1 //===-- M68kInstrInfo.cpp - M68k Instruction Information --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file contains the M68k declaration of the TargetInstrInfo class.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #include "M68kInstrInfo.h"
15
16 #include "M68kInstrBuilder.h"
17 #include "M68kMachineFunction.h"
18 #include "M68kTargetMachine.h"
19 #include "MCTargetDesc/M68kMCCodeEmitter.h"
20
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/ScopeExit.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/MC/TargetRegistry.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/Regex.h"
30
31 #include <functional>
32
33 using namespace llvm;
34
35 #define DEBUG_TYPE "M68k-instr-info"
36
37 #define GET_INSTRINFO_CTOR_DTOR
38 #include "M68kGenInstrInfo.inc"
39
40 // Pin the vtable to this file.
anchor()41 void M68kInstrInfo::anchor() {}
42
M68kInstrInfo(const M68kSubtarget & STI)43 M68kInstrInfo::M68kInstrInfo(const M68kSubtarget &STI)
44 : M68kGenInstrInfo(M68k::ADJCALLSTACKDOWN, M68k::ADJCALLSTACKUP, 0,
45 M68k::RET),
46 Subtarget(STI), RI(STI) {}
47
getCondFromBranchOpc(unsigned BrOpc)48 static M68k::CondCode getCondFromBranchOpc(unsigned BrOpc) {
49 switch (BrOpc) {
50 default:
51 return M68k::COND_INVALID;
52 case M68k::Beq8:
53 return M68k::COND_EQ;
54 case M68k::Bne8:
55 return M68k::COND_NE;
56 case M68k::Blt8:
57 return M68k::COND_LT;
58 case M68k::Ble8:
59 return M68k::COND_LE;
60 case M68k::Bgt8:
61 return M68k::COND_GT;
62 case M68k::Bge8:
63 return M68k::COND_GE;
64 case M68k::Bcs8:
65 return M68k::COND_CS;
66 case M68k::Bls8:
67 return M68k::COND_LS;
68 case M68k::Bhi8:
69 return M68k::COND_HI;
70 case M68k::Bcc8:
71 return M68k::COND_CC;
72 case M68k::Bmi8:
73 return M68k::COND_MI;
74 case M68k::Bpl8:
75 return M68k::COND_PL;
76 case M68k::Bvs8:
77 return M68k::COND_VS;
78 case M68k::Bvc8:
79 return M68k::COND_VC;
80 }
81 }
82
AnalyzeBranchImpl(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const83 bool M68kInstrInfo::AnalyzeBranchImpl(MachineBasicBlock &MBB,
84 MachineBasicBlock *&TBB,
85 MachineBasicBlock *&FBB,
86 SmallVectorImpl<MachineOperand> &Cond,
87 bool AllowModify) const {
88
89 auto UncondBranch =
90 std::pair<MachineBasicBlock::reverse_iterator, MachineBasicBlock *>{
91 MBB.rend(), nullptr};
92
93 // Erase any instructions if allowed at the end of the scope.
94 std::vector<std::reference_wrapper<llvm::MachineInstr>> EraseList;
95 auto FinalizeOnReturn = llvm::make_scope_exit([&EraseList] {
96 std::for_each(EraseList.begin(), EraseList.end(),
97 [](auto &ref) { ref.get().eraseFromParent(); });
98 });
99
100 // Start from the bottom of the block and work up, examining the
101 // terminator instructions.
102 for (auto iter = MBB.rbegin(); iter != MBB.rend(); iter = std::next(iter)) {
103
104 unsigned Opcode = iter->getOpcode();
105
106 if (iter->isDebugInstr())
107 continue;
108
109 // Working from the bottom, when we see a non-terminator instruction, we're
110 // done.
111 if (!isUnpredicatedTerminator(*iter))
112 break;
113
114 // A terminator that isn't a branch can't easily be handled by this
115 // analysis.
116 if (!iter->isBranch())
117 return true;
118
119 // Handle unconditional branches.
120 if (Opcode == M68k::BRA8 || Opcode == M68k::BRA16) {
121 if (!iter->getOperand(0).isMBB())
122 return true;
123 UncondBranch = {iter, iter->getOperand(0).getMBB()};
124
125 // TBB is used to indicate the unconditional destination.
126 TBB = UncondBranch.second;
127
128 if (!AllowModify)
129 continue;
130
131 // If the block has any instructions after a JMP, erase them.
132 EraseList.insert(EraseList.begin(), MBB.rbegin(), iter);
133
134 Cond.clear();
135 FBB = nullptr;
136
137 // Erase the JMP if it's equivalent to a fall-through.
