1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "exec/gdbstub.h"
29 #include "exec/page-protection.h"
30 #include "qapi/qapi-types-common.h"
31 #include "target/arm/multiprocessing.h"
32 #include "target/arm/gtimer.h"
33
34 #ifdef TARGET_AARCH64
35 #define KVM_HAVE_MCE_INJECTION 1
36 #endif
37
38 #define EXCP_UDEF 1 /* undefined instruction */
39 #define EXCP_SWI 2 /* software interrupt */
40 #define EXCP_PREFETCH_ABORT 3
41 #define EXCP_DATA_ABORT 4
42 #define EXCP_IRQ 5
43 #define EXCP_FIQ 6
44 #define EXCP_BKPT 7
45 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
46 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
47 #define EXCP_HVC 11 /* HyperVisor Call */
48 #define EXCP_HYP_TRAP 12
49 #define EXCP_SMC 13 /* Secure Monitor Call */
50 #define EXCP_VIRQ 14
51 #define EXCP_VFIQ 15
52 #define EXCP_SEMIHOST 16 /* semihosting call */
53 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
54 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
55 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
56 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
57 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */
58 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
59 #define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
60 #define EXCP_VSERR 24
61 #define EXCP_GPC 25 /* v9 Granule Protection Check Fault */
62 #define EXCP_NMI 26
63 #define EXCP_VINMI 27
64 #define EXCP_VFNMI 28
65 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
66
67 #define ARMV7M_EXCP_RESET 1
68 #define ARMV7M_EXCP_NMI 2
69 #define ARMV7M_EXCP_HARD 3
70 #define ARMV7M_EXCP_MEM 4
71 #define ARMV7M_EXCP_BUS 5
72 #define ARMV7M_EXCP_USAGE 6
73 #define ARMV7M_EXCP_SECURE 7
74 #define ARMV7M_EXCP_SVC 11
75 #define ARMV7M_EXCP_DEBUG 12
76 #define ARMV7M_EXCP_PENDSV 14
77 #define ARMV7M_EXCP_SYSTICK 15
78
79 /* ARM-specific interrupt pending bits. */
80 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
81 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
82 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
83 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
84 #define CPU_INTERRUPT_NMI CPU_INTERRUPT_TGT_EXT_4
85 #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0
86 #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1
87
88 /* The usual mapping for an AArch64 system register to its AArch32
89 * counterpart is for the 32 bit world to have access to the lower
90 * half only (with writes leaving the upper half untouched). It's
91 * therefore useful to be able to pass TCG the offset of the least
92 * significant half of a uint64_t struct member.
93 */
94 #if HOST_BIG_ENDIAN
95 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
96 #define offsetofhigh32(S, M) offsetof(S, M)
97 #else
98 #define offsetoflow32(S, M) offsetof(S, M)
99 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
100 #endif
101
102 /* ARM-specific extra insn start words:
103 * 1: Conditional execution bits
104 * 2: Partial exception syndrome for data aborts
105 */
106 #define TARGET_INSN_START_EXTRA_WORDS 2
107
108 /* The 2nd extra word holding syndrome info for data aborts does not use
109 * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
110 * help the sleb128 encoder do a better job.
111 * When restoring the CPU state, we shift it back up.
112 */
113 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
114 #define ARM_INSN_START_WORD2_SHIFT 13
115
116 /* We currently assume float and double are IEEE single and double
117 precision respectively.
118 Doing runtime conversions is tricky because VFP registers may contain
119 integer values (eg. as the result of a FTOSI instruction).
120 s<2n> maps to the least significant half of d<n>
121 s<2n+1> maps to the most significant half of d<n>
122 */
123
124 /**
125 * DynamicGDBFeatureInfo:
126 * @desc: Contains the feature descriptions.
127 * @data: A union with data specific to the set of registers
128 * @cpregs_keys: Array that contains the corresponding Key of
129 * a given cpreg with the same order of the cpreg
130 * in the XML description.
131 */
132 typedef struct DynamicGDBFeatureInfo {
133 GDBFeature desc;
134 union {
135 struct {
136 uint32_t *keys;
137 } cpregs;
138 } data;
139 } DynamicGDBFeatureInfo;
140
141 /* CPU state for each instance of a generic timer (in cp15 c14) */
142 typedef struct ARMGenericTimer {
143 uint64_t cval; /* Timer CompareValue register */
144 uint64_t ctl; /* Timer Control register */
145 } ARMGenericTimer;
146
147 /* Define a maximum sized vector register.
148 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
149 * For 64-bit, this is a 2048-bit SVE register.
150 *
151 * Note that the mapping between S, D, and Q views of the register bank
152 * differs between AArch64 and AArch32.
153 * In AArch32:
154 * Qn = regs[n].d[1]:regs[n].d[0]
155 * Dn = regs[n / 2].d[n & 1]
156 * Sn = regs[n / 4].d[n % 4 / 2],
157 * bits 31..0 for even n, and bits 63..32 for odd n
158 * (and regs[16] to regs[31] are inaccessible)
159 * In AArch64:
160 * Zn = regs[n].d[*]
161 * Qn = regs[n].d[1]:regs[n].d[0]
162 * Dn = regs[n].d[0]
163 * Sn = regs[n].d[0] bits 31..0
164 * Hn = regs[n].d[0] bits 15..0
165 *
166 * This corresponds to the architecturally defined mapping between
167 * the two execution states, and means we do not need to explicitly
168 * map these registers when changing states.
169 *
170 * Align the data for use with TCG host vector operations.
171 */
172
173 #ifdef TARGET_AARCH64
174 # define ARM_MAX_VQ 16
175 #else
176 # define ARM_MAX_VQ 1
177 #endif
178
179 typedef struct ARMVectorReg {
180 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
181 } ARMVectorReg;
182
183 #ifdef TARGET_AARCH64
184 /* In AArch32 mode, predicate registers do not exist at all. */
185 typedef struct ARMPredicateReg {
186 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
187 } ARMPredicateReg;
188
189 /* In AArch32 mode, PAC keys do not exist at all. */
190 typedef struct ARMPACKey {
191 uint64_t lo, hi;
192 } ARMPACKey;
193 #endif
194
195 /* See the commentary above the TBFLAG field definitions. */
196 typedef struct CPUARMTBFlags {
197 uint32_t flags;
198 target_ulong flags2;
199 } CPUARMTBFlags;
200
201 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
202
203 typedef struct NVICState NVICState;
204
205 typedef struct CPUArchState {
206 /* Regs for current mode. */
207 uint32_t regs[16];
208
209 /* 32/64 switch only happens when taking and returning from
210 * exceptions so the overlap semantics are taken care of then
211 * instead of having a complicated union.
212 */
213 /* Regs for A64 mode. */
214 uint64_t xregs[32];
215 uint64_t pc;
216 /* PSTATE isn't an architectural register for ARMv8. However, it is
217 * convenient for us to assemble the underlying state into a 32 bit format
218 * identical to the architectural format used for the SPSR. (This is also
219 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
220 * 'pstate' register are.) Of the PSTATE bits:
221 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
222 * semantics as for AArch32, as described in the comments on each field)
223 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
224 * DAIF (exception masks) are kept in env->daif
225 * BTYPE is kept in env->btype
226 * SM and ZA are kept in env->svcr
227 * all other bits are stored in their correct places in env->pstate
228 */
229 uint32_t pstate;
230 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
231 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
232
233 /* Cached TBFLAGS state. See below for which bits are included. */
234 CPUARMTBFlags hflags;
235
236 /* Frequently accessed CPSR bits are stored separately for efficiency.
237 This contains all the other bits. Use cpsr_{read,write} to access
238 the whole CPSR. */
239 uint32_t uncached_cpsr;
240 uint32_t spsr;
241
242 /* Banked registers. */
243 uint64_t banked_spsr[8];
244 uint32_t banked_r13[8];
245 uint32_t banked_r14[8];
246
247 /* These hold r8-r12. */
248 uint32_t usr_regs[5];
249 uint32_t fiq_regs[5];
250
251 /* cpsr flag cache for faster execution */
252 uint32_t CF; /* 0 or 1 */
253 uint32_t VF; /* V is the bit 31. All other bits are undefined */
254 uint32_t NF; /* N is bit 31. All other bits are undefined. */
255 uint32_t ZF; /* Z set if zero. */
256 uint32_t QF; /* 0 or 1 */
257 uint32_t GE; /* cpsr[19:16] */
258 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
259 uint32_t btype; /* BTI branch type. spsr[11:10]. */
260 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
261 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
262
263 uint64_t elr_el[4]; /* AArch64 exception link regs */
264 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
265
266 /* System control coprocessor (cp15) */
267 struct {
268 uint32_t c0_cpuid;
269 union { /* Cache size selection */
270 struct {
271 uint64_t _unused_csselr0;
272 uint64_t csselr_ns;
273 uint64_t _unused_csselr1;
274 uint64_t csselr_s;
275 };
276 uint64_t csselr_el[4];
277 };
278 union { /* System control register. */
279 struct {
280 uint64_t _unused_sctlr;
281 uint64_t sctlr_ns;
282 uint64_t hsctlr;
283 uint64_t sctlr_s;
284 };
285 uint64_t sctlr_el[4];
286 };
287 uint64_t vsctlr; /* Virtualization System control register. */
288 uint64_t cpacr_el1; /* Architectural feature access control register */
289 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
290 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
291 uint64_t sder; /* Secure debug enable register. */
292 uint32_t nsacr; /* Non-secure access control register. */
293 union { /* MMU translation table base 0. */
294 struct {
295 uint64_t _unused_ttbr0_0;
296 uint64_t ttbr0_ns;
297 uint64_t _unused_ttbr0_1;
298 uint64_t ttbr0_s;
299 };
300 uint64_t ttbr0_el[4];
301 };
302 union { /* MMU translation table base 1. */
303 struct {
304 uint64_t _unused_ttbr1_0;
305 uint64_t ttbr1_ns;
306 uint64_t _unused_ttbr1_1;
307 uint64_t ttbr1_s;
308 };
309 uint64_t ttbr1_el[4];
310 };
311 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
312 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
313 /* MMU translation table base control. */
314 uint64_t tcr_el[4];
315 uint64_t vtcr_el2; /* Virtualization Translation Control. */
316 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
317 uint32_t c2_data; /* MPU data cacheable bits. */
318 uint32_t c2_insn; /* MPU instruction cacheable bits. */
319 union { /* MMU domain access control register
320 * MPU write buffer control.
321 */
322 struct {
323 uint64_t dacr_ns;
324 uint64_t dacr_s;
325 };
326 struct {
327 uint64_t dacr32_el2;
328 };
329 };
330 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
331 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
332 uint64_t hcr_el2; /* Hypervisor configuration register */
333 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
334 uint64_t scr_el3; /* Secure configuration register. */
335 union { /* Fault status registers. */
336 struct {
337 uint64_t ifsr_ns;
338 uint64_t ifsr_s;
339 };
340 struct {
341 uint64_t ifsr32_el2;
342 };
343 };
344 union {
345 struct {
346 uint64_t _unused_dfsr;
347 uint64_t dfsr_ns;
348 uint64_t hsr;
349 uint64_t dfsr_s;
350 };
351 uint64_t esr_el[4];
352 };
353 uint32_t c6_region[8]; /* MPU base/size registers. */
354 union { /* Fault address registers. */
355 struct {
356 uint64_t _unused_far0;
357 #if HOST_BIG_ENDIAN
358 uint32_t ifar_ns;
359 uint32_t dfar_ns;
360 uint32_t ifar_s;
361 uint32_t dfar_s;
362 #else
363 uint32_t dfar_ns;
364 uint32_t ifar_ns;
365 uint32_t dfar_s;
366 uint32_t ifar_s;
367 #endif
368 uint64_t _unused_far3;
369 };
370 uint64_t far_el[4];
371 };
372 uint64_t hpfar_el2;
373 uint64_t hstr_el2;
374 union { /* Translation result. */
375 struct {
376 uint64_t _unused_par_0;
377 uint64_t par_ns;
378 uint64_t _unused_par_1;
379 uint64_t par_s;
380 };
381 uint64_t par_el[4];
382 };
383
384 uint32_t c9_insn; /* Cache lockdown registers. */
385 uint32_t c9_data;
386 uint64_t c9_pmcr; /* performance monitor control register */
387 uint64_t c9_pmcnten; /* perf monitor counter enables */
388 uint64_t c9_pmovsr; /* perf monitor overflow status */
389 uint64_t c9_pmuserenr; /* perf monitor user enable */
390 uint64_t c9_pmselr; /* perf monitor counter selection register */
391 uint64_t c9_pminten; /* perf monitor interrupt enables */
392 union { /* Memory attribute redirection */
393 struct {
394 #if HOST_BIG_ENDIAN
395 uint64_t _unused_mair_0;
396 uint32_t mair1_ns;
397 uint32_t mair0_ns;
398 uint64_t _unused_mair_1;
399 uint32_t mair1_s;
400 uint32_t mair0_s;
401 #else
402 uint64_t _unused_mair_0;
403 uint32_t mair0_ns;
404 uint32_t mair1_ns;
405 uint64_t _unused_mair_1;
406 uint32_t mair0_s;
407 uint32_t mair1_s;
408 #endif
409 };
410 uint64_t mair_el[4];
411 };
412 union { /* vector base address register */
413 struct {
414 uint64_t _unused_vbar;
415 uint64_t vbar_ns;
416 uint64_t hvbar;
417 uint64_t vbar_s;
418 };
419 uint64_t vbar_el[4];
420 };
421 uint32_t mvbar; /* (monitor) vector base address register */
422 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
423 struct { /* FCSE PID. */
424 uint32_t fcseidr_ns;
425 uint32_t fcseidr_s;
426 };
427 union { /* Context ID. */
428 struct {
429 uint64_t _unused_contextidr_0;
430 uint64_t contextidr_ns;
431 uint64_t _unused_contextidr_1;
432 uint64_t contextidr_s;
433 };
434 uint64_t contextidr_el[4];
435 };
436 union { /* User RW Thread register. */
437 struct {
438 uint64_t tpidrurw_ns;
439 uint64_t tpidrprw_ns;
440 uint64_t htpidr;
441 uint64_t _tpidr_el3;
442 };
443 uint64_t tpidr_el[4];
444 };
445 uint64_t tpidr2_el0;
446 /* The secure banks of these registers don't map anywhere */
447 uint64_t tpidrurw_s;
448 uint64_t tpidrprw_s;
449 uint64_t tpidruro_s;
450
451 union { /* User RO Thread register. */
452 uint64_t tpidruro_ns;
453 uint64_t tpidrro_el[1];
454 };
455 uint64_t c14_cntfrq; /* Counter Frequency register */
456 uint64_t c14_cntkctl; /* Timer Control register */
457 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
458 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
459 uint64_t cntpoff_el2; /* Counter Physical Offset register */
460 ARMGenericTimer c14_timer[NUM_GTIMERS];
461 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
462 uint32_t c15_ticonfig; /* TI925T configuration byte. */
463 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
464 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
465 uint32_t c15_threadid; /* TI debugger thread-ID. */
466 uint32_t c15_config_base_address; /* SCU base address. */
467 uint32_t c15_diagnostic; /* diagnostic register */
468 uint32_t c15_power_diagnostic;
469 uint32_t c15_power_control; /* power control */
470 uint64_t dbgbvr[16]; /* breakpoint value registers */
471 uint64_t dbgbcr[16]; /* breakpoint control registers */
472 uint64_t dbgwvr[16]; /* watchpoint value registers */
473 uint64_t dbgwcr[16]; /* watchpoint control registers */
474 uint64_t dbgclaim; /* DBGCLAIM bits */
475 uint64_t mdscr_el1;
476 uint64_t oslsr_el1; /* OS Lock Status */
477 uint64_t osdlr_el1; /* OS DoubleLock status */
478 uint64_t mdcr_el2;
479 uint64_t mdcr_el3;
480 /* Stores the architectural value of the counter *the last time it was
481 * updated* by pmccntr_op_start. Accesses should always be surrounded
482 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
483 * architecturally-correct value is being read/set.
