1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "clang/CodeGen/CGFunctionInfo.h"
36 #include "clang/Frontend/FrontendDiagnostic.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/FPEnv.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/MDBuilder.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/Support/CRC.h"
47 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
48 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
49 #include <optional>
50
51 using namespace clang;
52 using namespace CodeGen;
53
54 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
55 /// markers.
shouldEmitLifetimeMarkers(const CodeGenOptions & CGOpts,const LangOptions & LangOpts)56 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
57 const LangOptions &LangOpts) {
58 if (CGOpts.DisableLifetimeMarkers)
59 return false;
60
61 // Sanitizers may use markers.
62 if (CGOpts.SanitizeAddressUseAfterScope ||
63 LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
64 LangOpts.Sanitize.has(SanitizerKind::Memory))
65 return true;
66
67 // For now, only in optimized builds.
68 return CGOpts.OptimizationLevel != 0;
69 }
70
CodeGenFunction(CodeGenModule & cgm,bool suppressNewContext)71 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
72 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
73 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
74 CGBuilderInserterTy(this)),
75 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
76 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
77 ShouldEmitLifetimeMarkers(
78 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
79 if (!suppressNewContext)
80 CGM.getCXXABI().getMangleContext().startNewFunction();
81 EHStack.setCGF(this);
82
83 SetFastMathFlags(CurFPFeatures);
84 }
85
~CodeGenFunction()86 CodeGenFunction::~CodeGenFunction() {
87 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
88
89 if (getLangOpts().OpenMP && CurFn)
90 CGM.getOpenMPRuntime().functionFinished(*this);
91
92 // If we have an OpenMPIRBuilder we want to finalize functions (incl.
93 // outlining etc) at some point. Doing it once the function codegen is done
94 // seems to be a reasonable spot. We do it here, as opposed to the deletion
95 // time of the CodeGenModule, because we have to ensure the IR has not yet
96 // been "emitted" to the outside, thus, modifications are still sensible.
97 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
98 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
99 }
100
101 // Map the LangOption for exception behavior into
102 // the corresponding enum in the IR.
103 llvm::fp::ExceptionBehavior
ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind)104 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
105
106 switch (Kind) {
107 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore;
108 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
109 case LangOptions::FPE_Strict: return llvm::fp::ebStrict;
110 default:
111 llvm_unreachable("Unsupported FP Exception Behavior");
112 }
113 }
114
SetFastMathFlags(FPOptions FPFeatures)115 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
116 llvm::FastMathFlags FMF;
117 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
118 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
119 FMF.setNoInfs(FPFeatures.getNoHonorInfs());
120 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
121 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
122 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
123 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
124 Builder.setFastMathFlags(FMF);
125 }
126
CGFPOptionsRAII(CodeGenFunction & CGF,const Expr * E)127 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
128 const Expr *E)
129 : CGF(CGF) {
130 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
131 }
132
CGFPOptionsRAII(CodeGenFunction & CGF,FPOptions FPFeatures)133 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
134 FPOptions FPFeatures)
135 : CGF(CGF) {
136 ConstructorHelper(FPFeatures);
137 }
138
ConstructorHelper(FPOptions FPFeatures)139 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
140 OldFPFeatures = CGF.CurFPFeatures;
141 CGF.CurFPFeatures = FPFeatures;
142
143 OldExcept = CGF.Builder.getDefaultConstrainedExcept();
144 OldRounding = CGF.Builder.getDefaultConstrainedRounding();
145
146 if (OldFPFeatures == FPFeatures)
147 return;
148
149 FMFGuard.emplace(CGF.Builder);
150
151 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
152 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
153 auto NewExceptionBehavior =
154 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
155 FPFeatures.getExceptionMode()));
156 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
157
158 CGF.SetFastMathFlags(FPFeatures);
159
160 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
161 isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
162 isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
163 (NewExceptionBehavior == llvm::fp::ebIgnore &&
164 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
165 "FPConstrained should be enabled on entire function");
166
167 auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
168 auto OldValue =
169 CGF.CurFn->getFnAttribute(Name).getValueAsBool();
170 auto NewValue = OldValue & Value;
171 if (OldValue != NewValue)
172 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
173 };
174 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
175 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
176 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
177 mergeFnAttrValue(
178 "unsafe-fp-math",
179 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
180 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
181 FPFeatures.allowFPContractAcrossStatement());
182 }
183
~CGFPOptionsRAII()184 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
185 CGF.CurFPFeatures = OldFPFeatures;
186 CGF.Builder.setDefaultConstrainedExcept(OldExcept);
187 CGF.Builder.setDefaultConstrainedRounding(OldRounding);
188 }
189
MakeNaturalAlignAddrLValue(llvm::Value * V,QualType T)190 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
191 LValueBaseInfo BaseInfo;
192 TBAAAccessInfo TBAAInfo;
193 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
194 Address Addr(V, ConvertTypeForMem(T), Alignment);
195 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
196 }
197
198 /// Given a value of type T* that may not be to a complete object,
199 /// construct an l-value with the natural pointee alignment of T.
200 LValue
MakeNaturalAlignPointeeAddrLValue(llvm::Value * V,QualType T)201 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
202 LValueBaseInfo BaseInfo;
203 TBAAAccessInfo TBAAInfo;
204 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
205 /* forPointeeType= */ true);
206 Address Addr(V, ConvertTypeForMem(T), Align);
207 return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
208 }
209
210
ConvertTypeForMem(QualType T)211 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
212 return CGM.getTypes().ConvertTypeForMem(T);
213 }
214
ConvertType(QualType T)215 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
216 return CGM.getTypes().ConvertType(T);
217 }
218
getEvaluationKind(QualType type)219 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
220 type = type.getCanonicalType();
221 while (true) {
222 switch (type->getTypeClass()) {
223 #define TYPE(name, parent)
224 #define ABSTRACT_TYPE(name, parent)
225 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
226 #define DEPENDENT_TYPE(name, parent) case Type::name:
227 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
228 #include "clang/AST/TypeNodes.inc"
229 llvm_unreachable("non-canonical or dependent type in IR-generation");
230
231 case Type::Auto:
232 case Type::DeducedTemplateSpecialization:
233 llvm_unreachable("undeduced type in IR-generation");
234
235 // Various scalar types.
236 case Type::Builtin:
237 case Type::Pointer:
238 case Type::BlockPointer:
239 case Type::LValueReference:
240 case Type::RValueReference:
241 case Type::MemberPointer:
242 case Type::Vector:
243 case Type::ExtVector:
244 case Type::ConstantMatrix:
245 case Type::FunctionProto:
246 case Type::FunctionNoProto:
247 case Type::Enum:
248 case Type::ObjCObjectPointer:
249 case Type::Pipe:
250 case Type::BitInt:
251 return TEK_Scalar;
252
253 // Complexes.
254 case Type::Complex:
255 return TEK_Complex;
256
257 // Arrays, records, and Objective-C objects.
258 case Type::ConstantArray:
259 case Type::IncompleteArray:
260 case Type::VariableArray:
261 case Type::Record:
262 case Type::ObjCObject:
263 case Type::ObjCInterface:
264 return TEK_Aggregate;
265
266 // We operate on atomic values according to their underlying type.
267 case Type::Atomic:
268 type = cast<AtomicType>(type)->getValueType();
269 continue;
270 }
271 llvm_unreachable("unknown type kind!");
272 }
273 }
274
EmitReturnBlock()275 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
276 // For cleanliness, we try to avoid emitting the return block for
277 // simple cases.
278 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
279
280 if (CurBB) {
281 assert(!CurBB->getTerminator() && "Unexpected terminated block.");
282
283 // We have a valid insert point, reuse it if it is empty or there are no
284 // explicit jumps to the return block.
285 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
286 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
287 delete ReturnBlock.getBlock();
288 ReturnBlock = JumpDest();
289 } else
290 EmitBlock(ReturnBlock.getBlock());
291 return llvm::DebugLoc();
292 }
293
294 // Otherwise, if the return block is the target of a single direct
295 // branch then we can just put the code in that block instead. This
296 // cleans up functions which started with a unified return block.
297 if (ReturnBlock.getBlock()->hasOneUse()) {
298 llvm::BranchInst *BI =
299 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
300 if (BI && BI->isUnconditional() &&
301 BI->getSuccessor(0) == ReturnBlock.getBlock()) {
302 // Record/return the DebugLoc of the simple 'return' expression to be used
303 // later by the actual 'ret' instruction.
304 llvm::DebugLoc Loc = BI->getDebugLoc();
305 Builder.SetInsertPoint(BI->getParent());
306 BI->eraseFromParent();
307 delete ReturnBlock.getBlock();
308 ReturnBlock = JumpDest();
309 return Loc;
310 }
311 }
312
313 // FIXME: We are at an unreachable point, there is no reason to emit the block
314 // unless it has uses. However, we still need a place to put the debug
315 // region.end for now.
316
317 EmitBlock(ReturnBlock.getBlock());
318 return llvm::DebugLoc();
319 }
320
EmitIfUsed(CodeGenFunction & CGF,llvm::BasicBlock * BB)321 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
322 if (!BB) return;
323 if (!BB->use_empty()) {
324 CGF.CurFn->insert(CGF.CurFn->end(), BB);
325 return;
326 }
327 delete BB;
328 }
329
FinishFunction(SourceLocation EndLoc)330 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
331 assert(BreakContinueStack.empty() &&
332 "mismatched push/pop in break/continue stack!");
333
334 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
335 && NumSimpleReturnExprs == NumReturnExprs
336 && ReturnBlock.getBlock()->use_empty();
337 // Usually the return expression is evaluated before the cleanup
338 // code. If the function contains only a simple return statement,
339 // such as a constant, the location before the cleanup code becomes
340 // the last useful breakpoint in the function, because the simple
341 // return expression will be evaluated after the cleanup code. To be
342 // safe, set the debug location for cleanup code to the location of
343 // the return statement. Otherwise the cleanup code should be at the
344 // end of the function's lexical scope.
345 //
346 // If there are multiple branches to the return block, the branch
347 // instructions will get the location of the return statements and
348 // all will be fine.
349 if (CGDebugInfo *DI = getDebugInfo()) {
350 if (OnlySimpleReturnStmts)
351 DI->EmitLocation(Builder, LastStopPoint);
352 else
353 DI->EmitLocation(Builder, EndLoc);
354 }
355
356 // Pop any cleanups that might have been associated with the
357 // parameters. Do this in whatever block we're currently in; it's
358 // important to do this before we enter the return block or return
359 // edges will be *really* confused.
360 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
361 bool HasOnlyLifetimeMarkers =
362 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
363 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
364
365 std::optional<ApplyDebugLocation> OAL;
366 if (HasCleanups) {
367 // Make sure the line table doesn't jump back into the body for
368 // the ret after it's been at EndLoc.
369 if (CGDebugInfo *DI = getDebugInfo()) {
370 if (OnlySimpleReturnStmts)
371 DI->EmitLocation(Builder, EndLoc);
372 else
373 // We may not have a valid end location. Try to apply it anyway, and
374 // fall back to an artificial location if needed.
375 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
376 }
377
378 PopCleanupBlocks(PrologueCleanupDepth);
379 }
380
381 // Emit function epilog (to return).
382 llvm::DebugLoc Loc = EmitReturnBlock();
383
384 if (ShouldInstrumentFunction()) {
385 if (CGM.getCodeGenOpts().InstrumentFunctions)
386 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
387 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
388 CurFn->addFnAttr("instrument-function-exit-inlined",
389 "__cyg_profile_func_exit");
390 }
391
392 // Emit debug descriptor for function end.
393 if (CGDebugInfo *DI = getDebugInfo())
394 DI->EmitFunctionEnd(Builder, CurFn);
395
396 // Reset the debug location to that of the simple 'return' expression, if any
397 // rather than that of the end of the function's scope '}'.
398 ApplyDebugLocation AL(*this, Loc);
399 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
400 EmitEndEHSpec(CurCodeDecl);
401
402 assert(EHStack.empty() &&
403 "did not remove all scopes from cleanup stack!");
404
405 // If someone did an indirect goto, emit the indirect goto block at the end of
406 // the function.
407 if (IndirectBranch) {
408 EmitBlock(IndirectBranch->getParent());
409 Builder.ClearInsertionPoint();
410 }
411
412 // If some of our locals escaped, insert a call to llvm.localescape in the
413 // entry block.
