVolatile = LV.isVolatileQualified() &&
1964 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
1965 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
1966 const unsigned StorageSize =
1967 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
1968 if (Info.IsSigned) {
1969 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
1970 unsigned HighBits = StorageSize - Offset - Info.Size;
1971 if (HighBits)
1972 Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1973 if (Offset + HighBits)
1974 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
1975 } else {
1976 if (Offset)
1977 Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
1978 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
1979 Val = Builder.CreateAnd(
1980 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
1981 }
1982 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1983 EmitScalarRangeCheck(Val, LV.getType(), Loc);
1984 return RValue::get(Val);
1985 }
1986
1987 // If this is a reference to a subset of the elements of a vector, create an
1988 // appropriate shufflevector.
EmitLoadOfExtVectorElementLValue(LValue LV)1989 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1990 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1991 LV.isVolatileQualified());
1992
1993 const llvm::Constant *Elts = LV.getExtVectorElts();
1994
1995 // If the result of the expression is a non-vector type, we must be extracting
1996 // a single element. Just codegen as an extractelement.
1997 const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1998 if (!ExprVT) {
1999 unsigned InIdx = getAccessedFieldNo(0, Elts);
2000 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2001 return RValue::get(Builder.CreateExtractElement(Vec, Elt));
2002 }
2003
2004 // Always use shuffle vector to try to retain the original program structure
2005 unsigned NumResultElts = ExprVT->getNumElements();
2006
2007 SmallVector<int, 4> Mask;
2008 for (unsigned i = 0; i != NumResultElts; ++i)
2009 Mask.push_back(getAccessedFieldNo(i, Elts));
2010
2011 Vec = Builder.CreateShuffleVector(Vec, Mask);
2012 return RValue::get(Vec);
2013 }
2014
2015 /// Generates lvalue for partial ext_vector access.
EmitExtVectorElementLValue(LValue LV)2016 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2017 Address VectorAddress = LV.getExtVectorAddress();
2018 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2019 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2020
2021 Address CastToPointerElement =
2022 Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
2023 "conv.ptr.element");
2024
2025 const llvm::Constant *Elts = LV.getExtVectorElts();
2026 unsigned ix = getAccessedFieldNo(0, Elts);
2027
2028 Address VectorBasePtrPlusIx =
2029 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2030 "vector.elt");
2031
2032 return VectorBasePtrPlusIx;
2033 }
2034
2035 /// Load of global gamed gegisters are always calls to intrinsics.
EmitLoadOfGlobalRegLValue(LValue LV)2036 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2037 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2038 "Bad type for register variable");
2039 llvm::MDNode *RegName = cast<llvm::MDNode>(
2040 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2041
2042 // We accept integer and pointer types only
2043 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2044 llvm::Type *Ty = OrigTy;
2045 if (OrigTy->isPointerTy())
2046 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2047 llvm::Type *Types[] = { Ty };
2048
2049 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2050 llvm::Value *Call = Builder.CreateCall(
2051 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2052 if (OrigTy->isPointerTy())
2053 Call = Builder.CreateIntToPtr(Call, OrigTy);
2054 return RValue::get(Call);
2055 }
2056
2057 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2058 /// lvalue, where both are guaranteed to the have the same type, and that type
2059 /// is 'Ty'.
EmitStoreThroughLValue(RValue Src,LValue Dst,bool isInit)2060 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2061 bool isInit) {
2062 if (!Dst.isSimple()) {
2063 if (Dst.isVectorElt()) {
2064 // Read/modify/write the vector, inserting the new element.
2065 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2066 Dst.isVolatileQualified());
2067 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2068 Dst.getVectorIdx(), "vecins");
2069 Builder.CreateStore(Vec, Dst.getVectorAddress(),
2070 Dst.isVolatileQualified());
2071 return;
2072 }
2073
2074 // If this is an update of extended vector elements, insert them as
2075 // appropriate.
2076 if (Dst.isExtVectorElt())
2077 return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2078
2079 if (Dst.isGlobalReg())
2080 return EmitStoreThroughGlobalRegLValue(Src, Dst);
2081
2082 if (Dst.isMatrixElt()) {
2083 llvm::Value *Vec = Builder.CreateLoad(Dst.getMatrixAddress());
2084 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2085 Dst.getMatrixIdx(), "matins");
2086 Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2087 Dst.isVolatileQualified());
2088 return;
2089 }
2090
2091 assert(Dst.isBitField() && "Unknown LValue type");
2092 return EmitStoreThroughBitfieldLValue(Src, Dst);
2093 }
2094
2095 // There's special magic for assigning into an ARC-qualified l-value.
2096 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2097 switch (Lifetime) {
2098 case Qualifiers::OCL_None:
2099 llvm_unreachable("present but none");
2100
2101 case Qualifiers::OCL_ExplicitNone:
2102 // nothing special
2103 break;
2104
2105 case Qualifiers::OCL_Strong:
2106 if (isInit) {
2107 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2108 break;
2109 }
2110 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2111 return;
2112
2113 case Qualifiers::OCL_Weak:
2114 if (isInit)
2115 // Initialize and then skip the primitive store.
2116 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2117 else
2118 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2119 /*ignore*/ true);
2120 return;
2121
2122 case Qualifiers::OCL_Autoreleasing:
2123 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2124 Src.getScalarVal()));
2125 // fall into the normal path
2126 break;
2127 }
2128 }
2129
2130 if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2131 // load of a __weak object.
2132 Address LvalueDst = Dst.getAddress(*this);
2133 llvm::Value *src = Src.getScalarVal();
2134 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2135 return;
2136 }
2137
2138 if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2139 // load of a __strong object.
2140 Address LvalueDst = Dst.getAddress(*this);
2141 llvm::Value *src = Src.getScalarVal();
2142 if (Dst.isObjCIvar()) {
2143 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2144 llvm::Type *ResultType = IntPtrTy;
2145 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2146 llvm::Value *RHS = dst.getPointer();
2147 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2148 llvm::Value *LHS =
2149 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2150 "sub.ptr.lhs.cast");
2151 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2152 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2153 BytesBetween);
2154 } else if (Dst.isGlobalObjCRef()) {
2155 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2156 Dst.isThreadLocalRef());
2157 }
2158 else
2159 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2160 return;
2161 }
2162
2163 assert(Src.isScalar() && "Can't emit an agg store with this method");
2164 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2165 }
2166
EmitStoreThroughBitfieldLValue(RValue Src,LValue Dst,llvm::Value ** Result)2167 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2168 llvm::Value **Result) {
2169 const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2170 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2171 Address Ptr = Dst.getBitFieldAddress();
2172
2173 // Get the source value, truncated to the width of the bit-field.
2174 llvm::Value *SrcVal = Src.getScalarVal();
2175
2176 // Cast the source to the storage type and shift it into place.
2177 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2178 /*isSigned=*/false);
2179 llvm::Value *MaskedVal = SrcVal;
2180
2181 const bool UseVolatile =
2182 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2183 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2184 const unsigned StorageSize =
2185 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2186 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2187 // See if there are other bits in the bitfield's storage we'll need to load
2188 // and mask together with source before storing.
2189 if (StorageSize != Info.Size) {
2190 assert(StorageSize > Info.Size && "Invalid bitfield size.");
2191 llvm::Value *Val =
2192 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2193
2194 // Mask the source value as needed.
2195 if (!hasBooleanRepresentation(Dst.getType()))
2196 SrcVal = Builder.CreateAnd(
2197 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2198 "bf.value");
2199 MaskedVal = SrcVal;
2200 if (Offset)
2201 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2202
2203 // Mask out the original value.
2204 Val = Builder.CreateAnd(
2205 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2206 "bf.clear");
2207
2208 // Or together the unchanged values and the source value.
2209 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2210 } else {
2211 assert(Offset == 0);
2212 // According to the AACPS:
2213 // When a volatile bit-field is written, and its container does not overlap
2214 // with any non-bit-field member, its container must be read exactly once
2215 // and written exactly once using the access width appropriate to the type
2216 // of the container. The two accesses are not atomic.
2217 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2218 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2219 Builder.CreateLoad(Ptr, true, "bf.load");
2220 }
2221
2222 // Write the new value back out.
2223 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2224
2225 // Return the new value of the bit-field, if requested.
2226 if (Result) {
2227 llvm::Value *ResultVal = MaskedVal;
2228
2229 // Sign extend the value if needed.
2230 if (Info.IsSigned) {
2231 assert(Info.Size <= StorageSize);
2232 unsigned HighBits = StorageSize - Info.Size;
2233 if (HighBits) {
2234 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2235 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2236 }
2237 }
2238
2239 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2240 "bf.result.cast");
2241 *Result = EmitFromMemory(ResultVal, Dst.getType());
2242 }
2243 }
2244
EmitStoreThroughExtVectorComponentLValue(RValue Src,LValue Dst)2245 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2246 LValue Dst) {
2247 // This access turns into a read/modify/write of the vector. Load the input
2248 // value now.
2249 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2250 Dst.isVolatileQualified());
2251 const llvm::Constant *Elts = Dst.getExtVectorElts();
2252
2253 llvm::Value *SrcVal = Src.getScalarVal();
2254
2255 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2256 unsigned NumSrcElts = VTy->getNumElements();
2257 unsigned NumDstElts =
2258 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2259 if (NumDstElts == NumSrcElts) {
2260 // Use shuffle vector is the src and destination are the same number of
2261 // elements and restore the vector mask since it is on the side it will be
2262 // stored.
2263 SmallVector<int, 4> Mask(NumDstElts);
2264 for (unsigned i = 0; i != NumSrcElts; ++i)
2265 Mask[getAccessedFieldNo(i, Elts)] = i;
2266
2267 Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2268 } else if (NumDstElts > NumSrcElts) {
2269 // Extended the source vector to the same length and then shuffle it
2270 // into the destination.
2271 // FIXME: since we're shuffling with undef, can we just use the indices
2272 // into that? This could be simpler.
2273 SmallVector<int, 4> ExtMask;
2274 for (unsigned i = 0; i != NumSrcElts; ++i)
2275 ExtMask.push_back(i);
2276 ExtMask.resize(NumDstElts, -1);
2277 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2278 // build identity
2279 SmallVector<int, 4> Mask;
2280 for (unsigned i = 0; i != NumDstElts; ++i)
2281 Mask.push_back(i);
2282
2283 // When the vector size is odd and .odd or .hi is used, the last element
2284 // of the Elts constant array will be one past the size of the vector.
2285 // Ignore the last element here, if it is greater than the mask size.
2286 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2287 NumSrcElts--;
2288
2289 // modify when what gets shuffled in
2290 for (unsigned i = 0; i != NumSrcElts; ++i)
2291 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2292 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2293 } else {
2294 // We should never shorten the vector
2295 llvm_unreachable("unexpected shorten vector length");
2296 }
2297 } else {
2298 // If the Src is a scalar (not a vector) it must be updating one element.
2299 unsigned InIdx = getAccessedFieldNo(0, Elts);
2300 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2301 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2302 }
2303
2304 Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2305 Dst.isVolatileQualified());
2306 }
2307
2308 /// Store of global named registers are always calls to intrinsics.
EmitStoreThroughGlobalRegLValue(RValue Src,LValue Dst)2309 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2310 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2311 "Bad type for register variable");
2312 llvm::MDNode *RegName = cast<llvm::MDNode>(
2313 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2314 assert(RegName && "Register LValue is not metadata");
2315
2316 // We accept integer and pointer types only
2317 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2318 llvm::Type *Ty = OrigTy;
2319 if (OrigTy->isPointerTy())
2320 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2321 llvm::Type *Types[] = { Ty };
2322
2323 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2324 llvm::Value *Value = Src.getScalarVal();
2325 if (OrigTy->isPointerTy())
2326 Value = Builder.CreatePtrToInt(Value, Ty);
2327 Builder.CreateCall(
2328 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2329 }
2330
2331 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2332 // generating write-barries API. It is currently a global, ivar,
2333 // or neither.
setObjCGCLValueClass(const ASTContext & Ctx,const Expr * E,LValue & LV,bool IsMemberAccess=false)2334 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2335 LValue &LV,
2336 bool IsMemberAccess=false) {
2337 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2338 return;
2339
2340 if (isa<ObjCIvarRefExpr>(E)) {
2341 QualType ExpTy = E->getType();
2342 if (IsMemberAccess && ExpTy->isPointerType()) {
2343 // If ivar is a structure pointer, assigning to field of
2344 // this struct follows gcc's behavior and makes it a non-ivar
2345 // writer-barrier conservatively.
2346 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2347 if (ExpTy->isRecordType()) {
2348 LV.setObjCIvar(false);
2349 return;
2350 }
2351 }
2352 LV.setObjCIvar(true);
2353 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2354 LV.setBaseIvarExp(Exp->getBase());
2355 LV.setObjCArray(E->getType()->isArrayType());
2356 return;
2357 }
2358
2359 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2360 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2361 if (VD->hasGlobalStorage()) {
2362 LV.setGlobalObjCRef(true);
2363 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2364 }
2365 }
2366 LV.setObjCArray(E->getType()->isArrayType());
2367 return;
2368 }
2369
2370 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2371 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2372 return;
2373 }
2374
2375 if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2376 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2377 if (LV.isObjCIvar()) {
2378 // If cast is to a structure pointer, follow gcc's behavior and make it
2379 // a non-ivar write-barrier.
2380 QualType ExpTy = E->getType();
2381 if (ExpTy->isPointerType())
2382 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2383 if (ExpTy->isRecordType())
2384 LV.setObjCIvar(false);
2385 }
2386 return;
2387 }
2388
2389 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2390 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2391 return;
2392 }
2393
2394 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2395 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2396 return;
2397 }
2398
2399 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2400 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2401 return;
2402 }
2403
2404 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2405 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2406 return;
2407 }
2408
2409 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2410 setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2411 if (LV.isObjCIvar() && !LV.isObjCArray())
2412 // Using array syntax to assigning to what an ivar points to is not
2413 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2414 LV.setObjCIvar(false);
2415 else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2416 // Using array syntax to assigning to what global points to is not
2417 // same as assigning to the global itself. {id *G;} G[i] = 0;
2418 LV.setGlobalObjCRef(false);
2419 return;
2420 }
2421
2422 if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2423 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2424 // We don't know if member is an 'ivar', but this flag is looked at
2425 // only in the context of LV.isObjCIvar().