138 if (MBB.isLayoutSuccessor(UncondBranch.second)) {
139 TBB = nullptr;
140 EraseList.push_back(*iter);
141 UncondBranch = {MBB.rend(), nullptr};
142 }
143
144 continue;
145 }
146
147 // Handle conditional branches.
148 auto BranchCode = M68k::GetCondFromBranchOpc(Opcode);
149
150 // Can't handle indirect branch.
151 if (BranchCode == M68k::COND_INVALID)
152 return true;
153
154 // In practice we should never have an undef CCR operand, if we do
155 // abort here as we are not prepared to preserve the flag.
156 // ??? Is this required?
157 // if (iter->getOperand(1).isUndef())
158 // return true;
159
160 // Working from the bottom, handle the first conditional branch.
161 if (Cond.empty()) {
162 if (!iter->getOperand(0).isMBB())
163 return true;
164 MachineBasicBlock *CondBranchTarget = iter->getOperand(0).getMBB();
165
166 // If we see something like this:
167 //
168 // bcc l1
169 // bra l2
170 // ...
171 // l1:
172 // ...
173 // l2:
174 if (UncondBranch.first != MBB.rend()) {
175
176 assert(std::next(UncondBranch.first) == iter && "Wrong block layout.");
177
178 // And we are allowed to modify the block and the target block of the
179 // conditional branch is the direct successor of this block:
180 //
181 // bcc l1
182 // bra l2
183 // l1:
184 // ...
185 // l2:
186 //
187 // we change it to this if allowed:
188 //
189 // bncc l2
190 // l1:
191 // ...
192 // l2:
193 //
194 // Which is a bit more efficient.
195 if (AllowModify && MBB.isLayoutSuccessor(CondBranchTarget)) {
196
197 BranchCode = GetOppositeBranchCondition(BranchCode);
198 unsigned BNCC = GetCondBranchFromCond(BranchCode);
199
200 BuildMI(MBB, *UncondBranch.first, MBB.rfindDebugLoc(iter), get(BNCC))
201 .addMBB(UncondBranch.second);
202
203 EraseList.push_back(*iter);
204 EraseList.push_back(*UncondBranch.first);
205
206 TBB = UncondBranch.second;
207 FBB = nullptr;
208 Cond.push_back(MachineOperand::CreateImm(BranchCode));
209
210 // Otherwise preserve TBB, FBB and Cond as requested
211 } else {
212 TBB = CondBranchTarget;
213 FBB = UncondBranch.second;
214 Cond.push_back(MachineOperand::CreateImm(BranchCode));
215 }
216
217 UncondBranch = {MBB.rend(), nullptr};
218 continue;
219 }
220
221 TBB = CondBranchTarget;
222 FBB = nullptr;
223 Cond.push_back(MachineOperand::CreateImm(BranchCode));
224
225 continue;
226 }
227
228 // Handle subsequent conditional branches. Only handle the case where all
229 // conditional branches branch to the same destination and their condition
230 // opcodes fit one of the special multi-branch idioms.
231 assert(Cond.size() == 1);
232 assert(TBB);
233
234 // If the conditions are the same, we can leave them alone.
235 auto OldBranchCode = static_cast<M68k::CondCode>(Cond[0].getImm());
236 if (!iter->getOperand(0).isMBB())
237 return true;
238 auto NewTBB = iter->getOperand(0).getMBB();
239 if (OldBranchCode == BranchCode && TBB == NewTBB)
240 continue;
241
242 // If they differ we cannot do much here.
243 return true;
244 }
245
246 return false;
247 }
248
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const249 bool M68kInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
250 MachineBasicBlock *&TBB,
251 MachineBasicBlock *&FBB,
252 SmallVectorImpl<MachineOperand> &Cond,
253 bool AllowModify) const {
254 return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, AllowModify);
255 }
256
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const257 unsigned M68kInstrInfo::removeBranch(MachineBasicBlock &MBB,
258 int *BytesRemoved) const {
259 assert(!BytesRemoved && "code size not handled");
260
261 MachineBasicBlock::iterator I = MBB.end();
262 unsigned Count = 0;
263
264 while (I != MBB.begin()) {
265 --I;
266 if (I->isDebugValue())
267 continue;
268 if (I->getOpcode() != M68k::BRA8 &&
269 getCondFromBranchOpc(I->getOpcode()) == M68k::COND_INVALID)
270 break;
271 // Remove the branch.