484 */
485 uint64_t c15_ccnt;
486 /* Stores the delta between the architectural value and the underlying
487 * cycle count during normal operation. It is used to update c15_ccnt
488 * to be the correct architectural value before accesses. During
489 * accesses, c15_ccnt_delta contains the underlying count being used
490 * for the access, after which it reverts to the delta value in
491 * pmccntr_op_finish.
492 */
493 uint64_t c15_ccnt_delta;
494 uint64_t c14_pmevcntr[31];
495 uint64_t c14_pmevcntr_delta[31];
496 uint64_t c14_pmevtyper[31];
497 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
498 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
499 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
500 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
501 uint64_t gcr_el1;
502 uint64_t rgsr_el1;
503
504 /* Minimal RAS registers */
505 uint64_t disr_el1;
506 uint64_t vdisr_el2;
507 uint64_t vsesr_el2;
508
509 /*
510 * Fine-Grained Trap registers. We store these as arrays so the
511 * access checking code doesn't have to manually select
512 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
513 * FEAT_FGT2 will add more elements to these arrays.
514 */
515 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
516 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
517 uint64_t fgt_exec[1]; /* HFGITR */
518
519 /* RME registers */
520 uint64_t gpccr_el3;
521 uint64_t gptbr_el3;
522 uint64_t mfar_el3;
523
524 /* NV2 register */
525 uint64_t vncr_el2;
526 } cp15;
527
528 struct {
529 /* M profile has up to 4 stack pointers:
530 * a Main Stack Pointer and a Process Stack Pointer for each
531 * of the Secure and Non-Secure states. (If the CPU doesn't support
532 * the security extension then it has only two SPs.)
533 * In QEMU we always store the currently active SP in regs[13],
534 * and the non-active SP for the current security state in
535 * v7m.other_sp. The stack pointers for the inactive security state
536 * are stored in other_ss_msp and other_ss_psp.
537 * switch_v7m_security_state() is responsible for rearranging them
538 * when we change security state.
539 */
540 uint32_t other_sp;
541 uint32_t other_ss_msp;
542 uint32_t other_ss_psp;
543 uint32_t vecbase[M_REG_NUM_BANKS];
544 uint32_t basepri[M_REG_NUM_BANKS];
545 uint32_t control[M_REG_NUM_BANKS];
546 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
547 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
548 uint32_t hfsr; /* HardFault Status */
549 uint32_t dfsr; /* Debug Fault Status Register */
550 uint32_t sfsr; /* Secure Fault Status Register */
551 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
552 uint32_t bfar; /* BusFault Address */
553 uint32_t sfar; /* Secure Fault Address Register */
554 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
555 int exception;
556 uint32_t primask[M_REG_NUM_BANKS];
557 uint32_t faultmask[M_REG_NUM_BANKS];
558 uint32_t aircr; /* only holds r/w state if security extn implemented */
559 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
560 uint32_t csselr[M_REG_NUM_BANKS];
561 uint32_t scr[M_REG_NUM_BANKS];
562 uint32_t msplim[M_REG_NUM_BANKS];
563 uint32_t psplim[M_REG_NUM_BANKS];
564 uint32_t fpcar[M_REG_NUM_BANKS];
565 uint32_t fpccr[M_REG_NUM_BANKS];
566 uint32_t fpdscr[M_REG_NUM_BANKS];
567 uint32_t cpacr[M_REG_NUM_BANKS];
568 uint32_t nsacr;
569 uint32_t ltpsize;
570 uint32_t vpr;
571 } v7m;
572
573 /* Information associated with an exception about to be taken:
574 * code which raises an exception must set cs->exception_index and
575 * the relevant parts of this structure; the cpu_do_interrupt function
576 * will then set the guest-visible registers as part of the exception
577 * entry process.
578 */
579 struct {
580 uint32_t syndrome; /* AArch64 format syndrome register */
581 uint32_t fsr; /* AArch32 format fault status register info */
582 uint64_t vaddress; /* virtual addr associated with exception, if any */
583 uint32_t target_el; /* EL the exception should be targeted for */
584 /* If we implement EL2 we will also need to store information
585 * about the intermediate physical address for stage 2 faults.
586 */
587 } exception;
588
589 /* Information associated with an SError */
590 struct {
591 uint8_t pending;
592 uint8_t has_esr;
593 uint64_t esr;
594 } serror;
595
596 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
597
598 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
599 uint32_t irq_line_state;
600
601 /* Thumb-2 EE state. */
602 uint32_t teecr;
603 uint32_t teehbr;
604
605 /* VFP coprocessor state. */
606 struct {
607 ARMVectorReg zregs[32];
608
609 #ifdef TARGET_AARCH64
610 /* Store FFR as pregs[16] to make it easier to treat as any other. */
611 #define FFR_PRED_NUM 16
612 ARMPredicateReg pregs[17];
613 /* Scratch space for aa64 sve predicate temporary. */
614 ARMPredicateReg preg_tmp;
615 #endif
616
617 /* We store these fpcsr fields separately for convenience. */
618 uint32_t qc[4] QEMU_ALIGNED(16);
619 int vec_len;
620 int vec_stride;
621
622 /*
623 * Floating point status and control registers. Some bits are
624 * stored separately in other fields or in the float_status below.
625 */
626 uint64_t fpsr;
627 uint64_t fpcr;
628
629 uint32_t xregs[16];
630
631 /* Scratch space for aa32 neon expansion. */
632 uint32_t scratch[8];
633
634 /* There are a number of distinct float control structures:
635 *
636 * fp_status: is the "normal" fp status.
637 * fp_status_fp16: used for half-precision calculations
638 * standard_fp_status : the ARM "Standard FPSCR Value"
639 * standard_fp_status_fp16 : used for half-precision
640 * calculations with the ARM "Standard FPSCR Value"
641 *
642 * Half-precision operations are governed by a separate
643 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
644 * status structure to control this.
645 *
646 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
647 * round-to-nearest and is used by any operations (generally
648 * Neon) which the architecture defines as controlled by the
649 * standard FPSCR value rather than the FPSCR.
650 *
651 * The "standard FPSCR but for fp16 ops" is needed because
652 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
653 * using a fixed value for it.
654 *
655 * To avoid having to transfer exception bits around, we simply
656 * say that the FPSCR cumulative exception flags are the logical
657 * OR of the flags in the four fp statuses. This relies on the
658 * only thing which needs to read the exception flags being
659 * an explicit FPSCR read.
660 */
661 float_status fp_status;
662 float_status fp_status_f16;
663 float_status standard_fp_status;
664 float_status standard_fp_status_f16;
665
666 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
667 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
668 } vfp;
669
670 uint64_t exclusive_addr;
671 uint64_t exclusive_val;
672 /*
673 * Contains the 'val' for the second 64-bit register of LDXP, which comes
674 * from the higher address, not the high part of a complete 128-bit value.
675 * In some ways it might be more convenient to record the exclusive value
676 * as the low and high halves of a 128 bit data value, but the current
677 * semantics of these fields are baked into the migration format.
678 */
679 uint64_t exclusive_high;
680
681 /* iwMMXt coprocessor state. */
682 struct {
683 uint64_t regs[16];
684 uint64_t val;
685
686 uint32_t cregs[16];
687 } iwmmxt;
688
689 #ifdef TARGET_AARCH64
690 struct {
691 ARMPACKey apia;
692 ARMPACKey apib;
693 ARMPACKey apda;
694 ARMPACKey apdb;
695 ARMPACKey apga;
696 } keys;
697
698 uint64_t scxtnum_el[4];
699
700 /*
701 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
702 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
703 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
704 * When SVL is less than the architectural maximum, the accessible
705 * storage is restricted, such that if the SVL is X bytes the guest can
706 * see only the bottom X elements of zarray[], and only the least
707 * significant X bytes of each element of the array. (In other words,
708 * the observable part is always square.)
709 *
710 * The ZA storage can also be considered as a set of square tiles of
711 * elements of different sizes. The mapping from tiles to the ZA array
712 * is architecturally defined, such that for tiles of elements of esz
713 * bytes, the Nth row (or "horizontal slice") of tile T is in
714 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
715 * in the ZA storage, because its rows are striped through the ZA array.
716 *
717 * Because this is so large, keep this toward the end of the reset area,
718 * to keep the offsets into the rest of the structure smaller.
719 */
720 ARMVectorReg zarray[ARM_MAX_VQ * 16];
721 #endif
722
723 struct CPUBreakpoint *cpu_breakpoint[16];
724 struct CPUWatchpoint *cpu_watchpoint[16];
725
726 /* Optional fault info across tlb lookup. */
727 ARMMMUFaultInfo *tlb_fi;
728
729 /* Fields up to this point are cleared by a CPU reset */
730 struct {} end_reset_fields;
731
732 /* Fields after this point are preserved across CPU reset. */
733
734 /* Internal CPU feature flags. */
735 uint64_t features;
736
737 /* PMSAv7 MPU */
738 struct {
739 uint32_t *drbar;
740 uint32_t *drsr;
741 uint32_t *dracr;
742 uint32_t rnr[M_REG_NUM_BANKS];
743 } pmsav7;
744
745 /* PMSAv8 MPU */
746 struct {
747 /* The PMSAv8 implementation also shares some PMSAv7 config
748 * and state:
749 * pmsav7.rnr (region number register)
750 * pmsav7_dregion (number of configured regions)
751 */
752 uint32_t *rbar[M_REG_NUM_BANKS];
753 uint32_t *rlar[M_REG_NUM_BANKS];
754 uint32_t *hprbar;
755 uint32_t *hprlar;
756 uint32_t mair0[M_REG_NUM_BANKS];
757 uint32_t mair1[M_REG_NUM_BANKS];
758 uint32_t hprselr;
759 } pmsav8;
760
761 /* v8M SAU */
762 struct {
763 uint32_t *rbar;
764 uint32_t *rlar;
765 uint32_t rnr;
766 uint32_t ctrl;
767 } sau;
768
769 #if !defined(CONFIG_USER_ONLY)
770 NVICState *nvic;
771 const struct arm_boot_info *boot_info;
772 /* Store GICv3CPUState to access from this struct */
773 void *gicv3state;
774 #else /* CONFIG_USER_ONLY */
775 /* For usermode syscall translation. */
776 bool eabi;
777 #endif /* CONFIG_USER_ONLY */
778
779 #ifdef TARGET_TAGGED_ADDRESSES
780 /* Linux syscall tagged address support */
781 bool tagged_addr_enable;
782 #endif
783 } CPUARMState;
784
set_feature(CPUARMState * env,int feature)785 static inline void set_feature(CPUARMState *env, int feature)
786 {
787 env->features |= 1ULL << feature;
788 }
789
unset_feature(CPUARMState * env,int feature)790 static inline void unset_feature(CPUARMState *env, int feature)
791 {
792 env->features &= ~(1ULL << feature);
793 }
794
795 /**
796 * ARMELChangeHookFn:
797 * type of a function which can be registered via arm_register_el_change_hook()
798 * to get callbacks when the CPU changes its exception level or mode.
799 */
800 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
801 typedef struct ARMELChangeHook ARMELChangeHook;
802 struct ARMELChangeHook {
803 ARMELChangeHookFn *hook;
804 void *opaque;
805 QLIST_ENTRY(ARMELChangeHook) node;
806 };
807
808 /* These values map onto the return values for
809 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
810 typedef enum ARMPSCIState {
811 PSCI_ON = 0,
812 PSCI_OFF = 1,
813 PSCI_ON_PENDING = 2
814 } ARMPSCIState;
815
816 typedef struct ARMISARegisters ARMISARegisters;
817
818 /*
819 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
820 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
821 *
822 * While processing properties during initialization, corresponding init bits
823 * are set for bits in sve_vq_map that have been set by properties.
824 *
825 * Bits set in supported represent valid vector lengths for the CPU type.
826 */
827 typedef struct {
828 uint32_t map, init, supported;
829 } ARMVQMap;
830
831 /**
832 * ARMCPU:
833 * @env: #CPUARMState
834 *
835 * An ARM CPU core.
836 */
837 struct ArchCPU {
838 CPUState parent_obj;
839
840 CPUARMState env;
841
842 /* Coprocessor information */
843 GHashTable *cp_regs;
844 /* For marshalling (mostly coprocessor) register state between the
845 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
846 * we use these arrays.
847 */
848 /* List of register indexes managed via these arrays; (full KVM style
849 * 64 bit indexes, not CPRegInfo 32 bit indexes)
850 */
851 uint64_t *cpreg_indexes;
852 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
853 uint64_t *cpreg_values;
854 /* Length of the indexes, values, reset_values arrays */
855 int32_t cpreg_array_len;
856 /* These are used only for migration: incoming data arrives in
857 * these fields and is sanity checked in post_load before copying
858 * to the working data structures above.