2426 LV.setObjCArray(E->getType()->isArrayType());
2427 return;
2428 }
2429 }
2430
2431 static llvm::Value *
EmitBitCastOfLValueToProperType(CodeGenFunction & CGF,llvm::Value * V,llvm::Type * IRType,StringRef Name=StringRef ())2432 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2433 llvm::Value *V, llvm::Type *IRType,
2434 StringRef Name = StringRef()) {
2435 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2436 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2437 }
2438
EmitThreadPrivateVarDeclLValue(CodeGenFunction & CGF,const VarDecl * VD,QualType T,Address Addr,llvm::Type * RealVarTy,SourceLocation Loc)2439 static LValue EmitThreadPrivateVarDeclLValue(
2440 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2441 llvm::Type *RealVarTy, SourceLocation Loc) {
2442 if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2443 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2444 CGF, VD, Addr, Loc);
2445 else
2446 Addr =
2447 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2448
2449 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2450 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2451 }
2452
emitDeclTargetVarDeclLValue(CodeGenFunction & CGF,const VarDecl * VD,QualType T)2453 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2454 const VarDecl *VD, QualType T) {
2455 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2456 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2457 // Return an invalid address if variable is MT_To and unified
2458 // memory is not enabled. For all other cases: MT_Link and
2459 // MT_To with unified memory, return a valid address.
2460 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2461 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2462 return Address::invalid();
2463 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2464 (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2465 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2466 "Expected link clause OR to clause with unified memory enabled.");
2467 QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2468 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2469 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2470 }
2471
2472 Address
EmitLoadOfReference(LValue RefLVal,LValueBaseInfo * PointeeBaseInfo,TBAAAccessInfo * PointeeTBAAInfo)2473 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2474 LValueBaseInfo *PointeeBaseInfo,
2475 TBAAAccessInfo *PointeeTBAAInfo) {
2476 llvm::LoadInst *Load =
2477 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2478 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2479
2480 CharUnits Align = CGM.getNaturalTypeAlignment(
2481 RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo,
2482 /* forPointeeType= */ true);
2483 return Address(Load, Align);
2484 }
2485
EmitLoadOfReferenceLValue(LValue RefLVal)2486 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2487 LValueBaseInfo PointeeBaseInfo;
2488 TBAAAccessInfo PointeeTBAAInfo;
2489 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2490 &PointeeTBAAInfo);
2491 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2492 PointeeBaseInfo, PointeeTBAAInfo);
2493 }
2494
EmitLoadOfPointer(Address Ptr,const PointerType * PtrTy,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)2495 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2496 const PointerType *PtrTy,
2497 LValueBaseInfo *BaseInfo,
2498 TBAAAccessInfo *TBAAInfo) {
2499 llvm::Value *Addr = Builder.CreateLoad(Ptr);
2500 return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
2501 BaseInfo, TBAAInfo,
2502 /*forPointeeType=*/true));
2503 }
2504
EmitLoadOfPointerLValue(Address PtrAddr,const PointerType * PtrTy)2505 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2506 const PointerType *PtrTy) {
2507 LValueBaseInfo BaseInfo;
2508 TBAAAccessInfo TBAAInfo;
2509 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2510 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2511 }
2512
EmitGlobalVarDeclLValue(CodeGenFunction & CGF,const Expr * E,const VarDecl * VD)2513 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2514 const Expr *E, const VarDecl *VD) {
2515 QualType T = E->getType();
2516
2517 // If it's thread_local, emit a call to its wrapper function instead.
2518 if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2519 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2520 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2521 // Check if the variable is marked as declare target with link clause in
2522 // device codegen.
2523 if (CGF.getLangOpts().OpenMPIsDevice) {
2524 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2525 if (Addr.isValid())
2526 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2527 }
2528
2529 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2530 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2531 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2532 CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2533 Address Addr(V, Alignment);
2534 // Emit reference to the private copy of the variable if it is an OpenMP
2535 // threadprivate variable.
2536 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2537 VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2538 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2539 E->getExprLoc());
2540 }
2541 LValue LV = VD->getType()->isReferenceType() ?
2542 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2543 AlignmentSource::Decl) :
2544 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2545 setObjCGCLValueClass(CGF.getContext(), E, LV);
2546 return LV;
2547 }
2548
EmitFunctionDeclPointer(CodeGenModule & CGM,GlobalDecl GD)2549 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2550 GlobalDecl GD) {
2551 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2552 if (FD->hasAttr<WeakRefAttr>()) {
2553 ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2554 return aliasee.getPointer();
2555 }
2556
2557 llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2558 if (!FD->hasPrototype()) {
2559 if (const FunctionProtoType *Proto =
2560 FD->getType()->getAs<FunctionProtoType>()) {
2561 // Ugly case: for a K&R-style definition, the type of the definition
2562 // isn't the same as the type of a use. Correct for this with a
2563 // bitcast.
2564 QualType NoProtoType =
2565 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2566 NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2567 V = llvm::ConstantExpr::getBitCast(V,
2568 CGM.getTypes().ConvertType(NoProtoType));
2569 }
2570 }
2571 return V;
2572 }
2573
EmitFunctionDeclLValue(CodeGenFunction & CGF,const Expr * E,GlobalDecl GD)2574 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2575 GlobalDecl GD) {
2576 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2577 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2578 CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2579 return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2580 AlignmentSource::Decl);
2581 }
2582
EmitCapturedFieldLValue(CodeGenFunction & CGF,const FieldDecl * FD,llvm::Value * ThisValue)2583 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2584 llvm::Value *ThisValue) {
2585 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2586 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2587 return CGF.EmitLValueForField(LV, FD);
2588 }
2589
2590 /// Named Registers are named metadata pointing to the register name
2591 /// which will be read from/written to as an argument to the intrinsic
2592 /// @llvm.read/write_register.
2593 /// So far, only the name is being passed down, but other options such as
2594 /// register type, allocation type or even optimization options could be
2595 /// passed down via the metadata node.
EmitGlobalNamedRegister(const VarDecl * VD,CodeGenModule & CGM)2596 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2597 SmallString<64> Name("llvm.named.register.");
2598 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2599 assert(Asm->getLabel().size() < 64-Name.size() &&
2600 "Register name too big");
2601 Name.append(Asm->getLabel());
2602 llvm::NamedMDNode *M =
2603 CGM.getModule().getOrInsertNamedMetadata(Name);
2604 if (M->getNumOperands() == 0) {
2605 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2606 Asm->getLabel());
2607 llvm::Metadata *Ops[] = {Str};
2608 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2609 }
2610
2611 CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2612
2613 llvm::Value *Ptr =
2614 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2615 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2616 }
2617
2618 /// Determine whether we can emit a reference to \p VD from the current
2619 /// context, despite not necessarily having seen an odr-use of the variable in
2620 /// this context.
canEmitSpuriousReferenceToVariable(CodeGenFunction & CGF,const DeclRefExpr * E,const VarDecl * VD,bool IsConstant)2621 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2622 const DeclRefExpr *E,
2623 const VarDecl *VD,
2624 bool IsConstant) {
2625 // For a variable declared in an enclosing scope, do not emit a spurious
2626 // reference even if we have a capture, as that will emit an unwarranted
2627 // reference to our capture state, and will likely generate worse code than
2628 // emitting a local copy.
2629 if (E->refersToEnclosingVariableOrCapture())
2630 return false;
2631
2632 // For a local declaration declared in this function, we can always reference
2633 // it even if we don't have an odr-use.
2634 if (VD->hasLocalStorage()) {
2635 return VD->getDeclContext() ==
2636 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2637 }
2638
2639 // For a global declaration, we can emit a reference to it if we know
2640 // for sure that we are able to emit a definition of it.
2641 VD = VD->getDefinition(CGF.getContext());
2642 if (!VD)
2643 return false;
2644
2645 // Don't emit a spurious reference if it might be to a variable that only
2646 // exists on a different device / target.
2647 // FIXME: This is unnecessarily broad. Check whether this would actually be a
2648 // cross-target reference.
2649 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2650 CGF.getLangOpts().OpenCL) {
2651 return false;
2652 }
2653
2654 // We can emit a spurious reference only if the linkage implies that we'll
2655 // be emitting a non-interposable symbol that will be retained until link
2656 // time.
2657 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2658 case llvm::GlobalValue::ExternalLinkage:
2659 case llvm::GlobalValue::LinkOnceODRLinkage:
2660 case llvm::GlobalValue::WeakODRLinkage:
2661 case llvm::GlobalValue::InternalLinkage:
2662 case llvm::GlobalValue::PrivateLinkage:
2663 return true;
2664 default:
2665 return false;
2666 }
2667 }
2668
EmitDeclRefLValue(const DeclRefExpr * E)2669 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2670 const NamedDecl *ND = E->getDecl();
2671 QualType T = E->getType();
2672
2673 assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2674 "should not emit an unevaluated operand");
2675
2676 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2677 // Global Named registers access via intrinsics only
2678 if (VD->getStorageClass() == SC_Register &&
2679 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2680 return EmitGlobalNamedRegister(VD, CGM);
2681
2682 // If this DeclRefExpr does not constitute an odr-use of the variable,
2683 // we're not permitted to emit a reference to it in general, and it might
2684 // not be captured if capture would be necessary for a use. Emit the
2685 // constant value directly instead.
2686 if (E->isNonOdrUse() == NOUR_Constant &&
2687 (VD->getType()->isReferenceType() ||
2688 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2689 VD->getAnyInitializer(VD);
2690 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2691 E->getLocation(), *VD->evaluateValue(), VD->getType());
2692 assert(Val && "failed to emit constant expression");
2693
2694 Address Addr = Address::invalid();
2695 if (!VD->getType()->isReferenceType()) {
2696 // Spill the constant value to a global.
2697 Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2698 getContext().getDeclAlign(VD));
2699 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2700 auto *PTy = llvm::PointerType::get(
2701 VarTy, getContext().getTargetAddressSpace(VD->getType()));
2702 if (PTy != Addr.getType())
2703 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2704 } else {
2705 // Should we be using the alignment of the constant pointer we emitted?
2706 CharUnits Alignment =
2707 CGM.getNaturalTypeAlignment(E->getType(),
2708 /* BaseInfo= */ nullptr,
2709 /* TBAAInfo= */ nullptr,
2710 /* forPointeeType= */ true);
2711 Addr = Address(Val, Alignment);
2712 }
2713 return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2714 }
2715
2716 // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2717
2718 // Check for captured variables.
2719 if (E->refersToEnclosingVariableOrCapture()) {
2720 VD = VD->getCanonicalDecl();
2721 if (auto *FD = LambdaCaptureFields.lookup(VD))
2722 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2723 if (CapturedStmtInfo) {
2724 auto I = LocalDeclMap.find(VD);
2725 if (I != LocalDeclMap.end()) {
2726 LValue CapLVal;
2727 if (VD->getType()->isReferenceType())
2728 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2729 AlignmentSource::Decl);
2730 else
2731 CapLVal = MakeAddrLValue(I->second, T);
2732 // Mark lvalue as nontemporal if the variable is marked as nontemporal
2733 // in simd context.
2734 if (getLangOpts().OpenMP &&
2735 CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2736 CapLVal.setNontemporal(/*Value=*/true);
2737 return CapLVal;
2738 }
2739 LValue CapLVal =
2740 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2741 CapturedStmtInfo->getContextValue());
2742 CapLVal = MakeAddrLValue(
2743 Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2744 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2745 CapLVal.getTBAAInfo());
2746 // Mark lvalue as nontemporal if the variable is marked as nontemporal
2747 // in simd context.
2748 if (getLangOpts().OpenMP &&
2749 CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2750 CapLVal.setNontemporal(/*Value=*/true);
2751 return CapLVal;
2752 }
2753
2754 assert(isa<BlockDecl>(CurCodeDecl));
2755 Address addr = GetAddrOfBlockDecl(VD);
2756 return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2757 }
2758 }
2759
2760 // FIXME: We should be able to assert this for FunctionDecls as well!
2761 // FIXME: We should be able to assert this for all DeclRefExprs, not just
2762 // those with a valid source location.
2763 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2764 !E->getLocation().isValid()) &&
2765 "Should not use decl without marking it used!");
2766
2767 if (ND->hasAttr<WeakRefAttr>()) {
2768 const auto *VD = cast<ValueDecl>(ND);
2769 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2770 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2771 }
2772
2773 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2774 // Check if this is a global variable.
2775 if (VD->hasLinkage() || VD->isStaticDataMember())
2776 return EmitGlobalVarDeclLValue(*this, E, VD);
2777
2778 Address addr = Address::invalid();
2779
2780 // The variable should generally be present in the local decl map.
2781 auto iter = LocalDeclMap.find(VD);
2782 if (iter != LocalDeclMap.end()) {
2783 addr = iter->second;
2784
2785 // Otherwise, it might be static local we haven't emitted yet for
2786 // some reason; most likely, because it's in an outer function.
2787 } else if (VD->isStaticLocal()) {
2788 addr = Address(CGM.getOrCreateStaticVarDecl(
2789 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2790 getContext().getDeclAlign(VD));
2791
2792 // No other cases for now.
2793 } else {
2794 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2795 }
2796
2797
2798 // Check for OpenMP threadprivate variables.
2799 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2800 VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2801 return EmitThreadPrivateVarDeclLValue(
2802 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2803 E->getExprLoc());
2804 }
2805
2806 // Drill into block byref variables.
2807 bool isBlockByref = VD->isEscapingByref();
2808 if (isBlockByref) {
2809 addr = emitBlockByrefAddress(addr, VD);
2810 }
2811
2812 // Drill into reference types.
2813 LValue LV = VD->getType()->isReferenceType() ?
2814 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2815 MakeAddrLValue(addr, T, AlignmentSource::Decl);
2816
2817 bool isLocalStorage = VD->hasLocalStorage();
2818
2819 bool NonGCable = isLocalStorage &&
2820 !VD->getType()->isReferenceType() &&
2821 !isBlockByref;
2822 if (NonGCable) {
2823 LV.getQuals().removeObjCGCAttr();
2824 LV.setNonGC(true);
2825 }
2826
2827 bool isImpreciseLifetime =
2828 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2829 if (isImpreciseLifetime)
2830 LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2831 setObjCGCLValueClass(getContext(), E, LV);
2832 return LV;
2833 }
2834
2835 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
2836 LValue LV = EmitFunctionDeclLValue(*this, E, FD);
2837
2838 // Emit debuginfo for the function declaration if the target wants to.
2839 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2840 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) {
2841 auto *Fn =
2842 cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts());
2843 if (!Fn->getSubprogram())
2844 DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn);
2845 }
2846 }
2847
2848 return LV;
2849 }
2850
2851 // FIXME: While we're emitting a binding from an enclosing scope, all other
2852 // DeclRefExprs we see should be implicitly treated as if they also refer to
2853 // an enclosing scope.
2854 if (const auto *BD = dyn_cast<BindingDecl>(ND))
2855 return EmitLValue(BD->getBinding());
2856
2857 // We can form DeclRefExprs naming GUID declarations when reconstituting
2858 // non-type template parameters into expressions.
