1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "SIMachineFunctionInfo.h"
19 #include "SIRegisterInfo.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
22 #include "llvm/BinaryFormat/ELF.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/FunctionLoweringInfo.h"
25 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/IntrinsicsAMDGPU.h"
29 #include "llvm/IR/IntrinsicsR600.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/KnownBits.h"
32
33 using namespace llvm;
34
35 #define DEBUG_TYPE "si-lower"
36
37 STATISTIC(NumTailCalls, "Number of tail calls");
38
39 static cl::opt<bool> DisableLoopAlignment(
40 "amdgpu-disable-loop-alignment",
41 cl::desc("Do not align and prefetch loops"),
42 cl::init(false));
43
44 static cl::opt<bool> VGPRReserveforSGPRSpill(
45 "amdgpu-reserve-vgpr-for-sgpr-spill",
46 cl::desc("Allocates one VGPR for future SGPR Spill"), cl::init(true));
47
48 static cl::opt<bool> UseDivergentRegisterIndexing(
49 "amdgpu-use-divergent-register-indexing",
50 cl::Hidden,
51 cl::desc("Use indirect register addressing for divergent indexes"),
52 cl::init(false));
53
hasFP32Denormals(const MachineFunction & MF)54 static bool hasFP32Denormals(const MachineFunction &MF) {
55 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
56 return Info->getMode().allFP32Denormals();
57 }
58
hasFP64FP16Denormals(const MachineFunction & MF)59 static bool hasFP64FP16Denormals(const MachineFunction &MF) {
60 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
61 return Info->getMode().allFP64FP16Denormals();
62 }
63
findFirstFreeSGPR(CCState & CCInfo)64 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
65 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
66 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
67 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
68 return AMDGPU::SGPR0 + Reg;
69 }
70 }
71 llvm_unreachable("Cannot allocate sgpr");
72 }
73
SITargetLowering(const TargetMachine & TM,const GCNSubtarget & STI)74 SITargetLowering::SITargetLowering(const TargetMachine &TM,
75 const GCNSubtarget &STI)
76 : AMDGPUTargetLowering(TM, STI),
77 Subtarget(&STI) {
78 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
79 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
80
81 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
82 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
83
84 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
85
86 const SIRegisterInfo *TRI = STI.getRegisterInfo();
87 const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
88
89 addRegisterClass(MVT::f64, V64RegClass);
90 addRegisterClass(MVT::v2f32, V64RegClass);
91
92 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
93 addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
94
95 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
96 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
97
98 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
99 addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
100
101 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
102 addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
103
104 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
105 addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
106
107 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
108 addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
109
110 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
111 addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
112
113 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
114 addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
115
116 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
117 addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
118
119 if (Subtarget->has16BitInsts()) {
120 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
121 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
122
123 // Unless there are also VOP3P operations, not operations are really legal.
124 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
125 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
126 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
127 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
128 }
129
130 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
131 addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
132
133 computeRegisterProperties(Subtarget->getRegisterInfo());
134
135 // The boolean content concept here is too inflexible. Compares only ever
136 // really produce a 1-bit result. Any copy/extend from these will turn into a
137 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
138 // it's what most targets use.
139 setBooleanContents(ZeroOrOneBooleanContent);
140 setBooleanVectorContents(ZeroOrOneBooleanContent);
141
142 // We need to custom lower vector stores from local memory
143 setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
144 setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
145 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
146 setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
147 setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
148 setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
149 setOperationAction(ISD::LOAD, MVT::i1, Custom);
150 setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
151
152 setOperationAction(ISD::STORE, MVT::v2i32, Custom);
153 setOperationAction(ISD::STORE, MVT::v3i32, Custom);
154 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
155 setOperationAction(ISD::STORE, MVT::v5i32, Custom);
156 setOperationAction(ISD::STORE, MVT::v8i32, Custom);
157 setOperationAction(ISD::STORE, MVT::v16i32, Custom);
158 setOperationAction(ISD::STORE, MVT::i1, Custom);
159 setOperationAction(ISD::STORE, MVT::v32i32, Custom);
160
161 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
162 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
163 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
164 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
165 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
166 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
167 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
168 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
169 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
170 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
171 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
172 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
173 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
174 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
175 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
176 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
177
178 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
179 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
180 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
181 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
182 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
183
184 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
185 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
186
187 setOperationAction(ISD::SELECT, MVT::i1, Promote);
188 setOperationAction(ISD::SELECT, MVT::i64, Custom);
189 setOperationAction(ISD::SELECT, MVT::f64, Promote);
190 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
191
192 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
193 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
194 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
195 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
196 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
197
198 setOperationAction(ISD::SETCC, MVT::i1, Promote);
199 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
200 setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
201 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
202
203 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
204 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
205 setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand);
206 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand);
207 setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand);
208 setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand);
209 setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand);
210 setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand);
211
212 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
213 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
214 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
215 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
216 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
217 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
218 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
219 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
220
221 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
222 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
223 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
224 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
225 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
226 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
227
228 setOperationAction(ISD::UADDO, MVT::i32, Legal);
229 setOperationAction(ISD::USUBO, MVT::i32, Legal);
230
231 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
232 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
233
234 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
235 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
236 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
237
238 #if 0
239 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
240 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
241 #endif
242
243 // We only support LOAD/STORE and vector manipulation ops for vectors
244 // with > 4 elements.
245 for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
246 MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
247 MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
248 MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) {
249 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
250 switch (Op) {
251 case ISD::LOAD:
252 case ISD::STORE:
253 case ISD::BUILD_VECTOR:
254 case ISD::BITCAST:
255 case ISD::EXTRACT_VECTOR_ELT:
256 case ISD::INSERT_VECTOR_ELT:
257 case ISD::INSERT_SUBVECTOR:
258 case ISD::EXTRACT_SUBVECTOR:
259 case ISD::SCALAR_TO_VECTOR:
260 break;
261 case ISD::CONCAT_VECTORS:
262 setOperationAction(Op, VT, Custom);
263 break;
264 default:
265 setOperationAction(Op, VT, Expand);
266 break;
267 }
268 }
269 }
270
271 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
272
273 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
274 // is expanded to avoid having two separate loops in case the index is a VGPR.
275
276 // Most operations are naturally 32-bit vector operations. We only support
277 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
278 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
279 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
280 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
281
282 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
283 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
284
285 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
286 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
287
288 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
289 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
290 }
291
292 for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
293 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
294 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
295
296 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
297 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
298
299 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
300 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
301
302 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
303 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
304 }
305
306 for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
307 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
308 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
309
310 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
311 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
312
313 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
314 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
315
316 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
317 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
318 }
319
320 for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
321 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
322 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
323
324 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
325 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
326
327 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
328 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
329
330 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
331 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
332 }
333
334 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
335 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
336 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
337 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
338
339 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
340 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
341
342 // Avoid stack access for these.
343 // TODO: Generalize to more vector types.
344 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
345 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
346 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
347 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
348
349 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
350 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
351 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
352 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
353 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
354
355 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
356 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
357 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
358
359 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
360 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
361 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
362 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
363
364 // Deal with vec3 vector operations when widened to vec4.
365 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
366 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
367 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
368 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
369
370 // Deal with vec5 vector operations when widened to vec8.
371 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
372 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
373 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
374 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
375
376 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
377 // and output demarshalling
378 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
379 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
380
381 // We can't return success/failure, only the old value,
382 // let LLVM add the comparison
383 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
384 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
385
386 if (Subtarget->hasFlatAddressSpace()) {
387 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
388 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
389 }
390
391 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
392 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
393
394 // FIXME: This should be narrowed to i32, but that only happens if i64 is
395 // illegal.
396 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
397 setOperationAction(ISD::BSWAP, MVT::i64, Legal);
398 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
399
400 // On SI this is s_memtime and s_memrealtime on VI.
401 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
402 setOperationAction(ISD::TRAP, MVT::Other, Custom);
403 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
404
405 if (Subtarget->has16BitInsts()) {
406 setOperationAction(ISD::FPOW, MVT::f16, Promote);
407 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
408 setOperationAction(ISD::FLOG, MVT::f16, Custom);
409 setOperationAction(ISD::FEXP, MVT::f16, Custom);
410 setOperationAction(ISD::FLOG10, MVT::f16, Custom);
411 }
412
413 if (Subtarget->hasMadMacF32Insts())
414 setOperationAction(ISD::FMAD, MVT::f32, Legal);
415
416 if (!Subtarget->hasBFI()) {
417 // fcopysign can be done in a single instruction with BFI.
418 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
419 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
420 }
421
422 if (!Subtarget->hasBCNT(32))
423 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
424
425 if (!Subtarget->hasBCNT(64))
426 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
427
428 if (Subtarget->hasFFBH())
429 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
430
431 if (Subtarget->hasFFBL())
432 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
433
434 // We only really have 32-bit BFE instructions (and 16-bit on VI).
435 //
436 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
437 // effort to match them now. We want this to be false for i64 cases when the
438 // extraction isn't restricted to the upper or lower half. Ideally we would
439 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
440 // span the midpoint are probably relatively rare, so don't worry about them
441 // for now.
442 if (Subtarget->hasBFE())
443 setHasExtractBitsInsn(true);
444
445 // Clamp modifier on add/sub
446 if (Subtarget->hasIntClamp()) {
447 setOperationAction(ISD::UADDSAT, MVT::i32, Legal);
448 setOperationAction(ISD::USUBSAT, MVT::i32, Legal);
449 }
450
451 if (Subtarget->hasAddNoCarry()) {
452 setOperationAction(ISD::SADDSAT, MVT::i16, Legal);
453 setOperationAction(ISD::SSUBSAT, MVT::i16, Legal);
454 setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
455 setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
456 }
457
458 setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
459 setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
460 setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
461 setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
462
463
464 // These are really only legal for ieee_mode functions. We should be avoiding
465 // them for functions that don't have ieee_mode enabled, so just say they are
466 // legal.
467 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
468 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
469 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
470 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
471
472
473 if (Subtarget->haveRoundOpsF64()) {
474 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
475 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
476 setOperationAction(ISD::FRINT, MVT::f64, Legal);
477 } else {
478 setOperationAction(ISD::FCEIL, MVT::f64, Custom);
479 setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
480 setOperationAction(ISD::FRINT, MVT::f64, Custom);
481 setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
482 }
483
484 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
485
486 setOperationAction(ISD::FSIN, MVT::f32, Custom);
487 setOperationAction(ISD::FCOS, MVT::f32, Custom);
488 setOperationAction(ISD::FDIV, MVT::f32, Custom);
489 setOperationAction(ISD::FDIV, MVT::f64, Custom);
490
491 if (Subtarget->has16BitInsts()) {
492 setOperationAction(ISD::Constant, MVT::i16, Legal);
493
494 setOperationAction(ISD::SMIN, MVT::i16, Legal);
495 setOperationAction(ISD::SMAX, MVT::i16, Legal);
496
497 setOperationAction(ISD::UMIN, MVT::i16, Legal);
498 setOperationAction(ISD::UMAX, MVT::i16, Legal);
499
500 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
501 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
502
503 setOperationAction(ISD::ROTR, MVT::i16, Expand);
504 setOperationAction(ISD::ROTL, MVT::i16, Expand);
505
506 setOperationAction(ISD::SDIV, MVT::i16, Promote);
507 setOperationAction(ISD::UDIV, MVT::i16, Promote);
508 setOperationAction(ISD::SREM, MVT::i16, Promote);
509 setOperationAction(ISD::UREM, MVT::i16, Promote);
510 setOperationAction(ISD::UADDSAT, MVT::i16, Legal);
511 setOperationAction(ISD::USUBSAT, MVT::i16, Legal);
512
513 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
514
515 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
516 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
517 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
518 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
519 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
520
521 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
522
523 setOperationAction(ISD::BR_CC, MVT::i16, Expand);
524
525 setOperationAction(ISD::LOAD, MVT::i16, Custom);
526
527 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
528
529 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
530 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
531 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
532 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
533
534 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Custom);
535 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Custom);
536
537 // F16 - Constant Actions.
538 setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
539
540 // F16 - Load/Store Actions.
541 setOperationAction(ISD::LOAD, MVT::f16, Promote);
542 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
543 setOperationAction(ISD::STORE, MVT::f16, Promote);
544 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
545
546 // F16 - VOP1 Actions.
547 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
548 setOperationAction(ISD::FCOS, MVT::f16, Custom);
549 setOperationAction(ISD::FSIN, MVT::f16, Custom);
550
551 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
552 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom);
553
554 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
555 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
556 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
557 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
558 setOperationAction(ISD::FROUND, MVT::f16, Custom);
559
560 // F16 - VOP2 Actions.
561 setOperationAction(ISD::BR_CC, MVT::f16, Expand);
562 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
563
564 setOperationAction(ISD::FDIV, MVT::f16, Custom);
565
566 // F16 - VOP3 Actions.
567 setOperationAction(ISD::FMA, MVT::f16, Legal);
568 if (STI.hasMadF16())
569 setOperationAction(ISD::FMAD, MVT::f16, Legal);
570
571 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
572 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
573 switch (Op) {
574 case ISD::LOAD:
575 case ISD::STORE:
576 case ISD::BUILD_VECTOR:
577 case ISD::BITCAST:
578 case ISD::EXTRACT_VECTOR_ELT:
579 case ISD::INSERT_VECTOR_ELT:
580 case ISD::INSERT_SUBVECTOR:
581 case ISD::EXTRACT_SUBVECTOR:
582 case ISD::SCALAR_TO_VECTOR:
583 break;
584 case ISD::CONCAT_VECTORS:
585 setOperationAction(Op, VT, Custom);
586 break;
587 default:
588 setOperationAction(Op, VT, Expand);
589 break;
590 }
591 }
592 }
593
594 // v_perm_b32 can handle either of these.
595 setOperationAction(ISD::BSWAP, MVT::i16, Legal);
596 setOperationAction(ISD::BSWAP, MVT::v2i16, Legal);
597 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
598
599 // XXX - Do these do anything? Vector constants turn into build_vector.
600 setOperationAction(ISD::Constant, MVT::v2i16, Legal);
601 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
602
603 setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
604 setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
605
606 setOperationAction(ISD::STORE, MVT::v2i16, Promote);
607 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
608 setOperationAction(ISD::STORE, MVT::v2f16, Promote);
609 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
610
611 setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
612 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
613 setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
614 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
615
616 setOperationAction(ISD::AND, MVT::v2i16, Promote);
617 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
618 setOperationAction(ISD::OR, MVT::v2i16, Promote);
619 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
620 setOperationAction(ISD::XOR, MVT::v2i16, Promote);
621 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
622
623 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
624 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
625 setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
626 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
627
628 setOperationAction(ISD::STORE, MVT::v4i16, Promote);
629 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
630 setOperationAction(ISD::STORE, MVT::v4f16, Promote);
631 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
632
633 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
634 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
635 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
636 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
637
638 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
639 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
640 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
641
642 if (!Subtarget->hasVOP3PInsts()) {
643 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
644 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
645 }
646
647 setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
648 // This isn't really legal, but this avoids the legalizer unrolling it (and
649 // allows matching fneg (fabs x) patterns)
650 setOperationAction(ISD::FABS, MVT::v2f16, Legal);
651
652 setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
653 setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
654 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
655 setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
656
657 setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
658 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
659
660 setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
661 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
662 }
663
664 if (Subtarget->hasVOP3PInsts()) {
665 setOperationAction(ISD::ADD, MVT::v2i16, Legal);
666 setOperationAction(ISD::SUB, MVT::v2i16, Legal);
667 setOperationAction(ISD::MUL, MVT::v2i16, Legal);
668 setOperationAction(ISD::SHL, MVT::v2i16, Legal);
669 setOperationAction(ISD::SRL, MVT::v2i16, Legal);
670 setOperationAction(ISD::SRA, MVT::v2i16, Legal);
671 setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
672 setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
673 setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
674 setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
675
676 setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal);
677 setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal);
678 setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal);
679 setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal);
680
681 setOperationAction(ISD::FADD, MVT::v2f16, Legal);
682 setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
683 setOperationAction(ISD::FMA, MVT::v2f16, Legal);
684
685 setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
686 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
687
688 setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
689
690 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
691 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
692
693 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
694 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
695
696 setOperationAction(ISD::SHL, MVT::v4i16, Custom);
697 setOperationAction(ISD::SRA, MVT::v4i16, Custom);
698 setOperationAction(ISD::SRL, MVT::v4i16, Custom);
699 setOperationAction(ISD::ADD, MVT::v4i16, Custom);
700 setOperationAction(ISD::SUB, MVT::v4i16, Custom);
701 setOperationAction(ISD::MUL, MVT::v4i16, Custom);
702
703 setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
704 setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
705 setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
706 setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
707
708 setOperationAction(ISD::UADDSAT, MVT::v4i16, Custom);
709 setOperationAction(ISD::SADDSAT, MVT::v4i16, Custom);
710 setOperationAction(ISD::USUBSAT, MVT::v4i16, Custom);
711 setOperationAction(ISD::SSUBSAT, MVT::v4i16, Custom);
712
713 setOperationAction(ISD::FADD, MVT::v4f16, Custom);
714 setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
715 setOperationAction(ISD::FMA, MVT::v4f16, Custom);
716
717 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
718 setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
719
720 setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
721 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
722 setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
723
724 setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
725 setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
726 setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
727
728 if (Subtarget->hasPackedFP32Ops()) {
729 setOperationAction(ISD::FADD, MVT::v2f32, Legal);
730 setOperationAction(ISD::FMUL, MVT::v2f32, Legal);
731 setOperationAction(ISD::FMA, MVT::v2f32, Legal);
732 setOperationAction(ISD::FNEG, MVT::v2f32, Legal);
733
734 for (MVT VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32 }) {
735 setOperationAction(ISD::FADD, VT, Custom);
736 setOperationAction(ISD::FMUL, VT, Custom);
737 setOperationAction(ISD::FMA, VT, Custom);
738 }
739 }
740 }
741
742 setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
743 setOperationAction(ISD::FABS, MVT::v4f16, Custom);
744
745 if (Subtarget->has16BitInsts()) {
746 setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
747 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
748 setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
749 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
750 } else {
751 // Legalization hack.
752 setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
753 setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
754
755 setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
756 setOperationAction(ISD::FABS, MVT::v2f16, Custom);
757 }
758
759 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
760 setOperationAction(ISD::SELECT, VT, Custom);
761 }
762
763 setOperationAction(ISD::SMULO, MVT::i64, Custom);
764 setOperationAction(ISD::UMULO, MVT::i64, Custom);
765
766 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
767 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
768 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
769 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
770 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
771 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
772 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
773
774 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
775 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
776 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom);
777 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom);
778 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
779 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
780 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
781 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
782 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
783 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
784 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
785
786 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
787 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
788 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
789 setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom);
790 setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom);
791 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
792 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
793 setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
794 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
795 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
796
797 setTargetDAGCombine(ISD::ADD);
798 setTargetDAGCombine(ISD::ADDCARRY);
799 setTargetDAGCombine(ISD::SUB);
800 setTargetDAGCombine(ISD::SUBCARRY);
801 setTargetDAGCombine(ISD::FADD);
802 setTargetDAGCombine(ISD::FSUB);
803 setTargetDAGCombine(ISD::FMINNUM);
804 setTargetDAGCombine(ISD::FMAXNUM);
805 setTargetDAGCombine(ISD::FMINNUM_IEEE);
806 setTargetDAGCombine(ISD::FMAXNUM_IEEE);
807 setTargetDAGCombine(ISD::FMA);
808 setTargetDAGCombine(ISD::SMIN);
809 setTargetDAGCombine(ISD::SMAX);
810 setTargetDAGCombine(ISD::UMIN);
811 setTargetDAGCombine(ISD::UMAX);
812 setTargetDAGCombine(ISD::SETCC);
813 setTargetDAGCombine(ISD::AND);
814 setTargetDAGCombine(ISD::OR);
815 setTargetDAGCombine(ISD::XOR);
816 setTargetDAGCombine(ISD::SINT_TO_FP);
817 setTargetDAGCombine(ISD::UINT_TO_FP);
818 setTargetDAGCombine(ISD::FCANONICALIZE);
819 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
820 setTargetDAGCombine(ISD::ZERO_EXTEND);
821 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
822 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
823 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
824
825 // All memory operations. Some folding on the pointer operand is done to help
826 // matching the constant offsets in the addressing modes.
827 setTargetDAGCombine(ISD::LOAD);
828 setTargetDAGCombine(ISD::STORE);
829 setTargetDAGCombine(ISD::ATOMIC_LOAD);
830 setTargetDAGCombine(ISD::ATOMIC_STORE);
831 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
832 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
833 setTargetDAGCombine(ISD::ATOMIC_SWAP);
834 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
835 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
836 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
837 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
838 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
839 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
840 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
841 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
842 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
843 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
844 setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
845 setTargetDAGCombine(ISD::INTRINSIC_VOID);
846 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
847
848 // FIXME: In other contexts we pretend this is a per-function property.
849 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
850
851 setSchedulingPreference(Sched::RegPressure);
852 }
853
getSubtarget() const854 const GCNSubtarget *SITargetLowering::getSubtarget() const {
855 return Subtarget;
856 }
857
858 //===----------------------------------------------------------------------===//
859 // TargetLowering queries
860 //===----------------------------------------------------------------------===//
861
862 // v_mad_mix* support a conversion from f16 to f32.
863 //
864 // There is only one special case when denormals are enabled we don't currently,
865 // where this is OK to use.
isFPExtFoldable(const SelectionDAG & DAG,unsigned Opcode,EVT DestVT,EVT SrcVT) const866 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
867 EVT DestVT, EVT SrcVT) const {
868 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
869 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
870 DestVT.getScalarType() == MVT::f32 &&
871 SrcVT.getScalarType() == MVT::f16 &&
872 // TODO: This probably only requires no input flushing?
873 !hasFP32Denormals(DAG.getMachineFunction());
874 }
875
isShuffleMaskLegal(ArrayRef<int>,EVT) const876 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
877 // SI has some legal vector types, but no legal vector operations. Say no
878 // shuffles are legal in order to prefer scalarizing some vector operations.
879 return false;
880 }
881
getRegisterTypeForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const882 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
883 CallingConv::ID CC,
884 EVT VT) const {
885 if (CC == CallingConv::AMDGPU_KERNEL)
886 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
887
888 if (VT.isVector()) {
889 EVT ScalarVT = VT.getScalarType();
890 unsigned Size = ScalarVT.getSizeInBits();
891 if (Size == 16) {
892 if (Subtarget->has16BitInsts())
893 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
894 return VT.isInteger() ? MVT::i32 : MVT::f32;
895 }
896
897 if (Size < 16)
898 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
899 return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
900 }
901
902 if (VT.getSizeInBits() > 32)
903 return MVT::i32;
904
905 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
906 }
907
getNumRegistersForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const908 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
909 CallingConv::ID CC,
910 EVT VT) const {
911 if (CC == CallingConv::AMDGPU_KERNEL)
912 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
913
914 if (VT.isVector()) {
915 unsigned NumElts = VT.getVectorNumElements();
916 EVT ScalarVT = VT.getScalarType();
917 unsigned Size = ScalarVT.getSizeInBits();
918
919 // FIXME: Should probably promote 8-bit vectors to i16.
920 if (Size == 16 && Subtarget->has16BitInsts())
921 return (NumElts + 1) / 2;
922
923 if (Size <= 32)
924 return NumElts;
925
926 if (Size > 32)
927 return NumElts * ((Size + 31) / 32);
928 } else if (VT.getSizeInBits() > 32)
929 return (VT.getSizeInBits() + 31) / 32;
930
931 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
932 }
933
getVectorTypeBreakdownForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT,EVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT) const934 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
935 LLVMContext &Context, CallingConv::ID CC,
936 EVT VT, EVT &IntermediateVT,
937 unsigned &NumIntermediates, MVT &RegisterVT) const {
938 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
939 unsigned NumElts = VT.getVectorNumElements();
940 EVT ScalarVT = VT.getScalarType();
941 unsigned Size = ScalarVT.getSizeInBits();
942 // FIXME: We should fix the ABI to be the same on targets without 16-bit
943 // support, but unless we can properly handle 3-vectors, it will be still be
944 // inconsistent.
945 if (Size == 16 && Subtarget->has16BitInsts()) {
946 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
947 IntermediateVT = RegisterVT;
948 NumIntermediates = (NumElts + 1) / 2;
949 return NumIntermediates;
950 }
951
952 if (Size == 32) {
953 RegisterVT = ScalarVT.getSimpleVT();
954 IntermediateVT = RegisterVT;
955 NumIntermediates = NumElts;
956 return NumIntermediates;
957 }
958
959 if (Size < 16 && Subtarget->has16BitInsts()) {
960 // FIXME: Should probably form v2i16 pieces
961 RegisterVT = MVT::i16;
962 IntermediateVT = ScalarVT;
963 NumIntermediates = NumElts;
964 return NumIntermediates;
965 }
966
967
968 if (Size != 16 && Size <= 32) {
969 RegisterVT = MVT::i32;
970 IntermediateVT = ScalarVT;
971 NumIntermediates = NumElts;
972 return NumIntermediates;
973 }
974
975 if (Size > 32) {
976 RegisterVT = MVT::i32;
977 IntermediateVT = RegisterVT;
978 NumIntermediates = NumElts * ((Size + 31) / 32);
979 return NumIntermediates;
980 }
981 }
982
983 return TargetLowering::getVectorTypeBreakdownForCallingConv(
984 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
985 }
986
memVTFromImageData(Type * Ty,unsigned DMaskLanes)987 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
988 assert(DMaskLanes != 0);
989
990 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
991 unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
992 return EVT::getVectorVT(Ty->getContext(),
993 EVT::getEVT(VT->getElementType()),
994 NumElts);
995 }
996
997 return EVT::getEVT(Ty);
998 }
999
1000 // Peek through TFE struct returns to only use the data size.
memVTFromImageReturn(Type * Ty,unsigned DMaskLanes)1001 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
1002 auto *ST = dyn_cast<StructType>(Ty);
1003 if (!ST)
1004 return memVTFromImageData(Ty, DMaskLanes);
1005
1006 // Some intrinsics return an aggregate type - special case to work out the
1007 // correct memVT.
1008 //
1009 // Only limited forms of aggregate type currently expected.
1010 if (ST->getNumContainedTypes() != 2 ||
1011 !ST->getContainedType(1)->isIntegerTy(32))
1012 return EVT();
1013 return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
1014 }
1015
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & CI,MachineFunction & MF,unsigned IntrID) const1016 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1017 const CallInst &CI,
1018 MachineFunction &MF,
1019 unsigned IntrID) const {
1020 if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1021 AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1022 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
1023 (Intrinsic::ID)IntrID);
1024 if (Attr.hasFnAttribute(Attribute::ReadNone))
1025 return false;
1026
1027 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1028
1029 if (RsrcIntr->IsImage) {
1030 Info.ptrVal =
1031 MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1032 Info.align.reset();
1033 } else {
1034 Info.ptrVal =
1035 MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1036 }
1037
1038 Info.flags = MachineMemOperand::MODereferenceable;
1039 if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
1040 unsigned DMaskLanes = 4;
1041
1042 if (RsrcIntr->IsImage) {
1043 const AMDGPU::ImageDimIntrinsicInfo *Intr
1044 = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1045 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1046 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1047
1048 if (!BaseOpcode->Gather4) {
1049 // If this isn't a gather, we may have excess loaded elements in the
1050 // IR type. Check the dmask for the real number of elements loaded.
1051 unsigned DMask
1052 = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1053 DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1054 }
1055
1056 Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
1057 } else
1058 Info.memVT = EVT::getEVT(CI.getType());
1059
1060 // FIXME: What does alignment mean for an image?
1061 Info.opc = ISD::INTRINSIC_W_CHAIN;
1062 Info.flags |= MachineMemOperand::MOLoad;
1063 } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
1064 Info.opc = ISD::INTRINSIC_VOID;
1065
1066 Type *DataTy = CI.getArgOperand(0)->getType();
1067 if (RsrcIntr->IsImage) {
1068 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1069 unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1070 Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
1071 } else
1072 Info.memVT = EVT::getEVT(DataTy);
1073
1074 Info.flags |= MachineMemOperand::MOStore;
1075 } else {
1076 // Atomic
1077 Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1078 ISD::INTRINSIC_W_CHAIN;
1079 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1080 Info.flags = MachineMemOperand::MOLoad |
1081 MachineMemOperand::MOStore |
1082 MachineMemOperand::MODereferenceable;
1083
1084 // XXX - Should this be volatile without known ordering?
1085 Info.flags |= MachineMemOperand::MOVolatile;
1086 }
1087 return true;
1088 }
1089
1090 switch (IntrID) {
1091 case Intrinsic::amdgcn_atomic_inc:
1092 case Intrinsic::amdgcn_atomic_dec:
1093 case Intrinsic::amdgcn_ds_ordered_add:
1094 case Intrinsic::amdgcn_ds_ordered_swap:
1095 case Intrinsic::amdgcn_ds_fadd:
1096 case Intrinsic::amdgcn_ds_fmin:
1097 case Intrinsic::amdgcn_ds_fmax: {
1098 Info.opc = ISD::INTRINSIC_W_CHAIN;
1099 Info.memVT = MVT::getVT(CI.getType());
1100 Info.ptrVal = CI.getOperand(0);
1101 Info.align.reset();
1102 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1103
1104 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1105 if (!Vol->isZero())
1106 Info.flags |= MachineMemOperand::MOVolatile;
1107
1108 return true;
1109 }
1110 case Intrinsic::amdgcn_buffer_atomic_fadd: {
1111 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1112
1113 Info.opc = ISD::INTRINSIC_W_CHAIN;
1114 Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1115 Info.ptrVal =
1116 MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1117 Info.align.reset();
1118 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1119
1120 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1121 if (!Vol || !Vol->isZero())
1122 Info.flags |= MachineMemOperand::MOVolatile;
1123
1124 return true;
1125 }
1126 case Intrinsic::amdgcn_ds_append:
1127 case Intrinsic::amdgcn_ds_consume: {
1128 Info.opc = ISD::INTRINSIC_W_CHAIN;
1129 Info.memVT = MVT::getVT(CI.getType());
1130 Info.ptrVal = CI.getOperand(0);
1131 Info.align.reset();
1132 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1133
1134 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1135 if (!Vol->isZero())
1136 Info.flags |= MachineMemOperand::MOVolatile;
1137
1138 return true;
1139 }
1140 case Intrinsic::amdgcn_global_atomic_csub: {
1141 Info.opc = ISD::INTRINSIC_W_CHAIN;
1142 Info.memVT = MVT::getVT(CI.getType());
1143 Info.ptrVal = CI.getOperand(0);
1144 Info.align.reset();
1145 Info.flags = MachineMemOperand::MOLoad |
1146 MachineMemOperand::MOStore |
1147 MachineMemOperand::MOVolatile;
1148 return true;
1149 }
1150 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1151 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1152 Info.opc = ISD::INTRINSIC_W_CHAIN;
1153 Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1154 Info.ptrVal =
1155 MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1156 Info.align.reset();
1157 Info.flags = MachineMemOperand::MOLoad |
1158 MachineMemOperand::MODereferenceable;
1159 return true;
1160 }
1161 case Intrinsic::amdgcn_global_atomic_fadd:
1162 case Intrinsic::amdgcn_global_atomic_fmin:
1163 case Intrinsic::amdgcn_global_atomic_fmax:
1164 case Intrinsic::amdgcn_flat_atomic_fadd:
1165 case Intrinsic::amdgcn_flat_atomic_fmin:
1166 case Intrinsic::amdgcn_flat_atomic_fmax: {
1167 Info.opc = ISD::INTRINSIC_W_CHAIN;
1168 Info.memVT = MVT::getVT(CI.getType());
1169 Info.ptrVal = CI.getOperand(0);
1170 Info.align.reset();
1171 Info.flags = MachineMemOperand::MOLoad |
1172 MachineMemOperand::MOStore |
1173 MachineMemOperand::MODereferenceable |
1174 MachineMemOperand::MOVolatile;
1175 return true;
1176 }
1177 case Intrinsic::amdgcn_ds_gws_init:
1178 case Intrinsic::amdgcn_ds_gws_barrier:
1179 case Intrinsic::amdgcn_ds_gws_sema_v:
1180 case Intrinsic::amdgcn_ds_gws_sema_br:
1181 case Intrinsic::amdgcn_ds_gws_sema_p:
1182 case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1183 Info.opc = ISD::INTRINSIC_VOID;
1184
1185 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1186 Info.ptrVal =
1187 MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1188
1189 // This is an abstract access, but we need to specify a type and size.
1190 Info.memVT = MVT::i32;
1191 Info.size = 4;
1192 Info.align = Align(4);
1193
1194 Info.flags = MachineMemOperand::MOStore;
1195 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1196 Info.flags = MachineMemOperand::MOLoad;
1197 return true;
1198 }
1199 default:
1200 return false;
1201 }
1202 }
1203
getAddrModeArguments(IntrinsicInst * II,SmallVectorImpl<Value * > & Ops,Type * & AccessTy) const1204 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1205 SmallVectorImpl<Value*> &Ops,
1206 Type *&AccessTy) const {
1207 switch (II->getIntrinsicID()) {
1208 case Intrinsic::amdgcn_atomic_inc:
1209 case Intrinsic::amdgcn_atomic_dec:
1210 case Intrinsic::amdgcn_ds_ordered_add:
1211 case Intrinsic::amdgcn_ds_ordered_swap:
1212 case Intrinsic::amdgcn_ds_append:
1213 case Intrinsic::amdgcn_ds_consume:
1214 case Intrinsic::amdgcn_ds_fadd:
1215 case Intrinsic::amdgcn_ds_fmin:
1216 case Intrinsic::amdgcn_ds_fmax:
1217 case Intrinsic::amdgcn_global_atomic_fadd:
1218 case Intrinsic::amdgcn_flat_atomic_fadd:
1219 case Intrinsic::amdgcn_flat_atomic_fmin:
1220 case Intrinsic::amdgcn_flat_atomic_fmax:
1221 case Intrinsic::amdgcn_global_atomic_csub: {
1222 Value *Ptr = II->getArgOperand(0);
1223 AccessTy = II->getType();
1224 Ops.push_back(Ptr);
1225 return true;
1226 }
1227 default:
1228 return false;
1229 }
1230 }
1231
isLegalFlatAddressingMode(const AddrMode & AM) const1232 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1233 if (!Subtarget->hasFlatInstOffsets()) {
1234 // Flat instructions do not have offsets, and only have the register
1235 // address.
1236 return AM.BaseOffs == 0 && AM.Scale == 0;
1237 }
1238
1239 return AM.Scale == 0 &&
1240 (AM.BaseOffs == 0 ||
1241 Subtarget->getInstrInfo()->isLegalFLATOffset(
1242 AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT));
1243 }
1244
isLegalGlobalAddressingMode(const AddrMode & AM) const1245 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1246 if (Subtarget->hasFlatGlobalInsts())
1247 return AM.Scale == 0 &&
1248 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1249 AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1250 SIInstrFlags::FlatGlobal));
1251
1252 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1253 // Assume the we will use FLAT for all global memory accesses
1254 // on VI.
1255 // FIXME: This assumption is currently wrong. On VI we still use
1256 // MUBUF instructions for the r + i addressing mode. As currently
1257 // implemented, the MUBUF instructions only work on buffer < 4GB.
1258 // It may be possible to support > 4GB buffers with MUBUF instructions,
1259 // by setting the stride value in the resource descriptor which would
1260 // increase the size limit to (stride * 4GB). However, this is risky,
1261 // because it has never been validated.
1262 return isLegalFlatAddressingMode(AM);
1263 }
1264
1265 return isLegalMUBUFAddressingMode(AM);
1266 }
1267
isLegalMUBUFAddressingMode(const AddrMode & AM) const1268 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1269 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1270 // additionally can do r + r + i with addr64. 32-bit has more addressing
1271 // mode options. Depending on the resource constant, it can also do
1272 // (i64 r0) + (i32 r1) * (i14 i).
1273 //
1274 // Private arrays end up using a scratch buffer most of the time, so also
1275 // assume those use MUBUF instructions. Scratch loads / stores are currently
1276 // implemented as mubuf instructions with offen bit set, so slightly
1277 // different than the normal addr64.
1278 if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1279 return false;
1280
1281 // FIXME: Since we can split immediate into soffset and immediate offset,
1282 // would it make sense to allow any immediate?
1283
1284 switch (AM.Scale) {
1285 case 0: // r + i or just i, depending on HasBaseReg.
1286 return true;
1287 case 1:
1288 return true; // We have r + r or r + i.
1289 case 2:
1290 if (AM.HasBaseReg) {
1291 // Reject 2 * r + r.