859 */
860 uint64_t *cpreg_vmstate_indexes;
861 uint64_t *cpreg_vmstate_values;
862 int32_t cpreg_vmstate_array_len;
863
864 DynamicGDBFeatureInfo dyn_sysreg_feature;
865 DynamicGDBFeatureInfo dyn_svereg_feature;
866 DynamicGDBFeatureInfo dyn_m_systemreg_feature;
867 DynamicGDBFeatureInfo dyn_m_secextreg_feature;
868
869 /* Timers used by the generic (architected) timer */
870 QEMUTimer *gt_timer[NUM_GTIMERS];
871 /*
872 * Timer used by the PMU. Its state is restored after migration by
873 * pmu_op_finish() - it does not need other handling during migration
874 */
875 QEMUTimer *pmu_timer;
876 /* Timer used for WFxT timeouts */
877 QEMUTimer *wfxt_timer;
878
879 /* GPIO outputs for generic timer */
880 qemu_irq gt_timer_outputs[NUM_GTIMERS];
881 /* GPIO output for GICv3 maintenance interrupt signal */
882 qemu_irq gicv3_maintenance_interrupt;
883 /* GPIO output for the PMU interrupt */
884 qemu_irq pmu_interrupt;
885
886 /* MemoryRegion to use for secure physical accesses */
887 MemoryRegion *secure_memory;
888
889 /* MemoryRegion to use for allocation tag accesses */
890 MemoryRegion *tag_memory;
891 MemoryRegion *secure_tag_memory;
892
893 /* For v8M, pointer to the IDAU interface provided by board/SoC */
894 Object *idau;
895
896 /* 'compatible' string for this CPU for Linux device trees */
897 const char *dtb_compatible;
898
899 /* PSCI version for this CPU
900 * Bits[31:16] = Major Version
901 * Bits[15:0] = Minor Version
902 */
903 uint32_t psci_version;
904
905 /* Current power state, access guarded by BQL */
906 ARMPSCIState power_state;
907
908 /* CPU has virtualization extension */
909 bool has_el2;
910 /* CPU has security extension */
911 bool has_el3;
912 /* CPU has PMU (Performance Monitor Unit) */
913 bool has_pmu;
914 /* CPU has VFP */
915 bool has_vfp;
916 /* CPU has 32 VFP registers */
917 bool has_vfp_d32;
918 /* CPU has Neon */
919 bool has_neon;
920 /* CPU has M-profile DSP extension */
921 bool has_dsp;
922
923 /* CPU has memory protection unit */
924 bool has_mpu;
925 /* CPU has MTE enabled in KVM mode */
926 bool kvm_mte;
927 /* PMSAv7 MPU number of supported regions */
928 uint32_t pmsav7_dregion;
929 /* PMSAv8 MPU number of supported hyp regions */
930 uint32_t pmsav8r_hdregion;
931 /* v8M SAU number of supported regions */
932 uint32_t sau_sregion;
933
934 /* PSCI conduit used to invoke PSCI methods
935 * 0 - disabled, 1 - smc, 2 - hvc
936 */
937 uint32_t psci_conduit;
938
939 /* For v8M, initial value of the Secure VTOR */
940 uint32_t init_svtor;
941 /* For v8M, initial value of the Non-secure VTOR */
942 uint32_t init_nsvtor;
943
944 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
945 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
946 */
947 uint32_t kvm_target;
948
949 #ifdef CONFIG_KVM
950 /* KVM init features for this CPU */
951 uint32_t kvm_init_features[7];
952
953 /* KVM CPU state */
954
955 /* KVM virtual time adjustment */
956 bool kvm_adjvtime;
957 bool kvm_vtime_dirty;
958 uint64_t kvm_vtime;
959
960 /* KVM steal time */
961 OnOffAuto kvm_steal_time;
962 #endif /* CONFIG_KVM */
963
964 /* Uniprocessor system with MP extensions */
965 bool mp_is_up;
966
967 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
968 * and the probe failed (so we need to report the error in realize)
969 */
970 bool host_cpu_probe_failed;
971
972 /* QOM property to indicate we should use the back-compat CNTFRQ default */
973 bool backcompat_cntfrq;
974
975 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
976 * register.
977 */
978 int32_t core_count;
979
980 /* The instance init functions for implementation-specific subclasses
981 * set these fields to specify the implementation-dependent values of
982 * various constant registers and reset values of non-constant
983 * registers.
984 * Some of these might become QOM properties eventually.
985 * Field names match the official register names as defined in the
986 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
987 * is used for reset values of non-constant registers; no reset_
988 * prefix means a constant register.
989 * Some of these registers are split out into a substructure that
990 * is shared with the translators to control the ISA.
991 *
992 * Note that if you add an ID register to the ARMISARegisters struct
993 * you need to also update the 32-bit and 64-bit versions of the
994 * kvm_arm_get_host_cpu_features() function to correctly populate the
995 * field by reading the value from the KVM vCPU.
996 */
997 struct ARMISARegisters {
998 uint32_t id_isar0;
999 uint32_t id_isar1;
1000 uint32_t id_isar2;
1001 uint32_t id_isar3;
1002 uint32_t id_isar4;
1003 uint32_t id_isar5;
1004 uint32_t id_isar6;
1005 uint32_t id_mmfr0;
1006 uint32_t id_mmfr1;
1007 uint32_t id_mmfr2;
1008 uint32_t id_mmfr3;
1009 uint32_t id_mmfr4;
1010 uint32_t id_mmfr5;
1011 uint32_t id_pfr0;
1012 uint32_t id_pfr1;
1013 uint32_t id_pfr2;
1014 uint32_t mvfr0;
1015 uint32_t mvfr1;
1016 uint32_t mvfr2;
1017 uint32_t id_dfr0;
1018 uint32_t id_dfr1;
1019 uint32_t dbgdidr;
1020 uint32_t dbgdevid;
1021 uint32_t dbgdevid1;
1022 uint64_t id_aa64isar0;
1023 uint64_t id_aa64isar1;
1024 uint64_t id_aa64isar2;
1025 uint64_t id_aa64pfr0;
1026 uint64_t id_aa64pfr1;
1027 uint64_t id_aa64mmfr0;
1028 uint64_t id_aa64mmfr1;
1029 uint64_t id_aa64mmfr2;
1030 uint64_t id_aa64mmfr3;
1031 uint64_t id_aa64dfr0;
1032 uint64_t id_aa64dfr1;
1033 uint64_t id_aa64zfr0;
1034 uint64_t id_aa64smfr0;
1035 uint64_t reset_pmcr_el0;
1036 } isar;
1037 uint64_t midr;
1038 uint32_t revidr;
1039 uint32_t reset_fpsid;
1040 uint64_t ctr;
1041 uint32_t reset_sctlr;
1042 uint64_t pmceid0;
1043 uint64_t pmceid1;
1044 uint32_t id_afr0;
1045 uint64_t id_aa64afr0;
1046 uint64_t id_aa64afr1;
1047 uint64_t clidr;
1048 uint64_t mp_affinity; /* MP ID without feature bits */
1049 /* The elements of this array are the CCSIDR values for each cache,
1050 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1051 */
1052 uint64_t ccsidr[16];
1053 uint64_t reset_cbar;
1054 uint32_t reset_auxcr;
1055 bool reset_hivecs;
1056 uint8_t reset_l0gptsz;
1057
1058 /*
1059 * Intermediate values used during property parsing.
1060 * Once finalized, the values should be read from ID_AA64*.
1061 */
1062 bool prop_pauth;
1063 bool prop_pauth_impdef;
1064 bool prop_pauth_qarma3;
1065 bool prop_lpa2;
1066
1067 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1068 uint8_t dcz_blocksize;
1069 /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1070 uint8_t gm_blocksize;
1071
1072 uint64_t rvbar_prop; /* Property/input signals. */
1073
1074 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1075 int gic_num_lrs; /* number of list registers */
1076 int gic_vpribits; /* number of virtual priority bits */
1077 int gic_vprebits; /* number of virtual preemption bits */
1078 int gic_pribits; /* number of physical priority bits */
1079
1080 /* Whether the cfgend input is high (i.e. this CPU should reset into
1081 * big-endian mode). This setting isn't used directly: instead it modifies
1082 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1083 * architecture version.
1084 */
1085 bool cfgend;
1086
1087 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1088 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1089
1090 int32_t node_id; /* NUMA node this CPU belongs to */
1091
1092 /* Used to synchronize KVM and QEMU in-kernel device levels */
1093 uint8_t device_irq_level;
1094
1095 /* Used to set the maximum vector length the cpu will support. */
1096 uint32_t sve_max_vq;
1097
1098 #ifdef CONFIG_USER_ONLY
1099 /* Used to set the default vector length at process start. */
1100 uint32_t sve_default_vq;
1101 uint32_t sme_default_vq;
1102 #endif
1103
1104 ARMVQMap sve_vq;
1105 ARMVQMap sme_vq;
1106
1107 /* Generic timer counter frequency, in Hz */
1108 uint64_t gt_cntfrq_hz;
1109 };
1110
1111 typedef struct ARMCPUInfo {
1112 const char *name;
1113 void (*initfn)(Object *obj);
1114 void (*class_init)(ObjectClass *oc, void *data);
1115 } ARMCPUInfo;
1116
1117 /**
1118 * ARMCPUClass:
1119 * @parent_realize: The parent class' realize handler.
1120 * @parent_phases: The parent class' reset phase handlers.
1121 *
1122 * An ARM CPU model.
1123 */
1124 struct ARMCPUClass {
1125 CPUClass parent_class;
1126
1127 const ARMCPUInfo *info;
1128 DeviceRealize parent_realize;
1129 ResettablePhases parent_phases;
1130 };
1131
1132 struct AArch64CPUClass {
1133 ARMCPUClass parent_class;
1134 };
1135
1136 /* Callback functions for the generic timer's timers. */
1137 void arm_gt_ptimer_cb(void *opaque);
1138 void arm_gt_vtimer_cb(void *opaque);
1139 void arm_gt_htimer_cb(void *opaque);
1140 void arm_gt_stimer_cb(void *opaque);
1141 void arm_gt_hvtimer_cb(void *opaque);
1142
1143 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1144 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1145
1146 void arm_cpu_post_init(Object *obj);
1147
1148 #define ARM_AFF0_SHIFT 0
1149 #define ARM_AFF0_MASK (0xFFULL << ARM_AFF0_SHIFT)
1150 #define ARM_AFF1_SHIFT 8
1151 #define ARM_AFF1_MASK (0xFFULL << ARM_AFF1_SHIFT)
1152 #define ARM_AFF2_SHIFT 16
1153 #define ARM_AFF2_MASK (0xFFULL << ARM_AFF2_SHIFT)
1154 #define ARM_AFF3_SHIFT 32
1155 #define ARM_AFF3_MASK (0xFFULL << ARM_AFF3_SHIFT)
1156 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1157
1158 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1159 #define ARM64_AFFINITY_MASK \
1160 (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1161 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1162
1163 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1164
1165 #ifndef CONFIG_USER_ONLY
1166 extern const VMStateDescription vmstate_arm_cpu;
1167
1168 void arm_cpu_do_interrupt(CPUState *cpu);
1169 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1170
1171 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1172 MemTxAttrs *attrs);
1173 #endif /* !CONFIG_USER_ONLY */
1174
1175 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1176 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1177
1178 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1179 int cpuid, DumpState *s);
1180 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1181 int cpuid, DumpState *s);
1182
1183 /**
1184 * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1185 * @cpu: CPU (which must have been freshly reset)
1186 * @target_el: exception level to put the CPU into
1187 * @secure: whether to put the CPU in secure state
1188 *
1189 * When QEMU is directly running a guest kernel at a lower level than
1190 * EL3 it implicitly emulates some aspects of the guest firmware.
1191 * This includes that on reset we need to configure the parts of the
1192 * CPU corresponding to EL3 so that the real guest code can run at its
1193 * lower exception level. This function does that post-reset CPU setup,
1194 * for when we do direct boot of a guest kernel, and for when we
1195 * emulate PSCI and similar firmware interfaces starting a CPU at a
1196 * lower exception level.
1197 *
1198 * @target_el must be an EL implemented by the CPU between 1 and 3.
1199 * We do not support dropping into a Secure EL other than 3.
1200 *
1201 * It is the responsibility of the caller to call arm_rebuild_hflags().
1202 */
1203 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1204
1205 #ifdef TARGET_AARCH64
1206 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1207 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1208 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1209 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1210 int new_el, bool el0_a64);
1211 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1212
1213 /*
1214 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1215 * The byte at offset i from the start of the in-memory representation contains
1216 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1217 * lowest offsets are stored in the lowest memory addresses, then that nearly
1218 * matches QEMU's representation, which is to use an array of host-endian
1219 * uint64_t's, where the lower offsets are at the lower indices. To complete
1220 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1221 */
sve_bswap64(uint64_t * dst,uint64_t * src,int nr)1222 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1223 {
1224 #if HOST_BIG_ENDIAN
1225 int i;
1226
1227 for (i = 0; i < nr; ++i) {
1228 dst[i] = bswap64(src[i]);
1229 }
1230
1231 return dst;
1232 #else
1233 return src;
1234 #endif
1235 }
1236
1237 #else
aarch64_sve_narrow_vq(CPUARMState * env,unsigned vq)1238 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
aarch64_sve_change_el(CPUARMState * env,int o,int n,bool a)1239 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1240 int n, bool a)
1241 { }
1242 #endif
1243
1244 void aarch64_sync_32_to_64(CPUARMState *env);
1245 void aarch64_sync_64_to_32(CPUARMState *env);
1246
1247 int fp_exception_el(CPUARMState *env, int cur_el);
1248 int sve_exception_el(CPUARMState *env, int cur_el);
1249 int sme_exception_el(CPUARMState *env, int cur_el);
1250
1251 /**
1252 * sve_vqm1_for_el_sm:
1253 * @env: CPUARMState
1254 * @el: exception level
1255 * @sm: streaming mode
1256 *
1257 * Compute the current vector length for @el & @sm, in units of
1258 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1259 * If @sm, compute for SVL, otherwise NVL.
1260 */
1261 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1262
1263 /* Likewise, but using @sm = PSTATE.SM. */
1264 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1265
is_a64(CPUARMState * env)1266 static inline bool is_a64(CPUARMState *env)
1267 {
1268 return env->aarch64;
1269 }
1270
1271 /**
1272 * pmu_op_start/finish
1273 * @env: CPUARMState
1274 *
1275 * Convert all PMU counters between their delta form (the typical mode when
1276 * they are enabled) and the guest-visible values. These two calls must
1277 * surround any action which might affect the counters.
1278 */
1279 void pmu_op_start(CPUARMState *env);
1280 void pmu_op_finish(CPUARMState *env);
1281
1282 /*
1283 * Called when a PMU counter is due to overflow
1284 */
1285 void arm_pmu_timer_cb(void *opaque);
1286
1287 /**
1288 * Functions to register as EL change hooks for PMU mode filtering
1289 */
1290 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1291 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1292
1293 /*
1294 * pmu_init
1295 * @cpu: ARMCPU
1296 *
1297 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1298 * for the current configuration
1299 */
1300 void pmu_init(ARMCPU *cpu);
1301
1302 /* SCTLR bit meanings. Several bits have been reused in newer
1303 * versions of the architecture; in that case we define constants
1304 * for both old and new bit meanings. Code which tests against those
1305 * bits should probably check or otherwise arrange that the CPU
1306 * is the architectural version it expects.
