1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "llvm/ADT/Hashing.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/MatrixBuilder.h"
39 #include "llvm/Support/ConvertUTF.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Path.h"
42 #include "llvm/Support/SaveAndRestore.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44
45 #include <optional>
46 #include <string>
47
48 using namespace clang;
49 using namespace CodeGen;
50
51 //===--------------------------------------------------------------------===//
52 // Miscellaneous Helper Methods
53 //===--------------------------------------------------------------------===//
54
EmitCastToVoidPtr(llvm::Value * value)55 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
56 unsigned addressSpace =
57 cast<llvm::PointerType>(value->getType())->getAddressSpace();
58
59 llvm::PointerType *destType = Int8PtrTy;
60 if (addressSpace)
61 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
62
63 if (value->getType() == destType) return value;
64 return Builder.CreateBitCast(value, destType);
65 }
66
67 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
68 /// block.
CreateTempAllocaWithoutCast(llvm::Type * Ty,CharUnits Align,const Twine & Name,llvm::Value * ArraySize)69 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
70 CharUnits Align,
71 const Twine &Name,
72 llvm::Value *ArraySize) {
73 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
74 Alloca->setAlignment(Align.getAsAlign());
75 return Address(Alloca, Ty, Align);
76 }
77
78 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
79 /// block. The alloca is casted to default address space if necessary.
CreateTempAlloca(llvm::Type * Ty,CharUnits Align,const Twine & Name,llvm::Value * ArraySize,Address * AllocaAddr)80 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
81 const Twine &Name,
82 llvm::Value *ArraySize,
83 Address *AllocaAddr) {
84 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
85 if (AllocaAddr)
86 *AllocaAddr = Alloca;
87 llvm::Value *V = Alloca.getPointer();
88 // Alloca always returns a pointer in alloca address space, which may
89 // be different from the type defined by the language. For example,
90 // in C++ the auto variables are in the default address space. Therefore
91 // cast alloca to the default address space when necessary.
92 if (getASTAllocaAddressSpace() != LangAS::Default) {
93 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
94 llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
95 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
96 // otherwise alloca is inserted at the current insertion point of the
97 // builder.
98 if (!ArraySize)
99 Builder.SetInsertPoint(getPostAllocaInsertPoint());
100 V = getTargetHooks().performAddrSpaceCast(
101 *this, V, getASTAllocaAddressSpace(), LangAS::Default,
102 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
103 }
104
105 return Address(V, Ty, Align);
106 }
107
108 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
109 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
110 /// insertion point of the builder.
CreateTempAlloca(llvm::Type * Ty,const Twine & Name,llvm::Value * ArraySize)111 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
112 const Twine &Name,
113 llvm::Value *ArraySize) {
114 if (ArraySize)
115 return Builder.CreateAlloca(Ty, ArraySize, Name);
116 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
117 ArraySize, Name, AllocaInsertPt);
118 }
119
120 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
121 /// default alignment of the corresponding LLVM type, which is *not*
122 /// guaranteed to be related in any way to the expected alignment of
123 /// an AST type that might have been lowered to Ty.
CreateDefaultAlignTempAlloca(llvm::Type * Ty,const Twine & Name)124 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
125 const Twine &Name) {
126 CharUnits Align =
127 CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlign(Ty));
128 return CreateTempAlloca(Ty, Align, Name);
129 }
130
CreateIRTemp(QualType Ty,const Twine & Name)131 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
132 CharUnits Align = getContext().getTypeAlignInChars(Ty);
133 return CreateTempAlloca(ConvertType(Ty), Align, Name);
134 }
135
CreateMemTemp(QualType Ty,const Twine & Name,Address * Alloca)136 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
137 Address *Alloca) {
138 // FIXME: Should we prefer the preferred type alignment here?
139 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
140 }
141
CreateMemTemp(QualType Ty,CharUnits Align,const Twine & Name,Address * Alloca)142 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
143 const Twine &Name, Address *Alloca) {
144 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
145 /*ArraySize=*/nullptr, Alloca);
146
147 if (Ty->isConstantMatrixType()) {
148 auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType());
149 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
150 ArrayTy->getNumElements());
151
152 Result = Address(
153 Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
154 VectorTy, Result.getAlignment());
155 }
156 return Result;
157 }
158
CreateMemTempWithoutCast(QualType Ty,CharUnits Align,const Twine & Name)159 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
160 const Twine &Name) {
161 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
162 }
163
CreateMemTempWithoutCast(QualType Ty,const Twine & Name)164 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
165 const Twine &Name) {
166 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
167 Name);
168 }
169
170 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
171 /// expression and compare the result against zero, returning an Int1Ty value.
EvaluateExprAsBool(const Expr * E)172 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
173 PGO.setCurrentStmt(E);
174 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
175 llvm::Value *MemPtr = EmitScalarExpr(E);
176 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
177 }
178
179 QualType BoolTy = getContext().BoolTy;
180 SourceLocation Loc = E->getExprLoc();
181 CGFPOptionsRAII FPOptsRAII(*this, E);
182 if (!E->getType()->isAnyComplexType())
183 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
184
185 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
186 Loc);
187 }
188
189 /// EmitIgnoredExpr - Emit code to compute the specified expression,
190 /// ignoring the result.
EmitIgnoredExpr(const Expr * E)191 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
192 if (E->isPRValue())
193 return (void)EmitAnyExpr(E, AggValueSlot::ignored(), true);
194
195 // if this is a bitfield-resulting conditional operator, we can special case
196 // emit this. The normal 'EmitLValue' version of this is particularly
197 // difficult to codegen for, since creating a single "LValue" for two
198 // different sized arguments here is not particularly doable.
199 if (const auto *CondOp = dyn_cast<AbstractConditionalOperator>(
200 E->IgnoreParenNoopCasts(getContext()))) {
201 if (CondOp->getObjectKind() == OK_BitField)
202 return EmitIgnoredConditionalOperator(CondOp);
203 }
204
205 // Just emit it as an l-value and drop the result.
206 EmitLValue(E);
207 }
208
209 /// EmitAnyExpr - Emit code to compute the specified expression which
210 /// can have any type. The result is returned as an RValue struct.
211 /// If this is an aggregate expression, AggSlot indicates where the
212 /// result should be returned.
EmitAnyExpr(const Expr * E,AggValueSlot aggSlot,bool ignoreResult)213 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
214 AggValueSlot aggSlot,
215 bool ignoreResult) {
216 switch (getEvaluationKind(E->getType())) {
217 case TEK_Scalar:
218 return RValue::get(EmitScalarExpr(E, ignoreResult));
219 case TEK_Complex:
220 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
221 case TEK_Aggregate:
222 if (!ignoreResult && aggSlot.isIgnored())
223 aggSlot = CreateAggTemp(E->getType(), "agg-temp");
224 EmitAggExpr(E, aggSlot);
225 return aggSlot.asRValue();
226 }
227 llvm_unreachable("bad evaluation kind");
228 }
229
230 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
231 /// always be accessible even if no aggregate location is provided.
EmitAnyExprToTemp(const Expr * E)232 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
233 AggValueSlot AggSlot = AggValueSlot::ignored();
234
235 if (hasAggregateEvaluationKind(E->getType()))
236 AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
237 return EmitAnyExpr(E, AggSlot);
238 }
239
240 /// EmitAnyExprToMem - Evaluate an expression into a given memory
241 /// location.
EmitAnyExprToMem(const Expr * E,Address Location,Qualifiers Quals,bool IsInit)242 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
243 Address Location,
244 Qualifiers Quals,
245 bool IsInit) {
246 // FIXME: This function should take an LValue as an argument.
247 switch (getEvaluationKind(E->getType())) {
248 case TEK_Complex:
249 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
250 /*isInit*/ false);
251 return;
252
253 case TEK_Aggregate: {
254 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
255 AggValueSlot::IsDestructed_t(IsInit),
256 AggValueSlot::DoesNotNeedGCBarriers,
257 AggValueSlot::IsAliased_t(!IsInit),
258 AggValueSlot::MayOverlap));
259 return;
260 }
261
262 case TEK_Scalar: {
263 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
264 LValue LV = MakeAddrLValue(Location, E->getType());
265 EmitStoreThroughLValue(RV, LV);
266 return;
267 }
268 }
269 llvm_unreachable("bad evaluation kind");
270 }
271
272 static void
pushTemporaryCleanup(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * E,Address ReferenceTemporary)273 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
274 const Expr *E, Address ReferenceTemporary) {
275 // Objective-C++ ARC:
276 // If we are binding a reference to a temporary that has ownership, we
277 // need to perform retain/release operations on the temporary.
278 //
279 // FIXME: This should be looking at E, not M.
280 if (auto Lifetime = M->getType().getObjCLifetime()) {
281 switch (Lifetime) {
282 case Qualifiers::OCL_None:
283 case Qualifiers::OCL_ExplicitNone:
284 // Carry on to normal cleanup handling.
285 break;
286
287 case Qualifiers::OCL_Autoreleasing:
288 // Nothing to do; cleaned up by an autorelease pool.
289 return;
290
291 case Qualifiers::OCL_Strong:
292 case Qualifiers::OCL_Weak:
293 switch (StorageDuration Duration = M->getStorageDuration()) {
294 case SD_Static:
295 // Note: we intentionally do not register a cleanup to release
296 // the object on program termination.
297 return;
298
299 case SD_Thread:
300 // FIXME: We should probably register a cleanup in this case.
301 return;
302
303 case SD_Automatic:
304 case SD_FullExpression:
305 CodeGenFunction::Destroyer *Destroy;
306 CleanupKind CleanupKind;
307 if (Lifetime == Qualifiers::OCL_Strong) {
308 const ValueDecl *VD = M->getExtendingDecl();
309 bool Precise =
310 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
311 CleanupKind = CGF.getARCCleanupKind();
312 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
313 : &CodeGenFunction::destroyARCStrongImprecise;
314 } else {
315 // __weak objects always get EH cleanups; otherwise, exceptions
316 // could cause really nasty crashes instead of mere leaks.
317 CleanupKind = NormalAndEHCleanup;
318 Destroy = &CodeGenFunction::destroyARCWeak;
319 }
320 if (Duration == SD_FullExpression)
321 CGF.pushDestroy(CleanupKind, ReferenceTemporary,
322 M->getType(), *Destroy,
323 CleanupKind & EHCleanup);
324 else
325 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
326 M->getType(),
327 *Destroy, CleanupKind & EHCleanup);
328 return;
329
330 case SD_Dynamic:
331 llvm_unreachable("temporary cannot have dynamic storage duration");
332 }
333 llvm_unreachable("unknown storage duration");
334 }
335 }
336
337 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
338 if (const RecordType *RT =
339 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
340 // Get the destructor for the reference temporary.
341 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
342 if (!ClassDecl->hasTrivialDestructor())
343 ReferenceTemporaryDtor = ClassDecl->getDestructor();
344 }
345
346 if (!ReferenceTemporaryDtor)
347 return;
348
349 // Call the destructor for the temporary.
350 switch (M->getStorageDuration()) {
351 case SD_Static:
352 case SD_Thread: {
353 llvm::FunctionCallee CleanupFn;
354 llvm::Constant *CleanupArg;
355 if (E->getType()->isArrayType()) {
356 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
357 ReferenceTemporary, E->getType(),
358 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
359 dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
360 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
361 } else {
362 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
363 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
364 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
365 }
366 CGF.CGM.getCXXABI().registerGlobalDtor(
367 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
368 break;
369 }
370
371 case SD_FullExpression:
372 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
373 CodeGenFunction::destroyCXXObject,
374 CGF.getLangOpts().Exceptions);
375 break;
376
377 case SD_Automatic:
378 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
379 ReferenceTemporary, E->getType(),
380 CodeGenFunction::destroyCXXObject,
381 CGF.getLangOpts().Exceptions);
382 break;
383
384 case SD_Dynamic:
385 llvm_unreachable("temporary cannot have dynamic storage duration");
386 }
387 }
388
createReferenceTemporary(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * Inner,Address * Alloca=nullptr)389 static Address createReferenceTemporary(CodeGenFunction &CGF,
390 const MaterializeTemporaryExpr *M,
391 const Expr *Inner,
392 Address *Alloca = nullptr) {
393 auto &TCG = CGF.getTargetHooks();
394 switch (M->getStorageDuration()) {
395 case SD_FullExpression:
396 case SD_Automatic: {
397 // If we have a constant temporary array or record try to promote it into a
398 // constant global under the same rules a normal constant would've been
399 // promoted. This is easier on the optimizer and generally emits fewer
400 // instructions.
401 QualType Ty = Inner->getType();
402 if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
403 (Ty->isArrayType() || Ty->isRecordType()) &&
404 CGF.CGM.isTypeConstant(Ty, true))
405 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
406 auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
407 auto *GV = new llvm::GlobalVariable(
408 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
409 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
410 llvm::GlobalValue::NotThreadLocal,
411 CGF.getContext().getTargetAddressSpace(AS));
412 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
413 GV->setAlignment(alignment.getAsAlign());
414 llvm::Constant *C = GV;
415 if (AS != LangAS::Default)
416 C = TCG.performAddrSpaceCast(
417 CGF.CGM, GV, AS, LangAS::Default,
418 GV->getValueType()->getPointerTo(
419 CGF.getContext().getTargetAddressSpace(LangAS::Default)));
420 // FIXME: Should we put the new global into a COMDAT?
421 return Address(C, GV->getValueType(), alignment);
422 }
423 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
424 }
425 case SD_Thread:
426 case SD_Static:
427 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
428
429 case SD_Dynamic:
430 llvm_unreachable("temporary can't have dynamic storage duration");
431 }
432 llvm_unreachable("unknown storage duration");
433 }
434
435 /// Helper method to check if the underlying ABI is AAPCS
isAAPCS(const TargetInfo & TargetInfo)436 static bool isAAPCS(const TargetInfo &TargetInfo) {
437 return TargetInfo.getABI().startswith("aapcs");
438 }
439
440 LValue CodeGenFunction::
EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * M)441 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
442 const Expr *E = M->getSubExpr();
443
444 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
445 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
446 "Reference should never be pseudo-strong!");
447
448 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
449 // as that will cause the lifetime adjustment to be lost for ARC
450 auto ownership = M->getType().getObjCLifetime();
451 if (ownership != Qualifiers::OCL_None &&
452 ownership != Qualifiers::OCL_ExplicitNone) {
453 Address Object = createReferenceTemporary(*this, M, E);
454 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
455 llvm::Type *Ty = ConvertTypeForMem(E->getType());
456 Object = Address(llvm::ConstantExpr::getBitCast(
457 Var, Ty->getPointerTo(Object.getAddressSpace())),
458 Ty, Object.getAlignment());
459
460 // createReferenceTemporary will promote the temporary to a global with a
461 // constant initializer if it can. It can only do this to a value of
462 // ARC-manageable type if the value is global and therefore "immune" to
463 // ref-counting operations. Therefore we have no need to emit either a
464 // dynamic initialization or a cleanup and we can just return the address
465 // of the temporary.
466 if (Var->hasInitializer())
467 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
468
469 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
470 }
471 LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
472 AlignmentSource::Decl);
473
474 switch (getEvaluationKind(E->getType())) {
475 default: llvm_unreachable("expected scalar or aggregate expression");
476 case TEK_Scalar:
477 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
478 break;
479 case TEK_Aggregate: {
480 EmitAggExpr(E, AggValueSlot::forAddr(Object,
481 E->getType().getQualifiers(),
482 AggValueSlot::IsDestructed,
483 AggValueSlot::DoesNotNeedGCBarriers,
484 AggValueSlot::IsNotAliased,
485 AggValueSlot::DoesNotOverlap));
486 break;
487 }
488 }
489
490 pushTemporaryCleanup(*this, M, E, Object);
491 return RefTempDst;
492 }
493
494 SmallVector<const Expr *, 2> CommaLHSs;
495 SmallVector<SubobjectAdjustment, 2> Adjustments;
496 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
497
498 for (const auto &Ignored : CommaLHSs)
499 EmitIgnoredExpr(Ignored);
500
501 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
502 if (opaque->getType()->isRecordType()) {
503 assert(Adjustments.empty());
504 return EmitOpaqueValueLValue(opaque);
505 }
506 }
507
508 // Create and initialize the reference temporary.
509 Address Alloca = Address::invalid();
510 Address Object = createReferenceTemporary(*this, M, E, &Alloca);
511 if (auto *Var = dyn_cast<llvm::GlobalVariable>(
512 Object.getPointer()->stripPointerCasts())) {
513 llvm::Type *TemporaryType = ConvertTypeForMem(E->getType());
514 Object = Address(llvm::ConstantExpr::getBitCast(
515 cast<llvm::Constant>(Object.getPointer()),
516 TemporaryType->getPointerTo()),
517 TemporaryType,
518 Object.getAlignment());
519 // If the temporary is a global and has a constant initializer or is a
520 // constant temporary that we promoted to a global, we may have already
521 // initialized it.
522 if (!Var->hasInitializer()) {
523 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
524 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
525 }
526 } else {
527 switch (M->getStorageDuration()) {
528 case SD_Automatic:
529 if (auto *Size = EmitLifetimeStart(
530 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
531 Alloca.getPointer())) {
532 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
533 Alloca, Size);
534 }
535 break;
536
537 case SD_FullExpression: {
538 if (!ShouldEmitLifetimeMarkers)
539 break;
540
541 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
542 // marker. Instead, start the lifetime of a conditional temporary earlier
543 // so that it's unconditional. Don't do this with sanitizers which need
544 // more precise lifetime marks.
545 ConditionalEvaluation *OldConditional = nullptr;
546 CGBuilderTy::InsertPoint OldIP;
547 if (isInConditionalBranch() && !E->getType().isDestructedType() &&
548 !SanOpts.has(SanitizerKind::HWAddress) &&
549 !SanOpts.has(SanitizerKind::Memory) &&
550 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
551 OldConditional = OutermostConditional;
552 OutermostConditional = nullptr;
553
554 OldIP = Builder.saveIP();
555 llvm::BasicBlock *Block = OldConditional->getStartingBlock();
556 Builder.restoreIP(CGBuilderTy::InsertPoint(
557 Block, llvm::BasicBlock::iterator(Block->back())));
558 }
559
560 if (auto *Size = EmitLifetimeStart(
561 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
562 Alloca.getPointer())) {
563 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
564 Size);
565 }
566
567 if (OldConditional) {
568 OutermostConditional = OldConditional;
569 Builder.restoreIP(OldIP);
570 }
571 break;
572 }
573
574 default:
575 break;
576 }
577 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
578 }
579 pushTemporaryCleanup(*this, M, E, Object);
580
581 // Perform derived-to-base casts and/or field accesses, to get from the
582 // temporary object we created (and, potentially, for which we extended
583 // the lifetime) to the subobject we're binding the reference to.
584 for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) {
585 switch (Adjustment.Kind) {
586 case SubobjectAdjustment::DerivedToBaseAdjustment:
587 Object =
588 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
589 Adjustment.DerivedToBase.BasePath->path_begin(),
590 Adjustment.DerivedToBase.BasePath->path_end(),
591 /*NullCheckValue=*/ false, E->getExprLoc());
592 break;
593
594 case SubobjectAdjustment::FieldAdjustment: {
595 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
596 LV = EmitLValueForField(LV, Adjustment.Field);
597 assert(LV.isSimple() &&
598 "materialized temporary field is not a simple lvalue");
599 Object = LV.getAddress(*this);
600 break;
601 }
602
603 case SubobjectAdjustment::MemberPointerAdjustment: {
604 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
605 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
606 Adjustment.Ptr.MPT);
607 break;
608 }
609 }
610 }
611
612 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
613 }
614
615 RValue
EmitReferenceBindingToExpr(const Expr * E)616 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
617 // Emit the expression as an lvalue.
618 LValue LV = EmitLValue(E);
619 assert(LV.isSimple());
620 llvm::Value *Value = LV.getPointer(*this);
621
622 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
623 // C++11 [dcl.ref]p5 (as amended by core issue 453):
624 // If a glvalue to which a reference is directly bound designates neither
625 // an existing object or function of an appropriate type nor a region of
626 // storage of suitable size and alignment to contain an object of the
627 // reference's type, the behavior is undefined.
628 QualType Ty = E->getType();
629 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
630 }
631
632 return RValue::get(Value);
633 }
634
635
636 /// getAccessedFieldNo - Given an encoded value and a result number, return the
637 /// input field number being accessed.
getAccessedFieldNo(unsigned Idx,const llvm::Constant * Elts)638 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
639 const llvm::Constant *Elts) {
640 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
641 ->getZExtValue();
642 }
643
644 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
emitHash16Bytes(CGBuilderTy & Builder,llvm::Value * Low,llvm::Value * High)645 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
646 llvm::Value *High) {
647 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
648 llvm::Value *K47 = Builder.getInt64(47);
649 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
650 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
651 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
652 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
653 return Builder.CreateMul(B1, KMul);
654 }
655
isNullPointerAllowed(TypeCheckKind TCK)656 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
657 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
658 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
659 }
660
isVptrCheckRequired(TypeCheckKind TCK,QualType Ty)661 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
662 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
663 return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
664 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
665 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
666 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
667 }
668
sanitizePerformTypeCheck() const669 bool CodeGenFunction::sanitizePerformTypeCheck() const {
670 return SanOpts.has(SanitizerKind::Null) ||
671 SanOpts.has(SanitizerKind::Alignment) ||
672 SanOpts.has(SanitizerKind::ObjectSize) ||
673 SanOpts.has(SanitizerKind::Vptr);
674 }
675
EmitTypeCheck(TypeCheckKind TCK,SourceLocation Loc,llvm::Value * Ptr,QualType Ty,CharUnits Alignment,SanitizerSet SkippedChecks,llvm::Value * ArraySize)676 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
677 llvm::Value *Ptr, QualType Ty,
678 CharUnits Alignment,
679 SanitizerSet SkippedChecks,
680 llvm::Value *ArraySize) {
681 if (!sanitizePerformTypeCheck())
682 return;
683
684 // Don't check pointers outside the default address space. The null check
685 // isn't correct, the object-size check isn't supported by LLVM, and we can't
686 // communicate the addresses to the runtime handler for the vptr check.
687 if (Ptr->getType()->getPointerAddressSpace())
688 return;
689
690 // Don't check pointers to volatile data. The behavior here is implementation-
691 // defined.
692 if (Ty.isVolatileQualified())
693 return;
694
695 SanitizerScope SanScope(this);
696
697 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
698 llvm::BasicBlock *Done = nullptr;
699
700 // Quickly determine whether we have a pointer to an alloca. It's possible
701 // to skip null checks, and some alignment checks, for these pointers. This
702 // can reduce compile-time significantly.
703 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
704
705 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
706 llvm::Value *IsNonNull = nullptr;
707 bool IsGuaranteedNonNull =
708 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
709 bool AllowNullPointers = isNullPointerAllowed(TCK);
710 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
711 !IsGuaranteedNonNull) {
712 // The glvalue must not be an empty glvalue.
713 IsNonNull = Builder.CreateIsNotNull(Ptr);
714
715 // The IR builder can constant-fold the null check if the pointer points to
716 // a constant.
717 IsGuaranteedNonNull = IsNonNull == True;
718
719 // Skip the null check if the pointer is known to be non-null.
720 if (!IsGuaranteedNonNull) {
721 if (AllowNullPointers) {
722 // When performing pointer casts, it's OK if the value is null.
723 // Skip the remaining checks in that case.
724 Done = createBasicBlock("null");
725 llvm::BasicBlock *Rest = createBasicBlock("not.null");
726 Builder.CreateCondBr(IsNonNull, Rest, Done);
727 EmitBlock(Rest);
728 } else {
729 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
730 }
731 }
732 }
733
734 if (SanOpts.has(SanitizerKind::ObjectSize) &&
735 !SkippedChecks.has(SanitizerKind::ObjectSize) &&
736 !Ty->isIncompleteType()) {
737 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
738 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
739 if (ArraySize)
740 Size = Builder.CreateMul(Size, ArraySize);
741
742 // Degenerate case: new X[0] does not need an objectsize check.
743 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
744 if (!ConstantSize || !ConstantSize->isNullValue()) {
745 // The glvalue must refer to a large enough storage region.
746 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
747 // to check this.