1292 return false;
1293 }
1294
1295 // Allow 2 * r as r + r
1296 // Or 2 * r + i is allowed as r + r + i.
1297 return true;
1298 default: // Don't allow n * r
1299 return false;
1300 }
1301 }
1302
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const1303 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1304 const AddrMode &AM, Type *Ty,
1305 unsigned AS, Instruction *I) const {
1306 // No global is ever allowed as a base.
1307 if (AM.BaseGV)
1308 return false;
1309
1310 if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1311 return isLegalGlobalAddressingMode(AM);
1312
1313 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1314 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1315 AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1316 // If the offset isn't a multiple of 4, it probably isn't going to be
1317 // correctly aligned.
1318 // FIXME: Can we get the real alignment here?
1319 if (AM.BaseOffs % 4 != 0)
1320 return isLegalMUBUFAddressingMode(AM);
1321
1322 // There are no SMRD extloads, so if we have to do a small type access we
1323 // will use a MUBUF load.
1324 // FIXME?: We also need to do this if unaligned, but we don't know the
1325 // alignment here.
1326 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1327 return isLegalGlobalAddressingMode(AM);
1328
1329 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1330 // SMRD instructions have an 8-bit, dword offset on SI.
1331 if (!isUInt<8>(AM.BaseOffs / 4))
1332 return false;
1333 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1334 // On CI+, this can also be a 32-bit literal constant offset. If it fits
1335 // in 8-bits, it can use a smaller encoding.
1336 if (!isUInt<32>(AM.BaseOffs / 4))
1337 return false;
1338 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1339 // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1340 if (!isUInt<20>(AM.BaseOffs))
1341 return false;
1342 } else
1343 llvm_unreachable("unhandled generation");
1344
1345 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1346 return true;
1347
1348 if (AM.Scale == 1 && AM.HasBaseReg)
1349 return true;
1350
1351 return false;
1352
1353 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1354 return isLegalMUBUFAddressingMode(AM);
1355 } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1356 AS == AMDGPUAS::REGION_ADDRESS) {
1357 // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1358 // field.
1359 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1360 // an 8-bit dword offset but we don't know the alignment here.
1361 if (!isUInt<16>(AM.BaseOffs))
1362 return false;
1363
1364 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1365 return true;
1366
1367 if (AM.Scale == 1 && AM.HasBaseReg)
1368 return true;
1369
1370 return false;
1371 } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1372 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1373 // For an unknown address space, this usually means that this is for some
1374 // reason being used for pure arithmetic, and not based on some addressing
1375 // computation. We don't have instructions that compute pointers with any
1376 // addressing modes, so treat them as having no offset like flat
1377 // instructions.
1378 return isLegalFlatAddressingMode(AM);
1379 }
1380
1381 // Assume a user alias of global for unknown address spaces.
1382 return isLegalGlobalAddressingMode(AM);
1383 }
1384
canMergeStoresTo(unsigned AS,EVT MemVT,const SelectionDAG & DAG) const1385 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1386 const SelectionDAG &DAG) const {
1387 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1388 return (MemVT.getSizeInBits() <= 4 * 32);
1389 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1390 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1391 return (MemVT.getSizeInBits() <= MaxPrivateBits);
1392 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1393 return (MemVT.getSizeInBits() <= 2 * 32);
1394 }
1395 return true;
1396 }
1397
allowsMisalignedMemoryAccessesImpl(unsigned Size,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,bool * IsFast) const1398 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1399 unsigned Size, unsigned AddrSpace, Align Alignment,
1400 MachineMemOperand::Flags Flags, bool *IsFast) const {
1401 if (IsFast)
1402 *IsFast = false;
1403
1404 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1405 AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1406 // Check if alignment requirements for ds_read/write instructions are
1407 // disabled.
1408 if (Subtarget->hasUnalignedDSAccessEnabled() &&
1409 !Subtarget->hasLDSMisalignedBug()) {
1410 if (IsFast)
1411 *IsFast = Alignment != Align(2);
1412 return true;
1413 }
1414
1415 // Either, the alignment requirements are "enabled", or there is an
1416 // unaligned LDS access related hardware bug though alignment requirements
1417 // are "disabled". In either case, we need to check for proper alignment
1418 // requirements.
1419 //
1420 if (Size == 64) {
1421 // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
1422 // can do a 4 byte aligned, 8 byte access in a single operation using
1423 // ds_read2/write2_b32 with adjacent offsets.
1424 bool AlignedBy4 = Alignment >= Align(4);
1425 if (IsFast)
1426 *IsFast = AlignedBy4;
1427
1428 return AlignedBy4;
1429 }
1430 if (Size == 96) {
1431 // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
1432 // gfx8 and older.
1433 bool AlignedBy16 = Alignment >= Align(16);
1434 if (IsFast)
1435 *IsFast = AlignedBy16;
1436
1437 return AlignedBy16;
1438 }
1439 if (Size == 128) {
1440 // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
1441 // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a
1442 // single operation using ds_read2/write2_b64.
1443 bool AlignedBy8 = Alignment >= Align(8);
1444 if (IsFast)
1445 *IsFast = AlignedBy8;
1446
1447 return AlignedBy8;
1448 }
1449 }
1450
1451 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1452 bool AlignedBy4 = Alignment >= Align(4);
1453 if (IsFast)
1454 *IsFast = AlignedBy4;
1455
1456 return AlignedBy4 ||
1457 Subtarget->enableFlatScratch() ||
1458 Subtarget->hasUnalignedScratchAccess();
1459 }
1460
1461 // FIXME: We have to be conservative here and assume that flat operations
1462 // will access scratch. If we had access to the IR function, then we
1463 // could determine if any private memory was used in the function.
1464 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1465 !Subtarget->hasUnalignedScratchAccess()) {
1466 bool AlignedBy4 = Alignment >= Align(4);
1467 if (IsFast)
1468 *IsFast = AlignedBy4;
1469
1470 return AlignedBy4;
1471 }
1472
1473 if (Subtarget->hasUnalignedBufferAccessEnabled() &&
1474 !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1475 AddrSpace == AMDGPUAS::REGION_ADDRESS)) {
1476 // If we have an uniform constant load, it still requires using a slow
1477 // buffer instruction if unaligned.
1478 if (IsFast) {
1479 // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1480 // 2-byte alignment is worse than 1 unless doing a 2-byte accesss.
1481 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1482 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1483 Alignment >= Align(4) : Alignment != Align(2);
1484 }
1485
1486 return true;
1487 }
1488
1489 // Smaller than dword value must be aligned.
1490 if (Size < 32)
1491 return false;
1492
1493 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1494 // byte-address are ignored, thus forcing Dword alignment.
1495 // This applies to private, global, and constant memory.
1496 if (IsFast)
1497 *IsFast = true;
1498
1499 return Size >= 32 && Alignment >= Align(4);
1500 }
1501
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,bool * IsFast) const1502 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1503 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1504 bool *IsFast) const {
1505 if (IsFast)
1506 *IsFast = false;
1507
1508 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1509 // which isn't a simple VT.
1510 // Until MVT is extended to handle this, simply check for the size and
1511 // rely on the condition below: allow accesses if the size is a multiple of 4.
1512 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1513 VT.getStoreSize() > 16)) {
1514 return false;
1515 }
1516
1517 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1518 Alignment, Flags, IsFast);
1519 }
1520
getOptimalMemOpType(const MemOp & Op,const AttributeList & FuncAttributes) const1521 EVT SITargetLowering::getOptimalMemOpType(
1522 const MemOp &Op, const AttributeList &FuncAttributes) const {
1523 // FIXME: Should account for address space here.
1524
1525 // The default fallback uses the private pointer size as a guess for a type to
1526 // use. Make sure we switch these to 64-bit accesses.
1527
1528 if (Op.size() >= 16 &&
1529 Op.isDstAligned(Align(4))) // XXX: Should only do for global
1530 return MVT::v4i32;
1531
1532 if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1533 return MVT::v2i32;
1534
1535 // Use the default.
1536 return MVT::Other;
1537 }
1538
isMemOpHasNoClobberedMemOperand(const SDNode * N) const1539 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1540 const MemSDNode *MemNode = cast<MemSDNode>(N);
1541 const Value *Ptr = MemNode->getMemOperand()->getValue();
1542 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1543 return I && I->getMetadata("amdgpu.noclobber");
1544 }
1545
isNonGlobalAddrSpace(unsigned AS)1546 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
1547 return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
1548 AS == AMDGPUAS::PRIVATE_ADDRESS;
1549 }
1550
isFreeAddrSpaceCast(unsigned SrcAS,unsigned DestAS) const1551 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1552 unsigned DestAS) const {
1553 // Flat -> private/local is a simple truncate.
1554 // Flat -> global is no-op
1555 if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1556 return true;
1557
1558 const GCNTargetMachine &TM =
1559 static_cast<const GCNTargetMachine &>(getTargetMachine());
1560 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1561 }
1562
isMemOpUniform(const SDNode * N) const1563 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1564 const MemSDNode *MemNode = cast<MemSDNode>(N);
1565
1566 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1567 }
1568
1569 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT) const1570 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1571 if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1572 VT.getScalarType().bitsLE(MVT::i16))
1573 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1574 return TargetLoweringBase::getPreferredVectorAction(VT);
1575 }
1576
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const1577 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1578 Type *Ty) const {
1579 // FIXME: Could be smarter if called for vector constants.
1580 return true;
1581 }
1582
isTypeDesirableForOp(unsigned Op,EVT VT) const1583 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1584 if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1585 switch (Op) {
1586 case ISD::LOAD:
1587 case ISD::STORE:
1588
1589 // These operations are done with 32-bit instructions anyway.
1590 case ISD::AND:
1591 case ISD::OR:
1592 case ISD::XOR:
1593 case ISD::SELECT:
1594 // TODO: Extensions?
1595 return true;
1596 default:
1597 return false;
1598 }
1599 }
1600
1601 // SimplifySetCC uses this function to determine whether or not it should
1602 // create setcc with i1 operands. We don't have instructions for i1 setcc.
1603 if (VT == MVT::i1 && Op == ISD::SETCC)
1604 return false;
1605
1606 return TargetLowering::isTypeDesirableForOp(Op, VT);
1607 }
1608
lowerKernArgParameterPtr(SelectionDAG & DAG,const SDLoc & SL,SDValue Chain,uint64_t Offset) const1609 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1610 const SDLoc &SL,
1611 SDValue Chain,
1612 uint64_t Offset) const {
1613 const DataLayout &DL = DAG.getDataLayout();
1614 MachineFunction &MF = DAG.getMachineFunction();
1615 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1616
1617 const ArgDescriptor *InputPtrReg;
1618 const TargetRegisterClass *RC;
1619 LLT ArgTy;
1620
1621 std::tie(InputPtrReg, RC, ArgTy) =
1622 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1623
1624 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1625 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1626 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1627 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1628
1629 return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1630 }
1631
getImplicitArgPtr(SelectionDAG & DAG,const SDLoc & SL) const1632 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1633 const SDLoc &SL) const {
1634 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1635 FIRST_IMPLICIT);
1636 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1637 }
1638
convertArgType(SelectionDAG & DAG,EVT VT,EVT MemVT,const SDLoc & SL,SDValue Val,bool Signed,const ISD::InputArg * Arg) const1639 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1640 const SDLoc &SL, SDValue Val,
1641 bool Signed,
1642 const ISD::InputArg *Arg) const {
1643 // First, if it is a widened vector, narrow it.
1644 if (VT.isVector() &&
1645 VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1646 EVT NarrowedVT =
1647 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1648 VT.getVectorNumElements());
1649 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1650 DAG.getConstant(0, SL, MVT::i32));
1651 }
1652
1653 // Then convert the vector elements or scalar value.
1654 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1655 VT.bitsLT(MemVT)) {
1656 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1657 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1658 }
1659
1660 if (MemVT.isFloatingPoint())
1661 Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1662 else if (Signed)
1663 Val = DAG.getSExtOrTrunc(Val, SL, VT);
1664 else
1665 Val = DAG.getZExtOrTrunc(Val, SL, VT);
1666
1667 return Val;
1668 }
1669
lowerKernargMemParameter(SelectionDAG & DAG,EVT VT,EVT MemVT,const SDLoc & SL,SDValue Chain,uint64_t Offset,Align Alignment,bool Signed,const ISD::InputArg * Arg) const1670 SDValue SITargetLowering::lowerKernargMemParameter(
1671 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1672 uint64_t Offset, Align Alignment, bool Signed,
1673 const ISD::InputArg *Arg) const {
1674 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1675
1676 // Try to avoid using an extload by loading earlier than the argument address,
1677 // and extracting the relevant bits. The load should hopefully be merged with
1678 // the previous argument.
1679 if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1680 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1681 int64_t AlignDownOffset = alignDown(Offset, 4);
1682 int64_t OffsetDiff = Offset - AlignDownOffset;
1683
1684 EVT IntVT = MemVT.changeTypeToInteger();
1685
1686 // TODO: If we passed in the base kernel offset we could have a better
1687 // alignment than 4, but we don't really need it.
1688 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1689 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1690 MachineMemOperand::MODereferenceable |
1691 MachineMemOperand::MOInvariant);
1692
1693 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1694 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1695
1696 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1697 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1698 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1699
1700
1701 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1702 }
1703
1704 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1705 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1706 MachineMemOperand::MODereferenceable |
1707 MachineMemOperand::MOInvariant);
1708
1709 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1710 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1711 }
1712
lowerStackParameter(SelectionDAG & DAG,CCValAssign & VA,const SDLoc & SL,SDValue Chain,const ISD::InputArg & Arg) const1713 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1714 const SDLoc &SL, SDValue Chain,
1715 const ISD::InputArg &Arg) const {
1716 MachineFunction &MF = DAG.getMachineFunction();
1717 MachineFrameInfo &MFI = MF.getFrameInfo();
1718
1719 if (Arg.Flags.isByVal()) {
1720 unsigned Size = Arg.Flags.getByValSize();
1721 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1722 return DAG.getFrameIndex(FrameIdx, MVT::i32);
1723 }
1724
1725 unsigned ArgOffset = VA.getLocMemOffset();
1726 unsigned ArgSize = VA.getValVT().getStoreSize();
1727
1728 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1729
1730 // Create load nodes to retrieve arguments from the stack.
1731 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1732 SDValue ArgValue;
1733
1734 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1735 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1736 MVT MemVT = VA.getValVT();
1737
1738 switch (VA.getLocInfo()) {
1739 default:
1740 break;
1741 case CCValAssign::BCvt:
1742 MemVT = VA.getLocVT();
1743 break;
1744 case CCValAssign::SExt:
1745 ExtType = ISD::SEXTLOAD;
1746 break;
1747 case CCValAssign::ZExt:
1748 ExtType = ISD::ZEXTLOAD;
1749 break;
1750 case CCValAssign::AExt:
1751 ExtType = ISD::EXTLOAD;
1752 break;
1753 }
1754
1755 ArgValue = DAG.getExtLoad(
1756 ExtType, SL, VA.getLocVT(), Chain, FIN,
1757 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1758 MemVT);
1759 return ArgValue;
1760 }
1761
getPreloadedValue(SelectionDAG & DAG,const SIMachineFunctionInfo & MFI,EVT VT,AMDGPUFunctionArgInfo::PreloadedValue PVID) const1762 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1763 const SIMachineFunctionInfo &MFI,
1764 EVT VT,
1765 AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1766 const ArgDescriptor *Reg;
1767 const TargetRegisterClass *RC;
1768 LLT Ty;
1769
1770 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1771 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1772 }
1773
processPSInputArgs(SmallVectorImpl<ISD::InputArg> & Splits,CallingConv::ID CallConv,ArrayRef<ISD::InputArg> Ins,BitVector & Skipped,FunctionType * FType,SIMachineFunctionInfo * Info)1774 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1775 CallingConv::ID CallConv,
1776 ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1777 FunctionType *FType,
1778 SIMachineFunctionInfo *Info) {
1779 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1780 const ISD::InputArg *Arg = &Ins[I];
1781
1782 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1783 "vector type argument should have been split");
1784
1785 // First check if it's a PS input addr.
1786 if (CallConv == CallingConv::AMDGPU_PS &&
1787 !Arg->Flags.isInReg() && PSInputNum <= 15) {
1788 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1789
1790 // Inconveniently only the first part of the split is marked as isSplit,
1791 // so skip to the end. We only want to increment PSInputNum once for the
1792 // entire split argument.
1793 if (Arg->Flags.isSplit()) {
1794 while (!Arg->Flags.isSplitEnd()) {
1795 assert((!Arg->VT.isVector() ||
1796 Arg->VT.getScalarSizeInBits() == 16) &&
1797 "unexpected vector split in ps argument type");
1798 if (!SkipArg)
1799 Splits.push_back(*Arg);
1800 Arg = &Ins[++I];
1801 }
1802 }
1803
1804 if (SkipArg) {
1805 // We can safely skip PS inputs.
1806 Skipped.set(Arg->getOrigArgIndex());
1807 ++PSInputNum;
1808 continue;
1809 }
1810
1811 Info->markPSInputAllocated(PSInputNum);
1812 if (Arg->Used)
1813 Info->markPSInputEnabled(PSInputNum);
1814
1815 ++PSInputNum;
1816 }
1817
1818 Splits.push_back(*Arg);
1819 }
1820 }
1821
1822 // Allocate special inputs passed in VGPRs.
allocateSpecialEntryInputVGPRs(CCState & CCInfo,MachineFunction & MF,const SIRegisterInfo & TRI,SIMachineFunctionInfo & Info) const1823 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1824 MachineFunction &MF,
1825 const SIRegisterInfo &TRI,
1826 SIMachineFunctionInfo &Info) const {
1827 const LLT S32 = LLT::scalar(32);
1828 MachineRegisterInfo &MRI = MF.getRegInfo();
1829
1830 if (Info.hasWorkItemIDX()) {
1831 Register Reg = AMDGPU::VGPR0;
1832 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1833
1834 CCInfo.AllocateReg(Reg);
1835 unsigned Mask = (Subtarget->hasPackedTID() &&
1836 Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
1837 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1838 }
1839
1840 if (Info.hasWorkItemIDY()) {
1841 assert(Info.hasWorkItemIDX());
1842 if (Subtarget->hasPackedTID()) {
1843 Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1844 0x3ff << 10));
1845 } else {
1846 unsigned Reg = AMDGPU::VGPR1;
1847 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1848
1849 CCInfo.AllocateReg(Reg);
1850 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1851 }
1852 }
1853
1854 if (Info.hasWorkItemIDZ()) {
1855 assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
1856 if (Subtarget->hasPackedTID()) {
1857 Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1858 0x3ff << 20));
1859 } else {
1860 unsigned Reg = AMDGPU::VGPR2;
1861 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1862
1863 CCInfo.AllocateReg(Reg);
1864 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1865 }
1866 }
1867 }
1868
1869 // Try to allocate a VGPR at the end of the argument list, or if no argument
1870 // VGPRs are left allocating a stack slot.
1871 // If \p Mask is is given it indicates bitfield position in the register.
1872 // If \p Arg is given use it with new ]p Mask instead of allocating new.
allocateVGPR32Input(CCState & CCInfo,unsigned Mask=~0u,ArgDescriptor Arg=ArgDescriptor ())1873 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1874 ArgDescriptor Arg = ArgDescriptor()) {
1875 if (Arg.isSet())
1876 return ArgDescriptor::createArg(Arg, Mask);
1877
1878 ArrayRef<MCPhysReg> ArgVGPRs
1879 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1880 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1881 if (RegIdx == ArgVGPRs.size()) {
1882 // Spill to stack required.
1883 int64_t Offset = CCInfo.AllocateStack(4, Align(4));
1884
1885 return ArgDescriptor::createStack(Offset, Mask);
1886 }
1887
1888 unsigned Reg = ArgVGPRs[RegIdx];
1889 Reg = CCInfo.AllocateReg(Reg);
1890 assert(Reg != AMDGPU::NoRegister);
1891
1892 MachineFunction &MF = CCInfo.getMachineFunction();
1893 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1894 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1895 return ArgDescriptor::createRegister(Reg, Mask);
1896 }
1897
allocateSGPR32InputImpl(CCState & CCInfo,const TargetRegisterClass * RC,unsigned NumArgRegs)1898 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1899 const TargetRegisterClass *RC,
1900 unsigned NumArgRegs) {
1901 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1902 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1903 if (RegIdx == ArgSGPRs.size())
1904 report_fatal_error("ran out of SGPRs for arguments");
1905
1906 unsigned Reg = ArgSGPRs[RegIdx];
1907 Reg = CCInfo.AllocateReg(Reg);
1908 assert(Reg != AMDGPU::NoRegister);
1909
1910 MachineFunction &MF = CCInfo.getMachineFunction();
1911 MF.addLiveIn(Reg, RC);
1912 return ArgDescriptor::createRegister(Reg);
1913 }
1914
1915 // If this has a fixed position, we still should allocate the register in the
1916 // CCInfo state. Technically we could get away with this for values passed
1917 // outside of the normal argument range.
allocateFixedSGPRInputImpl(CCState & CCInfo,const TargetRegisterClass * RC,MCRegister Reg)1918 static void allocateFixedSGPRInputImpl(CCState &CCInfo,
1919 const TargetRegisterClass *RC,
1920 MCRegister Reg) {
1921 Reg = CCInfo.AllocateReg(Reg);
1922 assert(Reg != AMDGPU::NoRegister);
1923 MachineFunction &MF = CCInfo.getMachineFunction();
1924 MF.addLiveIn(Reg, RC);
1925 }
1926
allocateSGPR32Input(CCState & CCInfo,ArgDescriptor & Arg)1927 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
1928 if (Arg) {
1929 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
1930 Arg.getRegister());
1931 } else
1932 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1933 }
1934
allocateSGPR64Input(CCState & CCInfo,ArgDescriptor & Arg)1935 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
1936 if (Arg) {
1937 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
1938 Arg.getRegister());
1939 } else
1940 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1941 }
1942
1943 /// Allocate implicit function VGPR arguments at the end of allocated user
1944 /// arguments.
allocateSpecialInputVGPRs(CCState & CCInfo,MachineFunction & MF,const SIRegisterInfo & TRI,SIMachineFunctionInfo & Info) const1945 void SITargetLowering::allocateSpecialInputVGPRs(
1946 CCState &CCInfo, MachineFunction &MF,
1947 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1948 const unsigned Mask = 0x3ff;
1949 ArgDescriptor Arg;
1950
1951 if (Info.hasWorkItemIDX()) {
1952 Arg = allocateVGPR32Input(CCInfo, Mask);
1953 Info.setWorkItemIDX(Arg);
1954 }
1955
1956 if (Info.hasWorkItemIDY()) {
1957 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1958 Info.setWorkItemIDY(Arg);
1959 }
1960
1961 if (Info.hasWorkItemIDZ())
1962 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
1963 }
1964
1965 /// Allocate implicit function VGPR arguments in fixed registers.
allocateSpecialInputVGPRsFixed(CCState & CCInfo,MachineFunction & MF,const SIRegisterInfo & TRI,SIMachineFunctionInfo & Info) const1966 void SITargetLowering::allocateSpecialInputVGPRsFixed(
1967 CCState &CCInfo, MachineFunction &MF,
1968 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1969 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
1970 if (!Reg)
1971 report_fatal_error("failed to allocated VGPR for implicit arguments");
1972
1973 const unsigned Mask = 0x3ff;
1974 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1975 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
1976 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
1977 }
1978
allocateSpecialInputSGPRs(CCState & CCInfo,MachineFunction & MF,const SIRegisterInfo & TRI,SIMachineFunctionInfo & Info) const1979 void SITargetLowering::allocateSpecialInputSGPRs(
1980 CCState &CCInfo,
1981 MachineFunction &MF,
1982 const SIRegisterInfo &TRI,
1983 SIMachineFunctionInfo &Info) const {
1984 auto &ArgInfo = Info.getArgInfo();
1985
1986 // TODO: Unify handling with private memory pointers.
1987
1988 if (Info.hasDispatchPtr())
1989 allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
1990
1991 if (Info.hasQueuePtr())
1992 allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
1993
1994 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
1995 // constant offset from the kernarg segment.
1996 if (Info.hasImplicitArgPtr())
1997 allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
1998
1999 if (Info.hasDispatchID())
2000 allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
2001
2002 // flat_scratch_init is not applicable for non-kernel functions.
2003
2004 if (Info.hasWorkGroupIDX())
2005 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
2006
2007 if (Info.hasWorkGroupIDY())
2008 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
2009
2010 if (Info.hasWorkGroupIDZ())
2011 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
2012 }
2013
2014 // Allocate special inputs passed in user SGPRs.
allocateHSAUserSGPRs(CCState & CCInfo,MachineFunction & MF,const SIRegisterInfo & TRI,SIMachineFunctionInfo & Info) const2015 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
2016 MachineFunction &MF,
2017 const SIRegisterInfo &TRI,
2018 SIMachineFunctionInfo &Info) const {
2019 if (Info.hasImplicitBufferPtr()) {
2020 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2021 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2022 CCInfo.AllocateReg(ImplicitBufferPtrReg);
2023 }
2024
2025 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2026 if (Info.hasPrivateSegmentBuffer()) {
2027 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2028 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2029 CCInfo.AllocateReg(PrivateSegmentBufferReg);
2030 }
2031
2032 if (Info.hasDispatchPtr()) {
2033 Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2034 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2035 CCInfo.AllocateReg(DispatchPtrReg);
2036 }
2037
2038 if (Info.hasQueuePtr()) {
2039 Register QueuePtrReg = Info.addQueuePtr(TRI);
2040 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2041 CCInfo.AllocateReg(QueuePtrReg);
2042 }
2043
2044 if (Info.hasKernargSegmentPtr()) {
2045 MachineRegisterInfo &MRI = MF.getRegInfo();
2046 Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2047 CCInfo.AllocateReg(InputPtrReg);
2048
2049 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2050 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2051 }
2052
2053 if (Info.hasDispatchID()) {
2054 Register DispatchIDReg = Info.addDispatchID(TRI);
2055 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2056 CCInfo.AllocateReg(DispatchIDReg);
2057 }
2058
2059 if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2060 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2061 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2062 CCInfo.AllocateReg(FlatScratchInitReg);
2063 }
2064
2065 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2066 // these from the dispatch pointer.
2067 }
2068
2069 // Allocate special input registers that are initialized per-wave.
allocateSystemSGPRs(CCState & CCInfo,MachineFunction & MF,SIMachineFunctionInfo & Info,CallingConv::ID CallConv,bool IsShader) const2070 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2071 MachineFunction &MF,
2072 SIMachineFunctionInfo &Info,
2073 CallingConv::ID CallConv,
2074 bool IsShader) const {
2075 if (Info.hasWorkGroupIDX()) {
2076 Register Reg = Info.addWorkGroupIDX();
2077 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2078 CCInfo.AllocateReg(Reg);
2079 }
2080
2081 if (Info.hasWorkGroupIDY()) {
2082 Register Reg = Info.addWorkGroupIDY();
2083 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2084 CCInfo.AllocateReg(Reg);
2085 }
2086
2087 if (Info.hasWorkGroupIDZ()) {
2088 Register Reg = Info.addWorkGroupIDZ();
2089 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2090 CCInfo.AllocateReg(Reg);
2091 }
2092
2093 if (Info.hasWorkGroupInfo()) {
2094 Register Reg = Info.addWorkGroupInfo();
2095 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2096 CCInfo.AllocateReg(Reg);
2097 }
2098
2099 if (Info.hasPrivateSegmentWaveByteOffset()) {
2100 // Scratch wave offset passed in system SGPR.
2101 unsigned PrivateSegmentWaveByteOffsetReg;
2102
2103 if (IsShader) {
2104 PrivateSegmentWaveByteOffsetReg =
2105 Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2106
2107 // This is true if the scratch wave byte offset doesn't have a fixed
2108 // location.
2109 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2110 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2111 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2112 }
2113 } else
2114 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2115
2116 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2117 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2118 }
2119 }
2120
reservePrivateMemoryRegs(const TargetMachine & TM,MachineFunction & MF,const SIRegisterInfo & TRI,SIMachineFunctionInfo & Info)2121 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2122 MachineFunction &MF,
2123 const SIRegisterInfo &TRI,
2124 SIMachineFunctionInfo &Info) {
2125 // Now that we've figured out where the scratch register inputs are, see if
2126 // should reserve the arguments and use them directly.
2127 MachineFrameInfo &MFI = MF.getFrameInfo();
2128 bool HasStackObjects = MFI.hasStackObjects();
2129 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2130
2131 // Record that we know we have non-spill stack objects so we don't need to
2132 // check all stack objects later.
2133 if (HasStackObjects)
2134 Info.setHasNonSpillStackObjects(true);
2135
2136 // Everything live out of a block is spilled with fast regalloc, so it's
2137 // almost certain that spilling will be required.
2138 if (TM.getOptLevel() == CodeGenOpt::None)
2139 HasStackObjects = true;
2140
2141 // For now assume stack access is needed in any callee functions, so we need
2142 // the scratch registers to pass in.
2143 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2144
2145 if (!ST.enableFlatScratch()) {
2146 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2147 // If we have stack objects, we unquestionably need the private buffer
2148 // resource. For the Code Object V2 ABI, this will be the first 4 user
2149 // SGPR inputs. We can reserve those and use them directly.
2150
2151 Register PrivateSegmentBufferReg =
2152 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2153 Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2154 } else {
2155 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2156 // We tentatively reserve the last registers (skipping the last registers
2157 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2158 // we'll replace these with the ones immediately after those which were
2159 // really allocated. In the prologue copies will be inserted from the
2160 // argument to these reserved registers.
2161
2162 // Without HSA, relocations are used for the scratch pointer and the
2163 // buffer resource setup is always inserted in the prologue. Scratch wave
2164 // offset is still in an input SGPR.
2165 Info.setScratchRSrcReg(ReservedBufferReg);
2166 }
2167 }
2168
2169 MachineRegisterInfo &MRI = MF.getRegInfo();
2170
2171 // For entry functions we have to set up the stack pointer if we use it,
2172 // whereas non-entry functions get this "for free". This means there is no
2173 // intrinsic advantage to using S32 over S34 in cases where we do not have
2174 // calls but do need a frame pointer (i.e. if we are requested to have one
2175 // because frame pointer elimination is disabled). To keep things simple we
2176 // only ever use S32 as the call ABI stack pointer, and so using it does not
2177 // imply we need a separate frame pointer.
2178 //
2179 // Try to use s32 as the SP, but move it if it would interfere with input
2180 // arguments. This won't work with calls though.
2181 //
2182 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2183 // registers.
2184 if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2185 Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2186 } else {
2187 assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2188
2189 if (MFI.hasCalls())
2190 report_fatal_error("call in graphics shader with too many input SGPRs");
2191
2192 for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2193 if (!MRI.isLiveIn(Reg)) {
2194 Info.setStackPtrOffsetReg(Reg);
2195 break;
2196 }
2197 }
2198
2199 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2200 report_fatal_error("failed to find register for SP");
2201 }
2202
2203 // hasFP should be accurate for entry functions even before the frame is
2204 // finalized, because it does not rely on the known stack size, only
2205 // properties like whether variable sized objects are present.
2206 if (ST.getFrameLowering()->hasFP(MF)) {
2207 Info.setFrameOffsetReg(AMDGPU::SGPR33);
2208 }
2209 }
2210
supportSplitCSR(MachineFunction * MF) const2211 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2212 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2213 return !Info->isEntryFunction();
2214 }
2215
initializeSplitCSR(MachineBasicBlock * Entry) const2216 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2217
2218 }
2219
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const2220 void SITargetLowering::insertCopiesSplitCSR(
2221 MachineBasicBlock *Entry,
2222 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2223 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2224
2225 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2226 if (!IStart)
2227 return;
2228
2229 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2230 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2231 MachineBasicBlock::iterator MBBI = Entry->begin();
2232 for (const MCPhysReg *I = IStart; *I; ++I) {
2233 const TargetRegisterClass *RC = nullptr;
2234 if (AMDGPU::SReg_64RegClass.contains(*I))
2235 RC = &AMDGPU::SGPR_64RegClass;
2236 else if (AMDGPU::SReg_32RegClass.contains(*I))
2237 RC = &AMDGPU::SGPR_32RegClass;
2238 else
2239 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2240
2241 Register NewVR = MRI->createVirtualRegister(RC);
2242 // Create copy from CSR to a virtual register.
2243 Entry->addLiveIn(*I);
2244 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2245 .addReg(*I);
2246
2247 // Insert the copy-back instructions right before the terminator.
2248 for (auto *Exit : Exits)
2249 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2250 TII->get(TargetOpcode::COPY), *I)
2251 .addReg(NewVR);
2252 }
2253 }
2254
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2255 SDValue SITargetLowering::LowerFormalArguments(
2256 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2257 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2258 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2259 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2260
2261 MachineFunction &MF = DAG.getMachineFunction();
2262 const Function &Fn = MF.getFunction();
2263 FunctionType *FType = MF.getFunction().getFunctionType();
2264 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2265
2266 if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2267 DiagnosticInfoUnsupported NoGraphicsHSA(
2268 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2269 DAG.getContext()->diagnose(NoGraphicsHSA);
2270 return DAG.getEntryNode();
2271 }
2272
2273 Info->allocateModuleLDSGlobal(Fn.getParent());
2274
2275 SmallVector<ISD::InputArg, 16> Splits;
2276 SmallVector<CCValAssign, 16> ArgLocs;
2277 BitVector Skipped(Ins.size());
2278 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2279 *DAG.getContext());
2280
2281 bool IsGraphics = AMDGPU::isGraphics(CallConv);
2282 bool IsKernel = AMDGPU::isKernel(CallConv);
2283 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2284
2285 if (IsGraphics) {
2286 assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&
2287 (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) &&
2288 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2289 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2290 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2291 !Info->hasWorkItemIDZ());
2292 }
2293
2294 if (CallConv == CallingConv::AMDGPU_PS) {
2295 processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2296
2297 // At least one interpolation mode must be enabled or else the GPU will
2298 // hang.
2299 //
2300 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2301 // set PSInputAddr, the user wants to enable some bits after the compilation
2302 // based on run-time states. Since we can't know what the final PSInputEna
2303 // will look like, so we shouldn't do anything here and the user should take
2304 // responsibility for the correct programming.
2305 //
2306 // Otherwise, the following restrictions apply:
2307 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2308 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2309 // enabled too.
2310 if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2311 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2312 CCInfo.AllocateReg(AMDGPU::VGPR0);
2313 CCInfo.AllocateReg(AMDGPU::VGPR1);
2314 Info->markPSInputAllocated(0);
2315 Info->markPSInputEnabled(0);
2316 }
2317 if (Subtarget->isAmdPalOS()) {
2318 // For isAmdPalOS, the user does not enable some bits after compilation
2319 // based on run-time states; the register values being generated here are
2320 // the final ones set in hardware. Therefore we need to apply the
2321 // workaround to PSInputAddr and PSInputEnable together. (The case where
2322 // a bit is set in PSInputAddr but not PSInputEnable is where the
2323 // frontend set up an input arg for a particular interpolation mode, but
2324 // nothing uses that input arg. Really we should have an earlier pass
2325 // that removes such an arg.)
2326 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2327 if ((PsInputBits & 0x7F) == 0 ||
2328 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2329 Info->markPSInputEnabled(
2330 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2331 }
2332 } else if (IsKernel) {
2333 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2334 } else {
2335 Splits.append(Ins.begin(), Ins.end());
2336 }
2337
2338 if (IsEntryFunc) {
2339 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2340 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2341 } else {
2342 // For the fixed ABI, pass workitem IDs in the last argument register.
2343 if (AMDGPUTargetMachine::EnableFixedFunctionABI)
2344 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2345 }
2346
2347 if (IsKernel) {
2348 analyzeFormalArgumentsCompute(CCInfo, Ins);
2349 } else {
2350 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2351 CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2352 }
2353
2354 SmallVector<SDValue, 16> Chains;
2355
2356 // FIXME: This is the minimum kernel argument alignment. We should improve
2357 // this to the maximum alignment of the arguments.
2358 //
2359 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2360 // kern arg offset.