1307 */
1308 #define SCTLR_M (1U << 0)
1309 #define SCTLR_A (1U << 1)
1310 #define SCTLR_C (1U << 2)
1311 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
1312 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1313 #define SCTLR_SA (1U << 3) /* AArch64 only */
1314 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
1315 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1316 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1317 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1318 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1319 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1320 #define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */
1321 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1322 #define SCTLR_ITD (1U << 7) /* v8 onward */
1323 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1324 #define SCTLR_SED (1U << 8) /* v8 onward */
1325 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1326 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1327 #define SCTLR_F (1U << 10) /* up to v6 */
1328 #define SCTLR_SW (1U << 10) /* v7 */
1329 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
1330 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1331 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */
1332 #define SCTLR_I (1U << 12)
1333 #define SCTLR_V (1U << 13) /* AArch32 only */
1334 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
1335 #define SCTLR_RR (1U << 14) /* up to v7 */
1336 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1337 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1338 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1339 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1340 #define SCTLR_nTWI (1U << 16) /* v8 onward */
1341 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
1342 #define SCTLR_BR (1U << 17) /* PMSA only */
1343 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1344 #define SCTLR_nTWE (1U << 18) /* v8 onward */
1345 #define SCTLR_WXN (1U << 19)
1346 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1347 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1348 #define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1349 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1350 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1351 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1352 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */
1353 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1354 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
1355 #define SCTLR_VE (1U << 24) /* up to v7 */
1356 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1357 #define SCTLR_EE (1U << 25)
1358 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1359 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1360 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1361 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1362 #define SCTLR_TRE (1U << 28) /* AArch32 only */
1363 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1364 #define SCTLR_AFE (1U << 29) /* AArch32 only */
1365 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1366 #define SCTLR_TE (1U << 30) /* AArch32 only */
1367 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1368 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1369 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1370 #define SCTLR_CMOW (1ULL << 32) /* FEAT_CMOW */
1371 #define SCTLR_MSCEN (1ULL << 33) /* FEAT_MOPS */
1372 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1373 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1374 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1375 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1376 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1377 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1378 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1379 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1380 #define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1381 #define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1382 #define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1383 #define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1384 #define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1385 #define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1386 #define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1387 #define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1388 #define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1389 #define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1390 #define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1391 #define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1392 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1393 #define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
1394
1395 #define CPSR_M (0x1fU)
1396 #define CPSR_T (1U << 5)
1397 #define CPSR_F (1U << 6)
1398 #define CPSR_I (1U << 7)
1399 #define CPSR_A (1U << 8)
1400 #define CPSR_E (1U << 9)
1401 #define CPSR_IT_2_7 (0xfc00U)
1402 #define CPSR_GE (0xfU << 16)
1403 #define CPSR_IL (1U << 20)
1404 #define CPSR_DIT (1U << 21)
1405 #define CPSR_PAN (1U << 22)
1406 #define CPSR_SSBS (1U << 23)
1407 #define CPSR_J (1U << 24)
1408 #define CPSR_IT_0_1 (3U << 25)
1409 #define CPSR_Q (1U << 27)
1410 #define CPSR_V (1U << 28)
1411 #define CPSR_C (1U << 29)
1412 #define CPSR_Z (1U << 30)
1413 #define CPSR_N (1U << 31)
1414 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1415 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1416 #define ISR_FS (1U << 9)
1417 #define ISR_IS (1U << 10)
1418
1419 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1420 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1421 | CPSR_NZCV)
1422 /* Bits writable in user mode. */
1423 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1424 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1425 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1426
1427 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1428 #define XPSR_EXCP 0x1ffU
1429 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1430 #define XPSR_IT_2_7 CPSR_IT_2_7
1431 #define XPSR_GE CPSR_GE
1432 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1433 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1434 #define XPSR_IT_0_1 CPSR_IT_0_1
1435 #define XPSR_Q CPSR_Q
1436 #define XPSR_V CPSR_V
1437 #define XPSR_C CPSR_C
1438 #define XPSR_Z CPSR_Z
1439 #define XPSR_N CPSR_N
1440 #define XPSR_NZCV CPSR_NZCV
1441 #define XPSR_IT CPSR_IT
1442
1443 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1444 * Only these are valid when in AArch64 mode; in
1445 * AArch32 mode SPSRs are basically CPSR-format.
1446 */
1447 #define PSTATE_SP (1U)
1448 #define PSTATE_M (0xFU)
1449 #define PSTATE_nRW (1U << 4)
1450 #define PSTATE_F (1U << 6)
1451 #define PSTATE_I (1U << 7)
1452 #define PSTATE_A (1U << 8)
1453 #define PSTATE_D (1U << 9)
1454 #define PSTATE_BTYPE (3U << 10)
1455 #define PSTATE_SSBS (1U << 12)
1456 #define PSTATE_ALLINT (1U << 13)
1457 #define PSTATE_IL (1U << 20)
1458 #define PSTATE_SS (1U << 21)
1459 #define PSTATE_PAN (1U << 22)
1460 #define PSTATE_UAO (1U << 23)
1461 #define PSTATE_DIT (1U << 24)
1462 #define PSTATE_TCO (1U << 25)
1463 #define PSTATE_V (1U << 28)
1464 #define PSTATE_C (1U << 29)
1465 #define PSTATE_Z (1U << 30)
1466 #define PSTATE_N (1U << 31)
1467 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1468 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1469 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1470 /* Mode values for AArch64 */
1471 #define PSTATE_MODE_EL3h 13
1472 #define PSTATE_MODE_EL3t 12
1473 #define PSTATE_MODE_EL2h 9
1474 #define PSTATE_MODE_EL2t 8
1475 #define PSTATE_MODE_EL1h 5
1476 #define PSTATE_MODE_EL1t 4
1477 #define PSTATE_MODE_EL0t 0
1478
1479 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1480 FIELD(SVCR, SM, 0, 1)
1481 FIELD(SVCR, ZA, 1, 1)
1482
1483 /* Fields for SMCR_ELx. */
1484 FIELD(SMCR, LEN, 0, 4)
1485 FIELD(SMCR, FA64, 31, 1)
1486
1487 /* Write a new value to v7m.exception, thus transitioning into or out
1488 * of Handler mode; this may result in a change of active stack pointer.
1489 */
1490 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1491
1492 /* Map EL and handler into a PSTATE_MODE. */
aarch64_pstate_mode(unsigned int el,bool handler)1493 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1494 {
1495 return (el << 2) | handler;
1496 }
1497
1498 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1499 * interprocessing, so we don't attempt to sync with the cpsr state used by
1500 * the 32 bit decoder.
1501 */
pstate_read(CPUARMState * env)1502 static inline uint32_t pstate_read(CPUARMState *env)
1503 {
1504 int ZF;
1505
1506 ZF = (env->ZF == 0);
1507 return (env->NF & 0x80000000) | (ZF << 30)
1508 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1509 | env->pstate | env->daif | (env->btype << 10);
1510 }
1511
pstate_write(CPUARMState * env,uint32_t val)1512 static inline void pstate_write(CPUARMState *env, uint32_t val)
1513 {
1514 env->ZF = (~val) & PSTATE_Z;
1515 env->NF = val;
1516 env->CF = (val >> 29) & 1;
1517 env->VF = (val << 3) & 0x80000000;
1518 env->daif = val & PSTATE_DAIF;
1519 env->btype = (val >> 10) & 3;
1520 env->pstate = val & ~CACHED_PSTATE_BITS;
1521 }
1522
1523 /* Return the current CPSR value. */
1524 uint32_t cpsr_read(CPUARMState *env);
1525
1526 typedef enum CPSRWriteType {
1527 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1528 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1529 CPSRWriteRaw = 2,
1530 /* trust values, no reg bank switch, no hflags rebuild */
1531 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1532 } CPSRWriteType;
1533
1534 /*
1535 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1536 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1537 * correspond to TB flags bits cached in the hflags, unless @write_type
1538 * is CPSRWriteRaw.
1539 */
1540 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1541 CPSRWriteType write_type);
1542
1543 /* Return the current xPSR value. */
xpsr_read(CPUARMState * env)1544 static inline uint32_t xpsr_read(CPUARMState *env)
1545 {
1546 int ZF;
1547 ZF = (env->ZF == 0);
1548 return (env->NF & 0x80000000) | (ZF << 30)
1549 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1550 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1551 | ((env->condexec_bits & 0xfc) << 8)
1552 | (env->GE << 16)
1553 | env->v7m.exception;
1554 }
1555
1556 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
xpsr_write(CPUARMState * env,uint32_t val,uint32_t mask)1557 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1558 {
1559 if (mask & XPSR_NZCV) {
1560 env->ZF = (~val) & XPSR_Z;
1561 env->NF = val;
1562 env->CF = (val >> 29) & 1;
1563 env->VF = (val << 3) & 0x80000000;
1564 }
1565 if (mask & XPSR_Q) {
1566 env->QF = ((val & XPSR_Q) != 0);
1567 }
1568 if (mask & XPSR_GE) {
1569 env->GE = (val & XPSR_GE) >> 16;
1570 }
1571 #ifndef CONFIG_USER_ONLY
1572 if (mask & XPSR_T) {
1573 env->thumb = ((val & XPSR_T) != 0);
1574 }
1575 if (mask & XPSR_IT_0_1) {
1576 env->condexec_bits &= ~3;
1577 env->condexec_bits |= (val >> 25) & 3;
1578 }
1579 if (mask & XPSR_IT_2_7) {
1580 env->condexec_bits &= 3;
1581 env->condexec_bits |= (val >> 8) & 0xfc;
1582 }
1583 if (mask & XPSR_EXCP) {
1584 /* Note that this only happens on exception exit */
1585 write_v7m_exception(env, val & XPSR_EXCP);
1586 }
1587 #endif
1588 }
1589
1590 #define HCR_VM (1ULL << 0)
1591 #define HCR_SWIO (1ULL << 1)
1592 #define HCR_PTW (1ULL << 2)
1593 #define HCR_FMO (1ULL << 3)
1594 #define HCR_IMO (1ULL << 4)
1595 #define HCR_AMO (1ULL << 5)
1596 #define HCR_VF (1ULL << 6)
1597 #define HCR_VI (1ULL << 7)
1598 #define HCR_VSE (1ULL << 8)
1599 #define HCR_FB (1ULL << 9)
1600 #define HCR_BSU_MASK (3ULL << 10)
1601 #define HCR_DC (1ULL << 12)
1602 #define HCR_TWI (1ULL << 13)
1603 #define HCR_TWE (1ULL << 14)
1604 #define HCR_TID0 (1ULL << 15)
1605 #define HCR_TID1 (1ULL << 16)
1606 #define HCR_TID2 (1ULL << 17)
1607 #define HCR_TID3 (1ULL << 18)
1608 #define HCR_TSC (1ULL << 19)
1609 #define HCR_TIDCP (1ULL << 20)
1610 #define HCR_TACR (1ULL << 21)
1611 #define HCR_TSW (1ULL << 22)
1612 #define HCR_TPCP (1ULL << 23)
1613 #define HCR_TPU (1ULL << 24)
1614 #define HCR_TTLB (1ULL << 25)
1615 #define HCR_TVM (1ULL << 26)
1616 #define HCR_TGE (1ULL << 27)
1617 #define HCR_TDZ (1ULL << 28)
1618 #define HCR_HCD (1ULL << 29)
1619 #define HCR_TRVM (1ULL << 30)
1620 #define HCR_RW (1ULL << 31)
1621 #define HCR_CD (1ULL << 32)
1622 #define HCR_ID (1ULL << 33)
1623 #define HCR_E2H (1ULL << 34)
1624 #define HCR_TLOR (1ULL << 35)
1625 #define HCR_TERR (1ULL << 36)
1626 #define HCR_TEA (1ULL << 37)
1627 #define HCR_MIOCNCE (1ULL << 38)
1628 #define HCR_TME (1ULL << 39)
1629 #define HCR_APK (1ULL << 40)
1630 #define HCR_API (1ULL << 41)
1631 #define HCR_NV (1ULL << 42)
1632 #define HCR_NV1 (1ULL << 43)
1633 #define HCR_AT (1ULL << 44)
1634 #define HCR_NV2 (1ULL << 45)
1635 #define HCR_FWB (1ULL << 46)
1636 #define HCR_FIEN (1ULL << 47)
1637 #define HCR_GPF (1ULL << 48)
1638 #define HCR_TID4 (1ULL << 49)
1639 #define HCR_TICAB (1ULL << 50)
1640 #define HCR_AMVOFFEN (1ULL << 51)
1641 #define HCR_TOCU (1ULL << 52)
1642 #define HCR_ENSCXT (1ULL << 53)
1643 #define HCR_TTLBIS (1ULL << 54)
1644 #define HCR_TTLBOS (1ULL << 55)
1645 #define HCR_ATA (1ULL << 56)
1646 #define HCR_DCT (1ULL << 57)
1647 #define HCR_TID5 (1ULL << 58)
1648 #define HCR_TWEDEN (1ULL << 59)
1649 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
1650
1651 #define SCR_NS (1ULL << 0)
1652 #define SCR_IRQ (1ULL << 1)
1653 #define SCR_FIQ (1ULL << 2)
1654 #define SCR_EA (1ULL << 3)
1655 #define SCR_FW (1ULL << 4)
1656 #define SCR_AW (1ULL << 5)
1657 #define SCR_NET (1ULL << 6)
1658 #define SCR_SMD (1ULL << 7)
1659 #define SCR_HCE (1ULL << 8)
1660 #define SCR_SIF (1ULL << 9)
1661 #define SCR_RW (1ULL << 10)
1662 #define SCR_ST (1ULL << 11)
1663 #define SCR_TWI (1ULL << 12)
1664 #define SCR_TWE (1ULL << 13)
1665 #define SCR_TLOR (1ULL << 14)
1666 #define SCR_TERR (1ULL << 15)
1667 #define SCR_APK (1ULL << 16)
1668 #define SCR_API (1ULL << 17)
1669 #define SCR_EEL2 (1ULL << 18)
1670 #define SCR_EASE (1ULL << 19)
1671 #define SCR_NMEA (1ULL << 20)
1672 #define SCR_FIEN (1ULL << 21)
1673 #define SCR_ENSCXT (1ULL << 25)
1674 #define SCR_ATA (1ULL << 26)
1675 #define SCR_FGTEN (1ULL << 27)
1676 #define SCR_ECVEN (1ULL << 28)
1677 #define SCR_TWEDEN (1ULL << 29)
1678 #define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1679 #define SCR_TME (1ULL << 34)
1680 #define SCR_AMVOFFEN (1ULL << 35)
1681 #define SCR_ENAS0 (1ULL << 36)
1682 #define SCR_ADEN (1ULL << 37)
1683 #define SCR_HXEN (1ULL << 38)
1684 #define SCR_TRNDR (1ULL << 40)
1685 #define SCR_ENTP2 (1ULL << 41)
1686 #define SCR_GPF (1ULL << 48)
1687 #define SCR_NSE (1ULL << 62)
1688
1689 /* Return the current FPSCR value. */
1690 uint32_t vfp_get_fpscr(CPUARMState *env);
1691 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1692
1693 /*
1694 * FPCR, Floating Point Control Register
1695 * FPSR, Floating Point Status Register
1696 *
1697 * For A64 floating point control and status bits are stored in
1698 * two logically distinct registers, FPCR and FPSR. We store these
1699 * in QEMU in vfp.fpcr and vfp.fpsr.