272 I->eraseFromParent();
273 I = MBB.end();
274 ++Count;
275 }
276
277 return Count;
278 }
279
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const280 unsigned M68kInstrInfo::insertBranch(
281 MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
282 ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
283 // Shouldn't be a fall through.
284 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
285 assert((Cond.size() == 1 || Cond.size() == 0) &&
286 "M68k branch conditions have one component!");
287 assert(!BytesAdded && "code size not handled");
288
289 if (Cond.empty()) {
290 // Unconditional branch?
291 assert(!FBB && "Unconditional branch with multiple successors!");
292 BuildMI(&MBB, DL, get(M68k::BRA8)).addMBB(TBB);
293 return 1;
294 }
295
296 // If FBB is null, it is implied to be a fall-through block.
297 bool FallThru = FBB == nullptr;
298
299 // Conditional branch.
300 unsigned Count = 0;
301 M68k::CondCode CC = (M68k::CondCode)Cond[0].getImm();
302 unsigned Opc = GetCondBranchFromCond(CC);
303 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
304 ++Count;
305 if (!FallThru) {
306 // Two-way Conditional branch. Insert the second branch.
307 BuildMI(&MBB, DL, get(M68k::BRA8)).addMBB(FBB);
308 ++Count;
309 }
310 return Count;
311 }
312
AddSExt(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned Reg,MVT From,MVT To) const313 void M68kInstrInfo::AddSExt(MachineBasicBlock &MBB,
314 MachineBasicBlock::iterator I, DebugLoc DL,
315 unsigned Reg, MVT From, MVT To) const {
316 if (From == MVT::i8) {
317 unsigned R = Reg;
318 // EXT16 requires i16 register
319 if (To == MVT::i32) {
320 R = RI.getSubReg(Reg, M68k::MxSubRegIndex16Lo);
321 assert(R && "No viable SUB register available");
322 }
323 BuildMI(MBB, I, DL, get(M68k::EXT16), R).addReg(R);
324 }
325
326 if (To == MVT::i32)
327 BuildMI(MBB, I, DL, get(M68k::EXT32), Reg).addReg(Reg);
328 }
329
AddZExt(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned Reg,MVT From,MVT To) const330 void M68kInstrInfo::AddZExt(MachineBasicBlock &MBB,
331 MachineBasicBlock::iterator I, DebugLoc DL,
332 unsigned Reg, MVT From, MVT To) const {
333
334 unsigned Mask, And;
335 if (From == MVT::i8)
336 Mask = 0xFF;
337 else
338 Mask = 0xFFFF;
339
340 if (To == MVT::i16)
341 And = M68k::AND16di;
342 else // i32
343 And = M68k::AND32di;
344
345 // TODO use xor r,r to decrease size
346 BuildMI(MBB, I, DL, get(And), Reg).addReg(Reg).addImm(Mask);
347 }
348
ExpandMOVX_RR(MachineInstrBuilder & MIB,MVT MVTDst,MVT MVTSrc) const349 bool M68kInstrInfo::ExpandMOVX_RR(MachineInstrBuilder &MIB, MVT MVTDst,
350 MVT MVTSrc) const {
351 unsigned Move = MVTDst == MVT::i16 ? M68k::MOV16rr : M68k::MOV32rr;
352 Register Dst = MIB->getOperand(0).getReg();
353 Register Src = MIB->getOperand(1).getReg();
354
355 assert(Dst != Src && "You cannot use the same Regs with MOVX_RR");
356
357 const auto &TRI = getRegisterInfo();
358
359 const auto *RCDst = TRI.getMaximalPhysRegClass(Dst, MVTDst);
360 const auto *RCSrc = TRI.getMaximalPhysRegClass(Src, MVTSrc);
361
362 assert(RCDst && RCSrc && "Wrong use of MOVX_RR");
363 assert(RCDst != RCSrc && "You cannot use the same Reg Classes with MOVX_RR");
364