748 // FIXME: Get object address space
749 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
750 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
751 llvm::Value *Min = Builder.getFalse();
752 llvm::Value *NullIsUnknown = Builder.getFalse();
753 llvm::Value *Dynamic = Builder.getFalse();
754 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
755 llvm::Value *LargeEnough = Builder.CreateICmpUGE(
756 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
757 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
758 }
759 }
760
761 llvm::MaybeAlign AlignVal;
762 llvm::Value *PtrAsInt = nullptr;
763
764 if (SanOpts.has(SanitizerKind::Alignment) &&
765 !SkippedChecks.has(SanitizerKind::Alignment)) {
766 AlignVal = Alignment.getAsMaybeAlign();
767 if (!Ty->isIncompleteType() && !AlignVal)
768 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
769 /*ForPointeeType=*/true)
770 .getAsMaybeAlign();
771
772 // The glvalue must be suitably aligned.
773 if (AlignVal && *AlignVal > llvm::Align(1) &&
774 (!PtrToAlloca || PtrToAlloca->getAlign() < *AlignVal)) {
775 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
776 llvm::Value *Align = Builder.CreateAnd(
777 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal->value() - 1));
778 llvm::Value *Aligned =
779 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
780 if (Aligned != True)
781 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
782 }
783 }
784
785 if (Checks.size() > 0) {
786 llvm::Constant *StaticData[] = {
787 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
788 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2(*AlignVal) : 1),
789 llvm::ConstantInt::get(Int8Ty, TCK)};
790 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
791 PtrAsInt ? PtrAsInt : Ptr);
792 }
793
794 // If possible, check that the vptr indicates that there is a subobject of
795 // type Ty at offset zero within this object.
796 //
797 // C++11 [basic.life]p5,6:
798 // [For storage which does not refer to an object within its lifetime]
799 // The program has undefined behavior if:
800 // -- the [pointer or glvalue] is used to access a non-static data member
801 // or call a non-static member function
802 if (SanOpts.has(SanitizerKind::Vptr) &&
803 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
804 // Ensure that the pointer is non-null before loading it. If there is no
805 // compile-time guarantee, reuse the run-time null check or emit a new one.
806 if (!IsGuaranteedNonNull) {
807 if (!IsNonNull)
808 IsNonNull = Builder.CreateIsNotNull(Ptr);
809 if (!Done)
810 Done = createBasicBlock("vptr.null");
811 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
812 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
813 EmitBlock(VptrNotNull);
814 }
815
816 // Compute a hash of the mangled name of the type.
817 //
818 // FIXME: This is not guaranteed to be deterministic! Move to a
819 // fingerprinting mechanism once LLVM provides one. For the time
820 // being the implementation happens to be deterministic.
821 SmallString<64> MangledName;
822 llvm::raw_svector_ostream Out(MangledName);
823 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
824 Out);
825
826 // Contained in NoSanitizeList based on the mangled type.
827 if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
828 Out.str())) {
829 llvm::hash_code TypeHash = hash_value(Out.str());
830
831 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
832 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
833 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
834 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), IntPtrTy,
835 getPointerAlign());
836 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
837 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
838
839 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
840 Hash = Builder.CreateTrunc(Hash, IntPtrTy);
841
842 // Look the hash up in our cache.
843 const int CacheSize = 128;
844 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
845 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
846 "__ubsan_vptr_type_cache");
847 llvm::Value *Slot = Builder.CreateAnd(Hash,
848 llvm::ConstantInt::get(IntPtrTy,
849 CacheSize-1));
850 llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
851 llvm::Value *CacheVal = Builder.CreateAlignedLoad(
852 IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
853 getPointerAlign());
854
855 // If the hash isn't in the cache, call a runtime handler to perform the
856 // hard work of checking whether the vptr is for an object of the right
857 // type. This will either fill in the cache and return, or produce a
858 // diagnostic.
859 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
860 llvm::Constant *StaticData[] = {
861 EmitCheckSourceLocation(Loc),
862 EmitCheckTypeDescriptor(Ty),
863 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
864 llvm::ConstantInt::get(Int8Ty, TCK)
865 };
866 llvm::Value *DynamicData[] = { Ptr, Hash };
867 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
868 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
869 DynamicData);
870 }
871 }
872
873 if (Done) {
874 Builder.CreateBr(Done);
875 EmitBlock(Done);
876 }
877 }
878
LoadPassedObjectSize(const Expr * E,QualType EltTy)879 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
880 QualType EltTy) {
881 ASTContext &C = getContext();
882 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
883 if (!EltSize)
884 return nullptr;
885
886 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
887 if (!ArrayDeclRef)
888 return nullptr;
889
890 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
891 if (!ParamDecl)
892 return nullptr;
893
894 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
895 if (!POSAttr)
896 return nullptr;
897
898 // Don't load the size if it's a lower bound.
899 int POSType = POSAttr->getType();
900 if (POSType != 0 && POSType != 1)
901 return nullptr;
902
903 // Find the implicit size parameter.
904 auto PassedSizeIt = SizeArguments.find(ParamDecl);
905 if (PassedSizeIt == SizeArguments.end())
906 return nullptr;
907
908 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
909 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
910 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
911 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
912 C.getSizeType(), E->getExprLoc());
913 llvm::Value *SizeOfElement =
914 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
915 return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
916 }
917
918 /// If Base is known to point to the start of an array, return the length of
919 /// that array. Return 0 if the length cannot be determined.
getArrayIndexingBound(CodeGenFunction & CGF,const Expr * Base,QualType & IndexedType,LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel)920 static llvm::Value *getArrayIndexingBound(CodeGenFunction &CGF,
921 const Expr *Base,
922 QualType &IndexedType,
923 LangOptions::StrictFlexArraysLevelKind
924 StrictFlexArraysLevel) {
925 // For the vector indexing extension, the bound is the number of elements.
926 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
927 IndexedType = Base->getType();
928 return CGF.Builder.getInt32(VT->getNumElements());
929 }
930
931 Base = Base->IgnoreParens();
932
933 if (const auto *CE = dyn_cast<CastExpr>(Base)) {
934 if (CE->getCastKind() == CK_ArrayToPointerDecay &&
935 !CE->getSubExpr()->isFlexibleArrayMemberLike(CGF.getContext(),
936 StrictFlexArraysLevel)) {
937 IndexedType = CE->getSubExpr()->getType();
938 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
939 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
940 return CGF.Builder.getInt(CAT->getSize());
941 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
942 return CGF.getVLASize(VAT).NumElts;
943 // Ignore pass_object_size here. It's not applicable on decayed pointers.
944 }
945 }
946
947 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
948 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
949 IndexedType = Base->getType();
950 return POS;
951 }
952
953 return nullptr;
954 }
955
EmitBoundsCheck(const Expr * E,const Expr * Base,llvm::Value * Index,QualType IndexType,bool Accessed)956 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
957 llvm::Value *Index, QualType IndexType,
958 bool Accessed) {
959 assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
960 "should not be called unless adding bounds checks");
961 SanitizerScope SanScope(this);
962
963 const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel =
964 getLangOpts().getStrictFlexArraysLevel();
965
966 QualType IndexedType;
967 llvm::Value *Bound =
968 getArrayIndexingBound(*this, Base, IndexedType, StrictFlexArraysLevel);
969 if (!Bound)
970 return;
971
972 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
973 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
974 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
975
976 llvm::Constant *StaticData[] = {
977 EmitCheckSourceLocation(E->getExprLoc()),
978 EmitCheckTypeDescriptor(IndexedType),
979 EmitCheckTypeDescriptor(IndexType)
980 };
981 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
982 : Builder.CreateICmpULE(IndexVal, BoundVal);
983 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
984 SanitizerHandler::OutOfBounds, StaticData, Index);
985 }
986
987
988 CodeGenFunction::ComplexPairTy CodeGenFunction::
EmitComplexPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)989 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
990 bool isInc, bool isPre) {
991 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
992
993 llvm::Value *NextVal;
994 if (isa<llvm::IntegerType>(InVal.first->getType())) {
995 uint64_t AmountVal = isInc ? 1 : -1;
996 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
997
998 // Add the inc/dec to the real part.
999 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1000 } else {
1001 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1002 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1003 if (!isInc)
1004 FVal.changeSign();
1005 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1006
1007 // Add the inc/dec to the real part.
1008 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1009 }
1010
1011 ComplexPairTy IncVal(NextVal, InVal.second);
1012
1013 // Store the updated result through the lvalue.
1014 EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1015 if (getLangOpts().OpenMP)
1016 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1017 E->getSubExpr());
1018
1019 // If this is a postinc, return the value read from memory, otherwise use the
1020 // updated value.
1021 return isPre ? IncVal : InVal;
1022 }
1023
EmitExplicitCastExprType(const ExplicitCastExpr * E,CodeGenFunction * CGF)1024 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1025 CodeGenFunction *CGF) {
1026 // Bind VLAs in the cast type.
1027 if (CGF && E->getType()->isVariablyModifiedType())
1028 CGF->EmitVariablyModifiedType(E->getType());
1029
1030 if (CGDebugInfo *DI = getModuleDebugInfo())
1031 DI->EmitExplicitCastType(E->getType());
1032 }
1033
1034 //===----------------------------------------------------------------------===//
1035 // LValue Expression Emission
1036 //===----------------------------------------------------------------------===//
1037
1038 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1039 /// derive a more accurate bound on the alignment of the pointer.
EmitPointerWithAlignment(const Expr * E,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)1040 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1041 LValueBaseInfo *BaseInfo,
1042 TBAAAccessInfo *TBAAInfo) {
1043 // We allow this with ObjC object pointers because of fragile ABIs.
1044 assert(E->getType()->isPointerType() ||
1045 E->getType()->isObjCObjectPointerType());
1046 E = E->IgnoreParens();
1047
1048 // Casts:
1049 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1050 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1051 CGM.EmitExplicitCastExprType(ECE, this);
1052
1053 switch (CE->getCastKind()) {
1054 // Non-converting casts (but not C's implicit conversion from void*).
1055 case CK_BitCast:
1056 case CK_NoOp:
1057 case CK_AddressSpaceConversion:
1058 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1059 if (PtrTy->getPointeeType()->isVoidType())
1060 break;
1061
1062 LValueBaseInfo InnerBaseInfo;
1063 TBAAAccessInfo InnerTBAAInfo;
1064 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1065 &InnerBaseInfo,
1066 &InnerTBAAInfo);
1067 if (BaseInfo) *BaseInfo = InnerBaseInfo;
1068 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1069
1070 if (isa<ExplicitCastExpr>(CE)) {
1071 LValueBaseInfo TargetTypeBaseInfo;
1072 TBAAAccessInfo TargetTypeTBAAInfo;
1073 CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1074 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1075 if (TBAAInfo)
1076 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1077 TargetTypeTBAAInfo);
1078 // If the source l-value is opaque, honor the alignment of the
1079 // casted-to type.
1080 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1081 if (BaseInfo)
1082 BaseInfo->mergeForCast(TargetTypeBaseInfo);
1083 Addr = Address(Addr.getPointer(), Addr.getElementType(), Align);
1084 }
1085 }
1086
1087 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1088 CE->getCastKind() == CK_BitCast) {
1089 if (auto PT = E->getType()->getAs<PointerType>())
1090 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr,
1091 /*MayBeNull=*/true,
1092 CodeGenFunction::CFITCK_UnrelatedCast,
1093 CE->getBeginLoc());
1094 }
1095
1096 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType());
1097 Addr = Builder.CreateElementBitCast(Addr, ElemTy);
1098 if (CE->getCastKind() == CK_AddressSpaceConversion)
1099 Addr = Builder.CreateAddrSpaceCast(Addr, ConvertType(E->getType()));
1100 return Addr;
1101 }
1102 break;
1103
1104 // Array-to-pointer decay.
1105 case CK_ArrayToPointerDecay:
1106 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1107
1108 // Derived-to-base conversions.
1109 case CK_UncheckedDerivedToBase:
1110 case CK_DerivedToBase: {
1111 // TODO: Support accesses to members of base classes in TBAA. For now, we
1112 // conservatively pretend that the complete object is of the base class
1113 // type.
1114 if (TBAAInfo)
1115 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1116 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1117 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1118 return GetAddressOfBaseClass(Addr, Derived,
1119 CE->path_begin(), CE->path_end(),
1120 ShouldNullCheckClassCastValue(CE),
1121 CE->getExprLoc());
1122 }
1123
1124 // TODO: Is there any reason to treat base-to-derived conversions
1125 // specially?
1126 default:
1127 break;
1128 }
1129 }
1130
1131 // Unary &.
1132 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1133 if (UO->getOpcode() == UO_AddrOf) {
1134 LValue LV = EmitLValue(UO->getSubExpr());
1135 if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1136 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1137 return LV.getAddress(*this);
1138 }
1139 }
1140
1141 // std::addressof and variants.
1142 if (auto *Call = dyn_cast<CallExpr>(E)) {
1143 switch (Call->getBuiltinCallee()) {
1144 default:
1145 break;
1146 case Builtin::BIaddressof:
1147 case Builtin::BI__addressof:
1148 case Builtin::BI__builtin_addressof: {
1149 LValue LV = EmitLValue(Call->getArg(0));
1150 if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1151 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1152 return LV.getAddress(*this);
1153 }
1154 }
1155 }
1156
1157 // TODO: conditional operators, comma.
1158
1159 // Otherwise, use the alignment of the type.
1160 CharUnits Align =
1161 CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1162 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType());
1163 return Address(EmitScalarExpr(E), ElemTy, Align);
1164 }
1165
EmitNonNullRValueCheck(RValue RV,QualType T)1166 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1167 llvm::Value *V = RV.getScalarVal();
1168 if (auto MPT = T->getAs<MemberPointerType>())
1169 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1170 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1171 }
1172
GetUndefRValue(QualType Ty)1173 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1174 if (Ty->isVoidType())
1175 return RValue::get(nullptr);
1176
1177 switch (getEvaluationKind(Ty)) {
1178 case TEK_Complex: {
1179 llvm::Type *EltTy =
1180 ConvertType(Ty->castAs<ComplexType>()->getElementType());
1181 llvm::Value *U = llvm::UndefValue::get(EltTy);
1182 return RValue::getComplex(std::make_pair(U, U));
1183 }
1184
1185 // If this is a use of an undefined aggregate type, the aggregate must have an
1186 // identifiable address. Just because the contents of the value are undefined
1187 // doesn't mean that the address can't be taken and compared.
1188 case TEK_Aggregate: {
1189 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1190 return RValue::getAggregate(DestPtr);
1191 }
1192
1193 case TEK_Scalar:
1194 return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1195 }
1196 llvm_unreachable("bad evaluation kind");
1197 }
1198
EmitUnsupportedRValue(const Expr * E,const char * Name)1199 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1200 const char *Name) {
1201 ErrorUnsupported(E, Name);
1202 return GetUndefRValue(E->getType());
1203 }
1204
EmitUnsupportedLValue(const Expr * E,const char * Name)1205 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1206 const char *Name) {
1207 ErrorUnsupported(E, Name);
1208 llvm::Type *ElTy = ConvertType(E->getType());
1209 llvm::Type *Ty = llvm::PointerType::getUnqual(ElTy);
1210 return MakeAddrLValue(
1211 Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType());
1212 }
1213
IsWrappedCXXThis(const Expr * Obj)1214 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1215 const Expr *Base = Obj;
1216 while (!isa<CXXThisExpr>(Base)) {
1217 // The result of a dynamic_cast can be null.
1218 if (isa<CXXDynamicCastExpr>(Base))
1219 return false;
1220
1221 if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1222 Base = CE->getSubExpr();
1223 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1224 Base = PE->getSubExpr();
1225 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1226 if (UO->getOpcode() == UO_Extension)
1227 Base = UO->getSubExpr();
1228 else
1229 return false;
1230 } else {
1231 return false;
1232 }
1233 }
1234 return true;
1235 }
1236
EmitCheckedLValue(const Expr * E,TypeCheckKind TCK)1237 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1238 LValue LV;
1239 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1240 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1241 else
1242 LV = EmitLValue(E);
1243 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1244 SanitizerSet SkippedChecks;
1245 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1246 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1247 if (IsBaseCXXThis)
1248 SkippedChecks.set(SanitizerKind::Alignment, true);
1249 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1250 SkippedChecks.set(SanitizerKind::Null, true);
1251 }
1252 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1253 LV.getAlignment(), SkippedChecks);
1254 }
1255 return LV;
1256 }
1257
1258 /// EmitLValue - Emit code to compute a designator that specifies the location
1259 /// of the expression.
1260 ///
1261 /// This can return one of two things: a simple address or a bitfield reference.
1262 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1263 /// an LLVM pointer type.
1264 ///
1265 /// If this returns a bitfield reference, nothing about the pointee type of the
1266 /// LLVM value is known: For example, it may not be a pointer to an integer.
1267 ///
1268 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1269 /// this method guarantees that the returned pointer type will point to an LLVM
1270 /// type of the same size of the lvalue's type. If the lvalue has a variable
1271 /// length type, this is not possible.
1272 ///
EmitLValue(const Expr * E)1273 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1274 ApplyDebugLocation DL(*this, E);
1275 switch (E->getStmtClass()) {
1276 default: return EmitUnsupportedLValue(E, "l-value expression");
1277
1278 case Expr::ObjCPropertyRefExprClass:
1279 llvm_unreachable("cannot emit a property reference directly");
1280
1281 case Expr::ObjCSelectorExprClass:
1282 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1283 case Expr::ObjCIsaExprClass:
1284 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1285 case Expr::BinaryOperatorClass:
1286 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1287 case Expr::CompoundAssignOperatorClass: {
1288 QualType Ty = E->getType();
1289 if (const AtomicType *AT = Ty->getAs<AtomicType>())
1290 Ty = AT->getValueType();
1291 if (!Ty->isAnyComplexType())
1292 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1293 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1294 }
1295 case Expr::CallExprClass:
1296 case Expr::CXXMemberCallExprClass:
1297 case Expr::CXXOperatorCallExprClass:
1298 case Expr::UserDefinedLiteralClass:
1299 return EmitCallExprLValue(cast<CallExpr>(E));
1300 case Expr::CXXRewrittenBinaryOperatorClass:
1301 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1302 case Expr::VAArgExprClass:
1303 return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1304 case Expr::DeclRefExprClass:
1305 return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1306 case Expr::ConstantExprClass: {
1307 const ConstantExpr *CE = cast<ConstantExpr>(E);
1308 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1309 QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1310 ->getCallReturnType(getContext())
1311 ->getPointeeType();
1312 return MakeNaturalAlignAddrLValue(Result, RetType);
1313 }
1314 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1315 }
1316 case Expr::ParenExprClass:
1317 return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1318 case Expr::GenericSelectionExprClass:
1319 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1320 case Expr::PredefinedExprClass:
1321 return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1322 case Expr::StringLiteralClass:
1323 return EmitStringLiteralLValue(cast<StringLiteral>(E));
1324 case Expr::ObjCEncodeExprClass:
1325 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1326 case Expr::PseudoObjectExprClass:
1327 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1328 case Expr::InitListExprClass:
1329 return EmitInitListLValue(cast<InitListExpr>(E));
1330 case Expr::CXXTemporaryObjectExprClass:
1331 case Expr::CXXConstructExprClass:
1332 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1333 case Expr::CXXBindTemporaryExprClass:
1334 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1335 case Expr::CXXUuidofExprClass:
1336 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1337 case Expr::LambdaExprClass:
1338 return EmitAggExprToLValue(E);
1339
1340 case Expr::ExprWithCleanupsClass: {
1341 const auto *cleanups = cast<ExprWithCleanups>(E);
1342 RunCleanupsScope Scope(*this);
1343 LValue LV = EmitLValue(cleanups->getSubExpr());
1344 if (LV.isSimple()) {
1345 // Defend against branches out of gnu statement expressions surrounded by
1346 // cleanups.
1347 Address Addr = LV.getAddress(*this);
1348 llvm::Value *V = Addr.getPointer();
1349 Scope.ForceCleanup({&V});
1350 return LValue::MakeAddr(Addr.withPointer(V), LV.getType(), getContext(),
1351 LV.getBaseInfo(), LV.getTBAAInfo());
1352 }
1353 // FIXME: Is it possible to create an ExprWithCleanups that produces a
1354 // bitfield lvalue or some other non-simple lvalue?
1355 return LV;
1356 }
1357
1358 case Expr::CXXDefaultArgExprClass: {
1359 auto *DAE = cast<CXXDefaultArgExpr>(E);
1360 CXXDefaultArgExprScope Scope(*this, DAE);
1361 return EmitLValue(DAE->getExpr());
1362 }
1363 case Expr::CXXDefaultInitExprClass: {
1364 auto *DIE = cast<CXXDefaultInitExpr>(E);
1365 CXXDefaultInitExprScope Scope(*this, DIE);
1366 return EmitLValue(DIE->getExpr());
1367 }
1368 case Expr::CXXTypeidExprClass:
1369 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1370
1371 case Expr::ObjCMessageExprClass:
1372 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1373 case Expr::ObjCIvarRefExprClass:
1374 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1375 case Expr::StmtExprClass:
1376 return EmitStmtExprLValue(cast<StmtExpr>(E));
1377 case Expr::UnaryOperatorClass:
1378 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1379 case Expr::ArraySubscriptExprClass:
1380 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1381 case Expr::MatrixSubscriptExprClass:
1382 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1383 case Expr::OMPArraySectionExprClass:
1384 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1385 case Expr::ExtVectorElementExprClass:
1386 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1387 case Expr::CXXThisExprClass:
1388 return MakeAddrLValue(LoadCXXThisAddress(), E->getType());
1389 case Expr::MemberExprClass:
1390 return EmitMemberExpr(cast<MemberExpr>(E));
1391 case Expr::CompoundLiteralExprClass:
1392 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1393 case Expr::ConditionalOperatorClass:
1394 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1395 case Expr::BinaryConditionalOperatorClass:
1396 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1397 case Expr::ChooseExprClass:
1398 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1399 case Expr::OpaqueValueExprClass:
1400 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1401 case Expr::SubstNonTypeTemplateParmExprClass:
1402 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1403 case Expr::ImplicitCastExprClass:
1404 case Expr::CStyleCastExprClass:
1405 case Expr::CXXFunctionalCastExprClass:
1406 case Expr::CXXStaticCastExprClass:
1407 case Expr::CXXDynamicCastExprClass:
1408 case Expr::CXXReinterpretCastExprClass:
1409 case Expr::CXXConstCastExprClass:
1410 case Expr::CXXAddrspaceCastExprClass:
1411 case Expr::ObjCBridgedCastExprClass:
1412 return EmitCastLValue(cast<CastExpr>(E));
1413
1414 case Expr::MaterializeTemporaryExprClass:
1415 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1416
1417 case Expr::CoawaitExprClass:
1418 return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1419 case Expr::CoyieldExprClass:
1420 return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1421 }
1422 }
1423
1424 /// Given an object of the given canonical type, can we safely copy a
1425 /// value out of it based on its initializer?
isConstantEmittableObjectType(QualType type)1426 static bool isConstantEmittableObjectType(QualType type) {
1427 assert(type.isCanonical());
1428 assert(!type->isReferenceType());
1429
1430 // Must be const-qualified but non-volatile.
1431 Qualifiers qs = type.getLocalQualifiers();
1432 if (!qs.hasConst() || qs.hasVolatile()) return false;
1433
1434 // Otherwise, all object types satisfy this except C++ classes with
1435 // mutable subobjects or non-trivial copy/destroy behavior.
1436 if (const auto *RT = dyn_cast<RecordType>(type))
1437 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1438 if (RD->hasMutableFields() || !RD->isTrivial())
1439 return false;
1440
1441 return true;
1442 }
1443
1444 /// Can we constant-emit a load of a reference to a variable of the
1445 /// given type? This is different from predicates like
1446 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1447 /// in situations that don't necessarily satisfy the language's rules
1448 /// for this (e.g. C++'s ODR-use rules). For example, we want to able
1449 /// to do this with const float variables even if those variables
1450 /// aren't marked 'constexpr'.