2361 const Align KernelArgBaseAlign = Align(16);
2362
2363 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2364 const ISD::InputArg &Arg = Ins[i];
2365 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2366 InVals.push_back(DAG.getUNDEF(Arg.VT));
2367 continue;
2368 }
2369
2370 CCValAssign &VA = ArgLocs[ArgIdx++];
2371 MVT VT = VA.getLocVT();
2372
2373 if (IsEntryFunc && VA.isMemLoc()) {
2374 VT = Ins[i].VT;
2375 EVT MemVT = VA.getLocVT();
2376
2377 const uint64_t Offset = VA.getLocMemOffset();
2378 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2379
2380 if (Arg.Flags.isByRef()) {
2381 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2382
2383 const GCNTargetMachine &TM =
2384 static_cast<const GCNTargetMachine &>(getTargetMachine());
2385 if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2386 Arg.Flags.getPointerAddrSpace())) {
2387 Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2388 Arg.Flags.getPointerAddrSpace());
2389 }
2390
2391 InVals.push_back(Ptr);
2392 continue;
2393 }
2394
2395 SDValue Arg = lowerKernargMemParameter(
2396 DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2397 Chains.push_back(Arg.getValue(1));
2398
2399 auto *ParamTy =
2400 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2401 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2402 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2403 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2404 // On SI local pointers are just offsets into LDS, so they are always
2405 // less than 16-bits. On CI and newer they could potentially be
2406 // real pointers, so we can't guarantee their size.
2407 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2408 DAG.getValueType(MVT::i16));
2409 }
2410
2411 InVals.push_back(Arg);
2412 continue;
2413 } else if (!IsEntryFunc && VA.isMemLoc()) {
2414 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2415 InVals.push_back(Val);
2416 if (!Arg.Flags.isByVal())
2417 Chains.push_back(Val.getValue(1));
2418 continue;
2419 }
2420
2421 assert(VA.isRegLoc() && "Parameter must be in a register!");
2422
2423 Register Reg = VA.getLocReg();
2424 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2425 EVT ValVT = VA.getValVT();
2426
2427 Reg = MF.addLiveIn(Reg, RC);
2428 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2429
2430 if (Arg.Flags.isSRet()) {
2431 // The return object should be reasonably addressable.
2432
2433 // FIXME: This helps when the return is a real sret. If it is a
2434 // automatically inserted sret (i.e. CanLowerReturn returns false), an
2435 // extra copy is inserted in SelectionDAGBuilder which obscures this.
2436 unsigned NumBits
2437 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2438 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2439 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2440 }
2441
2442 // If this is an 8 or 16-bit value, it is really passed promoted
2443 // to 32 bits. Insert an assert[sz]ext to capture this, then
2444 // truncate to the right size.
2445 switch (VA.getLocInfo()) {
2446 case CCValAssign::Full:
2447 break;
2448 case CCValAssign::BCvt:
2449 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2450 break;
2451 case CCValAssign::SExt:
2452 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2453 DAG.getValueType(ValVT));
2454 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2455 break;
2456 case CCValAssign::ZExt:
2457 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2458 DAG.getValueType(ValVT));
2459 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2460 break;
2461 case CCValAssign::AExt:
2462 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2463 break;
2464 default:
2465 llvm_unreachable("Unknown loc info!");
2466 }
2467
2468 InVals.push_back(Val);
2469 }
2470
2471 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
2472 // Special inputs come after user arguments.
2473 allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2474 }
2475
2476 // Start adding system SGPRs.
2477 if (IsEntryFunc) {
2478 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2479 } else {
2480 CCInfo.AllocateReg(Info->getScratchRSrcReg());
2481 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2482 }
2483
2484 auto &ArgUsageInfo =
2485 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2486 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2487
2488 unsigned StackArgSize = CCInfo.getNextStackOffset();
2489 Info->setBytesInStackArgArea(StackArgSize);
2490
2491 return Chains.empty() ? Chain :
2492 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2493 }
2494
2495 // TODO: If return values can't fit in registers, we should return as many as
2496 // possible in registers before passing on stack.
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const2497 bool SITargetLowering::CanLowerReturn(
2498 CallingConv::ID CallConv,
2499 MachineFunction &MF, bool IsVarArg,
2500 const SmallVectorImpl<ISD::OutputArg> &Outs,
2501 LLVMContext &Context) const {
2502 // Replacing returns with sret/stack usage doesn't make sense for shaders.
2503 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2504 // for shaders. Vector types should be explicitly handled by CC.
2505 if (AMDGPU::isEntryFunctionCC(CallConv))
2506 return true;
2507
2508 SmallVector<CCValAssign, 16> RVLocs;
2509 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2510 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2511 }
2512
2513 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const2514 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2515 bool isVarArg,
2516 const SmallVectorImpl<ISD::OutputArg> &Outs,
2517 const SmallVectorImpl<SDValue> &OutVals,
2518 const SDLoc &DL, SelectionDAG &DAG) const {
2519 MachineFunction &MF = DAG.getMachineFunction();
2520 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2521
2522 if (AMDGPU::isKernel(CallConv)) {
2523 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2524 OutVals, DL, DAG);
2525 }
2526
2527 bool IsShader = AMDGPU::isShader(CallConv);
2528
2529 Info->setIfReturnsVoid(Outs.empty());
2530 bool IsWaveEnd = Info->returnsVoid() && IsShader;
2531
2532 // CCValAssign - represent the assignment of the return value to a location.
2533 SmallVector<CCValAssign, 48> RVLocs;
2534 SmallVector<ISD::OutputArg, 48> Splits;
2535
2536 // CCState - Info about the registers and stack slots.
2537 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2538 *DAG.getContext());
2539
2540 // Analyze outgoing return values.
2541 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2542
2543 SDValue Flag;
2544 SmallVector<SDValue, 48> RetOps;
2545 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2546
2547 // Add return address for callable functions.
2548 if (!Info->isEntryFunction()) {
2549 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2550 SDValue ReturnAddrReg = CreateLiveInRegister(
2551 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2552
2553 SDValue ReturnAddrVirtualReg = DAG.getRegister(
2554 MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
2555 MVT::i64);
2556 Chain =
2557 DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2558 Flag = Chain.getValue(1);
2559 RetOps.push_back(ReturnAddrVirtualReg);
2560 }
2561
2562 // Copy the result values into the output registers.
2563 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2564 ++I, ++RealRVLocIdx) {
2565 CCValAssign &VA = RVLocs[I];
2566 assert(VA.isRegLoc() && "Can only return in registers!");
2567 // TODO: Partially return in registers if return values don't fit.
2568 SDValue Arg = OutVals[RealRVLocIdx];
2569
2570 // Copied from other backends.
2571 switch (VA.getLocInfo()) {
2572 case CCValAssign::Full:
2573 break;
2574 case CCValAssign::BCvt:
2575 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2576 break;
2577 case CCValAssign::SExt:
2578 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2579 break;
2580 case CCValAssign::ZExt:
2581 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2582 break;
2583 case CCValAssign::AExt:
2584 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2585 break;
2586 default:
2587 llvm_unreachable("Unknown loc info!");
2588 }
2589
2590 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2591 Flag = Chain.getValue(1);
2592 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2593 }
2594
2595 // FIXME: Does sret work properly?
2596 if (!Info->isEntryFunction()) {
2597 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2598 const MCPhysReg *I =
2599 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2600 if (I) {
2601 for (; *I; ++I) {
2602 if (AMDGPU::SReg_64RegClass.contains(*I))
2603 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2604 else if (AMDGPU::SReg_32RegClass.contains(*I))
2605 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2606 else
2607 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2608 }
2609 }
2610 }
2611
2612 // Update chain and glue.
2613 RetOps[0] = Chain;
2614 if (Flag.getNode())
2615 RetOps.push_back(Flag);
2616
2617 unsigned Opc = AMDGPUISD::ENDPGM;
2618 if (!IsWaveEnd)
2619 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2620 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2621 }
2622
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool IsThisReturn,SDValue ThisVal) const2623 SDValue SITargetLowering::LowerCallResult(
2624 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2625 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2626 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2627 SDValue ThisVal) const {
2628 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2629
2630 // Assign locations to each value returned by this call.
2631 SmallVector<CCValAssign, 16> RVLocs;
2632 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2633 *DAG.getContext());
2634 CCInfo.AnalyzeCallResult(Ins, RetCC);
2635
2636 // Copy all of the result registers out of their specified physreg.
2637 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2638 CCValAssign VA = RVLocs[i];
2639 SDValue Val;
2640
2641 if (VA.isRegLoc()) {
2642 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2643 Chain = Val.getValue(1);
2644 InFlag = Val.getValue(2);
2645 } else if (VA.isMemLoc()) {
2646 report_fatal_error("TODO: return values in memory");
2647 } else
2648 llvm_unreachable("unknown argument location type");
2649
2650 switch (VA.getLocInfo()) {
2651 case CCValAssign::Full:
2652 break;
2653 case CCValAssign::BCvt:
2654 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2655 break;
2656 case CCValAssign::ZExt:
2657 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2658 DAG.getValueType(VA.getValVT()));
2659 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2660 break;
2661 case CCValAssign::SExt:
2662 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2663 DAG.getValueType(VA.getValVT()));
2664 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2665 break;
2666 case CCValAssign::AExt:
2667 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2668 break;
2669 default:
2670 llvm_unreachable("Unknown loc info!");
2671 }
2672
2673 InVals.push_back(Val);
2674 }
2675
2676 return Chain;
2677 }
2678
2679 // Add code to pass special inputs required depending on used features separate
2680 // from the explicit user arguments present in the IR.
passSpecialInputs(CallLoweringInfo & CLI,CCState & CCInfo,const SIMachineFunctionInfo & Info,SmallVectorImpl<std::pair<unsigned,SDValue>> & RegsToPass,SmallVectorImpl<SDValue> & MemOpChains,SDValue Chain) const2681 void SITargetLowering::passSpecialInputs(
2682 CallLoweringInfo &CLI,
2683 CCState &CCInfo,
2684 const SIMachineFunctionInfo &Info,
2685 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2686 SmallVectorImpl<SDValue> &MemOpChains,
2687 SDValue Chain) const {
2688 // If we don't have a call site, this was a call inserted by
2689 // legalization. These can never use special inputs.
2690 if (!CLI.CB)
2691 return;
2692
2693 SelectionDAG &DAG = CLI.DAG;
2694 const SDLoc &DL = CLI.DL;
2695
2696 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2697 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2698
2699 const AMDGPUFunctionArgInfo *CalleeArgInfo
2700 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2701 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2702 auto &ArgUsageInfo =
2703 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2704 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2705 }
2706
2707 // TODO: Unify with private memory register handling. This is complicated by
2708 // the fact that at least in kernels, the input argument is not necessarily
2709 // in the same location as the input.
2710 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2711 AMDGPUFunctionArgInfo::DISPATCH_PTR,
2712 AMDGPUFunctionArgInfo::QUEUE_PTR,
2713 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
2714 AMDGPUFunctionArgInfo::DISPATCH_ID,
2715 AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2716 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2717 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
2718 };
2719
2720 for (auto InputID : InputRegs) {
2721 const ArgDescriptor *OutgoingArg;
2722 const TargetRegisterClass *ArgRC;
2723 LLT ArgTy;
2724
2725 std::tie(OutgoingArg, ArgRC, ArgTy) =
2726 CalleeArgInfo->getPreloadedValue(InputID);
2727 if (!OutgoingArg)
2728 continue;
2729
2730 const ArgDescriptor *IncomingArg;
2731 const TargetRegisterClass *IncomingArgRC;
2732 LLT Ty;
2733 std::tie(IncomingArg, IncomingArgRC, Ty) =
2734 CallerArgInfo.getPreloadedValue(InputID);
2735 assert(IncomingArgRC == ArgRC);
2736
2737 // All special arguments are ints for now.
2738 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2739 SDValue InputReg;
2740
2741 if (IncomingArg) {
2742 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2743 } else {
2744 // The implicit arg ptr is special because it doesn't have a corresponding
2745 // input for kernels, and is computed from the kernarg segment pointer.
2746 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
2747 InputReg = getImplicitArgPtr(DAG, DL);
2748 }
2749
2750 if (OutgoingArg->isRegister()) {
2751 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2752 if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2753 report_fatal_error("failed to allocate implicit input argument");
2754 } else {
2755 unsigned SpecialArgOffset =
2756 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2757 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2758 SpecialArgOffset);
2759 MemOpChains.push_back(ArgStore);
2760 }
2761 }
2762
2763 // Pack workitem IDs into a single register or pass it as is if already
2764 // packed.
2765 const ArgDescriptor *OutgoingArg;
2766 const TargetRegisterClass *ArgRC;
2767 LLT Ty;
2768
2769 std::tie(OutgoingArg, ArgRC, Ty) =
2770 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2771 if (!OutgoingArg)
2772 std::tie(OutgoingArg, ArgRC, Ty) =
2773 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2774 if (!OutgoingArg)
2775 std::tie(OutgoingArg, ArgRC, Ty) =
2776 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2777 if (!OutgoingArg)
2778 return;
2779
2780 const ArgDescriptor *IncomingArgX = std::get<0>(
2781 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2782 const ArgDescriptor *IncomingArgY = std::get<0>(
2783 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2784 const ArgDescriptor *IncomingArgZ = std::get<0>(
2785 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2786
2787 SDValue InputReg;
2788 SDLoc SL;
2789
2790 // If incoming ids are not packed we need to pack them.
2791 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX)
2792 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2793
2794 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
2795 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2796 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2797 DAG.getShiftAmountConstant(10, MVT::i32, SL));
2798 InputReg = InputReg.getNode() ?
2799 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2800 }
2801
2802 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
2803 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2804 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2805 DAG.getShiftAmountConstant(20, MVT::i32, SL));
2806 InputReg = InputReg.getNode() ?
2807 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2808 }
2809
2810 if (!InputReg.getNode()) {
2811 // Workitem ids are already packed, any of present incoming arguments
2812 // will carry all required fields.
2813 ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2814 IncomingArgX ? *IncomingArgX :
2815 IncomingArgY ? *IncomingArgY :
2816 *IncomingArgZ, ~0u);
2817 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2818 }
2819
2820 if (OutgoingArg->isRegister()) {
2821 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2822 CCInfo.AllocateReg(OutgoingArg->getRegister());
2823 } else {
2824 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2825 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2826 SpecialArgOffset);
2827 MemOpChains.push_back(ArgStore);
2828 }
2829 }
2830
canGuaranteeTCO(CallingConv::ID CC)2831 static bool canGuaranteeTCO(CallingConv::ID CC) {
2832 return CC == CallingConv::Fast;
2833 }
2834
2835 /// Return true if we might ever do TCO for calls with this calling convention.
mayTailCallThisCC(CallingConv::ID CC)2836 static bool mayTailCallThisCC(CallingConv::ID CC) {
2837 switch (CC) {
2838 case CallingConv::C:
2839 case CallingConv::AMDGPU_Gfx:
2840 return true;
2841 default:
2842 return canGuaranteeTCO(CC);
2843 }
2844 }
2845
isEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const2846 bool SITargetLowering::isEligibleForTailCallOptimization(
2847 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2848 const SmallVectorImpl<ISD::OutputArg> &Outs,
2849 const SmallVectorImpl<SDValue> &OutVals,
2850 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2851 if (!mayTailCallThisCC(CalleeCC))
2852 return false;
2853
2854 // For a divergent call target, we need to do a waterfall loop over the
2855 // possible callees which precludes us from using a simple jump.
2856 if (Callee->isDivergent())
2857 return false;
2858
2859 MachineFunction &MF = DAG.getMachineFunction();
2860 const Function &CallerF = MF.getFunction();
2861 CallingConv::ID CallerCC = CallerF.getCallingConv();
2862 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2863 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2864
2865 // Kernels aren't callable, and don't have a live in return address so it
2866 // doesn't make sense to do a tail call with entry functions.
2867 if (!CallerPreserved)
2868 return false;
2869
2870 bool CCMatch = CallerCC == CalleeCC;
2871
2872 if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2873 if (canGuaranteeTCO(CalleeCC) && CCMatch)
2874 return true;
2875 return false;
2876 }
2877
2878 // TODO: Can we handle var args?
2879 if (IsVarArg)
2880 return false;
2881
2882 for (const Argument &Arg : CallerF.args()) {
2883 if (Arg.hasByValAttr())
2884 return false;
2885 }
2886
2887 LLVMContext &Ctx = *DAG.getContext();
2888
2889 // Check that the call results are passed in the same way.
2890 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2891 CCAssignFnForCall(CalleeCC, IsVarArg),
2892 CCAssignFnForCall(CallerCC, IsVarArg)))
2893 return false;
2894
2895 // The callee has to preserve all registers the caller needs to preserve.
2896 if (!CCMatch) {
2897 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2898 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2899 return false;
2900 }
2901
2902 // Nothing more to check if the callee is taking no arguments.
2903 if (Outs.empty())
2904 return true;
2905
2906 SmallVector<CCValAssign, 16> ArgLocs;
2907 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2908
2909 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2910
2911 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2912 // If the stack arguments for this call do not fit into our own save area then
2913 // the call cannot be made tail.
2914 // TODO: Is this really necessary?
2915 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2916 return false;
2917
2918 const MachineRegisterInfo &MRI = MF.getRegInfo();
2919 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2920 }
2921
mayBeEmittedAsTailCall(const CallInst * CI) const2922 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2923 if (!CI->isTailCall())
2924 return false;
2925
2926 const Function *ParentFn = CI->getParent()->getParent();
2927 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2928 return false;
2929 return true;
2930 }
2931
2932 // The wave scratch offset register is used as the global base pointer.
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const2933 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2934 SmallVectorImpl<SDValue> &InVals) const {
2935 SelectionDAG &DAG = CLI.DAG;
2936 const SDLoc &DL = CLI.DL;
2937 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2938 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2939 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2940 SDValue Chain = CLI.Chain;
2941 SDValue Callee = CLI.Callee;
2942 bool &IsTailCall = CLI.IsTailCall;
2943 CallingConv::ID CallConv = CLI.CallConv;
2944 bool IsVarArg = CLI.IsVarArg;
2945 bool IsSibCall = false;
2946 bool IsThisReturn = false;
2947 MachineFunction &MF = DAG.getMachineFunction();
2948
2949 if (Callee.isUndef() || isNullConstant(Callee)) {
2950 if (!CLI.IsTailCall) {
2951 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
2952 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
2953 }
2954
2955 return Chain;
2956 }
2957
2958 if (IsVarArg) {
2959 return lowerUnhandledCall(CLI, InVals,
2960 "unsupported call to variadic function ");
2961 }
2962
2963 if (!CLI.CB)
2964 report_fatal_error("unsupported libcall legalization");
2965
2966 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2967 return lowerUnhandledCall(CLI, InVals,
2968 "unsupported required tail call to function ");
2969 }
2970
2971 if (AMDGPU::isShader(CallConv)) {
2972 // Note the issue is with the CC of the called function, not of the call
2973 // itself.
2974 return lowerUnhandledCall(CLI, InVals,
2975 "unsupported call to a shader function ");
2976 }
2977
2978 if (AMDGPU::isShader(MF.getFunction().getCallingConv()) &&
2979 CallConv != CallingConv::AMDGPU_Gfx) {
2980 // Only allow calls with specific calling conventions.
2981 return lowerUnhandledCall(CLI, InVals,
2982 "unsupported calling convention for call from "
2983 "graphics shader of function ");
2984 }
2985
2986 if (IsTailCall) {
2987 IsTailCall = isEligibleForTailCallOptimization(
2988 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2989 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
2990 report_fatal_error("failed to perform tail call elimination on a call "
2991 "site marked musttail");
2992 }
2993
2994 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2995
2996 // A sibling call is one where we're under the usual C ABI and not planning
2997 // to change that but can still do a tail call:
2998 if (!TailCallOpt && IsTailCall)
2999 IsSibCall = true;
3000
3001 if (IsTailCall)
3002 ++NumTailCalls;
3003 }
3004
3005 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3006 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3007 SmallVector<SDValue, 8> MemOpChains;
3008
3009 // Analyze operands of the call, assigning locations to each operand.
3010 SmallVector<CCValAssign, 16> ArgLocs;
3011 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3012 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
3013
3014 if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
3015 CallConv != CallingConv::AMDGPU_Gfx) {
3016 // With a fixed ABI, allocate fixed registers before user arguments.
3017 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3018 }
3019
3020 CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3021
3022 // Get a count of how many bytes are to be pushed on the stack.
3023 unsigned NumBytes = CCInfo.getNextStackOffset();
3024
3025 if (IsSibCall) {
3026 // Since we're not changing the ABI to make this a tail call, the memory
3027 // operands are already available in the caller's incoming argument space.
3028 NumBytes = 0;
3029 }
3030
3031 // FPDiff is the byte offset of the call's argument area from the callee's.
3032 // Stores to callee stack arguments will be placed in FixedStackSlots offset
3033 // by this amount for a tail call. In a sibling call it must be 0 because the
3034 // caller will deallocate the entire stack and the callee still expects its
3035 // arguments to begin at SP+0. Completely unused for non-tail calls.
3036 int32_t FPDiff = 0;
3037 MachineFrameInfo &MFI = MF.getFrameInfo();
3038
3039 // Adjust the stack pointer for the new arguments...
3040 // These operations are automatically eliminated by the prolog/epilog pass
3041 if (!IsSibCall) {
3042 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3043
3044 if (!Subtarget->enableFlatScratch()) {
3045 SmallVector<SDValue, 4> CopyFromChains;
3046
3047 // In the HSA case, this should be an identity copy.
3048 SDValue ScratchRSrcReg
3049 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3050 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3051 CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3052 Chain = DAG.getTokenFactor(DL, CopyFromChains);
3053 }
3054 }
3055
3056 MVT PtrVT = MVT::i32;
3057
3058 // Walk the register/memloc assignments, inserting copies/loads.
3059 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3060 CCValAssign &VA = ArgLocs[i];
3061 SDValue Arg = OutVals[i];
3062
3063 // Promote the value if needed.
3064 switch (VA.getLocInfo()) {
3065 case CCValAssign::Full:
3066 break;
3067 case CCValAssign::BCvt:
3068 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3069 break;
3070 case CCValAssign::ZExt:
3071 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3072 break;
3073 case CCValAssign::SExt:
3074 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3075 break;
3076 case CCValAssign::AExt:
3077 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3078 break;
3079 case CCValAssign::FPExt:
3080 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3081 break;
3082 default:
3083 llvm_unreachable("Unknown loc info!");
3084 }
3085
3086 if (VA.isRegLoc()) {
3087 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3088 } else {
3089 assert(VA.isMemLoc());
3090
3091 SDValue DstAddr;
3092 MachinePointerInfo DstInfo;
3093
3094 unsigned LocMemOffset = VA.getLocMemOffset();
3095 int32_t Offset = LocMemOffset;
3096
3097 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3098 MaybeAlign Alignment;
3099
3100 if (IsTailCall) {
3101 ISD::ArgFlagsTy Flags = Outs[i].Flags;
3102 unsigned OpSize = Flags.isByVal() ?
3103 Flags.getByValSize() : VA.getValVT().getStoreSize();
3104
3105 // FIXME: We can have better than the minimum byval required alignment.
3106 Alignment =
3107 Flags.isByVal()
3108 ? Flags.getNonZeroByValAlign()
3109 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3110
3111 Offset = Offset + FPDiff;
3112 int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3113
3114 DstAddr = DAG.getFrameIndex(FI, PtrVT);
3115 DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3116
3117 // Make sure any stack arguments overlapping with where we're storing
3118 // are loaded before this eventual operation. Otherwise they'll be
3119 // clobbered.
3120
3121 // FIXME: Why is this really necessary? This seems to just result in a
3122 // lot of code to copy the stack and write them back to the same
3123 // locations, which are supposed to be immutable?
3124 Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3125 } else {
3126 DstAddr = PtrOff;
3127 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3128 Alignment =
3129 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3130 }
3131
3132 if (Outs[i].Flags.isByVal()) {
3133 SDValue SizeNode =
3134 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3135 SDValue Cpy =
3136 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3137 Outs[i].Flags.getNonZeroByValAlign(),
3138 /*isVol = */ false, /*AlwaysInline = */ true,
3139 /*isTailCall = */ false, DstInfo,
3140 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3141
3142 MemOpChains.push_back(Cpy);
3143 } else {
3144 SDValue Store =
3145 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3146 MemOpChains.push_back(Store);
3147 }
3148 }
3149 }
3150
3151 if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
3152 CallConv != CallingConv::AMDGPU_Gfx) {
3153 // Copy special input registers after user input arguments.
3154 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3155 }
3156
3157 if (!MemOpChains.empty())
3158 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3159
3160 // Build a sequence of copy-to-reg nodes chained together with token chain
3161 // and flag operands which copy the outgoing args into the appropriate regs.
3162 SDValue InFlag;
3163 for (auto &RegToPass : RegsToPass) {
3164 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3165 RegToPass.second, InFlag);
3166 InFlag = Chain.getValue(1);
3167 }
3168
3169
3170 SDValue PhysReturnAddrReg;
3171 if (IsTailCall) {
3172 // Since the return is being combined with the call, we need to pass on the
3173 // return address.
3174
3175 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3176 SDValue ReturnAddrReg = CreateLiveInRegister(
3177 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
3178
3179 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
3180 MVT::i64);
3181 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
3182 InFlag = Chain.getValue(1);
3183 }
3184
3185 // We don't usually want to end the call-sequence here because we would tidy
3186 // the frame up *after* the call, however in the ABI-changing tail-call case
3187 // we've carefully laid out the parameters so that when sp is reset they'll be
3188 // in the correct location.
3189 if (IsTailCall && !IsSibCall) {
3190 Chain = DAG.getCALLSEQ_END(Chain,
3191 DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3192 DAG.getTargetConstant(0, DL, MVT::i32),
3193 InFlag, DL);
3194 InFlag = Chain.getValue(1);
3195 }
3196
3197 std::vector<SDValue> Ops;
3198 Ops.push_back(Chain);
3199 Ops.push_back(Callee);
3200 // Add a redundant copy of the callee global which will not be legalized, as
3201 // we need direct access to the callee later.
3202 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3203 const GlobalValue *GV = GSD->getGlobal();
3204 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3205 } else {
3206 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3207 }
3208
3209 if (IsTailCall) {
3210 // Each tail call may have to adjust the stack by a different amount, so
3211 // this information must travel along with the operation for eventual
3212 // consumption by emitEpilogue.
3213 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3214
3215 Ops.push_back(PhysReturnAddrReg);
3216 }
3217
3218 // Add argument registers to the end of the list so that they are known live
3219 // into the call.
3220 for (auto &RegToPass : RegsToPass) {
3221 Ops.push_back(DAG.getRegister(RegToPass.first,
3222 RegToPass.second.getValueType()));
3223 }
3224
3225 // Add a register mask operand representing the call-preserved registers.
3226
3227 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3228 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3229 assert(Mask && "Missing call preserved mask for calling convention");
3230 Ops.push_back(DAG.getRegisterMask(Mask));
3231
3232 if (InFlag.getNode())
3233 Ops.push_back(InFlag);
3234
3235 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3236
3237 // If we're doing a tall call, use a TC_RETURN here rather than an
3238 // actual call instruction.
3239 if (IsTailCall) {
3240 MFI.setHasTailCall();
3241 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3242 }
3243
3244 // Returns a chain and a flag for retval copy to use.
3245 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3246 Chain = Call.getValue(0);
3247 InFlag = Call.getValue(1);
3248
3249 uint64_t CalleePopBytes = NumBytes;
3250 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3251 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3252 InFlag, DL);
3253 if (!Ins.empty())
3254 InFlag = Chain.getValue(1);
3255
3256 // Handle result values, copying them out of physregs into vregs that we
3257 // return.
3258 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3259 InVals, IsThisReturn,
3260 IsThisReturn ? OutVals[0] : SDValue());
3261 }
3262
3263 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3264 // except for applying the wave size scale to the increment amount.
lowerDYNAMIC_STACKALLOCImpl(SDValue Op,SelectionDAG & DAG) const3265 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3266 SDValue Op, SelectionDAG &DAG) const {
3267 const MachineFunction &MF = DAG.getMachineFunction();
3268 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3269
3270 SDLoc dl(Op);
3271 EVT VT = Op.getValueType();
3272 SDValue Tmp1 = Op;
3273 SDValue Tmp2 = Op.getValue(1);
3274 SDValue Tmp3 = Op.getOperand(2);
3275 SDValue Chain = Tmp1.getOperand(0);
3276
3277 Register SPReg = Info->getStackPtrOffsetReg();
3278
3279 // Chain the dynamic stack allocation so that it doesn't modify the stack
3280 // pointer when other instructions are using the stack.
3281 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3282
3283 SDValue Size = Tmp2.getOperand(1);
3284 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3285 Chain = SP.getValue(1);
3286 MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3287 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3288 const TargetFrameLowering *TFL = ST.getFrameLowering();
3289 unsigned Opc =
3290 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3291 ISD::ADD : ISD::SUB;
3292
3293 SDValue ScaledSize = DAG.getNode(
3294 ISD::SHL, dl, VT, Size,
3295 DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3296
3297 Align StackAlign = TFL->getStackAlign();
3298 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3299 if (Alignment && *Alignment > StackAlign) {
3300 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3301 DAG.getConstant(-(uint64_t)Alignment->value()
3302 << ST.getWavefrontSizeLog2(),
3303 dl, VT));
3304 }
3305
3306 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
3307 Tmp2 = DAG.getCALLSEQ_END(
3308 Chain, DAG.getIntPtrConstant(0, dl, true),
3309 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3310
3311 return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3312 }
3313
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const3314 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3315 SelectionDAG &DAG) const {
3316 // We only handle constant sizes here to allow non-entry block, static sized
3317 // allocas. A truly dynamic value is more difficult to support because we
3318 // don't know if the size value is uniform or not. If the size isn't uniform,
3319 // we would need to do a wave reduction to get the maximum size to know how
3320 // much to increment the uniform stack pointer.
3321 SDValue Size = Op.getOperand(1);
3322 if (isa<ConstantSDNode>(Size))
3323 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3324
3325 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3326 }
3327
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const3328 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3329 const MachineFunction &MF) const {
3330 Register Reg = StringSwitch<Register>(RegName)
3331 .Case("m0", AMDGPU::M0)
3332 .Case("exec", AMDGPU::EXEC)
3333 .Case("exec_lo", AMDGPU::EXEC_LO)
3334 .Case("exec_hi", AMDGPU::EXEC_HI)
3335 .Case("flat_scratch", AMDGPU::FLAT_SCR)
3336 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3337 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3338 .Default(Register());
3339
3340 if (Reg == AMDGPU::NoRegister) {
3341 report_fatal_error(Twine("invalid register name \""
3342 + StringRef(RegName) + "\"."));
3343
3344 }
3345
3346 if (!Subtarget->hasFlatScrRegister() &&
3347 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3348 report_fatal_error(Twine("invalid register \""
3349 + StringRef(RegName) + "\" for subtarget."));
3350 }
3351
3352 switch (Reg) {
3353 case AMDGPU::M0:
3354 case AMDGPU::EXEC_LO:
3355 case AMDGPU::EXEC_HI:
3356 case AMDGPU::FLAT_SCR_LO:
3357 case AMDGPU::FLAT_SCR_HI:
3358 if (VT.getSizeInBits() == 32)
3359 return Reg;
3360 break;
3361 case AMDGPU::EXEC:
3362 case AMDGPU::FLAT_SCR:
3363 if (VT.getSizeInBits() == 64)
3364 return Reg;
3365 break;
3366 default:
3367 llvm_unreachable("missing register type checking");
3368 }
3369
3370 report_fatal_error(Twine("invalid type for register \""
3371 + StringRef(RegName) + "\"."));
3372 }
3373
3374 // If kill is not the last instruction, split the block so kill is always a
3375 // proper terminator.
3376 MachineBasicBlock *
splitKillBlock(MachineInstr & MI,MachineBasicBlock * BB) const3377 SITargetLowering::splitKillBlock(MachineInstr &MI,
3378 MachineBasicBlock *BB) const {
3379 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3380 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3381 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3382 return SplitBB;
3383 }
3384
3385 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3386 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3387 // be the first instruction in the remainder block.
3388 //
3389 /// \returns { LoopBody, Remainder }
3390 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
splitBlockForLoop(MachineInstr & MI,MachineBasicBlock & MBB,bool InstInLoop)3391 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3392 MachineFunction *MF = MBB.getParent();
3393 MachineBasicBlock::iterator I(&MI);
3394
3395 // To insert the loop we need to split the block. Move everything after this
3396 // point to a new block, and insert a new empty block between the two.
3397 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3398 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3399 MachineFunction::iterator MBBI(MBB);
3400 ++MBBI;
3401
3402 MF->insert(MBBI, LoopBB);
3403 MF->insert(MBBI, RemainderBB);
3404
3405 LoopBB->addSuccessor(LoopBB);
3406 LoopBB->addSuccessor(RemainderBB);
3407
3408 // Move the rest of the block into a new block.
3409 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3410
3411 if (InstInLoop) {
3412 auto Next = std::next(I);
3413
3414 // Move instruction to loop body.
3415 LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3416
3417 // Move the rest of the block.
3418 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3419 } else {
3420 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3421 }
3422
3423 MBB.addSuccessor(LoopBB);
3424
3425 return std::make_pair(LoopBB, RemainderBB);
3426 }
3427
3428 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
bundleInstWithWaitcnt(MachineInstr & MI) const3429 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3430 MachineBasicBlock *MBB = MI.getParent();
3431 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3432 auto I = MI.getIterator();
3433 auto E = std::next(I);
3434
3435 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3436 .addImm(0);
3437
3438 MIBundleBuilder Bundler(*MBB, I, E);
3439 finalizeBundle(*MBB, Bundler.begin());
3440 }
3441
3442 MachineBasicBlock *
emitGWSMemViolTestLoop(MachineInstr & MI,MachineBasicBlock * BB) const3443 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3444 MachineBasicBlock *BB) const {
3445 const DebugLoc &DL = MI.getDebugLoc();
3446
3447 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3448
3449 MachineBasicBlock *LoopBB;
3450 MachineBasicBlock *RemainderBB;
3451 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3452
3453 // Apparently kill flags are only valid if the def is in the same block?
3454 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3455 Src->setIsKill(false);
3456
3457 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3458
3459 MachineBasicBlock::iterator I = LoopBB->end();
3460
3461 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3462 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3463
3464 // Clear TRAP_STS.MEM_VIOL
3465 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3466 .addImm(0)
3467 .addImm(EncodedReg);
3468
3469 bundleInstWithWaitcnt(MI);
3470
3471 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3472
3473 // Load and check TRAP_STS.MEM_VIOL
3474 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3475 .addImm(EncodedReg);
3476
3477 // FIXME: Do we need to use an isel pseudo that may clobber scc?
3478 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3479 .addReg(Reg, RegState::Kill)
3480 .addImm(0);
3481 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3482 .addMBB(LoopBB);
3483
3484 return RemainderBB;
3485 }
3486
3487 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3488 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3489 // will only do one iteration. In the worst case, this will loop 64 times.
3490 //
3491 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3492 static MachineBasicBlock::iterator
emitLoadM0FromVGPRLoop(const SIInstrInfo * TII,MachineRegisterInfo & MRI,MachineBasicBlock & OrigBB,MachineBasicBlock & LoopBB,const DebugLoc & DL,const MachineOperand & Idx,unsigned InitReg,unsigned ResultReg,unsigned PhiReg,unsigned InitSaveExecReg,int Offset,bool UseGPRIdxMode,Register & SGPRIdxReg)3493 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3494 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3495 const DebugLoc &DL, const MachineOperand &Idx,
3496 unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3497 unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3498 Register &SGPRIdxReg) {
3499
3500 MachineFunction *MF = OrigBB.getParent();
3501 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3502 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3503 MachineBasicBlock::iterator I = LoopBB.begin();
3504
3505 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3506 Register PhiExec = MRI.createVirtualRegister(BoolRC);
3507 Register NewExec = MRI.createVirtualRegister(BoolRC);
3508 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3509 Register CondReg = MRI.createVirtualRegister(BoolRC);
3510
3511 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3512 .addReg(InitReg)
3513 .addMBB(&OrigBB)
3514 .addReg(ResultReg)
3515 .addMBB(&LoopBB);
3516
3517 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3518 .addReg(InitSaveExecReg)
3519 .addMBB(&OrigBB)
3520 .addReg(NewExec)
3521 .addMBB(&LoopBB);
3522
3523 // Read the next variant <- also loop target.
3524 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3525 .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3526
3527 // Compare the just read M0 value to all possible Idx values.
3528 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3529 .addReg(CurrentIdxReg)
3530 .addReg(Idx.getReg(), 0, Idx.getSubReg());
3531
3532 // Update EXEC, save the original EXEC value to VCC.
3533 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3534 : AMDGPU::S_AND_SAVEEXEC_B64),
3535 NewExec)
3536 .addReg(CondReg, RegState::Kill);
3537
3538 MRI.setSimpleHint(NewExec, CondReg);
3539
3540 if (UseGPRIdxMode) {
3541 if (Offset == 0) {
3542 SGPRIdxReg = CurrentIdxReg;
3543 } else {
3544 SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3545 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3546 .addReg(CurrentIdxReg, RegState::Kill)
3547 .addImm(Offset);
3548 }
3549 } else {
3550 // Move index from VCC into M0
3551 if (Offset == 0) {
3552 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3553 .addReg(CurrentIdxReg, RegState::Kill);
3554 } else {
3555 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3556 .addReg(CurrentIdxReg, RegState::Kill)
3557 .addImm(Offset);
3558 }
3559 }
3560
3561 // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3562 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3563 MachineInstr *InsertPt =
3564 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3565 : AMDGPU::S_XOR_B64_term), Exec)
3566 .addReg(Exec)
3567 .addReg(NewExec);
3568
3569 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3570 // s_cbranch_scc0?