365 // We need to find the super source register that matches the size of Dst
366 unsigned SSrc = RI.getMatchingMegaReg(Src, RCDst);
367 assert(SSrc && "No viable MEGA register available");
368
369 DebugLoc DL = MIB->getDebugLoc();
370
371 // If it happens to that super source register is the destination register
372 // we do nothing
373 if (Dst == SSrc) {
374 LLVM_DEBUG(dbgs() << "Remove " << *MIB.getInstr() << '\n');
375 MIB->eraseFromParent();
376 } else { // otherwise we need to MOV
377 LLVM_DEBUG(dbgs() << "Expand " << *MIB.getInstr() << " to MOV\n");
378 MIB->setDesc(get(Move));
379 MIB->getOperand(1).setReg(SSrc);
380 }
381
382 return true;
383 }
384
385 /// Expand SExt MOVE pseudos into a MOV and a EXT if the operands are two
386 /// different registers or just EXT if it is the same register
ExpandMOVSZX_RR(MachineInstrBuilder & MIB,bool IsSigned,MVT MVTDst,MVT MVTSrc) const387 bool M68kInstrInfo::ExpandMOVSZX_RR(MachineInstrBuilder &MIB, bool IsSigned,
388 MVT MVTDst, MVT MVTSrc) const {
389 LLVM_DEBUG(dbgs() << "Expand " << *MIB.getInstr() << " to ");
390
391 unsigned Move;
392
393 if (MVTDst == MVT::i16)
394 Move = M68k::MOV16rr;
395 else // i32
396 Move = M68k::MOV32rr;
397
398 Register Dst = MIB->getOperand(0).getReg();
399 Register Src = MIB->getOperand(1).getReg();
400
401 assert(Dst != Src && "You cannot use the same Regs with MOVSX_RR");
402
403 const auto &TRI = getRegisterInfo();
404
405 const auto *RCDst = TRI.getMaximalPhysRegClass(Dst, MVTDst);
406 const auto *RCSrc = TRI.getMaximalPhysRegClass(Src, MVTSrc);
407
408 assert(RCDst && RCSrc && "Wrong use of MOVSX_RR");
409 assert(RCDst != RCSrc && "You cannot use the same Reg Classes with MOVSX_RR");
410
411 // We need to find the super source register that matches the size of Dst
412 unsigned SSrc = RI.getMatchingMegaReg(Src, RCDst);
413 assert(SSrc && "No viable MEGA register available");
414
415 MachineBasicBlock &MBB = *MIB->getParent();
416 DebugLoc DL = MIB->getDebugLoc();
417
418 if (Dst != SSrc) {
419 LLVM_DEBUG(dbgs() << "Move and " << '\n');
420 BuildMI(MBB, MIB.getInstr(), DL, get(Move), Dst).addReg(SSrc);
421 }
422
423 if (IsSigned) {
424 LLVM_DEBUG(dbgs() << "Sign Extend" << '\n');
425 AddSExt(MBB, MIB.getInstr(), DL, Dst, MVTSrc, MVTDst);
426 } else {
427 LLVM_DEBUG(dbgs() << "Zero Extend" << '\n');
428 AddZExt(MBB, MIB.getInstr(), DL, Dst, MVTSrc, MVTDst);
429 }
430
431 MIB->eraseFromParent();
432
433 return true;
434 }
435
ExpandMOVSZX_RM(MachineInstrBuilder & MIB,bool IsSigned,const MCInstrDesc & Desc,MVT MVTDst,MVT MVTSrc) const436 bool M68kInstrInfo::ExpandMOVSZX_RM(MachineInstrBuilder &MIB, bool IsSigned,
437 const MCInstrDesc &Desc, MVT MVTDst,
438 MVT MVTSrc) const {
439 LLVM_DEBUG(dbgs() << "Expand " << *MIB.getInstr() << " to LOAD and ");
440
441 Register Dst = MIB->getOperand(0).getReg();
442
443 // We need the subreg of Dst to make instruction verifier happy because the
444 // real machine instruction consumes and produces values of the same size and
445 // the registers the will be used here fall into different classes and this
446 // makes IV cry. We could use a bigger operation, but this will put some
447 // pressure on cache and memory, so no.