2859 if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2860 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2861 AlignmentSource::Decl);
2862
2863 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
2864 return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
2865 AlignmentSource::Decl);
2866
2867 llvm_unreachable("Unhandled DeclRefExpr");
2868 }
2869
EmitUnaryOpLValue(const UnaryOperator * E)2870 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2871 // __extension__ doesn't affect lvalue-ness.
2872 if (E->getOpcode() == UO_Extension)
2873 return EmitLValue(E->getSubExpr());
2874
2875 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2876 switch (E->getOpcode()) {
2877 default: llvm_unreachable("Unknown unary operator lvalue!");
2878 case UO_Deref: {
2879 QualType T = E->getSubExpr()->getType()->getPointeeType();
2880 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2881
2882 LValueBaseInfo BaseInfo;
2883 TBAAAccessInfo TBAAInfo;
2884 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2885 &TBAAInfo);
2886 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2887 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2888
2889 // We should not generate __weak write barrier on indirect reference
2890 // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2891 // But, we continue to generate __strong write barrier on indirect write
2892 // into a pointer to object.
2893 if (getLangOpts().ObjC &&
2894 getLangOpts().getGC() != LangOptions::NonGC &&
2895 LV.isObjCWeak())
2896 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2897 return LV;
2898 }
2899 case UO_Real:
2900 case UO_Imag: {
2901 LValue LV = EmitLValue(E->getSubExpr());
2902 assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2903
2904 // __real is valid on scalars. This is a faster way of testing that.
2905 // __imag can only produce an rvalue on scalars.
2906 if (E->getOpcode() == UO_Real &&
2907 !LV.getAddress(*this).getElementType()->isStructTy()) {
2908 assert(E->getSubExpr()->getType()->isArithmeticType());
2909 return LV;
2910 }
2911
2912 QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2913
2914 Address Component =
2915 (E->getOpcode() == UO_Real
2916 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2917 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2918 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2919 CGM.getTBAAInfoForSubobject(LV, T));
2920 ElemLV.getQuals().addQualifiers(LV.getQuals());
2921 return ElemLV;
2922 }
2923 case UO_PreInc:
2924 case UO_PreDec: {
2925 LValue LV = EmitLValue(E->getSubExpr());
2926 bool isInc = E->getOpcode() == UO_PreInc;
2927
2928 if (E->getType()->isAnyComplexType())
2929 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2930 else
2931 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2932 return LV;
2933 }
2934 }
2935 }
2936
EmitStringLiteralLValue(const StringLiteral * E)2937 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2938 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2939 E->getType(), AlignmentSource::Decl);
2940 }
2941
EmitObjCEncodeExprLValue(const ObjCEncodeExpr * E)2942 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2943 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2944 E->getType(), AlignmentSource::Decl);
2945 }
2946
EmitPredefinedLValue(const PredefinedExpr * E)2947 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2948 auto SL = E->getFunctionName();
2949 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2950 StringRef FnName = CurFn->getName();
2951 if (FnName.startswith("\01"))
2952 FnName = FnName.substr(1);
2953 StringRef NameItems[] = {
2954 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2955 std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2956 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2957 std::string Name = std::string(SL->getString());
2958 if (!Name.empty()) {
2959 unsigned Discriminator =
2960 CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2961 if (Discriminator)
2962 Name += "_" + Twine(Discriminator + 1).str();
2963 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2964 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2965 } else {
2966 auto C =
2967 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2968 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2969 }
2970 }
2971 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2972 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2973 }
2974
2975 /// Emit a type description suitable for use by a runtime sanitizer library. The
2976 /// format of a type descriptor is
2977 ///
2978 /// \code
2979 /// { i16 TypeKind, i16 TypeInfo }
2980 /// \endcode
2981 ///
2982 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2983 /// integer, 1 for a floating point value, and -1 for anything else.
EmitCheckTypeDescriptor(QualType T)2984 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2985 // Only emit each type's descriptor once.
2986 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2987 return C;
2988
2989 uint16_t TypeKind = -1;
2990 uint16_t TypeInfo = 0;
2991
2992 if (T->isIntegerType()) {
2993 TypeKind = 0;
2994 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2995 (T->isSignedIntegerType() ? 1 : 0);
2996 } else if (T->isFloatingType()) {
2997 TypeKind = 1;
2998 TypeInfo = getContext().getTypeSize(T);
2999 }
3000
3001 // Format the type name as if for a diagnostic, including quotes and
3002 // optionally an 'aka'.
3003 SmallString<32> Buffer;
3004 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
3005 (intptr_t)T.getAsOpaquePtr(),
3006 StringRef(), StringRef(), None, Buffer,
3007 None);
3008
3009 llvm::Constant *Components[] = {
3010 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3011 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3012 };
3013 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3014
3015 auto *GV = new llvm::GlobalVariable(
3016 CGM.getModule(), Descriptor->getType(),
3017 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3018 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3019 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3020
3021 // Remember the descriptor for this type.
3022 CGM.setTypeDescriptorInMap(T, GV);
3023
3024 return GV;
3025 }
3026
EmitCheckValue(llvm::Value * V)3027 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3028 llvm::Type *TargetTy = IntPtrTy;
3029
3030 if (V->getType() == TargetTy)
3031 return V;
3032
3033 // Floating-point types which fit into intptr_t are bitcast to integers
3034 // and then passed directly (after zero-extension, if necessary).
3035 if (V->getType()->isFloatingPointTy()) {
3036 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize();
3037 if (Bits <= TargetTy->getIntegerBitWidth())
3038 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3039 Bits));
3040 }
3041
3042 // Integers which fit in intptr_t are zero-extended and passed directly.
3043 if (V->getType()->isIntegerTy() &&
3044 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3045 return Builder.CreateZExt(V, TargetTy);
3046
3047 // Pointers are passed directly, everything else is passed by address.
3048 if (!V->getType()->isPointerTy()) {
3049 Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3050 Builder.CreateStore(V, Ptr);
3051 V = Ptr.getPointer();
3052 }
3053 return Builder.CreatePtrToInt(V, TargetTy);
3054 }
3055
3056 /// Emit a representation of a SourceLocation for passing to a handler
3057 /// in a sanitizer runtime library. The format for this data is:
3058 /// \code
3059 /// struct SourceLocation {
3060 /// const char *Filename;
3061 /// int32_t Line, Column;
3062 /// };
3063 /// \endcode
3064 /// For an invalid SourceLocation, the Filename pointer is null.
EmitCheckSourceLocation(SourceLocation Loc)3065 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3066 llvm::Constant *Filename;
3067 int Line, Column;
3068
3069 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3070 if (PLoc.isValid()) {
3071 StringRef FilenameString = PLoc.getFilename();
3072
3073 int PathComponentsToStrip =
3074 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3075 if (PathComponentsToStrip < 0) {
3076 assert(PathComponentsToStrip != INT_MIN);
3077 int PathComponentsToKeep = -PathComponentsToStrip;
3078 auto I = llvm::sys::path::rbegin(FilenameString);
3079 auto E = llvm::sys::path::rend(FilenameString);
3080 while (I != E && --PathComponentsToKeep)
3081 ++I;
3082
3083 FilenameString = FilenameString.substr(I - E);
3084 } else if (PathComponentsToStrip > 0) {
3085 auto I = llvm::sys::path::begin(FilenameString);
3086 auto E = llvm::sys::path::end(FilenameString);
3087 while (I != E && PathComponentsToStrip--)
3088 ++I;
3089
3090 if (I != E)
3091 FilenameString =
3092 FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3093 else
3094 FilenameString = llvm::sys::path::filename(FilenameString);
3095 }
3096
3097 auto FilenameGV =
3098 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3099 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3100 cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3101 Filename = FilenameGV.getPointer();
3102 Line = PLoc.getLine();
3103 Column = PLoc.getColumn();
3104 } else {
3105 Filename = llvm::Constant::getNullValue(Int8PtrTy);
3106 Line = Column = 0;
3107 }
3108
3109 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3110 Builder.getInt32(Column)};
3111
3112 return llvm::ConstantStruct::getAnon(Data);
3113 }
3114
3115 namespace {
3116 /// Specify under what conditions this check can be recovered
3117 enum class CheckRecoverableKind {
3118 /// Always terminate program execution if this check fails.
3119 Unrecoverable,
3120 /// Check supports recovering, runtime has both fatal (noreturn) and
3121 /// non-fatal handlers for this check.
3122 Recoverable,
3123 /// Runtime conditionally aborts, always need to support recovery.
3124 AlwaysRecoverable
3125 };
3126 }
3127
getRecoverableKind(SanitizerMask Kind)3128 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3129 assert(Kind.countPopulation() == 1);
3130 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3131 return CheckRecoverableKind::AlwaysRecoverable;
3132 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3133 return CheckRecoverableKind::Unrecoverable;
3134 else
3135 return CheckRecoverableKind::Recoverable;
3136 }
3137
3138 namespace {
3139 struct SanitizerHandlerInfo {
3140 char const *const Name;
3141 unsigned Version;
3142 };
3143 }
3144
3145 const SanitizerHandlerInfo SanitizerHandlers[] = {
3146 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3147 LIST_SANITIZER_CHECKS
3148 #undef SANITIZER_CHECK
3149 };
3150
emitCheckHandlerCall(CodeGenFunction & CGF,llvm::FunctionType * FnType,ArrayRef<llvm::Value * > FnArgs,SanitizerHandler CheckHandler,CheckRecoverableKind RecoverKind,bool IsFatal,llvm::BasicBlock * ContBB)3151 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3152 llvm::FunctionType *FnType,
3153 ArrayRef<llvm::Value *> FnArgs,
3154 SanitizerHandler CheckHandler,
3155 CheckRecoverableKind RecoverKind, bool IsFatal,
3156 llvm::BasicBlock *ContBB) {
3157 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3158 Optional<ApplyDebugLocation> DL;
3159 if (!CGF.Builder.getCurrentDebugLocation()) {
3160 // Ensure that the call has at least an artificial debug location.
3161 DL.emplace(CGF, SourceLocation());
3162 }
3163 bool NeedsAbortSuffix =
3164 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3165 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3166 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3167 const StringRef CheckName = CheckInfo.Name;
3168 std::string FnName = "__ubsan_handle_" + CheckName.str();
3169 if (CheckInfo.Version && !MinimalRuntime)
3170 FnName += "_v" + llvm::utostr(CheckInfo.Version);
3171 if (MinimalRuntime)
3172 FnName += "_minimal";
3173 if (NeedsAbortSuffix)
3174 FnName += "_abort";
3175 bool MayReturn =
3176 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3177
3178 llvm::AttrBuilder B;
3179 if (!MayReturn) {
3180 B.addAttribute(llvm::Attribute::NoReturn)
3181 .addAttribute(llvm::Attribute::NoUnwind);
3182 }
3183 B.addAttribute(llvm::Attribute::UWTable);
3184
3185 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3186 FnType, FnName,
3187 llvm::AttributeList::get(CGF.getLLVMContext(),
3188 llvm::AttributeList::FunctionIndex, B),
3189 /*Local=*/true);
3190 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3191 if (!MayReturn) {
3192 HandlerCall->setDoesNotReturn();
3193 CGF.Builder.CreateUnreachable();
3194 } else {
3195 CGF.Builder.CreateBr(ContBB);
3196 }
3197 }
3198
EmitCheck(ArrayRef<std::pair<llvm::Value *,SanitizerMask>> Checked,SanitizerHandler CheckHandler,ArrayRef<llvm::Constant * > StaticArgs,ArrayRef<llvm::Value * > DynamicArgs)3199 void CodeGenFunction::EmitCheck(
3200 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3201 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3202 ArrayRef<llvm::Value *> DynamicArgs) {
3203 assert(IsSanitizerScope);
3204 assert(Checked.size() > 0);
3205 assert(CheckHandler >= 0 &&
3206 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3207 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3208
3209 llvm::Value *FatalCond = nullptr;
3210 llvm::Value *RecoverableCond = nullptr;
3211 llvm::Value *TrapCond = nullptr;
3212 for (int i = 0, n = Checked.size(); i < n; ++i) {
3213 llvm::Value *Check = Checked[i].first;
3214 // -fsanitize-trap= overrides -fsanitize-recover=.
3215 llvm::Value *&Cond =
3216 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3217 ? TrapCond
3218 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3219 ? RecoverableCond
3220 : FatalCond;
3221 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3222 }
3223
3224 if (TrapCond)
3225 EmitTrapCheck(TrapCond, CheckHandler);
3226 if (!FatalCond && !RecoverableCond)
3227 return;
3228
3229 llvm::Value *JointCond;
3230 if (FatalCond && RecoverableCond)
3231 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3232 else
3233 JointCond = FatalCond ? FatalCond : RecoverableCond;
3234 assert(JointCond);
3235
3236 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3237 assert(SanOpts.has(Checked[0].second));
3238 #ifndef NDEBUG
3239 for (int i = 1, n = Checked.size(); i < n; ++i) {
3240 assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3241 "All recoverable kinds in a single check must be same!");
3242 assert(SanOpts.has(Checked[i].second));
3243 }
3244 #endif
3245
3246 llvm::BasicBlock *Cont = createBasicBlock("cont");
3247 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3248 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3249 // Give hint that we very much don't expect to execute the handler
3250 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3251 llvm::MDBuilder MDHelper(getLLVMContext());
3252 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3253 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3254 EmitBlock(Handlers);
3255
3256 // Handler functions take an i8* pointing to the (handler-specific) static
3257 // information block, followed by a sequence of intptr_t arguments
3258 // representing operand values.
3259 SmallVector<llvm::Value *, 4> Args;
3260 SmallVector<llvm::Type *, 4> ArgTypes;
3261 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3262 Args.reserve(DynamicArgs.size() + 1);
3263 ArgTypes.reserve(DynamicArgs.size() + 1);
3264
3265 // Emit handler arguments and create handler function type.
3266 if (!StaticArgs.empty()) {
3267 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3268 auto *InfoPtr =
3269 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3270 llvm::GlobalVariable::PrivateLinkage, Info);
3271 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3272 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3273 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3274 ArgTypes.push_back(Int8PtrTy);
3275 }
3276
3277 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3278 Args.push_back(EmitCheckValue(DynamicArgs[i]));
3279 ArgTypes.push_back(IntPtrTy);
3280 }
3281 }
3282
3283 llvm::FunctionType *FnType =
3284 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3285
3286 if (!FatalCond || !RecoverableCond) {
3287 // Simple case: we need to generate a single handler call, either
3288 // fatal, or non-fatal.
3289 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3290 (FatalCond != nullptr), Cont);
3291 } else {
3292 // Emit two handler calls: first one for set of unrecoverable checks,
3293 // another one for recoverable.