414 if (!EscapedLocals.empty()) {
415 // Invert the map from local to index into a simple vector. There should be
416 // no holes.
417 SmallVector<llvm::Value *, 4> EscapeArgs;
418 EscapeArgs.resize(EscapedLocals.size());
419 for (auto &Pair : EscapedLocals)
420 EscapeArgs[Pair.second] = Pair.first;
421 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
422 &CGM.getModule(), llvm::Intrinsic::localescape);
423 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
424 }
425
426 // Remove the AllocaInsertPt instruction, which is just a convenience for us.
427 llvm::Instruction *Ptr = AllocaInsertPt;
428 AllocaInsertPt = nullptr;
429 Ptr->eraseFromParent();
430
431 // PostAllocaInsertPt, if created, was lazily created when it was required,
432 // remove it now since it was just created for our own convenience.
433 if (PostAllocaInsertPt) {
434 llvm::Instruction *PostPtr = PostAllocaInsertPt;
435 PostAllocaInsertPt = nullptr;
436 PostPtr->eraseFromParent();
437 }
438
439 // If someone took the address of a label but never did an indirect goto, we
440 // made a zero entry PHI node, which is illegal, zap it now.
441 if (IndirectBranch) {
442 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
443 if (PN->getNumIncomingValues() == 0) {
444 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
445 PN->eraseFromParent();
446 }
447 }
448
449 EmitIfUsed(*this, EHResumeBlock);
450 EmitIfUsed(*this, TerminateLandingPad);
451 EmitIfUsed(*this, TerminateHandler);
452 EmitIfUsed(*this, UnreachableBlock);
453
454 for (const auto &FuncletAndParent : TerminateFunclets)
455 EmitIfUsed(*this, FuncletAndParent.second);
456
457 if (CGM.getCodeGenOpts().EmitDeclMetadata)
458 EmitDeclMetadata();
459
460 for (const auto &R : DeferredReplacements) {
461 if (llvm::Value *Old = R.first) {
462 Old->replaceAllUsesWith(R.second);
463 cast<llvm::Instruction>(Old)->eraseFromParent();
464 }
465 }
466 DeferredReplacements.clear();
467
468 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
469 // PHIs if the current function is a coroutine. We don't do it for all
470 // functions as it may result in slight increase in numbers of instructions
471 // if compiled with no optimizations. We do it for coroutine as the lifetime
472 // of CleanupDestSlot alloca make correct coroutine frame building very
473 // difficult.
474 if (NormalCleanupDest.isValid() && isCoroutine()) {
475 llvm::DominatorTree DT(*CurFn);
476 llvm::PromoteMemToReg(
477 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
478 NormalCleanupDest = Address::invalid();
479 }
480
481 // Scan function arguments for vector width.
482 for (llvm::Argument &A : CurFn->args())
483 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
484 LargestVectorWidth =
485 std::max((uint64_t)LargestVectorWidth,
486 VT->getPrimitiveSizeInBits().getKnownMinValue());
487
488 // Update vector width based on return type.
489 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
490 LargestVectorWidth =
491 std::max((uint64_t)LargestVectorWidth,
492 VT->getPrimitiveSizeInBits().getKnownMinValue());
493
494 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
495 LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
496
497 // Add the required-vector-width attribute. This contains the max width from:
498 // 1. min-vector-width attribute used in the source program.
499 // 2. Any builtins used that have a vector width specified.
500 // 3. Values passed in and out of inline assembly.
501 // 4. Width of vector arguments and return types for this function.
502 // 5. Width of vector aguments and return types for functions called by this
503 // function.
504 if (getContext().getTargetInfo().getTriple().isX86())
505 CurFn->addFnAttr("min-legal-vector-width",
506 llvm::utostr(LargestVectorWidth));
507
508 // Add vscale_range attribute if appropriate.
509 std::optional<std::pair<unsigned, unsigned>> VScaleRange =
510 getContext().getTargetInfo().getVScaleRange(getLangOpts());
511 if (VScaleRange) {
512 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
513 getLLVMContext(), VScaleRange->first, VScaleRange->second));
514 }
515
516 // If we generated an unreachable return block, delete it now.
517 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
518 Builder.ClearInsertionPoint();
519 ReturnBlock.getBlock()->eraseFromParent();
520 }
521 if (ReturnValue.isValid()) {
522 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
523 if (RetAlloca && RetAlloca->use_empty()) {
524 RetAlloca->eraseFromParent();
525 ReturnValue = Address::invalid();
526 }
527 }
528 }
529
530 /// ShouldInstrumentFunction - Return true if the current function should be
531 /// instrumented with __cyg_profile_func_* calls
ShouldInstrumentFunction()532 bool CodeGenFunction::ShouldInstrumentFunction() {
533 if (!CGM.getCodeGenOpts().InstrumentFunctions &&
534 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
535 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
536 return false;
537 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
538 return false;
539 return true;
540 }
541
ShouldSkipSanitizerInstrumentation()542 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
543 if (!CurFuncDecl)
544 return false;
545 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
546 }
547
548 /// ShouldXRayInstrument - Return true if the current function should be
549 /// instrumented with XRay nop sleds.
ShouldXRayInstrumentFunction() const550 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
551 return CGM.getCodeGenOpts().XRayInstrumentFunctions;
552 }
553
554 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
555 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
AlwaysEmitXRayCustomEvents() const556 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
557 return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
558 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
559 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
560 XRayInstrKind::Custom);
561 }
562
AlwaysEmitXRayTypedEvents() const563 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
564 return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
565 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
566 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
567 XRayInstrKind::Typed);
568 }
569
570 llvm::Value *
DecodeAddrUsedInPrologue(llvm::Value * F,llvm::Value * EncodedAddr)571 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
572 llvm::Value *EncodedAddr) {
573 // Reconstruct the address of the global.
574 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
575 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
576 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
577 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
578
579 // Load the original pointer through the global.
580 return Builder.CreateLoad(Address(GOTAddr, Int8PtrTy, getPointerAlign()),
581 "decoded_addr");
582 }
583
EmitKernelMetadata(const FunctionDecl * FD,llvm::Function * Fn)584 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
585 llvm::Function *Fn) {
586 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
587 return;
588
589 llvm::LLVMContext &Context = getLLVMContext();
590
591 CGM.GenKernelArgMetadata(Fn, FD, this);
592
593 if (!getLangOpts().OpenCL)
594 return;
595
596 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
597 QualType HintQTy = A->getTypeHint();
598 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
599 bool IsSignedInteger =
600 HintQTy->isSignedIntegerType() ||
601 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
602 llvm::Metadata *AttrMDArgs[] = {
603 llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
604 CGM.getTypes().ConvertType(A->getTypeHint()))),
605 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
606 llvm::IntegerType::get(Context, 32),
607 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
608 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
609 }
610
611 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
612 llvm::Metadata *AttrMDArgs[] = {
613 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
614 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
615 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
616 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
617 }
618
619 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
620 llvm::Metadata *AttrMDArgs[] = {
621 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
622 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
623 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
624 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
625 }
626
627 if (const OpenCLIntelReqdSubGroupSizeAttr *A =
628 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
629 llvm::Metadata *AttrMDArgs[] = {
630 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
631 Fn->setMetadata("intel_reqd_sub_group_size",
632 llvm::MDNode::get(Context, AttrMDArgs));
633 }
634 }
635
636 /// Determine whether the function F ends with a return stmt.
endsWithReturn(const Decl * F)637 static bool endsWithReturn(const Decl* F) {
638 const Stmt *Body = nullptr;
639 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
640 Body = FD->getBody();
641 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
642 Body = OMD->getBody();
643
644 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
645 auto LastStmt = CS->body_rbegin();
646 if (LastStmt != CS->body_rend())
647 return isa<ReturnStmt>(*LastStmt);
648 }
649 return false;
650 }
651
markAsIgnoreThreadCheckingAtRuntime(llvm::Function * Fn)652 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
653 if (SanOpts.has(SanitizerKind::Thread)) {
654 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
655 Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
656 }
657 }
658
659 /// Check if the return value of this function requires sanitization.
requiresReturnValueCheck() const660 bool CodeGenFunction::requiresReturnValueCheck() const {
661 return requiresReturnValueNullabilityCheck() ||
662 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
663 CurCodeDecl->getAttr<ReturnsNonNullAttr>());
664 }
665
matchesStlAllocatorFn(const Decl * D,const ASTContext & Ctx)666 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
667 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
668 if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
669 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
670 (MD->getNumParams() != 1 && MD->getNumParams() != 2))
671 return false;
672
673 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
674 return false;
675
676 if (MD->getNumParams() == 2) {
677 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
678 if (!PT || !PT->isVoidPointerType() ||
679 !PT->getPointeeType().isConstQualified())
680 return false;
681 }
682
683 return true;
684 }
685
686 /// Return the UBSan prologue signature for \p FD if one is available.
getPrologueSignature(CodeGenModule & CGM,const FunctionDecl * FD)687 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
688 const FunctionDecl *FD) {
689 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
690 if (!MD->isStatic())
691 return nullptr;
692 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
693 }
694
StartFunction(GlobalDecl GD,QualType RetTy,llvm::Function * Fn,const CGFunctionInfo & FnInfo,const FunctionArgList & Args,SourceLocation Loc,SourceLocation StartLoc)695 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
696 llvm::Function *Fn,
697 const CGFunctionInfo &FnInfo,
698 const FunctionArgList &Args,
699 SourceLocation Loc,
700 SourceLocation StartLoc) {
701 assert(!CurFn &&
702 "Do not use a CodeGenFunction object for more than one function");
703
704 const Decl *D = GD.getDecl();
705
706 DidCallStackSave = false;
707 CurCodeDecl = D;
708 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
709 if (FD && FD->usesSEHTry())
710 CurSEHParent = GD;
711 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
712 FnRetTy = RetTy;
713 CurFn = Fn;
714 CurFnInfo = &FnInfo;
715 assert(CurFn->isDeclaration() && "Function already has body?");
716
717 // If this function is ignored for any of the enabled sanitizers,
718 // disable the sanitizer for the function.
719 do {
720 #define SANITIZER(NAME, ID) \
721 if (SanOpts.empty()) \
722 break; \
723 if (SanOpts.has(SanitizerKind::ID)) \
724 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \
725 SanOpts.set(SanitizerKind::ID, false);
726
727 #include "clang/Basic/Sanitizers.def"
728 #undef SANITIZER
729 } while (false);
730
731 if (D) {
732 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
733 bool NoSanitizeCoverage = false;
734
735 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
736 // Apply the no_sanitize* attributes to SanOpts.
737 SanitizerMask mask = Attr->getMask();
738 SanOpts.Mask &= ~mask;
739 if (mask & SanitizerKind::Address)
740 SanOpts.set(SanitizerKind::KernelAddress, false);
741 if (mask & SanitizerKind::KernelAddress)
742 SanOpts.set(SanitizerKind::Address, false);
743 if (mask & SanitizerKind::HWAddress)
744 SanOpts.set(SanitizerKind::KernelHWAddress, false);
745 if (mask & SanitizerKind::KernelHWAddress)
746 SanOpts.set(SanitizerKind::HWAddress, false);
747
748 // SanitizeCoverage is not handled by SanOpts.
749 if (Attr->hasCoverage())
750 NoSanitizeCoverage = true;
751 }
752
753 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
754 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
755
756 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
757 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
758 }
759
760 if (ShouldSkipSanitizerInstrumentation()) {
761 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
762 } else {
763 // Apply sanitizer attributes to the function.
764 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
765 Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
766 if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
767 SanitizerKind::KernelHWAddress))
768 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
769 if (SanOpts.has(SanitizerKind::MemtagStack))
770 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
771 if (SanOpts.has(SanitizerKind::Thread))
772 Fn->addFnAttr(llvm::Attribute::SanitizeThread);
773 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
774 Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
775 }
776 if (SanOpts.has(SanitizerKind::SafeStack))
777 Fn->addFnAttr(llvm::Attribute::SafeStack);
778 if (SanOpts.has(SanitizerKind::ShadowCallStack))
779 Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
780
781 // Apply fuzzing attribute to the function.