448 unsigned SubDst =
449 RI.getSubReg(Dst, MVTSrc == MVT::i8 ? M68k::MxSubRegIndex8Lo
450 : M68k::MxSubRegIndex16Lo);
451 assert(SubDst && "No viable SUB register available");
452
453 // Make this a plain move
454 MIB->setDesc(Desc);
455 MIB->getOperand(0).setReg(SubDst);
456
457 MachineBasicBlock::iterator I = MIB.getInstr();
458 I++;
459 MachineBasicBlock &MBB = *MIB->getParent();
460 DebugLoc DL = MIB->getDebugLoc();
461
462 if (IsSigned) {
463 LLVM_DEBUG(dbgs() << "Sign Extend" << '\n');
464 AddSExt(MBB, I, DL, Dst, MVTSrc, MVTDst);
465 } else {
466 LLVM_DEBUG(dbgs() << "Zero Extend" << '\n');
467 AddZExt(MBB, I, DL, Dst, MVTSrc, MVTDst);
468 }
469
470 return true;
471 }
472
ExpandPUSH_POP(MachineInstrBuilder & MIB,const MCInstrDesc & Desc,bool IsPush) const473 bool M68kInstrInfo::ExpandPUSH_POP(MachineInstrBuilder &MIB,
474 const MCInstrDesc &Desc, bool IsPush) const {
475 MachineBasicBlock::iterator I = MIB.getInstr();
476 I++;
477 MachineBasicBlock &MBB = *MIB->getParent();
478 MachineOperand MO = MIB->getOperand(0);
479 DebugLoc DL = MIB->getDebugLoc();
480 if (IsPush)
481 BuildMI(MBB, I, DL, Desc).addReg(RI.getStackRegister()).add(MO);
482 else
483 BuildMI(MBB, I, DL, Desc, MO.getReg()).addReg(RI.getStackRegister());
484
485 MIB->eraseFromParent();
486 return true;
487 }
488
ExpandCCR(MachineInstrBuilder & MIB,bool IsToCCR) const489 bool M68kInstrInfo::ExpandCCR(MachineInstrBuilder &MIB, bool IsToCCR) const {
490
491 // Replace the pseudo instruction with the real one
492 if (IsToCCR)
493 MIB->setDesc(get(M68k::MOV16cd));
494 else
495 // FIXME M68010 or later is required
496 MIB->setDesc(get(M68k::MOV16dc));
497
498 // Promote used register to the next class
499 auto &Opd = MIB->getOperand(1);
500 Opd.setReg(getRegisterInfo().getMatchingSuperReg(
501 Opd.getReg(), M68k::MxSubRegIndex8Lo, &M68k::DR16RegClass));
502
503 return true;
504 }
505
ExpandMOVEM(MachineInstrBuilder & MIB,const MCInstrDesc & Desc,bool IsRM) const506 bool M68kInstrInfo::ExpandMOVEM(MachineInstrBuilder &MIB,
507 const MCInstrDesc &Desc, bool IsRM) const {
508 int Reg = 0, Offset = 0, Base = 0;
509 auto XR32 = RI.getRegClass(M68k::XR32RegClassID);
510 auto DL = MIB->getDebugLoc();
511 auto MI = MIB.getInstr();
512 auto &MBB = *MIB->getParent();
513
514 if (IsRM) {
515 Reg = MIB->getOperand(0).getReg();
516 Offset = MIB->getOperand(1).getImm();
517 Base = MIB->getOperand(2).getReg();
518 } else {
519 Offset = MIB->getOperand(0).getImm();
520 Base = MIB->getOperand(1).getReg();
521 Reg = MIB->getOperand(2).getReg();
522 }
523
524 // If the register is not in XR32 then it is smaller than 32 bit, we
525 // implicitly promote it to 32
526 if (!XR32->contains(Reg)) {
527 Reg = RI.getMatchingMegaReg(Reg, XR32);
528 assert(Reg && "Has not meaningful MEGA register");
529 }
530
531 unsigned Mask = 1 << RI.getSpillRegisterOrder(Reg);
532 if (IsRM) {
533 BuildMI(MBB, MI, DL, Desc)
534 .addImm(Mask)
535 .addImm(Offset)
536 .addReg(Base)
537 .addReg(Reg, RegState::ImplicitDefine)
538 .copyImplicitOps(*MIB);
539 } else {
540 BuildMI(MBB, MI, DL, Desc)
541 .addImm(Offset)
542 .addReg(Base)
543 .addImm(Mask)
544 .addReg(Reg, RegState::Implicit)
545 .copyImplicitOps(*MIB);
546 }
547
548 MIB->eraseFromParent();
549
550 return true;
551 }
552
553 /// Expand a single-def pseudo instruction to a two-addr
554 /// instruction with two undef reads of the register being defined.
555 /// This is used for mapping:
556 /// %d0 = SETCS_C32d
557 /// to:
558 /// %d0 = SUBX32dd %d0<undef>, %d0<undef>
559 ///
Expand2AddrUndef(MachineInstrBuilder & MIB,const MCInstrDesc & Desc)560 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
561 const MCInstrDesc &Desc) {
562 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
563 Register Reg = MIB->getOperand(0).getReg();
564 MIB->setDesc(Desc);
565
566 // MachineInstr::addOperand() will insert explicit operands before any
567 // implicit operands.
568 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
569 // But we don't trust that.