3571
3572 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3573 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3574 .addMBB(&LoopBB);
3575
3576 return InsertPt->getIterator();
3577 }
3578
3579 // This has slightly sub-optimal regalloc when the source vector is killed by
3580 // the read. The register allocator does not understand that the kill is
3581 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3582 // subregister from it, using 1 more VGPR than necessary. This was saved when
3583 // this was expanded after register allocation.
3584 static MachineBasicBlock::iterator
loadM0FromVGPR(const SIInstrInfo * TII,MachineBasicBlock & MBB,MachineInstr & MI,unsigned InitResultReg,unsigned PhiReg,int Offset,bool UseGPRIdxMode,Register & SGPRIdxReg)3585 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3586 unsigned InitResultReg, unsigned PhiReg, int Offset,
3587 bool UseGPRIdxMode, Register &SGPRIdxReg) {
3588 MachineFunction *MF = MBB.getParent();
3589 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3590 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3591 MachineRegisterInfo &MRI = MF->getRegInfo();
3592 const DebugLoc &DL = MI.getDebugLoc();
3593 MachineBasicBlock::iterator I(&MI);
3594
3595 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3596 Register DstReg = MI.getOperand(0).getReg();
3597 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3598 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3599 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3600 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3601
3602 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3603
3604 // Save the EXEC mask
3605 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3606 .addReg(Exec);
3607
3608 MachineBasicBlock *LoopBB;
3609 MachineBasicBlock *RemainderBB;
3610 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3611
3612 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3613
3614 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3615 InitResultReg, DstReg, PhiReg, TmpExec,
3616 Offset, UseGPRIdxMode, SGPRIdxReg);
3617
3618 MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3619 MachineFunction::iterator MBBI(LoopBB);
3620 ++MBBI;
3621 MF->insert(MBBI, LandingPad);
3622 LoopBB->removeSuccessor(RemainderBB);
3623 LandingPad->addSuccessor(RemainderBB);
3624 LoopBB->addSuccessor(LandingPad);
3625 MachineBasicBlock::iterator First = LandingPad->begin();
3626 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3627 .addReg(SaveExec);
3628
3629 return InsPt;
3630 }
3631
3632 // Returns subreg index, offset
3633 static std::pair<unsigned, int>
computeIndirectRegAndOffset(const SIRegisterInfo & TRI,const TargetRegisterClass * SuperRC,unsigned VecReg,int Offset)3634 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3635 const TargetRegisterClass *SuperRC,
3636 unsigned VecReg,
3637 int Offset) {
3638 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3639
3640 // Skip out of bounds offsets, or else we would end up using an undefined
3641 // register.
3642 if (Offset >= NumElts || Offset < 0)
3643 return std::make_pair(AMDGPU::sub0, Offset);
3644
3645 return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3646 }
3647
setM0ToIndexFromSGPR(const SIInstrInfo * TII,MachineRegisterInfo & MRI,MachineInstr & MI,int Offset)3648 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3649 MachineRegisterInfo &MRI, MachineInstr &MI,
3650 int Offset) {
3651 MachineBasicBlock *MBB = MI.getParent();
3652 const DebugLoc &DL = MI.getDebugLoc();
3653 MachineBasicBlock::iterator I(&MI);
3654
3655 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3656
3657 assert(Idx->getReg() != AMDGPU::NoRegister);
3658
3659 if (Offset == 0) {
3660 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3661 } else {
3662 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3663 .add(*Idx)
3664 .addImm(Offset);
3665 }
3666 }
3667
getIndirectSGPRIdx(const SIInstrInfo * TII,MachineRegisterInfo & MRI,MachineInstr & MI,int Offset)3668 static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3669 MachineRegisterInfo &MRI, MachineInstr &MI,
3670 int Offset) {
3671 MachineBasicBlock *MBB = MI.getParent();
3672 const DebugLoc &DL = MI.getDebugLoc();
3673 MachineBasicBlock::iterator I(&MI);
3674
3675 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3676
3677 if (Offset == 0)
3678 return Idx->getReg();
3679
3680 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3681 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3682 .add(*Idx)
3683 .addImm(Offset);
3684 return Tmp;
3685 }
3686
emitIndirectSrc(MachineInstr & MI,MachineBasicBlock & MBB,const GCNSubtarget & ST)3687 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3688 MachineBasicBlock &MBB,
3689 const GCNSubtarget &ST) {
3690 const SIInstrInfo *TII = ST.getInstrInfo();
3691 const SIRegisterInfo &TRI = TII->getRegisterInfo();
3692 MachineFunction *MF = MBB.getParent();
3693 MachineRegisterInfo &MRI = MF->getRegInfo();
3694
3695 Register Dst = MI.getOperand(0).getReg();
3696 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3697 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3698 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3699
3700 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3701 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3702
3703 unsigned SubReg;
3704 std::tie(SubReg, Offset)
3705 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3706
3707 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3708
3709 // Check for a SGPR index.
3710 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3711 MachineBasicBlock::iterator I(&MI);
3712 const DebugLoc &DL = MI.getDebugLoc();
3713
3714 if (UseGPRIdxMode) {
3715 // TODO: Look at the uses to avoid the copy. This may require rescheduling
3716 // to avoid interfering with other uses, so probably requires a new
3717 // optimization pass.
3718 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3719
3720 const MCInstrDesc &GPRIDXDesc =
3721 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3722 BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3723 .addReg(SrcReg)
3724 .addReg(Idx)
3725 .addImm(SubReg);
3726 } else {
3727 setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3728
3729 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3730 .addReg(SrcReg, 0, SubReg)
3731 .addReg(SrcReg, RegState::Implicit);
3732 }
3733
3734 MI.eraseFromParent();
3735
3736 return &MBB;
3737 }
3738
3739 // Control flow needs to be inserted if indexing with a VGPR.
3740 const DebugLoc &DL = MI.getDebugLoc();
3741 MachineBasicBlock::iterator I(&MI);
3742
3743 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3744 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3745
3746 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3747
3748 Register SGPRIdxReg;
3749 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3750 UseGPRIdxMode, SGPRIdxReg);
3751
3752 MachineBasicBlock *LoopBB = InsPt->getParent();
3753
3754 if (UseGPRIdxMode) {
3755 const MCInstrDesc &GPRIDXDesc =
3756 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3757
3758 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3759 .addReg(SrcReg)
3760 .addReg(SGPRIdxReg)
3761 .addImm(SubReg);
3762 } else {
3763 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3764 .addReg(SrcReg, 0, SubReg)
3765 .addReg(SrcReg, RegState::Implicit);
3766 }
3767
3768 MI.eraseFromParent();
3769
3770 return LoopBB;
3771 }
3772
emitIndirectDst(MachineInstr & MI,MachineBasicBlock & MBB,const GCNSubtarget & ST)3773 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3774 MachineBasicBlock &MBB,
3775 const GCNSubtarget &ST) {
3776 const SIInstrInfo *TII = ST.getInstrInfo();
3777 const SIRegisterInfo &TRI = TII->getRegisterInfo();
3778 MachineFunction *MF = MBB.getParent();
3779 MachineRegisterInfo &MRI = MF->getRegInfo();
3780
3781 Register Dst = MI.getOperand(0).getReg();
3782 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3783 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3784 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3785 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3786 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3787 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3788
3789 // This can be an immediate, but will be folded later.
3790 assert(Val->getReg());
3791
3792 unsigned SubReg;
3793 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3794 SrcVec->getReg(),
3795 Offset);
3796 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3797
3798 if (Idx->getReg() == AMDGPU::NoRegister) {
3799 MachineBasicBlock::iterator I(&MI);
3800 const DebugLoc &DL = MI.getDebugLoc();
3801
3802 assert(Offset == 0);
3803
3804 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3805 .add(*SrcVec)
3806 .add(*Val)
3807 .addImm(SubReg);
3808
3809 MI.eraseFromParent();
3810 return &MBB;
3811 }
3812
3813 // Check for a SGPR index.
3814 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3815 MachineBasicBlock::iterator I(&MI);
3816 const DebugLoc &DL = MI.getDebugLoc();
3817
3818 if (UseGPRIdxMode) {
3819 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3820
3821 const MCInstrDesc &GPRIDXDesc =
3822 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3823 BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3824 .addReg(SrcVec->getReg())
3825 .add(*Val)
3826 .addReg(Idx)
3827 .addImm(SubReg);
3828 } else {
3829 setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3830
3831 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3832 TRI.getRegSizeInBits(*VecRC), 32, false);
3833 BuildMI(MBB, I, DL, MovRelDesc, Dst)
3834 .addReg(SrcVec->getReg())
3835 .add(*Val)
3836 .addImm(SubReg);
3837 }
3838 MI.eraseFromParent();
3839 return &MBB;
3840 }
3841
3842 // Control flow needs to be inserted if indexing with a VGPR.
3843 if (Val->isReg())
3844 MRI.clearKillFlags(Val->getReg());
3845
3846 const DebugLoc &DL = MI.getDebugLoc();
3847
3848 Register PhiReg = MRI.createVirtualRegister(VecRC);
3849
3850 Register SGPRIdxReg;
3851 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
3852 UseGPRIdxMode, SGPRIdxReg);
3853 MachineBasicBlock *LoopBB = InsPt->getParent();
3854
3855 if (UseGPRIdxMode) {
3856 const MCInstrDesc &GPRIDXDesc =
3857 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3858
3859 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3860 .addReg(PhiReg)
3861 .add(*Val)
3862 .addReg(SGPRIdxReg)
3863 .addImm(AMDGPU::sub0);
3864 } else {
3865 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3866 TRI.getRegSizeInBits(*VecRC), 32, false);
3867 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3868 .addReg(PhiReg)
3869 .add(*Val)
3870 .addImm(AMDGPU::sub0);
3871 }
3872
3873 MI.eraseFromParent();
3874 return LoopBB;
3875 }
3876
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const3877 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3878 MachineInstr &MI, MachineBasicBlock *BB) const {
3879
3880 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3881 MachineFunction *MF = BB->getParent();
3882 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3883
3884 switch (MI.getOpcode()) {
3885 case AMDGPU::S_UADDO_PSEUDO:
3886 case AMDGPU::S_USUBO_PSEUDO: {
3887 const DebugLoc &DL = MI.getDebugLoc();
3888 MachineOperand &Dest0 = MI.getOperand(0);
3889 MachineOperand &Dest1 = MI.getOperand(1);
3890 MachineOperand &Src0 = MI.getOperand(2);
3891 MachineOperand &Src1 = MI.getOperand(3);
3892
3893 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
3894 ? AMDGPU::S_ADD_I32
3895 : AMDGPU::S_SUB_I32;
3896 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
3897
3898 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
3899 .addImm(1)
3900 .addImm(0);
3901
3902 MI.eraseFromParent();
3903 return BB;
3904 }
3905 case AMDGPU::S_ADD_U64_PSEUDO:
3906 case AMDGPU::S_SUB_U64_PSEUDO: {
3907 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3908 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3909 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3910 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3911 const DebugLoc &DL = MI.getDebugLoc();
3912
3913 MachineOperand &Dest = MI.getOperand(0);
3914 MachineOperand &Src0 = MI.getOperand(1);
3915 MachineOperand &Src1 = MI.getOperand(2);
3916
3917 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3918 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3919
3920 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
3921 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3922 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
3923 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3924
3925 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
3926 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3927 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
3928 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3929
3930 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3931
3932 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3933 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3934 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
3935 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
3936 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3937 .addReg(DestSub0)
3938 .addImm(AMDGPU::sub0)
3939 .addReg(DestSub1)
3940 .addImm(AMDGPU::sub1);
3941 MI.eraseFromParent();
3942 return BB;
3943 }
3944 case AMDGPU::V_ADD_U64_PSEUDO:
3945 case AMDGPU::V_SUB_U64_PSEUDO: {
3946 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3947 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3948 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3949 const DebugLoc &DL = MI.getDebugLoc();
3950
3951 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
3952
3953 const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3954
3955 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3956 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3957
3958 Register CarryReg = MRI.createVirtualRegister(CarryRC);
3959 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
3960
3961 MachineOperand &Dest = MI.getOperand(0);
3962 MachineOperand &Src0 = MI.getOperand(1);
3963 MachineOperand &Src1 = MI.getOperand(2);
3964
3965 const TargetRegisterClass *Src0RC = Src0.isReg()
3966 ? MRI.getRegClass(Src0.getReg())
3967 : &AMDGPU::VReg_64RegClass;
3968 const TargetRegisterClass *Src1RC = Src1.isReg()
3969 ? MRI.getRegClass(Src1.getReg())
3970 : &AMDGPU::VReg_64RegClass;
3971
3972 const TargetRegisterClass *Src0SubRC =
3973 TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
3974 const TargetRegisterClass *Src1SubRC =
3975 TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
3976
3977 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
3978 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
3979 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
3980 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
3981
3982 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
3983 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
3984 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
3985 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
3986
3987 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
3988 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3989 .addReg(CarryReg, RegState::Define)
3990 .add(SrcReg0Sub0)
3991 .add(SrcReg1Sub0)
3992 .addImm(0); // clamp bit
3993
3994 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
3995 MachineInstr *HiHalf =
3996 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3997 .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
3998 .add(SrcReg0Sub1)
3999 .add(SrcReg1Sub1)
4000 .addReg(CarryReg, RegState::Kill)
4001 .addImm(0); // clamp bit
4002
4003 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4004 .addReg(DestSub0)
4005 .addImm(AMDGPU::sub0)
4006 .addReg(DestSub1)
4007 .addImm(AMDGPU::sub1);
4008 TII->legalizeOperands(*LoHalf);
4009 TII->legalizeOperands(*HiHalf);
4010 MI.eraseFromParent();
4011 return BB;
4012 }
4013 case AMDGPU::S_ADD_CO_PSEUDO:
4014 case AMDGPU::S_SUB_CO_PSEUDO: {
4015 // This pseudo has a chance to be selected
4016 // only from uniform add/subcarry node. All the VGPR operands
4017 // therefore assumed to be splat vectors.
4018 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4019 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4020 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4021 MachineBasicBlock::iterator MII = MI;
4022 const DebugLoc &DL = MI.getDebugLoc();
4023 MachineOperand &Dest = MI.getOperand(0);
4024 MachineOperand &CarryDest = MI.getOperand(1);
4025 MachineOperand &Src0 = MI.getOperand(2);
4026 MachineOperand &Src1 = MI.getOperand(3);
4027 MachineOperand &Src2 = MI.getOperand(4);
4028 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4029 ? AMDGPU::S_ADDC_U32
4030 : AMDGPU::S_SUBB_U32;
4031 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4032 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4033 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4034 .addReg(Src0.getReg());
4035 Src0.setReg(RegOp0);
4036 }
4037 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4038 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4039 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4040 .addReg(Src1.getReg());
4041 Src1.setReg(RegOp1);
4042 }
4043 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4044 if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4045 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4046 .addReg(Src2.getReg());
4047 Src2.setReg(RegOp2);
4048 }
4049
4050 const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4051 if (TRI->getRegSizeInBits(*Src2RC) == 64) {
4052 if (ST.hasScalarCompareEq64()) {
4053 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4054 .addReg(Src2.getReg())
4055 .addImm(0);
4056 } else {
4057 const TargetRegisterClass *SubRC =
4058 TRI->getSubRegClass(Src2RC, AMDGPU::sub0);
4059 MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4060 MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4061 MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4062 MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4063 Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4064
4065 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4066 .add(Src2Sub0)
4067 .add(Src2Sub1);
4068
4069 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4070 .addReg(Src2_32, RegState::Kill)
4071 .addImm(0);
4072 }
4073 } else {
4074 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
4075 .addReg(Src2.getReg())
4076 .addImm(0);
4077 }
4078
4079 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4080
4081 BuildMI(*BB, MII, DL, TII->get(AMDGPU::COPY), CarryDest.getReg())
4082 .addReg(AMDGPU::SCC);
4083 MI.eraseFromParent();
4084 return BB;
4085 }
4086 case AMDGPU::SI_INIT_M0: {
4087 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4088 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4089 .add(MI.getOperand(0));
4090 MI.eraseFromParent();
4091 return BB;
4092 }
4093 case AMDGPU::GET_GROUPSTATICSIZE: {
4094 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4095 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4096 DebugLoc DL = MI.getDebugLoc();
4097 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4098 .add(MI.getOperand(0))
4099 .addImm(MFI->getLDSSize());
4100 MI.eraseFromParent();
4101 return BB;
4102 }
4103 case AMDGPU::SI_INDIRECT_SRC_V1:
4104 case AMDGPU::SI_INDIRECT_SRC_V2:
4105 case AMDGPU::SI_INDIRECT_SRC_V4:
4106 case AMDGPU::SI_INDIRECT_SRC_V8:
4107 case AMDGPU::SI_INDIRECT_SRC_V16:
4108 case AMDGPU::SI_INDIRECT_SRC_V32:
4109 return emitIndirectSrc(MI, *BB, *getSubtarget());
4110 case AMDGPU::SI_INDIRECT_DST_V1:
4111 case AMDGPU::SI_INDIRECT_DST_V2:
4112 case AMDGPU::SI_INDIRECT_DST_V4:
4113 case AMDGPU::SI_INDIRECT_DST_V8:
4114 case AMDGPU::SI_INDIRECT_DST_V16:
4115 case AMDGPU::SI_INDIRECT_DST_V32:
4116 return emitIndirectDst(MI, *BB, *getSubtarget());
4117 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4118 case AMDGPU::SI_KILL_I1_PSEUDO:
4119 return splitKillBlock(MI, BB);
4120 case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4121 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4122 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4123 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4124
4125 Register Dst = MI.getOperand(0).getReg();
4126 Register Src0 = MI.getOperand(1).getReg();
4127 Register Src1 = MI.getOperand(2).getReg();
4128 const DebugLoc &DL = MI.getDebugLoc();
4129 Register SrcCond = MI.getOperand(3).getReg();
4130
4131 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4132 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4133 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4134 Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4135
4136 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4137 .addReg(SrcCond);
4138 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4139 .addImm(0)
4140 .addReg(Src0, 0, AMDGPU::sub0)
4141 .addImm(0)
4142 .addReg(Src1, 0, AMDGPU::sub0)
4143 .addReg(SrcCondCopy);
4144 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4145 .addImm(0)
4146 .addReg(Src0, 0, AMDGPU::sub1)
4147 .addImm(0)
4148 .addReg(Src1, 0, AMDGPU::sub1)
4149 .addReg(SrcCondCopy);
4150
4151 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4152 .addReg(DstLo)
4153 .addImm(AMDGPU::sub0)
4154 .addReg(DstHi)
4155 .addImm(AMDGPU::sub1);
4156 MI.eraseFromParent();
4157 return BB;
4158 }
4159 case AMDGPU::SI_BR_UNDEF: {
4160 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4161 const DebugLoc &DL = MI.getDebugLoc();
4162 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4163 .add(MI.getOperand(0));
4164 Br->getOperand(1).setIsUndef(true); // read undef SCC
4165 MI.eraseFromParent();
4166 return BB;
4167 }
4168 case AMDGPU::ADJCALLSTACKUP:
4169 case AMDGPU::ADJCALLSTACKDOWN: {
4170 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4171 MachineInstrBuilder MIB(*MF, &MI);
4172 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4173 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4174 return BB;
4175 }
4176 case AMDGPU::SI_CALL_ISEL: {
4177 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4178 const DebugLoc &DL = MI.getDebugLoc();
4179
4180 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4181
4182 MachineInstrBuilder MIB;
4183 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4184
4185 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
4186 MIB.add(MI.getOperand(I));
4187
4188 MIB.cloneMemRefs(MI);
4189 MI.eraseFromParent();
4190 return BB;
4191 }
4192 case AMDGPU::V_ADD_CO_U32_e32:
4193 case AMDGPU::V_SUB_CO_U32_e32:
4194 case AMDGPU::V_SUBREV_CO_U32_e32: {
4195 // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4196 const DebugLoc &DL = MI.getDebugLoc();
4197 unsigned Opc = MI.getOpcode();
4198
4199 bool NeedClampOperand = false;
4200 if (TII->pseudoToMCOpcode(Opc) == -1) {
4201 Opc = AMDGPU::getVOPe64(Opc);
4202 NeedClampOperand = true;
4203 }
4204
4205 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4206 if (TII->isVOP3(*I)) {
4207 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4208 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4209 I.addReg(TRI->getVCC(), RegState::Define);
4210 }
4211 I.add(MI.getOperand(1))
4212 .add(MI.getOperand(2));
4213 if (NeedClampOperand)
4214 I.addImm(0); // clamp bit for e64 encoding
4215
4216 TII->legalizeOperands(*I);
4217
4218 MI.eraseFromParent();
4219 return BB;
4220 }
4221 case AMDGPU::DS_GWS_INIT:
4222 case AMDGPU::DS_GWS_SEMA_V:
4223 case AMDGPU::DS_GWS_SEMA_BR:
4224 case AMDGPU::DS_GWS_SEMA_P:
4225 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4226 case AMDGPU::DS_GWS_BARRIER:
4227 // A s_waitcnt 0 is required to be the instruction immediately following.
4228 if (getSubtarget()->hasGWSAutoReplay()) {
4229 bundleInstWithWaitcnt(MI);
4230 return BB;
4231 }
4232
4233 return emitGWSMemViolTestLoop(MI, BB);
4234 case AMDGPU::S_SETREG_B32: {
4235 // Try to optimize cases that only set the denormal mode or rounding mode.
4236 //
4237 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4238 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4239 // instead.
4240 //
4241 // FIXME: This could be predicates on the immediate, but tablegen doesn't
4242 // allow you to have a no side effect instruction in the output of a
4243 // sideeffecting pattern.
4244 unsigned ID, Offset, Width;
4245 AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4246 if (ID != AMDGPU::Hwreg::ID_MODE)
4247 return BB;
4248
4249 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4250 const unsigned SetMask = WidthMask << Offset;
4251
4252 if (getSubtarget()->hasDenormModeInst()) {
4253 unsigned SetDenormOp = 0;
4254 unsigned SetRoundOp = 0;
4255
4256 // The dedicated instructions can only set the whole denorm or round mode
4257 // at once, not a subset of bits in either.
4258 if (SetMask ==
4259 (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4260 // If this fully sets both the round and denorm mode, emit the two
4261 // dedicated instructions for these.
4262 SetRoundOp = AMDGPU::S_ROUND_MODE;
4263 SetDenormOp = AMDGPU::S_DENORM_MODE;
4264 } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4265 SetRoundOp = AMDGPU::S_ROUND_MODE;
4266 } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4267 SetDenormOp = AMDGPU::S_DENORM_MODE;
4268 }
4269
4270 if (SetRoundOp || SetDenormOp) {
4271 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4272 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4273 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4274 unsigned ImmVal = Def->getOperand(1).getImm();
4275 if (SetRoundOp) {
4276 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4277 .addImm(ImmVal & 0xf);
4278
4279 // If we also have the denorm mode, get just the denorm mode bits.
4280 ImmVal >>= 4;
4281 }
4282
4283 if (SetDenormOp) {
4284 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4285 .addImm(ImmVal & 0xf);
4286 }
4287
4288 MI.eraseFromParent();
4289 return BB;
4290 }
4291 }
4292 }
4293
4294 // If only FP bits are touched, used the no side effects pseudo.
4295 if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4296 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4297 MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4298
4299 return BB;
4300 }
4301 default:
4302 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4303 }
4304 }
4305
hasBitPreservingFPLogic(EVT VT) const4306 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4307 return isTypeLegal(VT.getScalarType());
4308 }
4309
enableAggressiveFMAFusion(EVT VT) const4310 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4311 // This currently forces unfolding various combinations of fsub into fma with
4312 // free fneg'd operands. As long as we have fast FMA (controlled by
4313 // isFMAFasterThanFMulAndFAdd), we should perform these.
4314
4315 // When fma is quarter rate, for f64 where add / sub are at best half rate,
4316 // most of these combines appear to be cycle neutral but save on instruction
4317 // count / code size.
4318 return true;
4319 }
4320
getSetCCResultType(const DataLayout & DL,LLVMContext & Ctx,EVT VT) const4321 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4322 EVT VT) const {
4323 if (!VT.isVector()) {
4324 return MVT::i1;
4325 }
4326 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4327 }
4328
getScalarShiftAmountTy(const DataLayout &,EVT VT) const4329 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4330 // TODO: Should i16 be used always if legal? For now it would force VALU
4331 // shifts.
4332 return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4333 }
4334
getPreferredShiftAmountTy(LLT Ty) const4335 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4336 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4337 ? Ty.changeElementSize(16)
4338 : Ty.changeElementSize(32);
4339 }
4340
4341 // Answering this is somewhat tricky and depends on the specific device which
4342 // have different rates for fma or all f64 operations.
4343 //
4344 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4345 // regardless of which device (although the number of cycles differs between
4346 // devices), so it is always profitable for f64.
4347 //
4348 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4349 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
4350 // which we can always do even without fused FP ops since it returns the same
4351 // result as the separate operations and since it is always full
4352 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4353 // however does not support denormals, so we do report fma as faster if we have
4354 // a fast fma device and require denormals.
4355 //
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const4356 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4357 EVT VT) const {
4358 VT = VT.getScalarType();
4359
4360 switch (VT.getSimpleVT().SimpleTy) {
4361 case MVT::f32: {
4362 // If mad is not available this depends only on if f32 fma is full rate.
4363 if (!Subtarget->hasMadMacF32Insts())
4364 return Subtarget->hasFastFMAF32();
4365
4366 // Otherwise f32 mad is always full rate and returns the same result as
4367 // the separate operations so should be preferred over fma.
4368 // However does not support denomals.
4369 if (hasFP32Denormals(MF))
4370 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4371
4372 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4373 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4374 }
4375 case MVT::f64:
4376 return true;
4377 case MVT::f16:
4378 return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4379 default:
4380 break;
4381 }
4382
4383 return false;
4384 }
4385
isFMADLegal(const SelectionDAG & DAG,const SDNode * N) const4386 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4387 const SDNode *N) const {
4388 // TODO: Check future ftz flag
4389 // v_mad_f32/v_mac_f32 do not support denormals.
4390 EVT VT = N->getValueType(0);
4391 if (VT == MVT::f32)
4392 return Subtarget->hasMadMacF32Insts() &&
4393 !hasFP32Denormals(DAG.getMachineFunction());
4394 if (VT == MVT::f16) {
4395 return Subtarget->hasMadF16() &&
4396 !hasFP64FP16Denormals(DAG.getMachineFunction());
4397 }
4398
4399 return false;
4400 }
4401
4402 //===----------------------------------------------------------------------===//
4403 // Custom DAG Lowering Operations
4404 //===----------------------------------------------------------------------===//
4405
4406 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4407 // wider vector type is legal.
splitUnaryVectorOp(SDValue Op,SelectionDAG & DAG) const4408 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4409 SelectionDAG &DAG) const {
4410 unsigned Opc = Op.getOpcode();
4411 EVT VT = Op.getValueType();
4412 assert(VT == MVT::v4f16 || VT == MVT::v4i16);
4413
4414 SDValue Lo, Hi;
4415 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4416
4417 SDLoc SL(Op);
4418 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4419 Op->getFlags());
4420 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4421 Op->getFlags());
4422
4423 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4424 }
4425
4426 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4427 // wider vector type is legal.
splitBinaryVectorOp(SDValue Op,SelectionDAG & DAG) const4428 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4429 SelectionDAG &DAG) const {
4430 unsigned Opc = Op.getOpcode();
4431 EVT VT = Op.getValueType();
4432 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
4433 VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32);
4434
4435 SDValue Lo0, Hi0;
4436 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4437 SDValue Lo1, Hi1;
4438 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4439
4440 SDLoc SL(Op);
4441
4442 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4443 Op->getFlags());
4444 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4445 Op->getFlags());
4446
4447 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4448 }
4449
splitTernaryVectorOp(SDValue Op,SelectionDAG & DAG) const4450 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4451 SelectionDAG &DAG) const {
4452 unsigned Opc = Op.getOpcode();
4453 EVT VT = Op.getValueType();
4454 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
4455 VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32);
4456
4457 SDValue Lo0, Hi0;
4458 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4459 SDValue Lo1, Hi1;
4460 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4461 SDValue Lo2, Hi2;
4462 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4463
4464 SDLoc SL(Op);
4465
4466 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
4467 Op->getFlags());
4468 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
4469 Op->getFlags());
4470
4471 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4472 }
4473
4474
LowerOperation(SDValue Op,SelectionDAG & DAG) const4475 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4476 switch (Op.getOpcode()) {
4477 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4478 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4479 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4480 case ISD::LOAD: {
4481 SDValue Result = LowerLOAD(Op, DAG);
4482 assert((!Result.getNode() ||
4483 Result.getNode()->getNumValues() == 2) &&
4484 "Load should return a value and a chain");
4485 return Result;
4486 }
4487
4488 case ISD::FSIN:
4489 case ISD::FCOS:
4490 return LowerTrig(Op, DAG);
4491 case ISD::SELECT: return LowerSELECT(Op, DAG);
4492 case ISD::FDIV: return LowerFDIV(Op, DAG);
4493 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4494 case ISD::STORE: return LowerSTORE(Op, DAG);
4495 case ISD::GlobalAddress: {
4496 MachineFunction &MF = DAG.getMachineFunction();
4497 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4498 return LowerGlobalAddress(MFI, Op, DAG);
4499 }
4500 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4501 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4502 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4503 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4504 case ISD::INSERT_SUBVECTOR:
4505 return lowerINSERT_SUBVECTOR(Op, DAG);
4506 case ISD::INSERT_VECTOR_ELT:
4507 return lowerINSERT_VECTOR_ELT(Op, DAG);
4508 case ISD::EXTRACT_VECTOR_ELT:
4509 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4510 case ISD::VECTOR_SHUFFLE:
4511 return lowerVECTOR_SHUFFLE(Op, DAG);
4512 case ISD::BUILD_VECTOR:
4513 return lowerBUILD_VECTOR(Op, DAG);
4514 case ISD::FP_ROUND:
4515 return lowerFP_ROUND(Op, DAG);
4516 case ISD::TRAP:
4517 return lowerTRAP(Op, DAG);
4518 case ISD::DEBUGTRAP:
4519 return lowerDEBUGTRAP(Op, DAG);
4520 case ISD::FABS:
4521 case ISD::FNEG:
4522 case ISD::FCANONICALIZE:
4523 case ISD::BSWAP:
4524 return splitUnaryVectorOp(Op, DAG);
4525 case ISD::FMINNUM:
4526 case ISD::FMAXNUM:
4527 return lowerFMINNUM_FMAXNUM(Op, DAG);
4528 case ISD::FMA:
4529 return splitTernaryVectorOp(Op, DAG);
4530 case ISD::FP_TO_SINT:
4531 case ISD::FP_TO_UINT:
4532 return LowerFP_TO_INT(Op, DAG);
4533 case ISD::SHL:
4534 case ISD::SRA:
4535 case ISD::SRL:
4536 case ISD::ADD:
4537 case ISD::SUB:
4538 case ISD::MUL:
4539 case ISD::SMIN:
4540 case ISD::SMAX:
4541 case ISD::UMIN:
4542 case ISD::UMAX:
4543 case ISD::FADD:
4544 case ISD::FMUL:
4545 case ISD::FMINNUM_IEEE:
4546 case ISD::FMAXNUM_IEEE:
4547 case ISD::UADDSAT:
4548 case ISD::USUBSAT:
4549 case ISD::SADDSAT:
4550 case ISD::SSUBSAT:
4551 return splitBinaryVectorOp(Op, DAG);
4552 case ISD::SMULO:
4553 case ISD::UMULO:
4554 return lowerXMULO(Op, DAG);
4555 case ISD::DYNAMIC_STACKALLOC:
4556 return LowerDYNAMIC_STACKALLOC(Op, DAG);
4557 }
4558 return SDValue();
4559 }
4560
4561 // Used for D16: Casts the result of an instruction into the right vector,
4562 // packs values if loads return unpacked values.
adjustLoadValueTypeImpl(SDValue Result,EVT LoadVT,const SDLoc & DL,SelectionDAG & DAG,bool Unpacked)4563 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4564 const SDLoc &DL,
4565 SelectionDAG &DAG, bool Unpacked) {
4566 if (!LoadVT.isVector())
4567 return Result;
4568
4569 // Cast back to the original packed type or to a larger type that is a
4570 // multiple of 32 bit for D16. Widening the return type is a required for
4571 // legalization.
4572 EVT FittingLoadVT = LoadVT;
4573 if ((LoadVT.getVectorNumElements() % 2) == 1) {
4574 FittingLoadVT =
4575 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4576 LoadVT.getVectorNumElements() + 1);
4577 }
4578
4579 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4580 // Truncate to v2i16/v4i16.
4581 EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4582
4583 // Workaround legalizer not scalarizing truncate after vector op
4584 // legalization but not creating intermediate vector trunc.
4585 SmallVector<SDValue, 4> Elts;
4586 DAG.ExtractVectorElements(Result, Elts);
4587 for (SDValue &Elt : Elts)
4588 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4589
4590 // Pad illegal v1i16/v3fi6 to v4i16
4591 if ((LoadVT.getVectorNumElements() % 2) == 1)
4592 Elts.push_back(DAG.getUNDEF(MVT::i16));
4593
4594 Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4595
4596 // Bitcast to original type (v2f16/v4f16).
4597 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4598 }
4599
4600 // Cast back to the original packed type.
4601 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4602 }
4603
adjustLoadValueType(unsigned Opcode,MemSDNode * M,SelectionDAG & DAG,ArrayRef<SDValue> Ops,bool IsIntrinsic) const4604 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4605 MemSDNode *M,
4606 SelectionDAG &DAG,
4607 ArrayRef<SDValue> Ops,
4608 bool IsIntrinsic) const {
4609 SDLoc DL(M);
4610
4611 bool Unpacked = Subtarget->hasUnpackedD16VMem();
4612 EVT LoadVT = M->getValueType(0);
4613
4614 EVT EquivLoadVT = LoadVT;
4615 if (LoadVT.isVector()) {
4616 if (Unpacked) {
4617 EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4618 LoadVT.getVectorNumElements());
4619 } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4620 // Widen v3f16 to legal type
4621 EquivLoadVT =
4622 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4623 LoadVT.getVectorNumElements() + 1);
4624 }
4625 }
4626
4627 // Change from v4f16/v2f16 to EquivLoadVT.