1451 enum ConstantEmissionKind {
1452 CEK_None,
1453 CEK_AsReferenceOnly,
1454 CEK_AsValueOrReference,
1455 CEK_AsValueOnly
1456 };
checkVarTypeForConstantEmission(QualType type)1457 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1458 type = type.getCanonicalType();
1459 if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1460 if (isConstantEmittableObjectType(ref->getPointeeType()))
1461 return CEK_AsValueOrReference;
1462 return CEK_AsReferenceOnly;
1463 }
1464 if (isConstantEmittableObjectType(type))
1465 return CEK_AsValueOnly;
1466 return CEK_None;
1467 }
1468
1469 /// Try to emit a reference to the given value without producing it as
1470 /// an l-value. This is just an optimization, but it avoids us needing
1471 /// to emit global copies of variables if they're named without triggering
1472 /// a formal use in a context where we can't emit a direct reference to them,
1473 /// for instance if a block or lambda or a member of a local class uses a
1474 /// const int variable or constexpr variable from an enclosing function.
1475 CodeGenFunction::ConstantEmission
tryEmitAsConstant(DeclRefExpr * refExpr)1476 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1477 ValueDecl *value = refExpr->getDecl();
1478
1479 // The value needs to be an enum constant or a constant variable.
1480 ConstantEmissionKind CEK;
1481 if (isa<ParmVarDecl>(value)) {
1482 CEK = CEK_None;
1483 } else if (auto *var = dyn_cast<VarDecl>(value)) {
1484 CEK = checkVarTypeForConstantEmission(var->getType());
1485 } else if (isa<EnumConstantDecl>(value)) {
1486 CEK = CEK_AsValueOnly;
1487 } else {
1488 CEK = CEK_None;
1489 }
1490 if (CEK == CEK_None) return ConstantEmission();
1491
1492 Expr::EvalResult result;
1493 bool resultIsReference;
1494 QualType resultType;
1495
1496 // It's best to evaluate all the way as an r-value if that's permitted.
1497 if (CEK != CEK_AsReferenceOnly &&
1498 refExpr->EvaluateAsRValue(result, getContext())) {
1499 resultIsReference = false;
1500 resultType = refExpr->getType();
1501
1502 // Otherwise, try to evaluate as an l-value.
1503 } else if (CEK != CEK_AsValueOnly &&
1504 refExpr->EvaluateAsLValue(result, getContext())) {
1505 resultIsReference = true;
1506 resultType = value->getType();
1507
1508 // Failure.
1509 } else {
1510 return ConstantEmission();
1511 }
1512
1513 // In any case, if the initializer has side-effects, abandon ship.
1514 if (result.HasSideEffects)
1515 return ConstantEmission();
1516
1517 // In CUDA/HIP device compilation, a lambda may capture a reference variable
1518 // referencing a global host variable by copy. In this case the lambda should
1519 // make a copy of the value of the global host variable. The DRE of the
1520 // captured reference variable cannot be emitted as load from the host
1521 // global variable as compile time constant, since the host variable is not
1522 // accessible on device. The DRE of the captured reference variable has to be
1523 // loaded from captures.
1524 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1525 refExpr->refersToEnclosingVariableOrCapture()) {
1526 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1527 if (MD && MD->getParent()->isLambda() &&
1528 MD->getOverloadedOperator() == OO_Call) {
1529 const APValue::LValueBase &base = result.Val.getLValueBase();
1530 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1531 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1532 if (!VD->hasAttr<CUDADeviceAttr>()) {
1533 return ConstantEmission();
1534 }
1535 }
1536 }
1537 }
1538 }
1539
1540 // Emit as a constant.
1541 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1542 result.Val, resultType);
1543
1544 // Make sure we emit a debug reference to the global variable.
1545 // This should probably fire even for
1546 if (isa<VarDecl>(value)) {
1547 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1548 EmitDeclRefExprDbgValue(refExpr, result.Val);
1549 } else {
1550 assert(isa<EnumConstantDecl>(value));
1551 EmitDeclRefExprDbgValue(refExpr, result.Val);
1552 }
1553
1554 // If we emitted a reference constant, we need to dereference that.
1555 if (resultIsReference)
1556 return ConstantEmission::forReference(C);
1557
1558 return ConstantEmission::forValue(C);
1559 }
1560
tryToConvertMemberExprToDeclRefExpr(CodeGenFunction & CGF,const MemberExpr * ME)1561 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1562 const MemberExpr *ME) {
1563 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1564 // Try to emit static variable member expressions as DREs.
1565 return DeclRefExpr::Create(
1566 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1567 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1568 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1569 }
1570 return nullptr;
1571 }
1572
1573 CodeGenFunction::ConstantEmission
tryEmitAsConstant(const MemberExpr * ME)1574 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1575 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1576 return tryEmitAsConstant(DRE);
1577 return ConstantEmission();
1578 }
1579
emitScalarConstant(const CodeGenFunction::ConstantEmission & Constant,Expr * E)1580 llvm::Value *CodeGenFunction::emitScalarConstant(
1581 const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1582 assert(Constant && "not a constant");
1583 if (Constant.isReference())
1584 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1585 E->getExprLoc())
1586 .getScalarVal();
1587 return Constant.getValue();
1588 }
1589
EmitLoadOfScalar(LValue lvalue,SourceLocation Loc)1590 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1591 SourceLocation Loc) {
1592 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1593 lvalue.getType(), Loc, lvalue.getBaseInfo(),
1594 lvalue.getTBAAInfo(), lvalue.isNontemporal());
1595 }
1596
hasBooleanRepresentation(QualType Ty)1597 static bool hasBooleanRepresentation(QualType Ty) {
1598 if (Ty->isBooleanType())
1599 return true;
1600
1601 if (const EnumType *ET = Ty->getAs<EnumType>())
1602 return ET->getDecl()->getIntegerType()->isBooleanType();
1603
1604 if (const AtomicType *AT = Ty->getAs<AtomicType>())
1605 return hasBooleanRepresentation(AT->getValueType());
1606
1607 return false;
1608 }
1609
getRangeForType(CodeGenFunction & CGF,QualType Ty,llvm::APInt & Min,llvm::APInt & End,bool StrictEnums,bool IsBool)1610 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1611 llvm::APInt &Min, llvm::APInt &End,
1612 bool StrictEnums, bool IsBool) {
1613 const EnumType *ET = Ty->getAs<EnumType>();
1614 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1615 ET && !ET->getDecl()->isFixed();
1616 if (!IsBool && !IsRegularCPlusPlusEnum)
1617 return false;
1618
1619 if (IsBool) {
1620 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1621 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1622 } else {
1623 const EnumDecl *ED = ET->getDecl();
1624 ED->getValueRange(End, Min);
1625 }
1626 return true;
1627 }
1628
getRangeForLoadFromType(QualType Ty)1629 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1630 llvm::APInt Min, End;
1631 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1632 hasBooleanRepresentation(Ty)))
1633 return nullptr;
1634
1635 llvm::MDBuilder MDHelper(getLLVMContext());
1636 return MDHelper.createRange(Min, End);
1637 }
1638
EmitScalarRangeCheck(llvm::Value * Value,QualType Ty,SourceLocation Loc)1639 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1640 SourceLocation Loc) {
1641 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1642 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1643 if (!HasBoolCheck && !HasEnumCheck)
1644 return false;
1645
1646 bool IsBool = hasBooleanRepresentation(Ty) ||
1647 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1648 bool NeedsBoolCheck = HasBoolCheck && IsBool;
1649 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1650 if (!NeedsBoolCheck && !NeedsEnumCheck)
1651 return false;
1652
1653 // Single-bit booleans don't need to be checked. Special-case this to avoid
1654 // a bit width mismatch when handling bitfield values. This is handled by
1655 // EmitFromMemory for the non-bitfield case.
1656 if (IsBool &&
1657 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1658 return false;
1659
1660 llvm::APInt Min, End;
1661 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1662 return true;
1663
1664 auto &Ctx = getLLVMContext();
1665 SanitizerScope SanScope(this);
1666 llvm::Value *Check;
1667 --End;
1668 if (!Min) {
1669 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1670 } else {
1671 llvm::Value *Upper =
1672 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1673 llvm::Value *Lower =
1674 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1675 Check = Builder.CreateAnd(Upper, Lower);
1676 }
1677 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1678 EmitCheckTypeDescriptor(Ty)};
1679 SanitizerMask Kind =
1680 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1681 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1682 StaticArgs, EmitCheckValue(Value));
1683 return true;
1684 }
1685
EmitLoadOfScalar(Address Addr,bool Volatile,QualType Ty,SourceLocation Loc,LValueBaseInfo BaseInfo,TBAAAccessInfo TBAAInfo,bool isNontemporal)1686 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1687 QualType Ty,
1688 SourceLocation Loc,
1689 LValueBaseInfo BaseInfo,
1690 TBAAAccessInfo TBAAInfo,
1691 bool isNontemporal) {
1692 if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getPointer()))
1693 if (GV->isThreadLocal())
1694 Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV));
1695
1696 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
1697 // Boolean vectors use `iN` as storage type.
1698 if (ClangVecTy->isExtVectorBoolType()) {
1699 llvm::Type *ValTy = ConvertType(Ty);
1700 unsigned ValNumElems =
1701 cast<llvm::FixedVectorType>(ValTy)->getNumElements();
1702 // Load the `iP` storage object (P is the padded vector size).
1703 auto *RawIntV = Builder.CreateLoad(Addr, Volatile, "load_bits");
1704 const auto *RawIntTy = RawIntV->getType();
1705 assert(RawIntTy->isIntegerTy() && "compressed iN storage for bitvectors");
1706 // Bitcast iP --> <P x i1>.
1707 auto *PaddedVecTy = llvm::FixedVectorType::get(
1708 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
1709 llvm::Value *V = Builder.CreateBitCast(RawIntV, PaddedVecTy);
1710 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1711 V = emitBoolVecConversion(V, ValNumElems, "extractvec");
1712
1713 return EmitFromMemory(V, Ty);
1714 }
1715
1716 // Handle vectors of size 3 like size 4 for better performance.
1717 const llvm::Type *EltTy = Addr.getElementType();
1718 const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1719
1720 if (!CGM.getCodeGenOpts().PreserveVec3Type && VTy->getNumElements() == 3) {
1721
1722 // Bitcast to vec4 type.
1723 llvm::VectorType *vec4Ty =
1724 llvm::FixedVectorType::get(VTy->getElementType(), 4);
1725 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1726 // Now load value.
1727 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1728
1729 // Shuffle vector to get vec3.
1730 V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, "extractVec");
1731 return EmitFromMemory(V, Ty);
1732 }
1733 }
1734
1735 // Atomic operations have to be done on integral types.
1736 LValue AtomicLValue =
1737 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1738 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1739 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1740 }
1741
1742 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1743 if (isNontemporal) {
1744 llvm::MDNode *Node = llvm::MDNode::get(
1745 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1746 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1747 }
1748
1749 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1750
1751 if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1752 // In order to prevent the optimizer from throwing away the check, don't
1753 // attach range metadata to the load.
1754 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1755 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) {
1756 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1757 Load->setMetadata(llvm::LLVMContext::MD_noundef,
1758 llvm::MDNode::get(getLLVMContext(), std::nullopt));
1759 }
1760
1761 return EmitFromMemory(Load, Ty);
1762 }
1763
EmitToMemory(llvm::Value * Value,QualType Ty)1764 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1765 // Bool has a different representation in memory than in registers.
1766 if (hasBooleanRepresentation(Ty)) {
1767 // This should really always be an i1, but sometimes it's already
1768 // an i8, and it's awkward to track those cases down.
1769 if (Value->getType()->isIntegerTy(1))
1770 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1771 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1772 "wrong value rep of bool");
1773 }
1774
1775 return Value;
1776 }
1777
EmitFromMemory(llvm::Value * Value,QualType Ty)1778 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1779 // Bool has a different representation in memory than in registers.
1780 if (hasBooleanRepresentation(Ty)) {
1781 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1782 "wrong value rep of bool");
1783 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1784 }
1785 if (Ty->isExtVectorBoolType()) {
1786 const auto *RawIntTy = Value->getType();
1787 // Bitcast iP --> <P x i1>.
1788 auto *PaddedVecTy = llvm::FixedVectorType::get(
1789 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
1790 auto *V = Builder.CreateBitCast(Value, PaddedVecTy);
1791 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1792 llvm::Type *ValTy = ConvertType(Ty);
1793 unsigned ValNumElems = cast<llvm::FixedVectorType>(ValTy)->getNumElements();
1794 return emitBoolVecConversion(V, ValNumElems, "extractvec");
1795 }
1796
1797 return Value;
1798 }
1799
1800 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1801 // MatrixType), if it points to a array (the memory type of MatrixType).
MaybeConvertMatrixAddress(Address Addr,CodeGenFunction & CGF,bool IsVector=true)1802 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1803 bool IsVector = true) {
1804 auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType());
1805 if (ArrayTy && IsVector) {
1806 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1807 ArrayTy->getNumElements());
1808
1809 return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1810 }
1811 auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType());
1812 if (VectorTy && !IsVector) {
1813 auto *ArrayTy = llvm::ArrayType::get(
1814 VectorTy->getElementType(),
1815 cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1816
1817 return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1818 }
1819
1820 return Addr;
1821 }
1822
1823 // Emit a store of a matrix LValue. This may require casting the original
1824 // pointer to memory address (ArrayType) to a pointer to the value type
1825 // (VectorType).
EmitStoreOfMatrixScalar(llvm::Value * value,LValue lvalue,bool isInit,CodeGenFunction & CGF)1826 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1827 bool isInit, CodeGenFunction &CGF) {
1828 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1829 value->getType()->isVectorTy());
1830 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1831 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1832 lvalue.isNontemporal());
1833 }
1834
EmitStoreOfScalar(llvm::Value * Value,Address Addr,bool Volatile,QualType Ty,LValueBaseInfo BaseInfo,TBAAAccessInfo TBAAInfo,bool isInit,bool isNontemporal)1835 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1836 bool Volatile, QualType Ty,
1837 LValueBaseInfo BaseInfo,
1838 TBAAAccessInfo TBAAInfo,
1839 bool isInit, bool isNontemporal) {
1840 if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getPointer()))
1841 if (GV->isThreadLocal())
1842 Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV));
1843
1844 llvm::Type *SrcTy = Value->getType();
1845 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
1846 auto *VecTy = dyn_cast<llvm::FixedVectorType>(SrcTy);
1847 if (VecTy && ClangVecTy->isExtVectorBoolType()) {
1848 auto *MemIntTy = cast<llvm::IntegerType>(Addr.getElementType());
1849 // Expand to the memory bit width.
1850 unsigned MemNumElems = MemIntTy->getPrimitiveSizeInBits();
1851 // <N x i1> --> <P x i1>.
1852 Value = emitBoolVecConversion(Value, MemNumElems, "insertvec");
1853 // <P x i1> --> iP.
1854 Value = Builder.CreateBitCast(Value, MemIntTy);
1855 } else if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1856 // Handle vec3 special.
1857 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1858 // Our source is a vec3, do a shuffle vector to make it a vec4.
1859 Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
1860 "extractVec");
1861 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1862 }
1863 if (Addr.getElementType() != SrcTy) {
1864 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1865 }
1866 }
1867 }
1868
1869 Value = EmitToMemory(Value, Ty);
1870
1871 LValue AtomicLValue =
1872 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1873 if (Ty->isAtomicType() ||
1874 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1875 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1876 return;
1877 }
1878
1879 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1880 if (isNontemporal) {
1881 llvm::MDNode *Node =
1882 llvm::MDNode::get(Store->getContext(),
1883 llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1884 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1885 }
1886
1887 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1888 }
1889
EmitStoreOfScalar(llvm::Value * value,LValue lvalue,bool isInit)1890 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1891 bool isInit) {
1892 if (lvalue.getType()->isConstantMatrixType()) {
1893 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1894 return;
1895 }
1896
1897 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1898 lvalue.getType(), lvalue.getBaseInfo(),
1899 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1900 }
1901
1902 // Emit a load of a LValue of matrix type. This may require casting the pointer
1903 // to memory address (ArrayType) to a pointer to the value type (VectorType).
EmitLoadOfMatrixLValue(LValue LV,SourceLocation Loc,CodeGenFunction & CGF)1904 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1905 CodeGenFunction &CGF) {
1906 assert(LV.getType()->isConstantMatrixType());
1907 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1908 LV.setAddress(Addr);
1909 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1910 }
1911
1912 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1913 /// method emits the address of the lvalue, then loads the result as an rvalue,
1914 /// returning the rvalue.
EmitLoadOfLValue(LValue LV,SourceLocation Loc)1915 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1916 if (LV.isObjCWeak()) {
1917 // load of a __weak object.
1918 Address AddrWeakObj = LV.getAddress(*this);
1919 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1920 AddrWeakObj));
1921 }
1922 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1923 // In MRC mode, we do a load+autorelease.
1924 if (!getLangOpts().ObjCAutoRefCount) {
1925 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1926 }
1927
1928 // In ARC mode, we load retained and then consume the value.
1929 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1930 Object = EmitObjCConsumeObject(LV.getType(), Object);
1931 return RValue::get(Object);
1932 }
1933
1934 if (LV.isSimple()) {
1935 assert(!LV.getType()->isFunctionType());
1936
1937 if (LV.getType()->isConstantMatrixType())
1938 return EmitLoadOfMatrixLValue(LV, Loc, *this);
1939
1940 // Everything needs a load.
1941 return RValue::get(EmitLoadOfScalar(LV, Loc));
1942 }
1943
1944 if (LV.isVectorElt()) {
1945 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1946 LV.isVolatileQualified());
1947 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1948 "vecext"));
1949 }
1950
1951 // If this is a reference to a subset of the elements of a vector, either
1952 // shuffle the input or extract/insert them as appropriate.
1953 if (LV.isExtVectorElt()) {
1954 return EmitLoadOfExtVectorElementLValue(LV);
1955 }
1956
1957 // Global Register variables always invoke intrinsics
1958 if (LV.isGlobalReg())
1959 return EmitLoadOfGlobalRegLValue(LV);
1960
1961 if (LV.isMatrixElt()) {
1962 llvm::Value *Idx = LV.getMatrixIdx();
1963 if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
1964 const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>();
1965 llvm::MatrixBuilder MB(Builder);
1966 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
1967 }
1968 llvm::LoadInst *Load =
1969 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
1970 return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext"));
1971 }
1972
1973 assert(LV.isBitField() && "Unknown LValue type!");
1974 return EmitLoadOfBitfieldLValue(LV, Loc);
1975 }
1976
EmitLoadOfBitfieldLValue(LValue LV,SourceLocation Loc)1977 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1978 SourceLocation Loc) {
1979 const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1980
1981 // Get the output type.
1982 llvm::Type *ResLTy = ConvertType(LV.getType());
1983
1984 Address Ptr = LV.getBitFieldAddress();
1985 llvm::Value *Val =
1986 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1987
1988 bool UseVolatile = LV.isVolatileQualified() &&
1989 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
1990 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
1991 const unsigned StorageSize =
1992 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
1993 if (Info.IsSigned) {
1994 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
1995 unsigned HighBits = StorageSize - Offset - Info.Size;
1996 if (HighBits)
1997 Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1998 if (Offset + HighBits)
1999 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
2000 } else {
2001 if (Offset)
2002 Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
2003 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
2004 Val = Builder.CreateAnd(
2005 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
2006 }
2007 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
2008 EmitScalarRangeCheck(Val, LV.getType(), Loc);
2009 return RValue::get(Val);
2010 }
2011
2012 // If this is a reference to a subset of the elements of a vector, create an
2013 // appropriate shufflevector.
EmitLoadOfExtVectorElementLValue(LValue LV)2014 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
2015 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
2016 LV.isVolatileQualified());
2017
2018 const llvm::Constant *Elts = LV.getExtVectorElts();
2019
2020 // If the result of the expression is a non-vector type, we must be extracting
2021 // a single element. Just codegen as an extractelement.
2022 const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2023 if (!ExprVT) {
2024 unsigned InIdx = getAccessedFieldNo(0, Elts);
2025 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2026 return RValue::get(Builder.CreateExtractElement(Vec, Elt));
2027 }
2028
2029 // Always use shuffle vector to try to retain the original program structure
2030 unsigned NumResultElts = ExprVT->getNumElements();
2031
2032 SmallVector<int, 4> Mask;
2033 for (unsigned i = 0; i != NumResultElts; ++i)
2034 Mask.push_back(getAccessedFieldNo(i, Elts));
2035
2036 Vec = Builder.CreateShuffleVector(Vec, Mask);
2037 return RValue::get(Vec);
2038 }
2039
2040 /// Generates lvalue for partial ext_vector access.
EmitExtVectorElementLValue(LValue LV)2041 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2042 Address VectorAddress = LV.getExtVectorAddress();
2043 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2044 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2045
2046 Address CastToPointerElement =
2047 Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
2048 "conv.ptr.element");
2049
2050 const llvm::Constant *Elts = LV.getExtVectorElts();
2051 unsigned ix = getAccessedFieldNo(0, Elts);
2052
2053 Address VectorBasePtrPlusIx =
2054 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2055 "vector.elt");
2056
2057 return VectorBasePtrPlusIx;
2058 }
2059
2060 /// Load of global gamed gegisters are always calls to intrinsics.
EmitLoadOfGlobalRegLValue(LValue LV)2061 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2062 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2063 "Bad type for register variable");
2064 llvm::MDNode *RegName = cast<llvm::MDNode>(
2065 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2066
2067 // We accept integer and pointer types only
2068 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2069 llvm::Type *Ty = OrigTy;
2070 if (OrigTy->isPointerTy())
2071 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2072 llvm::Type *Types[] = { Ty };
2073
2074 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2075 llvm::Value *Call = Builder.CreateCall(
2076 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2077 if (OrigTy->isPointerTy())
2078 Call = Builder.CreateIntToPtr(Call, OrigTy);
2079 return RValue::get(Call);
2080 }
2081
2082 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2083 /// lvalue, where both are guaranteed to the have the same type, and that type
2084 /// is 'Ty'.
EmitStoreThroughLValue(RValue Src,LValue Dst,bool isInit)2085 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2086 bool isInit) {
2087 if (!Dst.isSimple()) {
2088 if (Dst.isVectorElt()) {
2089 // Read/modify/write the vector, inserting the new element.
2090 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2091 Dst.isVolatileQualified());
2092 auto *IRStoreTy = dyn_cast<llvm::IntegerType>(Vec->getType());
2093 if (IRStoreTy) {
2094 auto *IRVecTy = llvm::FixedVectorType::get(
2095 Builder.getInt1Ty(), IRStoreTy->getPrimitiveSizeInBits());
2096 Vec = Builder.CreateBitCast(Vec, IRVecTy);
2097 // iN --> <N x i1>.
2098 }
2099 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2100 Dst.getVectorIdx(), "vecins");
2101 if (IRStoreTy) {
2102 // <N x i1> --> <iN>.
2103 Vec = Builder.CreateBitCast(Vec, IRStoreTy);
2104 }
2105 Builder.CreateStore(Vec, Dst.getVectorAddress(),
2106 Dst.isVolatileQualified());
2107 return;
2108 }
2109
2110 // If this is an update of extended vector elements, insert them as
2111 // appropriate.
2112 if (Dst.isExtVectorElt())
2113 return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2114
2115 if (Dst.isGlobalReg())
2116 return EmitStoreThroughGlobalRegLValue(Src, Dst);
2117
2118 if (Dst.isMatrixElt()) {
2119 llvm::Value *Idx = Dst.getMatrixIdx();
2120 if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2121 const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>();
2122 llvm::MatrixBuilder MB(Builder);
2123 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2124 }
2125 llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress());
2126 llvm::Value *Vec =
2127 Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins");
2128 Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2129 Dst.isVolatileQualified());
2130 return;
2131 }
2132
2133 assert(Dst.isBitField() && "Unknown LValue type");
2134 return EmitStoreThroughBitfieldLValue(Src, Dst);
2135 }
2136
2137 // There's special magic for assigning into an ARC-qualified l-value.
2138 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2139 switch (Lifetime) {
2140 case Qualifiers::OCL_None:
2141 llvm_unreachable("present but none");
2142
2143 case Qualifiers::OCL_ExplicitNone:
2144 // nothing special
2145 break;
2146
2147 case Qualifiers::OCL_Strong:
2148 if (isInit) {
2149 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2150 break;
2151 }
2152 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2153 return;
2154
2155 case Qualifiers::OCL_Weak:
2156 if (isInit)
2157 // Initialize and then skip the primitive store.