570 assert(MIB->getOperand(1).getReg() == Reg &&
571 MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
572 return true;
573 }
574
expandPostRAPseudo(MachineInstr & MI) const575 bool M68kInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
576 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
577 switch (MI.getOpcode()) {
578 case M68k::PUSH8d:
579 return ExpandPUSH_POP(MIB, get(M68k::MOV8ed), true);
580 case M68k::PUSH16d:
581 return ExpandPUSH_POP(MIB, get(M68k::MOV16er), true);
582 case M68k::PUSH32r:
583 return ExpandPUSH_POP(MIB, get(M68k::MOV32er), true);
584
585 case M68k::POP8d:
586 return ExpandPUSH_POP(MIB, get(M68k::MOV8do), false);
587 case M68k::POP16d:
588 return ExpandPUSH_POP(MIB, get(M68k::MOV16ro), false);
589 case M68k::POP32r:
590 return ExpandPUSH_POP(MIB, get(M68k::MOV32ro), false);
591
592 case M68k::SETCS_C8d:
593 return Expand2AddrUndef(MIB, get(M68k::SUBX8dd));
594 case M68k::SETCS_C16d:
595 return Expand2AddrUndef(MIB, get(M68k::SUBX16dd));
596 case M68k::SETCS_C32d:
597 return Expand2AddrUndef(MIB, get(M68k::SUBX32dd));
598 }
599 return false;
600 }
601
isPCRelRegisterOperandLegal(const MachineOperand & MO) const602 bool M68kInstrInfo::isPCRelRegisterOperandLegal(
603 const MachineOperand &MO) const {
604 assert(MO.isReg());
605
606 // Check whether this MO belongs to an instruction with addressing mode 'k',
607 // Refer to TargetInstrInfo.h for more information about this function.
608
609 const MachineInstr *MI = MO.getParent();
610 const unsigned NameIndices = M68kInstrNameIndices[MI->getOpcode()];
611 StringRef InstrName(&M68kInstrNameData[NameIndices]);
612 const unsigned OperandNo = MI->getOperandNo(&MO);
613
614 // If this machine operand is the 2nd operand, then check
615 // whether the instruction has destination addressing mode 'k'.
616 if (OperandNo == 1)
617 return Regex("[A-Z]+(8|16|32)k[a-z](_TC)?$").match(InstrName);
618
619 // If this machine operand is the last one, then check
620 // whether the instruction has source addressing mode 'k'.
621 if (OperandNo == MI->getNumExplicitOperands() - 1)
622 return Regex("[A-Z]+(8|16|32)[a-z]k(_TC)?$").match(InstrName);
623
624 return false;
625 }
626
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & DL,MCRegister DstReg,MCRegister SrcReg,bool KillSrc) const627 void M68kInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
628 MachineBasicBlock::iterator MI,
629 const DebugLoc &DL, MCRegister DstReg,
630 MCRegister SrcReg, bool KillSrc) const {
631 unsigned Opc = 0;
632
633 // First deal with the normal symmetric copies.
634 if (M68k::XR32RegClass.contains(DstReg, SrcReg))
635 Opc = M68k::MOV32rr;
636 else if (M68k::XR16RegClass.contains(DstReg, SrcReg))
637 Opc = M68k::MOV16rr;
638 else if (M68k::DR8RegClass.contains(DstReg, SrcReg))
639 Opc = M68k::MOV8dd;
640
641 if (Opc) {
642 BuildMI(MBB, MI, DL, get(Opc), DstReg)
643 .addReg(SrcReg, getKillRegState(KillSrc));
644 return;
645 }
646
647 // Now deal with asymmetrically sized copies. The cases that follow are upcast
648 // moves.
649 //
650 // NOTE
651 // These moves are not aware of type nature of these values and thus
652 // won't do any SExt or ZExt and upper bits will basically contain garbage.