1700 * For A32 there was only one register, FPSCR. The bits are arranged
1701 * such that FPSCR bits map to FPCR or FPSR bits in the same bit positions,
1702 * so we can use appropriate masking to handle FPSCR reads and writes.
1703 * Note that the FPCR has some bits which are not visible in the
1704 * AArch32 view (for FEAT_AFP). Writing the FPSCR leaves these unchanged.
1705 */
1706
1707 /* FPCR bits */
1708 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1709 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1710 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1711 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1712 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1713 #define FPCR_EBF (1 << 13) /* Extended BFloat16 behaviors */
1714 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
1715 #define FPCR_LEN_MASK (7 << 16) /* LEN, A-profile only */
1716 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1717 #define FPCR_STRIDE_MASK (3 << 20) /* Stride */
1718 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1719 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1720 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1721 #define FPCR_AHP (1 << 26) /* Alternative half-precision */
1722
1723 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1724 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1725 #define FPCR_LTPSIZE_LENGTH 3
1726
1727 /* Cumulative exception trap enable bits */
1728 #define FPCR_EEXC_MASK (FPCR_IOE | FPCR_DZE | FPCR_OFE | FPCR_UFE | FPCR_IXE | FPCR_IDE)
1729
1730 /* FPSR bits */
1731 #define FPSR_IOC (1 << 0) /* Invalid Operation cumulative exception */
1732 #define FPSR_DZC (1 << 1) /* Divide by Zero cumulative exception */
1733 #define FPSR_OFC (1 << 2) /* Overflow cumulative exception */
1734 #define FPSR_UFC (1 << 3) /* Underflow cumulative exception */
1735 #define FPSR_IXC (1 << 4) /* Inexact cumulative exception */
1736 #define FPSR_IDC (1 << 7) /* Input Denormal cumulative exception */
1737 #define FPSR_QC (1 << 27) /* Cumulative saturation bit */
1738 #define FPSR_V (1 << 28) /* FP overflow flag */
1739 #define FPSR_C (1 << 29) /* FP carry flag */
1740 #define FPSR_Z (1 << 30) /* FP zero flag */
1741 #define FPSR_N (1 << 31) /* FP negative flag */
1742
1743 /* Cumulative exception status bits */
1744 #define FPSR_CEXC_MASK (FPSR_IOC | FPSR_DZC | FPSR_OFC | FPSR_UFC | FPSR_IXC | FPSR_IDC)
1745
1746 #define FPSR_NZCV_MASK (FPSR_N | FPSR_Z | FPSR_C | FPSR_V)
1747 #define FPSR_NZCVQC_MASK (FPSR_NZCV_MASK | FPSR_QC)
1748
1749 /* A32 FPSCR bits which architecturally map to FPSR bits */
1750 #define FPSCR_FPSR_MASK (FPSR_NZCVQC_MASK | FPSR_CEXC_MASK)
1751 /* A32 FPSCR bits which architecturally map to FPCR bits */
1752 #define FPSCR_FPCR_MASK (FPCR_EEXC_MASK | FPCR_LEN_MASK | FPCR_FZ16 | \
1753 FPCR_STRIDE_MASK | FPCR_RMODE_MASK | \
1754 FPCR_FZ | FPCR_DN | FPCR_AHP)
1755 /* These masks don't overlap: each bit lives in only one place */
1756 QEMU_BUILD_BUG_ON(FPSCR_FPSR_MASK & FPSCR_FPCR_MASK);
1757
1758 /**
1759 * vfp_get_fpsr: read the AArch64 FPSR
1760 * @env: CPU context
1761 *
1762 * Return the current AArch64 FPSR value
1763 */
1764 uint32_t vfp_get_fpsr(CPUARMState *env);
1765
1766 /**
1767 * vfp_get_fpcr: read the AArch64 FPCR
1768 * @env: CPU context
1769 *
1770 * Return the current AArch64 FPCR value
1771 */
1772 uint32_t vfp_get_fpcr(CPUARMState *env);
1773
1774 /**
1775 * vfp_set_fpsr: write the AArch64 FPSR
1776 * @env: CPU context
1777 * @value: new value
1778 */
1779 void vfp_set_fpsr(CPUARMState *env, uint32_t value);
1780
1781 /**
1782 * vfp_set_fpcr: write the AArch64 FPCR
1783 * @env: CPU context
1784 * @value: new value
1785 */
1786 void vfp_set_fpcr(CPUARMState *env, uint32_t value);
1787
1788 enum arm_cpu_mode {
1789 ARM_CPU_MODE_USR = 0x10,
1790 ARM_CPU_MODE_FIQ = 0x11,
1791 ARM_CPU_MODE_IRQ = 0x12,
1792 ARM_CPU_MODE_SVC = 0x13,
1793 ARM_CPU_MODE_MON = 0x16,
1794 ARM_CPU_MODE_ABT = 0x17,
1795 ARM_CPU_MODE_HYP = 0x1a,
1796 ARM_CPU_MODE_UND = 0x1b,
1797 ARM_CPU_MODE_SYS = 0x1f
1798 };
1799
1800 /* VFP system registers. */
1801 #define ARM_VFP_FPSID 0
1802 #define ARM_VFP_FPSCR 1
1803 #define ARM_VFP_MVFR2 5
1804 #define ARM_VFP_MVFR1 6
1805 #define ARM_VFP_MVFR0 7
1806 #define ARM_VFP_FPEXC 8
1807 #define ARM_VFP_FPINST 9
1808 #define ARM_VFP_FPINST2 10
1809 /* These ones are M-profile only */
1810 #define ARM_VFP_FPSCR_NZCVQC 2
1811 #define ARM_VFP_VPR 12
1812 #define ARM_VFP_P0 13
1813 #define ARM_VFP_FPCXT_NS 14
1814 #define ARM_VFP_FPCXT_S 15
1815
1816 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1817 #define QEMU_VFP_FPSCR_NZCV 0xffff
1818
1819 /* iwMMXt coprocessor control registers. */
1820 #define ARM_IWMMXT_wCID 0
1821 #define ARM_IWMMXT_wCon 1
1822 #define ARM_IWMMXT_wCSSF 2
1823 #define ARM_IWMMXT_wCASF 3
1824 #define ARM_IWMMXT_wCGR0 8
1825 #define ARM_IWMMXT_wCGR1 9
1826 #define ARM_IWMMXT_wCGR2 10
1827 #define ARM_IWMMXT_wCGR3 11
1828
1829 /* V7M CCR bits */
1830 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1831 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1832 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1833 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1834 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1835 FIELD(V7M_CCR, STKALIGN, 9, 1)
1836 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1837 FIELD(V7M_CCR, DC, 16, 1)
1838 FIELD(V7M_CCR, IC, 17, 1)
1839 FIELD(V7M_CCR, BP, 18, 1)
1840 FIELD(V7M_CCR, LOB, 19, 1)
1841 FIELD(V7M_CCR, TRD, 20, 1)
1842
1843 /* V7M SCR bits */
1844 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1845 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1846 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1847 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1848
1849 /* V7M AIRCR bits */
1850 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1851 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1852 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1853 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1854 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1855 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1856 FIELD(V7M_AIRCR, PRIS, 14, 1)
1857 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1858 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1859
1860 /* V7M CFSR bits for MMFSR */
1861 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1862 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1863 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1864 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1865 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1866 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1867
1868 /* V7M CFSR bits for BFSR */
1869 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1870 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1871 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1872 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1873 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1874 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1875 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1876
1877 /* V7M CFSR bits for UFSR */
1878 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1879 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1880 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1881 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1882 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1883 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1884 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1885
1886 /* V7M CFSR bit masks covering all of the subregister bits */
1887 FIELD(V7M_CFSR, MMFSR, 0, 8)
1888 FIELD(V7M_CFSR, BFSR, 8, 8)
1889 FIELD(V7M_CFSR, UFSR, 16, 16)
1890
1891 /* V7M HFSR bits */
1892 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1893 FIELD(V7M_HFSR, FORCED, 30, 1)
1894 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1895
1896 /* V7M DFSR bits */
1897 FIELD(V7M_DFSR, HALTED, 0, 1)
1898 FIELD(V7M_DFSR, BKPT, 1, 1)
1899 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1900 FIELD(V7M_DFSR, VCATCH, 3, 1)
1901 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1902
1903 /* V7M SFSR bits */
1904 FIELD(V7M_SFSR, INVEP, 0, 1)
1905 FIELD(V7M_SFSR, INVIS, 1, 1)
1906 FIELD(V7M_SFSR, INVER, 2, 1)
1907 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1908 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1909 FIELD(V7M_SFSR, LSPERR, 5, 1)
1910 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1911 FIELD(V7M_SFSR, LSERR, 7, 1)
1912
1913 /* v7M MPU_CTRL bits */
1914 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1915 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1916 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1917
1918 /* v7M CLIDR bits */
1919 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1920 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1921 FIELD(V7M_CLIDR, LOC, 24, 3)
1922 FIELD(V7M_CLIDR, LOUU, 27, 3)
1923 FIELD(V7M_CLIDR, ICB, 30, 2)
1924
1925 FIELD(V7M_CSSELR, IND, 0, 1)
1926 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1927 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1928 * define a mask for this and check that it doesn't permit running off
1929 * the end of the array.
1930 */
1931 FIELD(V7M_CSSELR, INDEX, 0, 4)
1932
1933 /* v7M FPCCR bits */
1934 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1935 FIELD(V7M_FPCCR, USER, 1, 1)
1936 FIELD(V7M_FPCCR, S, 2, 1)
1937 FIELD(V7M_FPCCR, THREAD, 3, 1)
1938 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1939 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1940 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1941 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1942 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1943 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1944 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1945 FIELD(V7M_FPCCR, RES0, 11, 15)
1946 FIELD(V7M_FPCCR, TS, 26, 1)
1947 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1948 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1949 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1950 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1951 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1952 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1953 #define R_V7M_FPCCR_BANKED_MASK \
1954 (R_V7M_FPCCR_LSPACT_MASK | \
1955 R_V7M_FPCCR_USER_MASK | \
1956 R_V7M_FPCCR_THREAD_MASK | \
1957 R_V7M_FPCCR_MMRDY_MASK | \
1958 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1959 R_V7M_FPCCR_UFRDY_MASK | \
1960 R_V7M_FPCCR_ASPEN_MASK)
1961
1962 /* v7M VPR bits */
1963 FIELD(V7M_VPR, P0, 0, 16)
1964 FIELD(V7M_VPR, MASK01, 16, 4)
1965 FIELD(V7M_VPR, MASK23, 20, 4)
1966
1967 /*
1968 * System register ID fields.