3294 llvm::BasicBlock *NonFatalHandlerBB =
3295 createBasicBlock("non_fatal." + CheckName);
3296 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3297 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3298 EmitBlock(FatalHandlerBB);
3299 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3300 NonFatalHandlerBB);
3301 EmitBlock(NonFatalHandlerBB);
3302 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3303 Cont);
3304 }
3305
3306 EmitBlock(Cont);
3307 }
3308
EmitCfiSlowPathCheck(SanitizerMask Kind,llvm::Value * Cond,llvm::ConstantInt * TypeId,llvm::Value * Ptr,ArrayRef<llvm::Constant * > StaticArgs)3309 void CodeGenFunction::EmitCfiSlowPathCheck(
3310 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3311 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3312 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3313
3314 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3315 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3316
3317 llvm::MDBuilder MDHelper(getLLVMContext());
3318 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3319 BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3320
3321 EmitBlock(CheckBB);
3322
3323 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3324
3325 llvm::CallInst *CheckCall;
3326 llvm::FunctionCallee SlowPathFn;
3327 if (WithDiag) {
3328 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3329 auto *InfoPtr =
3330 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3331 llvm::GlobalVariable::PrivateLinkage, Info);
3332 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3333 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3334
3335 SlowPathFn = CGM.getModule().getOrInsertFunction(
3336 "__cfi_slowpath_diag",
3337 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3338 false));
3339 CheckCall = Builder.CreateCall(
3340 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3341 } else {
3342 SlowPathFn = CGM.getModule().getOrInsertFunction(
3343 "__cfi_slowpath",
3344 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3345 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3346 }
3347
3348 CGM.setDSOLocal(
3349 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3350 CheckCall->setDoesNotThrow();
3351
3352 EmitBlock(Cont);
3353 }
3354
3355 // Emit a stub for __cfi_check function so that the linker knows about this
3356 // symbol in LTO mode.
EmitCfiCheckStub()3357 void CodeGenFunction::EmitCfiCheckStub() {
3358 llvm::Module *M = &CGM.getModule();
3359 auto &Ctx = M->getContext();
3360 llvm::Function *F = llvm::Function::Create(
3361 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3362 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3363 CGM.setDSOLocal(F);
3364 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3365 // FIXME: consider emitting an intrinsic call like
3366 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3367 // which can be lowered in CrossDSOCFI pass to the actual contents of
3368 // __cfi_check. This would allow inlining of __cfi_check calls.
3369 llvm::CallInst::Create(
3370 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3371 llvm::ReturnInst::Create(Ctx, nullptr, BB);
3372 }
3373
3374 // This function is basically a switch over the CFI failure kind, which is
3375 // extracted from CFICheckFailData (1st function argument). Each case is either
3376 // llvm.trap or a call to one of the two runtime handlers, based on
3377 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid
3378 // failure kind) traps, but this should really never happen. CFICheckFailData
3379 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3380 // check kind; in this case __cfi_check_fail traps as well.
EmitCfiCheckFail()3381 void CodeGenFunction::EmitCfiCheckFail() {
3382 SanitizerScope SanScope(this);
3383 FunctionArgList Args;
3384 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3385 ImplicitParamDecl::Other);
3386 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3387 ImplicitParamDecl::Other);
3388 Args.push_back(&ArgData);
3389 Args.push_back(&ArgAddr);
3390
3391 const CGFunctionInfo &FI =
3392 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3393
3394 llvm::Function *F = llvm::Function::Create(
3395 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3396 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3397
3398 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3399 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3400 F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3401
3402 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3403 SourceLocation());
3404
3405 // This function is not affected by NoSanitizeList. This function does
3406 // not have a source location, but "src:*" would still apply. Revert any
3407 // changes to SanOpts made in StartFunction.
3408 SanOpts = CGM.getLangOpts().Sanitize;
3409
3410 llvm::Value *Data =
3411 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3412 CGM.getContext().VoidPtrTy, ArgData.getLocation());
3413 llvm::Value *Addr =
3414 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3415 CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3416
3417 // Data == nullptr means the calling module has trap behaviour for this check.
3418 llvm::Value *DataIsNotNullPtr =
3419 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3420 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3421
3422 llvm::StructType *SourceLocationTy =
3423 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3424 llvm::StructType *CfiCheckFailDataTy =
3425 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3426
3427 llvm::Value *V = Builder.CreateConstGEP2_32(
3428 CfiCheckFailDataTy,
3429 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3430 0);
3431 Address CheckKindAddr(V, getIntAlign());
3432 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3433
3434 llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3435 CGM.getLLVMContext(),
3436 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3437 llvm::Value *ValidVtable = Builder.CreateZExt(
3438 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3439 {Addr, AllVtables}),
3440 IntPtrTy);
3441
3442 const std::pair<int, SanitizerMask> CheckKinds[] = {
3443 {CFITCK_VCall, SanitizerKind::CFIVCall},
3444 {CFITCK_NVCall, SanitizerKind::CFINVCall},
3445 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3446 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3447 {CFITCK_ICall, SanitizerKind::CFIICall}};
3448
3449 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3450 for (auto CheckKindMaskPair : CheckKinds) {
3451 int Kind = CheckKindMaskPair.first;
3452 SanitizerMask Mask = CheckKindMaskPair.second;
3453 llvm::Value *Cond =
3454 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3455 if (CGM.getLangOpts().Sanitize.has(Mask))
3456 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3457 {Data, Addr, ValidVtable});
3458 else
3459 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3460 }
3461
3462 FinishFunction();
3463 // The only reference to this function will be created during LTO link.
3464 // Make sure it survives until then.
3465 CGM.addUsedGlobal(F);
3466 }
3467
EmitUnreachable(SourceLocation Loc)3468 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3469 if (SanOpts.has(SanitizerKind::Unreachable)) {
3470 SanitizerScope SanScope(this);
3471 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3472 SanitizerKind::Unreachable),
3473 SanitizerHandler::BuiltinUnreachable,
3474 EmitCheckSourceLocation(Loc), None);
3475 }
3476 Builder.CreateUnreachable();
3477 }
3478
EmitTrapCheck(llvm::Value * Checked,SanitizerHandler CheckHandlerID)3479 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3480 SanitizerHandler CheckHandlerID) {
3481 llvm::BasicBlock *Cont = createBasicBlock("cont");
3482
3483 // If we're optimizing, collapse all calls to trap down to just one per
3484 // check-type per function to save on code size.
3485 if (TrapBBs.size() <= CheckHandlerID)
3486 TrapBBs.resize(CheckHandlerID + 1);
3487 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3488
3489 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3490 TrapBB = createBasicBlock("trap");
3491 Builder.CreateCondBr(Checked, Cont, TrapBB);
3492 EmitBlock(TrapBB);
3493
3494 llvm::CallInst *TrapCall =
3495 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3496 llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID));
3497
3498 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3499 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3500 CGM.getCodeGenOpts().TrapFuncName);
3501 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3502 }
3503 TrapCall->setDoesNotReturn();
3504 TrapCall->setDoesNotThrow();
3505 Builder.CreateUnreachable();
3506 } else {
3507 auto Call = TrapBB->begin();
3508 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3509
3510 Call->applyMergedLocation(Call->getDebugLoc(),
3511 Builder.getCurrentDebugLocation());
3512 Builder.CreateCondBr(Checked, Cont, TrapBB);
3513 }
3514
3515 EmitBlock(Cont);
3516 }
3517
EmitTrapCall(llvm::Intrinsic::ID IntrID)3518 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3519 llvm::CallInst *TrapCall =
3520 Builder.CreateCall(CGM.getIntrinsic(IntrID));
3521
3522 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3523 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3524 CGM.getCodeGenOpts().TrapFuncName);
3525 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3526 }
3527
3528 return TrapCall;
3529 }
3530
EmitArrayToPointerDecay(const Expr * E,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)3531 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3532 LValueBaseInfo *BaseInfo,
3533 TBAAAccessInfo *TBAAInfo) {
3534 assert(E->getType()->isArrayType() &&
3535 "Array to pointer decay must have array source type!");
3536
3537 // Expressions of array type can't be bitfields or vector elements.
3538 LValue LV = EmitLValue(E);
3539 Address Addr = LV.getAddress(*this);
3540
3541 // If the array type was an incomplete type, we need to make sure
3542 // the decay ends up being the right type.
3543 llvm::Type *NewTy = ConvertType(E->getType());
3544 Addr = Builder.CreateElementBitCast(Addr, NewTy);
3545
3546 // Note that VLA pointers are always decayed, so we don't need to do
3547 // anything here.
3548 if (!E->getType()->isVariableArrayType()) {
3549 assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3550 "Expected pointer to array");
3551 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3552 }
3553
3554 // The result of this decay conversion points to an array element within the
3555 // base lvalue. However, since TBAA currently does not support representing
3556 // accesses to elements of member arrays, we conservatively represent accesses
3557 // to the pointee object as if it had no any base lvalue specified.
3558 // TODO: Support TBAA for member arrays.
3559 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3560 if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3561 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3562
3563 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3564 }
3565
3566 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3567 /// array to pointer, return the array subexpression.
isSimpleArrayDecayOperand(const Expr * E)3568 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3569 // If this isn't just an array->pointer decay, bail out.
3570 const auto *CE = dyn_cast<CastExpr>(E);
3571 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3572 return nullptr;
3573
3574 // If this is a decay from variable width array, bail out.
3575 const Expr *SubExpr = CE->getSubExpr();
3576 if (SubExpr->getType()->isVariableArrayType())
3577 return nullptr;
3578
3579 return SubExpr;
3580 }
3581
emitArraySubscriptGEP(CodeGenFunction & CGF,llvm::Type * elemType,llvm::Value * ptr,ArrayRef<llvm::Value * > indices,bool inbounds,bool signedIndices,SourceLocation loc,const llvm::Twine & name="arrayidx")3582 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3583 llvm::Type *elemType,
3584 llvm::Value *ptr,
3585 ArrayRef<llvm::Value*> indices,
3586 bool inbounds,
3587 bool signedIndices,
3588 SourceLocation loc,
3589 const llvm::Twine &name = "arrayidx") {
3590 if (inbounds) {
3591 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3592 CodeGenFunction::NotSubtraction, loc,
3593 name);
3594 } else {
3595 return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3596 }
3597 }
3598
getArrayElementAlign(CharUnits arrayAlign,llvm::Value * idx,CharUnits eltSize)3599 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3600 llvm::Value *idx,
3601 CharUnits eltSize) {
3602 // If we have a constant index, we can use the exact offset of the
3603 // element we're accessing.
3604 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3605 CharUnits offset = constantIdx->getZExtValue() * eltSize;
3606 return arrayAlign.alignmentAtOffset(offset);
3607
3608 // Otherwise, use the worst-case alignment for any element.
3609 } else {
3610 return arrayAlign.alignmentOfArrayElement(eltSize);
3611 }
3612 }
3613
getFixedSizeElementType(const ASTContext & ctx,const VariableArrayType * vla)3614 static QualType getFixedSizeElementType(const ASTContext &ctx,
3615 const VariableArrayType *vla) {
3616 QualType eltType;
3617 do {
3618 eltType = vla->getElementType();
3619 } while ((vla = ctx.getAsVariableArrayType(eltType)));
3620 return eltType;
3621 }
3622
3623 /// Given an array base, check whether its member access belongs to a record
3624 /// with preserve_access_index attribute or not.
IsPreserveAIArrayBase(CodeGenFunction & CGF,const Expr * ArrayBase)3625 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3626 if (!ArrayBase || !CGF.getDebugInfo())
3627 return false;
3628
3629 // Only support base as either a MemberExpr or DeclRefExpr.
3630 // DeclRefExpr to cover cases like:
3631 // struct s { int a; int b[10]; };
3632 // struct s *p;
3633 // p[1].a
3634 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3635 // p->b[5] is a MemberExpr example.
3636 const Expr *E = ArrayBase->IgnoreImpCasts();
3637 if (const auto *ME = dyn_cast<MemberExpr>(E))
3638 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3639
3640 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3641 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3642 if (!VarDef)
3643 return false;
3644
3645 const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3646 if (!PtrT)
3647 return false;
3648
3649 const auto *PointeeT = PtrT->getPointeeType()
3650 ->getUnqualifiedDesugaredType();
3651 if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3652 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3653 return false;
3654 }
3655
3656 return false;
3657 }
3658
emitArraySubscriptGEP(CodeGenFunction & CGF,Address addr,ArrayRef<llvm::Value * > indices,QualType eltType,bool inbounds,bool signedIndices,SourceLocation loc,QualType * arrayType=nullptr,const Expr * Base=nullptr,const llvm::Twine & name="arrayidx")3659 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3660 ArrayRef<llvm::Value *> indices,
3661 QualType eltType, bool inbounds,
3662 bool signedIndices, SourceLocation loc,
3663 QualType *arrayType = nullptr,
3664 const Expr *Base = nullptr,
3665 const llvm::Twine &name = "arrayidx") {
3666 // All the indices except that last must be zero.
3667 #ifndef NDEBUG
3668 for (auto idx : indices.drop_back())
3669 assert(isa<llvm::ConstantInt>(idx) &&
3670 cast<llvm::ConstantInt>(idx)->isZero());
3671 #endif
3672
3673 // Determine the element size of the statically-sized base. This is
3674 // the thing that the indices are expressed in terms of.
3675 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3676 eltType = getFixedSizeElementType(CGF.getContext(), vla);
3677 }
3678
3679 // We can use that to compute the best alignment of the element.
3680 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3681 CharUnits eltAlign =
3682 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3683
3684 llvm::Value *eltPtr;
3685 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3686 if (!LastIndex ||
3687 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3688 eltPtr = emitArraySubscriptGEP(
3689 CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
3690 signedIndices, loc, name);
3691 } else {
3692 // Remember the original array subscript for bpf target
3693 unsigned idx = LastIndex->getZExtValue();
3694 llvm::DIType *DbgInfo = nullptr;
3695 if (arrayType)
3696 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3697 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3698 addr.getPointer(),
3699 indices.size() - 1,
3700 idx, DbgInfo);
3701 }
3702
3703 return Address(eltPtr, eltAlign);
3704 }
3705
EmitArraySubscriptExpr(const ArraySubscriptExpr * E,bool Accessed)3706 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3707 bool Accessed) {
3708 // The index must always be an integer, which is not an aggregate. Emit it
3709 // in lexical order (this complexity is, sadly, required by C++17).