653 MachineInstrBuilder MIB(*MBB.getParent(), MI);
654 if (M68k::DR8RegClass.contains(SrcReg)) {
655 if (M68k::XR16RegClass.contains(DstReg))
656 Opc = M68k::MOVXd16d8;
657 else if (M68k::XR32RegClass.contains(DstReg))
658 Opc = M68k::MOVXd32d8;
659 } else if (M68k::XR16RegClass.contains(SrcReg) &&
660 M68k::XR32RegClass.contains(DstReg))
661 Opc = M68k::MOVXd32d16;
662
663 if (Opc) {
664 BuildMI(MBB, MI, DL, get(Opc), DstReg)
665 .addReg(SrcReg, getKillRegState(KillSrc));
666 return;
667 }
668
669 bool FromCCR = SrcReg == M68k::CCR;
670 bool FromSR = SrcReg == M68k::SR;
671 bool ToCCR = DstReg == M68k::CCR;
672 bool ToSR = DstReg == M68k::SR;
673
674 if (FromCCR) {
675 assert(M68k::DR8RegClass.contains(DstReg) &&
676 "Need DR8 register to copy CCR");
677 Opc = M68k::MOV8dc;
678 } else if (ToCCR) {
679 assert(M68k::DR8RegClass.contains(SrcReg) &&
680 "Need DR8 register to copy CCR");
681 Opc = M68k::MOV8cd;
682 } else if (FromSR || ToSR)
683 llvm_unreachable("Cannot emit SR copy instruction");
684
685 if (Opc) {
686 BuildMI(MBB, MI, DL, get(Opc), DstReg)
687 .addReg(SrcReg, getKillRegState(KillSrc));
688 return;
689 }
690
691 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
692 << RI.getName(DstReg) << '\n');
693 llvm_unreachable("Cannot emit physreg copy instruction");
694 }
695
696 namespace {
getLoadStoreRegOpcode(unsigned Reg,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,const M68kSubtarget & STI,bool load)697 unsigned getLoadStoreRegOpcode(unsigned Reg, const TargetRegisterClass *RC,
698 const TargetRegisterInfo *TRI,
699 const M68kSubtarget &STI, bool load) {
700 switch (TRI->getRegSizeInBits(*RC)) {
701 default:
702 llvm_unreachable("Unknown spill size");
703 case 8:
704 if (M68k::DR8RegClass.hasSubClassEq(RC))
705 return load ? M68k::MOV8dp : M68k::MOV8pd;
706 if (M68k::CCRCRegClass.hasSubClassEq(RC))
707 return load ? M68k::MOV16cp : M68k::MOV16pc;
708
709 llvm_unreachable("Unknown 1-byte regclass");
710 case 16:
711 assert(M68k::XR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
712 return load ? M68k::MOVM16mp_P : M68k::MOVM16pm_P;
713 case 32:
714 assert(M68k::XR32RegClass.hasSubClassEq(RC) && "Unknown 4-byte regclass");
715 return load ? M68k::MOVM32mp_P : M68k::MOVM32pm_P;
716 }
717 }
718
getStoreRegOpcode(unsigned SrcReg,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,const M68kSubtarget & STI)719 unsigned getStoreRegOpcode(unsigned SrcReg, const TargetRegisterClass *RC,
720 const TargetRegisterInfo *TRI,
721 const M68kSubtarget &STI) {
722 return getLoadStoreRegOpcode(SrcReg, RC, TRI, STI, false);
723 }
724
getLoadRegOpcode(unsigned DstReg,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,const M68kSubtarget & STI)725 unsigned getLoadRegOpcode(unsigned DstReg, const TargetRegisterClass *RC,
726 const TargetRegisterInfo *TRI,
727 const M68kSubtarget &STI) {
728 return getLoadStoreRegOpcode(DstReg, RC, TRI, STI, true);
729 }
730 } // end anonymous namespace
731
getStackSlotRange(const TargetRegisterClass * RC,unsigned SubIdx,unsigned & Size,unsigned & Offset,const MachineFunction & MF) const732 bool M68kInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
733 unsigned SubIdx, unsigned &Size,
734 unsigned &Offset,
735 const MachineFunction &MF) const {
736 // The slot size must be the maximum size so we can easily use MOVEM.L
737 Size = 4;
738 Offset = 0;
739 return true;
740 }
741
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register SrcReg,bool IsKill,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg) const742 void M68kInstrInfo::storeRegToStackSlot(
743 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg,
744 bool IsKill, int FrameIndex, const TargetRegisterClass *RC,
745 const TargetRegisterInfo *TRI, Register VReg) const {
746 const MachineFrameInfo &MFI = MBB.getParent()->getFrameInfo();
747 assert(MFI.getObjectSize(FrameIndex) >= TRI->getSpillSize(*RC) &&
748 "Stack slot is too small to store");
749
750 unsigned Opc = getStoreRegOpcode(SrcReg, RC, TRI, Subtarget);
751 DebugLoc DL = MBB.findDebugLoc(MI);
752 // (0,FrameIndex) <- $reg
753 M68k::addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIndex)
754 .addReg(SrcReg, getKillRegState(IsKill));
755 }
756
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register DstReg,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg) const757 void M68kInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
758 MachineBasicBlock::iterator MI,
759 Register DstReg, int FrameIndex,
760 const TargetRegisterClass *RC,
761 const TargetRegisterInfo *TRI,
762 Register VReg) const {
763 const MachineFrameInfo &MFI = MBB.getParent()->getFrameInfo();
764 assert(MFI.getObjectSize(FrameIndex) >= TRI->getSpillSize(*RC) &&
765 "Stack slot is too small to load");
766
767 unsigned Opc = getLoadRegOpcode(DstReg, RC, TRI, Subtarget);
768 DebugLoc DL = MBB.findDebugLoc(MI);
769 M68k::addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DstReg), FrameIndex);
770 }
771
772 /// Return a virtual register initialized with the the global base register
773 /// value. Output instructions required to initialize the register in the
774 /// function entry block, if necessary.