4628 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4629
4630 SDValue Load
4631 = DAG.getMemIntrinsicNode(
4632 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4633 VTList, Ops, M->getMemoryVT(),
4634 M->getMemOperand());
4635
4636 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4637
4638 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4639 }
4640
lowerIntrinsicLoad(MemSDNode * M,bool IsFormat,SelectionDAG & DAG,ArrayRef<SDValue> Ops) const4641 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4642 SelectionDAG &DAG,
4643 ArrayRef<SDValue> Ops) const {
4644 SDLoc DL(M);
4645 EVT LoadVT = M->getValueType(0);
4646 EVT EltType = LoadVT.getScalarType();
4647 EVT IntVT = LoadVT.changeTypeToInteger();
4648
4649 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4650
4651 unsigned Opc =
4652 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4653
4654 if (IsD16) {
4655 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4656 }
4657
4658 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4659 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4660 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4661
4662 if (isTypeLegal(LoadVT)) {
4663 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4664 M->getMemOperand(), DAG);
4665 }
4666
4667 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4668 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4669 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4670 M->getMemOperand(), DAG);
4671 return DAG.getMergeValues(
4672 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4673 DL);
4674 }
4675
lowerICMPIntrinsic(const SITargetLowering & TLI,SDNode * N,SelectionDAG & DAG)4676 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4677 SDNode *N, SelectionDAG &DAG) {
4678 EVT VT = N->getValueType(0);
4679 const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4680 unsigned CondCode = CD->getZExtValue();
4681 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4682 return DAG.getUNDEF(VT);
4683
4684 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4685
4686 SDValue LHS = N->getOperand(1);
4687 SDValue RHS = N->getOperand(2);
4688
4689 SDLoc DL(N);
4690
4691 EVT CmpVT = LHS.getValueType();
4692 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4693 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4694 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4695 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4696 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4697 }
4698
4699 ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4700
4701 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4702 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4703
4704 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4705 DAG.getCondCode(CCOpcode));
4706 if (VT.bitsEq(CCVT))
4707 return SetCC;
4708 return DAG.getZExtOrTrunc(SetCC, DL, VT);
4709 }
4710
lowerFCMPIntrinsic(const SITargetLowering & TLI,SDNode * N,SelectionDAG & DAG)4711 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4712 SDNode *N, SelectionDAG &DAG) {
4713 EVT VT = N->getValueType(0);
4714 const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4715
4716 unsigned CondCode = CD->getZExtValue();
4717 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4718 return DAG.getUNDEF(VT);
4719
4720 SDValue Src0 = N->getOperand(1);
4721 SDValue Src1 = N->getOperand(2);
4722 EVT CmpVT = Src0.getValueType();
4723 SDLoc SL(N);
4724
4725 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4726 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4727 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4728 }
4729
4730 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4731 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4732 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4733 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4734 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4735 Src1, DAG.getCondCode(CCOpcode));
4736 if (VT.bitsEq(CCVT))
4737 return SetCC;
4738 return DAG.getZExtOrTrunc(SetCC, SL, VT);
4739 }
4740
lowerBALLOTIntrinsic(const SITargetLowering & TLI,SDNode * N,SelectionDAG & DAG)4741 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4742 SelectionDAG &DAG) {
4743 EVT VT = N->getValueType(0);
4744 SDValue Src = N->getOperand(1);
4745 SDLoc SL(N);
4746
4747 if (Src.getOpcode() == ISD::SETCC) {
4748 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4749 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4750 Src.getOperand(1), Src.getOperand(2));
4751 }
4752 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4753 // (ballot 0) -> 0
4754 if (Arg->isNullValue())
4755 return DAG.getConstant(0, SL, VT);
4756
4757 // (ballot 1) -> EXEC/EXEC_LO
4758 if (Arg->isOne()) {
4759 Register Exec;
4760 if (VT.getScalarSizeInBits() == 32)
4761 Exec = AMDGPU::EXEC_LO;
4762 else if (VT.getScalarSizeInBits() == 64)
4763 Exec = AMDGPU::EXEC;
4764 else
4765 return SDValue();
4766
4767 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
4768 }
4769 }
4770
4771 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
4772 // ISD::SETNE)
4773 return DAG.getNode(
4774 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
4775 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
4776 }
4777
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const4778 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4779 SmallVectorImpl<SDValue> &Results,
4780 SelectionDAG &DAG) const {
4781 switch (N->getOpcode()) {
4782 case ISD::INSERT_VECTOR_ELT: {
4783 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4784 Results.push_back(Res);
4785 return;
4786 }
4787 case ISD::EXTRACT_VECTOR_ELT: {
4788 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4789 Results.push_back(Res);
4790 return;
4791 }
4792 case ISD::INTRINSIC_WO_CHAIN: {
4793 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4794 switch (IID) {
4795 case Intrinsic::amdgcn_cvt_pkrtz: {
4796 SDValue Src0 = N->getOperand(1);
4797 SDValue Src1 = N->getOperand(2);
4798 SDLoc SL(N);
4799 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4800 Src0, Src1);
4801 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4802 return;
4803 }
4804 case Intrinsic::amdgcn_cvt_pknorm_i16:
4805 case Intrinsic::amdgcn_cvt_pknorm_u16:
4806 case Intrinsic::amdgcn_cvt_pk_i16:
4807 case Intrinsic::amdgcn_cvt_pk_u16: {
4808 SDValue Src0 = N->getOperand(1);
4809 SDValue Src1 = N->getOperand(2);
4810 SDLoc SL(N);
4811 unsigned Opcode;
4812
4813 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4814 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4815 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4816 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4817 else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4818 Opcode = AMDGPUISD::CVT_PK_I16_I32;
4819 else
4820 Opcode = AMDGPUISD::CVT_PK_U16_U32;
4821
4822 EVT VT = N->getValueType(0);
4823 if (isTypeLegal(VT))
4824 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4825 else {
4826 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4827 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4828 }
4829 return;
4830 }
4831 }
4832 break;
4833 }
4834 case ISD::INTRINSIC_W_CHAIN: {
4835 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4836 if (Res.getOpcode() == ISD::MERGE_VALUES) {
4837 // FIXME: Hacky
4838 for (unsigned I = 0; I < Res.getNumOperands(); I++) {
4839 Results.push_back(Res.getOperand(I));
4840 }
4841 } else {
4842 Results.push_back(Res);
4843 Results.push_back(Res.getValue(1));
4844 }
4845 return;
4846 }
4847
4848 break;
4849 }
4850 case ISD::SELECT: {
4851 SDLoc SL(N);
4852 EVT VT = N->getValueType(0);
4853 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4854 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4855 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4856
4857 EVT SelectVT = NewVT;
4858 if (NewVT.bitsLT(MVT::i32)) {
4859 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4860 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4861 SelectVT = MVT::i32;
4862 }
4863
4864 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4865 N->getOperand(0), LHS, RHS);
4866
4867 if (NewVT != SelectVT)
4868 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4869 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4870 return;
4871 }
4872 case ISD::FNEG: {
4873 if (N->getValueType(0) != MVT::v2f16)
4874 break;
4875
4876 SDLoc SL(N);
4877 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4878
4879 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4880 BC,
4881 DAG.getConstant(0x80008000, SL, MVT::i32));
4882 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4883 return;
4884 }
4885 case ISD::FABS: {
4886 if (N->getValueType(0) != MVT::v2f16)
4887 break;
4888
4889 SDLoc SL(N);
4890 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4891
4892 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4893 BC,
4894 DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4895 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4896 return;
4897 }
4898 default:
4899 break;
4900 }
4901 }
4902
4903 /// Helper function for LowerBRCOND
findUser(SDValue Value,unsigned Opcode)4904 static SDNode *findUser(SDValue Value, unsigned Opcode) {
4905
4906 SDNode *Parent = Value.getNode();
4907 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
4908 I != E; ++I) {
4909
4910 if (I.getUse().get() != Value)
4911 continue;
4912
4913 if (I->getOpcode() == Opcode)
4914 return *I;
4915 }
4916 return nullptr;
4917 }
4918
isCFIntrinsic(const SDNode * Intr) const4919 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
4920 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4921 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
4922 case Intrinsic::amdgcn_if:
4923 return AMDGPUISD::IF;
4924 case Intrinsic::amdgcn_else:
4925 return AMDGPUISD::ELSE;
4926 case Intrinsic::amdgcn_loop:
4927 return AMDGPUISD::LOOP;
4928 case Intrinsic::amdgcn_end_cf:
4929 llvm_unreachable("should not occur");
4930 default:
4931 return 0;
4932 }
4933 }
4934
4935 // break, if_break, else_break are all only used as inputs to loop, not
4936 // directly as branch conditions.
4937 return 0;
4938 }
4939
shouldEmitFixup(const GlobalValue * GV) const4940 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
4941 const Triple &TT = getTargetMachine().getTargetTriple();
4942 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4943 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4944 AMDGPU::shouldEmitConstantsToTextSection(TT);
4945 }
4946
shouldEmitGOTReloc(const GlobalValue * GV) const4947 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
4948 // FIXME: Either avoid relying on address space here or change the default
4949 // address space for functions to avoid the explicit check.
4950 return (GV->getValueType()->isFunctionTy() ||
4951 !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
4952 !shouldEmitFixup(GV) &&
4953 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
4954 }
4955
shouldEmitPCReloc(const GlobalValue * GV) const4956 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
4957 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
4958 }
4959
shouldUseLDSConstAddress(const GlobalValue * GV) const4960 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
4961 if (!GV->hasExternalLinkage())
4962 return true;
4963
4964 const auto OS = getTargetMachine().getTargetTriple().getOS();
4965 return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
4966 }
4967
4968 /// This transforms the control flow intrinsics to get the branch destination as
4969 /// last parameter, also switches branch target with BR if the need arise
LowerBRCOND(SDValue BRCOND,SelectionDAG & DAG) const4970 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
4971 SelectionDAG &DAG) const {
4972 SDLoc DL(BRCOND);
4973
4974 SDNode *Intr = BRCOND.getOperand(1).getNode();
4975 SDValue Target = BRCOND.getOperand(2);
4976 SDNode *BR = nullptr;
4977 SDNode *SetCC = nullptr;
4978
4979 if (Intr->getOpcode() == ISD::SETCC) {
4980 // As long as we negate the condition everything is fine
4981 SetCC = Intr;
4982 Intr = SetCC->getOperand(0).getNode();
4983
4984 } else {
4985 // Get the target from BR if we don't negate the condition
4986 BR = findUser(BRCOND, ISD::BR);
4987 assert(BR && "brcond missing unconditional branch user");
4988 Target = BR->getOperand(1);
4989 }
4990
4991 unsigned CFNode = isCFIntrinsic(Intr);
4992 if (CFNode == 0) {
4993 // This is a uniform branch so we don't need to legalize.
4994 return BRCOND;
4995 }
4996
4997 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
4998 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
4999
5000 assert(!SetCC ||
5001 (SetCC->getConstantOperandVal(1) == 1 &&
5002 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
5003 ISD::SETNE));
5004
5005 // operands of the new intrinsic call
5006 SmallVector<SDValue, 4> Ops;
5007 if (HaveChain)
5008 Ops.push_back(BRCOND.getOperand(0));
5009
5010 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end());
5011 Ops.push_back(Target);
5012
5013 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5014
5015 // build the new intrinsic call
5016 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5017
5018 if (!HaveChain) {
5019 SDValue Ops[] = {
5020 SDValue(Result, 0),
5021 BRCOND.getOperand(0)
5022 };
5023
5024 Result = DAG.getMergeValues(Ops, DL).getNode();
5025 }
5026
5027 if (BR) {
5028 // Give the branch instruction our target
5029 SDValue Ops[] = {
5030 BR->getOperand(0),
5031 BRCOND.getOperand(2)
5032 };
5033 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5034 DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5035 }
5036
5037 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5038
5039 // Copy the intrinsic results to registers
5040 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5041 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5042 if (!CopyToReg)
5043 continue;
5044
5045 Chain = DAG.getCopyToReg(
5046 Chain, DL,
5047 CopyToReg->getOperand(1),
5048 SDValue(Result, i - 1),
5049 SDValue());
5050
5051 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5052 }
5053
5054 // Remove the old intrinsic from the chain
5055 DAG.ReplaceAllUsesOfValueWith(
5056 SDValue(Intr, Intr->getNumValues() - 1),
5057 Intr->getOperand(0));
5058
5059 return Chain;
5060 }
5061
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const5062 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5063 SelectionDAG &DAG) const {
5064 MVT VT = Op.getSimpleValueType();
5065 SDLoc DL(Op);
5066 // Checking the depth
5067 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5068 return DAG.getConstant(0, DL, VT);
5069
5070 MachineFunction &MF = DAG.getMachineFunction();
5071 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5072 // Check for kernel and shader functions
5073 if (Info->isEntryFunction())
5074 return DAG.getConstant(0, DL, VT);
5075
5076 MachineFrameInfo &MFI = MF.getFrameInfo();
5077 // There is a call to @llvm.returnaddress in this function
5078 MFI.setReturnAddressIsTaken(true);
5079
5080 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5081 // Get the return address reg and mark it as an implicit live-in
5082 Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5083
5084 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5085 }
5086
getFPExtOrFPRound(SelectionDAG & DAG,SDValue Op,const SDLoc & DL,EVT VT) const5087 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5088 SDValue Op,
5089 const SDLoc &DL,
5090 EVT VT) const {
5091 return Op.getValueType().bitsLE(VT) ?
5092 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5093 DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5094 DAG.getTargetConstant(0, DL, MVT::i32));
5095 }
5096
lowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const5097 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5098 assert(Op.getValueType() == MVT::f16 &&
5099 "Do not know how to custom lower FP_ROUND for non-f16 type");
5100
5101 SDValue Src = Op.getOperand(0);
5102 EVT SrcVT = Src.getValueType();
5103 if (SrcVT != MVT::f64)
5104 return Op;
5105
5106 SDLoc DL(Op);
5107
5108 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5109 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5110 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5111 }
5112
lowerFMINNUM_FMAXNUM(SDValue Op,SelectionDAG & DAG) const5113 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5114 SelectionDAG &DAG) const {
5115 EVT VT = Op.getValueType();
5116 const MachineFunction &MF = DAG.getMachineFunction();
5117 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5118 bool IsIEEEMode = Info->getMode().IEEE;
5119
5120 // FIXME: Assert during selection that this is only selected for
5121 // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5122 // mode functions, but this happens to be OK since it's only done in cases
5123 // where there is known no sNaN.
5124 if (IsIEEEMode)
5125 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5126
5127 if (VT == MVT::v4f16)
5128 return splitBinaryVectorOp(Op, DAG);
5129 return Op;
5130 }
5131
lowerXMULO(SDValue Op,SelectionDAG & DAG) const5132 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5133 EVT VT = Op.getValueType();
5134 SDLoc SL(Op);
5135 SDValue LHS = Op.getOperand(0);
5136 SDValue RHS = Op.getOperand(1);
5137 bool isSigned = Op.getOpcode() == ISD::SMULO;
5138
5139 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5140 const APInt &C = RHSC->getAPIntValue();
5141 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5142 if (C.isPowerOf2()) {
5143 // smulo(x, signed_min) is same as umulo(x, signed_min).
5144 bool UseArithShift = isSigned && !C.isMinSignedValue();
5145 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5146 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5147 SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5148 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5149 SL, VT, Result, ShiftAmt),
5150 LHS, ISD::SETNE);
5151 return DAG.getMergeValues({ Result, Overflow }, SL);
5152 }
5153 }
5154
5155 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5156 SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5157 SL, VT, LHS, RHS);
5158
5159 SDValue Sign = isSigned
5160 ? DAG.getNode(ISD::SRA, SL, VT, Result,
5161 DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5162 : DAG.getConstant(0, SL, VT);
5163 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5164
5165 return DAG.getMergeValues({ Result, Overflow }, SL);
5166 }
5167
lowerTRAP(SDValue Op,SelectionDAG & DAG) const5168 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5169 if (!Subtarget->isTrapHandlerEnabled() ||
5170 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
5171 return lowerTrapEndpgm(Op, DAG);
5172
5173 if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) {
5174 switch (*HsaAbiVer) {
5175 case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
5176 case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
5177 return lowerTrapHsaQueuePtr(Op, DAG);
5178 case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
5179 return Subtarget->supportsGetDoorbellID() ?
5180 lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG);
5181 }
5182 }
5183
5184 llvm_unreachable("Unknown trap handler");
5185 }
5186
lowerTrapEndpgm(SDValue Op,SelectionDAG & DAG) const5187 SDValue SITargetLowering::lowerTrapEndpgm(
5188 SDValue Op, SelectionDAG &DAG) const {
5189 SDLoc SL(Op);
5190 SDValue Chain = Op.getOperand(0);
5191 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5192 }
5193
lowerTrapHsaQueuePtr(SDValue Op,SelectionDAG & DAG) const5194 SDValue SITargetLowering::lowerTrapHsaQueuePtr(
5195 SDValue Op, SelectionDAG &DAG) const {
5196 SDLoc SL(Op);
5197 SDValue Chain = Op.getOperand(0);
5198
5199 MachineFunction &MF = DAG.getMachineFunction();
5200 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5201 Register UserSGPR = Info->getQueuePtrUserSGPR();
5202 assert(UserSGPR != AMDGPU::NoRegister);
5203 SDValue QueuePtr = CreateLiveInRegister(
5204 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5205 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5206 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5207 QueuePtr, SDValue());
5208
5209 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5210 SDValue Ops[] = {
5211 ToReg,
5212 DAG.getTargetConstant(TrapID, SL, MVT::i16),
5213 SGPR01,
5214 ToReg.getValue(1)
5215 };
5216 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5217 }
5218
lowerTrapHsa(SDValue Op,SelectionDAG & DAG) const5219 SDValue SITargetLowering::lowerTrapHsa(
5220 SDValue Op, SelectionDAG &DAG) const {
5221 SDLoc SL(Op);
5222 SDValue Chain = Op.getOperand(0);
5223
5224 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5225 SDValue Ops[] = {
5226 Chain,
5227 DAG.getTargetConstant(TrapID, SL, MVT::i16)
5228 };
5229 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5230 }
5231
lowerDEBUGTRAP(SDValue Op,SelectionDAG & DAG) const5232 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5233 SDLoc SL(Op);
5234 SDValue Chain = Op.getOperand(0);
5235 MachineFunction &MF = DAG.getMachineFunction();
5236
5237 if (!Subtarget->isTrapHandlerEnabled() ||
5238 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
5239 DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5240 "debugtrap handler not supported",
5241 Op.getDebugLoc(),
5242 DS_Warning);
5243 LLVMContext &Ctx = MF.getFunction().getContext();
5244 Ctx.diagnose(NoTrap);
5245 return Chain;
5246 }
5247
5248 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
5249 SDValue Ops[] = {
5250 Chain,
5251 DAG.getTargetConstant(TrapID, SL, MVT::i16)
5252 };
5253 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5254 }
5255
getSegmentAperture(unsigned AS,const SDLoc & DL,SelectionDAG & DAG) const5256 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5257 SelectionDAG &DAG) const {
5258 // FIXME: Use inline constants (src_{shared, private}_base) instead.
5259 if (Subtarget->hasApertureRegs()) {
5260 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5261 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5262 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5263 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5264 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5265 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5266 unsigned Encoding =
5267 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5268 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5269 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5270
5271 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5272 SDValue ApertureReg = SDValue(
5273 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5274 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5275 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5276 }
5277
5278 MachineFunction &MF = DAG.getMachineFunction();
5279 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5280 Register UserSGPR = Info->getQueuePtrUserSGPR();
5281 assert(UserSGPR != AMDGPU::NoRegister);
5282
5283 SDValue QueuePtr = CreateLiveInRegister(
5284 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5285
5286 // Offset into amd_queue_t for group_segment_aperture_base_hi /
5287 // private_segment_aperture_base_hi.
5288 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5289
5290 SDValue Ptr =
5291 DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5292
5293 // TODO: Use custom target PseudoSourceValue.
5294 // TODO: We should use the value from the IR intrinsic call, but it might not
5295 // be available and how do we get it?
5296 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5297 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5298 commonAlignment(Align(64), StructOffset),
5299 MachineMemOperand::MODereferenceable |
5300 MachineMemOperand::MOInvariant);
5301 }
5302
lowerADDRSPACECAST(SDValue Op,SelectionDAG & DAG) const5303 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5304 SelectionDAG &DAG) const {
5305 SDLoc SL(Op);
5306 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5307
5308 SDValue Src = ASC->getOperand(0);
5309 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5310
5311 const AMDGPUTargetMachine &TM =
5312 static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5313
5314 // flat -> local/private
5315 if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5316 unsigned DestAS = ASC->getDestAddressSpace();
5317
5318 if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5319 DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5320 unsigned NullVal = TM.getNullPointerValue(DestAS);
5321 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5322 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5323 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5324
5325 return DAG.getNode(ISD::SELECT, SL, MVT::i32,
5326 NonNull, Ptr, SegmentNullPtr);
5327 }
5328 }
5329
5330 // local/private -> flat
5331 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5332 unsigned SrcAS = ASC->getSrcAddressSpace();
5333
5334 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5335 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5336 unsigned NullVal = TM.getNullPointerValue(SrcAS);
5337 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5338
5339 SDValue NonNull
5340 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5341
5342 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5343 SDValue CvtPtr
5344 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5345
5346 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
5347 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
5348 FlatNullPtr);
5349 }
5350 }
5351
5352 if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5353 Src.getValueType() == MVT::i64)
5354 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5355
5356 // global <-> flat are no-ops and never emitted.
5357
5358 const MachineFunction &MF = DAG.getMachineFunction();
5359 DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5360 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5361 DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5362
5363 return DAG.getUNDEF(ASC->getValueType(0));
5364 }
5365
5366 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5367 // the small vector and inserting them into the big vector. That is better than
5368 // the default expansion of doing it via a stack slot. Even though the use of
5369 // the stack slot would be optimized away afterwards, the stack slot itself
5370 // remains.
lowerINSERT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const5371 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5372 SelectionDAG &DAG) const {
5373 SDValue Vec = Op.getOperand(0);
5374 SDValue Ins = Op.getOperand(1);
5375 SDValue Idx = Op.getOperand(2);
5376 EVT VecVT = Vec.getValueType();
5377 EVT InsVT = Ins.getValueType();
5378 EVT EltVT = VecVT.getVectorElementType();
5379 unsigned InsNumElts = InsVT.getVectorNumElements();
5380 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5381 SDLoc SL(Op);
5382
5383 for (unsigned I = 0; I != InsNumElts; ++I) {
5384 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5385 DAG.getConstant(I, SL, MVT::i32));
5386 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5387 DAG.getConstant(IdxVal + I, SL, MVT::i32));
5388 }
5389 return Vec;
5390 }
5391
lowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const5392 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5393 SelectionDAG &DAG) const {
5394 SDValue Vec = Op.getOperand(0);
5395 SDValue InsVal = Op.getOperand(1);
5396 SDValue Idx = Op.getOperand(2);
5397 EVT VecVT = Vec.getValueType();
5398 EVT EltVT = VecVT.getVectorElementType();
5399 unsigned VecSize = VecVT.getSizeInBits();
5400 unsigned EltSize = EltVT.getSizeInBits();
5401
5402
5403 assert(VecSize <= 64);
5404
5405 unsigned NumElts = VecVT.getVectorNumElements();
5406 SDLoc SL(Op);
5407 auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5408
5409 if (NumElts == 4 && EltSize == 16 && KIdx) {
5410 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5411
5412 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5413 DAG.getConstant(0, SL, MVT::i32));
5414 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5415 DAG.getConstant(1, SL, MVT::i32));
5416
5417 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5418 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5419
5420 unsigned Idx = KIdx->getZExtValue();
5421 bool InsertLo = Idx < 2;
5422 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5423 InsertLo ? LoVec : HiVec,
5424 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5425 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5426
5427 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5428
5429 SDValue Concat = InsertLo ?
5430 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5431 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5432
5433 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5434 }
5435
5436 if (isa<ConstantSDNode>(Idx))
5437 return SDValue();
5438
5439 MVT IntVT = MVT::getIntegerVT(VecSize);
5440
5441 // Avoid stack access for dynamic indexing.
5442 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5443
5444 // Create a congruent vector with the target value in each element so that
5445 // the required element can be masked and ORed into the target vector.
5446 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5447 DAG.getSplatBuildVector(VecVT, SL, InsVal));
5448
5449 assert(isPowerOf2_32(EltSize));
5450 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5451
5452 // Convert vector index to bit-index.
5453 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5454
5455 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5456 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5457 DAG.getConstant(0xffff, SL, IntVT),
5458 ScaledIdx);
5459
5460 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5461 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5462 DAG.getNOT(SL, BFM, IntVT), BCVec);
5463
5464 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5465 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5466 }
5467
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const5468 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5469 SelectionDAG &DAG) const {
5470 SDLoc SL(Op);
5471
5472 EVT ResultVT = Op.getValueType();
5473 SDValue Vec = Op.getOperand(0);
5474 SDValue Idx = Op.getOperand(1);
5475 EVT VecVT = Vec.getValueType();
5476 unsigned VecSize = VecVT.getSizeInBits();
5477 EVT EltVT = VecVT.getVectorElementType();
5478 assert(VecSize <= 64);
5479
5480 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5481
5482 // Make sure we do any optimizations that will make it easier to fold
5483 // source modifiers before obscuring it with bit operations.
5484
5485 // XXX - Why doesn't this get called when vector_shuffle is expanded?
5486 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5487 return Combined;
5488
5489 unsigned EltSize = EltVT.getSizeInBits();
5490 assert(isPowerOf2_32(EltSize));
5491
5492 MVT IntVT = MVT::getIntegerVT(VecSize);
5493 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5494
5495 // Convert vector index to bit-index (* EltSize)
5496 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5497
5498 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5499 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5500
5501 if (ResultVT == MVT::f16) {
5502 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5503 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5504 }
5505
5506 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5507 }
5508
elementPairIsContiguous(ArrayRef<int> Mask,int Elt)5509 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5510 assert(Elt % 2 == 0);
5511 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5512 }
5513
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const5514 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5515 SelectionDAG &DAG) const {
5516 SDLoc SL(Op);
5517 EVT ResultVT = Op.getValueType();
5518 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5519
5520 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5521 EVT EltVT = PackVT.getVectorElementType();
5522 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5523
5524 // vector_shuffle <0,1,6,7> lhs, rhs
5525 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5526 //
5527 // vector_shuffle <6,7,2,3> lhs, rhs
5528 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5529 //
5530 // vector_shuffle <6,7,0,1> lhs, rhs
5531 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5532
5533 // Avoid scalarizing when both halves are reading from consecutive elements.
5534 SmallVector<SDValue, 4> Pieces;
5535 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5536 if (elementPairIsContiguous(SVN->getMask(), I)) {
5537 const int Idx = SVN->getMaskElt(I);
5538 int VecIdx = Idx < SrcNumElts ? 0 : 1;
5539 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5540 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5541 PackVT, SVN->getOperand(VecIdx),
5542 DAG.getConstant(EltIdx, SL, MVT::i32));
5543 Pieces.push_back(SubVec);
5544 } else {
5545 const int Idx0 = SVN->getMaskElt(I);
5546 const int Idx1 = SVN->getMaskElt(I + 1);
5547 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5548 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5549 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5550 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5551
5552 SDValue Vec0 = SVN->getOperand(VecIdx0);
5553 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5554 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5555
5556 SDValue Vec1 = SVN->getOperand(VecIdx1);
5557 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5558 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5559 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5560 }
5561 }
5562
5563 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5564 }
5565
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const5566 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5567 SelectionDAG &DAG) const {
5568 SDLoc SL(Op);
5569 EVT VT = Op.getValueType();
5570
5571 if (VT == MVT::v4i16 || VT == MVT::v4f16) {
5572 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
5573
5574 // Turn into pair of packed build_vectors.
5575 // TODO: Special case for constants that can be materialized with s_mov_b64.
5576 SDValue Lo = DAG.getBuildVector(HalfVT, SL,
5577 { Op.getOperand(0), Op.getOperand(1) });
5578 SDValue Hi = DAG.getBuildVector(HalfVT, SL,
5579 { Op.getOperand(2), Op.getOperand(3) });
5580
5581 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
5582 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
5583
5584 SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
5585 return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5586 }
5587
5588 assert(VT == MVT::v2f16 || VT == MVT::v2i16);
5589 assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
5590
5591 SDValue Lo = Op.getOperand(0);
5592 SDValue Hi = Op.getOperand(1);
5593
5594 // Avoid adding defined bits with the zero_extend.
5595 if (Hi.isUndef()) {
5596 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5597 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5598 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5599 }
5600
5601 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5602 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5603
5604 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5605 DAG.getConstant(16, SL, MVT::i32));
5606 if (Lo.isUndef())
5607 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5608
5609 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5610 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5611
5612 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5613 return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5614 }
5615
5616 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const5617 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5618 // We can fold offsets for anything that doesn't require a GOT relocation.
5619 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5620 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5621 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5622 !shouldEmitGOTReloc(GA->getGlobal());
5623 }
5624
5625 static SDValue
buildPCRelGlobalAddress(SelectionDAG & DAG,const GlobalValue * GV,const SDLoc & DL,int64_t Offset,EVT PtrVT,unsigned GAFlags=SIInstrInfo::MO_NONE)5626 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5627 const SDLoc &DL, int64_t Offset, EVT PtrVT,
5628 unsigned GAFlags = SIInstrInfo::MO_NONE) {
5629 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
5630 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5631 // lowered to the following code sequence:
5632 //
5633 // For constant address space:
5634 // s_getpc_b64 s[0:1]
5635 // s_add_u32 s0, s0, $symbol
5636 // s_addc_u32 s1, s1, 0
5637 //
5638 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
5639 // a fixup or relocation is emitted to replace $symbol with a literal
5640 // constant, which is a pc-relative offset from the encoding of the $symbol
5641 // operand to the global variable.
5642 //
5643 // For global address space:
5644 // s_getpc_b64 s[0:1]
5645 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5646 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5647 //
5648 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
5649 // fixups or relocations are emitted to replace $symbol@*@lo and
5650 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5651 // which is a 64-bit pc-relative offset from the encoding of the $symbol
5652 // operand to the global variable.
5653 //
5654 // What we want here is an offset from the value returned by s_getpc
5655 // (which is the address of the s_add_u32 instruction) to the global
5656 // variable, but since the encoding of $symbol starts 4 bytes after the start
5657 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5658 // small. This requires us to add 4 to the global variable offset in order to
5659 // compute the correct address. Similarly for the s_addc_u32 instruction, the
5660 // encoding of $symbol starts 12 bytes after the start of the s_add_u32
5661 // instruction.
5662 SDValue PtrLo =
5663 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5664 SDValue PtrHi;
5665 if (GAFlags == SIInstrInfo::MO_NONE) {
5666 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5667 } else {
5668 PtrHi =
5669 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
5670 }
5671 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5672 }
5673
LowerGlobalAddress(AMDGPUMachineFunction * MFI,SDValue Op,SelectionDAG & DAG) const5674 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5675 SDValue Op,
5676 SelectionDAG &DAG) const {
5677 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5678 SDLoc DL(GSD);
5679 EVT PtrVT = Op.getValueType();
5680
5681 const GlobalValue *GV = GSD->getGlobal();
5682 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5683 shouldUseLDSConstAddress(GV)) ||
5684 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5685 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
5686 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5687 GV->hasExternalLinkage()) {
5688 Type *Ty = GV->getValueType();
5689 // HIP uses an unsized array `extern __shared__ T s[]` or similar
5690 // zero-sized type in other languages to declare the dynamic shared
5691 // memory which size is not known at the compile time. They will be
5692 // allocated by the runtime and placed directly after the static
5693 // allocated ones. They all share the same offset.
5694 if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
5695 assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
5696 // Adjust alignment for that dynamic shared memory array.
5697 MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
5698 return SDValue(
5699 DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
5700 }
5701 }
5702 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5703 }
5704
5705 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5706 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5707 SIInstrInfo::MO_ABS32_LO);
5708 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5709 }
5710
5711 if (shouldEmitFixup(GV))
5712 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5713 else if (shouldEmitPCReloc(GV))
5714 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5715 SIInstrInfo::MO_REL32);
5716
5717 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5718 SIInstrInfo::MO_GOTPCREL32);
5719
5720 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5721 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5722 const DataLayout &DataLayout = DAG.getDataLayout();
5723 Align Alignment = DataLayout.getABITypeAlign(PtrTy);
5724 MachinePointerInfo PtrInfo
5725 = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5726
5727 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
5728 MachineMemOperand::MODereferenceable |
5729 MachineMemOperand::MOInvariant);
5730 }
5731
copyToM0(SelectionDAG & DAG,SDValue Chain,const SDLoc & DL,SDValue V) const5732 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5733 const SDLoc &DL, SDValue V) const {
5734 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5735 // the destination register.
5736 //
5737 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5738 // so we will end up with redundant moves to m0.
5739 //
5740 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5741
5742 // A Null SDValue creates a glue result.
5743 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5744 V, Chain);
5745 return SDValue(M0, 0);
5746 }
5747
lowerImplicitZextParam(SelectionDAG & DAG,SDValue Op,MVT VT,unsigned Offset) const5748 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5749 SDValue Op,
5750 MVT VT,
5751 unsigned Offset) const {
5752 SDLoc SL(Op);
5753 SDValue Param = lowerKernargMemParameter(
5754 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
5755 // The local size values will have the hi 16-bits as zero.
5756 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5757 DAG.getValueType(VT));
5758 }
5759
emitNonHSAIntrinsicError(SelectionDAG & DAG,const SDLoc & DL,EVT VT)5760 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5761 EVT VT) {
5762 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5763 "non-hsa intrinsic with hsa target",
5764 DL.getDebugLoc());
5765 DAG.getContext()->diagnose(BadIntrin);
5766 return DAG.getUNDEF(VT);
5767 }
5768
emitRemovedIntrinsicError(SelectionDAG & DAG,const SDLoc & DL,EVT VT)5769 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5770 EVT VT) {
5771 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5772 "intrinsic not supported on subtarget",
5773 DL.getDebugLoc());
5774 DAG.getContext()->diagnose(BadIntrin);
5775 return DAG.getUNDEF(VT);
5776 }
5777
getBuildDwordsVector(SelectionDAG & DAG,SDLoc DL,ArrayRef<SDValue> Elts)5778 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5779 ArrayRef<SDValue> Elts) {
5780 assert(!Elts.empty());
5781 MVT Type;
5782 unsigned NumElts;
5783
5784 if (Elts.size() == 1) {
5785 Type = MVT::f32;
5786 NumElts = 1;
5787 } else if (Elts.size() == 2) {
5788 Type = MVT::v2f32;
5789 NumElts = 2;
5790 } else if (Elts.size() == 3) {
5791 Type = MVT::v3f32;
5792 NumElts = 3;
5793 } else if (Elts.size() <= 4) {
5794 Type = MVT::v4f32;
5795 NumElts = 4;
5796 } else if (Elts.size() <= 8) {
5797 Type = MVT::v8f32;
5798 NumElts = 8;
5799 } else {
5800 assert(Elts.size() <= 16);
5801 Type = MVT::v16f32;
5802 NumElts = 16;
5803 }
5804
5805 SmallVector<SDValue, 16> VecElts(NumElts);
5806 for (unsigned i = 0; i < Elts.size(); ++i) {
5807 SDValue Elt = Elts[i];
5808 if (Elt.getValueType() != MVT::f32)
5809 Elt = DAG.getBitcast(MVT::f32, Elt);
5810 VecElts[i] = Elt;
5811 }
5812 for (unsigned i = Elts.size(); i < NumElts; ++i)
5813 VecElts[i] = DAG.getUNDEF(MVT::f32);
5814
5815 if (NumElts == 1)
5816 return VecElts[0];
5817 return DAG.getBuildVector(Type, DL, VecElts);
5818 }
5819
padEltsToUndef(SelectionDAG & DAG,const SDLoc & DL,EVT CastVT,SDValue Src,int ExtraElts)5820 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
5821 SDValue Src, int ExtraElts) {
5822 EVT SrcVT = Src.getValueType();
5823
5824 SmallVector<SDValue, 8> Elts;
5825
5826 if (SrcVT.isVector())
5827 DAG.ExtractVectorElements(Src, Elts);
5828 else
5829 Elts.push_back(Src);
5830
5831 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
5832 while (ExtraElts--)
5833 Elts.push_back(Undef);
5834
5835 return DAG.getBuildVector(CastVT, DL, Elts);
5836 }
5837
5838 // Re-construct the required return value for a image load intrinsic.
5839 // This is more complicated due to the optional use TexFailCtrl which means the required
5840 // return type is an aggregate
constructRetValue(SelectionDAG & DAG,MachineSDNode * Result,ArrayRef<EVT> ResultTypes,bool IsTexFail,bool Unpacked,bool IsD16,int DMaskPop,int NumVDataDwords,const SDLoc & DL)5841 static SDValue constructRetValue(SelectionDAG &DAG,
5842 MachineSDNode *Result,
5843 ArrayRef<EVT> ResultTypes,
5844 bool IsTexFail, bool Unpacked, bool IsD16,
5845 int DMaskPop, int NumVDataDwords,
5846 const SDLoc &DL) {
5847 // Determine the required return type. This is the same regardless of IsTexFail flag
5848 EVT ReqRetVT = ResultTypes[0];
5849 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5850 int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5851 ReqRetNumElts : (ReqRetNumElts + 1) / 2;
5852
5853 int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5854 DMaskPop : (DMaskPop + 1) / 2;
5855
5856 MVT DataDwordVT = NumDataDwords == 1 ?
5857 MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
5858
5859 MVT MaskPopVT = MaskPopDwords == 1 ?
5860 MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
5861
5862 SDValue Data(Result, 0);
5863 SDValue TexFail;
5864
5865 if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
5866 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
5867 if (MaskPopVT.isVector()) {
5868 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
5869 SDValue(Result, 0), ZeroIdx);
5870 } else {
5871 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
5872 SDValue(Result, 0), ZeroIdx);
5873 }
5874 }
5875
5876 if (DataDwordVT.isVector())
5877 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
5878 NumDataDwords - MaskPopDwords);
5879
5880 if (IsD16)
5881 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
5882
5883 EVT LegalReqRetVT = ReqRetVT;
5884 if (!ReqRetVT.isVector()) {
5885 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
5886 } else {
5887 // We need to widen the return vector to a legal type
5888 if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
5889 ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
5890 LegalReqRetVT =
5891 EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
5892 ReqRetVT.getVectorNumElements() + 1);
5893 }
5894 }
5895 Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
5896
5897 if (IsTexFail) {
5898 TexFail =
5899 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
5900 DAG.getConstant(MaskPopDwords, DL, MVT::i32));
5901
5902 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
5903 }
5904
5905 if (Result->getNumValues() == 1)
5906 return Data;
5907
5908 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
5909 }
5910
parseTexFail(SDValue TexFailCtrl,SelectionDAG & DAG,SDValue * TFE,SDValue * LWE,bool & IsTexFail)5911 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5912 SDValue *LWE, bool &IsTexFail) {
5913 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5914
5915 uint64_t Value = TexFailCtrlConst->getZExtValue();
5916 if (Value) {
5917 IsTexFail = true;
5918 }
5919
5920 SDLoc DL(TexFailCtrlConst);
5921 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5922 Value &= ~(uint64_t)0x1;
5923 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5924 Value &= ~(uint64_t)0x2;
5925
5926 return Value == 0;
5927 }
5928
packImage16bitOpsToDwords(SelectionDAG & DAG,SDValue Op,MVT PackVectorVT,SmallVectorImpl<SDValue> & PackedAddrs,unsigned DimIdx,unsigned EndIdx,unsigned NumGradients)5929 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op,
5930 MVT PackVectorVT,
5931 SmallVectorImpl<SDValue> &PackedAddrs,
5932 unsigned DimIdx, unsigned EndIdx,
5933 unsigned NumGradients) {
5934 SDLoc DL(Op);
5935 for (unsigned I = DimIdx; I < EndIdx; I++) {
5936 SDValue Addr = Op.getOperand(I);
5937
5938 // Gradients are packed with undef for each coordinate.