2158 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2159 else
2160 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2161 /*ignore*/ true);
2162 return;
2163
2164 case Qualifiers::OCL_Autoreleasing:
2165 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2166 Src.getScalarVal()));
2167 // fall into the normal path
2168 break;
2169 }
2170 }
2171
2172 if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2173 // load of a __weak object.
2174 Address LvalueDst = Dst.getAddress(*this);
2175 llvm::Value *src = Src.getScalarVal();
2176 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2177 return;
2178 }
2179
2180 if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2181 // load of a __strong object.
2182 Address LvalueDst = Dst.getAddress(*this);
2183 llvm::Value *src = Src.getScalarVal();
2184 if (Dst.isObjCIvar()) {
2185 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2186 llvm::Type *ResultType = IntPtrTy;
2187 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2188 llvm::Value *RHS = dst.getPointer();
2189 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2190 llvm::Value *LHS =
2191 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2192 "sub.ptr.lhs.cast");
2193 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2194 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2195 BytesBetween);
2196 } else if (Dst.isGlobalObjCRef()) {
2197 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2198 Dst.isThreadLocalRef());
2199 }
2200 else
2201 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2202 return;
2203 }
2204
2205 assert(Src.isScalar() && "Can't emit an agg store with this method");
2206 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2207 }
2208
EmitStoreThroughBitfieldLValue(RValue Src,LValue Dst,llvm::Value ** Result)2209 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2210 llvm::Value **Result) {
2211 const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2212 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2213 Address Ptr = Dst.getBitFieldAddress();
2214
2215 // Get the source value, truncated to the width of the bit-field.
2216 llvm::Value *SrcVal = Src.getScalarVal();
2217
2218 // Cast the source to the storage type and shift it into place.
2219 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2220 /*isSigned=*/false);
2221 llvm::Value *MaskedVal = SrcVal;
2222
2223 const bool UseVolatile =
2224 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2225 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2226 const unsigned StorageSize =
2227 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2228 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2229 // See if there are other bits in the bitfield's storage we'll need to load
2230 // and mask together with source before storing.
2231 if (StorageSize != Info.Size) {
2232 assert(StorageSize > Info.Size && "Invalid bitfield size.");
2233 llvm::Value *Val =
2234 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2235
2236 // Mask the source value as needed.
2237 if (!hasBooleanRepresentation(Dst.getType()))
2238 SrcVal = Builder.CreateAnd(
2239 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2240 "bf.value");
2241 MaskedVal = SrcVal;
2242 if (Offset)
2243 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2244
2245 // Mask out the original value.
2246 Val = Builder.CreateAnd(
2247 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2248 "bf.clear");
2249
2250 // Or together the unchanged values and the source value.
2251 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2252 } else {
2253 assert(Offset == 0);
2254 // According to the AACPS:
2255 // When a volatile bit-field is written, and its container does not overlap
2256 // with any non-bit-field member, its container must be read exactly once
2257 // and written exactly once using the access width appropriate to the type
2258 // of the container. The two accesses are not atomic.
2259 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2260 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2261 Builder.CreateLoad(Ptr, true, "bf.load");
2262 }
2263
2264 // Write the new value back out.
2265 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2266
2267 // Return the new value of the bit-field, if requested.
2268 if (Result) {
2269 llvm::Value *ResultVal = MaskedVal;
2270
2271 // Sign extend the value if needed.
2272 if (Info.IsSigned) {
2273 assert(Info.Size <= StorageSize);
2274 unsigned HighBits = StorageSize - Info.Size;
2275 if (HighBits) {
2276 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2277 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2278 }
2279 }
2280
2281 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2282 "bf.result.cast");
2283 *Result = EmitFromMemory(ResultVal, Dst.getType());
2284 }
2285 }
2286
EmitStoreThroughExtVectorComponentLValue(RValue Src,LValue Dst)2287 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2288 LValue Dst) {
2289 // This access turns into a read/modify/write of the vector. Load the input
2290 // value now.
2291 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2292 Dst.isVolatileQualified());
2293 const llvm::Constant *Elts = Dst.getExtVectorElts();
2294
2295 llvm::Value *SrcVal = Src.getScalarVal();
2296
2297 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2298 unsigned NumSrcElts = VTy->getNumElements();
2299 unsigned NumDstElts =
2300 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2301 if (NumDstElts == NumSrcElts) {
2302 // Use shuffle vector is the src and destination are the same number of
2303 // elements and restore the vector mask since it is on the side it will be
2304 // stored.
2305 SmallVector<int, 4> Mask(NumDstElts);
2306 for (unsigned i = 0; i != NumSrcElts; ++i)
2307 Mask[getAccessedFieldNo(i, Elts)] = i;
2308
2309 Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2310 } else if (NumDstElts > NumSrcElts) {
2311 // Extended the source vector to the same length and then shuffle it
2312 // into the destination.
2313 // FIXME: since we're shuffling with undef, can we just use the indices
2314 // into that? This could be simpler.
2315 SmallVector<int, 4> ExtMask;
2316 for (unsigned i = 0; i != NumSrcElts; ++i)
2317 ExtMask.push_back(i);
2318 ExtMask.resize(NumDstElts, -1);
2319 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2320 // build identity
2321 SmallVector<int, 4> Mask;
2322 for (unsigned i = 0; i != NumDstElts; ++i)
2323 Mask.push_back(i);
2324
2325 // When the vector size is odd and .odd or .hi is used, the last element
2326 // of the Elts constant array will be one past the size of the vector.
2327 // Ignore the last element here, if it is greater than the mask size.
2328 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2329 NumSrcElts--;
2330
2331 // modify when what gets shuffled in
2332 for (unsigned i = 0; i != NumSrcElts; ++i)
2333 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2334 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2335 } else {
2336 // We should never shorten the vector
2337 llvm_unreachable("unexpected shorten vector length");
2338 }
2339 } else {
2340 // If the Src is a scalar (not a vector) it must be updating one element.
2341 unsigned InIdx = getAccessedFieldNo(0, Elts);
2342 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2343 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2344 }
2345
2346 Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2347 Dst.isVolatileQualified());
2348 }
2349
2350 /// Store of global named registers are always calls to intrinsics.
EmitStoreThroughGlobalRegLValue(RValue Src,LValue Dst)2351 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2352 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2353 "Bad type for register variable");
2354 llvm::MDNode *RegName = cast<llvm::MDNode>(
2355 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2356 assert(RegName && "Register LValue is not metadata");
2357
2358 // We accept integer and pointer types only
2359 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2360 llvm::Type *Ty = OrigTy;
2361 if (OrigTy->isPointerTy())
2362 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2363 llvm::Type *Types[] = { Ty };
2364
2365 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2366 llvm::Value *Value = Src.getScalarVal();
2367 if (OrigTy->isPointerTy())
2368 Value = Builder.CreatePtrToInt(Value, Ty);
2369 Builder.CreateCall(
2370 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2371 }
2372
2373 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2374 // generating write-barries API. It is currently a global, ivar,
2375 // or neither.
setObjCGCLValueClass(const ASTContext & Ctx,const Expr * E,LValue & LV,bool IsMemberAccess=false)2376 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2377 LValue &LV,
2378 bool IsMemberAccess=false) {
2379 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2380 return;
2381
2382 if (isa<ObjCIvarRefExpr>(E)) {
2383 QualType ExpTy = E->getType();
2384 if (IsMemberAccess && ExpTy->isPointerType()) {
2385 // If ivar is a structure pointer, assigning to field of
2386 // this struct follows gcc's behavior and makes it a non-ivar
2387 // writer-barrier conservatively.
2388 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2389 if (ExpTy->isRecordType()) {
2390 LV.setObjCIvar(false);
2391 return;
2392 }
2393 }
2394 LV.setObjCIvar(true);
2395 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2396 LV.setBaseIvarExp(Exp->getBase());
2397 LV.setObjCArray(E->getType()->isArrayType());
2398 return;
2399 }
2400
2401 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2402 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2403 if (VD->hasGlobalStorage()) {
2404 LV.setGlobalObjCRef(true);
2405 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2406 }
2407 }
2408 LV.setObjCArray(E->getType()->isArrayType());
2409 return;
2410 }
2411
2412 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2413 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2414 return;
2415 }
2416
2417 if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2418 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2419 if (LV.isObjCIvar()) {
2420 // If cast is to a structure pointer, follow gcc's behavior and make it
2421 // a non-ivar write-barrier.
2422 QualType ExpTy = E->getType();
2423 if (ExpTy->isPointerType())
2424 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2425 if (ExpTy->isRecordType())
2426 LV.setObjCIvar(false);
2427 }
2428 return;
2429 }
2430
2431 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2432 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2433 return;
2434 }
2435
2436 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2437 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2438 return;
2439 }
2440
2441 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2442 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2443 return;
2444 }
2445
2446 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2447 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2448 return;
2449 }
2450
2451 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2452 setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2453 if (LV.isObjCIvar() && !LV.isObjCArray())
2454 // Using array syntax to assigning to what an ivar points to is not
2455 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2456 LV.setObjCIvar(false);
2457 else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2458 // Using array syntax to assigning to what global points to is not
2459 // same as assigning to the global itself. {id *G;} G[i] = 0;
2460 LV.setGlobalObjCRef(false);
2461 return;
2462 }
2463
2464 if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2465 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2466 // We don't know if member is an 'ivar', but this flag is looked at
2467 // only in the context of LV.isObjCIvar().
2468 LV.setObjCArray(E->getType()->isArrayType());
2469 return;
2470 }
2471 }
2472
2473 static llvm::Value *
EmitBitCastOfLValueToProperType(CodeGenFunction & CGF,llvm::Value * V,llvm::Type * IRType,StringRef Name=StringRef ())2474 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2475 llvm::Value *V, llvm::Type *IRType,
2476 StringRef Name = StringRef()) {
2477 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2478 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2479 }
2480
EmitThreadPrivateVarDeclLValue(CodeGenFunction & CGF,const VarDecl * VD,QualType T,Address Addr,llvm::Type * RealVarTy,SourceLocation Loc)2481 static LValue EmitThreadPrivateVarDeclLValue(
2482 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2483 llvm::Type *RealVarTy, SourceLocation Loc) {
2484 if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2485 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2486 CGF, VD, Addr, Loc);
2487 else
2488 Addr =
2489 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2490
2491 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2492 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2493 }
2494
emitDeclTargetVarDeclLValue(CodeGenFunction & CGF,const VarDecl * VD,QualType T)2495 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2496 const VarDecl *VD, QualType T) {
2497 std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2498 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2499 // Return an invalid address if variable is MT_To (or MT_Enter starting with
2500 // OpenMP 5.2) and unified memory is not enabled. For all other cases: MT_Link
2501 // and MT_To (or MT_Enter) with unified memory, return a valid address.
2502 if (!Res || ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
2503 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
2504 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2505 return Address::invalid();
2506 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2507 ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
2508 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
2509 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2510 "Expected link clause OR to clause with unified memory enabled.");
2511 QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2512 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2513 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2514 }
2515
2516 Address
EmitLoadOfReference(LValue RefLVal,LValueBaseInfo * PointeeBaseInfo,TBAAAccessInfo * PointeeTBAAInfo)2517 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2518 LValueBaseInfo *PointeeBaseInfo,
2519 TBAAAccessInfo *PointeeTBAAInfo) {
2520 llvm::LoadInst *Load =
2521 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2522 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2523
2524 QualType PointeeType = RefLVal.getType()->getPointeeType();
2525 CharUnits Align = CGM.getNaturalTypeAlignment(
2526 PointeeType, PointeeBaseInfo, PointeeTBAAInfo,
2527 /* forPointeeType= */ true);
2528 return Address(Load, ConvertTypeForMem(PointeeType), Align);
2529 }
2530
EmitLoadOfReferenceLValue(LValue RefLVal)2531 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2532 LValueBaseInfo PointeeBaseInfo;
2533 TBAAAccessInfo PointeeTBAAInfo;
2534 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2535 &PointeeTBAAInfo);
2536 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2537 PointeeBaseInfo, PointeeTBAAInfo);
2538 }
2539
EmitLoadOfPointer(Address Ptr,const PointerType * PtrTy,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)2540 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2541 const PointerType *PtrTy,
2542 LValueBaseInfo *BaseInfo,
2543 TBAAAccessInfo *TBAAInfo) {
2544 llvm::Value *Addr = Builder.CreateLoad(Ptr);
2545 return Address(Addr, ConvertTypeForMem(PtrTy->getPointeeType()),
2546 CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), BaseInfo,
2547 TBAAInfo,
2548 /*forPointeeType=*/true));
2549 }
2550
EmitLoadOfPointerLValue(Address PtrAddr,const PointerType * PtrTy)2551 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2552 const PointerType *PtrTy) {
2553 LValueBaseInfo BaseInfo;
2554 TBAAAccessInfo TBAAInfo;
2555 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2556 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2557 }
2558
EmitGlobalVarDeclLValue(CodeGenFunction & CGF,const Expr * E,const VarDecl * VD)2559 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2560 const Expr *E, const VarDecl *VD) {
2561 QualType T = E->getType();
2562
2563 // If it's thread_local, emit a call to its wrapper function instead.
2564 if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2565 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2566 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2567 // Check if the variable is marked as declare target with link clause in
2568 // device codegen.
2569 if (CGF.getLangOpts().OpenMPIsDevice) {
2570 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2571 if (Addr.isValid())
2572 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2573 }
2574
2575 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2576
2577 if (VD->getTLSKind() != VarDecl::TLS_None)
2578 V = CGF.Builder.CreateThreadLocalAddress(V);
2579
2580 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2581 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2582 CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2583 Address Addr(V, RealVarTy, Alignment);
2584 // Emit reference to the private copy of the variable if it is an OpenMP
2585 // threadprivate variable.
2586 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2587 VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2588 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2589 E->getExprLoc());
2590 }
2591 LValue LV = VD->getType()->isReferenceType() ?
2592 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2593 AlignmentSource::Decl) :
2594 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2595 setObjCGCLValueClass(CGF.getContext(), E, LV);
2596 return LV;
2597 }
2598
EmitFunctionDeclPointer(CodeGenModule & CGM,GlobalDecl GD)2599 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2600 GlobalDecl GD) {
2601 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2602 if (FD->hasAttr<WeakRefAttr>()) {
2603 ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2604 return aliasee.getPointer();
2605 }
2606
2607 llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2608 if (!FD->hasPrototype()) {
2609 if (const FunctionProtoType *Proto =
2610 FD->getType()->getAs<FunctionProtoType>()) {
2611 // Ugly case: for a K&R-style definition, the type of the definition
2612 // isn't the same as the type of a use. Correct for this with a
2613 // bitcast.
2614 QualType NoProtoType =
2615 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2616 NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2617 V = llvm::ConstantExpr::getBitCast(V,
2618 CGM.getTypes().ConvertType(NoProtoType));
2619 }
2620 }
2621 return V;
2622 }
2623
EmitFunctionDeclLValue(CodeGenFunction & CGF,const Expr * E,GlobalDecl GD)2624 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2625 GlobalDecl GD) {
2626 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2627 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2628 CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2629 return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2630 AlignmentSource::Decl);
2631 }
2632
EmitCapturedFieldLValue(CodeGenFunction & CGF,const FieldDecl * FD,llvm::Value * ThisValue)2633 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2634 llvm::Value *ThisValue) {
2635 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2636 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2637 return CGF.EmitLValueForField(LV, FD);
2638 }
2639
2640 /// Named Registers are named metadata pointing to the register name
2641 /// which will be read from/written to as an argument to the intrinsic
2642 /// @llvm.read/write_register.
2643 /// So far, only the name is being passed down, but other options such as
2644 /// register type, allocation type or even optimization options could be
2645 /// passed down via the metadata node.
EmitGlobalNamedRegister(const VarDecl * VD,CodeGenModule & CGM)2646 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2647 SmallString<64> Name("llvm.named.register.");
2648 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2649 assert(Asm->getLabel().size() < 64-Name.size() &&
2650 "Register name too big");
2651 Name.append(Asm->getLabel());
2652 llvm::NamedMDNode *M =
2653 CGM.getModule().getOrInsertNamedMetadata(Name);
2654 if (M->getNumOperands() == 0) {
2655 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2656 Asm->getLabel());
2657 llvm::Metadata *Ops[] = {Str};
2658 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2659 }
2660
2661 CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2662
2663 llvm::Value *Ptr =
2664 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2665 return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType());
2666 }
2667
2668 /// Determine whether we can emit a reference to \p VD from the current
2669 /// context, despite not necessarily having seen an odr-use of the variable in
2670 /// this context.
canEmitSpuriousReferenceToVariable(CodeGenFunction & CGF,const DeclRefExpr * E,const VarDecl * VD,bool IsConstant)2671 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2672 const DeclRefExpr *E,
2673 const VarDecl *VD,
2674 bool IsConstant) {
2675 // For a variable declared in an enclosing scope, do not emit a spurious
2676 // reference even if we have a capture, as that will emit an unwarranted
2677 // reference to our capture state, and will likely generate worse code than
2678 // emitting a local copy.
2679 if (E->refersToEnclosingVariableOrCapture())
2680 return false;
2681
2682 // For a local declaration declared in this function, we can always reference
2683 // it even if we don't have an odr-use.
2684 if (VD->hasLocalStorage()) {
2685 return VD->getDeclContext() ==
2686 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2687 }
2688
2689 // For a global declaration, we can emit a reference to it if we know
2690 // for sure that we are able to emit a definition of it.
2691 VD = VD->getDefinition(CGF.getContext());
2692 if (!VD)
2693 return false;
2694
2695 // Don't emit a spurious reference if it might be to a variable that only
2696 // exists on a different device / target.
2697 // FIXME: This is unnecessarily broad. Check whether this would actually be a
2698 // cross-target reference.
2699 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2700 CGF.getLangOpts().OpenCL) {
2701 return false;
2702 }
2703
2704 // We can emit a spurious reference only if the linkage implies that we'll
2705 // be emitting a non-interposable symbol that will be retained until link
2706 // time.
2707 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2708 case llvm::GlobalValue::ExternalLinkage:
2709 case llvm::GlobalValue::LinkOnceODRLinkage:
2710 case llvm::GlobalValue::WeakODRLinkage:
2711 case llvm::GlobalValue::InternalLinkage:
2712 case llvm::GlobalValue::PrivateLinkage:
2713 return true;
2714 default:
2715 return false;
2716 }
2717 }
2718
EmitDeclRefLValue(const DeclRefExpr * E)2719 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2720 const NamedDecl *ND = E->getDecl();
2721 QualType T = E->getType();
2722
2723 assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2724 "should not emit an unevaluated operand");
2725
2726 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2727 // Global Named registers access via intrinsics only
2728 if (VD->getStorageClass() == SC_Register &&
2729 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2730 return EmitGlobalNamedRegister(VD, CGM);
2731
2732 // If this DeclRefExpr does not constitute an odr-use of the variable,
2733 // we're not permitted to emit a reference to it in general, and it might
2734 // not be captured if capture would be necessary for a use. Emit the
2735 // constant value directly instead.
2736 if (E->isNonOdrUse() == NOUR_Constant &&
2737 (VD->getType()->isReferenceType() ||
2738 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2739 VD->getAnyInitializer(VD);
2740 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2741 E->getLocation(), *VD->evaluateValue(), VD->getType());
2742 assert(Val && "failed to emit constant expression");
2743
2744 Address Addr = Address::invalid();
2745 if (!VD->getType()->isReferenceType()) {
2746 // Spill the constant value to a global.
2747 Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2748 getContext().getDeclAlign(VD));
2749 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2750 auto *PTy = llvm::PointerType::get(
2751 VarTy, getTypes().getTargetAddressSpace(VD->getType()));
2752 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy, VarTy);
2753 } else {
2754 // Should we be using the alignment of the constant pointer we emitted?
2755 CharUnits Alignment =
2756 CGM.getNaturalTypeAlignment(E->getType(),
2757 /* BaseInfo= */ nullptr,
2758 /* TBAAInfo= */ nullptr,
2759 /* forPointeeType= */ true);
2760 Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment);
2761 }
2762 return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2763 }
2764
2765 // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2766
2767 // Check for captured variables.
2768 if (E->refersToEnclosingVariableOrCapture()) {
2769 VD = VD->getCanonicalDecl();
2770 if (auto *FD = LambdaCaptureFields.lookup(VD))
2771 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2772 if (CapturedStmtInfo) {
2773 auto I = LocalDeclMap.find(VD);
2774 if (I != LocalDeclMap.end()) {
2775 LValue CapLVal;
2776 if (VD->getType()->isReferenceType())
2777 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2778 AlignmentSource::Decl);
2779 else
2780 CapLVal = MakeAddrLValue(I->second, T);
2781 // Mark lvalue as nontemporal if the variable is marked as nontemporal
2782 // in simd context.
2783 if (getLangOpts().OpenMP &&
2784 CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2785 CapLVal.setNontemporal(/*Value=*/true);
2786 return CapLVal;
2787 }
2788 LValue CapLVal =
2789 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2790 CapturedStmtInfo->getContextValue());
2791 Address LValueAddress = CapLVal.getAddress(*this);
2792 CapLVal = MakeAddrLValue(
2793 Address(LValueAddress.getPointer(), LValueAddress.getElementType(),
2794 getContext().getDeclAlign(VD)),
2795 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2796 CapLVal.getTBAAInfo());
2797 // Mark lvalue as nontemporal if the variable is marked as nontemporal
2798 // in simd context.
2799 if (getLangOpts().OpenMP &&
2800 CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2801 CapLVal.setNontemporal(/*Value=*/true);
2802 return CapLVal;
2803 }
2804
2805 assert(isa<BlockDecl>(CurCodeDecl));
2806 Address addr = GetAddrOfBlockDecl(VD);
2807 return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2808 }
2809 }
2810
2811 // FIXME: We should be able to assert this for FunctionDecls as well!
2812 // FIXME: We should be able to assert this for all DeclRefExprs, not just
2813 // those with a valid source location.
2814 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2815 !E->getLocation().isValid()) &&
2816 "Should not use decl without marking it used!");
2817
2818 if (ND->hasAttr<WeakRefAttr>()) {
2819 const auto *VD = cast<ValueDecl>(ND);
2820 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2821 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2822 }
2823
2824 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2825 // Check if this is a global variable.
2826 if (VD->hasLinkage() || VD->isStaticDataMember())
2827 return EmitGlobalVarDeclLValue(*this, E, VD);
2828
2829 Address addr = Address::invalid();
2830
2831 // The variable should generally be present in the local decl map.
2832 auto iter = LocalDeclMap.find(VD);
2833 if (iter != LocalDeclMap.end()) {
2834 addr = iter->second;
2835
2836 // Otherwise, it might be static local we haven't emitted yet for
2837 // some reason; most likely, because it's in an outer function.
2838 } else if (VD->isStaticLocal()) {
2839 llvm::Constant *var = CGM.getOrCreateStaticVarDecl(
2840 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
2841 addr = Address(
2842 var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD));
2843
2844 // No other cases for now.
2845 } else {
2846 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2847 }
2848
2849 // Handle threadlocal function locals.
2850 if (VD->getTLSKind() != VarDecl::TLS_None)
2851 addr =
2852 addr.withPointer(Builder.CreateThreadLocalAddress(addr.getPointer()));
2853
2854 // Check for OpenMP threadprivate variables.
2855 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2856 VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2857 return EmitThreadPrivateVarDeclLValue(
2858 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2859 E->getExprLoc());
2860 }
2861
2862 // Drill into block byref variables.
2863 bool isBlockByref = VD->isEscapingByref();
2864 if (isBlockByref) {
2865 addr = emitBlockByrefAddress(addr, VD);
2866 }
2867
2868 // Drill into reference types.
2869 LValue LV = VD->getType()->isReferenceType() ?
2870 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2871 MakeAddrLValue(addr, T, AlignmentSource::Decl);
2872
2873 bool isLocalStorage = VD->hasLocalStorage();
2874
2875 bool NonGCable = isLocalStorage &&
2876 !VD->getType()->isReferenceType() &&
2877 !isBlockByref;
2878 if (NonGCable) {
2879 LV.getQuals().removeObjCGCAttr();
2880 LV.setNonGC(true);
2881 }
2882
2883 bool isImpreciseLifetime =
2884 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2885 if (isImpreciseLifetime)
2886 LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2887 setObjCGCLValueClass(getContext(), E, LV);
2888 return LV;
2889 }
2890
2891 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
2892 LValue LV = EmitFunctionDeclLValue(*this, E, FD);
2893
2894 // Emit debuginfo for the function declaration if the target wants to.