782 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
783 Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
784
785 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
786 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
787 if (SanOpts.has(SanitizerKind::Thread)) {
788 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
789 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
790 if (OMD->getMethodFamily() == OMF_dealloc ||
791 OMD->getMethodFamily() == OMF_initialize ||
792 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
793 markAsIgnoreThreadCheckingAtRuntime(Fn);
794 }
795 }
796 }
797
798 // Ignore unrelated casts in STL allocate() since the allocator must cast
799 // from void* to T* before object initialization completes. Don't match on the
800 // namespace because not all allocators are in std::
801 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
802 if (matchesStlAllocatorFn(D, getContext()))
803 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
804 }
805
806 // Ignore null checks in coroutine functions since the coroutines passes
807 // are not aware of how to move the extra UBSan instructions across the split
808 // coroutine boundaries.
809 if (D && SanOpts.has(SanitizerKind::Null))
810 if (FD && FD->getBody() &&
811 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
812 SanOpts.Mask &= ~SanitizerKind::Null;
813
814 // Apply xray attributes to the function (as a string, for now)
815 bool AlwaysXRayAttr = false;
816 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
817 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
818 XRayInstrKind::FunctionEntry) ||
819 CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
820 XRayInstrKind::FunctionExit)) {
821 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
822 Fn->addFnAttr("function-instrument", "xray-always");
823 AlwaysXRayAttr = true;
824 }
825 if (XRayAttr->neverXRayInstrument())
826 Fn->addFnAttr("function-instrument", "xray-never");
827 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
828 if (ShouldXRayInstrumentFunction())
829 Fn->addFnAttr("xray-log-args",
830 llvm::utostr(LogArgs->getArgumentCount()));
831 }
832 } else {
833 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
834 Fn->addFnAttr(
835 "xray-instruction-threshold",
836 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
837 }
838
839 if (ShouldXRayInstrumentFunction()) {
840 if (CGM.getCodeGenOpts().XRayIgnoreLoops)
841 Fn->addFnAttr("xray-ignore-loops");
842
843 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
844 XRayInstrKind::FunctionExit))
845 Fn->addFnAttr("xray-skip-exit");
846
847 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
848 XRayInstrKind::FunctionEntry))
849 Fn->addFnAttr("xray-skip-entry");
850
851 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
852 if (FuncGroups > 1) {
853 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
854 CurFn->getName().bytes_end());
855 auto Group = crc32(FuncName) % FuncGroups;
856 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
857 !AlwaysXRayAttr)
858 Fn->addFnAttr("function-instrument", "xray-never");
859 }
860 }
861
862 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
863 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
864 case ProfileList::Skip:
865 Fn->addFnAttr(llvm::Attribute::SkipProfile);
866 break;
867 case ProfileList::Forbid:
868 Fn->addFnAttr(llvm::Attribute::NoProfile);
869 break;
870 case ProfileList::Allow:
871 break;
872 }
873 }
874
875 unsigned Count, Offset;
876 if (const auto *Attr =
877 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
878 Count = Attr->getCount();
879 Offset = Attr->getOffset();
880 } else {
881 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
882 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
883 }
884 if (Count && Offset <= Count) {
885 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
886 if (Offset)
887 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
888 }
889 // Instruct that functions for COFF/CodeView targets should start with a
890 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
891 // backends as they don't need it -- instructions on these architectures are
892 // always atomically patchable at runtime.
893 if (CGM.getCodeGenOpts().HotPatch &&
894 getContext().getTargetInfo().getTriple().isX86() &&
895 getContext().getTargetInfo().getTriple().getEnvironment() !=
896 llvm::Triple::CODE16)
897 Fn->addFnAttr("patchable-function", "prologue-short-redirect");
898
899 // Add no-jump-tables value.
900 if (CGM.getCodeGenOpts().NoUseJumpTables)
901 Fn->addFnAttr("no-jump-tables", "true");
902
903 // Add no-inline-line-tables value.
904 if (CGM.getCodeGenOpts().NoInlineLineTables)
905 Fn->addFnAttr("no-inline-line-tables");
906
907 // Add profile-sample-accurate value.
908 if (CGM.getCodeGenOpts().ProfileSampleAccurate)
909 Fn->addFnAttr("profile-sample-accurate");
910
911 if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
912 Fn->addFnAttr("use-sample-profile");
913
914 if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
915 Fn->addFnAttr("cfi-canonical-jump-table");
916
917 if (D && D->hasAttr<NoProfileFunctionAttr>())
918 Fn->addFnAttr(llvm::Attribute::NoProfile);
919
920 if (D) {
921 // Function attributes take precedence over command line flags.
922 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
923 switch (A->getThunkType()) {
924 case FunctionReturnThunksAttr::Kind::Keep:
925 break;
926 case FunctionReturnThunksAttr::Kind::Extern:
927 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
928 break;
929 }
930 } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
931 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
932 }
933
934 if (FD && (getLangOpts().OpenCL ||
935 (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
936 // Add metadata for a kernel function.
937 EmitKernelMetadata(FD, Fn);
938 }
939
940 // If we are checking function types, emit a function type signature as
941 // prologue data.
942 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
943 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
944 // Remove any (C++17) exception specifications, to allow calling e.g. a
945 // noexcept function through a non-noexcept pointer.
946 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
947 FD->getType(), EST_None);
948 llvm::Constant *FTRTTIConst =
949 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
950 llvm::GlobalVariable *FTRTTIProxy =
951 CGM.GetOrCreateRTTIProxyGlobalVariable(FTRTTIConst);
952 llvm::LLVMContext &Ctx = Fn->getContext();
953 llvm::MDBuilder MDB(Ctx);
954 Fn->setMetadata(llvm::LLVMContext::MD_func_sanitize,
955 MDB.createRTTIPointerPrologue(PrologueSig, FTRTTIProxy));
956 CGM.addCompilerUsedGlobal(FTRTTIProxy);
957 }
958 }
959
960 // If we're checking nullability, we need to know whether we can check the
961 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
962 if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
963 auto Nullability = FnRetTy->getNullability();
964 if (Nullability && *Nullability == NullabilityKind::NonNull) {
965 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
966 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
967 RetValNullabilityPrecondition =
968 llvm::ConstantInt::getTrue(getLLVMContext());
969 }
970 }
971
972 // If we're in C++ mode and the function name is "main", it is guaranteed
973 // to be norecurse by the standard (3.6.1.3 "The function main shall not be
974 // used within a program").
975 //
976 // OpenCL C 2.0 v2.2-11 s6.9.i:
977 // Recursion is not supported.
978 //
979 // SYCL v1.2.1 s3.10:
980 // kernels cannot include RTTI information, exception classes,
981 // recursive code, virtual functions or make use of C++ libraries that
982 // are not compiled for the device.
983 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
984 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
985 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
986 Fn->addFnAttr(llvm::Attribute::NoRecurse);
987
988 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
989 llvm::fp::ExceptionBehavior FPExceptionBehavior =
990 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
991 Builder.setDefaultConstrainedRounding(RM);
992 Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
993 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
994 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
995 RM != llvm::RoundingMode::NearestTiesToEven))) {
996 Builder.setIsFPConstrained(true);
997 Fn->addFnAttr(llvm::Attribute::StrictFP);
998 }
999
1000 // If a custom alignment is used, force realigning to this alignment on
1001 // any main function which certainly will need it.
1002 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1003 CGM.getCodeGenOpts().StackAlignment))
1004 Fn->addFnAttr("stackrealign");
1005
1006 // "main" doesn't need to zero out call-used registers.
1007 if (FD && FD->isMain())
1008 Fn->removeFnAttr("zero-call-used-regs");
1009
1010 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1011
1012 // Create a marker to make it easy to insert allocas into the entryblock
1013 // later. Don't create this with the builder, because we don't want it
1014 // folded.
1015 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1016 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1017
1018 ReturnBlock = getJumpDestInCurrentScope("return");
1019
1020 Builder.SetInsertPoint(EntryBB);
1021
1022 // If we're checking the return value, allocate space for a pointer to a
1023 // precise source location of the checked return statement.
1024 if (requiresReturnValueCheck()) {
1025 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1026 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1027 ReturnLocation);
1028 }
1029
1030 // Emit subprogram debug descriptor.
1031 if (CGDebugInfo *DI = getDebugInfo()) {
1032 // Reconstruct the type from the argument list so that implicit parameters,
1033 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1034 // convention.
1035 DI->emitFunctionStart(GD, Loc, StartLoc,
1036 DI->getFunctionType(FD, RetTy, Args), CurFn,
1037 CurFuncIsThunk);
1038 }
1039
1040 if (ShouldInstrumentFunction()) {
1041 if (CGM.getCodeGenOpts().InstrumentFunctions)
1042 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1043 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1044 CurFn->addFnAttr("instrument-function-entry-inlined",
1045 "__cyg_profile_func_enter");
1046 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1047 CurFn->addFnAttr("instrument-function-entry-inlined",
1048 "__cyg_profile_func_enter_bare");
1049 }
1050
1051 // Since emitting the mcount call here impacts optimizations such as function
1052 // inlining, we just add an attribute to insert a mcount call in backend.
1053 // The attribute "counting-function" is set to mcount function name which is
1054 // architecture dependent.
1055 if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1056 // Calls to fentry/mcount should not be generated if function has
1057 // the no_instrument_function attribute.
1058 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1059 if (CGM.getCodeGenOpts().CallFEntry)
1060 Fn->addFnAttr("fentry-call", "true");
1061 else {
1062 Fn->addFnAttr("instrument-function-entry-inlined",
1063 getTarget().getMCountName());
1064 }
1065 if (CGM.getCodeGenOpts().MNopMCount) {
1066 if (!CGM.getCodeGenOpts().CallFEntry)
1067 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1068 << "-mnop-mcount" << "-mfentry";
1069 Fn->addFnAttr("mnop-mcount");
1070 }
1071
1072 if (CGM.getCodeGenOpts().RecordMCount) {
1073 if (!CGM.getCodeGenOpts().CallFEntry)
1074 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1075 << "-mrecord-mcount" << "-mfentry";
1076 Fn->addFnAttr("mrecord-mcount");
1077 }
1078 }
1079 }
1080
1081 if (CGM.getCodeGenOpts().PackedStack) {
1082 if (getContext().getTargetInfo().getTriple().getArch() !=
1083 llvm::Triple::systemz)
1084 CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1085 << "-mpacked-stack";
1086 Fn->addFnAttr("packed-stack");
1087 }
1088
1089 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1090 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1091 Fn->addFnAttr("warn-stack-size",
1092 std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1093
1094 if (RetTy->isVoidType()) {
1095 // Void type; nothing to return.
1096 ReturnValue = Address::invalid();
1097
1098 // Count the implicit return.
1099 if (!endsWithReturn(D))
1100 ++NumReturnExprs;
1101 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1102 // Indirect return; emit returned value directly into sret slot.
1103 // This reduces code size, and affects correctness in C++.
1104 auto AI = CurFn->arg_begin();
1105 if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1106 ++AI;
1107 ReturnValue = Address(&*AI, ConvertType(RetTy),
1108 CurFnInfo->getReturnInfo().getIndirectAlign());
1109 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1110 ReturnValuePointer =
1111 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1112 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1113 ReturnValue.getPointer(), Int8PtrTy),
1114 ReturnValuePointer);
1115 }
1116 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1117 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1118 // Load the sret pointer from the argument struct and return into that.
1119 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1120 llvm::Function::arg_iterator EI = CurFn->arg_end();
1121 --EI;
1122 llvm::Value *Addr = Builder.CreateStructGEP(
1123 CurFnInfo->getArgStruct(), &*EI, Idx);
1124 llvm::Type *Ty =
1125 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1126 ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1127 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1128 ReturnValue =
1129 Address(Addr, ConvertType(RetTy), CGM.getNaturalTypeAlignment(RetTy));
1130 } else {
1131 ReturnValue = CreateIRTemp(RetTy, "retval");
1132
1133 // Tell the epilog emitter to autorelease the result. We do this
1134 // now so that various specialized functions can suppress it
1135 // during their IR-generation.
1136 if (getLangOpts().ObjCAutoRefCount &&
1137 !CurFnInfo->isReturnsRetained() &&
1138 RetTy->isObjCRetainableType())
1139 AutoreleaseResult = true;
1140 }
1141
1142 EmitStartEHSpec(CurCodeDecl);
1143
1144 PrologueCleanupDepth = EHStack.stable_begin();
1145
1146 // Emit OpenMP specific initialization of the device functions.