5939 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
5940 // 1D: undef,dx/dh; undef,dx/dv
5941 // 2D: dy/dh,dx/dh; dy/dv,dx/dv
5942 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
5943 if (((I + 1) >= EndIdx) ||
5944 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
5945 I == DimIdx + NumGradients - 1))) {
5946 if (Addr.getValueType() != MVT::i16)
5947 Addr = DAG.getBitcast(MVT::i16, Addr);
5948 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
5949 } else {
5950 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
5951 I++;
5952 }
5953 Addr = DAG.getBitcast(MVT::f32, Addr);
5954 PackedAddrs.push_back(Addr);
5955 }
5956 }
5957
lowerImage(SDValue Op,const AMDGPU::ImageDimIntrinsicInfo * Intr,SelectionDAG & DAG,bool WithChain) const5958 SDValue SITargetLowering::lowerImage(SDValue Op,
5959 const AMDGPU::ImageDimIntrinsicInfo *Intr,
5960 SelectionDAG &DAG, bool WithChain) const {
5961 SDLoc DL(Op);
5962 MachineFunction &MF = DAG.getMachineFunction();
5963 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
5964 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
5965 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
5966 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
5967 const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
5968 AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
5969 const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
5970 AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
5971 unsigned IntrOpcode = Intr->BaseOpcode;
5972 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
5973
5974 SmallVector<EVT, 3> ResultTypes(Op->values());
5975 SmallVector<EVT, 3> OrigResultTypes(Op->values());
5976 bool IsD16 = false;
5977 bool IsG16 = false;
5978 bool IsA16 = false;
5979 SDValue VData;
5980 int NumVDataDwords;
5981 bool AdjustRetType = false;
5982
5983 // Offset of intrinsic arguments
5984 const unsigned ArgOffset = WithChain ? 2 : 1;
5985
5986 unsigned DMask;
5987 unsigned DMaskLanes = 0;
5988
5989 if (BaseOpcode->Atomic) {
5990 VData = Op.getOperand(2);
5991
5992 bool Is64Bit = VData.getValueType() == MVT::i64;
5993 if (BaseOpcode->AtomicX2) {
5994 SDValue VData2 = Op.getOperand(3);
5995 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
5996 {VData, VData2});
5997 if (Is64Bit)
5998 VData = DAG.getBitcast(MVT::v4i32, VData);
5999
6000 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6001 DMask = Is64Bit ? 0xf : 0x3;
6002 NumVDataDwords = Is64Bit ? 4 : 2;
6003 } else {
6004 DMask = Is64Bit ? 0x3 : 0x1;
6005 NumVDataDwords = Is64Bit ? 2 : 1;
6006 }
6007 } else {
6008 auto *DMaskConst =
6009 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6010 DMask = DMaskConst->getZExtValue();
6011 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
6012
6013 if (BaseOpcode->Store) {
6014 VData = Op.getOperand(2);
6015
6016 MVT StoreVT = VData.getSimpleValueType();
6017 if (StoreVT.getScalarType() == MVT::f16) {
6018 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6019 return Op; // D16 is unsupported for this instruction
6020
6021 IsD16 = true;
6022 VData = handleD16VData(VData, DAG, true);
6023 }
6024
6025 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6026 } else {
6027 // Work out the num dwords based on the dmask popcount and underlying type
6028 // and whether packing is supported.
6029 MVT LoadVT = ResultTypes[0].getSimpleVT();
6030 if (LoadVT.getScalarType() == MVT::f16) {
6031 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6032 return Op; // D16 is unsupported for this instruction
6033
6034 IsD16 = true;
6035 }
6036
6037 // Confirm that the return type is large enough for the dmask specified
6038 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6039 (!LoadVT.isVector() && DMaskLanes > 1))
6040 return Op;
6041
6042 // The sq block of gfx8 and gfx9 do not estimate register use correctly
6043 // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6044 // instructions.
6045 if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6046 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6047 NumVDataDwords = (DMaskLanes + 1) / 2;
6048 else
6049 NumVDataDwords = DMaskLanes;
6050
6051 AdjustRetType = true;
6052 }
6053 }
6054
6055 unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6056 SmallVector<SDValue, 4> VAddrs;
6057
6058 // Optimize _L to _LZ when _L is zero
6059 if (LZMappingInfo) {
6060 if (auto *ConstantLod = dyn_cast<ConstantFPSDNode>(
6061 Op.getOperand(ArgOffset + Intr->LodIndex))) {
6062 if (ConstantLod->isZero() || ConstantLod->isNegative()) {
6063 IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l
6064 VAddrEnd--; // remove 'lod'
6065 }
6066 }
6067 }
6068
6069 // Optimize _mip away, when 'lod' is zero
6070 if (MIPMappingInfo) {
6071 if (auto *ConstantLod = dyn_cast<ConstantSDNode>(
6072 Op.getOperand(ArgOffset + Intr->MipIndex))) {
6073 if (ConstantLod->isNullValue()) {
6074 IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip
6075 VAddrEnd--; // remove 'mip'
6076 }
6077 }
6078 }
6079
6080 // Push back extra arguments.
6081 for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++)
6082 VAddrs.push_back(Op.getOperand(ArgOffset + I));
6083
6084 // Check for 16 bit addresses or derivatives and pack if true.
6085 MVT VAddrVT =
6086 Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6087 MVT VAddrScalarVT = VAddrVT.getScalarType();
6088 MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6089 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6090
6091 VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6092 VAddrScalarVT = VAddrVT.getScalarType();
6093 MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6094 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6095
6096 if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
6097 // 16 bit gradients are supported, but are tied to the A16 control
6098 // so both gradients and addresses must be 16 bit
6099 LLVM_DEBUG(
6100 dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
6101 "require 16 bit args for both gradients and addresses");
6102 return Op;
6103 }
6104
6105 if (IsA16) {
6106 if (!ST->hasA16()) {
6107 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6108 "support 16 bit addresses\n");
6109 return Op;
6110 }
6111 }
6112
6113 // We've dealt with incorrect input so we know that if IsA16, IsG16
6114 // are set then we have to compress/pack operands (either address,
6115 // gradient or both)
6116 // In the case where a16 and gradients are tied (no G16 support) then we
6117 // have already verified that both IsA16 and IsG16 are true
6118 if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
6119 // Activate g16
6120 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6121 AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6122 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6123 }
6124
6125 // Add gradients (packed or unpacked)
6126 if (IsG16) {
6127 // Pack the gradients
6128 // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6129 packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
6130 ArgOffset + Intr->GradientStart,
6131 ArgOffset + Intr->CoordStart, Intr->NumGradients);
6132 } else {
6133 for (unsigned I = ArgOffset + Intr->GradientStart;
6134 I < ArgOffset + Intr->CoordStart; I++)
6135 VAddrs.push_back(Op.getOperand(I));
6136 }
6137
6138 // Add addresses (packed or unpacked)
6139 if (IsA16) {
6140 packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
6141 ArgOffset + Intr->CoordStart, VAddrEnd,
6142 0 /* No gradients */);
6143 } else {
6144 // Add uncompressed address
6145 for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6146 VAddrs.push_back(Op.getOperand(I));
6147 }
6148
6149 // If the register allocator cannot place the address registers contiguously
6150 // without introducing moves, then using the non-sequential address encoding
6151 // is always preferable, since it saves VALU instructions and is usually a
6152 // wash in terms of code size or even better.
6153 //
6154 // However, we currently have no way of hinting to the register allocator that
6155 // MIMG addresses should be placed contiguously when it is possible to do so,
6156 // so force non-NSA for the common 2-address case as a heuristic.
6157 //
6158 // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6159 // allocation when possible.
6160 bool UseNSA =
6161 ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3;
6162 SDValue VAddr;
6163 if (!UseNSA)
6164 VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6165
6166 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6167 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6168 SDValue Unorm;
6169 if (!BaseOpcode->Sampler) {
6170 Unorm = True;
6171 } else {
6172 auto UnormConst =
6173 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6174
6175 Unorm = UnormConst->getZExtValue() ? True : False;
6176 }
6177
6178 SDValue TFE;
6179 SDValue LWE;
6180 SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6181 bool IsTexFail = false;
6182 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6183 return Op;
6184
6185 if (IsTexFail) {
6186 if (!DMaskLanes) {
6187 // Expecting to get an error flag since TFC is on - and dmask is 0
6188 // Force dmask to be at least 1 otherwise the instruction will fail
6189 DMask = 0x1;
6190 DMaskLanes = 1;
6191 NumVDataDwords = 1;
6192 }
6193 NumVDataDwords += 1;
6194 AdjustRetType = true;
6195 }
6196
6197 // Has something earlier tagged that the return type needs adjusting
6198 // This happens if the instruction is a load or has set TexFailCtrl flags
6199 if (AdjustRetType) {
6200 // NumVDataDwords reflects the true number of dwords required in the return type
6201 if (DMaskLanes == 0 && !BaseOpcode->Store) {
6202 // This is a no-op load. This can be eliminated
6203 SDValue Undef = DAG.getUNDEF(Op.getValueType());
6204 if (isa<MemSDNode>(Op))
6205 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6206 return Undef;
6207 }
6208
6209 EVT NewVT = NumVDataDwords > 1 ?
6210 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6211 : MVT::i32;
6212
6213 ResultTypes[0] = NewVT;
6214 if (ResultTypes.size() == 3) {
6215 // Original result was aggregate type used for TexFailCtrl results
6216 // The actual instruction returns as a vector type which has now been
6217 // created. Remove the aggregate result.
6218 ResultTypes.erase(&ResultTypes[1]);
6219 }
6220 }
6221
6222 unsigned CPol = cast<ConstantSDNode>(
6223 Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue();
6224 if (BaseOpcode->Atomic)
6225 CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
6226 if (CPol & ~AMDGPU::CPol::ALL)
6227 return Op;
6228
6229 SmallVector<SDValue, 26> Ops;
6230 if (BaseOpcode->Store || BaseOpcode->Atomic)
6231 Ops.push_back(VData); // vdata
6232 if (UseNSA)
6233 append_range(Ops, VAddrs);
6234 else
6235 Ops.push_back(VAddr);
6236 Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6237 if (BaseOpcode->Sampler)
6238 Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6239 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6240 if (IsGFX10Plus)
6241 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6242 Ops.push_back(Unorm);
6243 Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
6244 Ops.push_back(IsA16 && // r128, a16 for gfx9
6245 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6246 if (IsGFX10Plus)
6247 Ops.push_back(IsA16 ? True : False);
6248 if (!Subtarget->hasGFX90AInsts()) {
6249 Ops.push_back(TFE); //tfe
6250 } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) {
6251 report_fatal_error("TFE is not supported on this GPU");
6252 }
6253 Ops.push_back(LWE); // lwe
6254 if (!IsGFX10Plus)
6255 Ops.push_back(DimInfo->DA ? True : False);
6256 if (BaseOpcode->HasD16)
6257 Ops.push_back(IsD16 ? True : False);
6258 if (isa<MemSDNode>(Op))
6259 Ops.push_back(Op.getOperand(0)); // chain
6260
6261 int NumVAddrDwords =
6262 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6263 int Opcode = -1;
6264
6265 if (IsGFX10Plus) {
6266 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6267 UseNSA ? AMDGPU::MIMGEncGfx10NSA
6268 : AMDGPU::MIMGEncGfx10Default,
6269 NumVDataDwords, NumVAddrDwords);
6270 } else {
6271 if (Subtarget->hasGFX90AInsts()) {
6272 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
6273 NumVDataDwords, NumVAddrDwords);
6274 if (Opcode == -1)
6275 report_fatal_error(
6276 "requested image instruction is not supported on this GPU");
6277 }
6278 if (Opcode == -1 &&
6279 Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6280 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6281 NumVDataDwords, NumVAddrDwords);
6282 if (Opcode == -1)
6283 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6284 NumVDataDwords, NumVAddrDwords);
6285 }
6286 assert(Opcode != -1);
6287
6288 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6289 if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6290 MachineMemOperand *MemRef = MemOp->getMemOperand();
6291 DAG.setNodeMemRefs(NewNode, {MemRef});
6292 }
6293
6294 if (BaseOpcode->AtomicX2) {
6295 SmallVector<SDValue, 1> Elt;
6296 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6297 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6298 }
6299 if (BaseOpcode->Store)
6300 return SDValue(NewNode, 0);
6301 return constructRetValue(DAG, NewNode,
6302 OrigResultTypes, IsTexFail,
6303 Subtarget->hasUnpackedD16VMem(), IsD16,
6304 DMaskLanes, NumVDataDwords, DL);
6305 }
6306
lowerSBuffer(EVT VT,SDLoc DL,SDValue Rsrc,SDValue Offset,SDValue CachePolicy,SelectionDAG & DAG) const6307 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6308 SDValue Offset, SDValue CachePolicy,
6309 SelectionDAG &DAG) const {
6310 MachineFunction &MF = DAG.getMachineFunction();
6311
6312 const DataLayout &DataLayout = DAG.getDataLayout();
6313 Align Alignment =
6314 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6315
6316 MachineMemOperand *MMO = MF.getMachineMemOperand(
6317 MachinePointerInfo(),
6318 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6319 MachineMemOperand::MOInvariant,
6320 VT.getStoreSize(), Alignment);
6321
6322 if (!Offset->isDivergent()) {
6323 SDValue Ops[] = {
6324 Rsrc,
6325 Offset, // Offset
6326 CachePolicy
6327 };
6328
6329 // Widen vec3 load to vec4.
6330 if (VT.isVector() && VT.getVectorNumElements() == 3) {
6331 EVT WidenedVT =
6332 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6333 auto WidenedOp = DAG.getMemIntrinsicNode(
6334 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6335 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6336 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6337 DAG.getVectorIdxConstant(0, DL));
6338 return Subvector;
6339 }
6340
6341 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6342 DAG.getVTList(VT), Ops, VT, MMO);
6343 }
6344
6345 // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6346 // assume that the buffer is unswizzled.
6347 SmallVector<SDValue, 4> Loads;
6348 unsigned NumLoads = 1;
6349 MVT LoadVT = VT.getSimpleVT();
6350 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6351 assert((LoadVT.getScalarType() == MVT::i32 ||
6352 LoadVT.getScalarType() == MVT::f32));
6353
6354 if (NumElts == 8 || NumElts == 16) {
6355 NumLoads = NumElts / 4;
6356 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6357 }
6358
6359 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6360 SDValue Ops[] = {
6361 DAG.getEntryNode(), // Chain
6362 Rsrc, // rsrc
6363 DAG.getConstant(0, DL, MVT::i32), // vindex
6364 {}, // voffset
6365 {}, // soffset
6366 {}, // offset
6367 CachePolicy, // cachepolicy
6368 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6369 };
6370
6371 // Use the alignment to ensure that the required offsets will fit into the
6372 // immediate offsets.
6373 setBufferOffsets(Offset, DAG, &Ops[3],
6374 NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6375
6376 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6377 for (unsigned i = 0; i < NumLoads; ++i) {
6378 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6379 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6380 LoadVT, MMO, DAG));
6381 }
6382
6383 if (NumElts == 8 || NumElts == 16)
6384 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6385
6386 return Loads[0];
6387 }
6388
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const6389 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6390 SelectionDAG &DAG) const {
6391 MachineFunction &MF = DAG.getMachineFunction();
6392 auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6393
6394 EVT VT = Op.getValueType();
6395 SDLoc DL(Op);
6396 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6397
6398 // TODO: Should this propagate fast-math-flags?
6399
6400 switch (IntrinsicID) {
6401 case Intrinsic::amdgcn_implicit_buffer_ptr: {
6402 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6403 return emitNonHSAIntrinsicError(DAG, DL, VT);
6404 return getPreloadedValue(DAG, *MFI, VT,
6405 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6406 }
6407 case Intrinsic::amdgcn_dispatch_ptr:
6408 case Intrinsic::amdgcn_queue_ptr: {
6409 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6410 DiagnosticInfoUnsupported BadIntrin(
6411 MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6412 DL.getDebugLoc());
6413 DAG.getContext()->diagnose(BadIntrin);
6414 return DAG.getUNDEF(VT);
6415 }
6416
6417 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6418 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6419 return getPreloadedValue(DAG, *MFI, VT, RegID);
6420 }
6421 case Intrinsic::amdgcn_implicitarg_ptr: {
6422 if (MFI->isEntryFunction())
6423 return getImplicitArgPtr(DAG, DL);
6424 return getPreloadedValue(DAG, *MFI, VT,
6425 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6426 }
6427 case Intrinsic::amdgcn_kernarg_segment_ptr: {
6428 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6429 // This only makes sense to call in a kernel, so just lower to null.
6430 return DAG.getConstant(0, DL, VT);
6431 }
6432
6433 return getPreloadedValue(DAG, *MFI, VT,
6434 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6435 }
6436 case Intrinsic::amdgcn_dispatch_id: {
6437 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6438 }
6439 case Intrinsic::amdgcn_rcp:
6440 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6441 case Intrinsic::amdgcn_rsq:
6442 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6443 case Intrinsic::amdgcn_rsq_legacy:
6444 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6445 return emitRemovedIntrinsicError(DAG, DL, VT);
6446 return SDValue();
6447 case Intrinsic::amdgcn_rcp_legacy:
6448 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6449 return emitRemovedIntrinsicError(DAG, DL, VT);
6450 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6451 case Intrinsic::amdgcn_rsq_clamp: {
6452 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6453 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6454
6455 Type *Type = VT.getTypeForEVT(*DAG.getContext());
6456 APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6457 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6458
6459 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6460 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6461 DAG.getConstantFP(Max, DL, VT));
6462 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6463 DAG.getConstantFP(Min, DL, VT));
6464 }
6465 case Intrinsic::r600_read_ngroups_x:
6466 if (Subtarget->isAmdHsaOS())
6467 return emitNonHSAIntrinsicError(DAG, DL, VT);
6468
6469 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6470 SI::KernelInputOffsets::NGROUPS_X, Align(4),
6471 false);
6472 case Intrinsic::r600_read_ngroups_y:
6473 if (Subtarget->isAmdHsaOS())
6474 return emitNonHSAIntrinsicError(DAG, DL, VT);
6475
6476 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6477 SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6478 false);
6479 case Intrinsic::r600_read_ngroups_z:
6480 if (Subtarget->isAmdHsaOS())
6481 return emitNonHSAIntrinsicError(DAG, DL, VT);
6482
6483 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6484 SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6485 false);
6486 case Intrinsic::r600_read_global_size_x:
6487 if (Subtarget->isAmdHsaOS())
6488 return emitNonHSAIntrinsicError(DAG, DL, VT);
6489
6490 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6491 SI::KernelInputOffsets::GLOBAL_SIZE_X,
6492 Align(4), false);
6493 case Intrinsic::r600_read_global_size_y:
6494 if (Subtarget->isAmdHsaOS())
6495 return emitNonHSAIntrinsicError(DAG, DL, VT);
6496
6497 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6498 SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6499 Align(4), false);
6500 case Intrinsic::r600_read_global_size_z:
6501 if (Subtarget->isAmdHsaOS())
6502 return emitNonHSAIntrinsicError(DAG, DL, VT);
6503
6504 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6505 SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6506 Align(4), false);
6507 case Intrinsic::r600_read_local_size_x:
6508 if (Subtarget->isAmdHsaOS())
6509 return emitNonHSAIntrinsicError(DAG, DL, VT);
6510
6511 return lowerImplicitZextParam(DAG, Op, MVT::i16,
6512 SI::KernelInputOffsets::LOCAL_SIZE_X);
6513 case Intrinsic::r600_read_local_size_y:
6514 if (Subtarget->isAmdHsaOS())
6515 return emitNonHSAIntrinsicError(DAG, DL, VT);
6516
6517 return lowerImplicitZextParam(DAG, Op, MVT::i16,
6518 SI::KernelInputOffsets::LOCAL_SIZE_Y);
6519 case Intrinsic::r600_read_local_size_z:
6520 if (Subtarget->isAmdHsaOS())
6521 return emitNonHSAIntrinsicError(DAG, DL, VT);
6522
6523 return lowerImplicitZextParam(DAG, Op, MVT::i16,
6524 SI::KernelInputOffsets::LOCAL_SIZE_Z);
6525 case Intrinsic::amdgcn_workgroup_id_x:
6526 return getPreloadedValue(DAG, *MFI, VT,
6527 AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6528 case Intrinsic::amdgcn_workgroup_id_y:
6529 return getPreloadedValue(DAG, *MFI, VT,
6530 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6531 case Intrinsic::amdgcn_workgroup_id_z:
6532 return getPreloadedValue(DAG, *MFI, VT,
6533 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6534 case Intrinsic::amdgcn_workitem_id_x:
6535 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6536 SDLoc(DAG.getEntryNode()),
6537 MFI->getArgInfo().WorkItemIDX);
6538 case Intrinsic::amdgcn_workitem_id_y:
6539 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6540 SDLoc(DAG.getEntryNode()),
6541 MFI->getArgInfo().WorkItemIDY);
6542 case Intrinsic::amdgcn_workitem_id_z:
6543 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6544 SDLoc(DAG.getEntryNode()),
6545 MFI->getArgInfo().WorkItemIDZ);
6546 case Intrinsic::amdgcn_wavefrontsize:
6547 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6548 SDLoc(Op), MVT::i32);
6549 case Intrinsic::amdgcn_s_buffer_load: {
6550 unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6551 if (CPol & ~AMDGPU::CPol::ALL)
6552 return Op;
6553 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6554 DAG);
6555 }
6556 case Intrinsic::amdgcn_fdiv_fast:
6557 return lowerFDIV_FAST(Op, DAG);
6558 case Intrinsic::amdgcn_sin:
6559 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6560
6561 case Intrinsic::amdgcn_cos:
6562 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6563
6564 case Intrinsic::amdgcn_mul_u24:
6565 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6566 case Intrinsic::amdgcn_mul_i24:
6567 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6568
6569 case Intrinsic::amdgcn_log_clamp: {
6570 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6571 return SDValue();
6572
6573 return emitRemovedIntrinsicError(DAG, DL, VT);
6574 }
6575 case Intrinsic::amdgcn_ldexp:
6576 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6577 Op.getOperand(1), Op.getOperand(2));
6578
6579 case Intrinsic::amdgcn_fract:
6580 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6581
6582 case Intrinsic::amdgcn_class:
6583 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6584 Op.getOperand(1), Op.getOperand(2));
6585 case Intrinsic::amdgcn_div_fmas:
6586 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6587 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6588 Op.getOperand(4));
6589
6590 case Intrinsic::amdgcn_div_fixup:
6591 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6592 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6593
6594 case Intrinsic::amdgcn_div_scale: {
6595 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6596
6597 // Translate to the operands expected by the machine instruction. The
6598 // first parameter must be the same as the first instruction.
6599 SDValue Numerator = Op.getOperand(1);
6600 SDValue Denominator = Op.getOperand(2);
6601
6602 // Note this order is opposite of the machine instruction's operations,
6603 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6604 // intrinsic has the numerator as the first operand to match a normal
6605 // division operation.
6606
6607 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
6608
6609 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6610 Denominator, Numerator);
6611 }
6612 case Intrinsic::amdgcn_icmp: {
6613 // There is a Pat that handles this variant, so return it as-is.
6614 if (Op.getOperand(1).getValueType() == MVT::i1 &&
6615 Op.getConstantOperandVal(2) == 0 &&
6616 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6617 return Op;
6618 return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6619 }
6620 case Intrinsic::amdgcn_fcmp: {
6621 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6622 }
6623 case Intrinsic::amdgcn_ballot:
6624 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
6625 case Intrinsic::amdgcn_fmed3:
6626 return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6627 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6628 case Intrinsic::amdgcn_fdot2:
6629 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6630 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6631 Op.getOperand(4));
6632 case Intrinsic::amdgcn_fmul_legacy:
6633 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6634 Op.getOperand(1), Op.getOperand(2));
6635 case Intrinsic::amdgcn_sffbh:
6636 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6637 case Intrinsic::amdgcn_sbfe:
6638 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6639 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6640 case Intrinsic::amdgcn_ubfe:
6641 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6642 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6643 case Intrinsic::amdgcn_cvt_pkrtz:
6644 case Intrinsic::amdgcn_cvt_pknorm_i16:
6645 case Intrinsic::amdgcn_cvt_pknorm_u16:
6646 case Intrinsic::amdgcn_cvt_pk_i16:
6647 case Intrinsic::amdgcn_cvt_pk_u16: {
6648 // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6649 EVT VT = Op.getValueType();
6650 unsigned Opcode;
6651
6652 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6653 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6654 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6655 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6656 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6657 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6658 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6659 Opcode = AMDGPUISD::CVT_PK_I16_I32;
6660 else
6661 Opcode = AMDGPUISD::CVT_PK_U16_U32;
6662
6663 if (isTypeLegal(VT))
6664 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6665
6666 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6667 Op.getOperand(1), Op.getOperand(2));
6668 return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6669 }
6670 case Intrinsic::amdgcn_fmad_ftz:
6671 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6672 Op.getOperand(2), Op.getOperand(3));
6673
6674 case Intrinsic::amdgcn_if_break:
6675 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6676 Op->getOperand(1), Op->getOperand(2)), 0);
6677
6678 case Intrinsic::amdgcn_groupstaticsize: {
6679 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6680 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6681 return Op;
6682
6683 const Module *M = MF.getFunction().getParent();
6684 const GlobalValue *GV =
6685 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6686 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6687 SIInstrInfo::MO_ABS32_LO);
6688 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6689 }
6690 case Intrinsic::amdgcn_is_shared:
6691 case Intrinsic::amdgcn_is_private: {
6692 SDLoc SL(Op);
6693 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6694 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6695 SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6696 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6697 Op.getOperand(1));
6698
6699 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6700 DAG.getConstant(1, SL, MVT::i32));
6701 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6702 }
6703 case Intrinsic::amdgcn_alignbit:
6704 return DAG.getNode(ISD::FSHR, DL, VT,
6705 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6706 case Intrinsic::amdgcn_perm:
6707 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
6708 Op.getOperand(2), Op.getOperand(3));
6709 case Intrinsic::amdgcn_reloc_constant: {
6710 Module *M = const_cast<Module *>(MF.getFunction().getParent());
6711 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
6712 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
6713 auto RelocSymbol = cast<GlobalVariable>(
6714 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
6715 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
6716 SIInstrInfo::MO_ABS32_LO);
6717 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6718 }
6719 default:
6720 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6721 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6722 return lowerImage(Op, ImageDimIntr, DAG, false);
6723
6724 return Op;
6725 }
6726 }
6727
6728 // This function computes an appropriate offset to pass to
6729 // MachineMemOperand::setOffset() based on the offset inputs to
6730 // an intrinsic. If any of the offsets are non-contstant or
6731 // if VIndex is non-zero then this function returns 0. Otherwise,
6732 // it returns the sum of VOffset, SOffset, and Offset.
getBufferOffsetForMMO(SDValue VOffset,SDValue SOffset,SDValue Offset,SDValue VIndex=SDValue ())6733 static unsigned getBufferOffsetForMMO(SDValue VOffset,
6734 SDValue SOffset,
6735 SDValue Offset,
6736 SDValue VIndex = SDValue()) {
6737
6738 if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6739 !isa<ConstantSDNode>(Offset))
6740 return 0;
6741
6742 if (VIndex) {
6743 if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue())
6744 return 0;
6745 }
6746
6747 return cast<ConstantSDNode>(VOffset)->getSExtValue() +
6748 cast<ConstantSDNode>(SOffset)->getSExtValue() +
6749 cast<ConstantSDNode>(Offset)->getSExtValue();
6750 }
6751
lowerRawBufferAtomicIntrin(SDValue Op,SelectionDAG & DAG,unsigned NewOpcode) const6752 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
6753 SelectionDAG &DAG,
6754 unsigned NewOpcode) const {
6755 SDLoc DL(Op);
6756
6757 SDValue VData = Op.getOperand(2);
6758 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6759 SDValue Ops[] = {
6760 Op.getOperand(0), // Chain
6761 VData, // vdata
6762 Op.getOperand(3), // rsrc
6763 DAG.getConstant(0, DL, MVT::i32), // vindex
6764 Offsets.first, // voffset
6765 Op.getOperand(5), // soffset
6766 Offsets.second, // offset
6767 Op.getOperand(6), // cachepolicy
6768 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6769 };
6770
6771 auto *M = cast<MemSDNode>(Op);
6772 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
6773
6774 EVT MemVT = VData.getValueType();
6775 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6776 M->getMemOperand());
6777 }
6778
6779 SDValue
lowerStructBufferAtomicIntrin(SDValue Op,SelectionDAG & DAG,unsigned NewOpcode) const6780 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
6781 unsigned NewOpcode) const {
6782 SDLoc DL(Op);
6783
6784 SDValue VData = Op.getOperand(2);
6785 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6786 SDValue Ops[] = {
6787 Op.getOperand(0), // Chain
6788 VData, // vdata
6789 Op.getOperand(3), // rsrc
6790 Op.getOperand(4), // vindex
6791 Offsets.first, // voffset
6792 Op.getOperand(6), // soffset
6793 Offsets.second, // offset
6794 Op.getOperand(7), // cachepolicy
6795 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6796 };
6797
6798 auto *M = cast<MemSDNode>(Op);
6799 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
6800 Ops[3]));
6801
6802 EVT MemVT = VData.getValueType();
6803 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6804 M->getMemOperand());
6805 }
6806
LowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const6807 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
6808 SelectionDAG &DAG) const {
6809 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6810 SDLoc DL(Op);
6811
6812 switch (IntrID) {
6813 case Intrinsic::amdgcn_ds_ordered_add:
6814 case Intrinsic::amdgcn_ds_ordered_swap: {
6815 MemSDNode *M = cast<MemSDNode>(Op);
6816 SDValue Chain = M->getOperand(0);
6817 SDValue M0 = M->getOperand(2);
6818 SDValue Value = M->getOperand(3);
6819 unsigned IndexOperand = M->getConstantOperandVal(7);
6820 unsigned WaveRelease = M->getConstantOperandVal(8);
6821 unsigned WaveDone = M->getConstantOperandVal(9);
6822
6823 unsigned OrderedCountIndex = IndexOperand & 0x3f;
6824 IndexOperand &= ~0x3f;
6825 unsigned CountDw = 0;
6826
6827 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
6828 CountDw = (IndexOperand >> 24) & 0xf;
6829 IndexOperand &= ~(0xf << 24);
6830
6831 if (CountDw < 1 || CountDw > 4) {
6832 report_fatal_error(
6833 "ds_ordered_count: dword count must be between 1 and 4");
6834 }
6835 }
6836
6837 if (IndexOperand)
6838 report_fatal_error("ds_ordered_count: bad index operand");
6839
6840 if (WaveDone && !WaveRelease)
6841 report_fatal_error("ds_ordered_count: wave_done requires wave_release");
6842
6843 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
6844 unsigned ShaderType =
6845 SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
6846 unsigned Offset0 = OrderedCountIndex << 2;
6847 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6848 (Instruction << 4);
6849
6850 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6851 Offset1 |= (CountDw - 1) << 6;
6852
6853 unsigned Offset = Offset0 | (Offset1 << 8);
6854
6855 SDValue Ops[] = {
6856 Chain,
6857 Value,
6858 DAG.getTargetConstant(Offset, DL, MVT::i16),
6859 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6860 };
6861 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6862 M->getVTList(), Ops, M->getMemoryVT(),
6863 M->getMemOperand());
6864 }
6865 case Intrinsic::amdgcn_ds_fadd: {
6866 MemSDNode *M = cast<MemSDNode>(Op);
6867 unsigned Opc;
6868 switch (IntrID) {
6869 case Intrinsic::amdgcn_ds_fadd:
6870 Opc = ISD::ATOMIC_LOAD_FADD;
6871 break;
6872 }
6873
6874 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
6875 M->getOperand(0), M->getOperand(2), M->getOperand(3),
6876 M->getMemOperand());
6877 }
6878 case Intrinsic::amdgcn_atomic_inc:
6879 case Intrinsic::amdgcn_atomic_dec:
6880 case Intrinsic::amdgcn_ds_fmin:
6881 case Intrinsic::amdgcn_ds_fmax: {
6882 MemSDNode *M = cast<MemSDNode>(Op);
6883 unsigned Opc;
6884 switch (IntrID) {
6885 case Intrinsic::amdgcn_atomic_inc:
6886 Opc = AMDGPUISD::ATOMIC_INC;
6887 break;
6888 case Intrinsic::amdgcn_atomic_dec:
6889 Opc = AMDGPUISD::ATOMIC_DEC;
6890 break;
6891 case Intrinsic::amdgcn_ds_fmin:
6892 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
6893 break;
6894 case Intrinsic::amdgcn_ds_fmax:
6895 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
6896 break;
6897 default:
6898 llvm_unreachable("Unknown intrinsic!");
6899 }
6900 SDValue Ops[] = {
6901 M->getOperand(0), // Chain
6902 M->getOperand(2), // Ptr
6903 M->getOperand(3) // Value
6904 };
6905
6906 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
6907 M->getMemoryVT(), M->getMemOperand());
6908 }
6909 case Intrinsic::amdgcn_buffer_load:
6910 case Intrinsic::amdgcn_buffer_load_format: {
6911 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
6912 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6913 unsigned IdxEn = 1;
6914 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6915 IdxEn = Idx->getZExtValue() != 0;
6916 SDValue Ops[] = {
6917 Op.getOperand(0), // Chain
6918 Op.getOperand(2), // rsrc
6919 Op.getOperand(3), // vindex
6920 SDValue(), // voffset -- will be set by setBufferOffsets
6921 SDValue(), // soffset -- will be set by setBufferOffsets
6922 SDValue(), // offset -- will be set by setBufferOffsets
6923 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6924 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6925 };
6926
6927 unsigned Offset = setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
6928 // We don't know the offset if vindex is non-zero, so clear it.