2895 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2896 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) {
2897 auto *Fn =
2898 cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts());
2899 if (!Fn->getSubprogram())
2900 DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn);
2901 }
2902 }
2903
2904 return LV;
2905 }
2906
2907 // FIXME: While we're emitting a binding from an enclosing scope, all other
2908 // DeclRefExprs we see should be implicitly treated as if they also refer to
2909 // an enclosing scope.
2910 if (const auto *BD = dyn_cast<BindingDecl>(ND)) {
2911 if (E->refersToEnclosingVariableOrCapture()) {
2912 auto *FD = LambdaCaptureFields.lookup(BD);
2913 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2914 }
2915 return EmitLValue(BD->getBinding());
2916 }
2917
2918 // We can form DeclRefExprs naming GUID declarations when reconstituting
2919 // non-type template parameters into expressions.
2920 if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2921 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2922 AlignmentSource::Decl);
2923
2924 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
2925 return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
2926 AlignmentSource::Decl);
2927
2928 llvm_unreachable("Unhandled DeclRefExpr");
2929 }
2930
EmitUnaryOpLValue(const UnaryOperator * E)2931 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2932 // __extension__ doesn't affect lvalue-ness.
2933 if (E->getOpcode() == UO_Extension)
2934 return EmitLValue(E->getSubExpr());
2935
2936 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2937 switch (E->getOpcode()) {
2938 default: llvm_unreachable("Unknown unary operator lvalue!");
2939 case UO_Deref: {
2940 QualType T = E->getSubExpr()->getType()->getPointeeType();
2941 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2942
2943 LValueBaseInfo BaseInfo;
2944 TBAAAccessInfo TBAAInfo;
2945 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2946 &TBAAInfo);
2947 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2948 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2949
2950 // We should not generate __weak write barrier on indirect reference
2951 // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2952 // But, we continue to generate __strong write barrier on indirect write
2953 // into a pointer to object.
2954 if (getLangOpts().ObjC &&
2955 getLangOpts().getGC() != LangOptions::NonGC &&
2956 LV.isObjCWeak())
2957 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2958 return LV;
2959 }
2960 case UO_Real:
2961 case UO_Imag: {
2962 LValue LV = EmitLValue(E->getSubExpr());
2963 assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2964
2965 // __real is valid on scalars. This is a faster way of testing that.
2966 // __imag can only produce an rvalue on scalars.
2967 if (E->getOpcode() == UO_Real &&
2968 !LV.getAddress(*this).getElementType()->isStructTy()) {
2969 assert(E->getSubExpr()->getType()->isArithmeticType());
2970 return LV;
2971 }
2972
2973 QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2974
2975 Address Component =
2976 (E->getOpcode() == UO_Real
2977 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2978 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2979 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2980 CGM.getTBAAInfoForSubobject(LV, T));
2981 ElemLV.getQuals().addQualifiers(LV.getQuals());
2982 return ElemLV;
2983 }
2984 case UO_PreInc:
2985 case UO_PreDec: {
2986 LValue LV = EmitLValue(E->getSubExpr());
2987 bool isInc = E->getOpcode() == UO_PreInc;
2988
2989 if (E->getType()->isAnyComplexType())
2990 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2991 else
2992 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2993 return LV;
2994 }
2995 }
2996 }
2997
EmitStringLiteralLValue(const StringLiteral * E)2998 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2999 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
3000 E->getType(), AlignmentSource::Decl);
3001 }
3002
EmitObjCEncodeExprLValue(const ObjCEncodeExpr * E)3003 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
3004 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
3005 E->getType(), AlignmentSource::Decl);
3006 }
3007
EmitPredefinedLValue(const PredefinedExpr * E)3008 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
3009 auto SL = E->getFunctionName();
3010 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
3011 StringRef FnName = CurFn->getName();
3012 if (FnName.startswith("\01"))
3013 FnName = FnName.substr(1);
3014 StringRef NameItems[] = {
3015 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
3016 std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
3017 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
3018 std::string Name = std::string(SL->getString());
3019 if (!Name.empty()) {
3020 unsigned Discriminator =
3021 CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
3022 if (Discriminator)
3023 Name += "_" + Twine(Discriminator + 1).str();
3024 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
3025 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3026 } else {
3027 auto C =
3028 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
3029 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3030 }
3031 }
3032 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
3033 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3034 }
3035
3036 /// Emit a type description suitable for use by a runtime sanitizer library. The
3037 /// format of a type descriptor is
3038 ///
3039 /// \code
3040 /// { i16 TypeKind, i16 TypeInfo }
3041 /// \endcode
3042 ///
3043 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
3044 /// integer, 1 for a floating point value, and -1 for anything else.
EmitCheckTypeDescriptor(QualType T)3045 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
3046 // Only emit each type's descriptor once.
3047 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
3048 return C;
3049
3050 uint16_t TypeKind = -1;
3051 uint16_t TypeInfo = 0;
3052
3053 if (T->isIntegerType()) {
3054 TypeKind = 0;
3055 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
3056 (T->isSignedIntegerType() ? 1 : 0);
3057 } else if (T->isFloatingType()) {
3058 TypeKind = 1;
3059 TypeInfo = getContext().getTypeSize(T);
3060 }
3061
3062 // Format the type name as if for a diagnostic, including quotes and
3063 // optionally an 'aka'.
3064 SmallString<32> Buffer;
3065 CGM.getDiags().ConvertArgToString(
3066 DiagnosticsEngine::ak_qualtype, (intptr_t)T.getAsOpaquePtr(), StringRef(),
3067 StringRef(), std::nullopt, Buffer, std::nullopt);
3068
3069 llvm::Constant *Components[] = {
3070 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3071 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3072 };
3073 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3074
3075 auto *GV = new llvm::GlobalVariable(
3076 CGM.getModule(), Descriptor->getType(),
3077 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3078 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3079 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3080
3081 // Remember the descriptor for this type.
3082 CGM.setTypeDescriptorInMap(T, GV);
3083
3084 return GV;
3085 }
3086
EmitCheckValue(llvm::Value * V)3087 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3088 llvm::Type *TargetTy = IntPtrTy;
3089
3090 if (V->getType() == TargetTy)
3091 return V;
3092
3093 // Floating-point types which fit into intptr_t are bitcast to integers
3094 // and then passed directly (after zero-extension, if necessary).
3095 if (V->getType()->isFloatingPointTy()) {
3096 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedValue();
3097 if (Bits <= TargetTy->getIntegerBitWidth())
3098 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3099 Bits));
3100 }
3101
3102 // Integers which fit in intptr_t are zero-extended and passed directly.
3103 if (V->getType()->isIntegerTy() &&
3104 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3105 return Builder.CreateZExt(V, TargetTy);
3106
3107 // Pointers are passed directly, everything else is passed by address.
3108 if (!V->getType()->isPointerTy()) {
3109 Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3110 Builder.CreateStore(V, Ptr);
3111 V = Ptr.getPointer();
3112 }
3113 return Builder.CreatePtrToInt(V, TargetTy);
3114 }
3115
3116 /// Emit a representation of a SourceLocation for passing to a handler
3117 /// in a sanitizer runtime library. The format for this data is:
3118 /// \code
3119 /// struct SourceLocation {
3120 /// const char *Filename;
3121 /// int32_t Line, Column;
3122 /// };
3123 /// \endcode
3124 /// For an invalid SourceLocation, the Filename pointer is null.
EmitCheckSourceLocation(SourceLocation Loc)3125 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3126 llvm::Constant *Filename;
3127 int Line, Column;
3128
3129 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3130 if (PLoc.isValid()) {
3131 StringRef FilenameString = PLoc.getFilename();
3132
3133 int PathComponentsToStrip =
3134 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3135 if (PathComponentsToStrip < 0) {
3136 assert(PathComponentsToStrip != INT_MIN);
3137 int PathComponentsToKeep = -PathComponentsToStrip;
3138 auto I = llvm::sys::path::rbegin(FilenameString);
3139 auto E = llvm::sys::path::rend(FilenameString);
3140 while (I != E && --PathComponentsToKeep)
3141 ++I;
3142
3143 FilenameString = FilenameString.substr(I - E);
3144 } else if (PathComponentsToStrip > 0) {
3145 auto I = llvm::sys::path::begin(FilenameString);
3146 auto E = llvm::sys::path::end(FilenameString);
3147 while (I != E && PathComponentsToStrip--)
3148 ++I;
3149
3150 if (I != E)
3151 FilenameString =
3152 FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3153 else
3154 FilenameString = llvm::sys::path::filename(FilenameString);
3155 }
3156
3157 auto FilenameGV =
3158 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3159 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3160 cast<llvm::GlobalVariable>(
3161 FilenameGV.getPointer()->stripPointerCasts()));
3162 Filename = FilenameGV.getPointer();
3163 Line = PLoc.getLine();
3164 Column = PLoc.getColumn();
3165 } else {
3166 Filename = llvm::Constant::getNullValue(Int8PtrTy);
3167 Line = Column = 0;
3168 }
3169
3170 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3171 Builder.getInt32(Column)};
3172
3173 return llvm::ConstantStruct::getAnon(Data);
3174 }
3175
3176 namespace {
3177 /// Specify under what conditions this check can be recovered
3178 enum class CheckRecoverableKind {
3179 /// Always terminate program execution if this check fails.
3180 Unrecoverable,
3181 /// Check supports recovering, runtime has both fatal (noreturn) and
3182 /// non-fatal handlers for this check.
3183 Recoverable,
3184 /// Runtime conditionally aborts, always need to support recovery.
3185 AlwaysRecoverable
3186 };
3187 }
3188
getRecoverableKind(SanitizerMask Kind)3189 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3190 assert(Kind.countPopulation() == 1);
3191 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3192 return CheckRecoverableKind::AlwaysRecoverable;
3193 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3194 return CheckRecoverableKind::Unrecoverable;
3195 else
3196 return CheckRecoverableKind::Recoverable;
3197 }
3198
3199 namespace {
3200 struct SanitizerHandlerInfo {
3201 char const *const Name;
3202 unsigned Version;
3203 };
3204 }
3205
3206 const SanitizerHandlerInfo SanitizerHandlers[] = {
3207 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3208 LIST_SANITIZER_CHECKS
3209 #undef SANITIZER_CHECK
3210 };
3211
emitCheckHandlerCall(CodeGenFunction & CGF,llvm::FunctionType * FnType,ArrayRef<llvm::Value * > FnArgs,SanitizerHandler CheckHandler,CheckRecoverableKind RecoverKind,bool IsFatal,llvm::BasicBlock * ContBB)3212 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3213 llvm::FunctionType *FnType,
3214 ArrayRef<llvm::Value *> FnArgs,
3215 SanitizerHandler CheckHandler,
3216 CheckRecoverableKind RecoverKind, bool IsFatal,
3217 llvm::BasicBlock *ContBB) {
3218 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3219 std::optional<ApplyDebugLocation> DL;
3220 if (!CGF.Builder.getCurrentDebugLocation()) {
3221 // Ensure that the call has at least an artificial debug location.
3222 DL.emplace(CGF, SourceLocation());
3223 }
3224 bool NeedsAbortSuffix =
3225 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3226 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3227 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3228 const StringRef CheckName = CheckInfo.Name;
3229 std::string FnName = "__ubsan_handle_" + CheckName.str();
3230 if (CheckInfo.Version && !MinimalRuntime)
3231 FnName += "_v" + llvm::utostr(CheckInfo.Version);
3232 if (MinimalRuntime)
3233 FnName += "_minimal";
3234 if (NeedsAbortSuffix)
3235 FnName += "_abort";
3236 bool MayReturn =
3237 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3238
3239 llvm::AttrBuilder B(CGF.getLLVMContext());
3240 if (!MayReturn) {
3241 B.addAttribute(llvm::Attribute::NoReturn)
3242 .addAttribute(llvm::Attribute::NoUnwind);
3243 }
3244 B.addUWTableAttr(llvm::UWTableKind::Default);
3245
3246 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3247 FnType, FnName,
3248 llvm::AttributeList::get(CGF.getLLVMContext(),
3249 llvm::AttributeList::FunctionIndex, B),
3250 /*Local=*/true);
3251 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3252 if (!MayReturn) {
3253 HandlerCall->setDoesNotReturn();
3254 CGF.Builder.CreateUnreachable();
3255 } else {
3256 CGF.Builder.CreateBr(ContBB);
3257 }
3258 }
3259
EmitCheck(ArrayRef<std::pair<llvm::Value *,SanitizerMask>> Checked,SanitizerHandler CheckHandler,ArrayRef<llvm::Constant * > StaticArgs,ArrayRef<llvm::Value * > DynamicArgs)3260 void CodeGenFunction::EmitCheck(
3261 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3262 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3263 ArrayRef<llvm::Value *> DynamicArgs) {
3264 assert(IsSanitizerScope);
3265 assert(Checked.size() > 0);
3266 assert(CheckHandler >= 0 &&
3267 size_t(CheckHandler) < std::size(SanitizerHandlers));
3268 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3269
3270 llvm::Value *FatalCond = nullptr;
3271 llvm::Value *RecoverableCond = nullptr;
3272 llvm::Value *TrapCond = nullptr;
3273 for (int i = 0, n = Checked.size(); i < n; ++i) {
3274 llvm::Value *Check = Checked[i].first;
3275 // -fsanitize-trap= overrides -fsanitize-recover=.
3276 llvm::Value *&Cond =
3277 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3278 ? TrapCond
3279 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3280 ? RecoverableCond
3281 : FatalCond;
3282 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3283 }
3284
3285 if (TrapCond)
3286 EmitTrapCheck(TrapCond, CheckHandler);
3287 if (!FatalCond && !RecoverableCond)
3288 return;
3289
3290 llvm::Value *JointCond;
3291 if (FatalCond && RecoverableCond)
3292 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3293 else
3294 JointCond = FatalCond ? FatalCond : RecoverableCond;
3295 assert(JointCond);
3296
3297 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3298 assert(SanOpts.has(Checked[0].second));
3299 #ifndef NDEBUG
3300 for (int i = 1, n = Checked.size(); i < n; ++i) {
3301 assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3302 "All recoverable kinds in a single check must be same!");
3303 assert(SanOpts.has(Checked[i].second));
3304 }
3305 #endif
3306
3307 llvm::BasicBlock *Cont = createBasicBlock("cont");
3308 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3309 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3310 // Give hint that we very much don't expect to execute the handler
3311 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3312 llvm::MDBuilder MDHelper(getLLVMContext());
3313 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3314 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3315 EmitBlock(Handlers);
3316
3317 // Handler functions take an i8* pointing to the (handler-specific) static
3318 // information block, followed by a sequence of intptr_t arguments
3319 // representing operand values.
3320 SmallVector<llvm::Value *, 4> Args;
3321 SmallVector<llvm::Type *, 4> ArgTypes;
3322 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3323 Args.reserve(DynamicArgs.size() + 1);
3324 ArgTypes.reserve(DynamicArgs.size() + 1);
3325
3326 // Emit handler arguments and create handler function type.
3327 if (!StaticArgs.empty()) {
3328 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3329 auto *InfoPtr = new llvm::GlobalVariable(
3330 CGM.getModule(), Info->getType(), false,
3331 llvm::GlobalVariable::PrivateLinkage, Info, "", nullptr,
3332 llvm::GlobalVariable::NotThreadLocal,
3333 CGM.getDataLayout().getDefaultGlobalsAddressSpace());
3334 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3335 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3336 Args.push_back(EmitCastToVoidPtr(InfoPtr));
3337 ArgTypes.push_back(Args.back()->getType());
3338 }
3339
3340 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3341 Args.push_back(EmitCheckValue(DynamicArgs[i]));
3342 ArgTypes.push_back(IntPtrTy);
3343 }
3344 }
3345
3346 llvm::FunctionType *FnType =
3347 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3348
3349 if (!FatalCond || !RecoverableCond) {
3350 // Simple case: we need to generate a single handler call, either
3351 // fatal, or non-fatal.
3352 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3353 (FatalCond != nullptr), Cont);
3354 } else {
3355 // Emit two handler calls: first one for set of unrecoverable checks,
3356 // another one for recoverable.
3357 llvm::BasicBlock *NonFatalHandlerBB =
3358 createBasicBlock("non_fatal." + CheckName);
3359 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3360 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3361 EmitBlock(FatalHandlerBB);
3362 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3363 NonFatalHandlerBB);
3364 EmitBlock(NonFatalHandlerBB);
3365 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3366 Cont);
3367 }
3368
3369 EmitBlock(Cont);
3370 }
3371
EmitCfiSlowPathCheck(SanitizerMask Kind,llvm::Value * Cond,llvm::ConstantInt * TypeId,llvm::Value * Ptr,ArrayRef<llvm::Constant * > StaticArgs)3372 void CodeGenFunction::EmitCfiSlowPathCheck(
3373 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3374 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3375 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3376
3377 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3378 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3379
3380 llvm::MDBuilder MDHelper(getLLVMContext());
3381 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3382 BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3383
3384 EmitBlock(CheckBB);
3385
3386 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3387
3388 llvm::CallInst *CheckCall;
3389 llvm::FunctionCallee SlowPathFn;
3390 if (WithDiag) {
3391 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3392 auto *InfoPtr =
3393 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3394 llvm::GlobalVariable::PrivateLinkage, Info);
3395 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3396 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3397
3398 SlowPathFn = CGM.getModule().getOrInsertFunction(
3399 "__cfi_slowpath_diag",
3400 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3401 false));
3402 CheckCall = Builder.CreateCall(
3403 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3404 } else {
3405 SlowPathFn = CGM.getModule().getOrInsertFunction(
3406 "__cfi_slowpath",
3407 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3408 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3409 }
3410
3411 CGM.setDSOLocal(
3412 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3413 CheckCall->setDoesNotThrow();
3414
3415 EmitBlock(Cont);
3416 }
3417
3418 // Emit a stub for __cfi_check function so that the linker knows about this
3419 // symbol in LTO mode.
EmitCfiCheckStub()3420 void CodeGenFunction::EmitCfiCheckStub() {
3421 llvm::Module *M = &CGM.getModule();
3422 auto &Ctx = M->getContext();
3423 llvm::Function *F = llvm::Function::Create(
3424 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3425 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3426 CGM.setDSOLocal(F);
3427 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3428 // FIXME: consider emitting an intrinsic call like
3429 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3430 // which can be lowered in CrossDSOCFI pass to the actual contents of
3431 // __cfi_check. This would allow inlining of __cfi_check calls.
3432 llvm::CallInst::Create(
3433 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3434 llvm::ReturnInst::Create(Ctx, nullptr, BB);
3435 }
3436
3437 // This function is basically a switch over the CFI failure kind, which is
3438 // extracted from CFICheckFailData (1st function argument). Each case is either
3439 // llvm.trap or a call to one of the two runtime handlers, based on
3440 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid
3441 // failure kind) traps, but this should really never happen. CFICheckFailData
3442 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3443 // check kind; in this case __cfi_check_fail traps as well.
EmitCfiCheckFail()3444 void CodeGenFunction::EmitCfiCheckFail() {
3445 SanitizerScope SanScope(this);
3446 FunctionArgList Args;
3447 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3448 ImplicitParamDecl::Other);
3449 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3450 ImplicitParamDecl::Other);
3451 Args.push_back(&ArgData);
3452 Args.push_back(&ArgAddr);
3453
3454 const CGFunctionInfo &FI =
3455 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3456
3457 llvm::Function *F = llvm::Function::Create(
3458 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3459 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3460
3461 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3462 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3463 F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3464
3465 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3466 SourceLocation());
3467
3468 // This function is not affected by NoSanitizeList. This function does
3469 // not have a source location, but "src:*" would still apply. Revert any
3470 // changes to SanOpts made in StartFunction.
3471 SanOpts = CGM.getLangOpts().Sanitize;
3472
3473 llvm::Value *Data =
3474 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3475 CGM.getContext().VoidPtrTy, ArgData.getLocation());
3476 llvm::Value *Addr =
3477 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3478 CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3479
3480 // Data == nullptr means the calling module has trap behaviour for this check.
3481 llvm::Value *DataIsNotNullPtr =
3482 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3483 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3484
3485 llvm::StructType *SourceLocationTy =
3486 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3487 llvm::StructType *CfiCheckFailDataTy =
3488 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3489
3490 llvm::Value *V = Builder.CreateConstGEP2_32(
3491 CfiCheckFailDataTy,
3492 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3493 0);
3494
3495 Address CheckKindAddr(V, Int8Ty, getIntAlign());
3496 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3497
3498 llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3499 CGM.getLLVMContext(),
3500 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3501 llvm::Value *ValidVtable = Builder.CreateZExt(
3502 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3503 {Addr, AllVtables}),
3504 IntPtrTy);
3505
3506 const std::pair<int, SanitizerMask> CheckKinds[] = {
3507 {CFITCK_VCall, SanitizerKind::CFIVCall},
3508 {CFITCK_NVCall, SanitizerKind::CFINVCall},
3509 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3510 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3511 {CFITCK_ICall, SanitizerKind::CFIICall}};
3512
3513 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3514 for (auto CheckKindMaskPair : CheckKinds) {
3515 int Kind = CheckKindMaskPair.first;
3516 SanitizerMask Mask = CheckKindMaskPair.second;
3517 llvm::Value *Cond =
3518 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3519 if (CGM.getLangOpts().Sanitize.has(Mask))
3520 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3521 {Data, Addr, ValidVtable});
3522 else
3523 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3524 }
3525
3526 FinishFunction();
3527 // The only reference to this function will be created during LTO link.
3528 // Make sure it survives until then.
3529 CGM.addUsedGlobal(F);
3530 }
3531
EmitUnreachable(SourceLocation Loc)3532 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3533 if (SanOpts.has(SanitizerKind::Unreachable)) {
3534 SanitizerScope SanScope(this);
3535 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3536 SanitizerKind::Unreachable),
3537 SanitizerHandler::BuiltinUnreachable,
3538 EmitCheckSourceLocation(Loc), std::nullopt);
3539 }
3540 Builder.CreateUnreachable();
3541 }
3542
EmitTrapCheck(llvm::Value * Checked,SanitizerHandler CheckHandlerID)3543 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3544 SanitizerHandler CheckHandlerID) {
3545 llvm::BasicBlock *Cont = createBasicBlock("cont");
3546
3547 // If we're optimizing, collapse all calls to trap down to just one per
3548 // check-type per function to save on code size.
3549 if (TrapBBs.size() <= CheckHandlerID)
3550 TrapBBs.resize(CheckHandlerID + 1);
3551 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3552
3553 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB ||
3554 (CurCodeDecl && CurCodeDecl->hasAttr<OptimizeNoneAttr>())) {
3555 TrapBB = createBasicBlock("trap");
3556 Builder.CreateCondBr(Checked, Cont, TrapBB);
3557 EmitBlock(TrapBB);
3558
3559 llvm::CallInst *TrapCall =
3560 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3561 llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID));
3562
3563 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3564 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3565 CGM.getCodeGenOpts().TrapFuncName);
3566 TrapCall->addFnAttr(A);
3567 }
3568 TrapCall->setDoesNotReturn();
3569 TrapCall->setDoesNotThrow();
3570 Builder.CreateUnreachable();
3571 } else {
3572 auto Call = TrapBB->begin();
3573 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3574
3575 Call->applyMergedLocation(Call->getDebugLoc(),
3576 Builder.getCurrentDebugLocation());
3577 Builder.CreateCondBr(Checked, Cont, TrapBB);
3578 }
3579
3580 EmitBlock(Cont);
3581 }
3582
EmitTrapCall(llvm::Intrinsic::ID IntrID)3583 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3584 llvm::CallInst *TrapCall =
3585 Builder.CreateCall(CGM.getIntrinsic(IntrID));
3586
3587 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3588 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3589 CGM.getCodeGenOpts().TrapFuncName);
3590 TrapCall->addFnAttr(A);
3591 }
3592
3593 return TrapCall;
3594 }
3595
EmitArrayToPointerDecay(const Expr * E,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)3596 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3597 LValueBaseInfo *BaseInfo,
3598 TBAAAccessInfo *TBAAInfo) {
3599 assert(E->getType()->isArrayType() &&
3600 "Array to pointer decay must have array source type!");
3601
3602 // Expressions of array type can't be bitfields or vector elements.