1147 if (getLangOpts().OpenMP && CurCodeDecl)
1148 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1149
1150 // Handle emitting HLSL entry functions.
1151 if (D && D->hasAttr<HLSLShaderAttr>())
1152 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1153
1154 EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1155
1156 if (isa_and_nonnull<CXXMethodDecl>(D) &&
1157 cast<CXXMethodDecl>(D)->isInstance()) {
1158 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1159 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1160 if (MD->getParent()->isLambda() &&
1161 MD->getOverloadedOperator() == OO_Call) {
1162 // We're in a lambda; figure out the captures.
1163 MD->getParent()->getCaptureFields(LambdaCaptureFields,
1164 LambdaThisCaptureField);
1165 if (LambdaThisCaptureField) {
1166 // If the lambda captures the object referred to by '*this' - either by
1167 // value or by reference, make sure CXXThisValue points to the correct
1168 // object.
1169
1170 // Get the lvalue for the field (which is a copy of the enclosing object
1171 // or contains the address of the enclosing object).
1172 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1173 if (!LambdaThisCaptureField->getType()->isPointerType()) {
1174 // If the enclosing object was captured by value, just use its address.
1175 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1176 } else {
1177 // Load the lvalue pointed to by the field, since '*this' was captured
1178 // by reference.
1179 CXXThisValue =
1180 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1181 }
1182 }
1183 for (auto *FD : MD->getParent()->fields()) {
1184 if (FD->hasCapturedVLAType()) {
1185 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1186 SourceLocation()).getScalarVal();
1187 auto VAT = FD->getCapturedVLAType();
1188 VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1189 }
1190 }
1191 } else {
1192 // Not in a lambda; just use 'this' from the method.
1193 // FIXME: Should we generate a new load for each use of 'this'? The
1194 // fast register allocator would be happier...
1195 CXXThisValue = CXXABIThisValue;
1196 }
1197
1198 // Check the 'this' pointer once per function, if it's available.
1199 if (CXXABIThisValue) {
1200 SanitizerSet SkippedChecks;
1201 SkippedChecks.set(SanitizerKind::ObjectSize, true);
1202 QualType ThisTy = MD->getThisType();
1203
1204 // If this is the call operator of a lambda with no capture-default, it
1205 // may have a static invoker function, which may call this operator with
1206 // a null 'this' pointer.
1207 if (isLambdaCallOperator(MD) &&
1208 MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1209 SkippedChecks.set(SanitizerKind::Null, true);
1210
1211 EmitTypeCheck(
1212 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1213 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1214 }
1215 }
1216
1217 // If any of the arguments have a variably modified type, make sure to
1218 // emit the type size, but only if the function is not naked. Naked functions
1219 // have no prolog to run this evaluation.
1220 if (!FD || !FD->hasAttr<NakedAttr>()) {
1221 for (const VarDecl *VD : Args) {
1222 // Dig out the type as written from ParmVarDecls; it's unclear whether
1223 // the standard (C99 6.9.1p10) requires this, but we're following the
1224 // precedent set by gcc.
1225 QualType Ty;
1226 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1227 Ty = PVD->getOriginalType();
1228 else
1229 Ty = VD->getType();
1230
1231 if (Ty->isVariablyModifiedType())
1232 EmitVariablyModifiedType(Ty);
1233 }
1234 }
1235 // Emit a location at the end of the prologue.
1236 if (CGDebugInfo *DI = getDebugInfo())
1237 DI->EmitLocation(Builder, StartLoc);
1238 // TODO: Do we need to handle this in two places like we do with
1239 // target-features/target-cpu?
1240 if (CurFuncDecl)
1241 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1242 LargestVectorWidth = VecWidth->getVectorWidth();
1243 }
1244
EmitFunctionBody(const Stmt * Body)1245 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1246 incrementProfileCounter(Body);
1247 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1248 EmitCompoundStmtWithoutScope(*S);
1249 else
1250 EmitStmt(Body);
1251
1252 // This is checked after emitting the function body so we know if there
1253 // are any permitted infinite loops.
1254 if (checkIfFunctionMustProgress())
1255 CurFn->addFnAttr(llvm::Attribute::MustProgress);
1256 }
1257
1258 /// When instrumenting to collect profile data, the counts for some blocks
1259 /// such as switch cases need to not include the fall-through counts, so
1260 /// emit a branch around the instrumentation code. When not instrumenting,
1261 /// this just calls EmitBlock().
EmitBlockWithFallThrough(llvm::BasicBlock * BB,const Stmt * S)1262 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1263 const Stmt *S) {
1264 llvm::BasicBlock *SkipCountBB = nullptr;
1265 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1266 // When instrumenting for profiling, the fallthrough to certain
1267 // statements needs to skip over the instrumentation code so that we
1268 // get an accurate count.
1269 SkipCountBB = createBasicBlock("skipcount");
1270 EmitBranch(SkipCountBB);
1271 }
1272 EmitBlock(BB);
1273 uint64_t CurrentCount = getCurrentProfileCount();
1274 incrementProfileCounter(S);
1275 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1276 if (SkipCountBB)
1277 EmitBlock(SkipCountBB);
1278 }
1279
1280 /// Tries to mark the given function nounwind based on the
1281 /// non-existence of any throwing calls within it. We believe this is
1282 /// lightweight enough to do at -O0.
TryMarkNoThrow(llvm::Function * F)1283 static void TryMarkNoThrow(llvm::Function *F) {
1284 // LLVM treats 'nounwind' on a function as part of the type, so we
1285 // can't do this on functions that can be overwritten.
1286 if (F->isInterposable()) return;
1287
1288 for (llvm::BasicBlock &BB : *F)
1289 for (llvm::Instruction &I : BB)
1290 if (I.mayThrow())
1291 return;
1292
1293 F->setDoesNotThrow();
1294 }
1295
BuildFunctionArgList(GlobalDecl GD,FunctionArgList & Args)1296 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1297 FunctionArgList &Args) {
1298 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1299 QualType ResTy = FD->getReturnType();
1300
1301 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1302 if (MD && MD->isInstance()) {
1303 if (CGM.getCXXABI().HasThisReturn(GD))
1304 ResTy = MD->getThisType();
1305 else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1306 ResTy = CGM.getContext().VoidPtrTy;
1307 CGM.getCXXABI().buildThisParam(*this, Args);
1308 }
1309
1310 // The base version of an inheriting constructor whose constructed base is a
1311 // virtual base is not passed any arguments (because it doesn't actually call
1312 // the inherited constructor).
1313 bool PassedParams = true;
1314 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1315 if (auto Inherited = CD->getInheritedConstructor())
1316 PassedParams =
1317 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1318
1319 if (PassedParams) {
1320 for (auto *Param : FD->parameters()) {
1321 Args.push_back(Param);
1322 if (!Param->hasAttr<PassObjectSizeAttr>())
1323 continue;
1324
1325 auto *Implicit = ImplicitParamDecl::Create(
1326 getContext(), Param->getDeclContext(), Param->getLocation(),
1327 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1328 SizeArguments[Param] = Implicit;
1329 Args.push_back(Implicit);
1330 }
1331 }
1332
1333 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1334 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1335
1336 return ResTy;
1337 }
1338
GenerateCode(GlobalDecl GD,llvm::Function * Fn,const CGFunctionInfo & FnInfo)1339 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1340 const CGFunctionInfo &FnInfo) {
1341 assert(Fn && "generating code for null Function");
1342 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1343 CurGD = GD;
1344
1345 FunctionArgList Args;
1346 QualType ResTy = BuildFunctionArgList(GD, Args);
1347
1348 if (FD->isInlineBuiltinDeclaration()) {
1349 // When generating code for a builtin with an inline declaration, use a
1350 // mangled name to hold the actual body, while keeping an external
1351 // definition in case the function pointer is referenced somewhere.
1352 std::string FDInlineName = (Fn->getName() + ".inline").str();
1353 llvm::Module *M = Fn->getParent();
1354 llvm::Function *Clone = M->getFunction(FDInlineName);
1355 if (!Clone) {
1356 Clone = llvm::Function::Create(Fn->getFunctionType(),
1357 llvm::GlobalValue::InternalLinkage,
1358 Fn->getAddressSpace(), FDInlineName, M);
1359 Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1360 }
1361 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1362 Fn = Clone;
1363 } else {
1364 // Detect the unusual situation where an inline version is shadowed by a
1365 // non-inline version. In that case we should pick the external one
1366 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1367 // to detect that situation before we reach codegen, so do some late
1368 // replacement.
1369 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1370 PD = PD->getPreviousDecl()) {
1371 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1372 std::string FDInlineName = (Fn->getName() + ".inline").str();
1373 llvm::Module *M = Fn->getParent();
1374 if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1375 Clone->replaceAllUsesWith(Fn);
1376 Clone->eraseFromParent();
1377 }
1378 break;
1379 }
1380 }
1381 }
1382
1383 // Check if we should generate debug info for this function.
1384 if (FD->hasAttr<NoDebugAttr>()) {
1385 // Clear non-distinct debug info that was possibly attached to the function
1386 // due to an earlier declaration without the nodebug attribute
1387 Fn->setSubprogram(nullptr);
1388 // Disable debug info indefinitely for this function
1389 DebugInfo = nullptr;
1390 }
1391
1392 // The function might not have a body if we're generating thunks for a
1393 // function declaration.
1394 SourceRange BodyRange;
1395 if (Stmt *Body = FD->getBody())
1396 BodyRange = Body->getSourceRange();
1397 else
1398 BodyRange = FD->getLocation();
1399 CurEHLocation = BodyRange.getEnd();
1400
1401 // Use the location of the start of the function to determine where
1402 // the function definition is located. By default use the location
1403 // of the declaration as the location for the subprogram. A function
1404 // may lack a declaration in the source code if it is created by code
1405 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1406 SourceLocation Loc = FD->getLocation();
1407
1408 // If this is a function specialization then use the pattern body
1409 // as the location for the function.
1410 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1411 if (SpecDecl->hasBody(SpecDecl))
1412 Loc = SpecDecl->getLocation();
1413
1414 Stmt *Body = FD->getBody();
1415
1416 if (Body) {
1417 // Coroutines always emit lifetime markers.
1418 if (isa<CoroutineBodyStmt>(Body))
1419 ShouldEmitLifetimeMarkers = true;
1420
1421 // Initialize helper which will detect jumps which can cause invalid
1422 // lifetime markers.
1423 if (ShouldEmitLifetimeMarkers)
1424 Bypasses.Init(Body);
1425 }
1426
1427 // Emit the standard function prologue.
1428 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1429
1430 // Save parameters for coroutine function.
1431 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1432 llvm::append_range(FnArgs, FD->parameters());
1433
1434 // Generate the body of the function.
1435 PGO.assignRegionCounters(GD, CurFn);
1436 if (isa<CXXDestructorDecl>(FD))
1437 EmitDestructorBody(Args);
1438 else if (isa<CXXConstructorDecl>(FD))
1439 EmitConstructorBody(Args);
1440 else if (getLangOpts().CUDA &&
1441 !getLangOpts().CUDAIsDevice &&
1442 FD->hasAttr<CUDAGlobalAttr>())
1443 CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1444 else if (isa<CXXMethodDecl>(FD) &&
1445 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1446 // The lambda static invoker function is special, because it forwards or
1447 // clones the body of the function call operator (but is actually static).
1448 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1449 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1450 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1451 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1452 // Implicit copy-assignment gets the same special treatment as implicit
1453 // copy-constructors.
1454 emitImplicitAssignmentOperatorBody(Args);
1455 } else if (Body) {
1456 EmitFunctionBody(Body);
1457 } else
1458 llvm_unreachable("no definition for emitted function");
1459
1460 // C++11 [stmt.return]p2:
1461 // Flowing off the end of a function [...] results in undefined behavior in
1462 // a value-returning function.
1463 // C11 6.9.1p12:
1464 // If the '}' that terminates a function is reached, and the value of the
1465 // function call is used by the caller, the behavior is undefined.
1466 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1467 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1468 bool ShouldEmitUnreachable =
1469 CGM.getCodeGenOpts().StrictReturn ||
1470 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1471 if (SanOpts.has(SanitizerKind::Return)) {
1472 SanitizerScope SanScope(this);
1473 llvm::Value *IsFalse = Builder.getFalse();
1474 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1475 SanitizerHandler::MissingReturn,
1476 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1477 } else if (ShouldEmitUnreachable) {
1478 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1479 EmitTrapCall(llvm::Intrinsic::trap);
1480 }
1481 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1482 Builder.CreateUnreachable();
1483 Builder.ClearInsertionPoint();
1484 }
1485 }
1486
1487 // Emit the standard function epilogue.