6929 if (IdxEn)
6930 Offset = 0;
6931
6932 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
6933 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6934
6935 EVT VT = Op.getValueType();
6936 EVT IntVT = VT.changeTypeToInteger();
6937 auto *M = cast<MemSDNode>(Op);
6938 M->getMemOperand()->setOffset(Offset);
6939 EVT LoadVT = Op.getValueType();
6940
6941 if (LoadVT.getScalarType() == MVT::f16)
6942 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
6943 M, DAG, Ops);
6944
6945 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6946 if (LoadVT.getScalarType() == MVT::i8 ||
6947 LoadVT.getScalarType() == MVT::i16)
6948 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
6949
6950 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
6951 M->getMemOperand(), DAG);
6952 }
6953 case Intrinsic::amdgcn_raw_buffer_load:
6954 case Intrinsic::amdgcn_raw_buffer_load_format: {
6955 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
6956
6957 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6958 SDValue Ops[] = {
6959 Op.getOperand(0), // Chain
6960 Op.getOperand(2), // rsrc
6961 DAG.getConstant(0, DL, MVT::i32), // vindex
6962 Offsets.first, // voffset
6963 Op.getOperand(4), // soffset
6964 Offsets.second, // offset
6965 Op.getOperand(5), // cachepolicy, swizzled buffer
6966 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6967 };
6968
6969 auto *M = cast<MemSDNode>(Op);
6970 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5]));
6971 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
6972 }
6973 case Intrinsic::amdgcn_struct_buffer_load:
6974 case Intrinsic::amdgcn_struct_buffer_load_format: {
6975 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
6976
6977 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6978 SDValue Ops[] = {
6979 Op.getOperand(0), // Chain
6980 Op.getOperand(2), // rsrc
6981 Op.getOperand(3), // vindex
6982 Offsets.first, // voffset
6983 Op.getOperand(5), // soffset
6984 Offsets.second, // offset
6985 Op.getOperand(6), // cachepolicy, swizzled buffer
6986 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6987 };
6988
6989 auto *M = cast<MemSDNode>(Op);
6990 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5],
6991 Ops[2]));
6992 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
6993 }
6994 case Intrinsic::amdgcn_tbuffer_load: {
6995 MemSDNode *M = cast<MemSDNode>(Op);
6996 EVT LoadVT = Op.getValueType();
6997
6998 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6999 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7000 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7001 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7002 unsigned IdxEn = 1;
7003 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
7004 IdxEn = Idx->getZExtValue() != 0;
7005 SDValue Ops[] = {
7006 Op.getOperand(0), // Chain
7007 Op.getOperand(2), // rsrc
7008 Op.getOperand(3), // vindex
7009 Op.getOperand(4), // voffset
7010 Op.getOperand(5), // soffset
7011 Op.getOperand(6), // offset
7012 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7013 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7014 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7015 };
7016
7017 if (LoadVT.getScalarType() == MVT::f16)
7018 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7019 M, DAG, Ops);
7020 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7021 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7022 DAG);
7023 }
7024 case Intrinsic::amdgcn_raw_tbuffer_load: {
7025 MemSDNode *M = cast<MemSDNode>(Op);
7026 EVT LoadVT = Op.getValueType();
7027 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7028
7029 SDValue Ops[] = {
7030 Op.getOperand(0), // Chain
7031 Op.getOperand(2), // rsrc
7032 DAG.getConstant(0, DL, MVT::i32), // vindex
7033 Offsets.first, // voffset
7034 Op.getOperand(4), // soffset
7035 Offsets.second, // offset
7036 Op.getOperand(5), // format
7037 Op.getOperand(6), // cachepolicy, swizzled buffer
7038 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7039 };
7040
7041 if (LoadVT.getScalarType() == MVT::f16)
7042 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7043 M, DAG, Ops);
7044 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7045 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7046 DAG);
7047 }
7048 case Intrinsic::amdgcn_struct_tbuffer_load: {
7049 MemSDNode *M = cast<MemSDNode>(Op);
7050 EVT LoadVT = Op.getValueType();
7051 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7052
7053 SDValue Ops[] = {
7054 Op.getOperand(0), // Chain
7055 Op.getOperand(2), // rsrc
7056 Op.getOperand(3), // vindex
7057 Offsets.first, // voffset
7058 Op.getOperand(5), // soffset
7059 Offsets.second, // offset
7060 Op.getOperand(6), // format
7061 Op.getOperand(7), // cachepolicy, swizzled buffer
7062 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7063 };
7064
7065 if (LoadVT.getScalarType() == MVT::f16)
7066 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7067 M, DAG, Ops);
7068 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7069 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7070 DAG);
7071 }
7072 case Intrinsic::amdgcn_buffer_atomic_swap:
7073 case Intrinsic::amdgcn_buffer_atomic_add:
7074 case Intrinsic::amdgcn_buffer_atomic_sub:
7075 case Intrinsic::amdgcn_buffer_atomic_csub:
7076 case Intrinsic::amdgcn_buffer_atomic_smin:
7077 case Intrinsic::amdgcn_buffer_atomic_umin:
7078 case Intrinsic::amdgcn_buffer_atomic_smax:
7079 case Intrinsic::amdgcn_buffer_atomic_umax:
7080 case Intrinsic::amdgcn_buffer_atomic_and:
7081 case Intrinsic::amdgcn_buffer_atomic_or:
7082 case Intrinsic::amdgcn_buffer_atomic_xor:
7083 case Intrinsic::amdgcn_buffer_atomic_fadd: {
7084 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7085 unsigned IdxEn = 1;
7086 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7087 IdxEn = Idx->getZExtValue() != 0;
7088 SDValue Ops[] = {
7089 Op.getOperand(0), // Chain
7090 Op.getOperand(2), // vdata
7091 Op.getOperand(3), // rsrc
7092 Op.getOperand(4), // vindex
7093 SDValue(), // voffset -- will be set by setBufferOffsets
7094 SDValue(), // soffset -- will be set by setBufferOffsets
7095 SDValue(), // offset -- will be set by setBufferOffsets
7096 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7097 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7098 };
7099 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7100 // We don't know the offset if vindex is non-zero, so clear it.
7101 if (IdxEn)
7102 Offset = 0;
7103 EVT VT = Op.getValueType();
7104
7105 auto *M = cast<MemSDNode>(Op);
7106 M->getMemOperand()->setOffset(Offset);
7107 unsigned Opcode = 0;
7108
7109 switch (IntrID) {
7110 case Intrinsic::amdgcn_buffer_atomic_swap:
7111 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7112 break;
7113 case Intrinsic::amdgcn_buffer_atomic_add:
7114 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7115 break;
7116 case Intrinsic::amdgcn_buffer_atomic_sub:
7117 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7118 break;
7119 case Intrinsic::amdgcn_buffer_atomic_csub:
7120 Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7121 break;
7122 case Intrinsic::amdgcn_buffer_atomic_smin:
7123 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7124 break;
7125 case Intrinsic::amdgcn_buffer_atomic_umin:
7126 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7127 break;
7128 case Intrinsic::amdgcn_buffer_atomic_smax:
7129 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7130 break;
7131 case Intrinsic::amdgcn_buffer_atomic_umax:
7132 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7133 break;
7134 case Intrinsic::amdgcn_buffer_atomic_and:
7135 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7136 break;
7137 case Intrinsic::amdgcn_buffer_atomic_or:
7138 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7139 break;
7140 case Intrinsic::amdgcn_buffer_atomic_xor:
7141 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7142 break;
7143 case Intrinsic::amdgcn_buffer_atomic_fadd:
7144 if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7145 DiagnosticInfoUnsupported
7146 NoFpRet(DAG.getMachineFunction().getFunction(),
7147 "return versions of fp atomics not supported",
7148 DL.getDebugLoc(), DS_Error);
7149 DAG.getContext()->diagnose(NoFpRet);
7150 return SDValue();
7151 }
7152 Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7153 break;
7154 default:
7155 llvm_unreachable("unhandled atomic opcode");
7156 }
7157
7158 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7159 M->getMemOperand());
7160 }
7161 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7162 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7163 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7164 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7165 case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
7166 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7167 case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
7168 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7169 case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
7170 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7171 case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
7172 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7173 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7174 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7175 case Intrinsic::amdgcn_raw_buffer_atomic_add:
7176 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7177 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7178 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7179 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7180 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7181 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7182 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7183 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7184 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7185 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7186 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7187 case Intrinsic::amdgcn_raw_buffer_atomic_and:
7188 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7189 case Intrinsic::amdgcn_raw_buffer_atomic_or:
7190 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7191 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7192 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7193 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7194 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7195 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7196 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7197 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7198 return lowerStructBufferAtomicIntrin(Op, DAG,
7199 AMDGPUISD::BUFFER_ATOMIC_SWAP);
7200 case Intrinsic::amdgcn_struct_buffer_atomic_add:
7201 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7202 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7203 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7204 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7205 return lowerStructBufferAtomicIntrin(Op, DAG,
7206 AMDGPUISD::BUFFER_ATOMIC_SMIN);
7207 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7208 return lowerStructBufferAtomicIntrin(Op, DAG,
7209 AMDGPUISD::BUFFER_ATOMIC_UMIN);
7210 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7211 return lowerStructBufferAtomicIntrin(Op, DAG,
7212 AMDGPUISD::BUFFER_ATOMIC_SMAX);
7213 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7214 return lowerStructBufferAtomicIntrin(Op, DAG,
7215 AMDGPUISD::BUFFER_ATOMIC_UMAX);
7216 case Intrinsic::amdgcn_struct_buffer_atomic_and:
7217 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7218 case Intrinsic::amdgcn_struct_buffer_atomic_or:
7219 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7220 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7221 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7222 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7223 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7224 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7225 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7226
7227 case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7228 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7229 unsigned IdxEn = 1;
7230 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5)))
7231 IdxEn = Idx->getZExtValue() != 0;
7232 SDValue Ops[] = {
7233 Op.getOperand(0), // Chain
7234 Op.getOperand(2), // src
7235 Op.getOperand(3), // cmp
7236 Op.getOperand(4), // rsrc
7237 Op.getOperand(5), // vindex
7238 SDValue(), // voffset -- will be set by setBufferOffsets
7239 SDValue(), // soffset -- will be set by setBufferOffsets
7240 SDValue(), // offset -- will be set by setBufferOffsets
7241 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7242 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7243 };
7244 unsigned Offset = setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7245 // We don't know the offset if vindex is non-zero, so clear it.
7246 if (IdxEn)
7247 Offset = 0;
7248 EVT VT = Op.getValueType();
7249 auto *M = cast<MemSDNode>(Op);
7250 M->getMemOperand()->setOffset(Offset);
7251
7252 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7253 Op->getVTList(), Ops, VT, M->getMemOperand());
7254 }
7255 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7256 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7257 SDValue Ops[] = {
7258 Op.getOperand(0), // Chain
7259 Op.getOperand(2), // src
7260 Op.getOperand(3), // cmp
7261 Op.getOperand(4), // rsrc
7262 DAG.getConstant(0, DL, MVT::i32), // vindex
7263 Offsets.first, // voffset
7264 Op.getOperand(6), // soffset
7265 Offsets.second, // offset
7266 Op.getOperand(7), // cachepolicy
7267 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7268 };
7269 EVT VT = Op.getValueType();
7270 auto *M = cast<MemSDNode>(Op);
7271 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7]));
7272
7273 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7274 Op->getVTList(), Ops, VT, M->getMemOperand());
7275 }
7276 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7277 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7278 SDValue Ops[] = {
7279 Op.getOperand(0), // Chain
7280 Op.getOperand(2), // src
7281 Op.getOperand(3), // cmp
7282 Op.getOperand(4), // rsrc
7283 Op.getOperand(5), // vindex
7284 Offsets.first, // voffset
7285 Op.getOperand(7), // soffset
7286 Offsets.second, // offset
7287 Op.getOperand(8), // cachepolicy
7288 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7289 };
7290 EVT VT = Op.getValueType();
7291 auto *M = cast<MemSDNode>(Op);
7292 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7],
7293 Ops[4]));
7294
7295 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7296 Op->getVTList(), Ops, VT, M->getMemOperand());
7297 }
7298 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7299 SDLoc DL(Op);
7300 MemSDNode *M = cast<MemSDNode>(Op);
7301 SDValue NodePtr = M->getOperand(2);
7302 SDValue RayExtent = M->getOperand(3);
7303 SDValue RayOrigin = M->getOperand(4);
7304 SDValue RayDir = M->getOperand(5);
7305 SDValue RayInvDir = M->getOperand(6);
7306 SDValue TDescr = M->getOperand(7);
7307
7308 assert(NodePtr.getValueType() == MVT::i32 ||
7309 NodePtr.getValueType() == MVT::i64);
7310 assert(RayDir.getValueType() == MVT::v4f16 ||
7311 RayDir.getValueType() == MVT::v4f32);
7312
7313 bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7314 bool Is64 = NodePtr.getValueType() == MVT::i64;
7315 unsigned Opcode = IsA16 ? Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa
7316 : AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa
7317 : Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_nsa
7318 : AMDGPU::IMAGE_BVH_INTERSECT_RAY_nsa;
7319
7320 SmallVector<SDValue, 16> Ops;
7321
7322 auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7323 SmallVector<SDValue, 3> Lanes;
7324 DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7325 if (Lanes[0].getValueSizeInBits() == 32) {
7326 for (unsigned I = 0; I < 3; ++I)
7327 Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7328 } else {
7329 if (IsAligned) {
7330 Ops.push_back(
7331 DAG.getBitcast(MVT::i32,
7332 DAG.getBuildVector(MVT::v2f16, DL,
7333 { Lanes[0], Lanes[1] })));
7334 Ops.push_back(Lanes[2]);
7335 } else {
7336 SDValue Elt0 = Ops.pop_back_val();
7337 Ops.push_back(
7338 DAG.getBitcast(MVT::i32,
7339 DAG.getBuildVector(MVT::v2f16, DL,
7340 { Elt0, Lanes[0] })));
7341 Ops.push_back(
7342 DAG.getBitcast(MVT::i32,
7343 DAG.getBuildVector(MVT::v2f16, DL,
7344 { Lanes[1], Lanes[2] })));
7345 }
7346 }
7347 };
7348
7349 if (Is64)
7350 DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2);
7351 else
7352 Ops.push_back(NodePtr);
7353
7354 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7355 packLanes(RayOrigin, true);
7356 packLanes(RayDir, true);
7357 packLanes(RayInvDir, false);
7358 Ops.push_back(TDescr);
7359 if (IsA16)
7360 Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7361 Ops.push_back(M->getChain());
7362
7363 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7364 MachineMemOperand *MemRef = M->getMemOperand();
7365 DAG.setNodeMemRefs(NewNode, {MemRef});
7366 return SDValue(NewNode, 0);
7367 }
7368 case Intrinsic::amdgcn_global_atomic_fadd:
7369 if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7370 DiagnosticInfoUnsupported
7371 NoFpRet(DAG.getMachineFunction().getFunction(),
7372 "return versions of fp atomics not supported",
7373 DL.getDebugLoc(), DS_Error);
7374 DAG.getContext()->diagnose(NoFpRet);
7375 return SDValue();
7376 }
7377 LLVM_FALLTHROUGH;
7378 case Intrinsic::amdgcn_global_atomic_fmin:
7379 case Intrinsic::amdgcn_global_atomic_fmax:
7380 case Intrinsic::amdgcn_flat_atomic_fadd:
7381 case Intrinsic::amdgcn_flat_atomic_fmin:
7382 case Intrinsic::amdgcn_flat_atomic_fmax: {
7383 MemSDNode *M = cast<MemSDNode>(Op);
7384 SDValue Ops[] = {
7385 M->getOperand(0), // Chain
7386 M->getOperand(2), // Ptr
7387 M->getOperand(3) // Value
7388 };
7389 unsigned Opcode = 0;
7390 switch (IntrID) {
7391 case Intrinsic::amdgcn_global_atomic_fadd:
7392 case Intrinsic::amdgcn_flat_atomic_fadd: {
7393 EVT VT = Op.getOperand(3).getValueType();
7394 return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7395 DAG.getVTList(VT, MVT::Other), Ops,
7396 M->getMemOperand());
7397 }
7398 case Intrinsic::amdgcn_global_atomic_fmin:
7399 case Intrinsic::amdgcn_flat_atomic_fmin: {
7400 Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN;
7401 break;
7402 }
7403 case Intrinsic::amdgcn_global_atomic_fmax:
7404 case Intrinsic::amdgcn_flat_atomic_fmax: {
7405 Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX;
7406 break;
7407 }
7408 default:
7409 llvm_unreachable("unhandled atomic opcode");
7410 }
7411 return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op),
7412 M->getVTList(), Ops, M->getMemoryVT(),
7413 M->getMemOperand());
7414 }
7415 default:
7416
7417 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7418 AMDGPU::getImageDimIntrinsicInfo(IntrID))
7419 return lowerImage(Op, ImageDimIntr, DAG, true);
7420
7421 return SDValue();
7422 }
7423 }
7424
7425 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7426 // dwordx4 if on SI.
getMemIntrinsicNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,ArrayRef<SDValue> Ops,EVT MemVT,MachineMemOperand * MMO,SelectionDAG & DAG) const7427 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7428 SDVTList VTList,
7429 ArrayRef<SDValue> Ops, EVT MemVT,
7430 MachineMemOperand *MMO,
7431 SelectionDAG &DAG) const {
7432 EVT VT = VTList.VTs[0];
7433 EVT WidenedVT = VT;
7434 EVT WidenedMemVT = MemVT;
7435 if (!Subtarget->hasDwordx3LoadStores() &&
7436 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7437 WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7438 WidenedVT.getVectorElementType(), 4);
7439 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7440 WidenedMemVT.getVectorElementType(), 4);
7441 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7442 }
7443
7444 assert(VTList.NumVTs == 2);
7445 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7446
7447 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7448 WidenedMemVT, MMO);
7449 if (WidenedVT != VT) {
7450 auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7451 DAG.getVectorIdxConstant(0, DL));
7452 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7453 }
7454 return NewOp;
7455 }
7456
handleD16VData(SDValue VData,SelectionDAG & DAG,bool ImageStore) const7457 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7458 bool ImageStore) const {
7459 EVT StoreVT = VData.getValueType();
7460
7461 // No change for f16 and legal vector D16 types.
7462 if (!StoreVT.isVector())
7463 return VData;
7464
7465 SDLoc DL(VData);
7466 unsigned NumElements = StoreVT.getVectorNumElements();
7467
7468 if (Subtarget->hasUnpackedD16VMem()) {
7469 // We need to unpack the packed data to store.
7470 EVT IntStoreVT = StoreVT.changeTypeToInteger();
7471 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7472
7473 EVT EquivStoreVT =
7474 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7475 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7476 return DAG.UnrollVectorOp(ZExt.getNode());
7477 }
7478
7479 // The sq block of gfx8.1 does not estimate register use correctly for d16
7480 // image store instructions. The data operand is computed as if it were not a
7481 // d16 image instruction.
7482 if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7483 // Bitcast to i16
7484 EVT IntStoreVT = StoreVT.changeTypeToInteger();
7485 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7486
7487 // Decompose into scalars
7488 SmallVector<SDValue, 4> Elts;
7489 DAG.ExtractVectorElements(IntVData, Elts);
7490
7491 // Group pairs of i16 into v2i16 and bitcast to i32
7492 SmallVector<SDValue, 4> PackedElts;
7493 for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7494 SDValue Pair =
7495 DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7496 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7497 PackedElts.push_back(IntPair);
7498 }
7499 if ((NumElements % 2) == 1) {
7500 // Handle v3i16
7501 unsigned I = Elts.size() / 2;
7502 SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
7503 {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
7504 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7505 PackedElts.push_back(IntPair);
7506 }
7507
7508 // Pad using UNDEF
7509 PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
7510
7511 // Build final vector
7512 EVT VecVT =
7513 EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
7514 return DAG.getBuildVector(VecVT, DL, PackedElts);
7515 }
7516
7517 if (NumElements == 3) {
7518 EVT IntStoreVT =
7519 EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
7520 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7521
7522 EVT WidenedStoreVT = EVT::getVectorVT(
7523 *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
7524 EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
7525 WidenedStoreVT.getStoreSizeInBits());
7526 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
7527 return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
7528 }
7529
7530 assert(isTypeLegal(StoreVT));
7531 return VData;
7532 }
7533
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const7534 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7535 SelectionDAG &DAG) const {
7536 SDLoc DL(Op);
7537 SDValue Chain = Op.getOperand(0);
7538 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7539 MachineFunction &MF = DAG.getMachineFunction();
7540
7541 switch (IntrinsicID) {
7542 case Intrinsic::amdgcn_exp_compr: {
7543 SDValue Src0 = Op.getOperand(4);
7544 SDValue Src1 = Op.getOperand(5);
7545 // Hack around illegal type on SI by directly selecting it.
7546 if (isTypeLegal(Src0.getValueType()))
7547 return SDValue();
7548
7549 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7550 SDValue Undef = DAG.getUNDEF(MVT::f32);
7551 const SDValue Ops[] = {
7552 Op.getOperand(2), // tgt
7553 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7554 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7555 Undef, // src2
7556 Undef, // src3
7557 Op.getOperand(7), // vm
7558 DAG.getTargetConstant(1, DL, MVT::i1), // compr
7559 Op.getOperand(3), // en
7560 Op.getOperand(0) // Chain
7561 };
7562
7563 unsigned Opc = Done->isNullValue() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
7564 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
7565 }
7566 case Intrinsic::amdgcn_s_barrier: {
7567 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
7568 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
7569 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
7570 if (WGSize <= ST.getWavefrontSize())
7571 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
7572 Op.getOperand(0)), 0);
7573 }
7574 return SDValue();
7575 };
7576 case Intrinsic::amdgcn_tbuffer_store: {
7577 SDValue VData = Op.getOperand(2);
7578 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7579 if (IsD16)
7580 VData = handleD16VData(VData, DAG);
7581 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7582 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7583 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7584 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
7585 unsigned IdxEn = 1;
7586 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7587 IdxEn = Idx->getZExtValue() != 0;
7588 SDValue Ops[] = {
7589 Chain,
7590 VData, // vdata
7591 Op.getOperand(3), // rsrc
7592 Op.getOperand(4), // vindex
7593 Op.getOperand(5), // voffset
7594 Op.getOperand(6), // soffset
7595 Op.getOperand(7), // offset
7596 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7597 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7598 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen
7599 };
7600 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7601 AMDGPUISD::TBUFFER_STORE_FORMAT;
7602 MemSDNode *M = cast<MemSDNode>(Op);
7603 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7604 M->getMemoryVT(), M->getMemOperand());
7605 }
7606
7607 case Intrinsic::amdgcn_struct_tbuffer_store: {
7608 SDValue VData = Op.getOperand(2);
7609 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7610 if (IsD16)
7611 VData = handleD16VData(VData, DAG);
7612 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7613 SDValue Ops[] = {
7614 Chain,
7615 VData, // vdata
7616 Op.getOperand(3), // rsrc
7617 Op.getOperand(4), // vindex
7618 Offsets.first, // voffset
7619 Op.getOperand(6), // soffset
7620 Offsets.second, // offset
7621 Op.getOperand(7), // format
7622 Op.getOperand(8), // cachepolicy, swizzled buffer
7623 DAG.getTargetConstant(1, DL, MVT::i1), // idexen
7624 };
7625 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7626 AMDGPUISD::TBUFFER_STORE_FORMAT;
7627 MemSDNode *M = cast<MemSDNode>(Op);
7628 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7629 M->getMemoryVT(), M->getMemOperand());
7630 }
7631
7632 case Intrinsic::amdgcn_raw_tbuffer_store: {
7633 SDValue VData = Op.getOperand(2);
7634 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7635 if (IsD16)
7636 VData = handleD16VData(VData, DAG);
7637 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7638 SDValue Ops[] = {
7639 Chain,
7640 VData, // vdata
7641 Op.getOperand(3), // rsrc
7642 DAG.getConstant(0, DL, MVT::i32), // vindex
7643 Offsets.first, // voffset
7644 Op.getOperand(5), // soffset
7645 Offsets.second, // offset
7646 Op.getOperand(6), // format
7647 Op.getOperand(7), // cachepolicy, swizzled buffer
7648 DAG.getTargetConstant(0, DL, MVT::i1), // idexen
7649 };
7650 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7651 AMDGPUISD::TBUFFER_STORE_FORMAT;
7652 MemSDNode *M = cast<MemSDNode>(Op);
7653 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7654 M->getMemoryVT(), M->getMemOperand());
7655 }
7656
7657 case Intrinsic::amdgcn_buffer_store:
7658 case Intrinsic::amdgcn_buffer_store_format: {
7659 SDValue VData = Op.getOperand(2);
7660 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7661 if (IsD16)
7662 VData = handleD16VData(VData, DAG);
7663 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7664 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7665 unsigned IdxEn = 1;
7666 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7667 IdxEn = Idx->getZExtValue() != 0;
7668 SDValue Ops[] = {
7669 Chain,
7670 VData,
7671 Op.getOperand(3), // rsrc
7672 Op.getOperand(4), // vindex
7673 SDValue(), // voffset -- will be set by setBufferOffsets
7674 SDValue(), // soffset -- will be set by setBufferOffsets
7675 SDValue(), // offset -- will be set by setBufferOffsets
7676 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7677 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7678 };
7679 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7680 // We don't know the offset if vindex is non-zero, so clear it.
7681 if (IdxEn)
7682 Offset = 0;
7683 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
7684 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7685 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7686 MemSDNode *M = cast<MemSDNode>(Op);
7687 M->getMemOperand()->setOffset(Offset);
7688
7689 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7690 EVT VDataType = VData.getValueType().getScalarType();
7691 if (VDataType == MVT::i8 || VDataType == MVT::i16)
7692 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7693
7694 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7695 M->getMemoryVT(), M->getMemOperand());
7696 }
7697
7698 case Intrinsic::amdgcn_raw_buffer_store:
7699 case Intrinsic::amdgcn_raw_buffer_store_format: {
7700 const bool IsFormat =
7701 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
7702
7703 SDValue VData = Op.getOperand(2);
7704 EVT VDataVT = VData.getValueType();
7705 EVT EltType = VDataVT.getScalarType();
7706 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7707 if (IsD16) {
7708 VData = handleD16VData(VData, DAG);
7709 VDataVT = VData.getValueType();
7710 }
7711
7712 if (!isTypeLegal(VDataVT)) {
7713 VData =
7714 DAG.getNode(ISD::BITCAST, DL,
7715 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7716 }
7717
7718 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7719 SDValue Ops[] = {
7720 Chain,
7721 VData,
7722 Op.getOperand(3), // rsrc
7723 DAG.getConstant(0, DL, MVT::i32), // vindex
7724 Offsets.first, // voffset
7725 Op.getOperand(5), // soffset
7726 Offsets.second, // offset
7727 Op.getOperand(6), // cachepolicy, swizzled buffer
7728 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7729 };
7730 unsigned Opc =
7731 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
7732 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7733 MemSDNode *M = cast<MemSDNode>(Op);
7734 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
7735
7736 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7737 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7738 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
7739
7740 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7741 M->getMemoryVT(), M->getMemOperand());
7742 }
7743
7744 case Intrinsic::amdgcn_struct_buffer_store:
7745 case Intrinsic::amdgcn_struct_buffer_store_format: {
7746 const bool IsFormat =
7747 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
7748
7749 SDValue VData = Op.getOperand(2);
7750 EVT VDataVT = VData.getValueType();
7751 EVT EltType = VDataVT.getScalarType();
7752 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7753
7754 if (IsD16) {
7755 VData = handleD16VData(VData, DAG);
7756 VDataVT = VData.getValueType();
7757 }
7758
7759 if (!isTypeLegal(VDataVT)) {
7760 VData =
7761 DAG.getNode(ISD::BITCAST, DL,
7762 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7763 }
7764
7765 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7766 SDValue Ops[] = {
7767 Chain,
7768 VData,
7769 Op.getOperand(3), // rsrc
7770 Op.getOperand(4), // vindex
7771 Offsets.first, // voffset
7772 Op.getOperand(6), // soffset
7773 Offsets.second, // offset
7774 Op.getOperand(7), // cachepolicy, swizzled buffer
7775 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7776 };
7777 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
7778 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7779 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7780 MemSDNode *M = cast<MemSDNode>(Op);
7781 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
7782 Ops[3]));
7783
7784 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7785 EVT VDataType = VData.getValueType().getScalarType();
7786 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7787 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7788
7789 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7790 M->getMemoryVT(), M->getMemOperand());
7791 }
7792 case Intrinsic::amdgcn_end_cf:
7793 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
7794 Op->getOperand(2), Chain), 0);
7795
7796 default: {
7797 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7798 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7799 return lowerImage(Op, ImageDimIntr, DAG, true);
7800
7801 return Op;
7802 }
7803 }
7804 }
7805
7806 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
7807 // offset (the offset that is included in bounds checking and swizzling, to be
7808 // split between the instruction's voffset and immoffset fields) and soffset
7809 // (the offset that is excluded from bounds checking and swizzling, to go in
7810 // the instruction's soffset field). This function takes the first kind of
7811 // offset and figures out how to split it between voffset and immoffset.
splitBufferOffsets(SDValue Offset,SelectionDAG & DAG) const7812 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
7813 SDValue Offset, SelectionDAG &DAG) const {
7814 SDLoc DL(Offset);
7815 const unsigned MaxImm = 4095;
7816 SDValue N0 = Offset;
7817 ConstantSDNode *C1 = nullptr;
7818
7819 if ((C1 = dyn_cast<ConstantSDNode>(N0)))
7820 N0 = SDValue();
7821 else if (DAG.isBaseWithConstantOffset(N0)) {
7822 C1 = cast<ConstantSDNode>(N0.getOperand(1));
7823 N0 = N0.getOperand(0);
7824 }
7825
7826 if (C1) {
7827 unsigned ImmOffset = C1->getZExtValue();
7828 // If the immediate value is too big for the immoffset field, put the value
7829 // and -4096 into the immoffset field so that the value that is copied/added
7830 // for the voffset field is a multiple of 4096, and it stands more chance
7831 // of being CSEd with the copy/add for another similar load/store.
7832 // However, do not do that rounding down to a multiple of 4096 if that is a
7833 // negative number, as it appears to be illegal to have a negative offset
7834 // in the vgpr, even if adding the immediate offset makes it positive.
7835 unsigned Overflow = ImmOffset & ~MaxImm;
7836 ImmOffset -= Overflow;
7837 if ((int32_t)Overflow < 0) {
7838 Overflow += ImmOffset;
7839 ImmOffset = 0;
7840 }
7841 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
7842 if (Overflow) {
7843 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
7844 if (!N0)
7845 N0 = OverflowVal;
7846 else {
7847 SDValue Ops[] = { N0, OverflowVal };
7848 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
7849 }
7850 }
7851 }
7852 if (!N0)
7853 N0 = DAG.getConstant(0, DL, MVT::i32);
7854 if (!C1)
7855 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
7856 return {N0, SDValue(C1, 0)};
7857 }
7858
7859 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
7860 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
7861 // pointed to by Offsets.
setBufferOffsets(SDValue CombinedOffset,SelectionDAG & DAG,SDValue * Offsets,Align Alignment) const7862 unsigned SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
7863 SelectionDAG &DAG, SDValue *Offsets,
7864 Align Alignment) const {
7865 SDLoc DL(CombinedOffset);
7866 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
7867 uint32_t Imm = C->getZExtValue();
7868 uint32_t SOffset, ImmOffset;
7869 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
7870 Alignment)) {
7871 Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
7872 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7873 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7874 return SOffset + ImmOffset;
7875 }
7876 }
7877 if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
7878 SDValue N0 = CombinedOffset.getOperand(0);
7879 SDValue N1 = CombinedOffset.getOperand(1);
7880 uint32_t SOffset, ImmOffset;
7881 int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
7882 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
7883 Subtarget, Alignment)) {
7884 Offsets[0] = N0;
7885 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7886 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7887 return 0;
7888 }
7889 }
7890 Offsets[0] = CombinedOffset;
7891 Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
7892 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
7893 return 0;
7894 }
7895
7896 // Handle 8 bit and 16 bit buffer loads
handleByteShortBufferLoads(SelectionDAG & DAG,EVT LoadVT,SDLoc DL,ArrayRef<SDValue> Ops,MemSDNode * M) const7897 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
7898 EVT LoadVT, SDLoc DL,
7899 ArrayRef<SDValue> Ops,
7900 MemSDNode *M) const {
7901 EVT IntVT = LoadVT.changeTypeToInteger();
7902 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
7903 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
7904
7905 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
7906 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
7907 Ops, IntVT,
7908 M->getMemOperand());
7909 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
7910 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
7911
7912 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
7913 }
7914
7915 // Handle 8 bit and 16 bit buffer stores
handleByteShortBufferStores(SelectionDAG & DAG,EVT VDataType,SDLoc DL,SDValue Ops[],MemSDNode * M) const7916 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
7917 EVT VDataType, SDLoc DL,
7918 SDValue Ops[],
7919 MemSDNode *M) const {
7920 if (VDataType == MVT::f16)
7921 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
7922
7923 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
7924 Ops[1] = BufferStoreExt;
7925 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
7926 AMDGPUISD::BUFFER_STORE_SHORT;
7927 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
7928 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
7929 M->getMemOperand());
7930 }
7931
getLoadExtOrTrunc(SelectionDAG & DAG,ISD::LoadExtType ExtType,SDValue Op,const SDLoc & SL,EVT VT)7932 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
7933 ISD::LoadExtType ExtType, SDValue Op,
7934 const SDLoc &SL, EVT VT) {
7935 if (VT.bitsLT(Op.getValueType()))
7936 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
7937
7938 switch (ExtType) {
7939 case ISD::SEXTLOAD:
7940 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
7941 case ISD::ZEXTLOAD:
7942 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
7943 case ISD::EXTLOAD:
7944 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
7945 case ISD::NON_EXTLOAD:
7946 return Op;
7947 }
7948
7949 llvm_unreachable("invalid ext type");
7950 }
7951
widenLoad(LoadSDNode * Ld,DAGCombinerInfo & DCI) const7952 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
7953 SelectionDAG &DAG = DCI.DAG;
7954 if (Ld->getAlignment() < 4 || Ld->isDivergent())
7955 return SDValue();
7956
7957 // FIXME: Constant loads should all be marked invariant.
7958 unsigned AS = Ld->getAddressSpace();
7959 if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
7960 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
7961 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
7962 return SDValue();
7963
7964 // Don't do this early, since it may interfere with adjacent load merging for
7965 // illegal types. We can avoid losing alignment information for exotic types
7966 // pre-legalize.
7967 EVT MemVT = Ld->getMemoryVT();
7968 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
7969 MemVT.getSizeInBits() >= 32)
7970 return SDValue();
7971
7972 SDLoc SL(Ld);
7973
7974 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
7975 "unexpected vector extload");
7976
7977 // TODO: Drop only high part of range.
7978 SDValue Ptr = Ld->getBasePtr();
7979 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
7980 MVT::i32, SL, Ld->getChain(), Ptr,
7981 Ld->getOffset(),
7982 Ld->getPointerInfo(), MVT::i32,
7983 Ld->getAlignment(),
7984 Ld->getMemOperand()->getFlags(),
7985 Ld->getAAInfo(),
7986 nullptr); // Drop ranges
7987
7988 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
7989 if (MemVT.isFloatingPoint()) {
7990 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
7991 "unexpected fp extload");
7992 TruncVT = MemVT.changeTypeToInteger();
7993 }
7994
7995 SDValue Cvt = NewLoad;
7996 if (Ld->getExtensionType() == ISD::SEXTLOAD) {
7997 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
7998 DAG.getValueType(TruncVT));
7999 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
8000 Ld->getExtensionType() == ISD::NON_EXTLOAD) {
8001 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
8002 } else {
8003 assert(Ld->getExtensionType() == ISD::EXTLOAD);
8004 }
8005
8006 EVT VT = Ld->getValueType(0);
8007 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8008
8009 DCI.AddToWorklist(Cvt.getNode());
8010
8011 // We may need to handle exotic cases, such as i16->i64 extloads, so insert
8012 // the appropriate extension from the 32-bit load.
8013 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
8014 DCI.AddToWorklist(Cvt.getNode());
8015
8016 // Handle conversion back to floating point if necessary.
8017 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
8018
8019 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
8020 }
8021
LowerLOAD(SDValue Op,SelectionDAG & DAG) const8022 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
8023 SDLoc DL(Op);
8024 LoadSDNode *Load = cast<LoadSDNode>(Op);
8025 ISD::LoadExtType ExtType = Load->getExtensionType();
8026 EVT MemVT = Load->getMemoryVT();
8027
8028 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
8029 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
8030 return SDValue();
8031
8032 // FIXME: Copied from PPC
8033 // First, load into 32 bits, then truncate to 1 bit.
8034
8035 SDValue Chain = Load->getChain();
8036 SDValue BasePtr = Load->getBasePtr();
8037 MachineMemOperand *MMO = Load->getMemOperand();
8038
8039 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
8040
8041 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
8042 BasePtr, RealMemVT, MMO);
8043
8044 if (!MemVT.isVector()) {
8045 SDValue Ops[] = {
8046 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
8047 NewLD.getValue(1)
8048 };
8049
8050 return DAG.getMergeValues(Ops, DL);
8051 }
8052
8053 SmallVector<SDValue, 3> Elts;
8054 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
8055 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
8056 DAG.getConstant(I, DL, MVT::i32));
8057
8058 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
8059 }
8060
8061 SDValue Ops[] = {
8062 DAG.getBuildVector(MemVT, DL, Elts),
8063 NewLD.getValue(1)
8064 };
8065
8066 return DAG.getMergeValues(Ops, DL);
8067 }
8068
8069 if (!MemVT.isVector())
8070 return SDValue();
8071
8072 assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
8073 "Custom lowering for non-i32 vectors hasn't been implemented.");
8074
8075 unsigned Alignment = Load->getAlignment();
8076 unsigned AS = Load->getAddressSpace();
8077 if (Subtarget->hasLDSMisalignedBug() &&
8078 AS == AMDGPUAS::FLAT_ADDRESS &&
8079 Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
8080 return SplitVectorLoad(Op, DAG);
8081 }
8082
8083 MachineFunction &MF = DAG.getMachineFunction();
8084 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8085 // If there is a possibilty that flat instruction access scratch memory
8086 // then we need to use the same legalization rules we use for private.