775 ///
776 /// TODO Move this function to M68kMachineFunctionInfo.
getGlobalBaseReg(MachineFunction * MF) const777 unsigned M68kInstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
778 M68kMachineFunctionInfo *MxFI = MF->getInfo<M68kMachineFunctionInfo>();
779 unsigned GlobalBaseReg = MxFI->getGlobalBaseReg();
780 if (GlobalBaseReg != 0)
781 return GlobalBaseReg;
782
783 // Create the register. The code to initialize it is inserted later,
784 // by the CGBR pass (below).
785 //
786 // NOTE
787 // Normally M68k uses A5 register as global base pointer but this will
788 // create unnecessary spill if we use less then 4 registers in code; since A5
789 // is callee-save anyway we could try to allocate caller-save first and if
790 // lucky get one, otherwise it does not really matter which callee-save to
791 // use.
792 MachineRegisterInfo &RegInfo = MF->getRegInfo();
793 GlobalBaseReg = RegInfo.createVirtualRegister(&M68k::AR32_NOSPRegClass);
794 MxFI->setGlobalBaseReg(GlobalBaseReg);
795 return GlobalBaseReg;
796 }
797
798 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const799 M68kInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
800 return std::make_pair(TF, 0u);
801 }
802
803 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const804 M68kInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
805 using namespace M68kII;
806 static const std::pair<unsigned, const char *> TargetFlags[] = {
807 {MO_ABSOLUTE_ADDRESS, "m68k-absolute"},
808 {MO_PC_RELATIVE_ADDRESS, "m68k-pcrel"},
809 {MO_GOT, "m68k-got"},
810 {MO_GOTOFF, "m68k-gotoff"},
811 {MO_GOTPCREL, "m68k-gotpcrel"},
812 {MO_PLT, "m68k-plt"}};
813 return ArrayRef(TargetFlags);
814 }
815
816 namespace {
817 /// Create Global Base Reg pass. This initializes the PIC global base register
818 struct CGBR : public MachineFunctionPass {
819 static char ID;
CGBR__anon7883b12a0411::CGBR820 CGBR() : MachineFunctionPass(ID) {}
821
runOnMachineFunction__anon7883b12a0411::CGBR822 bool runOnMachineFunction(MachineFunction &MF) override {
823 const M68kSubtarget &STI = MF.getSubtarget<M68kSubtarget>();
824 M68kMachineFunctionInfo *MxFI = MF.getInfo<M68kMachineFunctionInfo>();
825
826 unsigned GlobalBaseReg = MxFI->getGlobalBaseReg();
827
828 // If we didn't need a GlobalBaseReg, don't insert code.
829 if (GlobalBaseReg == 0)
830 return false;
831
832 // Insert the set of GlobalBaseReg into the first MBB of the function
833 MachineBasicBlock &FirstMBB = MF.front();
834 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
835 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
836 const M68kInstrInfo *TII = STI.getInstrInfo();
837
838 // Generate lea (__GLOBAL_OFFSET_TABLE_,%PC), %A5
839 BuildMI(FirstMBB, MBBI, DL, TII->get(M68k::LEA32q), GlobalBaseReg)
840 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", M68kII::MO_GOTPCREL);
841
842 return true;
843 }
844
getPassName__anon7883b12a0411::CGBR845 StringRef getPassName() const override {
846 return "M68k PIC Global Base Reg Initialization";
847 }
848
getAnalysisUsage__anon7883b12a0411::CGBR849 void getAnalysisUsage(AnalysisUsage &AU) const override {
850 AU.setPreservesCFG();
851 MachineFunctionPass::getAnalysisUsage(AU);
852 }
853 };
854 } // namespace
855
856 char CGBR::ID = 0;
createM68kGlobalBaseRegPass()857 FunctionPass *llvm::createM68kGlobalBaseRegPass() { return new CGBR(); }
858