1969 */
1970 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1971 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1972 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1973 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1974 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1975 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1976 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1977 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1978 FIELD(CLIDR_EL1, LOC, 24, 3)
1979 FIELD(CLIDR_EL1, LOUU, 27, 3)
1980 FIELD(CLIDR_EL1, ICB, 30, 3)
1981
1982 /* When FEAT_CCIDX is implemented */
1983 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1984 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1985 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1986
1987 /* When FEAT_CCIDX is not implemented */
1988 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1989 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1990 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1991
1992 FIELD(CTR_EL0, IMINLINE, 0, 4)
1993 FIELD(CTR_EL0, L1IP, 14, 2)
1994 FIELD(CTR_EL0, DMINLINE, 16, 4)
1995 FIELD(CTR_EL0, ERG, 20, 4)
1996 FIELD(CTR_EL0, CWG, 24, 4)
1997 FIELD(CTR_EL0, IDC, 28, 1)
1998 FIELD(CTR_EL0, DIC, 29, 1)
1999 FIELD(CTR_EL0, TMINLINE, 32, 6)
2000
2001 FIELD(MIDR_EL1, REVISION, 0, 4)
2002 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2003 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2004 FIELD(MIDR_EL1, VARIANT, 20, 4)
2005 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2006
2007 FIELD(ID_ISAR0, SWAP, 0, 4)
2008 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2009 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2010 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2011 FIELD(ID_ISAR0, COPROC, 16, 4)
2012 FIELD(ID_ISAR0, DEBUG, 20, 4)
2013 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2014
2015 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2016 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2017 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2018 FIELD(ID_ISAR1, EXTEND, 12, 4)
2019 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2020 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2021 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2022 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2023
2024 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2025 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2026 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2027 FIELD(ID_ISAR2, MULT, 12, 4)
2028 FIELD(ID_ISAR2, MULTS, 16, 4)
2029 FIELD(ID_ISAR2, MULTU, 20, 4)
2030 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2031 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2032
2033 FIELD(ID_ISAR3, SATURATE, 0, 4)
2034 FIELD(ID_ISAR3, SIMD, 4, 4)
2035 FIELD(ID_ISAR3, SVC, 8, 4)
2036 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2037 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2038 FIELD(ID_ISAR3, T32COPY, 20, 4)
2039 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2040 FIELD(ID_ISAR3, T32EE, 28, 4)
2041
2042 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2043 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2044 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2045 FIELD(ID_ISAR4, SMC, 12, 4)
2046 FIELD(ID_ISAR4, BARRIER, 16, 4)
2047 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2048 FIELD(ID_ISAR4, PSR_M, 24, 4)
2049 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2050
2051 FIELD(ID_ISAR5, SEVL, 0, 4)
2052 FIELD(ID_ISAR5, AES, 4, 4)
2053 FIELD(ID_ISAR5, SHA1, 8, 4)
2054 FIELD(ID_ISAR5, SHA2, 12, 4)
2055 FIELD(ID_ISAR5, CRC32, 16, 4)
2056 FIELD(ID_ISAR5, RDM, 24, 4)
2057 FIELD(ID_ISAR5, VCMA, 28, 4)
2058
2059 FIELD(ID_ISAR6, JSCVT, 0, 4)
2060 FIELD(ID_ISAR6, DP, 4, 4)
2061 FIELD(ID_ISAR6, FHM, 8, 4)
2062 FIELD(ID_ISAR6, SB, 12, 4)
2063 FIELD(ID_ISAR6, SPECRES, 16, 4)
2064 FIELD(ID_ISAR6, BF16, 20, 4)
2065 FIELD(ID_ISAR6, I8MM, 24, 4)
2066
2067 FIELD(ID_MMFR0, VMSA, 0, 4)
2068 FIELD(ID_MMFR0, PMSA, 4, 4)
2069 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2070 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2071 FIELD(ID_MMFR0, TCM, 16, 4)
2072 FIELD(ID_MMFR0, AUXREG, 20, 4)
2073 FIELD(ID_MMFR0, FCSE, 24, 4)
2074 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2075
2076 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2077 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2078 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2079 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2080 FIELD(ID_MMFR1, L1HVD, 16, 4)
2081 FIELD(ID_MMFR1, L1UNI, 20, 4)
2082 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2083 FIELD(ID_MMFR1, BPRED, 28, 4)
2084
2085 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2086 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2087 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2088 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2089 FIELD(ID_MMFR2, UNITLB, 16, 4)
2090 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2091 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2092 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2093
2094 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2095 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2096 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2097 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2098 FIELD(ID_MMFR3, PAN, 16, 4)
2099 FIELD(ID_MMFR3, COHWALK, 20, 4)
2100 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2101 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2102
2103 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2104 FIELD(ID_MMFR4, AC2, 4, 4)
2105 FIELD(ID_MMFR4, XNX, 8, 4)
2106 FIELD(ID_MMFR4, CNP, 12, 4)
2107 FIELD(ID_MMFR4, HPDS, 16, 4)
2108 FIELD(ID_MMFR4, LSM, 20, 4)
2109 FIELD(ID_MMFR4, CCIDX, 24, 4)
2110 FIELD(ID_MMFR4, EVT, 28, 4)
2111
2112 FIELD(ID_MMFR5, ETS, 0, 4)
2113 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2114
2115 FIELD(ID_PFR0, STATE0, 0, 4)
2116 FIELD(ID_PFR0, STATE1, 4, 4)
2117 FIELD(ID_PFR0, STATE2, 8, 4)
2118 FIELD(ID_PFR0, STATE3, 12, 4)
2119 FIELD(ID_PFR0, CSV2, 16, 4)
2120 FIELD(ID_PFR0, AMU, 20, 4)
2121 FIELD(ID_PFR0, DIT, 24, 4)
2122 FIELD(ID_PFR0, RAS, 28, 4)
2123
2124 FIELD(ID_PFR1, PROGMOD, 0, 4)
2125 FIELD(ID_PFR1, SECURITY, 4, 4)
2126 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2127 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2128 FIELD(ID_PFR1, GENTIMER, 16, 4)
2129 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2130 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2131 FIELD(ID_PFR1, GIC, 28, 4)
2132
2133 FIELD(ID_PFR2, CSV3, 0, 4)
2134 FIELD(ID_PFR2, SSBS, 4, 4)
2135 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2136
2137 FIELD(ID_AA64ISAR0, AES, 4, 4)
2138 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2139 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2140 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2141 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2142 FIELD(ID_AA64ISAR0, TME, 24, 4)
2143 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2144 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2145 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2146 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2147 FIELD(ID_AA64ISAR0, DP, 44, 4)
2148 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2149 FIELD(ID_AA64ISAR0, TS, 52, 4)
2150 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2151 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2152
2153 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2154 FIELD(ID_AA64ISAR1, APA, 4, 4)
2155 FIELD(ID_AA64ISAR1, API, 8, 4)
2156 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2157 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2158 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2159 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2160 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2161 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2162 FIELD(ID_AA64ISAR1, SB, 36, 4)
2163 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2164 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2165 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2166 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2167 FIELD(ID_AA64ISAR1, XS, 56, 4)
2168 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2169
2170 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2171 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2172 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2173 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2174 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2175 FIELD(ID_AA64ISAR2, BC, 20, 4)
2176 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2177 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2178 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2179 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2180 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2181 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2182 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2183 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2184
2185 FIELD(ID_AA64PFR0, EL0, 0, 4)
2186 FIELD(ID_AA64PFR0, EL1, 4, 4)
2187 FIELD(ID_AA64PFR0, EL2, 8, 4)
2188 FIELD(ID_AA64PFR0, EL3, 12, 4)
2189 FIELD(ID_AA64PFR0, FP, 16, 4)
2190 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2191 FIELD(ID_AA64PFR0, GIC, 24, 4)
2192 FIELD(ID_AA64PFR0, RAS, 28, 4)
2193 FIELD(ID_AA64PFR0, SVE, 32, 4)
2194 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2195 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2196 FIELD(ID_AA64PFR0, AMU, 44, 4)
2197 FIELD(ID_AA64PFR0, DIT, 48, 4)
2198 FIELD(ID_AA64PFR0, RME, 52, 4)
2199 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2200 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2201
2202 FIELD(ID_AA64PFR1, BT, 0, 4)
2203 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2204 FIELD(ID_AA64PFR1, MTE, 8, 4)
2205 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2206 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2207 FIELD(ID_AA64PFR1, SME, 24, 4)
2208 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2209 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2210 FIELD(ID_AA64PFR1, NMI, 36, 4)
2211 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2212 FIELD(ID_AA64PFR1, GCS, 44, 4)
2213 FIELD(ID_AA64PFR1, THE, 48, 4)
2214 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2215 FIELD(ID_AA64PFR1, DF2, 56, 4)
2216 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2217
2218 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2219 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2220 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2221 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2222 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2223 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2224 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2225 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2226 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2227 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2228 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2229 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2230 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2231 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2232
2233 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2234 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2235 FIELD(ID_AA64MMFR1, VH, 8, 4)
2236 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2237 FIELD(ID_AA64MMFR1, LO, 16, 4)
2238 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2239 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2240 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2241 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2242 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2243 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2244 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2245 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2246 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2247 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2248 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2249
2250 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2251 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2252 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2253 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2254 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2255 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2256 FIELD(ID_AA64MMFR2, NV, 24, 4)
2257 FIELD(ID_AA64MMFR2, ST, 28, 4)
2258 FIELD(ID_AA64MMFR2, AT, 32, 4)
2259 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2260 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2261 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2262 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2263 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2264 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2265
2266 FIELD(ID_AA64MMFR3, TCRX, 0, 4)
2267 FIELD(ID_AA64MMFR3, SCTLRX, 4, 4)
2268 FIELD(ID_AA64MMFR3, S1PIE, 8, 4)
2269 FIELD(ID_AA64MMFR3, S2PIE, 12, 4)
2270 FIELD(ID_AA64MMFR3, S1POE, 16, 4)
2271 FIELD(ID_AA64MMFR3, S2POE, 20, 4)
2272 FIELD(ID_AA64MMFR3, AIE, 24, 4)
2273 FIELD(ID_AA64MMFR3, MEC, 28, 4)
2274 FIELD(ID_AA64MMFR3, D128, 32, 4)
2275 FIELD(ID_AA64MMFR3, D128_2, 36, 4)
2276 FIELD(ID_AA64MMFR3, SNERR, 40, 4)
2277 FIELD(ID_AA64MMFR3, ANERR, 44, 4)
2278 FIELD(ID_AA64MMFR3, SDERR, 52, 4)
2279 FIELD(ID_AA64MMFR3, ADERR, 56, 4)
2280 FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4)
2281
2282 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2283 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2284 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2285 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2286 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2287 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2288 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2289 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2290 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2291 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2292 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2293 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2294 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2295 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2296 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2297 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2298
2299 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2300 FIELD(ID_AA64ZFR0, AES, 4, 4)
2301 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2302 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2303 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2304 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2305 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2306 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2307 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2308 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2309
2310 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2311 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2312 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2313 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2314 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2315 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2316 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2317 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2318 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2319 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2320 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2321 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2322
2323 FIELD(ID_DFR0, COPDBG, 0, 4)
2324 FIELD(ID_DFR0, COPSDBG, 4, 4)
2325 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2326 FIELD(ID_DFR0, COPTRC, 12, 4)
2327 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2328 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2329 FIELD(ID_DFR0, PERFMON, 24, 4)
2330 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2331
2332 FIELD(ID_DFR1, MTPMU, 0, 4)
2333 FIELD(ID_DFR1, HPMN0, 4, 4)
2334
2335 FIELD(DBGDIDR, SE_IMP, 12, 1)
2336 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2337 FIELD(DBGDIDR, VERSION, 16, 4)
2338 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2339 FIELD(DBGDIDR, BRPS, 24, 4)
2340 FIELD(DBGDIDR, WRPS, 28, 4)
2341
2342 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2343 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2344 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2345 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2346 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2347 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2348 FIELD(DBGDEVID, AUXREGS, 24, 4)
2349 FIELD(DBGDEVID, CIDMASK, 28, 4)
2350
2351 FIELD(DBGDEVID1, PCSROFFSET, 0, 4)
2352
2353 FIELD(MVFR0, SIMDREG, 0, 4)
2354 FIELD(MVFR0, FPSP, 4, 4)
2355 FIELD(MVFR0, FPDP, 8, 4)
2356 FIELD(MVFR0, FPTRAP, 12, 4)
2357 FIELD(MVFR0, FPDIVIDE, 16, 4)
2358 FIELD(MVFR0, FPSQRT, 20, 4)
2359 FIELD(MVFR0, FPSHVEC, 24, 4)
2360 FIELD(MVFR0, FPROUND, 28, 4)
2361
2362 FIELD(MVFR1, FPFTZ, 0, 4)
2363 FIELD(MVFR1, FPDNAN, 4, 4)
2364 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2365 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2366 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2367 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2368 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2369 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2370 FIELD(MVFR1, FPHP, 24, 4)
2371 FIELD(MVFR1, SIMDFMAC, 28, 4)
2372
2373 FIELD(MVFR2, SIMDMISC, 0, 4)
2374 FIELD(MVFR2, FPMISC, 4, 4)
2375
2376 FIELD(GPCCR, PPS, 0, 3)
2377 FIELD(GPCCR, IRGN, 8, 2)
2378 FIELD(GPCCR, ORGN, 10, 2)
2379 FIELD(GPCCR, SH, 12, 2)
2380 FIELD(GPCCR, PGS, 14, 2)
2381 FIELD(GPCCR, GPC, 16, 1)
2382 FIELD(GPCCR, GPCP, 17, 1)
2383 FIELD(GPCCR, L0GPTSZ, 20, 4)
2384
2385 FIELD(MFAR, FPA, 12, 40)
2386 FIELD(MFAR, NSE, 62, 1)
2387 FIELD(MFAR, NS, 63, 1)
2388
2389 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2390
2391 /* If adding a feature bit which corresponds to a Linux ELF
2392 * HWCAP bit, remember to update the feature-bit-to-hwcap
2393 * mapping in linux-user/elfload.c:get_elf_hwcap().
2394 */
2395 enum arm_features {
2396 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2397 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
2398 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
2399 ARM_FEATURE_V6,
2400 ARM_FEATURE_V6K,
2401 ARM_FEATURE_V7,
2402 ARM_FEATURE_THUMB2,
2403 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
2404 ARM_FEATURE_NEON,
2405 ARM_FEATURE_M, /* Microcontroller profile. */
2406 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
2407 ARM_FEATURE_THUMB2EE,
2408 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
2409 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2410 ARM_FEATURE_V4T,
2411 ARM_FEATURE_V5,
2412 ARM_FEATURE_STRONGARM,
2413 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2414 ARM_FEATURE_GENERIC_TIMER,
2415 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2416 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2417 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2418 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2419 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2420 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2421 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2422 ARM_FEATURE_V8,
2423 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2424 ARM_FEATURE_CBAR, /* has cp15 CBAR */
2425 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2426 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2427 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2428 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2429 ARM_FEATURE_PMU, /* has PMU support */
2430 ARM_FEATURE_VBAR, /* has cp15 VBAR */
2431 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2432 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2433 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2434 /*
2435 * ARM_FEATURE_BACKCOMPAT_CNTFRQ makes the CPU default cntfrq be 62.5MHz
2436 * if the board doesn't set a value, instead of 1GHz. It is for backwards
2437 * compatibility and used only with CPU definitions that were already
2438 * in QEMU before we changed the default. It should not be set on any
2439 * CPU types added in future.
2440 */
2441 ARM_FEATURE_BACKCOMPAT_CNTFRQ, /* 62.5MHz timer default */
2442 };
2443
arm_feature(CPUARMState * env,int feature)2444 static inline int arm_feature(CPUARMState *env, int feature)
2445 {
2446 return (env->features & (1ULL << feature)) != 0;
2447 }
2448
2449 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2450
2451 /*
2452 * ARM v9 security states.
2453 * The ordering of the enumeration corresponds to the low 2 bits
2454 * of the GPI value, and (except for Root) the concat of NSE:NS.
2455 */
2456
2457 typedef enum ARMSecuritySpace {
2458 ARMSS_Secure = 0,
2459 ARMSS_NonSecure = 1,
2460 ARMSS_Root = 2,
2461 ARMSS_Realm = 3,
2462 } ARMSecuritySpace;
2463
2464 /* Return true if @space is secure, in the pre-v9 sense. */
arm_space_is_secure(ARMSecuritySpace space)2465 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2466 {
2467 return space == ARMSS_Secure || space == ARMSS_Root;
2468 }
2469
2470 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
arm_secure_to_space(bool secure)2471 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2472 {
2473 return secure ? ARMSS_Secure : ARMSS_NonSecure;
2474 }
2475
2476 #if !defined(CONFIG_USER_ONLY)
2477 /**
2478 * arm_security_space_below_el3:
2479 * @env: cpu context
2480 *
2481 * Return the security space of exception levels below EL3, following
2482 * an exception return to those levels. Unlike arm_security_space,
2483 * this doesn't care about the current EL.
2484 */
2485 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2486
2487 /**
2488 * arm_is_secure_below_el3:
2489 * @env: cpu context
2490 *
2491 * Return true if exception levels below EL3 are in secure state,
2492 * or would be following an exception return to those levels.
2493 */
arm_is_secure_below_el3(CPUARMState * env)2494 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2495 {
2496 ARMSecuritySpace ss = arm_security_space_below_el3(env);
2497 return ss == ARMSS_Secure;
2498 }
2499
2500 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
arm_is_el3_or_mon(CPUARMState * env)2501 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2502 {
2503 assert(!arm_feature(env, ARM_FEATURE_M));
2504 if (arm_feature(env, ARM_FEATURE_EL3)) {
2505 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2506 /* CPU currently in AArch64 state and EL3 */
2507 return true;
2508 } else if (!is_a64(env) &&
2509 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2510 /* CPU currently in AArch32 state and monitor mode */
2511 return true;
2512 }
2513 }
2514 return false;
2515 }
2516
2517 /**
2518 * arm_security_space:
2519 * @env: cpu context
2520 *
2521 * Return the current security space of the cpu.