1488 FinishFunction(BodyRange.getEnd());
1489
1490 // If we haven't marked the function nothrow through other means, do
1491 // a quick pass now to see if we can.
1492 if (!CurFn->doesNotThrow())
1493 TryMarkNoThrow(CurFn);
1494 }
1495
1496 /// ContainsLabel - Return true if the statement contains a label in it. If
1497 /// this statement is not executed normally, it not containing a label means
1498 /// that we can just remove the code.
ContainsLabel(const Stmt * S,bool IgnoreCaseStmts)1499 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1500 // Null statement, not a label!
1501 if (!S) return false;
1502
1503 // If this is a label, we have to emit the code, consider something like:
1504 // if (0) { ... foo: bar(); } goto foo;
1505 //
1506 // TODO: If anyone cared, we could track __label__'s, since we know that you
1507 // can't jump to one from outside their declared region.
1508 if (isa<LabelStmt>(S))
1509 return true;
1510
1511 // If this is a case/default statement, and we haven't seen a switch, we have
1512 // to emit the code.
1513 if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1514 return true;
1515
1516 // If this is a switch statement, we want to ignore cases below it.
1517 if (isa<SwitchStmt>(S))
1518 IgnoreCaseStmts = true;
1519
1520 // Scan subexpressions for verboten labels.
1521 for (const Stmt *SubStmt : S->children())
1522 if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1523 return true;
1524
1525 return false;
1526 }
1527
1528 /// containsBreak - Return true if the statement contains a break out of it.
1529 /// If the statement (recursively) contains a switch or loop with a break
1530 /// inside of it, this is fine.
containsBreak(const Stmt * S)1531 bool CodeGenFunction::containsBreak(const Stmt *S) {
1532 // Null statement, not a label!
1533 if (!S) return false;
1534
1535 // If this is a switch or loop that defines its own break scope, then we can
1536 // include it and anything inside of it.
1537 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1538 isa<ForStmt>(S))
1539 return false;
1540
1541 if (isa<BreakStmt>(S))
1542 return true;
1543
1544 // Scan subexpressions for verboten breaks.
1545 for (const Stmt *SubStmt : S->children())
1546 if (containsBreak(SubStmt))
1547 return true;
1548
1549 return false;
1550 }
1551
mightAddDeclToScope(const Stmt * S)1552 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1553 if (!S) return false;
1554
1555 // Some statement kinds add a scope and thus never add a decl to the current
1556 // scope. Note, this list is longer than the list of statements that might
1557 // have an unscoped decl nested within them, but this way is conservatively
1558 // correct even if more statement kinds are added.
1559 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1560 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1561 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1562 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1563 return false;
1564
1565 if (isa<DeclStmt>(S))
1566 return true;
1567
1568 for (const Stmt *SubStmt : S->children())
1569 if (mightAddDeclToScope(SubStmt))
1570 return true;
1571
1572 return false;
1573 }
1574
1575 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1576 /// to a constant, or if it does but contains a label, return false. If it
1577 /// constant folds return true and set the boolean result in Result.
ConstantFoldsToSimpleInteger(const Expr * Cond,bool & ResultBool,bool AllowLabels)1578 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1579 bool &ResultBool,
1580 bool AllowLabels) {
1581 llvm::APSInt ResultInt;
1582 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1583 return false;
1584
1585 ResultBool = ResultInt.getBoolValue();
1586 return true;
1587 }
1588
1589 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1590 /// to a constant, or if it does but contains a label, return false. If it
1591 /// constant folds return true and set the folded value.
ConstantFoldsToSimpleInteger(const Expr * Cond,llvm::APSInt & ResultInt,bool AllowLabels)1592 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1593 llvm::APSInt &ResultInt,
1594 bool AllowLabels) {
1595 // FIXME: Rename and handle conversion of other evaluatable things
1596 // to bool.
1597 Expr::EvalResult Result;
1598 if (!Cond->EvaluateAsInt(Result, getContext()))
1599 return false; // Not foldable, not integer or not fully evaluatable.
1600
1601 llvm::APSInt Int = Result.Val.getInt();
1602 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1603 return false; // Contains a label.
1604
1605 ResultInt = Int;
1606 return true;
1607 }
1608
1609 /// Determine whether the given condition is an instrumentable condition
1610 /// (i.e. no "&&" or "||").
isInstrumentedCondition(const Expr * C)1611 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1612 // Bypass simplistic logical-NOT operator before determining whether the
1613 // condition contains any other logical operator.
1614 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1615 if (UnOp->getOpcode() == UO_LNot)
1616 C = UnOp->getSubExpr();
1617
1618 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1619 return (!BOp || !BOp->isLogicalOp());
1620 }
1621
1622 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1623 /// increments a profile counter based on the semantics of the given logical
1624 /// operator opcode. This is used to instrument branch condition coverage for
1625 /// logical operators.
EmitBranchToCounterBlock(const Expr * Cond,BinaryOperator::Opcode LOp,llvm::BasicBlock * TrueBlock,llvm::BasicBlock * FalseBlock,uint64_t TrueCount,Stmt::Likelihood LH,const Expr * CntrIdx)1626 void CodeGenFunction::EmitBranchToCounterBlock(
1627 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1628 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1629 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1630 // If not instrumenting, just emit a branch.
1631 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1632 if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1633 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1634
1635 llvm::BasicBlock *ThenBlock = nullptr;
1636 llvm::BasicBlock *ElseBlock = nullptr;
1637 llvm::BasicBlock *NextBlock = nullptr;
1638
1639 // Create the block we'll use to increment the appropriate counter.
1640 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1641
1642 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1643 // means we need to evaluate the condition and increment the counter on TRUE:
1644 //
1645 // if (Cond)
1646 // goto CounterIncrBlock;
1647 // else
1648 // goto FalseBlock;
1649 //
1650 // CounterIncrBlock:
1651 // Counter++;
1652 // goto TrueBlock;
1653
1654 if (LOp == BO_LAnd) {
1655 ThenBlock = CounterIncrBlock;
1656 ElseBlock = FalseBlock;
1657 NextBlock = TrueBlock;
1658 }
1659
1660 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1661 // we need to evaluate the condition and increment the counter on FALSE:
1662 //
1663 // if (Cond)
1664 // goto TrueBlock;
1665 // else
1666 // goto CounterIncrBlock;
1667 //
1668 // CounterIncrBlock:
1669 // Counter++;
1670 // goto FalseBlock;
1671
1672 else if (LOp == BO_LOr) {
1673 ThenBlock = TrueBlock;
1674 ElseBlock = CounterIncrBlock;
1675 NextBlock = FalseBlock;
1676 } else {
1677 llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1678 }
1679
1680 // Emit Branch based on condition.
1681 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1682
1683 // Emit the block containing the counter increment(s).
1684 EmitBlock(CounterIncrBlock);
1685
1686 // Increment corresponding counter; if index not provided, use Cond as index.
1687 incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1688
1689 // Go to the next block.
1690 EmitBranch(NextBlock);
1691 }
1692
1693 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1694 /// statement) to the specified blocks. Based on the condition, this might try
1695 /// to simplify the codegen of the conditional based on the branch.
1696 /// \param LH The value of the likelihood attribute on the True branch.
EmitBranchOnBoolExpr(const Expr * Cond,llvm::BasicBlock * TrueBlock,llvm::BasicBlock * FalseBlock,uint64_t TrueCount,Stmt::Likelihood LH)1697 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1698 llvm::BasicBlock *TrueBlock,
1699 llvm::BasicBlock *FalseBlock,
1700 uint64_t TrueCount,
1701 Stmt::Likelihood LH) {
1702 Cond = Cond->IgnoreParens();
1703
1704 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1705
1706 // Handle X && Y in a condition.
1707 if (CondBOp->getOpcode() == BO_LAnd) {
1708 // If we have "1 && X", simplify the code. "0 && X" would have constant
1709 // folded if the case was simple enough.
1710 bool ConstantBool = false;
1711 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1712 ConstantBool) {
1713 // br(1 && X) -> br(X).
1714 incrementProfileCounter(CondBOp);
1715 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1716 FalseBlock, TrueCount, LH);
1717 }
1718
1719 // If we have "X && 1", simplify the code to use an uncond branch.
1720 // "X && 0" would have been constant folded to 0.
1721 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1722 ConstantBool) {
1723 // br(X && 1) -> br(X).
1724 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1725 FalseBlock, TrueCount, LH, CondBOp);
1726 }
1727
1728 // Emit the LHS as a conditional. If the LHS conditional is false, we
1729 // want to jump to the FalseBlock.
1730 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1731 // The counter tells us how often we evaluate RHS, and all of TrueCount
1732 // can be propagated to that branch.
1733 uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1734
1735 ConditionalEvaluation eval(*this);
1736 {
1737 ApplyDebugLocation DL(*this, Cond);
1738 // Propagate the likelihood attribute like __builtin_expect
1739 // __builtin_expect(X && Y, 1) -> X and Y are likely
1740 // __builtin_expect(X && Y, 0) -> only Y is unlikely
1741 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1742 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1743 EmitBlock(LHSTrue);
1744 }
1745
1746 incrementProfileCounter(CondBOp);
1747 setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1748
1749 // Any temporaries created here are conditional.
1750 eval.begin(*this);
1751 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1752 FalseBlock, TrueCount, LH);
1753 eval.end(*this);
1754
1755 return;
1756 }
1757
1758 if (CondBOp->getOpcode() == BO_LOr) {
1759 // If we have "0 || X", simplify the code. "1 || X" would have constant
1760 // folded if the case was simple enough.
1761 bool ConstantBool = false;
1762 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1763 !ConstantBool) {
1764 // br(0 || X) -> br(X).
1765 incrementProfileCounter(CondBOp);
1766 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1767 FalseBlock, TrueCount, LH);
1768 }
1769
1770 // If we have "X || 0", simplify the code to use an uncond branch.
1771 // "X || 1" would have been constant folded to 1.
1772 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1773 !ConstantBool) {
1774 // br(X || 0) -> br(X).
1775 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1776 FalseBlock, TrueCount, LH, CondBOp);
1777 }
1778
1779 // Emit the LHS as a conditional. If the LHS conditional is true, we
1780 // want to jump to the TrueBlock.
1781 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1782 // We have the count for entry to the RHS and for the whole expression
1783 // being true, so we can divy up True count between the short circuit and
1784 // the RHS.
1785 uint64_t LHSCount =
1786 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1787 uint64_t RHSCount = TrueCount - LHSCount;
1788
1789 ConditionalEvaluation eval(*this);
1790 {
1791 // Propagate the likelihood attribute like __builtin_expect
1792 // __builtin_expect(X || Y, 1) -> only Y is likely
1793 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1794 ApplyDebugLocation DL(*this, Cond);
1795 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1796 LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1797 EmitBlock(LHSFalse);
1798 }
1799
1800 incrementProfileCounter(CondBOp);
1801 setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1802
1803 // Any temporaries created here are conditional.
1804 eval.begin(*this);
1805 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1806 RHSCount, LH);
1807
1808 eval.end(*this);
1809
1810 return;
1811 }
1812 }
1813
1814 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1815 // br(!x, t, f) -> br(x, f, t)
1816 if (CondUOp->getOpcode() == UO_LNot) {
1817 // Negate the count.
1818 uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1819 // The values of the enum are chosen to make this negation possible.
1820 LH = static_cast<Stmt::Likelihood>(-LH);
1821 // Negate the condition and swap the destination blocks.
1822 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1823 FalseCount, LH);
1824 }
1825 }
1826
1827 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1828 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1829 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1830 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1831
1832 // The ConditionalOperator itself has no likelihood information for its
1833 // true and false branches. This matches the behavior of __builtin_expect.
1834 ConditionalEvaluation cond(*this);
1835 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1836 getProfileCount(CondOp), Stmt::LH_None);
1837
1838 // When computing PGO branch weights, we only know the overall count for
1839 // the true block. This code is essentially doing tail duplication of the
1840 // naive code-gen, introducing new edges for which counts are not
1841 // available. Divide the counts proportionally between the LHS and RHS of
1842 // the conditional operator.