3603 LValue LV = EmitLValue(E);
3604 Address Addr = LV.getAddress(*this);
3605
3606 // If the array type was an incomplete type, we need to make sure
3607 // the decay ends up being the right type.
3608 llvm::Type *NewTy = ConvertType(E->getType());
3609 Addr = Builder.CreateElementBitCast(Addr, NewTy);
3610
3611 // Note that VLA pointers are always decayed, so we don't need to do
3612 // anything here.
3613 if (!E->getType()->isVariableArrayType()) {
3614 assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3615 "Expected pointer to array");
3616 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3617 }
3618
3619 // The result of this decay conversion points to an array element within the
3620 // base lvalue. However, since TBAA currently does not support representing
3621 // accesses to elements of member arrays, we conservatively represent accesses
3622 // to the pointee object as if it had no any base lvalue specified.
3623 // TODO: Support TBAA for member arrays.
3624 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3625 if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3626 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3627
3628 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3629 }
3630
3631 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3632 /// array to pointer, return the array subexpression.
isSimpleArrayDecayOperand(const Expr * E)3633 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3634 // If this isn't just an array->pointer decay, bail out.
3635 const auto *CE = dyn_cast<CastExpr>(E);
3636 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3637 return nullptr;
3638
3639 // If this is a decay from variable width array, bail out.
3640 const Expr *SubExpr = CE->getSubExpr();
3641 if (SubExpr->getType()->isVariableArrayType())
3642 return nullptr;
3643
3644 return SubExpr;
3645 }
3646
emitArraySubscriptGEP(CodeGenFunction & CGF,llvm::Type * elemType,llvm::Value * ptr,ArrayRef<llvm::Value * > indices,bool inbounds,bool signedIndices,SourceLocation loc,const llvm::Twine & name="arrayidx")3647 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3648 llvm::Type *elemType,
3649 llvm::Value *ptr,
3650 ArrayRef<llvm::Value*> indices,
3651 bool inbounds,
3652 bool signedIndices,
3653 SourceLocation loc,
3654 const llvm::Twine &name = "arrayidx") {
3655 if (inbounds) {
3656 return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices,
3657 CodeGenFunction::NotSubtraction, loc,
3658 name);
3659 } else {
3660 return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3661 }
3662 }
3663
getArrayElementAlign(CharUnits arrayAlign,llvm::Value * idx,CharUnits eltSize)3664 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3665 llvm::Value *idx,
3666 CharUnits eltSize) {
3667 // If we have a constant index, we can use the exact offset of the
3668 // element we're accessing.
3669 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3670 CharUnits offset = constantIdx->getZExtValue() * eltSize;
3671 return arrayAlign.alignmentAtOffset(offset);
3672
3673 // Otherwise, use the worst-case alignment for any element.
3674 } else {
3675 return arrayAlign.alignmentOfArrayElement(eltSize);
3676 }
3677 }
3678
getFixedSizeElementType(const ASTContext & ctx,const VariableArrayType * vla)3679 static QualType getFixedSizeElementType(const ASTContext &ctx,
3680 const VariableArrayType *vla) {
3681 QualType eltType;
3682 do {
3683 eltType = vla->getElementType();
3684 } while ((vla = ctx.getAsVariableArrayType(eltType)));
3685 return eltType;
3686 }
3687
3688 /// Given an array base, check whether its member access belongs to a record
3689 /// with preserve_access_index attribute or not.
IsPreserveAIArrayBase(CodeGenFunction & CGF,const Expr * ArrayBase)3690 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3691 if (!ArrayBase || !CGF.getDebugInfo())
3692 return false;
3693
3694 // Only support base as either a MemberExpr or DeclRefExpr.
3695 // DeclRefExpr to cover cases like:
3696 // struct s { int a; int b[10]; };
3697 // struct s *p;
3698 // p[1].a
3699 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3700 // p->b[5] is a MemberExpr example.
3701 const Expr *E = ArrayBase->IgnoreImpCasts();
3702 if (const auto *ME = dyn_cast<MemberExpr>(E))
3703 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3704
3705 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3706 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3707 if (!VarDef)
3708 return false;
3709
3710 const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3711 if (!PtrT)
3712 return false;
3713
3714 const auto *PointeeT = PtrT->getPointeeType()
3715 ->getUnqualifiedDesugaredType();
3716 if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3717 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3718 return false;
3719 }
3720
3721 return false;
3722 }
3723
emitArraySubscriptGEP(CodeGenFunction & CGF,Address addr,ArrayRef<llvm::Value * > indices,QualType eltType,bool inbounds,bool signedIndices,SourceLocation loc,QualType * arrayType=nullptr,const Expr * Base=nullptr,const llvm::Twine & name="arrayidx")3724 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3725 ArrayRef<llvm::Value *> indices,
3726 QualType eltType, bool inbounds,
3727 bool signedIndices, SourceLocation loc,
3728 QualType *arrayType = nullptr,
3729 const Expr *Base = nullptr,
3730 const llvm::Twine &name = "arrayidx") {
3731 // All the indices except that last must be zero.
3732 #ifndef NDEBUG
3733 for (auto *idx : indices.drop_back())
3734 assert(isa<llvm::ConstantInt>(idx) &&
3735 cast<llvm::ConstantInt>(idx)->isZero());
3736 #endif
3737
3738 // Determine the element size of the statically-sized base. This is
3739 // the thing that the indices are expressed in terms of.
3740 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3741 eltType = getFixedSizeElementType(CGF.getContext(), vla);
3742 }
3743
3744 // We can use that to compute the best alignment of the element.
3745 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3746 CharUnits eltAlign =
3747 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3748
3749 llvm::Value *eltPtr;
3750 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3751 if (!LastIndex ||
3752 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3753 eltPtr = emitArraySubscriptGEP(
3754 CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
3755 signedIndices, loc, name);
3756 } else {
3757 // Remember the original array subscript for bpf target
3758 unsigned idx = LastIndex->getZExtValue();
3759 llvm::DIType *DbgInfo = nullptr;
3760 if (arrayType)
3761 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3762 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3763 addr.getPointer(),
3764 indices.size() - 1,
3765 idx, DbgInfo);
3766 }
3767
3768 return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign);
3769 }
3770
EmitArraySubscriptExpr(const ArraySubscriptExpr * E,bool Accessed)3771 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3772 bool Accessed) {
3773 // The index must always be an integer, which is not an aggregate. Emit it
3774 // in lexical order (this complexity is, sadly, required by C++17).
3775 llvm::Value *IdxPre =
3776 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3777 bool SignedIndices = false;
3778 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3779 auto *Idx = IdxPre;
3780 if (E->getLHS() != E->getIdx()) {
3781 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3782 Idx = EmitScalarExpr(E->getIdx());
3783 }
3784
3785 QualType IdxTy = E->getIdx()->getType();
3786 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3787 SignedIndices |= IdxSigned;
3788
3789 if (SanOpts.has(SanitizerKind::ArrayBounds))
3790 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3791
3792 // Extend or truncate the index type to 32 or 64-bits.
3793 if (Promote && Idx->getType() != IntPtrTy)
3794 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3795
3796 return Idx;
3797 };
3798 IdxPre = nullptr;
3799
3800 // If the base is a vector type, then we are forming a vector element lvalue
3801 // with this subscript.
3802 if (E->getBase()->getType()->isVectorType() &&
3803 !isa<ExtVectorElementExpr>(E->getBase())) {
3804 // Emit the vector as an lvalue to get its address.
3805 LValue LHS = EmitLValue(E->getBase());
3806 auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3807 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3808 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3809 E->getBase()->getType(), LHS.getBaseInfo(),
3810 TBAAAccessInfo());
3811 }
3812
3813 // All the other cases basically behave like simple offsetting.
3814
3815 // Handle the extvector case we ignored above.
3816 if (isa<ExtVectorElementExpr>(E->getBase())) {
3817 LValue LV = EmitLValue(E->getBase());
3818 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3819 Address Addr = EmitExtVectorElementLValue(LV);
3820
3821 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3822 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3823 SignedIndices, E->getExprLoc());
3824 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3825 CGM.getTBAAInfoForSubobject(LV, EltType));
3826 }
3827
3828 LValueBaseInfo EltBaseInfo;
3829 TBAAAccessInfo EltTBAAInfo;
3830 Address Addr = Address::invalid();
3831 if (const VariableArrayType *vla =
3832 getContext().getAsVariableArrayType(E->getType())) {
3833 // The base must be a pointer, which is not an aggregate. Emit
3834 // it. It needs to be emitted first in case it's what captures
3835 // the VLA bounds.
3836 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3837 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3838
3839 // The element count here is the total number of non-VLA elements.
3840 llvm::Value *numElements = getVLASize(vla).NumElts;
3841
3842 // Effectively, the multiply by the VLA size is part of the GEP.
3843 // GEP indexes are signed, and scaling an index isn't permitted to
3844 // signed-overflow, so we use the same semantics for our explicit
3845 // multiply. We suppress this if overflow is not undefined behavior.
3846 if (getLangOpts().isSignedOverflowDefined()) {
3847 Idx = Builder.CreateMul(Idx, numElements);
3848 } else {
3849 Idx = Builder.CreateNSWMul(Idx, numElements);
3850 }
3851
3852 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3853 !getLangOpts().isSignedOverflowDefined(),
3854 SignedIndices, E->getExprLoc());
3855
3856 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3857 // Indexing over an interface, as in "NSString *P; P[4];"
3858
3859 // Emit the base pointer.
3860 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3861 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3862
3863 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3864 llvm::Value *InterfaceSizeVal =
3865 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3866
3867 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3868
3869 // We don't necessarily build correct LLVM struct types for ObjC
3870 // interfaces, so we can't rely on GEP to do this scaling
3871 // correctly, so we need to cast to i8*. FIXME: is this actually
3872 // true? A lot of other things in the fragile ABI would break...
3873 llvm::Type *OrigBaseElemTy = Addr.getElementType();
3874 Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3875
3876 // Do the GEP.
3877 CharUnits EltAlign =
3878 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3879 llvm::Value *EltPtr =
3880 emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(),
3881 ScaledIdx, false, SignedIndices, E->getExprLoc());
3882 Addr = Address(EltPtr, Addr.getElementType(), EltAlign);
3883
3884 // Cast back.
3885 Addr = Builder.CreateElementBitCast(Addr, OrigBaseElemTy);
3886 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3887 // If this is A[i] where A is an array, the frontend will have decayed the
3888 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
3889 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3890 // "gep x, i" here. Emit one "gep A, 0, i".
3891 assert(Array->getType()->isArrayType() &&
3892 "Array to pointer decay must have array source type!");
3893 LValue ArrayLV;
3894 // For simple multidimensional array indexing, set the 'accessed' flag for
3895 // better bounds-checking of the base expression.
3896 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3897 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3898 else
3899 ArrayLV = EmitLValue(Array);
3900 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3901
3902 // Propagate the alignment from the array itself to the result.
3903 QualType arrayType = Array->getType();
3904 Addr = emitArraySubscriptGEP(
3905 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3906 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3907 E->getExprLoc(), &arrayType, E->getBase());
3908 EltBaseInfo = ArrayLV.getBaseInfo();
3909 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3910 } else {
3911 // The base must be a pointer; emit it with an estimate of its alignment.
3912 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3913 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3914 QualType ptrType = E->getBase()->getType();
3915 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3916 !getLangOpts().isSignedOverflowDefined(),
3917 SignedIndices, E->getExprLoc(), &ptrType,
3918 E->getBase());
3919 }
3920
3921 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3922
3923 if (getLangOpts().ObjC &&
3924 getLangOpts().getGC() != LangOptions::NonGC) {
3925 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3926 setObjCGCLValueClass(getContext(), E, LV);
3927 }
3928 return LV;
3929 }
3930
EmitMatrixSubscriptExpr(const MatrixSubscriptExpr * E)3931 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3932 assert(
3933 !E->isIncomplete() &&
3934 "incomplete matrix subscript expressions should be rejected during Sema");
3935 LValue Base = EmitLValue(E->getBase());
3936 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3937 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3938 llvm::Value *NumRows = Builder.getIntN(
3939 RowIdx->getType()->getScalarSizeInBits(),
3940 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
3941 llvm::Value *FinalIdx =
3942 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3943 return LValue::MakeMatrixElt(
3944 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3945 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3946 }
3947
emitOMPArraySectionBase(CodeGenFunction & CGF,const Expr * Base,LValueBaseInfo & BaseInfo,TBAAAccessInfo & TBAAInfo,QualType BaseTy,QualType ElTy,bool IsLowerBound)3948 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3949 LValueBaseInfo &BaseInfo,
3950 TBAAAccessInfo &TBAAInfo,
3951 QualType BaseTy, QualType ElTy,
3952 bool IsLowerBound) {
3953 LValue BaseLVal;
3954 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3955 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3956 if (BaseTy->isArrayType()) {
3957 Address Addr = BaseLVal.getAddress(CGF);
3958 BaseInfo = BaseLVal.getBaseInfo();
3959
3960 // If the array type was an incomplete type, we need to make sure
3961 // the decay ends up being the right type.
3962 llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3963 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3964
3965 // Note that VLA pointers are always decayed, so we don't need to do
3966 // anything here.
3967 if (!BaseTy->isVariableArrayType()) {
3968 assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3969 "Expected pointer to array");
3970 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3971 }
3972
3973 return CGF.Builder.CreateElementBitCast(Addr,
3974 CGF.ConvertTypeForMem(ElTy));
3975 }
3976 LValueBaseInfo TypeBaseInfo;
3977 TBAAAccessInfo TypeTBAAInfo;
3978 CharUnits Align =
3979 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3980 BaseInfo.mergeForCast(TypeBaseInfo);
3981 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3982 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)),
3983 CGF.ConvertTypeForMem(ElTy), Align);
3984 }
3985 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3986 }
3987
EmitOMPArraySectionExpr(const OMPArraySectionExpr * E,bool IsLowerBound)3988 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3989 bool IsLowerBound) {
3990 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3991 QualType ResultExprTy;
3992 if (auto *AT = getContext().getAsArrayType(BaseTy))
3993 ResultExprTy = AT->getElementType();
3994 else
3995 ResultExprTy = BaseTy->getPointeeType();
3996 llvm::Value *Idx = nullptr;
3997 if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
3998 // Requesting lower bound or upper bound, but without provided length and
3999 // without ':' symbol for the default length -> length = 1.
4000 // Idx = LowerBound ?: 0;
4001 if (auto *LowerBound = E->getLowerBound()) {
4002 Idx = Builder.CreateIntCast(
4003 EmitScalarExpr(LowerBound), IntPtrTy,
4004 LowerBound->getType()->hasSignedIntegerRepresentation());
4005 } else
4006 Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
4007 } else {
4008 // Try to emit length or lower bound as constant. If this is possible, 1
4009 // is subtracted from constant length or lower bound. Otherwise, emit LLVM
4010 // IR (LB + Len) - 1.
4011 auto &C = CGM.getContext();
4012 auto *Length = E->getLength();
4013 llvm::APSInt ConstLength;
4014 if (Length) {
4015 // Idx = LowerBound + Length - 1;
4016 if (std::optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
4017 ConstLength = CL->zextOrTrunc(PointerWidthInBits);
4018 Length = nullptr;
4019 }
4020 auto *LowerBound = E->getLowerBound();
4021 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
4022 if (LowerBound) {
4023 if (std::optional<llvm::APSInt> LB =
4024 LowerBound->getIntegerConstantExpr(C)) {
4025 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
4026 LowerBound = nullptr;
4027 }
4028 }
4029 if (!Length)
4030 --ConstLength;
4031 else if (!LowerBound)
4032 --ConstLowerBound;
4033
4034 if (Length || LowerBound) {
4035 auto *LowerBoundVal =
4036 LowerBound
4037 ? Builder.CreateIntCast(
4038 EmitScalarExpr(LowerBound), IntPtrTy,
4039 LowerBound->getType()->hasSignedIntegerRepresentation())
4040 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
4041 auto *LengthVal =
4042 Length
4043 ? Builder.CreateIntCast(
4044 EmitScalarExpr(Length), IntPtrTy,
4045 Length->getType()->hasSignedIntegerRepresentation())
4046 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
4047 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
4048 /*HasNUW=*/false,
4049 !getLangOpts().isSignedOverflowDefined());
4050 if (Length && LowerBound) {
4051 Idx = Builder.CreateSub(
4052 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
4053 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4054 }
4055 } else
4056 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
4057 } else {
4058 // Idx = ArraySize - 1;
4059 QualType ArrayTy = BaseTy->isPointerType()
4060 ? E->getBase()->IgnoreParenImpCasts()->getType()
4061 : BaseTy;
4062 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
4063 Length = VAT->getSizeExpr();
4064 if (std::optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
4065 ConstLength = *L;
4066 Length = nullptr;
4067 }
4068 } else {
4069 auto *CAT = C.getAsConstantArrayType(ArrayTy);
4070 ConstLength = CAT->getSize();
4071 }
4072 if (Length) {
4073 auto *LengthVal = Builder.CreateIntCast(
4074 EmitScalarExpr(Length), IntPtrTy,
4075 Length->getType()->hasSignedIntegerRepresentation());
4076 Idx = Builder.CreateSub(
4077 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4078 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4079 } else {
4080 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4081 --ConstLength;
4082 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4083 }
4084 }
4085 }
4086 assert(Idx);
4087
4088 Address EltPtr = Address::invalid();
4089 LValueBaseInfo BaseInfo;
4090 TBAAAccessInfo TBAAInfo;
4091 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4092 // The base must be a pointer, which is not an aggregate. Emit
4093 // it. It needs to be emitted first in case it's what captures
4094 // the VLA bounds.
4095 Address Base =
4096 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4097 BaseTy, VLA->getElementType(), IsLowerBound);
4098 // The element count here is the total number of non-VLA elements.
4099 llvm::Value *NumElements = getVLASize(VLA).NumElts;
4100
4101 // Effectively, the multiply by the VLA size is part of the GEP.
4102 // GEP indexes are signed, and scaling an index isn't permitted to
4103 // signed-overflow, so we use the same semantics for our explicit
4104 // multiply. We suppress this if overflow is not undefined behavior.
4105 if (getLangOpts().isSignedOverflowDefined())
4106 Idx = Builder.CreateMul(Idx, NumElements);
4107 else
4108 Idx = Builder.CreateNSWMul(Idx, NumElements);
4109 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4110 !getLangOpts().isSignedOverflowDefined(),
4111 /*signedIndices=*/false, E->getExprLoc());
4112 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4113 // If this is A[i] where A is an array, the frontend will have decayed the
4114 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
4115 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4116 // "gep x, i" here. Emit one "gep A, 0, i".
4117 assert(Array->getType()->isArrayType() &&
4118 "Array to pointer decay must have array source type!");
4119 LValue ArrayLV;
4120 // For simple multidimensional array indexing, set the 'accessed' flag for
4121 // better bounds-checking of the base expression.
4122 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4123 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4124 else
4125 ArrayLV = EmitLValue(Array);
4126
4127 // Propagate the alignment from the array itself to the result.
4128 EltPtr = emitArraySubscriptGEP(
4129 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4130 ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4131 /*signedIndices=*/false, E->getExprLoc());
4132 BaseInfo = ArrayLV.getBaseInfo();
4133 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4134 } else {
4135 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4136 TBAAInfo, BaseTy, ResultExprTy,
4137 IsLowerBound);
4138 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4139 !getLangOpts().isSignedOverflowDefined(),
4140 /*signedIndices=*/false, E->getExprLoc());
4141 }
4142
4143 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4144 }
4145
4146 LValue CodeGenFunction::
EmitExtVectorElementExpr(const ExtVectorElementExpr * E)4147 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4148 // Emit the base vector as an l-value.
4149 LValue Base;
4150
4151 // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4152 if (E->isArrow()) {
4153 // If it is a pointer to a vector, emit the address and form an lvalue with
4154 // it.
4155 LValueBaseInfo BaseInfo;
4156 TBAAAccessInfo TBAAInfo;
4157 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4158 const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4159 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4160 Base.getQuals().removeObjCGCAttr();
4161 } else if (E->getBase()->isGLValue()) {
4162 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4163 // emit the base as an lvalue.
4164 assert(E->getBase()->getType()->isVectorType());
4165 Base = EmitLValue(E->getBase());
4166 } else {
4167 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4168 assert(E->getBase()->getType()->isVectorType() &&
4169 "Result must be a vector");
4170 llvm::Value *Vec = EmitScalarExpr(E->getBase());
4171
4172 // Store the vector to memory (because LValue wants an address).
4173 Address VecMem = CreateMemTemp(E->getBase()->getType());
4174 Builder.CreateStore(Vec, VecMem);
4175 Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4176 AlignmentSource::Decl);
4177 }
4178
4179 QualType type =
4180 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4181
4182 // Encode the element access list into a vector of unsigned indices.
4183 SmallVector<uint32_t, 4> Indices;
4184 E->getEncodedElementAccess(Indices);
4185
4186 if (Base.isSimple()) {
4187 llvm::Constant *CV =
4188 llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4189 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4190 Base.getBaseInfo(), TBAAAccessInfo());
4191 }
4192 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4193
4194 llvm::Constant *BaseElts = Base.getExtVectorElts();
4195 SmallVector<llvm::Constant *, 4> CElts;
4196
4197 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4198 CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4199 llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4200 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4201 Base.getBaseInfo(), TBAAAccessInfo());
4202 }
4203
EmitMemberExpr(const MemberExpr * E)4204 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4205 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4206 EmitIgnoredExpr(E->getBase());
4207 return EmitDeclRefLValue(DRE);
4208 }
4209
4210 Expr *BaseExpr = E->getBase();
4211 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
4212 LValue BaseLV;
4213 if (E->isArrow()) {
4214 LValueBaseInfo BaseInfo;
4215 TBAAAccessInfo TBAAInfo;
4216 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4217 QualType PtrTy = BaseExpr->getType()->getPointeeType();
4218 SanitizerSet SkippedChecks;
4219 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4220 if (IsBaseCXXThis)
4221 SkippedChecks.set(SanitizerKind::Alignment, true);
4222 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4223 SkippedChecks.set(SanitizerKind::Null, true);
4224 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4225 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4226 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4227 } else
4228 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4229
4230 NamedDecl *ND = E->getMemberDecl();
4231 if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4232 LValue LV = EmitLValueForField(BaseLV, Field);
4233 setObjCGCLValueClass(getContext(), E, LV);
4234 if (getLangOpts().OpenMP) {
4235 // If the member was explicitly marked as nontemporal, mark it as
4236 // nontemporal. If the base lvalue is marked as nontemporal, mark access
4237 // to children as nontemporal too.
4238 if ((IsWrappedCXXThis(BaseExpr) &&
4239 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4240 BaseLV.isNontemporal())
4241 LV.setNontemporal(/*Value=*/true);
4242 }
4243 return LV;
4244 }
4245
4246 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4247 return EmitFunctionDeclLValue(*this, E, FD);
4248
4249 llvm_unreachable("Unhandled member declaration!");
4250 }
4251
4252 /// Given that we are currently emitting a lambda, emit an l-value for
4253 /// one of its members.
EmitLValueForLambdaField(const FieldDecl * Field)4254 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4255 if (CurCodeDecl) {
4256 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4257 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4258 }
4259 QualType LambdaTagType =
4260 getContext().getTagDeclType(Field->getParent());
4261 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4262 return EmitLValueForField(LambdaLV, Field);
4263 }
4264
4265 /// Get the field index in the debug info. The debug info structure/union
4266 /// will ignore the unnamed bitfields.
getDebugInfoFIndex(const RecordDecl * Rec,unsigned FieldIndex)4267 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4268 unsigned FieldIndex) {
4269 unsigned I = 0, Skipped = 0;
4270
4271 for (auto *F : Rec->getDefinition()->fields()) {
4272 if (I == FieldIndex)
4273 break;
4274 if (F->isUnnamedBitfield())
4275 Skipped++;
4276 I++;
4277 }
4278
4279 return FieldIndex - Skipped;
4280 }
4281
4282 /// Get the address of a zero-sized field within a record. The resulting
4283 /// address doesn't necessarily have the right type.
emitAddrOfZeroSizeField(CodeGenFunction & CGF,Address Base,const FieldDecl * Field)4284 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4285 const FieldDecl *Field) {
4286 CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4287 CGF.getContext().getFieldOffset(Field));
4288 if (Offset.isZero())
4289 return Base;
4290 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4291 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4292 }
4293
4294 /// Drill down to the storage of a field without walking into
4295 /// reference types.