3710 llvm::Value *IdxPre =
3711 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3712 bool SignedIndices = false;
3713 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3714 auto *Idx = IdxPre;
3715 if (E->getLHS() != E->getIdx()) {
3716 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3717 Idx = EmitScalarExpr(E->getIdx());
3718 }
3719
3720 QualType IdxTy = E->getIdx()->getType();
3721 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3722 SignedIndices |= IdxSigned;
3723
3724 if (SanOpts.has(SanitizerKind::ArrayBounds))
3725 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3726
3727 // Extend or truncate the index type to 32 or 64-bits.
3728 if (Promote && Idx->getType() != IntPtrTy)
3729 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3730
3731 return Idx;
3732 };
3733 IdxPre = nullptr;
3734
3735 // If the base is a vector type, then we are forming a vector element lvalue
3736 // with this subscript.
3737 if (E->getBase()->getType()->isVectorType() &&
3738 !isa<ExtVectorElementExpr>(E->getBase())) {
3739 // Emit the vector as an lvalue to get its address.
3740 LValue LHS = EmitLValue(E->getBase());
3741 auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3742 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3743 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3744 E->getBase()->getType(), LHS.getBaseInfo(),
3745 TBAAAccessInfo());
3746 }
3747
3748 // All the other cases basically behave like simple offsetting.
3749
3750 // Handle the extvector case we ignored above.
3751 if (isa<ExtVectorElementExpr>(E->getBase())) {
3752 LValue LV = EmitLValue(E->getBase());
3753 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3754 Address Addr = EmitExtVectorElementLValue(LV);
3755
3756 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3757 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3758 SignedIndices, E->getExprLoc());
3759 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3760 CGM.getTBAAInfoForSubobject(LV, EltType));
3761 }
3762
3763 LValueBaseInfo EltBaseInfo;
3764 TBAAAccessInfo EltTBAAInfo;
3765 Address Addr = Address::invalid();
3766 if (const VariableArrayType *vla =
3767 getContext().getAsVariableArrayType(E->getType())) {
3768 // The base must be a pointer, which is not an aggregate. Emit
3769 // it. It needs to be emitted first in case it's what captures
3770 // the VLA bounds.
3771 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3772 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3773
3774 // The element count here is the total number of non-VLA elements.
3775 llvm::Value *numElements = getVLASize(vla).NumElts;
3776
3777 // Effectively, the multiply by the VLA size is part of the GEP.
3778 // GEP indexes are signed, and scaling an index isn't permitted to
3779 // signed-overflow, so we use the same semantics for our explicit
3780 // multiply. We suppress this if overflow is not undefined behavior.
3781 if (getLangOpts().isSignedOverflowDefined()) {
3782 Idx = Builder.CreateMul(Idx, numElements);
3783 } else {
3784 Idx = Builder.CreateNSWMul(Idx, numElements);
3785 }
3786
3787 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3788 !getLangOpts().isSignedOverflowDefined(),
3789 SignedIndices, E->getExprLoc());
3790
3791 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3792 // Indexing over an interface, as in "NSString *P; P[4];"
3793
3794 // Emit the base pointer.
3795 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3796 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3797
3798 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3799 llvm::Value *InterfaceSizeVal =
3800 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3801
3802 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3803
3804 // We don't necessarily build correct LLVM struct types for ObjC
3805 // interfaces, so we can't rely on GEP to do this scaling
3806 // correctly, so we need to cast to i8*. FIXME: is this actually
3807 // true? A lot of other things in the fragile ABI would break...
3808 llvm::Type *OrigBaseTy = Addr.getType();
3809 Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3810
3811 // Do the GEP.
3812 CharUnits EltAlign =
3813 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3814 llvm::Value *EltPtr =
3815 emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(),
3816 ScaledIdx, false, SignedIndices, E->getExprLoc());
3817 Addr = Address(EltPtr, EltAlign);
3818
3819 // Cast back.
3820 Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3821 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3822 // If this is A[i] where A is an array, the frontend will have decayed the
3823 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
3824 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3825 // "gep x, i" here. Emit one "gep A, 0, i".
3826 assert(Array->getType()->isArrayType() &&
3827 "Array to pointer decay must have array source type!");
3828 LValue ArrayLV;
3829 // For simple multidimensional array indexing, set the 'accessed' flag for
3830 // better bounds-checking of the base expression.
3831 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3832 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3833 else
3834 ArrayLV = EmitLValue(Array);
3835 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3836
3837 // Propagate the alignment from the array itself to the result.
3838 QualType arrayType = Array->getType();
3839 Addr = emitArraySubscriptGEP(
3840 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3841 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3842 E->getExprLoc(), &arrayType, E->getBase());
3843 EltBaseInfo = ArrayLV.getBaseInfo();
3844 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3845 } else {
3846 // The base must be a pointer; emit it with an estimate of its alignment.
3847 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3848 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3849 QualType ptrType = E->getBase()->getType();
3850 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3851 !getLangOpts().isSignedOverflowDefined(),
3852 SignedIndices, E->getExprLoc(), &ptrType,
3853 E->getBase());
3854 }
3855
3856 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3857
3858 if (getLangOpts().ObjC &&
3859 getLangOpts().getGC() != LangOptions::NonGC) {
3860 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3861 setObjCGCLValueClass(getContext(), E, LV);
3862 }
3863 return LV;
3864 }
3865
EmitMatrixSubscriptExpr(const MatrixSubscriptExpr * E)3866 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3867 assert(
3868 !E->isIncomplete() &&
3869 "incomplete matrix subscript expressions should be rejected during Sema");
3870 LValue Base = EmitLValue(E->getBase());
3871 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3872 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3873 llvm::Value *NumRows = Builder.getIntN(
3874 RowIdx->getType()->getScalarSizeInBits(),
3875 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
3876 llvm::Value *FinalIdx =
3877 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3878 return LValue::MakeMatrixElt(
3879 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3880 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3881 }
3882
emitOMPArraySectionBase(CodeGenFunction & CGF,const Expr * Base,LValueBaseInfo & BaseInfo,TBAAAccessInfo & TBAAInfo,QualType BaseTy,QualType ElTy,bool IsLowerBound)3883 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3884 LValueBaseInfo &BaseInfo,
3885 TBAAAccessInfo &TBAAInfo,
3886 QualType BaseTy, QualType ElTy,
3887 bool IsLowerBound) {
3888 LValue BaseLVal;
3889 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3890 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3891 if (BaseTy->isArrayType()) {
3892 Address Addr = BaseLVal.getAddress(CGF);
3893 BaseInfo = BaseLVal.getBaseInfo();
3894
3895 // If the array type was an incomplete type, we need to make sure
3896 // the decay ends up being the right type.
3897 llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3898 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3899
3900 // Note that VLA pointers are always decayed, so we don't need to do
3901 // anything here.
3902 if (!BaseTy->isVariableArrayType()) {
3903 assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3904 "Expected pointer to array");
3905 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3906 }
3907
3908 return CGF.Builder.CreateElementBitCast(Addr,
3909 CGF.ConvertTypeForMem(ElTy));
3910 }
3911 LValueBaseInfo TypeBaseInfo;
3912 TBAAAccessInfo TypeTBAAInfo;
3913 CharUnits Align =
3914 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3915 BaseInfo.mergeForCast(TypeBaseInfo);
3916 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3917 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3918 }
3919 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3920 }
3921
EmitOMPArraySectionExpr(const OMPArraySectionExpr * E,bool IsLowerBound)3922 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3923 bool IsLowerBound) {
3924 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3925 QualType ResultExprTy;
3926 if (auto *AT = getContext().getAsArrayType(BaseTy))
3927 ResultExprTy = AT->getElementType();
3928 else
3929 ResultExprTy = BaseTy->getPointeeType();
3930 llvm::Value *Idx = nullptr;
3931 if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
3932 // Requesting lower bound or upper bound, but without provided length and
3933 // without ':' symbol for the default length -> length = 1.
3934 // Idx = LowerBound ?: 0;
3935 if (auto *LowerBound = E->getLowerBound()) {
3936 Idx = Builder.CreateIntCast(
3937 EmitScalarExpr(LowerBound), IntPtrTy,
3938 LowerBound->getType()->hasSignedIntegerRepresentation());
3939 } else
3940 Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3941 } else {
3942 // Try to emit length or lower bound as constant. If this is possible, 1
3943 // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3944 // IR (LB + Len) - 1.
3945 auto &C = CGM.getContext();
3946 auto *Length = E->getLength();
3947 llvm::APSInt ConstLength;
3948 if (Length) {
3949 // Idx = LowerBound + Length - 1;
3950 if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
3951 ConstLength = CL->zextOrTrunc(PointerWidthInBits);
3952 Length = nullptr;
3953 }
3954 auto *LowerBound = E->getLowerBound();
3955 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3956 if (LowerBound) {
3957 if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
3958 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
3959 LowerBound = nullptr;
3960 }
3961 }
3962 if (!Length)
3963 --ConstLength;
3964 else if (!LowerBound)
3965 --ConstLowerBound;
3966
3967 if (Length || LowerBound) {
3968 auto *LowerBoundVal =
3969 LowerBound
3970 ? Builder.CreateIntCast(
3971 EmitScalarExpr(LowerBound), IntPtrTy,
3972 LowerBound->getType()->hasSignedIntegerRepresentation())
3973 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3974 auto *LengthVal =
3975 Length
3976 ? Builder.CreateIntCast(
3977 EmitScalarExpr(Length), IntPtrTy,
3978 Length->getType()->hasSignedIntegerRepresentation())
3979 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3980 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3981 /*HasNUW=*/false,
3982 !getLangOpts().isSignedOverflowDefined());
3983 if (Length && LowerBound) {
3984 Idx = Builder.CreateSub(
3985 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3986 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3987 }
3988 } else
3989 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3990 } else {
3991 // Idx = ArraySize - 1;
3992 QualType ArrayTy = BaseTy->isPointerType()
3993 ? E->getBase()->IgnoreParenImpCasts()->getType()
3994 : BaseTy;
3995 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3996 Length = VAT->getSizeExpr();
3997 if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
3998 ConstLength = *L;
3999 Length = nullptr;
4000 }
4001 } else {
4002 auto *CAT = C.getAsConstantArrayType(ArrayTy);
4003 ConstLength = CAT->getSize();
4004 }
4005 if (Length) {
4006 auto *LengthVal = Builder.CreateIntCast(
4007 EmitScalarExpr(Length), IntPtrTy,
4008 Length->getType()->hasSignedIntegerRepresentation());
4009 Idx = Builder.CreateSub(
4010 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4011 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4012 } else {
4013 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4014 --ConstLength;
4015 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4016 }
4017 }
4018 }
4019 assert(Idx);
4020
4021 Address EltPtr = Address::invalid();
4022 LValueBaseInfo BaseInfo;
4023 TBAAAccessInfo TBAAInfo;
4024 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4025 // The base must be a pointer, which is not an aggregate. Emit
4026 // it. It needs to be emitted first in case it's what captures
4027 // the VLA bounds.
4028 Address Base =
4029 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4030 BaseTy, VLA->getElementType(), IsLowerBound);
4031 // The element count here is the total number of non-VLA elements.
4032 llvm::Value *NumElements = getVLASize(VLA).NumElts;
4033
4034 // Effectively, the multiply by the VLA size is part of the GEP.
4035 // GEP indexes are signed, and scaling an index isn't permitted to
4036 // signed-overflow, so we use the same semantics for our explicit
4037 // multiply. We suppress this if overflow is not undefined behavior.
4038 if (getLangOpts().isSignedOverflowDefined())
4039 Idx = Builder.CreateMul(Idx, NumElements);
4040 else
4041 Idx = Builder.CreateNSWMul(Idx, NumElements);
4042 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4043 !getLangOpts().isSignedOverflowDefined(),
4044 /*signedIndices=*/false, E->getExprLoc());
4045 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4046 // If this is A[i] where A is an array, the frontend will have decayed the
4047 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
4048 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4049 // "gep x, i" here. Emit one "gep A, 0, i".
4050 assert(Array->getType()->isArrayType() &&
4051 "Array to pointer decay must have array source type!");
4052 LValue ArrayLV;
4053 // For simple multidimensional array indexing, set the 'accessed' flag for
4054 // better bounds-checking of the base expression.
4055 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4056 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4057 else
4058 ArrayLV = EmitLValue(Array);
4059
4060 // Propagate the alignment from the array itself to the result.
4061 EltPtr = emitArraySubscriptGEP(
4062 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4063 ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4064 /*signedIndices=*/false, E->getExprLoc());
4065 BaseInfo = ArrayLV.getBaseInfo();
4066 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4067 } else {
4068 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4069 TBAAInfo, BaseTy, ResultExprTy,
4070 IsLowerBound);
4071 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4072 !getLangOpts().isSignedOverflowDefined(),
4073 /*signedIndices=*/false, E->getExprLoc());
4074 }
4075
4076 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4077 }
4078
4079 LValue CodeGenFunction::
EmitExtVectorElementExpr(const ExtVectorElementExpr * E)4080 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4081 // Emit the base vector as an l-value.
4082 LValue Base;
4083
4084 // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4085 if (E->isArrow()) {
4086 // If it is a pointer to a vector, emit the address and form an lvalue with
4087 // it.
4088 LValueBaseInfo BaseInfo;
4089 TBAAAccessInfo TBAAInfo;
4090 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4091 const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4092 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4093 Base.getQuals().removeObjCGCAttr();
4094 } else if (E->getBase()->isGLValue()) {
4095 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4096 // emit the base as an lvalue.
4097 assert(E->getBase()->getType()->isVectorType());
4098 Base = EmitLValue(E->getBase());
4099 } else {
4100 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4101 assert(E->getBase()->getType()->isVectorType() &&
4102 "Result must be a vector");
4103 llvm::Value *Vec = EmitScalarExpr(E->getBase());
4104
4105 // Store the vector to memory (because LValue wants an address).
4106 Address VecMem = CreateMemTemp(E->getBase()->getType());
4107 Builder.CreateStore(Vec, VecMem);
4108 Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4109 AlignmentSource::Decl);
4110 }
4111
4112 QualType type =
4113 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4114
4115 // Encode the element access list into a vector of unsigned indices.