1843 uint64_t LHSScaledTrueCount = 0;
1844 if (TrueCount) {
1845 double LHSRatio =
1846 getProfileCount(CondOp) / (double)getCurrentProfileCount();
1847 LHSScaledTrueCount = TrueCount * LHSRatio;
1848 }
1849
1850 cond.begin(*this);
1851 EmitBlock(LHSBlock);
1852 incrementProfileCounter(CondOp);
1853 {
1854 ApplyDebugLocation DL(*this, Cond);
1855 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1856 LHSScaledTrueCount, LH);
1857 }
1858 cond.end(*this);
1859
1860 cond.begin(*this);
1861 EmitBlock(RHSBlock);
1862 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1863 TrueCount - LHSScaledTrueCount, LH);
1864 cond.end(*this);
1865
1866 return;
1867 }
1868
1869 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1870 // Conditional operator handling can give us a throw expression as a
1871 // condition for a case like:
1872 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1873 // Fold this to:
1874 // br(c, throw x, br(y, t, f))
1875 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1876 return;
1877 }
1878
1879 // Emit the code with the fully general case.
1880 llvm::Value *CondV;
1881 {
1882 ApplyDebugLocation DL(*this, Cond);
1883 CondV = EvaluateExprAsBool(Cond);
1884 }
1885
1886 llvm::MDNode *Weights = nullptr;
1887 llvm::MDNode *Unpredictable = nullptr;
1888
1889 // If the branch has a condition wrapped by __builtin_unpredictable,
1890 // create metadata that specifies that the branch is unpredictable.
1891 // Don't bother if not optimizing because that metadata would not be used.
1892 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1893 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1894 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1895 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1896 llvm::MDBuilder MDHelper(getLLVMContext());
1897 Unpredictable = MDHelper.createUnpredictable();
1898 }
1899 }
1900
1901 // If there is a Likelihood knowledge for the cond, lower it.
1902 // Note that if not optimizing this won't emit anything.
1903 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1904 if (CondV != NewCondV)
1905 CondV = NewCondV;
1906 else {
1907 // Otherwise, lower profile counts. Note that we do this even at -O0.
1908 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1909 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1910 }
1911
1912 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1913 }
1914
1915 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1916 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type)1917 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1918 CGM.ErrorUnsupported(S, Type);
1919 }
1920
1921 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1922 /// variable-length array whose elements have a non-zero bit-pattern.
1923 ///
1924 /// \param baseType the inner-most element type of the array
1925 /// \param src - a char* pointing to the bit-pattern for a single
1926 /// base element of the array
1927 /// \param sizeInChars - the total size of the VLA, in chars
emitNonZeroVLAInit(CodeGenFunction & CGF,QualType baseType,Address dest,Address src,llvm::Value * sizeInChars)1928 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1929 Address dest, Address src,
1930 llvm::Value *sizeInChars) {
1931 CGBuilderTy &Builder = CGF.Builder;
1932
1933 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1934 llvm::Value *baseSizeInChars
1935 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1936
1937 Address begin =
1938 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1939 llvm::Value *end = Builder.CreateInBoundsGEP(
1940 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1941
1942 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1943 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1944 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1945
1946 // Make a loop over the VLA. C99 guarantees that the VLA element
1947 // count must be nonzero.
1948 CGF.EmitBlock(loopBB);
1949
1950 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1951 cur->addIncoming(begin.getPointer(), originBB);
1952
1953 CharUnits curAlign =
1954 dest.getAlignment().alignmentOfArrayElement(baseSize);
1955
1956 // memcpy the individual element bit-pattern.
1957 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
1958 /*volatile*/ false);
1959
1960 // Go to the next element.
1961 llvm::Value *next =
1962 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1963
1964 // Leave if that's the end of the VLA.
1965 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1966 Builder.CreateCondBr(done, contBB, loopBB);
1967 cur->addIncoming(next, loopBB);
1968
1969 CGF.EmitBlock(contBB);
1970 }
1971
1972 void
EmitNullInitialization(Address DestPtr,QualType Ty)1973 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1974 // Ignore empty classes in C++.
1975 if (getLangOpts().CPlusPlus) {
1976 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1977 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1978 return;
1979 }
1980 }
1981
1982 // Cast the dest ptr to the appropriate i8 pointer type.
1983 if (DestPtr.getElementType() != Int8Ty)
1984 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1985
1986 // Get size and alignment info for this aggregate.
1987 CharUnits size = getContext().getTypeSizeInChars(Ty);
1988
1989 llvm::Value *SizeVal;
1990 const VariableArrayType *vla;
1991
1992 // Don't bother emitting a zero-byte memset.
1993 if (size.isZero()) {
1994 // But note that getTypeInfo returns 0 for a VLA.
1995 if (const VariableArrayType *vlaType =
1996 dyn_cast_or_null<VariableArrayType>(
1997 getContext().getAsArrayType(Ty))) {
1998 auto VlaSize = getVLASize(vlaType);
1999 SizeVal = VlaSize.NumElts;
2000 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2001 if (!eltSize.isOne())
2002 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2003 vla = vlaType;
2004 } else {
2005 return;
2006 }
2007 } else {
2008 SizeVal = CGM.getSize(size);
2009 vla = nullptr;
2010 }
2011
2012 // If the type contains a pointer to data member we can't memset it to zero.
2013 // Instead, create a null constant and copy it to the destination.
2014 // TODO: there are other patterns besides zero that we can usefully memset,
2015 // like -1, which happens to be the pattern used by member-pointers.
2016 if (!CGM.getTypes().isZeroInitializable(Ty)) {
2017 // For a VLA, emit a single element, then splat that over the VLA.
2018 if (vla) Ty = getContext().getBaseElementType(vla);
2019
2020 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2021
2022 llvm::GlobalVariable *NullVariable =
2023 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2024 /*isConstant=*/true,
2025 llvm::GlobalVariable::PrivateLinkage,
2026 NullConstant, Twine());
2027 CharUnits NullAlign = DestPtr.getAlignment();
2028 NullVariable->setAlignment(NullAlign.getAsAlign());
2029 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
2030 Builder.getInt8Ty(), NullAlign);
2031
2032 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2033
2034 // Get and call the appropriate llvm.memcpy overload.
2035 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2036 return;
2037 }
2038
2039 // Otherwise, just memset the whole thing to zero. This is legal
2040 // because in LLVM, all default initializers (other than the ones we just
2041 // handled above) are guaranteed to have a bit pattern of all zeros.
2042 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2043 }
2044
GetAddrOfLabel(const LabelDecl * L)2045 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2046 // Make sure that there is a block for the indirect goto.
2047 if (!IndirectBranch)
2048 GetIndirectGotoBlock();
2049
2050 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2051
2052 // Make sure the indirect branch includes all of the address-taken blocks.
2053 IndirectBranch->addDestination(BB);
2054 return llvm::BlockAddress::get(CurFn, BB);
2055 }
2056
GetIndirectGotoBlock()2057 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2058 // If we already made the indirect branch for indirect goto, return its block.
2059 if (IndirectBranch) return IndirectBranch->getParent();
2060
2061 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2062
2063 // Create the PHI node that indirect gotos will add entries to.
2064 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2065 "indirect.goto.dest");
2066
2067 // Create the indirect branch instruction.
2068 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2069 return IndirectBranch->getParent();
2070 }
2071
2072 /// Computes the length of an array in elements, as well as the base
2073 /// element type and a properly-typed first element pointer.
emitArrayLength(const ArrayType * origArrayType,QualType & baseType,Address & addr)2074 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2075 QualType &baseType,
2076 Address &addr) {
2077 const ArrayType *arrayType = origArrayType;
2078
2079 // If it's a VLA, we have to load the stored size. Note that
2080 // this is the size of the VLA in bytes, not its size in elements.
2081 llvm::Value *numVLAElements = nullptr;
2082 if (isa<VariableArrayType>(arrayType)) {
2083 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2084
2085 // Walk into all VLAs. This doesn't require changes to addr,
2086 // which has type T* where T is the first non-VLA element type.
2087 do {
2088 QualType elementType = arrayType->getElementType();
2089 arrayType = getContext().getAsArrayType(elementType);
2090
2091 // If we only have VLA components, 'addr' requires no adjustment.
2092 if (!arrayType) {
2093 baseType = elementType;
2094 return numVLAElements;
2095 }
2096 } while (isa<VariableArrayType>(arrayType));
2097
2098 // We get out here only if we find a constant array type
2099 // inside the VLA.
2100 }
2101
2102 // We have some number of constant-length arrays, so addr should
2103 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
2104 // down to the first element of addr.
2105 SmallVector<llvm::Value*, 8> gepIndices;
2106
2107 // GEP down to the array type.
2108 llvm::ConstantInt *zero = Builder.getInt32(0);
2109 gepIndices.push_back(zero);
2110
2111 uint64_t countFromCLAs = 1;
2112 QualType eltType;
2113
2114 llvm::ArrayType *llvmArrayType =
2115 dyn_cast<llvm::ArrayType>(addr.getElementType());
2116 while (llvmArrayType) {
2117 assert(isa<ConstantArrayType>(arrayType));
2118 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2119 == llvmArrayType->getNumElements());
2120
2121 gepIndices.push_back(zero);
2122 countFromCLAs *= llvmArrayType->getNumElements();
2123 eltType = arrayType->getElementType();
2124
2125 llvmArrayType =
2126 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2127 arrayType = getContext().getAsArrayType(arrayType->getElementType());
2128 assert((!llvmArrayType || arrayType) &&
2129 "LLVM and Clang types are out-of-synch");
2130 }
2131
2132 if (arrayType) {
2133 // From this point onwards, the Clang array type has been emitted
2134 // as some other type (probably a packed struct). Compute the array
2135 // size, and just emit the 'begin' expression as a bitcast.
2136 while (arrayType) {
2137 countFromCLAs *=
2138 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2139 eltType = arrayType->getElementType();
2140 arrayType = getContext().getAsArrayType(eltType);
2141 }
2142
2143 llvm::Type *baseType = ConvertType(eltType);
2144 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2145 } else {
2146 // Create the actual GEP.
2147 addr = Address(Builder.CreateInBoundsGEP(
2148 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2149 ConvertTypeForMem(eltType),
2150 addr.getAlignment());
2151 }
2152
2153 baseType = eltType;
2154
2155 llvm::Value *numElements
2156 = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2157
2158 // If we had any VLA dimensions, factor them in.
2159 if (numVLAElements)
2160 numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2161
2162 return numElements;
2163 }
2164
getVLASize(QualType type)2165 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2166 const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2167 assert(vla && "type was not a variable array type!");
2168 return getVLASize(vla);
2169 }
2170
2171 CodeGenFunction::VlaSizePair
getVLASize(const VariableArrayType * type)2172 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2173 // The number of elements so far; always size_t.
2174 llvm::Value *numElements = nullptr;
2175
2176 QualType elementType;
2177 do {
2178 elementType = type->getElementType();
2179 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2180 assert(vlaSize && "no size for VLA!");
2181 assert(vlaSize->getType() == SizeTy);
2182
2183 if (!numElements) {
2184 numElements = vlaSize;
2185 } else {
2186 // It's undefined behavior if this wraps around, so mark it that way.
2187 // FIXME: Teach -fsanitize=undefined to trap this.
2188 numElements = Builder.CreateNUWMul(numElements, vlaSize);
2189 }
2190 } while ((type = getContext().getAsVariableArrayType(elementType)));
2191
2192 return { numElements, elementType };
2193 }
2194
2195 CodeGenFunction::VlaSizePair
getVLAElements1D(QualType type)2196 CodeGenFunction::getVLAElements1D(QualType type) {
2197 const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2198 assert(vla && "type was not a variable array type!");
2199 return getVLAElements1D(vla);
2200 }
2201
2202 CodeGenFunction::VlaSizePair
getVLAElements1D(const VariableArrayType * Vla)2203 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2204 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2205 assert(VlaSize && "no size for VLA!");
2206 assert(VlaSize->getType() == SizeTy);
2207 return { VlaSize, Vla->getElementType() };
2208 }
2209
EmitVariablyModifiedType(QualType type)2210 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2211 assert(type->isVariablyModifiedType() &&
2212 "Must pass variably modified type to EmitVLASizes!");
2213
2214 EnsureInsertPoint();
2215
2216 // We're going to walk down into the type and look for VLA
2217 // expressions.