2522 */
2523 ARMSecuritySpace arm_security_space(CPUARMState *env);
2524
2525 /**
2526 * arm_is_secure:
2527 * @env: cpu context
2528 *
2529 * Return true if the processor is in secure state.
2530 */
arm_is_secure(CPUARMState * env)2531 static inline bool arm_is_secure(CPUARMState *env)
2532 {
2533 return arm_space_is_secure(arm_security_space(env));
2534 }
2535
2536 /*
2537 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2538 * This corresponds to the pseudocode EL2Enabled().
2539 */
arm_is_el2_enabled_secstate(CPUARMState * env,ARMSecuritySpace space)2540 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2541 ARMSecuritySpace space)
2542 {
2543 assert(space != ARMSS_Root);
2544 return arm_feature(env, ARM_FEATURE_EL2)
2545 && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2546 }
2547
arm_is_el2_enabled(CPUARMState * env)2548 static inline bool arm_is_el2_enabled(CPUARMState *env)
2549 {
2550 return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2551 }
2552
2553 #else
arm_security_space_below_el3(CPUARMState * env)2554 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2555 {
2556 return ARMSS_NonSecure;
2557 }
2558
arm_is_secure_below_el3(CPUARMState * env)2559 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2560 {
2561 return false;
2562 }
2563
arm_security_space(CPUARMState * env)2564 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2565 {
2566 return ARMSS_NonSecure;
2567 }
2568
arm_is_secure(CPUARMState * env)2569 static inline bool arm_is_secure(CPUARMState *env)
2570 {
2571 return false;
2572 }
2573
arm_is_el2_enabled_secstate(CPUARMState * env,ARMSecuritySpace space)2574 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2575 ARMSecuritySpace space)
2576 {
2577 return false;
2578 }
2579
arm_is_el2_enabled(CPUARMState * env)2580 static inline bool arm_is_el2_enabled(CPUARMState *env)
2581 {
2582 return false;
2583 }
2584 #endif
2585
2586 /**
2587 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2588 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2589 * "for all purposes other than a direct read or write access of HCR_EL2."
2590 * Not included here is HCR_RW.
2591 */
2592 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2593 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2594 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2595
2596 /* Return true if the specified exception level is running in AArch64 state. */
arm_el_is_aa64(CPUARMState * env,int el)2597 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2598 {
2599 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2600 * and if we're not in EL0 then the state of EL0 isn't well defined.)
2601 */
2602 assert(el >= 1 && el <= 3);
2603 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2604
2605 /* The highest exception level is always at the maximum supported
2606 * register width, and then lower levels have a register width controlled
2607 * by bits in the SCR or HCR registers.
2608 */
2609 if (el == 3) {
2610 return aa64;
2611 }
2612
2613 if (arm_feature(env, ARM_FEATURE_EL3) &&
2614 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2615 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2616 }
2617
2618 if (el == 2) {
2619 return aa64;
2620 }
2621
2622 if (arm_is_el2_enabled(env)) {
2623 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2624 }
2625
2626 return aa64;
2627 }
2628
2629 /* Function for determining whether guest cp register reads and writes should
2630 * access the secure or non-secure bank of a cp register. When EL3 is
2631 * operating in AArch32 state, the NS-bit determines whether the secure
2632 * instance of a cp register should be used. When EL3 is AArch64 (or if
2633 * it doesn't exist at all) then there is no register banking, and all
2634 * accesses are to the non-secure version.
2635 */
access_secure_reg(CPUARMState * env)2636 static inline bool access_secure_reg(CPUARMState *env)
2637 {
2638 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2639 !arm_el_is_aa64(env, 3) &&
2640 !(env->cp15.scr_el3 & SCR_NS));
2641
2642 return ret;
2643 }
2644
2645 /* Macros for accessing a specified CP register bank */
2646 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
2647 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2648
2649 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2650 do { \
2651 if (_secure) { \
2652 (_env)->cp15._regname##_s = (_val); \
2653 } else { \
2654 (_env)->cp15._regname##_ns = (_val); \
2655 } \
2656 } while (0)
2657
2658 /* Macros for automatically accessing a specific CP register bank depending on
2659 * the current secure state of the system. These macros are not intended for
2660 * supporting instruction translation reads/writes as these are dependent
2661 * solely on the SCR.NS bit and not the mode.
2662 */
2663 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2664 A32_BANKED_REG_GET((_env), _regname, \
2665 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2666
2667 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2668 A32_BANKED_REG_SET((_env), _regname, \
2669 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2670 (_val))
2671
2672 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2673 uint32_t cur_el, bool secure);
2674
2675 /* Return the highest implemented Exception Level */
arm_highest_el(CPUARMState * env)2676 static inline int arm_highest_el(CPUARMState *env)
2677 {
2678 if (arm_feature(env, ARM_FEATURE_EL3)) {
2679 return 3;
2680 }
2681 if (arm_feature(env, ARM_FEATURE_EL2)) {
2682 return 2;
2683 }
2684 return 1;
2685 }
2686
2687 /* Return true if a v7M CPU is in Handler mode */
arm_v7m_is_handler_mode(CPUARMState * env)2688 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2689 {
2690 return env->v7m.exception != 0;
2691 }
2692
2693 /* Return the current Exception Level (as per ARMv8; note that this differs
2694 * from the ARMv7 Privilege Level).
2695 */
arm_current_el(CPUARMState * env)2696 static inline int arm_current_el(CPUARMState *env)
2697 {
2698 if (arm_feature(env, ARM_FEATURE_M)) {
2699 return arm_v7m_is_handler_mode(env) ||
2700 !(env->v7m.control[env->v7m.secure] & 1);
2701 }
2702
2703 if (is_a64(env)) {
2704 return extract32(env->pstate, 2, 2);
2705 }
2706
2707 switch (env->uncached_cpsr & 0x1f) {
2708 case ARM_CPU_MODE_USR:
2709 return 0;
2710 case ARM_CPU_MODE_HYP:
2711 return 2;
2712 case ARM_CPU_MODE_MON:
2713 return 3;
2714 default:
2715 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2716 /* If EL3 is 32-bit then all secure privileged modes run in
2717 * EL3
2718 */
2719 return 3;
2720 }
2721
2722 return 1;
2723 }
2724 }
2725
2726 /**
2727 * write_list_to_cpustate
2728 * @cpu: ARMCPU
2729 *
2730 * For each register listed in the ARMCPU cpreg_indexes list, write
2731 * its value from the cpreg_values list into the ARMCPUState structure.
2732 * This updates TCG's working data structures from KVM data or
2733 * from incoming migration state.
2734 *
2735 * Returns: true if all register values were updated correctly,
2736 * false if some register was unknown or could not be written.
2737 * Note that we do not stop early on failure -- we will attempt
2738 * writing all registers in the list.
2739 */
2740 bool write_list_to_cpustate(ARMCPU *cpu);
2741
2742 /**
2743 * write_cpustate_to_list:
2744 * @cpu: ARMCPU
2745 * @kvm_sync: true if this is for syncing back to KVM
2746 *
2747 * For each register listed in the ARMCPU cpreg_indexes list, write
2748 * its value from the ARMCPUState structure into the cpreg_values list.
2749 * This is used to copy info from TCG's working data structures into
2750 * KVM or for outbound migration.
2751 *
2752 * @kvm_sync is true if we are doing this in order to sync the
2753 * register state back to KVM. In this case we will only update
2754 * values in the list if the previous list->cpustate sync actually
2755 * successfully wrote the CPU state. Otherwise we will keep the value
2756 * that is in the list.
2757 *
2758 * Returns: true if all register values were read correctly,
2759 * false if some register was unknown or could not be read.
2760 * Note that we do not stop early on failure -- we will attempt
2761 * reading all registers in the list.
2762 */
2763 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2764
2765 #define ARM_CPUID_TI915T 0x54029152
2766 #define ARM_CPUID_TI925T 0x54029252
2767
2768 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2769
2770 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2771
2772 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2773 *
2774 * If EL3 is 64-bit:
2775 * + NonSecure EL1 & 0 stage 1
2776 * + NonSecure EL1 & 0 stage 2
2777 * + NonSecure EL2
2778 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2779 * + Secure EL1 & 0 stage 1
2780 * + Secure EL1 & 0 stage 2 (FEAT_SEL2)
2781 * + Secure EL2 (FEAT_SEL2)
2782 * + Secure EL2 & 0 (FEAT_SEL2)
2783 * + Realm EL1 & 0 stage 1 (FEAT_RME)
2784 * + Realm EL1 & 0 stage 2 (FEAT_RME)
2785 * + Realm EL2 (FEAT_RME)
2786 * + EL3
2787 * If EL3 is 32-bit:
2788 * + NonSecure PL1 & 0 stage 1
2789 * + NonSecure PL1 & 0 stage 2
2790 * + NonSecure PL2
2791 * + Secure PL1 & 0
2792 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2793 *
2794 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2795 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2796 * because they may differ in access permissions even if the VA->PA map is
2797 * the same
2798 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2799 * translation, which means that we have one mmu_idx that deals with two
2800 * concatenated translation regimes [this sort of combined s1+2 TLB is
2801 * architecturally permitted]
2802 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2803 * handling via the TLB. The only way to do a stage 1 translation without
2804 * the immediate stage 2 translation is via the ATS or AT system insns,
2805 * which can be slow-pathed and always do a page table walk.
2806 * The only use of stage 2 translations is either as part of an s1+2
2807 * lookup or when loading the descriptors during a stage 1 page table walk,
2808 * and in both those cases we don't use the TLB.
2809 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2810 * translation regimes, because they map reasonably well to each other
2811 * and they can't both be active at the same time.
2812 * 5. we want to be able to use the TLB for accesses done as part of a
2813 * stage1 page table walk, rather than having to walk the stage2 page
2814 * table over and over.
2815 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2816 * Never (PAN) bit within PSTATE.
2817 * 7. we fold together most secure and non-secure regimes for A-profile,
2818 * because there are no banked system registers for aarch64, so the
2819 * process of switching between secure and non-secure is
2820 * already heavyweight.
2821 * 8. we cannot fold together Stage 2 Secure and Stage 2 NonSecure,
2822 * because both are in use simultaneously for Secure EL2.
2823 *
2824 * This gives us the following list of cases:
2825 *
2826 * EL0 EL1&0 stage 1+2 (aka NS PL0 PL1&0 stage 1+2)
2827 * EL1 EL1&0 stage 1+2 (aka NS PL1 PL1&0 stage 1+2)
2828 * EL1 EL1&0 stage 1+2 +PAN (aka NS PL1 P1&0 stage 1+2 +PAN)
2829 * EL0 EL2&0
2830 * EL2 EL2&0
2831 * EL2 EL2&0 +PAN
2832 * EL2 (aka NS PL2)
2833 * EL3 (aka AArch32 S PL1 PL1&0)
2834 * AArch32 S PL0 PL1&0 (we call this EL30_0)
2835 * AArch32 S PL1 PL1&0 +PAN (we call this EL30_3_PAN)
2836 * Stage2 Secure
2837 * Stage2 NonSecure
2838 * plus one TLB per Physical address space: S, NS, Realm, Root
2839 *
2840 * for a total of 16 different mmu_idx.
2841 *
2842 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2843 * as A profile. They only need to distinguish EL0 and EL1 (and
2844 * EL2 for cores like the Cortex-R52).
2845 *
2846 * M profile CPUs are rather different as they do not have a true MMU.
2847 * They have the following different MMU indexes:
2848 * User
2849 * Privileged
2850 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2851 * Privileged, execution priority negative (ditto)
2852 * If the CPU supports the v8M Security Extension then there are also:
2853 * Secure User
2854 * Secure Privileged
2855 * Secure User, execution priority negative
2856 * Secure Privileged, execution priority negative
2857 *
2858 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2859 * are not quite the same -- different CPU types (most notably M profile
2860 * vs A/R profile) would like to use MMU indexes with different semantics,
2861 * but since we don't ever need to use all of those in a single CPU we
2862 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2863 * modes + total number of M profile MMU modes". The lower bits of
2864 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2865 * the same for any particular CPU.
2866 * Variables of type ARMMUIdx are always full values, and the core
2867 * index values are in variables of type 'int'.
2868 *
2869 * Our enumeration includes at the end some entries which are not "true"
2870 * mmu_idx values in that they don't have corresponding TLBs and are only
2871 * valid for doing slow path page table walks.
2872 *
2873 * The constant names here are patterned after the general style of the names
2874 * of the AT/ATS operations.
2875 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2876 * For M profile we arrange them to have a bit for priv, a bit for negpri
2877 * and a bit for secure.
2878 */
2879 #define ARM_MMU_IDX_A 0x10 /* A profile */
2880 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2881 #define ARM_MMU_IDX_M 0x40 /* M profile */
2882
2883 /* Meanings of the bits for M profile mmu idx values */
2884 #define ARM_MMU_IDX_M_PRIV 0x1
2885 #define ARM_MMU_IDX_M_NEGPRI 0x2
2886 #define ARM_MMU_IDX_M_S 0x4 /* Secure */
2887
2888 #define ARM_MMU_IDX_TYPE_MASK \
2889 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2890 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2891
2892 typedef enum ARMMMUIdx {
2893 /*
2894 * A-profile.
2895 */
2896 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2897 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2898 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2899 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A,
2900 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2901 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2902 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
2903 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
2904 ARMMMUIdx_E30_0 = 8 | ARM_MMU_IDX_A,
2905 ARMMMUIdx_E30_3_PAN = 9 | ARM_MMU_IDX_A,
2906
2907 /*
2908 * Used for second stage of an S12 page table walk, or for descriptor
2909 * loads during first stage of an S1 page table walk. Note that both
2910 * are in use simultaneously for SecureEL2: the security state for
2911 * the S2 ptw is selected by the NS bit from the S1 ptw.
2912 */
2913 ARMMMUIdx_Stage2_S = 10 | ARM_MMU_IDX_A,
2914 ARMMMUIdx_Stage2 = 11 | ARM_MMU_IDX_A,
2915
2916 /* TLBs with 1-1 mapping to the physical address spaces. */
2917 ARMMMUIdx_Phys_S = 12 | ARM_MMU_IDX_A,
2918 ARMMMUIdx_Phys_NS = 13 | ARM_MMU_IDX_A,
2919 ARMMMUIdx_Phys_Root = 14 | ARM_MMU_IDX_A,
2920 ARMMMUIdx_Phys_Realm = 15 | ARM_MMU_IDX_A,
2921
2922 /*
2923 * These are not allocated TLBs and are used only for AT system
2924 * instructions or for the first stage of an S12 page table walk.