4116 SmallVector<uint32_t, 4> Indices;
4117 E->getEncodedElementAccess(Indices);
4118
4119 if (Base.isSimple()) {
4120 llvm::Constant *CV =
4121 llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4122 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4123 Base.getBaseInfo(), TBAAAccessInfo());
4124 }
4125 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4126
4127 llvm::Constant *BaseElts = Base.getExtVectorElts();
4128 SmallVector<llvm::Constant *, 4> CElts;
4129
4130 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4131 CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4132 llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4133 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4134 Base.getBaseInfo(), TBAAAccessInfo());
4135 }
4136
EmitMemberExpr(const MemberExpr * E)4137 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4138 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4139 EmitIgnoredExpr(E->getBase());
4140 return EmitDeclRefLValue(DRE);
4141 }
4142
4143 Expr *BaseExpr = E->getBase();
4144 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
4145 LValue BaseLV;
4146 if (E->isArrow()) {
4147 LValueBaseInfo BaseInfo;
4148 TBAAAccessInfo TBAAInfo;
4149 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4150 QualType PtrTy = BaseExpr->getType()->getPointeeType();
4151 SanitizerSet SkippedChecks;
4152 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4153 if (IsBaseCXXThis)
4154 SkippedChecks.set(SanitizerKind::Alignment, true);
4155 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4156 SkippedChecks.set(SanitizerKind::Null, true);
4157 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4158 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4159 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4160 } else
4161 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4162
4163 NamedDecl *ND = E->getMemberDecl();
4164 if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4165 LValue LV = EmitLValueForField(BaseLV, Field);
4166 setObjCGCLValueClass(getContext(), E, LV);
4167 if (getLangOpts().OpenMP) {
4168 // If the member was explicitly marked as nontemporal, mark it as
4169 // nontemporal. If the base lvalue is marked as nontemporal, mark access
4170 // to children as nontemporal too.
4171 if ((IsWrappedCXXThis(BaseExpr) &&
4172 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4173 BaseLV.isNontemporal())
4174 LV.setNontemporal(/*Value=*/true);
4175 }
4176 return LV;
4177 }
4178
4179 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4180 return EmitFunctionDeclLValue(*this, E, FD);
4181
4182 llvm_unreachable("Unhandled member declaration!");
4183 }
4184
4185 /// Given that we are currently emitting a lambda, emit an l-value for
4186 /// one of its members.
EmitLValueForLambdaField(const FieldDecl * Field)4187 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4188 if (CurCodeDecl) {
4189 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4190 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4191 }
4192 QualType LambdaTagType =
4193 getContext().getTagDeclType(Field->getParent());
4194 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4195 return EmitLValueForField(LambdaLV, Field);
4196 }
4197
4198 /// Get the field index in the debug info. The debug info structure/union
4199 /// will ignore the unnamed bitfields.
getDebugInfoFIndex(const RecordDecl * Rec,unsigned FieldIndex)4200 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4201 unsigned FieldIndex) {
4202 unsigned I = 0, Skipped = 0;
4203
4204 for (auto F : Rec->getDefinition()->fields()) {
4205 if (I == FieldIndex)
4206 break;
4207 if (F->isUnnamedBitfield())
4208 Skipped++;
4209 I++;
4210 }
4211
4212 return FieldIndex - Skipped;
4213 }
4214
4215 /// Get the address of a zero-sized field within a record. The resulting
4216 /// address doesn't necessarily have the right type.
emitAddrOfZeroSizeField(CodeGenFunction & CGF,Address Base,const FieldDecl * Field)4217 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4218 const FieldDecl *Field) {
4219 CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4220 CGF.getContext().getFieldOffset(Field));
4221 if (Offset.isZero())
4222 return Base;
4223 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4224 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4225 }
4226
4227 /// Drill down to the storage of a field without walking into
4228 /// reference types.
4229 ///
4230 /// The resulting address doesn't necessarily have the right type.
emitAddrOfFieldStorage(CodeGenFunction & CGF,Address base,const FieldDecl * field)4231 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4232 const FieldDecl *field) {
4233 if (field->isZeroSize(CGF.getContext()))
4234 return emitAddrOfZeroSizeField(CGF, base, field);
4235
4236 const RecordDecl *rec = field->getParent();
4237
4238 unsigned idx =
4239 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4240
4241 return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4242 }
4243
emitPreserveStructAccess(CodeGenFunction & CGF,LValue base,Address addr,const FieldDecl * field)4244 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4245 Address addr, const FieldDecl *field) {
4246 const RecordDecl *rec = field->getParent();
4247 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4248 base.getType(), rec->getLocation());
4249
4250 unsigned idx =
4251 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4252
4253 return CGF.Builder.CreatePreserveStructAccessIndex(
4254 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4255 }
4256
hasAnyVptr(const QualType Type,const ASTContext & Context)4257 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4258 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4259 if (!RD)
4260 return false;
4261
4262 if (RD->isDynamicClass())
4263 return true;
4264
4265 for (const auto &Base : RD->bases())
4266 if (hasAnyVptr(Base.getType(), Context))
4267 return true;
4268
4269 for (const FieldDecl *Field : RD->fields())
4270 if (hasAnyVptr(Field->getType(), Context))
4271 return true;
4272
4273 return false;
4274 }
4275
EmitLValueForField(LValue base,const FieldDecl * field)4276 LValue CodeGenFunction::EmitLValueForField(LValue base,
4277 const FieldDecl *field) {
4278 LValueBaseInfo BaseInfo = base.getBaseInfo();
4279
4280 if (field->isBitField()) {
4281 const CGRecordLayout &RL =
4282 CGM.getTypes().getCGRecordLayout(field->getParent());
4283 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4284 const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4285 CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4286 Info.VolatileStorageSize != 0 &&
4287 field->getType()
4288 .withCVRQualifiers(base.getVRQualifiers())
4289 .isVolatileQualified();
4290 Address Addr = base.getAddress(*this);
4291 unsigned Idx = RL.getLLVMFieldNo(field);
4292 const RecordDecl *rec = field->getParent();
4293 if (!UseVolatile) {
4294 if (!IsInPreservedAIRegion &&
4295 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4296 if (Idx != 0)
4297 // For structs, we GEP to the field that the record layout suggests.
4298 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4299 } else {
4300 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4301 getContext().getRecordType(rec), rec->getLocation());
4302 Addr = Builder.CreatePreserveStructAccessIndex(
4303 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4304 DbgInfo);
4305 }
4306 }
4307 const unsigned SS =
4308 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4309 // Get the access type.
4310 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4311 if (Addr.getElementType() != FieldIntTy)
4312 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4313 if (UseVolatile) {
4314 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4315 if (VolatileOffset)
4316 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4317 }
4318
4319 QualType fieldType =
4320 field->getType().withCVRQualifiers(base.getVRQualifiers());
4321 // TODO: Support TBAA for bit fields.
4322 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4323 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4324 TBAAAccessInfo());
4325 }
4326
4327 // Fields of may-alias structures are may-alias themselves.
4328 // FIXME: this should get propagated down through anonymous structs
4329 // and unions.
4330 QualType FieldType = field->getType();
4331 const RecordDecl *rec = field->getParent();
4332 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4333 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4334 TBAAAccessInfo FieldTBAAInfo;
4335 if (base.getTBAAInfo().isMayAlias() ||
4336 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4337 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4338 } else if (rec->isUnion()) {
4339 // TODO: Support TBAA for unions.
4340 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4341 } else {
4342 // If no base type been assigned for the base access, then try to generate
4343 // one for this base lvalue.
4344 FieldTBAAInfo = base.getTBAAInfo();
4345 if (!FieldTBAAInfo.BaseType) {
4346 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4347 assert(!FieldTBAAInfo.Offset &&
4348 "Nonzero offset for an access with no base type!");
4349 }
4350
4351 // Adjust offset to be relative to the base type.
4352 const ASTRecordLayout &Layout =
4353 getContext().getASTRecordLayout(field->getParent());
4354 unsigned CharWidth = getContext().getCharWidth();
4355 if (FieldTBAAInfo.BaseType)
4356 FieldTBAAInfo.Offset +=
4357 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4358
4359 // Update the final access type and size.
4360 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4361 FieldTBAAInfo.Size =
4362 getContext().getTypeSizeInChars(FieldType).getQuantity();
4363 }
4364
4365 Address addr = base.getAddress(*this);
4366 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4367 if (CGM.getCodeGenOpts().StrictVTablePointers &&
4368 ClassDef->isDynamicClass()) {
4369 // Getting to any field of dynamic object requires stripping dynamic
4370 // information provided by invariant.group. This is because accessing
4371 // fields may leak the real address of dynamic object, which could result
4372 // in miscompilation when leaked pointer would be compared.
4373 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4374 addr = Address(stripped, addr.getAlignment());
4375 }
4376 }
4377
4378 unsigned RecordCVR = base.getVRQualifiers();
4379 if (rec->isUnion()) {
4380 // For unions, there is no pointer adjustment.
4381 if (CGM.getCodeGenOpts().StrictVTablePointers &&
4382 hasAnyVptr(FieldType, getContext()))
4383 // Because unions can easily skip invariant.barriers, we need to add
4384 // a barrier every time CXXRecord field with vptr is referenced.
4385 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4386 addr.getAlignment());
4387
4388 if (IsInPreservedAIRegion ||
4389 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4390 // Remember the original union field index
4391 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4392 rec->getLocation());
4393 addr = Address(
4394 Builder.CreatePreserveUnionAccessIndex(
4395 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4396 addr.getAlignment());
4397 }
4398
4399 if (FieldType->isReferenceType())
4400 addr = Builder.CreateElementBitCast(
4401 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4402 } else {
4403 if (!IsInPreservedAIRegion &&
4404 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4405 // For structs, we GEP to the field that the record layout suggests.
4406 addr = emitAddrOfFieldStorage(*this, addr, field);
4407 else
4408 // Remember the original struct field index
4409 addr = emitPreserveStructAccess(*this, base, addr, field);
4410 }
4411
4412 // If this is a reference field, load the reference right now.
4413 if (FieldType->isReferenceType()) {
4414 LValue RefLVal =
4415 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4416 if (RecordCVR & Qualifiers::Volatile)
4417 RefLVal.getQuals().addVolatile();
4418 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4419
4420 // Qualifiers on the struct don't apply to the referencee.
4421 RecordCVR = 0;
4422 FieldType = FieldType->getPointeeType();
4423 }
4424
4425 // Make sure that the address is pointing to the right type. This is critical
4426 // for both unions and structs. A union needs a bitcast, a struct element
4427 // will need a bitcast if the LLVM type laid out doesn't match the desired
4428 // type.
4429 addr = Builder.CreateElementBitCast(
4430 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4431
4432 if (field->hasAttr<AnnotateAttr>())
4433 addr = EmitFieldAnnotations(field, addr);
4434
4435 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4436 LV.getQuals().addCVRQualifiers(RecordCVR);
4437
4438 // __weak attribute on a field is ignored.
4439 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4440 LV.getQuals().removeObjCGCAttr();
4441
4442 return LV;
4443 }
4444
4445 LValue
EmitLValueForFieldInitialization(LValue Base,const FieldDecl * Field)4446 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4447 const FieldDecl *Field) {
4448 QualType FieldType = Field->getType();
4449
4450 if (!FieldType->isReferenceType())
4451 return EmitLValueForField(Base, Field);
4452
4453 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4454
4455 // Make sure that the address is pointing to the right type.
4456 llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4457 V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4458
4459 // TODO: Generate TBAA information that describes this access as a structure
4460 // member access and not just an access to an object of the field's type. This
4461 // should be similar to what we do in EmitLValueForField().
4462 LValueBaseInfo BaseInfo = Base.getBaseInfo();
4463 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4464 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4465 return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4466 CGM.getTBAAInfoForSubobject(Base, FieldType));
4467 }
4468
EmitCompoundLiteralLValue(const CompoundLiteralExpr * E)4469 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4470 if (E->isFileScope()) {
4471 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4472 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4473 }
4474 if (E->getType()->isVariablyModifiedType())
4475 // make sure to emit the VLA size.
4476 EmitVariablyModifiedType(E->getType());
4477
4478 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4479 const Expr *InitExpr = E->getInitializer();
4480 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4481
4482 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4483 /*Init*/ true);
4484
4485 // Block-scope compound literals are destroyed at the end of the enclosing
4486 // scope in C.
4487 if (!getLangOpts().CPlusPlus)
4488 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4489 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4490 E->getType(), getDestroyer(DtorKind),
4491 DtorKind & EHCleanup);
4492
4493 return Result;
4494 }
4495
EmitInitListLValue(const InitListExpr * E)4496 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4497 if (!E->isGLValue())
4498 // Initializing an aggregate temporary in C++11: T{...}.
4499 return EmitAggExprToLValue(E);
4500
4501 // An lvalue initializer list must be initializing a reference.
4502 assert(E->isTransparent() && "non-transparent glvalue init list");
4503 return EmitLValue(E->getInit(0));
4504 }
4505
4506 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4507 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4508 /// LValue is returned and the current block has been terminated.
EmitLValueOrThrowExpression(CodeGenFunction & CGF,const Expr * Operand)4509 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4510 const Expr *Operand) {
4511 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4512 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4513 return None;
4514 }
4515
4516 return CGF.EmitLValue(Operand);
4517 }
4518
4519 LValue CodeGenFunction::
EmitConditionalOperatorLValue(const AbstractConditionalOperator * expr)4520 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4521 if (!expr->isGLValue()) {
4522 // ?: here should be an aggregate.
4523 assert(hasAggregateEvaluationKind(expr->getType()) &&
4524 "Unexpected conditional operator!");
4525 return EmitAggExprToLValue(expr);
4526 }
4527
4528 OpaqueValueMapping binding(*this, expr);
4529
4530 const Expr *condExpr = expr->getCond();
4531 bool CondExprBool;
4532 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4533 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4534 if (!CondExprBool) std::swap(live, dead);
4535
4536 if (!ContainsLabel(dead)) {
4537 // If the true case is live, we need to track its region.
4538 if (CondExprBool)
4539 incrementProfileCounter(expr);
4540 // If a throw expression we emit it and return an undefined lvalue
4541 // because it can't be used.
4542 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4543 EmitCXXThrowExpr(ThrowExpr);
4544 llvm::Type *Ty =
4545 llvm::PointerType::getUnqual(ConvertType(dead->getType()));
4546 return MakeAddrLValue(
4547 Address(llvm::UndefValue::get(Ty), CharUnits::One()),
4548 dead->getType());
4549 }
4550 return EmitLValue(live);
4551 }
4552 }
4553
4554 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4555 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4556 llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4557
4558 ConditionalEvaluation eval(*this);
4559 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4560
4561 // Any temporaries created here are conditional.
4562 EmitBlock(lhsBlock);
4563 incrementProfileCounter(expr);
4564 eval.begin(*this);
4565 Optional<LValue> lhs =
4566 EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4567 eval.end(*this);
4568
4569 if (lhs && !lhs->isSimple())
4570 return EmitUnsupportedLValue(expr, "conditional operator");
4571
4572 lhsBlock = Builder.GetInsertBlock();
4573 if (lhs)
4574 Builder.CreateBr(contBlock);
4575
4576 // Any temporaries created here are conditional.