2218 do {
2219 assert(type->isVariablyModifiedType());
2220
2221 const Type *ty = type.getTypePtr();
2222 switch (ty->getTypeClass()) {
2223
2224 #define TYPE(Class, Base)
2225 #define ABSTRACT_TYPE(Class, Base)
2226 #define NON_CANONICAL_TYPE(Class, Base)
2227 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2228 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2229 #include "clang/AST/TypeNodes.inc"
2230 llvm_unreachable("unexpected dependent type!");
2231
2232 // These types are never variably-modified.
2233 case Type::Builtin:
2234 case Type::Complex:
2235 case Type::Vector:
2236 case Type::ExtVector:
2237 case Type::ConstantMatrix:
2238 case Type::Record:
2239 case Type::Enum:
2240 case Type::Using:
2241 case Type::TemplateSpecialization:
2242 case Type::ObjCTypeParam:
2243 case Type::ObjCObject:
2244 case Type::ObjCInterface:
2245 case Type::ObjCObjectPointer:
2246 case Type::BitInt:
2247 llvm_unreachable("type class is never variably-modified!");
2248
2249 case Type::Elaborated:
2250 type = cast<ElaboratedType>(ty)->getNamedType();
2251 break;
2252
2253 case Type::Adjusted:
2254 type = cast<AdjustedType>(ty)->getAdjustedType();
2255 break;
2256
2257 case Type::Decayed:
2258 type = cast<DecayedType>(ty)->getPointeeType();
2259 break;
2260
2261 case Type::Pointer:
2262 type = cast<PointerType>(ty)->getPointeeType();
2263 break;
2264
2265 case Type::BlockPointer:
2266 type = cast<BlockPointerType>(ty)->getPointeeType();
2267 break;
2268
2269 case Type::LValueReference:
2270 case Type::RValueReference:
2271 type = cast<ReferenceType>(ty)->getPointeeType();
2272 break;
2273
2274 case Type::MemberPointer:
2275 type = cast<MemberPointerType>(ty)->getPointeeType();
2276 break;
2277
2278 case Type::ConstantArray:
2279 case Type::IncompleteArray:
2280 // Losing element qualification here is fine.
2281 type = cast<ArrayType>(ty)->getElementType();
2282 break;
2283
2284 case Type::VariableArray: {
2285 // Losing element qualification here is fine.
2286 const VariableArrayType *vat = cast<VariableArrayType>(ty);
2287
2288 // Unknown size indication requires no size computation.
2289 // Otherwise, evaluate and record it.
2290 if (const Expr *sizeExpr = vat->getSizeExpr()) {
2291 // It's possible that we might have emitted this already,
2292 // e.g. with a typedef and a pointer to it.
2293 llvm::Value *&entry = VLASizeMap[sizeExpr];
2294 if (!entry) {
2295 llvm::Value *size = EmitScalarExpr(sizeExpr);
2296
2297 // C11 6.7.6.2p5:
2298 // If the size is an expression that is not an integer constant
2299 // expression [...] each time it is evaluated it shall have a value
2300 // greater than zero.
2301 if (SanOpts.has(SanitizerKind::VLABound)) {
2302 SanitizerScope SanScope(this);
2303 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2304 clang::QualType SEType = sizeExpr->getType();
2305 llvm::Value *CheckCondition =
2306 SEType->isSignedIntegerType()
2307 ? Builder.CreateICmpSGT(size, Zero)
2308 : Builder.CreateICmpUGT(size, Zero);
2309 llvm::Constant *StaticArgs[] = {
2310 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2311 EmitCheckTypeDescriptor(SEType)};
2312 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2313 SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2314 }
2315
2316 // Always zexting here would be wrong if it weren't
2317 // undefined behavior to have a negative bound.
2318 // FIXME: What about when size's type is larger than size_t?
2319 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2320 }
2321 }
2322 type = vat->getElementType();
2323 break;
2324 }
2325
2326 case Type::FunctionProto:
2327 case Type::FunctionNoProto:
2328 type = cast<FunctionType>(ty)->getReturnType();
2329 break;
2330
2331 case Type::Paren:
2332 case Type::TypeOf:
2333 case Type::UnaryTransform:
2334 case Type::Attributed:
2335 case Type::BTFTagAttributed:
2336 case Type::SubstTemplateTypeParm:
2337 case Type::MacroQualified:
2338 // Keep walking after single level desugaring.
2339 type = type.getSingleStepDesugaredType(getContext());
2340 break;
2341
2342 case Type::Typedef:
2343 case Type::Decltype:
2344 case Type::Auto:
2345 case Type::DeducedTemplateSpecialization:
2346 // Stop walking: nothing to do.
2347 return;
2348
2349 case Type::TypeOfExpr:
2350 // Stop walking: emit typeof expression.
2351 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2352 return;
2353
2354 case Type::Atomic:
2355 type = cast<AtomicType>(ty)->getValueType();
2356 break;
2357
2358 case Type::Pipe:
2359 type = cast<PipeType>(ty)->getElementType();
2360 break;
2361 }
2362 } while (type->isVariablyModifiedType());
2363 }
2364
EmitVAListRef(const Expr * E)2365 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2366 if (getContext().getBuiltinVaListType()->isArrayType())
2367 return EmitPointerWithAlignment(E);
2368 return EmitLValue(E).getAddress(*this);
2369 }
2370
EmitMSVAListRef(const Expr * E)2371 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2372 return EmitLValue(E).getAddress(*this);
2373 }
2374
EmitDeclRefExprDbgValue(const DeclRefExpr * E,const APValue & Init)2375 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2376 const APValue &Init) {
2377 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2378 if (CGDebugInfo *Dbg = getDebugInfo())
2379 if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2380 Dbg->EmitGlobalVariable(E->getDecl(), Init);
2381 }
2382
2383 CodeGenFunction::PeepholeProtection
protectFromPeepholes(RValue rvalue)2384 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2385 // At the moment, the only aggressive peephole we do in IR gen
2386 // is trunc(zext) folding, but if we add more, we can easily
2387 // extend this protection.
2388
2389 if (!rvalue.isScalar()) return PeepholeProtection();
2390 llvm::Value *value = rvalue.getScalarVal();
2391 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2392
2393 // Just make an extra bitcast.
2394 assert(HaveInsertPoint());
2395 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2396 Builder.GetInsertBlock());
2397
2398 PeepholeProtection protection;
2399 protection.Inst = inst;
2400 return protection;
2401 }
2402
unprotectFromPeepholes(PeepholeProtection protection)2403 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2404 if (!protection.Inst) return;
2405
2406 // In theory, we could try to duplicate the peepholes now, but whatever.
2407 protection.Inst->eraseFromParent();
2408 }
2409
emitAlignmentAssumption(llvm::Value * PtrValue,QualType Ty,SourceLocation Loc,SourceLocation AssumptionLoc,llvm::Value * Alignment,llvm::Value * OffsetValue)2410 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2411 QualType Ty, SourceLocation Loc,
2412 SourceLocation AssumptionLoc,
2413 llvm::Value *Alignment,
2414 llvm::Value *OffsetValue) {
2415 if (Alignment->getType() != IntPtrTy)
2416 Alignment =
2417 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2418 if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2419 OffsetValue =
2420 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2421 llvm::Value *TheCheck = nullptr;
2422 if (SanOpts.has(SanitizerKind::Alignment)) {
2423 llvm::Value *PtrIntValue =
2424 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2425
2426 if (OffsetValue) {
2427 bool IsOffsetZero = false;
2428 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2429 IsOffsetZero = CI->isZero();
2430
2431 if (!IsOffsetZero)
2432 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2433 }
2434
2435 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2436 llvm::Value *Mask =
2437 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2438 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2439 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2440 }
2441 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2442 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2443
2444 if (!SanOpts.has(SanitizerKind::Alignment))
2445 return;
2446 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2447 OffsetValue, TheCheck, Assumption);
2448 }
2449
emitAlignmentAssumption(llvm::Value * PtrValue,const Expr * E,SourceLocation AssumptionLoc,llvm::Value * Alignment,llvm::Value * OffsetValue)2450 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2451 const Expr *E,
2452 SourceLocation AssumptionLoc,
2453 llvm::Value *Alignment,
2454 llvm::Value *OffsetValue) {
2455 QualType Ty = E->getType();
2456 SourceLocation Loc = E->getExprLoc();
2457
2458 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2459 OffsetValue);
2460 }
2461
EmitAnnotationCall(llvm::Function * AnnotationFn,llvm::Value * AnnotatedVal,StringRef AnnotationStr,SourceLocation Location,const AnnotateAttr * Attr)2462 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2463 llvm::Value *AnnotatedVal,
2464 StringRef AnnotationStr,
2465 SourceLocation Location,
2466 const AnnotateAttr *Attr) {
2467 SmallVector<llvm::Value *, 5> Args = {
2468 AnnotatedVal,
2469 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr),
2470 ConstGlobalsPtrTy),
2471 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location),
2472 ConstGlobalsPtrTy),
2473 CGM.EmitAnnotationLineNo(Location),
2474 };
2475 if (Attr)
2476 Args.push_back(CGM.EmitAnnotationArgs(Attr));
2477 return Builder.CreateCall(AnnotationFn, Args);
2478 }
2479
EmitVarAnnotations(const VarDecl * D,llvm::Value * V)2480 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2481 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2482 // FIXME We create a new bitcast for every annotation because that's what
2483 // llvm-gcc was doing.
2484 unsigned AS = V->getType()->getPointerAddressSpace();
2485 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(AS);
2486 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2487 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2488 {I8PtrTy, CGM.ConstGlobalsPtrTy}),
2489 Builder.CreateBitCast(V, I8PtrTy, V->getName()),
2490 I->getAnnotation(), D->getLocation(), I);
2491 }
2492
EmitFieldAnnotations(const FieldDecl * D,Address Addr)2493 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2494 Address Addr) {
2495 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2496 llvm::Value *V = Addr.getPointer();
2497 llvm::Type *VTy = V->getType();
2498 auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2499 unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2500 llvm::PointerType *IntrinTy =
2501 llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
2502 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2503 {IntrinTy, CGM.ConstGlobalsPtrTy});
2504
2505 for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2506 // FIXME Always emit the cast inst so we can differentiate between
2507 // annotation on the first field of a struct and annotation on the struct
2508 // itself.
2509 if (VTy != IntrinTy)
2510 V = Builder.CreateBitCast(V, IntrinTy);
2511 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2512 V = Builder.CreateBitCast(V, VTy);
2513 }
2514
2515 return Address(V, Addr.getElementType(), Addr.getAlignment());
2516 }
2517
~CGCapturedStmtInfo()2518 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2519
SanitizerScope(CodeGenFunction * CGF)2520 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2521 : CGF(CGF) {
2522 assert(!CGF->IsSanitizerScope);
2523 CGF->IsSanitizerScope = true;
2524 }
2525
~SanitizerScope()2526 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2527 CGF->IsSanitizerScope = false;
2528 }
2529
InsertHelper(llvm::Instruction * I,const llvm::Twine & Name,llvm::BasicBlock * BB,llvm::BasicBlock::iterator InsertPt) const2530 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2531 const llvm::Twine &Name,
2532 llvm::BasicBlock *BB,
2533 llvm::BasicBlock::iterator InsertPt) const {
2534 LoopStack.InsertHelper(I);
2535 if (IsSanitizerScope)
2536 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2537 }
2538
InsertHelper(llvm::Instruction * I,const llvm::Twine & Name,llvm::BasicBlock * BB,llvm::BasicBlock::iterator InsertPt) const2539 void CGBuilderInserter::InsertHelper(
2540 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2541 llvm::BasicBlock::iterator InsertPt) const {
2542 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2543 if (CGF)
2544 CGF->InsertHelper(I, Name, BB, InsertPt);
2545 }
2546
2547 // Emits an error if we don't have a valid set of target features for the
2548 // called function.
checkTargetFeatures(const CallExpr * E,const FunctionDecl * TargetDecl)2549 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2550 const FunctionDecl *TargetDecl) {
2551 return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2552 }
2553
2554 // Emits an error if we don't have a valid set of target features for the
2555 // called function.
checkTargetFeatures(SourceLocation Loc,const FunctionDecl * TargetDecl)2556 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2557 const FunctionDecl *TargetDecl) {
2558 // Early exit if this is an indirect call.