4296 ///
4297 /// The resulting address doesn't necessarily have the right type.
emitAddrOfFieldStorage(CodeGenFunction & CGF,Address base,const FieldDecl * field)4298 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4299 const FieldDecl *field) {
4300 if (field->isZeroSize(CGF.getContext()))
4301 return emitAddrOfZeroSizeField(CGF, base, field);
4302
4303 const RecordDecl *rec = field->getParent();
4304
4305 unsigned idx =
4306 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4307
4308 return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4309 }
4310
emitPreserveStructAccess(CodeGenFunction & CGF,LValue base,Address addr,const FieldDecl * field)4311 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4312 Address addr, const FieldDecl *field) {
4313 const RecordDecl *rec = field->getParent();
4314 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4315 base.getType(), rec->getLocation());
4316
4317 unsigned idx =
4318 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4319
4320 return CGF.Builder.CreatePreserveStructAccessIndex(
4321 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4322 }
4323
hasAnyVptr(const QualType Type,const ASTContext & Context)4324 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4325 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4326 if (!RD)
4327 return false;
4328
4329 if (RD->isDynamicClass())
4330 return true;
4331
4332 for (const auto &Base : RD->bases())
4333 if (hasAnyVptr(Base.getType(), Context))
4334 return true;
4335
4336 for (const FieldDecl *Field : RD->fields())
4337 if (hasAnyVptr(Field->getType(), Context))
4338 return true;
4339
4340 return false;
4341 }
4342
EmitLValueForField(LValue base,const FieldDecl * field)4343 LValue CodeGenFunction::EmitLValueForField(LValue base,
4344 const FieldDecl *field) {
4345 LValueBaseInfo BaseInfo = base.getBaseInfo();
4346
4347 if (field->isBitField()) {
4348 const CGRecordLayout &RL =
4349 CGM.getTypes().getCGRecordLayout(field->getParent());
4350 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4351 const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4352 CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4353 Info.VolatileStorageSize != 0 &&
4354 field->getType()
4355 .withCVRQualifiers(base.getVRQualifiers())
4356 .isVolatileQualified();
4357 Address Addr = base.getAddress(*this);
4358 unsigned Idx = RL.getLLVMFieldNo(field);
4359 const RecordDecl *rec = field->getParent();
4360 if (!UseVolatile) {
4361 if (!IsInPreservedAIRegion &&
4362 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4363 if (Idx != 0)
4364 // For structs, we GEP to the field that the record layout suggests.
4365 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4366 } else {
4367 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4368 getContext().getRecordType(rec), rec->getLocation());
4369 Addr = Builder.CreatePreserveStructAccessIndex(
4370 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4371 DbgInfo);
4372 }
4373 }
4374 const unsigned SS =
4375 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4376 // Get the access type.
4377 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4378 if (Addr.getElementType() != FieldIntTy)
4379 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4380 if (UseVolatile) {
4381 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4382 if (VolatileOffset)
4383 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4384 }
4385
4386 QualType fieldType =
4387 field->getType().withCVRQualifiers(base.getVRQualifiers());
4388 // TODO: Support TBAA for bit fields.
4389 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4390 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4391 TBAAAccessInfo());
4392 }
4393
4394 // Fields of may-alias structures are may-alias themselves.
4395 // FIXME: this should get propagated down through anonymous structs
4396 // and unions.
4397 QualType FieldType = field->getType();
4398 const RecordDecl *rec = field->getParent();
4399 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4400 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4401 TBAAAccessInfo FieldTBAAInfo;
4402 if (base.getTBAAInfo().isMayAlias() ||
4403 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4404 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4405 } else if (rec->isUnion()) {
4406 // TODO: Support TBAA for unions.
4407 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4408 } else {
4409 // If no base type been assigned for the base access, then try to generate
4410 // one for this base lvalue.
4411 FieldTBAAInfo = base.getTBAAInfo();
4412 if (!FieldTBAAInfo.BaseType) {
4413 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4414 assert(!FieldTBAAInfo.Offset &&
4415 "Nonzero offset for an access with no base type!");
4416 }
4417
4418 // Adjust offset to be relative to the base type.
4419 const ASTRecordLayout &Layout =
4420 getContext().getASTRecordLayout(field->getParent());
4421 unsigned CharWidth = getContext().getCharWidth();
4422 if (FieldTBAAInfo.BaseType)
4423 FieldTBAAInfo.Offset +=
4424 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4425
4426 // Update the final access type and size.
4427 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4428 FieldTBAAInfo.Size =
4429 getContext().getTypeSizeInChars(FieldType).getQuantity();
4430 }
4431
4432 Address addr = base.getAddress(*this);
4433 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4434 if (CGM.getCodeGenOpts().StrictVTablePointers &&
4435 ClassDef->isDynamicClass()) {
4436 // Getting to any field of dynamic object requires stripping dynamic
4437 // information provided by invariant.group. This is because accessing
4438 // fields may leak the real address of dynamic object, which could result
4439 // in miscompilation when leaked pointer would be compared.
4440 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4441 addr = Address(stripped, addr.getElementType(), addr.getAlignment());
4442 }
4443 }
4444
4445 unsigned RecordCVR = base.getVRQualifiers();
4446 if (rec->isUnion()) {
4447 // For unions, there is no pointer adjustment.
4448 if (CGM.getCodeGenOpts().StrictVTablePointers &&
4449 hasAnyVptr(FieldType, getContext()))
4450 // Because unions can easily skip invariant.barriers, we need to add
4451 // a barrier every time CXXRecord field with vptr is referenced.
4452 addr = Builder.CreateLaunderInvariantGroup(addr);
4453
4454 if (IsInPreservedAIRegion ||
4455 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4456 // Remember the original union field index
4457 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4458 rec->getLocation());
4459 addr = Address(
4460 Builder.CreatePreserveUnionAccessIndex(
4461 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4462 addr.getElementType(), addr.getAlignment());
4463 }
4464
4465 if (FieldType->isReferenceType())
4466 addr = Builder.CreateElementBitCast(
4467 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4468 } else {
4469 if (!IsInPreservedAIRegion &&
4470 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4471 // For structs, we GEP to the field that the record layout suggests.
4472 addr = emitAddrOfFieldStorage(*this, addr, field);
4473 else
4474 // Remember the original struct field index
4475 addr = emitPreserveStructAccess(*this, base, addr, field);
4476 }
4477
4478 // If this is a reference field, load the reference right now.
4479 if (FieldType->isReferenceType()) {
4480 LValue RefLVal =
4481 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4482 if (RecordCVR & Qualifiers::Volatile)
4483 RefLVal.getQuals().addVolatile();
4484 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4485
4486 // Qualifiers on the struct don't apply to the referencee.
4487 RecordCVR = 0;
4488 FieldType = FieldType->getPointeeType();
4489 }
4490
4491 // Make sure that the address is pointing to the right type. This is critical
4492 // for both unions and structs. A union needs a bitcast, a struct element
4493 // will need a bitcast if the LLVM type laid out doesn't match the desired
4494 // type.
4495 addr = Builder.CreateElementBitCast(
4496 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4497
4498 if (field->hasAttr<AnnotateAttr>())
4499 addr = EmitFieldAnnotations(field, addr);
4500
4501 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4502 LV.getQuals().addCVRQualifiers(RecordCVR);
4503
4504 // __weak attribute on a field is ignored.
4505 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4506 LV.getQuals().removeObjCGCAttr();
4507
4508 return LV;
4509 }
4510
4511 LValue
EmitLValueForFieldInitialization(LValue Base,const FieldDecl * Field)4512 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4513 const FieldDecl *Field) {
4514 QualType FieldType = Field->getType();
4515
4516 if (!FieldType->isReferenceType())
4517 return EmitLValueForField(Base, Field);
4518
4519 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4520
4521 // Make sure that the address is pointing to the right type.
4522 llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4523 V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4524
4525 // TODO: Generate TBAA information that describes this access as a structure
4526 // member access and not just an access to an object of the field's type. This
4527 // should be similar to what we do in EmitLValueForField().
4528 LValueBaseInfo BaseInfo = Base.getBaseInfo();
4529 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4530 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4531 return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4532 CGM.getTBAAInfoForSubobject(Base, FieldType));
4533 }
4534
EmitCompoundLiteralLValue(const CompoundLiteralExpr * E)4535 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4536 if (E->isFileScope()) {
4537 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4538 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4539 }
4540 if (E->getType()->isVariablyModifiedType())
4541 // make sure to emit the VLA size.
4542 EmitVariablyModifiedType(E->getType());
4543
4544 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4545 const Expr *InitExpr = E->getInitializer();
4546 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4547
4548 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4549 /*Init*/ true);
4550
4551 // Block-scope compound literals are destroyed at the end of the enclosing
4552 // scope in C.
4553 if (!getLangOpts().CPlusPlus)
4554 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4555 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4556 E->getType(), getDestroyer(DtorKind),
4557 DtorKind & EHCleanup);
4558
4559 return Result;
4560 }
4561
EmitInitListLValue(const InitListExpr * E)4562 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4563 if (!E->isGLValue())
4564 // Initializing an aggregate temporary in C++11: T{...}.
4565 return EmitAggExprToLValue(E);
4566
4567 // An lvalue initializer list must be initializing a reference.
4568 assert(E->isTransparent() && "non-transparent glvalue init list");
4569 return EmitLValue(E->getInit(0));
4570 }
4571
4572 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4573 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4574 /// LValue is returned and the current block has been terminated.
EmitLValueOrThrowExpression(CodeGenFunction & CGF,const Expr * Operand)4575 static std::optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4576 const Expr *Operand) {
4577 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4578 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4579 return std::nullopt;
4580 }
4581
4582 return CGF.EmitLValue(Operand);
4583 }
4584
4585 namespace {
4586 // Handle the case where the condition is a constant evaluatable simple integer,
4587 // which means we don't have to separately handle the true/false blocks.
HandleConditionalOperatorLValueSimpleCase(CodeGenFunction & CGF,const AbstractConditionalOperator * E)4588 std::optional<LValue> HandleConditionalOperatorLValueSimpleCase(
4589 CodeGenFunction &CGF, const AbstractConditionalOperator *E) {
4590 const Expr *condExpr = E->getCond();
4591 bool CondExprBool;
4592 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4593 const Expr *Live = E->getTrueExpr(), *Dead = E->getFalseExpr();
4594 if (!CondExprBool)
4595 std::swap(Live, Dead);
4596
4597 if (!CGF.ContainsLabel(Dead)) {
4598 // If the true case is live, we need to track its region.
4599 if (CondExprBool)
4600 CGF.incrementProfileCounter(E);
4601 // If a throw expression we emit it and return an undefined lvalue
4602 // because it can't be used.
4603 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Live->IgnoreParens())) {
4604 CGF.EmitCXXThrowExpr(ThrowExpr);
4605 llvm::Type *ElemTy = CGF.ConvertType(Dead->getType());
4606 llvm::Type *Ty = llvm::PointerType::getUnqual(ElemTy);
4607 return CGF.MakeAddrLValue(
4608 Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()),
4609 Dead->getType());
4610 }
4611 return CGF.EmitLValue(Live);
4612 }
4613 }
4614 return std::nullopt;
4615 }
4616 struct ConditionalInfo {
4617 llvm::BasicBlock *lhsBlock, *rhsBlock;
4618 std::optional<LValue> LHS, RHS;
4619 };
4620
4621 // Create and generate the 3 blocks for a conditional operator.
4622 // Leaves the 'current block' in the continuation basic block.
4623 template<typename FuncTy>
EmitConditionalBlocks(CodeGenFunction & CGF,const AbstractConditionalOperator * E,const FuncTy & BranchGenFunc)4624 ConditionalInfo EmitConditionalBlocks(CodeGenFunction &CGF,
4625 const AbstractConditionalOperator *E,
4626 const FuncTy &BranchGenFunc) {
4627 ConditionalInfo Info{CGF.createBasicBlock("cond.true"),
4628 CGF.createBasicBlock("cond.false"), std::nullopt,
4629 std::nullopt};
4630 llvm::BasicBlock *endBlock = CGF.createBasicBlock("cond.end");
4631
4632 CodeGenFunction::ConditionalEvaluation eval(CGF);
4633 CGF.EmitBranchOnBoolExpr(E->getCond(), Info.lhsBlock, Info.rhsBlock,
4634 CGF.getProfileCount(E));
4635
4636 // Any temporaries created here are conditional.
4637 CGF.EmitBlock(Info.lhsBlock);
4638 CGF.incrementProfileCounter(E);
4639 eval.begin(CGF);
4640 Info.LHS = BranchGenFunc(CGF, E->getTrueExpr());
4641 eval.end(CGF);
4642 Info.lhsBlock = CGF.Builder.GetInsertBlock();
4643
4644 if (Info.LHS)
4645 CGF.Builder.CreateBr(endBlock);
4646
4647 // Any temporaries created here are conditional.
4648 CGF.EmitBlock(Info.rhsBlock);
4649 eval.begin(CGF);
4650 Info.RHS = BranchGenFunc(CGF, E->getFalseExpr());
4651 eval.end(CGF);
4652 Info.rhsBlock = CGF.Builder.GetInsertBlock();
4653 CGF.EmitBlock(endBlock);
4654
4655 return Info;
4656 }
4657 } // namespace
4658
EmitIgnoredConditionalOperator(const AbstractConditionalOperator * E)4659 void CodeGenFunction::EmitIgnoredConditionalOperator(
4660 const AbstractConditionalOperator *E) {
4661 if (!E->isGLValue()) {
4662 // ?: here should be an aggregate.
4663 assert(hasAggregateEvaluationKind(E->getType()) &&
4664 "Unexpected conditional operator!");
4665 return (void)EmitAggExprToLValue(E);
4666 }
4667
4668 OpaqueValueMapping binding(*this, E);
4669 if (HandleConditionalOperatorLValueSimpleCase(*this, E))
4670 return;
4671
4672 EmitConditionalBlocks(*this, E, [](CodeGenFunction &CGF, const Expr *E) {
4673 CGF.EmitIgnoredExpr(E);
4674 return LValue{};
4675 });
4676 }
EmitConditionalOperatorLValue(const AbstractConditionalOperator * expr)4677 LValue CodeGenFunction::EmitConditionalOperatorLValue(
4678 const AbstractConditionalOperator *expr) {
4679 if (!expr->isGLValue()) {
4680 // ?: here should be an aggregate.
4681 assert(hasAggregateEvaluationKind(expr->getType()) &&
4682 "Unexpected conditional operator!");
4683 return EmitAggExprToLValue(expr);
4684 }
4685
4686 OpaqueValueMapping binding(*this, expr);
4687 if (std::optional<LValue> Res =
4688 HandleConditionalOperatorLValueSimpleCase(*this, expr))
4689 return *Res;
4690
4691 ConditionalInfo Info = EmitConditionalBlocks(
4692 *this, expr, [](CodeGenFunction &CGF, const Expr *E) {
4693 return EmitLValueOrThrowExpression(CGF, E);
4694 });
4695
4696 if ((Info.LHS && !Info.LHS->isSimple()) ||
4697 (Info.RHS && !Info.RHS->isSimple()))
4698 return EmitUnsupportedLValue(expr, "conditional operator");
4699
4700 if (Info.LHS && Info.RHS) {
4701 Address lhsAddr = Info.LHS->getAddress(*this);
4702 Address rhsAddr = Info.RHS->getAddress(*this);
4703 llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue");
4704 phi->addIncoming(lhsAddr.getPointer(), Info.lhsBlock);
4705 phi->addIncoming(rhsAddr.getPointer(), Info.rhsBlock);
4706 Address result(phi, lhsAddr.getElementType(),
4707 std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment()));
4708 AlignmentSource alignSource =
4709 std::max(Info.LHS->getBaseInfo().getAlignmentSource(),
4710 Info.RHS->getBaseInfo().getAlignmentSource());
4711 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4712 Info.LHS->getTBAAInfo(), Info.RHS->getTBAAInfo());
4713 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4714 TBAAInfo);
4715 } else {
4716 assert((Info.LHS || Info.RHS) &&
4717 "both operands of glvalue conditional are throw-expressions?");
4718 return Info.LHS ? *Info.LHS : *Info.RHS;
4719 }
4720 }
4721
4722 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4723 /// type. If the cast is to a reference, we can have the usual lvalue result,
4724 /// otherwise if a cast is needed by the code generator in an lvalue context,
4725 /// then it must mean that we need the address of an aggregate in order to
4726 /// access one of its members. This can happen for all the reasons that casts
4727 /// are permitted with aggregate result, including noop aggregate casts, and
4728 /// cast from scalar to union.
EmitCastLValue(const CastExpr * E)4729 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4730 switch (E->getCastKind()) {
4731 case CK_ToVoid:
4732 case CK_BitCast:
4733 case CK_LValueToRValueBitCast:
4734 case CK_ArrayToPointerDecay:
4735 case CK_FunctionToPointerDecay:
4736 case CK_NullToMemberPointer:
4737 case CK_NullToPointer:
4738 case CK_IntegralToPointer:
4739 case CK_PointerToIntegral:
4740 case CK_PointerToBoolean:
4741 case CK_VectorSplat:
4742 case CK_IntegralCast:
4743 case CK_BooleanToSignedIntegral:
4744 case CK_IntegralToBoolean:
4745 case CK_IntegralToFloating:
4746 case CK_FloatingToIntegral:
4747 case CK_FloatingToBoolean:
4748 case CK_FloatingCast:
4749 case CK_FloatingRealToComplex:
4750 case CK_FloatingComplexToReal:
4751 case CK_FloatingComplexToBoolean:
4752 case CK_FloatingComplexCast:
4753 case CK_FloatingComplexToIntegralComplex:
4754 case CK_IntegralRealToComplex:
4755 case CK_IntegralComplexToReal:
4756 case CK_IntegralComplexToBoolean:
4757 case CK_IntegralComplexCast:
4758 case CK_IntegralComplexToFloatingComplex:
4759 case CK_DerivedToBaseMemberPointer:
4760 case CK_BaseToDerivedMemberPointer:
4761 case CK_MemberPointerToBoolean:
4762 case CK_ReinterpretMemberPointer:
4763 case CK_AnyPointerToBlockPointerCast:
4764 case CK_ARCProduceObject:
4765 case CK_ARCConsumeObject:
4766 case CK_ARCReclaimReturnedObject:
4767 case CK_ARCExtendBlockObject:
4768 case CK_CopyAndAutoreleaseBlockObject:
4769 case CK_IntToOCLSampler:
4770 case CK_FloatingToFixedPoint:
4771 case CK_FixedPointToFloating:
4772 case CK_FixedPointCast:
4773 case CK_FixedPointToBoolean:
4774 case CK_FixedPointToIntegral:
4775 case CK_IntegralToFixedPoint:
4776 case CK_MatrixCast:
4777 return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4778
4779 case CK_Dependent:
4780 llvm_unreachable("dependent cast kind in IR gen!");
4781
4782 case CK_BuiltinFnToFnPtr:
4783 llvm_unreachable("builtin functions are handled elsewhere");
4784
4785 // These are never l-values; just use the aggregate emission code.
4786 case CK_NonAtomicToAtomic:
4787 case CK_AtomicToNonAtomic:
4788 return EmitAggExprToLValue(E);
4789
4790 case CK_Dynamic: {
4791 LValue LV = EmitLValue(E->getSubExpr());
4792 Address V = LV.getAddress(*this);
4793 const auto *DCE = cast<CXXDynamicCastExpr>(E);
4794 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4795 }
4796
4797 case CK_ConstructorConversion:
4798 case CK_UserDefinedConversion:
4799 case CK_CPointerToObjCPointerCast:
4800 case CK_BlockPointerToObjCPointerCast:
4801 case CK_LValueToRValue:
4802 return EmitLValue(E->getSubExpr());
4803
4804 case CK_NoOp: {
4805 // CK_NoOp can model a qualification conversion, which can remove an array
4806 // bound and change the IR type.
4807 // FIXME: Once pointee types are removed from IR, remove this.
4808 LValue LV = EmitLValue(E->getSubExpr());
4809 if (LV.isSimple()) {
4810 Address V = LV.getAddress(*this);
4811 if (V.isValid()) {
4812 llvm::Type *T = ConvertTypeForMem(E->getType());
4813 if (V.getElementType() != T)
4814 LV.setAddress(Builder.CreateElementBitCast(V, T));
4815 }
4816 }
4817 return LV;
4818 }
4819
4820 case CK_UncheckedDerivedToBase:
4821 case CK_DerivedToBase: {
4822 const auto *DerivedClassTy =
4823 E->getSubExpr()->getType()->castAs<RecordType>();
4824 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4825
4826 LValue LV = EmitLValue(E->getSubExpr());
4827 Address This = LV.getAddress(*this);
4828
4829 // Perform the derived-to-base conversion
4830 Address Base = GetAddressOfBaseClass(
4831 This, DerivedClassDecl, E->path_begin(), E->path_end(),
4832 /*NullCheckValue=*/false, E->getExprLoc());
4833
4834 // TODO: Support accesses to members of base classes in TBAA. For now, we
4835 // conservatively pretend that the complete object is of the base class
4836 // type.
4837 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4838 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4839 }
4840 case CK_ToUnion:
4841 return EmitAggExprToLValue(E);
4842 case CK_BaseToDerived: {
4843 const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4844 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4845
4846 LValue LV = EmitLValue(E->getSubExpr());
4847
4848 // Perform the base-to-derived conversion
4849 Address Derived = GetAddressOfDerivedClass(
4850 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4851 /*NullCheckValue=*/false);
4852
4853 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4854 // performed and the object is not of the derived type.
4855 if (sanitizePerformTypeCheck())
4856 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4857 Derived.getPointer(), E->getType());
4858
4859 if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4860 EmitVTablePtrCheckForCast(E->getType(), Derived,
4861 /*MayBeNull=*/false, CFITCK_DerivedCast,
4862 E->getBeginLoc());
4863
4864 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4865 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4866 }
4867 case CK_LValueBitCast: {
4868 // This must be a reinterpret_cast (or c-style equivalent).
4869 const auto *CE = cast<ExplicitCastExpr>(E);
4870
4871 CGM.EmitExplicitCastExprType(CE, this);
4872 LValue LV = EmitLValue(E->getSubExpr());
4873 Address V = Builder.CreateElementBitCast(
4874 LV.getAddress(*this),
4875 ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType()));
4876
4877 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4878 EmitVTablePtrCheckForCast(E->getType(), V,
4879 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4880 E->getBeginLoc());
4881
4882 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4883 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4884 }
4885 case CK_AddressSpaceConversion: {
4886 LValue LV = EmitLValue(E->getSubExpr());
4887 QualType DestTy = getContext().getPointerType(E->getType());
4888 llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4889 *this, LV.getPointer(*this),
4890 E->getSubExpr()->getType().getAddressSpace(),
4891 E->getType().getAddressSpace(), ConvertType(DestTy));
4892 return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()),
4893 LV.getAddress(*this).getAlignment()),
4894 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4895 }
4896 case CK_ObjCObjectLValueCast: {
4897 LValue LV = EmitLValue(E->getSubExpr());
4898 Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4899 ConvertType(E->getType()));
4900 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4901 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4902 }
4903 case CK_ZeroToOCLOpaqueType:
4904 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4905 }
4906
4907 llvm_unreachable("Unhandled lvalue cast kind?");
4908 }
4909
EmitOpaqueValueLValue(const OpaqueValueExpr * e)4910 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4911 assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4912 return getOrCreateOpaqueLValueMapping(e);
4913 }
4914
4915 LValue
getOrCreateOpaqueLValueMapping(const OpaqueValueExpr * e)4916 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4917 assert(OpaqueValueMapping::shouldBindAsLValue(e));
4918
4919 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4920 it = OpaqueLValues.find(e);
4921
4922 if (it != OpaqueLValues.end())
4923 return it->second;
4924
4925 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4926 return EmitLValue(e->getSourceExpr());
4927 }
4928
4929 RValue
getOrCreateOpaqueRValueMapping(const OpaqueValueExpr * e)4930 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4931 assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4932
4933 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4934 it = OpaqueRValues.find(e);
4935
4936 if (it != OpaqueRValues.end())
4937 return it->second;
4938
4939 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4940 return EmitAnyExpr(e->getSourceExpr());
4941 }
4942
EmitRValueForField(LValue LV,const FieldDecl * FD,SourceLocation Loc)4943 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4944 const FieldDecl *FD,
4945 SourceLocation Loc) {
4946 QualType FT = FD->getType();
4947 LValue FieldLV = EmitLValueForField(LV, FD);
4948 switch (getEvaluationKind(FT)) {
4949 case TEK_Complex:
4950 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4951 case TEK_Aggregate:
4952 return FieldLV.asAggregateRValue(*this);
4953 case TEK_Scalar:
4954 // This routine is used to load fields one-by-one to perform a copy, so
4955 // don't load reference fields.