4577 EmitBlock(rhsBlock);
4578 eval.begin(*this);
4579 Optional<LValue> rhs =
4580 EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4581 eval.end(*this);
4582 if (rhs && !rhs->isSimple())
4583 return EmitUnsupportedLValue(expr, "conditional operator");
4584 rhsBlock = Builder.GetInsertBlock();
4585
4586 EmitBlock(contBlock);
4587
4588 if (lhs && rhs) {
4589 llvm::PHINode *phi =
4590 Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4591 phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4592 phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4593 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4594 AlignmentSource alignSource =
4595 std::max(lhs->getBaseInfo().getAlignmentSource(),
4596 rhs->getBaseInfo().getAlignmentSource());
4597 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4598 lhs->getTBAAInfo(), rhs->getTBAAInfo());
4599 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4600 TBAAInfo);
4601 } else {
4602 assert((lhs || rhs) &&
4603 "both operands of glvalue conditional are throw-expressions?");
4604 return lhs ? *lhs : *rhs;
4605 }
4606 }
4607
4608 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4609 /// type. If the cast is to a reference, we can have the usual lvalue result,
4610 /// otherwise if a cast is needed by the code generator in an lvalue context,
4611 /// then it must mean that we need the address of an aggregate in order to
4612 /// access one of its members. This can happen for all the reasons that casts
4613 /// are permitted with aggregate result, including noop aggregate casts, and
4614 /// cast from scalar to union.
EmitCastLValue(const CastExpr * E)4615 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4616 switch (E->getCastKind()) {
4617 case CK_ToVoid:
4618 case CK_BitCast:
4619 case CK_LValueToRValueBitCast:
4620 case CK_ArrayToPointerDecay:
4621 case CK_FunctionToPointerDecay:
4622 case CK_NullToMemberPointer:
4623 case CK_NullToPointer:
4624 case CK_IntegralToPointer:
4625 case CK_PointerToIntegral:
4626 case CK_PointerToBoolean:
4627 case CK_VectorSplat:
4628 case CK_IntegralCast:
4629 case CK_BooleanToSignedIntegral:
4630 case CK_IntegralToBoolean:
4631 case CK_IntegralToFloating:
4632 case CK_FloatingToIntegral:
4633 case CK_FloatingToBoolean:
4634 case CK_FloatingCast:
4635 case CK_FloatingRealToComplex:
4636 case CK_FloatingComplexToReal:
4637 case CK_FloatingComplexToBoolean:
4638 case CK_FloatingComplexCast:
4639 case CK_FloatingComplexToIntegralComplex:
4640 case CK_IntegralRealToComplex:
4641 case CK_IntegralComplexToReal:
4642 case CK_IntegralComplexToBoolean:
4643 case CK_IntegralComplexCast:
4644 case CK_IntegralComplexToFloatingComplex:
4645 case CK_DerivedToBaseMemberPointer:
4646 case CK_BaseToDerivedMemberPointer:
4647 case CK_MemberPointerToBoolean:
4648 case CK_ReinterpretMemberPointer:
4649 case CK_AnyPointerToBlockPointerCast:
4650 case CK_ARCProduceObject:
4651 case CK_ARCConsumeObject:
4652 case CK_ARCReclaimReturnedObject:
4653 case CK_ARCExtendBlockObject:
4654 case CK_CopyAndAutoreleaseBlockObject:
4655 case CK_IntToOCLSampler:
4656 case CK_FloatingToFixedPoint:
4657 case CK_FixedPointToFloating:
4658 case CK_FixedPointCast:
4659 case CK_FixedPointToBoolean:
4660 case CK_FixedPointToIntegral:
4661 case CK_IntegralToFixedPoint:
4662 case CK_MatrixCast:
4663 return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4664
4665 case CK_Dependent:
4666 llvm_unreachable("dependent cast kind in IR gen!");
4667
4668 case CK_BuiltinFnToFnPtr:
4669 llvm_unreachable("builtin functions are handled elsewhere");
4670
4671 // These are never l-values; just use the aggregate emission code.
4672 case CK_NonAtomicToAtomic:
4673 case CK_AtomicToNonAtomic:
4674 return EmitAggExprToLValue(E);
4675
4676 case CK_Dynamic: {
4677 LValue LV = EmitLValue(E->getSubExpr());
4678 Address V = LV.getAddress(*this);
4679 const auto *DCE = cast<CXXDynamicCastExpr>(E);
4680 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4681 }
4682
4683 case CK_ConstructorConversion:
4684 case CK_UserDefinedConversion:
4685 case CK_CPointerToObjCPointerCast:
4686 case CK_BlockPointerToObjCPointerCast:
4687 case CK_NoOp:
4688 case CK_LValueToRValue:
4689 return EmitLValue(E->getSubExpr());
4690
4691 case CK_UncheckedDerivedToBase:
4692 case CK_DerivedToBase: {
4693 const auto *DerivedClassTy =
4694 E->getSubExpr()->getType()->castAs<RecordType>();
4695 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4696
4697 LValue LV = EmitLValue(E->getSubExpr());
4698 Address This = LV.getAddress(*this);
4699
4700 // Perform the derived-to-base conversion
4701 Address Base = GetAddressOfBaseClass(
4702 This, DerivedClassDecl, E->path_begin(), E->path_end(),
4703 /*NullCheckValue=*/false, E->getExprLoc());
4704
4705 // TODO: Support accesses to members of base classes in TBAA. For now, we
4706 // conservatively pretend that the complete object is of the base class
4707 // type.
4708 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4709 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4710 }
4711 case CK_ToUnion:
4712 return EmitAggExprToLValue(E);
4713 case CK_BaseToDerived: {
4714 const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4715 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4716
4717 LValue LV = EmitLValue(E->getSubExpr());
4718
4719 // Perform the base-to-derived conversion
4720 Address Derived = GetAddressOfDerivedClass(
4721 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4722 /*NullCheckValue=*/false);
4723
4724 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4725 // performed and the object is not of the derived type.
4726 if (sanitizePerformTypeCheck())
4727 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4728 Derived.getPointer(), E->getType());
4729
4730 if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4731 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4732 /*MayBeNull=*/false, CFITCK_DerivedCast,
4733 E->getBeginLoc());
4734
4735 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4736 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4737 }
4738 case CK_LValueBitCast: {
4739 // This must be a reinterpret_cast (or c-style equivalent).
4740 const auto *CE = cast<ExplicitCastExpr>(E);
4741
4742 CGM.EmitExplicitCastExprType(CE, this);
4743 LValue LV = EmitLValue(E->getSubExpr());
4744 Address V = Builder.CreateBitCast(LV.getAddress(*this),
4745 ConvertType(CE->getTypeAsWritten()));
4746
4747 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4748 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4749 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4750 E->getBeginLoc());
4751
4752 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4753 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4754 }
4755 case CK_AddressSpaceConversion: {
4756 LValue LV = EmitLValue(E->getSubExpr());
4757 QualType DestTy = getContext().getPointerType(E->getType());
4758 llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4759 *this, LV.getPointer(*this),
4760 E->getSubExpr()->getType().getAddressSpace(),
4761 E->getType().getAddressSpace(), ConvertType(DestTy));
4762 return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4763 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4764 }
4765 case CK_ObjCObjectLValueCast: {
4766 LValue LV = EmitLValue(E->getSubExpr());
4767 Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4768 ConvertType(E->getType()));
4769 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4770 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4771 }
4772 case CK_ZeroToOCLOpaqueType:
4773 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4774 }
4775
4776 llvm_unreachable("Unhandled lvalue cast kind?");
4777 }
4778
EmitOpaqueValueLValue(const OpaqueValueExpr * e)4779 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4780 assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4781 return getOrCreateOpaqueLValueMapping(e);
4782 }
4783
4784 LValue
getOrCreateOpaqueLValueMapping(const OpaqueValueExpr * e)4785 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4786 assert(OpaqueValueMapping::shouldBindAsLValue(e));
4787
4788 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4789 it = OpaqueLValues.find(e);
4790
4791 if (it != OpaqueLValues.end())
4792 return it->second;
4793
4794 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4795 return EmitLValue(e->getSourceExpr());
4796 }
4797
4798 RValue
getOrCreateOpaqueRValueMapping(const OpaqueValueExpr * e)4799 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4800 assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4801
4802 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4803 it = OpaqueRValues.find(e);
4804
4805 if (it != OpaqueRValues.end())
4806 return it->second;
4807
4808 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4809 return EmitAnyExpr(e->getSourceExpr());
4810 }
4811
EmitRValueForField(LValue LV,const FieldDecl * FD,SourceLocation Loc)4812 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4813 const FieldDecl *FD,
4814 SourceLocation Loc) {
4815 QualType FT = FD->getType();
4816 LValue FieldLV = EmitLValueForField(LV, FD);
4817 switch (getEvaluationKind(FT)) {
4818 case TEK_Complex:
4819 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4820 case TEK_Aggregate:
4821 return FieldLV.asAggregateRValue(*this);
4822 case TEK_Scalar:
4823 // This routine is used to load fields one-by-one to perform a copy, so
4824 // don't load reference fields.
4825 if (FD->getType()->isReferenceType())
4826 return RValue::get(FieldLV.getPointer(*this));
4827 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4828 // primitive load.
4829 if (FieldLV.isBitField())
4830 return EmitLoadOfLValue(FieldLV, Loc);
4831 return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4832 }
4833 llvm_unreachable("bad evaluation kind");
4834 }
4835
4836 //===--------------------------------------------------------------------===//
4837 // Expression Emission
4838 //===--------------------------------------------------------------------===//
4839
EmitCallExpr(const CallExpr * E,ReturnValueSlot ReturnValue)4840 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4841 ReturnValueSlot ReturnValue) {
4842 // Builtins never have block type.
4843 if (E->getCallee()->getType()->isBlockPointerType())
4844 return EmitBlockCallExpr(E, ReturnValue);
4845
4846 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4847 return EmitCXXMemberCallExpr(CE, ReturnValue);
4848
4849 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4850 return EmitCUDAKernelCallExpr(CE, ReturnValue);
4851
4852 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4853 if (const CXXMethodDecl *MD =
4854 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4855 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4856
4857 CGCallee callee = EmitCallee(E->getCallee());
4858
4859 if (callee.isBuiltin()) {
4860 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4861 E, ReturnValue);
4862 }
4863
4864 if (callee.isPseudoDestructor()) {
4865 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4866 }
4867
4868 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4869 }
4870
4871 /// Emit a CallExpr without considering whether it might be a subclass.
EmitSimpleCallExpr(const CallExpr * E,ReturnValueSlot ReturnValue)4872 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4873 ReturnValueSlot ReturnValue) {
4874 CGCallee Callee = EmitCallee(E->getCallee());
4875 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4876 }
4877
EmitDirectCallee(CodeGenFunction & CGF,GlobalDecl GD)4878 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4879 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4880
4881 if (auto builtinID = FD->getBuiltinID()) {
4882 // Replaceable builtin provide their own implementation of a builtin. Unless
4883 // we are in the builtin implementation itself, don't call the actual
4884 // builtin. If we are in the builtin implementation, avoid trivial infinite
4885 // recursion.
4886 if (!FD->isInlineBuiltinDeclaration() ||
4887 CGF.CurFn->getName() == FD->getName())
4888 return CGCallee::forBuiltin(builtinID, FD);
4889 }
4890
4891 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4892 if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
4893 FD->hasAttr<CUDAGlobalAttr>())
4894 CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
4895 cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
4896 return CGCallee::forDirect(CalleePtr, GD);
4897 }
4898
EmitCallee(const Expr * E)4899 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4900 E = E->IgnoreParens();
4901
4902 // Look through function-to-pointer decay.
4903 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4904 if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4905 ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4906 return EmitCallee(ICE->getSubExpr());
4907 }
4908
4909 // Resolve direct calls.
4910 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4911 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4912 return EmitDirectCallee(*this, FD);
4913 }
4914 } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4915 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4916 EmitIgnoredExpr(ME->getBase());
4917 return EmitDirectCallee(*this, FD);
4918 }
4919
4920 // Look through template substitutions.
4921 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4922 return EmitCallee(NTTP->getReplacement());
4923
4924 // Treat pseudo-destructor calls differently.
4925 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4926 return CGCallee::forPseudoDestructor(PDE);
4927 }
4928
4929 // Otherwise, we have an indirect reference.
4930 llvm::Value *calleePtr;
4931 QualType functionType;
4932 if (auto ptrType = E->getType()->getAs<PointerType>()) {
4933 calleePtr = EmitScalarExpr(E);
4934 functionType = ptrType->getPointeeType();
4935 } else {
4936 functionType = E->getType();
4937 calleePtr = EmitLValue(E).getPointer(*this);
4938 }
4939 assert(functionType->isFunctionType());
4940
4941 GlobalDecl GD;
4942 if (const auto *VD =
4943 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4944 GD = GlobalDecl(VD);
4945
4946 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4947 CGCallee callee(calleeInfo, calleePtr);
4948 return callee;
4949 }
4950
EmitBinaryOperatorLValue(const BinaryOperator * E)4951 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4952 // Comma expressions just emit their LHS then their RHS as an l-value.
4953 if (E->getOpcode() == BO_Comma) {
4954 EmitIgnoredExpr(E->getLHS());
4955 EnsureInsertPoint();
4956 return EmitLValue(E->getRHS());
4957 }
4958
4959 if (E->getOpcode() == BO_PtrMemD ||
4960 E->getOpcode() == BO_PtrMemI)
4961 return EmitPointerToDataMemberBinaryExpr(E);
4962
4963 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4964
4965 // Note that in all of these cases, __block variables need the RHS
4966 // evaluated first just in case the variable gets moved by the RHS.
4967
4968 switch (getEvaluationKind(E->getType())) {
4969 case TEK_Scalar: {
4970 switch (E->getLHS()->getType().getObjCLifetime()) {
4971 case Qualifiers::OCL_Strong:
4972 return EmitARCStoreStrong(E, /*ignored*/ false).first;
4973
4974 case Qualifiers::OCL_Autoreleasing:
4975 return EmitARCStoreAutoreleasing(E).first;
4976
4977 // No reason to do any of these differently.
4978 case Qualifiers::OCL_None:
4979 case Qualifiers::OCL_ExplicitNone:
4980 case Qualifiers::OCL_Weak:
4981 break;
4982 }
4983
4984 RValue RV = EmitAnyExpr(E->getRHS());
4985 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4986 if (RV.isScalar())
4987 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4988 EmitStoreThroughLValue(RV, LV);
4989 if (getLangOpts().OpenMP)
4990 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4991 E->getLHS());
4992 return LV;
4993 }
4994
4995 case TEK_Complex:
4996 return EmitComplexAssignmentLValue(E);
4997
4998 case TEK_Aggregate:
4999 return EmitAggExprToLValue(E);
5000 }
5001 llvm_unreachable("bad evaluation kind");
5002 }
5003
EmitCallExprLValue(const CallExpr * E)5004 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5005 RValue RV = EmitCallExpr(E);
5006
5007 if (!RV.isScalar())
5008 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5009 AlignmentSource::Decl);
5010
5011 assert(E->getCallReturnType(getContext())->isReferenceType() &&
5012 "Can't have a scalar return unless the return type is a "
5013 "reference type!");
5014
5015 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5016 }
5017
EmitVAArgExprLValue(const VAArgExpr * E)5018 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5019 // FIXME: This shouldn't require another copy.