2925 */
2926 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2927 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2928 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2929
2930 /*
2931 * M-profile.
2932 */
2933 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2934 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2935 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2936 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2937 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2938 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2939 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2940 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2941 } ARMMMUIdx;
2942
2943 /*
2944 * Bit macros for the core-mmu-index values for each index,
2945 * for use when calling tlb_flush_by_mmuidx() and friends.
2946 */
2947 #define TO_CORE_BIT(NAME) \
2948 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2949
2950 typedef enum ARMMMUIdxBit {
2951 TO_CORE_BIT(E10_0),
2952 TO_CORE_BIT(E20_0),
2953 TO_CORE_BIT(E10_1),
2954 TO_CORE_BIT(E10_1_PAN),
2955 TO_CORE_BIT(E2),
2956 TO_CORE_BIT(E20_2),
2957 TO_CORE_BIT(E20_2_PAN),
2958 TO_CORE_BIT(E3),
2959 TO_CORE_BIT(E30_0),
2960 TO_CORE_BIT(E30_3_PAN),
2961 TO_CORE_BIT(Stage2),
2962 TO_CORE_BIT(Stage2_S),
2963
2964 TO_CORE_BIT(MUser),
2965 TO_CORE_BIT(MPriv),
2966 TO_CORE_BIT(MUserNegPri),
2967 TO_CORE_BIT(MPrivNegPri),
2968 TO_CORE_BIT(MSUser),
2969 TO_CORE_BIT(MSPriv),
2970 TO_CORE_BIT(MSUserNegPri),
2971 TO_CORE_BIT(MSPrivNegPri),
2972 } ARMMMUIdxBit;
2973
2974 #undef TO_CORE_BIT
2975
2976 #define MMU_USER_IDX 0
2977
2978 /* Indexes used when registering address spaces with cpu_address_space_init */
2979 typedef enum ARMASIdx {
2980 ARMASIdx_NS = 0,
2981 ARMASIdx_S = 1,
2982 ARMASIdx_TagNS = 2,
2983 ARMASIdx_TagS = 3,
2984 } ARMASIdx;
2985
arm_space_to_phys(ARMSecuritySpace space)2986 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2987 {
2988 /* Assert the relative order of the physical mmu indexes. */
2989 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2990 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2991 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2992 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2993
2994 return ARMMMUIdx_Phys_S + space;
2995 }
2996
arm_phys_to_space(ARMMMUIdx idx)2997 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2998 {
2999 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
3000 return idx - ARMMMUIdx_Phys_S;
3001 }
3002
arm_v7m_csselr_razwi(ARMCPU * cpu)3003 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3004 {
3005 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3006 * CSSELR is RAZ/WI.
3007 */
3008 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3009 }
3010
arm_sctlr_b(CPUARMState * env)3011 static inline bool arm_sctlr_b(CPUARMState *env)
3012 {
3013 return
3014 /* We need not implement SCTLR.ITD in user-mode emulation, so
3015 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3016 * This lets people run BE32 binaries with "-cpu any".
3017 */
3018 #ifndef CONFIG_USER_ONLY
3019 !arm_feature(env, ARM_FEATURE_V7) &&
3020 #endif
3021 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3022 }
3023
3024 uint64_t arm_sctlr(CPUARMState *env, int el);
3025
arm_cpu_data_is_big_endian_a32(CPUARMState * env,bool sctlr_b)3026 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3027 bool sctlr_b)
3028 {
3029 #ifdef CONFIG_USER_ONLY
3030 /*
3031 * In system mode, BE32 is modelled in line with the
3032 * architecture (as word-invariant big-endianness), where loads
3033 * and stores are done little endian but from addresses which
3034 * are adjusted by XORing with the appropriate constant. So the
3035 * endianness to use for the raw data access is not affected by
3036 * SCTLR.B.
3037 * In user mode, however, we model BE32 as byte-invariant
3038 * big-endianness (because user-only code cannot tell the
3039 * difference), and so we need to use a data access endianness
3040 * that depends on SCTLR.B.
3041 */
3042 if (sctlr_b) {
3043 return true;
3044 }
3045 #endif
3046 /* In 32bit endianness is determined by looking at CPSR's E bit */
3047 return env->uncached_cpsr & CPSR_E;
3048 }
3049
arm_cpu_data_is_big_endian_a64(int el,uint64_t sctlr)3050 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3051 {
3052 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3053 }
3054
3055 /* Return true if the processor is in big-endian mode. */
arm_cpu_data_is_big_endian(CPUARMState * env)3056 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3057 {
3058 if (!is_a64(env)) {
3059 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3060 } else {
3061 int cur_el = arm_current_el(env);
3062 uint64_t sctlr = arm_sctlr(env, cur_el);
3063 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3064 }
3065 }
3066
3067 #include "exec/cpu-all.h"
3068
3069 /*
3070 * We have more than 32-bits worth of state per TB, so we split the data
3071 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3072 * We collect these two parts in CPUARMTBFlags where they are named
3073 * flags and flags2 respectively.
3074 *
3075 * The flags that are shared between all execution modes, TBFLAG_ANY,
3076 * are stored in flags. The flags that are specific to a given mode
3077 * are stores in flags2. Since cs_base is sized on the configured
3078 * address size, flags2 always has 64-bits for A64, and a minimum of
3079 * 32-bits for A32 and M32.
3080 *
3081 * The bits for 32-bit A-profile and M-profile partially overlap:
3082 *
3083 * 31 23 11 10 0
3084 * +-------------+----------+----------------+
3085 * | | | TBFLAG_A32 |
3086 * | TBFLAG_AM32 | +-----+----------+
3087 * | | |TBFLAG_M32|
3088 * +-------------+----------------+----------+
3089 * 31 23 6 5 0
3090 *
3091 * Unless otherwise noted, these bits are cached in env->hflags.
3092 */
3093 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3094 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3095 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3096 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3097 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3098 /* Target EL if we take a floating-point-disabled exception */
3099 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3100 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3101 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3102 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3103 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3104 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3105
3106 /*
3107 * Bit usage when in AArch32 state, both A- and M-profile.
3108 */
3109 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3110 FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3111
3112 /*
3113 * Bit usage when in AArch32 state, for A-profile only.
3114 */
3115 FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3116 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
3117 /*
3118 * We store the bottom two bits of the CPAR as TB flags and handle
3119 * checks on the other bits at runtime. This shares the same bits as
3120 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3121 * Not cached, because VECLEN+VECSTRIDE are not cached.
3122 */
3123 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3124 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3125 FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3126 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3127 /*
3128 * Indicates whether cp register reads and writes by guest code should access
3129 * the secure or nonsecure bank of banked registers; note that this is not
3130 * the same thing as the current security state of the processor!
3131 */
3132 FIELD(TBFLAG_A32, NS, 10, 1)
3133 /*
3134 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3135 * This requires an SME trap from AArch32 mode when using NEON.
3136 */
3137 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3138
3139 /*
3140 * Bit usage when in AArch32 state, for M-profile only.
3141 */
3142 /* Handler (ie not Thread) mode */
3143 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3144 /* Whether we should generate stack-limit checks */
3145 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3146 /* Set if FPCCR.LSPACT is set */
3147 FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
3148 /* Set if we must create a new FP context */
3149 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
3150 /* Set if FPCCR.S does not match current security state */
3151 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
3152 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3153 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
3154 /* Set if in secure mode */
3155 FIELD(TBFLAG_M32, SECURE, 6, 1)
3156
3157 /*
3158 * Bit usage when in AArch64 state
3159 */
3160 FIELD(TBFLAG_A64, TBII, 0, 2)
3161 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3162 /* The current vector length, either NVL or SVL. */
3163 FIELD(TBFLAG_A64, VL, 4, 4)
3164 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3165 FIELD(TBFLAG_A64, BT, 9, 1)
3166 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
3167 FIELD(TBFLAG_A64, TBID, 12, 2)
3168 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3169 FIELD(TBFLAG_A64, ATA, 15, 1)
3170 FIELD(TBFLAG_A64, TCMA, 16, 2)
3171 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3172 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3173 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3174 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3175 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3176 FIELD(TBFLAG_A64, SVL, 24, 4)
3177 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3178 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3179 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3180 FIELD(TBFLAG_A64, NAA, 30, 1)
3181 FIELD(TBFLAG_A64, ATA0, 31, 1)
3182 FIELD(TBFLAG_A64, NV, 32, 1)
3183 FIELD(TBFLAG_A64, NV1, 33, 1)
3184 FIELD(TBFLAG_A64, NV2, 34, 1)
3185 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3186 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3187 /* Set if FEAT_NV2 RAM accesses are big-endian */
3188 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3189
3190 /*
3191 * Helpers for using the above. Note that only the A64 accessors use
3192 * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3193 * word either is or might be 32 bits only.
3194 */
3195 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3196 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3197 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3198 (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3199 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3200 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3201 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3202 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3203 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3204 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3205
3206 #define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3207 #define EX_TBFLAG_A64(IN, WHICH) FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3208 #define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3209 #define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3210 #define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3211
3212 /**
3213 * sve_vq
3214 * @env: the cpu context
3215 *
3216 * Return the VL cached within env->hflags, in units of quadwords.
3217 */
sve_vq(CPUARMState * env)3218 static inline int sve_vq(CPUARMState *env)
3219 {
3220 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3221 }
3222
3223 /**
3224 * sme_vq
3225 * @env: the cpu context
3226 *
3227 * Return the SVL cached within env->hflags, in units of quadwords.
3228 */
sme_vq(CPUARMState * env)3229 static inline int sme_vq(CPUARMState *env)
3230 {
3231 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3232 }
3233
bswap_code(bool sctlr_b)3234 static inline bool bswap_code(bool sctlr_b)
3235 {
3236 #ifdef CONFIG_USER_ONLY
3237 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3238 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3239 * would also end up as a mixed-endian mode with BE code, LE data.
3240 */
3241 return TARGET_BIG_ENDIAN ^ sctlr_b;
3242 #else
3243 /* All code access in ARM is little endian, and there are no loaders
3244 * doing swaps that need to be reversed
3245 */
3246 return 0;
3247 #endif
3248 }
3249
3250 #ifdef CONFIG_USER_ONLY
arm_cpu_bswap_data(CPUARMState * env)3251 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3252 {
3253 return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3254 }
3255 #endif
3256
3257 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3258 uint64_t *cs_base, uint32_t *flags);
3259
3260 enum {
3261 QEMU_PSCI_CONDUIT_DISABLED = 0,
3262 QEMU_PSCI_CONDUIT_SMC = 1,
3263 QEMU_PSCI_CONDUIT_HVC = 2,
3264 };
3265
3266 #ifndef CONFIG_USER_ONLY
3267 /* Return the address space index to use for a memory access */
arm_asidx_from_attrs(CPUState * cs,MemTxAttrs attrs)3268 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3269 {
3270 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3271 }
3272
3273 /* Return the AddressSpace to use for a memory access
3274 * (which depends on whether the access is S or NS, and whether
3275 * the board gave us a separate AddressSpace for S accesses).
3276 */
arm_addressspace(CPUState * cs,MemTxAttrs attrs)3277 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3278 {
3279 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3280 }
3281 #endif
3282
3283 /**
3284 * arm_register_pre_el_change_hook:
3285 * Register a hook function which will be called immediately before this
3286 * CPU changes exception level or mode. The hook function will be
3287 * passed a pointer to the ARMCPU and the opaque data pointer passed
3288 * to this function when the hook was registered.
3289 *
3290 * Note that if a pre-change hook is called, any registered post-change hooks
3291 * are guaranteed to subsequently be called.
3292 */
3293 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3294 void *opaque);
3295 /**
3296 * arm_register_el_change_hook:
3297 * Register a hook function which will be called immediately after this
3298 * CPU changes exception level or mode. The hook function will be
3299 * passed a pointer to the ARMCPU and the opaque data pointer passed
3300 * to this function when the hook was registered.
3301 *
3302 * Note that any registered hooks registered here are guaranteed to be called
3303 * if pre-change hooks have been.
3304 */
3305 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3306 *opaque);
3307
3308 /**
3309 * arm_rebuild_hflags:
3310 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3311 */
3312 void arm_rebuild_hflags(CPUARMState *env);
3313
3314 /**
3315 * aa32_vfp_dreg:
3316 * Return a pointer to the Dn register within env in 32-bit mode.
3317 */
aa32_vfp_dreg(CPUARMState * env,unsigned regno)3318 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3319 {
3320 return &env->vfp.zregs[regno >> 1].d[regno & 1];
3321 }
3322
3323 /**
3324 * aa32_vfp_qreg:
3325 * Return a pointer to the Qn register within env in 32-bit mode.
3326 */
aa32_vfp_qreg(CPUARMState * env,unsigned regno)3327 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3328 {
3329 return &env->vfp.zregs[regno].d[0];
3330 }
3331
3332 /**
3333 * aa64_vfp_qreg:
3334 * Return a pointer to the Qn register within env in 64-bit mode.
3335 */
aa64_vfp_qreg(CPUARMState * env,unsigned regno)3336 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3337 {
3338 return &env->vfp.zregs[regno].d[0];
3339 }
3340
3341 /* Shared between translate-sve.c and sve_helper.c. */
3342 extern const uint64_t pred_esz_masks[5];
3343
3344 /*
3345 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3346 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3347 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
3348 */
3349 #define PAGE_BTI PAGE_TARGET_1
3350 #define PAGE_MTE PAGE_TARGET_2
3351 #define PAGE_TARGET_STICKY PAGE_MTE
3352
3353 /* We associate one allocation tag per 16 bytes, the minimum. */
3354 #define LOG2_TAG_GRANULE 4
3355 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
3356
3357 #ifdef CONFIG_USER_ONLY
3358 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3359 #endif
3360
3361 #ifdef TARGET_TAGGED_ADDRESSES
3362 /**
3363 * cpu_untagged_addr:
3364 * @cs: CPU context
3365 * @x: tagged address
3366 *
3367 * Remove any address tag from @x. This is explicitly related to the
3368 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3369 *
3370 * There should be a better place to put this, but we need this in
3371 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3372 */
cpu_untagged_addr(CPUState * cs,target_ulong x)3373 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3374 {
3375 CPUARMState *env = cpu_env(cs);
3376 if (env->tagged_addr_enable) {
3377 /*
3378 * TBI is enabled for userspace but not kernelspace addresses.
3379 * Only clear the tag if bit 55 is clear.
3380 */
3381 x &= sextract64(x, 0, 56);
3382 }
3383 return x;
3384 }
3385 #endif
3386
3387 #endif
3388