4956 if (FD->getType()->isReferenceType())
4957 return RValue::get(FieldLV.getPointer(*this));
4958 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4959 // primitive load.
4960 if (FieldLV.isBitField())
4961 return EmitLoadOfLValue(FieldLV, Loc);
4962 return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4963 }
4964 llvm_unreachable("bad evaluation kind");
4965 }
4966
4967 //===--------------------------------------------------------------------===//
4968 // Expression Emission
4969 //===--------------------------------------------------------------------===//
4970
EmitCallExpr(const CallExpr * E,ReturnValueSlot ReturnValue)4971 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4972 ReturnValueSlot ReturnValue) {
4973 // Builtins never have block type.
4974 if (E->getCallee()->getType()->isBlockPointerType())
4975 return EmitBlockCallExpr(E, ReturnValue);
4976
4977 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4978 return EmitCXXMemberCallExpr(CE, ReturnValue);
4979
4980 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4981 return EmitCUDAKernelCallExpr(CE, ReturnValue);
4982
4983 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4984 if (const CXXMethodDecl *MD =
4985 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4986 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4987
4988 CGCallee callee = EmitCallee(E->getCallee());
4989
4990 if (callee.isBuiltin()) {
4991 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4992 E, ReturnValue);
4993 }
4994
4995 if (callee.isPseudoDestructor()) {
4996 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4997 }
4998
4999 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
5000 }
5001
5002 /// Emit a CallExpr without considering whether it might be a subclass.
EmitSimpleCallExpr(const CallExpr * E,ReturnValueSlot ReturnValue)5003 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
5004 ReturnValueSlot ReturnValue) {
5005 CGCallee Callee = EmitCallee(E->getCallee());
5006 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
5007 }
5008
5009 // Detect the unusual situation where an inline version is shadowed by a
5010 // non-inline version. In that case we should pick the external one
5011 // everywhere. That's GCC behavior too.
OnlyHasInlineBuiltinDeclaration(const FunctionDecl * FD)5012 static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl *FD) {
5013 for (const FunctionDecl *PD = FD; PD; PD = PD->getPreviousDecl())
5014 if (!PD->isInlineBuiltinDeclaration())
5015 return false;
5016 return true;
5017 }
5018
EmitDirectCallee(CodeGenFunction & CGF,GlobalDecl GD)5019 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
5020 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
5021
5022 if (auto builtinID = FD->getBuiltinID()) {
5023 std::string NoBuiltinFD = ("no-builtin-" + FD->getName()).str();
5024 std::string NoBuiltins = "no-builtins";
5025
5026 StringRef Ident = CGF.CGM.getMangledName(GD);
5027 std::string FDInlineName = (Ident + ".inline").str();
5028
5029 bool IsPredefinedLibFunction =
5030 CGF.getContext().BuiltinInfo.isPredefinedLibFunction(builtinID);
5031 bool HasAttributeNoBuiltin =
5032 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltinFD) ||
5033 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltins);
5034
5035 // When directing calling an inline builtin, call it through it's mangled
5036 // name to make it clear it's not the actual builtin.
5037 if (CGF.CurFn->getName() != FDInlineName &&
5038 OnlyHasInlineBuiltinDeclaration(FD)) {
5039 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
5040 llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr);
5041 llvm::Module *M = Fn->getParent();
5042 llvm::Function *Clone = M->getFunction(FDInlineName);
5043 if (!Clone) {
5044 Clone = llvm::Function::Create(Fn->getFunctionType(),
5045 llvm::GlobalValue::InternalLinkage,
5046 Fn->getAddressSpace(), FDInlineName, M);
5047 Clone->addFnAttr(llvm::Attribute::AlwaysInline);
5048 }
5049 return CGCallee::forDirect(Clone, GD);
5050 }
5051
5052 // Replaceable builtins provide their own implementation of a builtin. If we
5053 // are in an inline builtin implementation, avoid trivial infinite
5054 // recursion. Honor __attribute__((no_builtin("foo"))) or
5055 // __attribute__((no_builtin)) on the current function unless foo is
5056 // not a predefined library function which means we must generate the
5057 // builtin no matter what.
5058 else if (!IsPredefinedLibFunction || !HasAttributeNoBuiltin)
5059 return CGCallee::forBuiltin(builtinID, FD);
5060 }
5061
5062 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
5063 if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
5064 FD->hasAttr<CUDAGlobalAttr>())
5065 CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
5066 cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
5067
5068 return CGCallee::forDirect(CalleePtr, GD);
5069 }
5070
EmitCallee(const Expr * E)5071 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
5072 E = E->IgnoreParens();
5073
5074 // Look through function-to-pointer decay.
5075 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
5076 if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
5077 ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
5078 return EmitCallee(ICE->getSubExpr());
5079 }
5080
5081 // Resolve direct calls.
5082 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
5083 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
5084 return EmitDirectCallee(*this, FD);
5085 }
5086 } else if (auto ME = dyn_cast<MemberExpr>(E)) {
5087 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
5088 EmitIgnoredExpr(ME->getBase());
5089 return EmitDirectCallee(*this, FD);
5090 }
5091
5092 // Look through template substitutions.
5093 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
5094 return EmitCallee(NTTP->getReplacement());
5095
5096 // Treat pseudo-destructor calls differently.
5097 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
5098 return CGCallee::forPseudoDestructor(PDE);
5099 }
5100
5101 // Otherwise, we have an indirect reference.
5102 llvm::Value *calleePtr;
5103 QualType functionType;
5104 if (auto ptrType = E->getType()->getAs<PointerType>()) {
5105 calleePtr = EmitScalarExpr(E);
5106 functionType = ptrType->getPointeeType();
5107 } else {
5108 functionType = E->getType();
5109 calleePtr = EmitLValue(E).getPointer(*this);
5110 }
5111 assert(functionType->isFunctionType());
5112
5113 GlobalDecl GD;
5114 if (const auto *VD =
5115 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
5116 GD = GlobalDecl(VD);
5117
5118 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
5119 CGCallee callee(calleeInfo, calleePtr);
5120 return callee;
5121 }
5122
EmitBinaryOperatorLValue(const BinaryOperator * E)5123 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
5124 // Comma expressions just emit their LHS then their RHS as an l-value.
5125 if (E->getOpcode() == BO_Comma) {
5126 EmitIgnoredExpr(E->getLHS());
5127 EnsureInsertPoint();
5128 return EmitLValue(E->getRHS());
5129 }
5130
5131 if (E->getOpcode() == BO_PtrMemD ||
5132 E->getOpcode() == BO_PtrMemI)
5133 return EmitPointerToDataMemberBinaryExpr(E);
5134
5135 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
5136
5137 // Note that in all of these cases, __block variables need the RHS
5138 // evaluated first just in case the variable gets moved by the RHS.
5139
5140 switch (getEvaluationKind(E->getType())) {
5141 case TEK_Scalar: {
5142 switch (E->getLHS()->getType().getObjCLifetime()) {
5143 case Qualifiers::OCL_Strong:
5144 return EmitARCStoreStrong(E, /*ignored*/ false).first;
5145
5146 case Qualifiers::OCL_Autoreleasing:
5147 return EmitARCStoreAutoreleasing(E).first;
5148
5149 // No reason to do any of these differently.
5150 case Qualifiers::OCL_None:
5151 case Qualifiers::OCL_ExplicitNone:
5152 case Qualifiers::OCL_Weak:
5153 break;
5154 }
5155
5156 RValue RV = EmitAnyExpr(E->getRHS());
5157 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
5158 if (RV.isScalar())
5159 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
5160 EmitStoreThroughLValue(RV, LV);
5161 if (getLangOpts().OpenMP)
5162 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5163 E->getLHS());
5164 return LV;
5165 }
5166
5167 case TEK_Complex:
5168 return EmitComplexAssignmentLValue(E);
5169
5170 case TEK_Aggregate:
5171 return EmitAggExprToLValue(E);
5172 }
5173 llvm_unreachable("bad evaluation kind");
5174 }
5175
EmitCallExprLValue(const CallExpr * E)5176 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5177 RValue RV = EmitCallExpr(E);
5178
5179 if (!RV.isScalar())
5180 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5181 AlignmentSource::Decl);
5182
5183 assert(E->getCallReturnType(getContext())->isReferenceType() &&
5184 "Can't have a scalar return unless the return type is a "
5185 "reference type!");
5186
5187 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5188 }
5189
EmitVAArgExprLValue(const VAArgExpr * E)5190 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5191 // FIXME: This shouldn't require another copy.
5192 return EmitAggExprToLValue(E);
5193 }
5194
EmitCXXConstructLValue(const CXXConstructExpr * E)5195 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5196 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5197 && "binding l-value to type which needs a temporary");
5198 AggValueSlot Slot = CreateAggTemp(E->getType());
5199 EmitCXXConstructExpr(E, Slot);
5200 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5201 }
5202
5203 LValue
EmitCXXTypeidLValue(const CXXTypeidExpr * E)5204 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5205 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5206 }
5207
EmitCXXUuidofExpr(const CXXUuidofExpr * E)5208 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5209 return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
5210 ConvertType(E->getType()));
5211 }
5212
EmitCXXUuidofLValue(const CXXUuidofExpr * E)5213 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5214 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5215 AlignmentSource::Decl);
5216 }
5217
5218 LValue
EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr * E)5219 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5220 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5221 Slot.setExternallyDestructed();
5222 EmitAggExpr(E->getSubExpr(), Slot);
5223 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5224 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5225 }
5226
EmitObjCMessageExprLValue(const ObjCMessageExpr * E)5227 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5228 RValue RV = EmitObjCMessageExpr(E);
5229
5230 if (!RV.isScalar())
5231 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5232 AlignmentSource::Decl);
5233
5234 assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5235 "Can't have a scalar return unless the return type is a "
5236 "reference type!");
5237
5238 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5239 }
5240
EmitObjCSelectorLValue(const ObjCSelectorExpr * E)5241 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5242 Address V =
5243 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5244 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5245 }
5246
EmitIvarOffset(const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)5247 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5248 const ObjCIvarDecl *Ivar) {
5249 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5250 }
5251
5252 llvm::Value *
EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)5253 CodeGenFunction::EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface,
5254 const ObjCIvarDecl *Ivar) {
5255 llvm::Value *OffsetValue = EmitIvarOffset(Interface, Ivar);
5256 QualType PointerDiffType = getContext().getPointerDiffType();
5257 return Builder.CreateZExtOrTrunc(OffsetValue,
5258 getTypes().ConvertType(PointerDiffType));
5259 }
5260
EmitLValueForIvar(QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)5261 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5262 llvm::Value *BaseValue,
5263 const ObjCIvarDecl *Ivar,
5264 unsigned CVRQualifiers) {
5265 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5266 Ivar, CVRQualifiers);
5267 }
5268
EmitObjCIvarRefLValue(const ObjCIvarRefExpr * E)5269 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5270 // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5271 llvm::Value *BaseValue = nullptr;
5272 const Expr *BaseExpr = E->getBase();
5273 Qualifiers BaseQuals;
5274 QualType ObjectTy;
5275 if (E->isArrow()) {
5276 BaseValue = EmitScalarExpr(BaseExpr);
5277 ObjectTy = BaseExpr->getType()->getPointeeType();
5278 BaseQuals = ObjectTy.getQualifiers();
5279 } else {
5280 LValue BaseLV = EmitLValue(BaseExpr);
5281 BaseValue = BaseLV.getPointer(*this);
5282 ObjectTy = BaseExpr->getType();
5283 BaseQuals = ObjectTy.getQualifiers();
5284 }
5285
5286 LValue LV =
5287 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5288 BaseQuals.getCVRQualifiers());
5289 setObjCGCLValueClass(getContext(), E, LV);
5290 return LV;
5291 }
5292
EmitStmtExprLValue(const StmtExpr * E)5293 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5294 // Can only get l-value for message expression returning aggregate type
5295 RValue RV = EmitAnyExprToTemp(E);
5296 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5297 AlignmentSource::Decl);
5298 }
5299
EmitCall(QualType CalleeType,const CGCallee & OrigCallee,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Value * Chain)5300 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5301 const CallExpr *E, ReturnValueSlot ReturnValue,
5302 llvm::Value *Chain) {
5303 // Get the actual function type. The callee type will always be a pointer to
5304 // function type or a block pointer type.
5305 assert(CalleeType->isFunctionPointerType() &&
5306 "Call must have function pointer type!");
5307
5308 const Decl *TargetDecl =
5309 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5310
5311 CalleeType = getContext().getCanonicalType(CalleeType);
5312
5313 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5314
5315 CGCallee Callee = OrigCallee;
5316
5317 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5318 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5319 if (llvm::Constant *PrefixSig =
5320 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5321 SanitizerScope SanScope(this);
5322 // Remove any (C++17) exception specifications, to allow calling e.g. a
5323 // noexcept function through a non-noexcept pointer.
5324 auto ProtoTy =
5325 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5326 llvm::Constant *FTRTTIConst =
5327 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5328 llvm::Type *PrefixSigType = PrefixSig->getType();
5329 llvm::StructType *PrefixStructTy = llvm::StructType::get(
5330 CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5331
5332 llvm::Value *CalleePtr = Callee.getFunctionPointer();
5333
5334 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5335 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5336 llvm::Value *CalleeSigPtr =
5337 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5338 llvm::Value *CalleeSig =
5339 Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5340 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5341
5342 llvm::BasicBlock *Cont = createBasicBlock("cont");
5343 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5344 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5345
5346 EmitBlock(TypeCheck);
5347 llvm::Value *CalleeRTTIPtr =
5348 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5349 llvm::Value *CalleeRTTIEncoded =
5350 Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign());
5351 llvm::Value *CalleeRTTI =
5352 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5353 llvm::Value *CalleeRTTIMatch =
5354 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5355 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5356 EmitCheckTypeDescriptor(CalleeType)};
5357 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5358 SanitizerHandler::FunctionTypeMismatch, StaticData,
5359 {CalleePtr, CalleeRTTI, FTRTTIConst});
5360
5361 Builder.CreateBr(Cont);
5362 EmitBlock(Cont);
5363 }
5364 }
5365
5366 const auto *FnType = cast<FunctionType>(PointeeType);
5367
5368 // If we are checking indirect calls and this call is indirect, check that the
5369 // function pointer is a member of the bit set for the function type.
5370 if (SanOpts.has(SanitizerKind::CFIICall) &&
5371 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5372 SanitizerScope SanScope(this);
5373 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5374
5375 llvm::Metadata *MD;
5376 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5377 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5378 else
5379 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5380
5381 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5382
5383 llvm::Value *CalleePtr = Callee.getFunctionPointer();
5384 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5385 llvm::Value *TypeTest = Builder.CreateCall(
5386 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5387
5388 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5389 llvm::Constant *StaticData[] = {
5390 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5391 EmitCheckSourceLocation(E->getBeginLoc()),
5392 EmitCheckTypeDescriptor(QualType(FnType, 0)),
5393 };
5394 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5395 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5396 CastedCallee, StaticData);
5397 } else {
5398 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5399 SanitizerHandler::CFICheckFail, StaticData,
5400 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5401 }
5402 }
5403
5404 CallArgList Args;
5405 if (Chain)
5406 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5407 CGM.getContext().VoidPtrTy);
5408
5409 // C++17 requires that we evaluate arguments to a call using assignment syntax
5410 // right-to-left, and that we evaluate arguments to certain other operators
5411 // left-to-right. Note that we allow this to override the order dictated by
5412 // the calling convention on the MS ABI, which means that parameter
5413 // destruction order is not necessarily reverse construction order.
5414 // FIXME: Revisit this based on C++ committee response to unimplementability.
5415 EvaluationOrder Order = EvaluationOrder::Default;
5416 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5417 if (OCE->isAssignmentOp())
5418 Order = EvaluationOrder::ForceRightToLeft;
5419 else {
5420 switch (OCE->getOperator()) {
5421 case OO_LessLess:
5422 case OO_GreaterGreater:
5423 case OO_AmpAmp:
5424 case OO_PipePipe:
5425 case OO_Comma:
5426 case OO_ArrowStar:
5427 Order = EvaluationOrder::ForceLeftToRight;
5428 break;
5429 default:
5430 break;
5431 }
5432 }
5433 }
5434
5435 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5436 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5437
5438 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5439 Args, FnType, /*ChainCall=*/Chain);
5440
5441 // C99 6.5.2.2p6:
5442 // If the expression that denotes the called function has a type
5443 // that does not include a prototype, [the default argument
5444 // promotions are performed]. If the number of arguments does not
5445 // equal the number of parameters, the behavior is undefined. If
5446 // the function is defined with a type that includes a prototype,
5447 // and either the prototype ends with an ellipsis (, ...) or the
5448 // types of the arguments after promotion are not compatible with
5449 // the types of the parameters, the behavior is undefined. If the
5450 // function is defined with a type that does not include a
5451 // prototype, and the types of the arguments after promotion are
5452 // not compatible with those of the parameters after promotion,
5453 // the behavior is undefined [except in some trivial cases].
5454 // That is, in the general case, we should assume that a call
5455 // through an unprototyped function type works like a *non-variadic*
5456 // call. The way we make this work is to cast to the exact type
5457 // of the promoted arguments.
5458 //
5459 // Chain calls use this same code path to add the invisible chain parameter
5460 // to the function type.
5461 if (isa<FunctionNoProtoType>(FnType) || Chain) {
5462 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5463 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5464 CalleeTy = CalleeTy->getPointerTo(AS);
5465
5466 llvm::Value *CalleePtr = Callee.getFunctionPointer();
5467 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5468 Callee.setFunctionPointer(CalleePtr);
5469 }
5470
5471 // HIP function pointer contains kernel handle when it is used in triple
5472 // chevron. The kernel stub needs to be loaded from kernel handle and used
5473 // as callee.
5474 if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
5475 isa<CUDAKernelCallExpr>(E) &&
5476 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5477 llvm::Value *Handle = Callee.getFunctionPointer();
5478 auto *Cast =
5479 Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo());
5480 auto *Stub = Builder.CreateLoad(
5481 Address(Cast, Handle->getType(), CGM.getPointerAlign()));
5482 Callee.setFunctionPointer(Stub);
5483 }
5484 llvm::CallBase *CallOrInvoke = nullptr;
5485 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5486 E == MustTailCall, E->getExprLoc());
5487
5488 // Generate function declaration DISuprogram in order to be used
5489 // in debug info about call sites.
5490 if (CGDebugInfo *DI = getDebugInfo()) {
5491 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
5492 FunctionArgList Args;
5493 QualType ResTy = BuildFunctionArgList(CalleeDecl, Args);
5494 DI->EmitFuncDeclForCallSite(CallOrInvoke,
5495 DI->getFunctionType(CalleeDecl, ResTy, Args),
5496 CalleeDecl);
5497 }
5498 }
5499
5500 return Call;
5501 }
5502
5503 LValue CodeGenFunction::
EmitPointerToDataMemberBinaryExpr(const BinaryOperator * E)5504 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5505 Address BaseAddr = Address::invalid();
5506 if (E->getOpcode() == BO_PtrMemI) {
5507 BaseAddr = EmitPointerWithAlignment(E->getLHS());
5508 } else {
5509 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5510 }
5511
5512 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5513 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5514
5515 LValueBaseInfo BaseInfo;
5516 TBAAAccessInfo TBAAInfo;
5517 Address MemberAddr =
5518 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5519 &TBAAInfo);
5520
5521 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5522 }
5523
5524 /// Given the address of a temporary variable, produce an r-value of
5525 /// its type.
convertTempToRValue(Address addr,QualType type,SourceLocation loc)5526 RValue CodeGenFunction::convertTempToRValue(Address addr,
5527 QualType type,
5528 SourceLocation loc) {
5529 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5530 switch (getEvaluationKind(type)) {
5531 case TEK_Complex:
5532 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5533 case TEK_Aggregate:
5534 return lvalue.asAggregateRValue(*this);
5535 case TEK_Scalar:
5536 return RValue::get(EmitLoadOfScalar(lvalue, loc));
5537 }
5538 llvm_unreachable("bad evaluation kind");
5539 }
5540
SetFPAccuracy(llvm::Value * Val,float Accuracy)5541 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5542 assert(Val->getType()->isFPOrFPVectorTy());
5543 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5544 return;
5545
5546 llvm::MDBuilder MDHelper(getLLVMContext());
5547 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5548
5549 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5550 }
5551
5552 namespace {
5553 struct LValueOrRValue {
5554 LValue LV;
5555 RValue RV;
5556 };
5557 }
5558
emitPseudoObjectExpr(CodeGenFunction & CGF,const PseudoObjectExpr * E,bool forLValue,AggValueSlot slot)5559 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5560 const PseudoObjectExpr *E,
5561 bool forLValue,
5562 AggValueSlot slot) {
5563 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5564
5565 // Find the result expression, if any.
5566 const Expr *resultExpr = E->getResultExpr();
5567 LValueOrRValue result;
5568
5569 for (PseudoObjectExpr::const_semantics_iterator
5570 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5571 const Expr *semantic = *i;
5572
5573 // If this semantic expression is an opaque value, bind it
5574 // to the result of its source expression.
5575 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5576 // Skip unique OVEs.
5577 if (ov->isUnique()) {
5578 assert(ov != resultExpr &&
5579 "A unique OVE cannot be used as the result expression");
5580 continue;
5581 }
5582
5583 // If this is the result expression, we may need to evaluate
5584 // directly into the slot.
5585 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5586 OVMA opaqueData;
5587 if (ov == resultExpr && ov->isPRValue() && !forLValue &&
5588 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5589 CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5590 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5591 AlignmentSource::Decl);
5592 opaqueData = OVMA::bind(CGF, ov, LV);
5593 result.RV = slot.asRValue();
5594
5595 // Otherwise, emit as normal.
5596 } else {
5597 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5598
5599 // If this is the result, also evaluate the result now.
5600 if (ov == resultExpr) {
5601 if (forLValue)
5602 result.LV = CGF.EmitLValue(ov);
5603 else
5604 result.RV = CGF.EmitAnyExpr(ov, slot);
5605 }
5606 }
5607
5608 opaques.push_back(opaqueData);
5609
5610 // Otherwise, if the expression is the result, evaluate it
5611 // and remember the result.
5612 } else if (semantic == resultExpr) {
5613 if (forLValue)
5614 result.LV = CGF.EmitLValue(semantic);
5615 else
5616 result.RV = CGF.EmitAnyExpr(semantic, slot);
5617
5618 // Otherwise, evaluate the expression in an ignored context.
5619 } else {
5620 CGF.EmitIgnoredExpr(semantic);
5621 }
5622 }
5623
5624 // Unbind all the opaques now.
5625 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5626 opaques[i].unbind(CGF);
5627
5628 return result;
5629 }
5630
EmitPseudoObjectRValue(const PseudoObjectExpr * E,AggValueSlot slot)5631 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5632 AggValueSlot slot) {
5633 return emitPseudoObjectExpr(*this, E, false, slot).RV;
5634 }
5635
EmitPseudoObjectLValue(const PseudoObjectExpr * E)5636 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5637 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5638 }
5639