5020 return EmitAggExprToLValue(E);
5021 }
5022
EmitCXXConstructLValue(const CXXConstructExpr * E)5023 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5024 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5025 && "binding l-value to type which needs a temporary");
5026 AggValueSlot Slot = CreateAggTemp(E->getType());
5027 EmitCXXConstructExpr(E, Slot);
5028 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5029 }
5030
5031 LValue
EmitCXXTypeidLValue(const CXXTypeidExpr * E)5032 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5033 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5034 }
5035
EmitCXXUuidofExpr(const CXXUuidofExpr * E)5036 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5037 return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
5038 ConvertType(E->getType()));
5039 }
5040
EmitCXXUuidofLValue(const CXXUuidofExpr * E)5041 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5042 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5043 AlignmentSource::Decl);
5044 }
5045
5046 LValue
EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr * E)5047 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5048 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5049 Slot.setExternallyDestructed();
5050 EmitAggExpr(E->getSubExpr(), Slot);
5051 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5052 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5053 }
5054
EmitObjCMessageExprLValue(const ObjCMessageExpr * E)5055 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5056 RValue RV = EmitObjCMessageExpr(E);
5057
5058 if (!RV.isScalar())
5059 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5060 AlignmentSource::Decl);
5061
5062 assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5063 "Can't have a scalar return unless the return type is a "
5064 "reference type!");
5065
5066 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5067 }
5068
EmitObjCSelectorLValue(const ObjCSelectorExpr * E)5069 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5070 Address V =
5071 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5072 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5073 }
5074
EmitIvarOffset(const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)5075 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5076 const ObjCIvarDecl *Ivar) {
5077 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5078 }
5079
EmitLValueForIvar(QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)5080 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5081 llvm::Value *BaseValue,
5082 const ObjCIvarDecl *Ivar,
5083 unsigned CVRQualifiers) {
5084 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5085 Ivar, CVRQualifiers);
5086 }
5087
EmitObjCIvarRefLValue(const ObjCIvarRefExpr * E)5088 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5089 // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5090 llvm::Value *BaseValue = nullptr;
5091 const Expr *BaseExpr = E->getBase();
5092 Qualifiers BaseQuals;
5093 QualType ObjectTy;
5094 if (E->isArrow()) {
5095 BaseValue = EmitScalarExpr(BaseExpr);
5096 ObjectTy = BaseExpr->getType()->getPointeeType();
5097 BaseQuals = ObjectTy.getQualifiers();
5098 } else {
5099 LValue BaseLV = EmitLValue(BaseExpr);
5100 BaseValue = BaseLV.getPointer(*this);
5101 ObjectTy = BaseExpr->getType();
5102 BaseQuals = ObjectTy.getQualifiers();
5103 }
5104
5105 LValue LV =
5106 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5107 BaseQuals.getCVRQualifiers());
5108 setObjCGCLValueClass(getContext(), E, LV);
5109 return LV;
5110 }
5111
EmitStmtExprLValue(const StmtExpr * E)5112 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5113 // Can only get l-value for message expression returning aggregate type
5114 RValue RV = EmitAnyExprToTemp(E);
5115 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5116 AlignmentSource::Decl);
5117 }
5118
EmitCall(QualType CalleeType,const CGCallee & OrigCallee,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Value * Chain)5119 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5120 const CallExpr *E, ReturnValueSlot ReturnValue,
5121 llvm::Value *Chain) {
5122 // Get the actual function type. The callee type will always be a pointer to
5123 // function type or a block pointer type.
5124 assert(CalleeType->isFunctionPointerType() &&
5125 "Call must have function pointer type!");
5126
5127 const Decl *TargetDecl =
5128 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5129
5130 CalleeType = getContext().getCanonicalType(CalleeType);
5131
5132 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5133
5134 CGCallee Callee = OrigCallee;
5135
5136 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5137 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5138 if (llvm::Constant *PrefixSig =
5139 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5140 SanitizerScope SanScope(this);
5141 // Remove any (C++17) exception specifications, to allow calling e.g. a
5142 // noexcept function through a non-noexcept pointer.
5143 auto ProtoTy =
5144 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5145 llvm::Constant *FTRTTIConst =
5146 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5147 llvm::Type *PrefixSigType = PrefixSig->getType();
5148 llvm::StructType *PrefixStructTy = llvm::StructType::get(
5149 CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5150
5151 llvm::Value *CalleePtr = Callee.getFunctionPointer();
5152
5153 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5154 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5155 llvm::Value *CalleeSigPtr =
5156 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5157 llvm::Value *CalleeSig =
5158 Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5159 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5160
5161 llvm::BasicBlock *Cont = createBasicBlock("cont");
5162 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5163 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5164
5165 EmitBlock(TypeCheck);
5166 llvm::Value *CalleeRTTIPtr =
5167 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5168 llvm::Value *CalleeRTTIEncoded =
5169 Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign());
5170 llvm::Value *CalleeRTTI =
5171 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5172 llvm::Value *CalleeRTTIMatch =
5173 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5174 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5175 EmitCheckTypeDescriptor(CalleeType)};
5176 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5177 SanitizerHandler::FunctionTypeMismatch, StaticData,
5178 {CalleePtr, CalleeRTTI, FTRTTIConst});
5179
5180 Builder.CreateBr(Cont);
5181 EmitBlock(Cont);
5182 }
5183 }
5184
5185 const auto *FnType = cast<FunctionType>(PointeeType);
5186
5187 // If we are checking indirect calls and this call is indirect, check that the
5188 // function pointer is a member of the bit set for the function type.
5189 if (SanOpts.has(SanitizerKind::CFIICall) &&
5190 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5191 SanitizerScope SanScope(this);
5192 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5193
5194 llvm::Metadata *MD;
5195 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5196 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5197 else
5198 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5199
5200 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5201
5202 llvm::Value *CalleePtr = Callee.getFunctionPointer();
5203 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5204 llvm::Value *TypeTest = Builder.CreateCall(
5205 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5206
5207 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5208 llvm::Constant *StaticData[] = {
5209 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5210 EmitCheckSourceLocation(E->getBeginLoc()),
5211 EmitCheckTypeDescriptor(QualType(FnType, 0)),
5212 };
5213 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5214 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5215 CastedCallee, StaticData);
5216 } else {
5217 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5218 SanitizerHandler::CFICheckFail, StaticData,
5219 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5220 }
5221 }
5222
5223 CallArgList Args;
5224 if (Chain)
5225 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5226 CGM.getContext().VoidPtrTy);
5227
5228 // C++17 requires that we evaluate arguments to a call using assignment syntax
5229 // right-to-left, and that we evaluate arguments to certain other operators
5230 // left-to-right. Note that we allow this to override the order dictated by
5231 // the calling convention on the MS ABI, which means that parameter
5232 // destruction order is not necessarily reverse construction order.
5233 // FIXME: Revisit this based on C++ committee response to unimplementability.
5234 EvaluationOrder Order = EvaluationOrder::Default;
5235 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5236 if (OCE->isAssignmentOp())
5237 Order = EvaluationOrder::ForceRightToLeft;
5238 else {
5239 switch (OCE->getOperator()) {
5240 case OO_LessLess:
5241 case OO_GreaterGreater:
5242 case OO_AmpAmp:
5243 case OO_PipePipe:
5244 case OO_Comma:
5245 case OO_ArrowStar:
5246 Order = EvaluationOrder::ForceLeftToRight;
5247 break;
5248 default:
5249 break;
5250 }
5251 }
5252 }
5253
5254 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5255 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5256
5257 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5258 Args, FnType, /*ChainCall=*/Chain);
5259
5260 // C99 6.5.2.2p6:
5261 // If the expression that denotes the called function has a type
5262 // that does not include a prototype, [the default argument
5263 // promotions are performed]. If the number of arguments does not
5264 // equal the number of parameters, the behavior is undefined. If
5265 // the function is defined with a type that includes a prototype,
5266 // and either the prototype ends with an ellipsis (, ...) or the
5267 // types of the arguments after promotion are not compatible with
5268 // the types of the parameters, the behavior is undefined. If the
5269 // function is defined with a type that does not include a
5270 // prototype, and the types of the arguments after promotion are
5271 // not compatible with those of the parameters after promotion,
5272 // the behavior is undefined [except in some trivial cases].
5273 // That is, in the general case, we should assume that a call
5274 // through an unprototyped function type works like a *non-variadic*
5275 // call. The way we make this work is to cast to the exact type
5276 // of the promoted arguments.
5277 //
5278 // Chain calls use this same code path to add the invisible chain parameter
5279 // to the function type.
5280 if (isa<FunctionNoProtoType>(FnType) || Chain) {
5281 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5282 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5283 CalleeTy = CalleeTy->getPointerTo(AS);
5284
5285 llvm::Value *CalleePtr = Callee.getFunctionPointer();
5286 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5287 Callee.setFunctionPointer(CalleePtr);
5288 }
5289
5290 // HIP function pointer contains kernel handle when it is used in triple
5291 // chevron. The kernel stub needs to be loaded from kernel handle and used
5292 // as callee.
5293 if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
5294 isa<CUDAKernelCallExpr>(E) &&
5295 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5296 llvm::Value *Handle = Callee.getFunctionPointer();
5297 auto *Cast =
5298 Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo());
5299 auto *Stub = Builder.CreateLoad(Address(Cast, CGM.getPointerAlign()));
5300 Callee.setFunctionPointer(Stub);
5301 }
5302 llvm::CallBase *CallOrInvoke = nullptr;
5303 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5304 E == MustTailCall, E->getExprLoc());
5305
5306 // Generate function declaration DISuprogram in order to be used
5307 // in debug info about call sites.
5308 if (CGDebugInfo *DI = getDebugInfo()) {
5309 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5310 DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5311 CalleeDecl);
5312 }
5313
5314 return Call;
5315 }
5316
5317 LValue CodeGenFunction::
EmitPointerToDataMemberBinaryExpr(const BinaryOperator * E)5318 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5319 Address BaseAddr = Address::invalid();
5320 if (E->getOpcode() == BO_PtrMemI) {
5321 BaseAddr = EmitPointerWithAlignment(E->getLHS());
5322 } else {
5323 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5324 }
5325
5326 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5327 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5328
5329 LValueBaseInfo BaseInfo;
5330 TBAAAccessInfo TBAAInfo;
5331 Address MemberAddr =
5332 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5333 &TBAAInfo);
5334
5335 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5336 }
5337
5338 /// Given the address of a temporary variable, produce an r-value of
5339 /// its type.
convertTempToRValue(Address addr,QualType type,SourceLocation loc)5340 RValue CodeGenFunction::convertTempToRValue(Address addr,
5341 QualType type,
5342 SourceLocation loc) {
5343 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5344 switch (getEvaluationKind(type)) {
5345 case TEK_Complex:
5346 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5347 case TEK_Aggregate:
5348 return lvalue.asAggregateRValue(*this);
5349 case TEK_Scalar:
5350 return RValue::get(EmitLoadOfScalar(lvalue, loc));
5351 }
5352 llvm_unreachable("bad evaluation kind");
5353 }
5354
SetFPAccuracy(llvm::Value * Val,float Accuracy)5355 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5356 assert(Val->getType()->isFPOrFPVectorTy());
5357 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5358 return;
5359
5360 llvm::MDBuilder MDHelper(getLLVMContext());
5361 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5362
5363 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5364 }
5365
5366 namespace {
5367 struct LValueOrRValue {
5368 LValue LV;
5369 RValue RV;
5370 };
5371 }
5372
emitPseudoObjectExpr(CodeGenFunction & CGF,const PseudoObjectExpr * E,bool forLValue,AggValueSlot slot)5373 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5374 const PseudoObjectExpr *E,
5375 bool forLValue,
5376 AggValueSlot slot) {
5377 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5378
5379 // Find the result expression, if any.
5380 const Expr *resultExpr = E->getResultExpr();
5381 LValueOrRValue result;
5382
5383 for (PseudoObjectExpr::const_semantics_iterator
5384 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5385 const Expr *semantic = *i;
5386
5387 // If this semantic expression is an opaque value, bind it
5388 // to the result of its source expression.
5389 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5390 // Skip unique OVEs.
5391 if (ov->isUnique()) {
5392 assert(ov != resultExpr &&
5393 "A unique OVE cannot be used as the result expression");
5394 continue;
5395 }
5396
5397 // If this is the result expression, we may need to evaluate
5398 // directly into the slot.
5399 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5400 OVMA opaqueData;
5401 if (ov == resultExpr && ov->isRValue() && !forLValue &&
5402 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5403 CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5404 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5405 AlignmentSource::Decl);
5406 opaqueData = OVMA::bind(CGF, ov, LV);
5407 result.RV = slot.asRValue();
5408
5409 // Otherwise, emit as normal.
5410 } else {
5411 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5412
5413 // If this is the result, also evaluate the result now.
5414 if (ov == resultExpr) {
5415 if (forLValue)
5416 result.LV = CGF.EmitLValue(ov);
5417 else
5418 result.RV = CGF.EmitAnyExpr(ov, slot);
5419 }
5420 }
5421
5422 opaques.push_back(opaqueData);
5423
5424 // Otherwise, if the expression is the result, evaluate it
5425 // and remember the result.
5426 } else if (semantic == resultExpr) {
5427 if (forLValue)
5428 result.LV = CGF.EmitLValue(semantic);
5429 else
5430 result.RV = CGF.EmitAnyExpr(semantic, slot);
5431
5432 // Otherwise, evaluate the expression in an ignored context.
5433 } else {
5434 CGF.EmitIgnoredExpr(semantic);
5435 }
5436 }
5437
5438 // Unbind all the opaques now.
5439 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5440 opaques[i].unbind(CGF);
5441
5442 return result;
5443 }
5444
EmitPseudoObjectRValue(const PseudoObjectExpr * E,AggValueSlot slot)5445 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5446 AggValueSlot slot) {
5447 return emitPseudoObjectExpr(*this, E, false, slot).RV;
5448 }
5449
EmitPseudoObjectLValue(const PseudoObjectExpr * E)5450 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5451 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5452 }
5453