2559 if (!TargetDecl)
2560 return;
2561
2562 // Get the current enclosing function if it exists. If it doesn't
2563 // we can't check the target features anyhow.
2564 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2565 if (!FD)
2566 return;
2567
2568 // Grab the required features for the call. For a builtin this is listed in
2569 // the td file with the default cpu, for an always_inline function this is any
2570 // listed cpu and any listed features.
2571 unsigned BuiltinID = TargetDecl->getBuiltinID();
2572 std::string MissingFeature;
2573 llvm::StringMap<bool> CallerFeatureMap;
2574 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2575 if (BuiltinID) {
2576 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2577 if (!Builtin::evaluateRequiredTargetFeatures(
2578 FeatureList, CallerFeatureMap)) {
2579 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2580 << TargetDecl->getDeclName()
2581 << FeatureList;
2582 }
2583 } else if (!TargetDecl->isMultiVersion() &&
2584 TargetDecl->hasAttr<TargetAttr>()) {
2585 // Get the required features for the callee.
2586
2587 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2588 ParsedTargetAttr ParsedAttr =
2589 CGM.getContext().filterFunctionTargetAttrs(TD);
2590
2591 SmallVector<StringRef, 1> ReqFeatures;
2592 llvm::StringMap<bool> CalleeFeatureMap;
2593 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2594
2595 for (const auto &F : ParsedAttr.Features) {
2596 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2597 ReqFeatures.push_back(StringRef(F).substr(1));
2598 }
2599
2600 for (const auto &F : CalleeFeatureMap) {
2601 // Only positive features are "required".
2602 if (F.getValue())
2603 ReqFeatures.push_back(F.getKey());
2604 }
2605 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2606 if (!CallerFeatureMap.lookup(Feature)) {
2607 MissingFeature = Feature.str();
2608 return false;
2609 }
2610 return true;
2611 }))
2612 CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2613 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2614 }
2615 }
2616
EmitSanitizerStatReport(llvm::SanitizerStatKind SSK)2617 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2618 if (!CGM.getCodeGenOpts().SanitizeStats)
2619 return;
2620
2621 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2622 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2623 CGM.getSanStats().create(IRB, SSK);
2624 }
2625
EmitKCFIOperandBundle(const CGCallee & Callee,SmallVectorImpl<llvm::OperandBundleDef> & Bundles)2626 void CodeGenFunction::EmitKCFIOperandBundle(
2627 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2628 const FunctionProtoType *FP =
2629 Callee.getAbstractInfo().getCalleeFunctionProtoType();
2630 if (FP)
2631 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2632 }
2633
FormAArch64ResolverCondition(const MultiVersionResolverOption & RO)2634 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2635 const MultiVersionResolverOption &RO) {
2636 llvm::SmallVector<StringRef, 8> CondFeatures;
2637 for (const StringRef &Feature : RO.Conditions.Features) {
2638 // Form condition for features which are not yet enabled in target
2639 if (!getContext().getTargetInfo().hasFeature(Feature))
2640 CondFeatures.push_back(Feature);
2641 }
2642 if (!CondFeatures.empty()) {
2643 return EmitAArch64CpuSupports(CondFeatures);
2644 }
2645 return nullptr;
2646 }
2647
FormX86ResolverCondition(const MultiVersionResolverOption & RO)2648 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2649 const MultiVersionResolverOption &RO) {
2650 llvm::Value *Condition = nullptr;
2651
2652 if (!RO.Conditions.Architecture.empty())
2653 Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2654
2655 if (!RO.Conditions.Features.empty()) {
2656 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2657 Condition =
2658 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2659 }
2660 return Condition;
2661 }
2662
CreateMultiVersionResolverReturn(CodeGenModule & CGM,llvm::Function * Resolver,CGBuilderTy & Builder,llvm::Function * FuncToReturn,bool SupportsIFunc)2663 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2664 llvm::Function *Resolver,
2665 CGBuilderTy &Builder,
2666 llvm::Function *FuncToReturn,
2667 bool SupportsIFunc) {
2668 if (SupportsIFunc) {
2669 Builder.CreateRet(FuncToReturn);
2670 return;
2671 }
2672
2673 llvm::SmallVector<llvm::Value *, 10> Args(
2674 llvm::make_pointer_range(Resolver->args()));
2675
2676 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2677 Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2678
2679 if (Resolver->getReturnType()->isVoidTy())
2680 Builder.CreateRetVoid();
2681 else
2682 Builder.CreateRet(Result);
2683 }
2684
EmitMultiVersionResolver(llvm::Function * Resolver,ArrayRef<MultiVersionResolverOption> Options)2685 void CodeGenFunction::EmitMultiVersionResolver(
2686 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2687
2688 llvm::Triple::ArchType ArchType =
2689 getContext().getTargetInfo().getTriple().getArch();
2690
2691 switch (ArchType) {
2692 case llvm::Triple::x86:
2693 case llvm::Triple::x86_64:
2694 EmitX86MultiVersionResolver(Resolver, Options);
2695 return;
2696 case llvm::Triple::aarch64:
2697 EmitAArch64MultiVersionResolver(Resolver, Options);
2698 return;
2699
2700 default:
2701 assert(false && "Only implemented for x86 and AArch64 targets");
2702 }
2703 }
2704
EmitAArch64MultiVersionResolver(llvm::Function * Resolver,ArrayRef<MultiVersionResolverOption> Options)2705 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2706 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2707 assert(!Options.empty() && "No multiversion resolver options found");
2708 assert(Options.back().Conditions.Features.size() == 0 &&
2709 "Default case must be last");
2710 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2711 assert(SupportsIFunc &&
2712 "Multiversion resolver requires target IFUNC support");
2713 bool AArch64CpuInitialized = false;
2714 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2715
2716 for (const MultiVersionResolverOption &RO : Options) {
2717 Builder.SetInsertPoint(CurBlock);
2718 llvm::Value *Condition = FormAArch64ResolverCondition(RO);
2719
2720 // The 'default' or 'all features enabled' case.
2721 if (!Condition) {
2722 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2723 SupportsIFunc);
2724 return;
2725 }
2726
2727 if (!AArch64CpuInitialized) {
2728 Builder.SetInsertPoint(CurBlock, CurBlock->begin());
2729 EmitAArch64CpuInit();
2730 AArch64CpuInitialized = true;
2731 Builder.SetInsertPoint(CurBlock);
2732 }
2733
2734 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2735 CGBuilderTy RetBuilder(*this, RetBlock);
2736 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2737 SupportsIFunc);
2738 CurBlock = createBasicBlock("resolver_else", Resolver);
2739 Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2740 }
2741
2742 // If no default, emit an unreachable.
2743 Builder.SetInsertPoint(CurBlock);
2744 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2745 TrapCall->setDoesNotReturn();
2746 TrapCall->setDoesNotThrow();
2747 Builder.CreateUnreachable();
2748 Builder.ClearInsertionPoint();
2749 }
2750
EmitX86MultiVersionResolver(llvm::Function * Resolver,ArrayRef<MultiVersionResolverOption> Options)2751 void CodeGenFunction::EmitX86MultiVersionResolver(
2752 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2753
2754 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2755
2756 // Main function's basic block.
2757 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2758 Builder.SetInsertPoint(CurBlock);
2759 EmitX86CpuInit();
2760
2761 for (const MultiVersionResolverOption &RO : Options) {
2762 Builder.SetInsertPoint(CurBlock);
2763 llvm::Value *Condition = FormX86ResolverCondition(RO);
2764
2765 // The 'default' or 'generic' case.
2766 if (!Condition) {
2767 assert(&RO == Options.end() - 1 &&
2768 "Default or Generic case must be last");
2769 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2770 SupportsIFunc);
2771 return;
2772 }
2773
2774 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2775 CGBuilderTy RetBuilder(*this, RetBlock);
2776 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2777 SupportsIFunc);
2778 CurBlock = createBasicBlock("resolver_else", Resolver);
2779 Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2780 }
2781
2782 // If no generic/default, emit an unreachable.
2783 Builder.SetInsertPoint(CurBlock);
2784 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2785 TrapCall->setDoesNotReturn();
2786 TrapCall->setDoesNotThrow();
2787 Builder.CreateUnreachable();
2788 Builder.ClearInsertionPoint();
2789 }
2790
2791 // Loc - where the diagnostic will point, where in the source code this
2792 // alignment has failed.
2793 // SecondaryLoc - if present (will be present if sufficiently different from
2794 // Loc), the diagnostic will additionally point a "Note:" to this location.
2795 // It should be the location where the __attribute__((assume_aligned))
2796 // was written e.g.
emitAlignmentAssumptionCheck(llvm::Value * Ptr,QualType Ty,SourceLocation Loc,SourceLocation SecondaryLoc,llvm::Value * Alignment,llvm::Value * OffsetValue,llvm::Value * TheCheck,llvm::Instruction * Assumption)2797 void CodeGenFunction::emitAlignmentAssumptionCheck(
2798 llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2799 SourceLocation SecondaryLoc, llvm::Value *Alignment,
2800 llvm::Value *OffsetValue, llvm::Value *TheCheck,
2801 llvm::Instruction *Assumption) {
2802 assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2803 cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2804 llvm::Intrinsic::getDeclaration(
2805 Builder.GetInsertBlock()->getParent()->getParent(),
2806 llvm::Intrinsic::assume) &&
2807 "Assumption should be a call to llvm.assume().");
2808 assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2809 "Assumption should be the last instruction of the basic block, "
2810 "since the basic block is still being generated.");
2811
2812 if (!SanOpts.has(SanitizerKind::Alignment))
2813 return;
2814
2815 // Don't check pointers to volatile data. The behavior here is implementation-
2816 // defined.
2817 if (Ty->getPointeeType().isVolatileQualified())
2818 return;
2819
2820 // We need to temorairly remove the assumption so we can insert the
2821 // sanitizer check before it, else the check will be dropped by optimizations.
2822 Assumption->removeFromParent();
2823
2824 {
2825 SanitizerScope SanScope(this);
2826
2827 if (!OffsetValue)
2828 OffsetValue = Builder.getInt1(false); // no offset.
2829
2830 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2831 EmitCheckSourceLocation(SecondaryLoc),
2832 EmitCheckTypeDescriptor(Ty)};
2833 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2834 EmitCheckValue(Alignment),
2835 EmitCheckValue(OffsetValue)};
2836 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2837 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2838 }
2839
2840 // We are now in the (new, empty) "cont" basic block.
2841 // Reintroduce the assumption.
2842 Builder.Insert(Assumption);
2843 // FIXME: Assumption still has it's original basic block as it's Parent.
2844 }
2845
SourceLocToDebugLoc(SourceLocation Location)2846 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2847 if (CGDebugInfo *DI = getDebugInfo())
2848 return DI->SourceLocToDebugLoc(Location);
2849
2850 return llvm::DebugLoc();
2851 }
2852
2853 llvm::Value *
emitCondLikelihoodViaExpectIntrinsic(llvm::Value * Cond,Stmt::Likelihood LH)2854 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2855 Stmt::Likelihood LH) {
2856 switch (LH) {
2857 case Stmt::LH_None:
2858 return Cond;
2859 case Stmt::LH_Likely:
2860 case Stmt::LH_Unlikely:
2861 // Don't generate llvm.expect on -O0 as the backend won't use it for
2862 // anything.
2863 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2864 return Cond;
2865 llvm::Type *CondTy = Cond->getType();
2866 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2867 llvm::Function *FnExpect =
2868 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2869 llvm::Value *ExpectedValueOfCond =
2870 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2871 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2872 Cond->getName() + ".expval");
2873 }
2874 llvm_unreachable("Unknown Likelihood");
2875 }
2876
emitBoolVecConversion(llvm::Value * SrcVec,unsigned NumElementsDst,const llvm::Twine & Name)2877 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
2878 unsigned NumElementsDst,
2879 const llvm::Twine &Name) {
2880 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
2881 unsigned NumElementsSrc = SrcTy->getNumElements();
2882 if (NumElementsSrc == NumElementsDst)
2883 return SrcVec;
2884
2885 std::vector<int> ShuffleMask(NumElementsDst, -1);
2886 for (unsigned MaskIdx = 0;
2887 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
2888 ShuffleMask[MaskIdx] = MaskIdx;
2889
2890 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
2891 }
2892