8087 if (AS == AMDGPUAS::FLAT_ADDRESS &&
8088 !Subtarget->hasMultiDwordFlatScratchAddressing())
8089 AS = MFI->hasFlatScratchInit() ?
8090 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8091
8092 unsigned NumElements = MemVT.getVectorNumElements();
8093
8094 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8095 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
8096 if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
8097 if (MemVT.isPow2VectorType())
8098 return SDValue();
8099 return WidenOrSplitVectorLoad(Op, DAG);
8100 }
8101 // Non-uniform loads will be selected to MUBUF instructions, so they
8102 // have the same legalization requirements as global and private
8103 // loads.
8104 //
8105 }
8106
8107 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8108 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8109 AS == AMDGPUAS::GLOBAL_ADDRESS) {
8110 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
8111 Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
8112 Alignment >= 4 && NumElements < 32) {
8113 if (MemVT.isPow2VectorType())
8114 return SDValue();
8115 return WidenOrSplitVectorLoad(Op, DAG);
8116 }
8117 // Non-uniform loads will be selected to MUBUF instructions, so they
8118 // have the same legalization requirements as global and private
8119 // loads.
8120 //
8121 }
8122 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8123 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8124 AS == AMDGPUAS::GLOBAL_ADDRESS ||
8125 AS == AMDGPUAS::FLAT_ADDRESS) {
8126 if (NumElements > 4)
8127 return SplitVectorLoad(Op, DAG);
8128 // v3 loads not supported on SI.
8129 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8130 return WidenOrSplitVectorLoad(Op, DAG);
8131
8132 // v3 and v4 loads are supported for private and global memory.
8133 return SDValue();
8134 }
8135 if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8136 // Depending on the setting of the private_element_size field in the
8137 // resource descriptor, we can only make private accesses up to a certain
8138 // size.
8139 switch (Subtarget->getMaxPrivateElementSize()) {
8140 case 4: {
8141 SDValue Ops[2];
8142 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8143 return DAG.getMergeValues(Ops, DL);
8144 }
8145 case 8:
8146 if (NumElements > 2)
8147 return SplitVectorLoad(Op, DAG);
8148 return SDValue();
8149 case 16:
8150 // Same as global/flat
8151 if (NumElements > 4)
8152 return SplitVectorLoad(Op, DAG);
8153 // v3 loads not supported on SI.
8154 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8155 return WidenOrSplitVectorLoad(Op, DAG);
8156
8157 return SDValue();
8158 default:
8159 llvm_unreachable("unsupported private_element_size");
8160 }
8161 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8162 // Use ds_read_b128 or ds_read_b96 when possible.
8163 if (Subtarget->hasDS96AndDS128() &&
8164 ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) ||
8165 MemVT.getStoreSize() == 12) &&
8166 allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8167 Load->getAlign()))
8168 return SDValue();
8169
8170 if (NumElements > 2)
8171 return SplitVectorLoad(Op, DAG);
8172
8173 // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8174 // address is negative, then the instruction is incorrectly treated as
8175 // out-of-bounds even if base + offsets is in bounds. Split vectorized
8176 // loads here to avoid emitting ds_read2_b32. We may re-combine the
8177 // load later in the SILoadStoreOptimizer.
8178 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
8179 NumElements == 2 && MemVT.getStoreSize() == 8 &&
8180 Load->getAlignment() < 8) {
8181 return SplitVectorLoad(Op, DAG);
8182 }
8183 }
8184
8185 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8186 MemVT, *Load->getMemOperand())) {
8187 SDValue Ops[2];
8188 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8189 return DAG.getMergeValues(Ops, DL);
8190 }
8191
8192 return SDValue();
8193 }
8194
LowerSELECT(SDValue Op,SelectionDAG & DAG) const8195 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8196 EVT VT = Op.getValueType();
8197 assert(VT.getSizeInBits() == 64);
8198
8199 SDLoc DL(Op);
8200 SDValue Cond = Op.getOperand(0);
8201
8202 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8203 SDValue One = DAG.getConstant(1, DL, MVT::i32);
8204
8205 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8206 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8207
8208 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8209 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8210
8211 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8212
8213 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8214 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8215
8216 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8217
8218 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8219 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8220 }
8221
8222 // Catch division cases where we can use shortcuts with rcp and rsq
8223 // instructions.
lowerFastUnsafeFDIV(SDValue Op,SelectionDAG & DAG) const8224 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8225 SelectionDAG &DAG) const {
8226 SDLoc SL(Op);
8227 SDValue LHS = Op.getOperand(0);
8228 SDValue RHS = Op.getOperand(1);
8229 EVT VT = Op.getValueType();
8230 const SDNodeFlags Flags = Op->getFlags();
8231
8232 bool AllowInaccurateRcp = Flags.hasApproximateFuncs();
8233
8234 // Without !fpmath accuracy information, we can't do more because we don't
8235 // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8236 if (!AllowInaccurateRcp)
8237 return SDValue();
8238
8239 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8240 if (CLHS->isExactlyValue(1.0)) {
8241 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8242 // the CI documentation has a worst case error of 1 ulp.
8243 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8244 // use it as long as we aren't trying to use denormals.
8245 //
8246 // v_rcp_f16 and v_rsq_f16 DO support denormals.
8247
8248 // 1.0 / sqrt(x) -> rsq(x)
8249
8250 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8251 // error seems really high at 2^29 ULP.
8252 if (RHS.getOpcode() == ISD::FSQRT)
8253 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8254
8255 // 1.0 / x -> rcp(x)
8256 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8257 }
8258
8259 // Same as for 1.0, but expand the sign out of the constant.
8260 if (CLHS->isExactlyValue(-1.0)) {
8261 // -1.0 / x -> rcp (fneg x)
8262 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8263 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8264 }
8265 }
8266
8267 // Turn into multiply by the reciprocal.
8268 // x / y -> x * (1.0 / y)
8269 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8270 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8271 }
8272
lowerFastUnsafeFDIV64(SDValue Op,SelectionDAG & DAG) const8273 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
8274 SelectionDAG &DAG) const {
8275 SDLoc SL(Op);
8276 SDValue X = Op.getOperand(0);
8277 SDValue Y = Op.getOperand(1);
8278 EVT VT = Op.getValueType();
8279 const SDNodeFlags Flags = Op->getFlags();
8280
8281 bool AllowInaccurateDiv = Flags.hasApproximateFuncs() ||
8282 DAG.getTarget().Options.UnsafeFPMath;
8283 if (!AllowInaccurateDiv)
8284 return SDValue();
8285
8286 SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
8287 SDValue One = DAG.getConstantFP(1.0, SL, VT);
8288
8289 SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
8290 SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8291
8292 R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
8293 SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8294 R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
8295 SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
8296 SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
8297 return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
8298 }
8299
getFPBinOp(SelectionDAG & DAG,unsigned Opcode,const SDLoc & SL,EVT VT,SDValue A,SDValue B,SDValue GlueChain,SDNodeFlags Flags)8300 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8301 EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8302 SDNodeFlags Flags) {
8303 if (GlueChain->getNumValues() <= 1) {
8304 return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8305 }
8306
8307 assert(GlueChain->getNumValues() == 3);
8308
8309 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8310 switch (Opcode) {
8311 default: llvm_unreachable("no chain equivalent for opcode");
8312 case ISD::FMUL:
8313 Opcode = AMDGPUISD::FMUL_W_CHAIN;
8314 break;
8315 }
8316
8317 return DAG.getNode(Opcode, SL, VTList,
8318 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8319 Flags);
8320 }
8321
getFPTernOp(SelectionDAG & DAG,unsigned Opcode,const SDLoc & SL,EVT VT,SDValue A,SDValue B,SDValue C,SDValue GlueChain,SDNodeFlags Flags)8322 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8323 EVT VT, SDValue A, SDValue B, SDValue C,
8324 SDValue GlueChain, SDNodeFlags Flags) {
8325 if (GlueChain->getNumValues() <= 1) {
8326 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8327 }
8328
8329 assert(GlueChain->getNumValues() == 3);
8330
8331 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8332 switch (Opcode) {
8333 default: llvm_unreachable("no chain equivalent for opcode");
8334 case ISD::FMA:
8335 Opcode = AMDGPUISD::FMA_W_CHAIN;
8336 break;
8337 }
8338
8339 return DAG.getNode(Opcode, SL, VTList,
8340 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8341 Flags);
8342 }
8343
LowerFDIV16(SDValue Op,SelectionDAG & DAG) const8344 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8345 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8346 return FastLowered;
8347
8348 SDLoc SL(Op);
8349 SDValue Src0 = Op.getOperand(0);
8350 SDValue Src1 = Op.getOperand(1);
8351
8352 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8353 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8354
8355 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8356 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8357
8358 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8359 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8360
8361 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8362 }
8363
8364 // Faster 2.5 ULP division that does not support denormals.
lowerFDIV_FAST(SDValue Op,SelectionDAG & DAG) const8365 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8366 SDLoc SL(Op);
8367 SDValue LHS = Op.getOperand(1);
8368 SDValue RHS = Op.getOperand(2);
8369
8370 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8371
8372 const APFloat K0Val(BitsToFloat(0x6f800000));
8373 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8374
8375 const APFloat K1Val(BitsToFloat(0x2f800000));
8376 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8377
8378 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8379
8380 EVT SetCCVT =
8381 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8382
8383 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8384
8385 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8386
8387 // TODO: Should this propagate fast-math-flags?
8388 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8389
8390 // rcp does not support denormals.
8391 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8392
8393 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8394
8395 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8396 }
8397
8398 // Returns immediate value for setting the F32 denorm mode when using the
8399 // S_DENORM_MODE instruction.
getSPDenormModeValue(int SPDenormMode,SelectionDAG & DAG,const SDLoc & SL,const GCNSubtarget * ST)8400 static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8401 const SDLoc &SL, const GCNSubtarget *ST) {
8402 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
8403 int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8404 ? FP_DENORM_FLUSH_NONE
8405 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
8406
8407 int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8408 return DAG.getTargetConstant(Mode, SL, MVT::i32);
8409 }
8410
LowerFDIV32(SDValue Op,SelectionDAG & DAG) const8411 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8412 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8413 return FastLowered;
8414
8415 // The selection matcher assumes anything with a chain selecting to a
8416 // mayRaiseFPException machine instruction. Since we're introducing a chain
8417 // here, we need to explicitly report nofpexcept for the regular fdiv
8418 // lowering.
8419 SDNodeFlags Flags = Op->getFlags();
8420 Flags.setNoFPExcept(true);
8421
8422 SDLoc SL(Op);
8423 SDValue LHS = Op.getOperand(0);
8424 SDValue RHS = Op.getOperand(1);
8425
8426 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8427
8428 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
8429
8430 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8431 {RHS, RHS, LHS}, Flags);
8432 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8433 {LHS, RHS, LHS}, Flags);
8434
8435 // Denominator is scaled to not be denormal, so using rcp is ok.
8436 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
8437 DenominatorScaled, Flags);
8438 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
8439 DenominatorScaled, Flags);
8440
8441 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
8442 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
8443 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
8444 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
8445
8446 const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
8447
8448 if (!HasFP32Denormals) {
8449 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
8450 // lowering. The chain dependence is insufficient, and we need glue. We do
8451 // not need the glue variants in a strictfp function.
8452
8453 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
8454
8455 SDNode *EnableDenorm;
8456 if (Subtarget->hasDenormModeInst()) {
8457 const SDValue EnableDenormValue =
8458 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
8459
8460 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
8461 DAG.getEntryNode(), EnableDenormValue).getNode();
8462 } else {
8463 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
8464 SL, MVT::i32);
8465 EnableDenorm =
8466 DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
8467 {EnableDenormValue, BitField, DAG.getEntryNode()});
8468 }
8469
8470 SDValue Ops[3] = {
8471 NegDivScale0,
8472 SDValue(EnableDenorm, 0),
8473 SDValue(EnableDenorm, 1)
8474 };
8475
8476 NegDivScale0 = DAG.getMergeValues(Ops, SL);
8477 }
8478
8479 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
8480 ApproxRcp, One, NegDivScale0, Flags);
8481
8482 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
8483 ApproxRcp, Fma0, Flags);
8484
8485 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
8486 Fma1, Fma1, Flags);
8487
8488 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
8489 NumeratorScaled, Mul, Flags);
8490
8491 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
8492 Fma2, Fma1, Mul, Fma2, Flags);
8493
8494 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
8495 NumeratorScaled, Fma3, Flags);
8496
8497 if (!HasFP32Denormals) {
8498 SDNode *DisableDenorm;
8499 if (Subtarget->hasDenormModeInst()) {
8500 const SDValue DisableDenormValue =
8501 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
8502
8503 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
8504 Fma4.getValue(1), DisableDenormValue,
8505 Fma4.getValue(2)).getNode();
8506 } else {
8507 const SDValue DisableDenormValue =
8508 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
8509
8510 DisableDenorm = DAG.getMachineNode(
8511 AMDGPU::S_SETREG_B32, SL, MVT::Other,
8512 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
8513 }
8514
8515 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
8516 SDValue(DisableDenorm, 0), DAG.getRoot());
8517 DAG.setRoot(OutputChain);
8518 }
8519
8520 SDValue Scale = NumeratorScaled.getValue(1);
8521 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
8522 {Fma4, Fma1, Fma3, Scale}, Flags);
8523
8524 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
8525 }
8526
LowerFDIV64(SDValue Op,SelectionDAG & DAG) const8527 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
8528 if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
8529 return FastLowered;
8530
8531 SDLoc SL(Op);
8532 SDValue X = Op.getOperand(0);
8533 SDValue Y = Op.getOperand(1);
8534
8535 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
8536
8537 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
8538
8539 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
8540
8541 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
8542
8543 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
8544
8545 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
8546
8547 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
8548
8549 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
8550
8551 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
8552
8553 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
8554 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
8555
8556 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
8557 NegDivScale0, Mul, DivScale1);
8558
8559 SDValue Scale;
8560
8561 if (!Subtarget->hasUsableDivScaleConditionOutput()) {
8562 // Workaround a hardware bug on SI where the condition output from div_scale
8563 // is not usable.
8564
8565 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
8566
8567 // Figure out if the scale to use for div_fmas.
8568 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
8569 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
8570 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
8571 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
8572
8573 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
8574 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
8575
8576 SDValue Scale0Hi
8577 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
8578 SDValue Scale1Hi
8579 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
8580
8581 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
8582 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
8583 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
8584 } else {
8585 Scale = DivScale1.getValue(1);
8586 }
8587
8588 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
8589 Fma4, Fma3, Mul, Scale);
8590
8591 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
8592 }
8593
LowerFDIV(SDValue Op,SelectionDAG & DAG) const8594 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
8595 EVT VT = Op.getValueType();
8596
8597 if (VT == MVT::f32)
8598 return LowerFDIV32(Op, DAG);
8599
8600 if (VT == MVT::f64)
8601 return LowerFDIV64(Op, DAG);
8602
8603 if (VT == MVT::f16)
8604 return LowerFDIV16(Op, DAG);
8605
8606 llvm_unreachable("Unexpected type for fdiv");
8607 }
8608
LowerSTORE(SDValue Op,SelectionDAG & DAG) const8609 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
8610 SDLoc DL(Op);
8611 StoreSDNode *Store = cast<StoreSDNode>(Op);
8612 EVT VT = Store->getMemoryVT();
8613
8614 if (VT == MVT::i1) {
8615 return DAG.getTruncStore(Store->getChain(), DL,
8616 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
8617 Store->getBasePtr(), MVT::i1, Store->getMemOperand());
8618 }
8619
8620 assert(VT.isVector() &&
8621 Store->getValue().getValueType().getScalarType() == MVT::i32);
8622
8623 unsigned AS = Store->getAddressSpace();
8624 if (Subtarget->hasLDSMisalignedBug() &&
8625 AS == AMDGPUAS::FLAT_ADDRESS &&
8626 Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
8627 return SplitVectorStore(Op, DAG);
8628 }
8629
8630 MachineFunction &MF = DAG.getMachineFunction();
8631 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8632 // If there is a possibilty that flat instruction access scratch memory
8633 // then we need to use the same legalization rules we use for private.
8634 if (AS == AMDGPUAS::FLAT_ADDRESS &&
8635 !Subtarget->hasMultiDwordFlatScratchAddressing())
8636 AS = MFI->hasFlatScratchInit() ?
8637 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8638
8639 unsigned NumElements = VT.getVectorNumElements();
8640 if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
8641 AS == AMDGPUAS::FLAT_ADDRESS) {
8642 if (NumElements > 4)
8643 return SplitVectorStore(Op, DAG);
8644 // v3 stores not supported on SI.
8645 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8646 return SplitVectorStore(Op, DAG);
8647
8648 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8649 VT, *Store->getMemOperand()))
8650 return expandUnalignedStore(Store, DAG);
8651
8652 return SDValue();
8653 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8654 switch (Subtarget->getMaxPrivateElementSize()) {
8655 case 4:
8656 return scalarizeVectorStore(Store, DAG);
8657 case 8:
8658 if (NumElements > 2)
8659 return SplitVectorStore(Op, DAG);
8660 return SDValue();
8661 case 16:
8662 if (NumElements > 4 ||
8663 (NumElements == 3 && !Subtarget->enableFlatScratch()))
8664 return SplitVectorStore(Op, DAG);
8665 return SDValue();
8666 default:
8667 llvm_unreachable("unsupported private_element_size");
8668 }
8669 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8670 // Use ds_write_b128 or ds_write_b96 when possible.
8671 if (Subtarget->hasDS96AndDS128() &&
8672 ((Subtarget->useDS128() && VT.getStoreSize() == 16) ||
8673 (VT.getStoreSize() == 12)) &&
8674 allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
8675 Store->getAlign()))
8676 return SDValue();
8677
8678 if (NumElements > 2)
8679 return SplitVectorStore(Op, DAG);
8680
8681 // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8682 // address is negative, then the instruction is incorrectly treated as
8683 // out-of-bounds even if base + offsets is in bounds. Split vectorized
8684 // stores here to avoid emitting ds_write2_b32. We may re-combine the
8685 // store later in the SILoadStoreOptimizer.
8686 if (!Subtarget->hasUsableDSOffset() &&
8687 NumElements == 2 && VT.getStoreSize() == 8 &&
8688 Store->getAlignment() < 8) {
8689 return SplitVectorStore(Op, DAG);
8690 }
8691
8692 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8693 VT, *Store->getMemOperand())) {
8694 if (VT.isVector())
8695 return SplitVectorStore(Op, DAG);
8696 return expandUnalignedStore(Store, DAG);
8697 }
8698
8699 return SDValue();
8700 } else {
8701 llvm_unreachable("unhandled address space");
8702 }
8703 }
8704
LowerTrig(SDValue Op,SelectionDAG & DAG) const8705 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
8706 SDLoc DL(Op);
8707 EVT VT = Op.getValueType();
8708 SDValue Arg = Op.getOperand(0);
8709 SDValue TrigVal;
8710
8711 // Propagate fast-math flags so that the multiply we introduce can be folded
8712 // if Arg is already the result of a multiply by constant.
8713 auto Flags = Op->getFlags();
8714
8715 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
8716
8717 if (Subtarget->hasTrigReducedRange()) {
8718 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8719 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
8720 } else {
8721 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8722 }
8723
8724 switch (Op.getOpcode()) {
8725 case ISD::FCOS:
8726 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
8727 case ISD::FSIN:
8728 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
8729 default:
8730 llvm_unreachable("Wrong trig opcode");
8731 }
8732 }
8733
LowerATOMIC_CMP_SWAP(SDValue Op,SelectionDAG & DAG) const8734 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8735 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
8736 assert(AtomicNode->isCompareAndSwap());
8737 unsigned AS = AtomicNode->getAddressSpace();
8738
8739 // No custom lowering required for local address space
8740 if (!AMDGPU::isFlatGlobalAddrSpace(AS))
8741 return Op;
8742
8743 // Non-local address space requires custom lowering for atomic compare
8744 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
8745 SDLoc DL(Op);
8746 SDValue ChainIn = Op.getOperand(0);
8747 SDValue Addr = Op.getOperand(1);
8748 SDValue Old = Op.getOperand(2);
8749 SDValue New = Op.getOperand(3);
8750 EVT VT = Op.getValueType();
8751 MVT SimpleVT = VT.getSimpleVT();
8752 MVT VecType = MVT::getVectorVT(SimpleVT, 2);
8753
8754 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
8755 SDValue Ops[] = { ChainIn, Addr, NewOld };
8756
8757 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
8758 Ops, VT, AtomicNode->getMemOperand());
8759 }
8760
8761 //===----------------------------------------------------------------------===//
8762 // Custom DAG optimizations
8763 //===----------------------------------------------------------------------===//
8764
performUCharToFloatCombine(SDNode * N,DAGCombinerInfo & DCI) const8765 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
8766 DAGCombinerInfo &DCI) const {
8767 EVT VT = N->getValueType(0);
8768 EVT ScalarVT = VT.getScalarType();
8769 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
8770 return SDValue();
8771
8772 SelectionDAG &DAG = DCI.DAG;
8773 SDLoc DL(N);
8774
8775 SDValue Src = N->getOperand(0);
8776 EVT SrcVT = Src.getValueType();
8777
8778 // TODO: We could try to match extracting the higher bytes, which would be
8779 // easier if i8 vectors weren't promoted to i32 vectors, particularly after
8780 // types are legalized. v4i8 -> v4f32 is probably the only case to worry
8781 // about in practice.
8782 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
8783 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
8784 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
8785 DCI.AddToWorklist(Cvt.getNode());
8786
8787 // For the f16 case, fold to a cast to f32 and then cast back to f16.
8788 if (ScalarVT != MVT::f32) {
8789 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
8790 DAG.getTargetConstant(0, DL, MVT::i32));
8791 }
8792 return Cvt;
8793 }
8794 }
8795
8796 return SDValue();
8797 }
8798
8799 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
8800
8801 // This is a variant of
8802 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
8803 //
8804 // The normal DAG combiner will do this, but only if the add has one use since
8805 // that would increase the number of instructions.
8806 //
8807 // This prevents us from seeing a constant offset that can be folded into a
8808 // memory instruction's addressing mode. If we know the resulting add offset of
8809 // a pointer can be folded into an addressing offset, we can replace the pointer
8810 // operand with the add of new constant offset. This eliminates one of the uses,
8811 // and may allow the remaining use to also be simplified.
8812 //
performSHLPtrCombine(SDNode * N,unsigned AddrSpace,EVT MemVT,DAGCombinerInfo & DCI) const8813 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
8814 unsigned AddrSpace,
8815 EVT MemVT,
8816 DAGCombinerInfo &DCI) const {
8817 SDValue N0 = N->getOperand(0);
8818 SDValue N1 = N->getOperand(1);
8819
8820 // We only do this to handle cases where it's profitable when there are
8821 // multiple uses of the add, so defer to the standard combine.
8822 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
8823 N0->hasOneUse())
8824 return SDValue();
8825
8826 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
8827 if (!CN1)
8828 return SDValue();
8829
8830 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
8831 if (!CAdd)
8832 return SDValue();
8833
8834 // If the resulting offset is too large, we can't fold it into the addressing
8835 // mode offset.
8836 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
8837 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
8838
8839 AddrMode AM;
8840 AM.HasBaseReg = true;
8841 AM.BaseOffs = Offset.getSExtValue();
8842 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
8843 return SDValue();
8844
8845 SelectionDAG &DAG = DCI.DAG;
8846 SDLoc SL(N);
8847 EVT VT = N->getValueType(0);
8848
8849 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
8850 SDValue COffset = DAG.getConstant(Offset, SL, VT);
8851
8852 SDNodeFlags Flags;
8853 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
8854 (N0.getOpcode() == ISD::OR ||
8855 N0->getFlags().hasNoUnsignedWrap()));
8856
8857 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
8858 }
8859
8860 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
8861 /// by the chain and intrinsic ID. Theoretically we would also need to check the
8862 /// specific intrinsic, but they all place the pointer operand first.
getBasePtrIndex(const MemSDNode * N)8863 static unsigned getBasePtrIndex(const MemSDNode *N) {
8864 switch (N->getOpcode()) {
8865 case ISD::STORE:
8866 case ISD::INTRINSIC_W_CHAIN:
8867 case ISD::INTRINSIC_VOID:
8868 return 2;
8869 default:
8870 return 1;
8871 }
8872 }
8873
performMemSDNodeCombine(MemSDNode * N,DAGCombinerInfo & DCI) const8874 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
8875 DAGCombinerInfo &DCI) const {
8876 SelectionDAG &DAG = DCI.DAG;
8877 SDLoc SL(N);
8878
8879 unsigned PtrIdx = getBasePtrIndex(N);
8880 SDValue Ptr = N->getOperand(PtrIdx);
8881
8882 // TODO: We could also do this for multiplies.
8883 if (Ptr.getOpcode() == ISD::SHL) {
8884 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(),
8885 N->getMemoryVT(), DCI);
8886 if (NewPtr) {
8887 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
8888
8889 NewOps[PtrIdx] = NewPtr;
8890 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
8891 }
8892 }
8893
8894 return SDValue();
8895 }
8896
bitOpWithConstantIsReducible(unsigned Opc,uint32_t Val)8897 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
8898 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
8899 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
8900 (Opc == ISD::XOR && Val == 0);
8901 }
8902
8903 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
8904 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
8905 // integer combine opportunities since most 64-bit operations are decomposed
8906 // this way. TODO: We won't want this for SALU especially if it is an inline
8907 // immediate.
splitBinaryBitConstantOp(DAGCombinerInfo & DCI,const SDLoc & SL,unsigned Opc,SDValue LHS,const ConstantSDNode * CRHS) const8908 SDValue SITargetLowering::splitBinaryBitConstantOp(
8909 DAGCombinerInfo &DCI,
8910 const SDLoc &SL,
8911 unsigned Opc, SDValue LHS,
8912 const ConstantSDNode *CRHS) const {
8913 uint64_t Val = CRHS->getZExtValue();
8914 uint32_t ValLo = Lo_32(Val);
8915 uint32_t ValHi = Hi_32(Val);
8916 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8917
8918 if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
8919 bitOpWithConstantIsReducible(Opc, ValHi)) ||
8920 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
8921 // If we need to materialize a 64-bit immediate, it will be split up later
8922 // anyway. Avoid creating the harder to understand 64-bit immediate
8923 // materialization.
8924 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
8925 }
8926
8927 return SDValue();
8928 }
8929
8930 // Returns true if argument is a boolean value which is not serialized into
8931 // memory or argument and does not require v_cndmask_b32 to be deserialized.
isBoolSGPR(SDValue V)8932 static bool isBoolSGPR(SDValue V) {
8933 if (V.getValueType() != MVT::i1)
8934 return false;
8935 switch (V.getOpcode()) {
8936 default:
8937 break;
8938 case ISD::SETCC:
8939 case AMDGPUISD::FP_CLASS:
8940 return true;
8941 case ISD::AND:
8942 case ISD::OR:
8943 case ISD::XOR:
8944 return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
8945 }
8946 return false;
8947 }
8948
8949 // If a constant has all zeroes or all ones within each byte return it.
8950 // Otherwise return 0.
getConstantPermuteMask(uint32_t C)8951 static uint32_t getConstantPermuteMask(uint32_t C) {
8952 // 0xff for any zero byte in the mask
8953 uint32_t ZeroByteMask = 0;
8954 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
8955 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
8956 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
8957 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
8958 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
8959 if ((NonZeroByteMask & C) != NonZeroByteMask)
8960 return 0; // Partial bytes selected.
8961 return C;
8962 }
8963
8964 // Check if a node selects whole bytes from its operand 0 starting at a byte
8965 // boundary while masking the rest. Returns select mask as in the v_perm_b32
8966 // or -1 if not succeeded.
8967 // Note byte select encoding:
8968 // value 0-3 selects corresponding source byte;
8969 // value 0xc selects zero;
8970 // value 0xff selects 0xff.
getPermuteMask(SelectionDAG & DAG,SDValue V)8971 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
8972 assert(V.getValueSizeInBits() == 32);
8973
8974 if (V.getNumOperands() != 2)
8975 return ~0;
8976
8977 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
8978 if (!N1)
8979 return ~0;
8980
8981 uint32_t C = N1->getZExtValue();
8982
8983 switch (V.getOpcode()) {
8984 default:
8985 break;
8986 case ISD::AND:
8987 if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8988 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
8989 }
8990 break;
8991
8992 case ISD::OR:
8993 if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8994 return (0x03020100 & ~ConstMask) | ConstMask;
8995 }
8996 break;
8997
8998 case ISD::SHL:
8999 if (C % 8)
9000 return ~0;
9001
9002 return uint32_t((0x030201000c0c0c0cull << C) >> 32);
9003
9004 case ISD::SRL:
9005 if (C % 8)
9006 return ~0;
9007
9008 return uint32_t(0x0c0c0c0c03020100ull >> C);
9009 }
9010
9011 return ~0;
9012 }
9013
performAndCombine(SDNode * N,DAGCombinerInfo & DCI) const9014 SDValue SITargetLowering::performAndCombine(SDNode *N,
9015 DAGCombinerInfo &DCI) const {
9016 if (DCI.isBeforeLegalize())
9017 return SDValue();
9018
9019 SelectionDAG &DAG = DCI.DAG;
9020 EVT VT = N->getValueType(0);
9021 SDValue LHS = N->getOperand(0);
9022 SDValue RHS = N->getOperand(1);
9023
9024
9025 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9026 if (VT == MVT::i64 && CRHS) {
9027 if (SDValue Split
9028 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
9029 return Split;
9030 }
9031
9032 if (CRHS && VT == MVT::i32) {
9033 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
9034 // nb = number of trailing zeroes in mask
9035 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
9036 // given that we are selecting 8 or 16 bit fields starting at byte boundary.
9037 uint64_t Mask = CRHS->getZExtValue();
9038 unsigned Bits = countPopulation(Mask);
9039 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
9040 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
9041 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
9042 unsigned Shift = CShift->getZExtValue();
9043 unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
9044 unsigned Offset = NB + Shift;
9045 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
9046 SDLoc SL(N);
9047 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
9048 LHS->getOperand(0),
9049 DAG.getConstant(Offset, SL, MVT::i32),
9050 DAG.getConstant(Bits, SL, MVT::i32));
9051 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9052 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
9053 DAG.getValueType(NarrowVT));
9054 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
9055 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
9056 return Shl;
9057 }
9058 }
9059 }
9060
9061 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9062 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
9063 isa<ConstantSDNode>(LHS.getOperand(2))) {
9064 uint32_t Sel = getConstantPermuteMask(Mask);
9065 if (!Sel)
9066 return SDValue();
9067
9068 // Select 0xc for all zero bytes
9069 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
9070 SDLoc DL(N);
9071 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9072 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9073 }
9074 }
9075
9076 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
9077 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
9078 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
9079 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9080 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
9081
9082 SDValue X = LHS.getOperand(0);
9083 SDValue Y = RHS.getOperand(0);
9084 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
9085 return SDValue();
9086
9087 if (LCC == ISD::SETO) {
9088 if (X != LHS.getOperand(1))
9089 return SDValue();
9090
9091 if (RCC == ISD::SETUNE) {
9092 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
9093 if (!C1 || !C1->isInfinity() || C1->isNegative())
9094 return SDValue();
9095
9096 const uint32_t Mask = SIInstrFlags::N_NORMAL |
9097 SIInstrFlags::N_SUBNORMAL |
9098 SIInstrFlags::N_ZERO |
9099 SIInstrFlags::P_ZERO |
9100 SIInstrFlags::P_SUBNORMAL |
9101 SIInstrFlags::P_NORMAL;
9102
9103 static_assert(((~(SIInstrFlags::S_NAN |
9104 SIInstrFlags::Q_NAN |
9105 SIInstrFlags::N_INFINITY |
9106 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
9107 "mask not equal");
9108
9109 SDLoc DL(N);
9110 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9111 X, DAG.getConstant(Mask, DL, MVT::i32));
9112 }
9113 }
9114 }
9115
9116 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
9117 std::swap(LHS, RHS);
9118
9119 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9120 RHS.hasOneUse()) {
9121 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9122 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
9123 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
9124 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9125 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
9126 (RHS.getOperand(0) == LHS.getOperand(0) &&
9127 LHS.getOperand(0) == LHS.getOperand(1))) {
9128 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
9129 unsigned NewMask = LCC == ISD::SETO ?
9130 Mask->getZExtValue() & ~OrdMask :
9131 Mask->getZExtValue() & OrdMask;
9132
9133 SDLoc DL(N);
9134 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
9135 DAG.getConstant(NewMask, DL, MVT::i32));
9136 }
9137 }
9138
9139 if (VT == MVT::i32 &&
9140 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9141 // and x, (sext cc from i1) => select cc, x, 0
9142 if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9143 std::swap(LHS, RHS);
9144 if (isBoolSGPR(RHS.getOperand(0)))
9145 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9146 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9147 }
9148
9149 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9150 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9151 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9152 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9153 uint32_t LHSMask = getPermuteMask(DAG, LHS);
9154 uint32_t RHSMask = getPermuteMask(DAG, RHS);
9155 if (LHSMask != ~0u && RHSMask != ~0u) {
9156 // Canonicalize the expression in an attempt to have fewer unique masks
9157 // and therefore fewer registers used to hold the masks.
9158 if (LHSMask > RHSMask) {
9159 std::swap(LHSMask, RHSMask);
9160 std::swap(LHS, RHS);
9161 }
9162
9163 // Select 0xc for each lane used from source operand. Zero has 0xc mask
9164 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9165 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9166 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9167
9168 // Check of we need to combine values from two sources within a byte.
9169 if (!(LHSUsedLanes & RHSUsedLanes) &&
9170 // If we select high and lower word keep it for SDWA.
9171 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9172 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9173 // Each byte in each mask is either selector mask 0-3, or has higher
9174 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9175 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9176 // mask which is not 0xff wins. By anding both masks we have a correct
9177 // result except that 0x0c shall be corrected to give 0x0c only.
9178 uint32_t Mask = LHSMask & RHSMask;
9179 for (unsigned I = 0; I < 32; I += 8) {
9180 uint32_t ByteSel = 0xff << I;
9181 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9182 Mask &= (0x0c << I) & 0xffffffff;
9183 }
9184
9185 // Add 4 to each active LHS lane. It will not affect any existing 0xff
9186 // or 0x0c.
9187 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9188 SDLoc DL(N);
9189
9190 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9191 LHS.getOperand(0), RHS.getOperand(0),
9192 DAG.getConstant(Sel, DL, MVT::i32));
9193 }
9194 }
9195 }
9196
9197 return SDValue();
9198 }
9199
performOrCombine(SDNode * N,DAGCombinerInfo & DCI) const9200 SDValue SITargetLowering::performOrCombine(SDNode *N,
9201 DAGCombinerInfo &DCI) const {
9202 SelectionDAG &DAG = DCI.DAG;
9203 SDValue LHS = N->getOperand(0);
9204 SDValue RHS = N->getOperand(1);
9205
9206 EVT VT = N->getValueType(0);
9207 if (VT == MVT::i1) {
9208 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9209 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9210 RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9211 SDValue Src = LHS.getOperand(0);
9212 if (Src != RHS.getOperand(0))
9213 return SDValue();
9214
9215 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9216 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9217 if (!CLHS || !CRHS)
9218 return SDValue();
9219
9220 // Only 10 bits are used.
9221 static const uint32_t MaxMask = 0x3ff;
9222
9223 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9224 SDLoc DL(N);
9225 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9226 Src, DAG.getConstant(NewMask, DL, MVT::i32));
9227 }
9228
9229 return SDValue();
9230 }
9231
9232 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9233 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9234 LHS.getOpcode() == AMDGPUISD::PERM &&
9235 isa<ConstantSDNode>(LHS.getOperand(2))) {
9236 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9237 if (!Sel)
9238 return SDValue();
9239
9240 Sel |= LHS.getConstantOperandVal(2);
9241 SDLoc DL(N);
9242 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9243 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9244 }
9245
9246 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9247 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9248 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9249 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9250 uint32_t LHSMask = getPermuteMask(DAG, LHS);
9251 uint32_t RHSMask = getPermuteMask(DAG, RHS);
9252 if (LHSMask != ~0u && RHSMask != ~0u) {
9253 // Canonicalize the expression in an attempt to have fewer unique masks
9254 // and therefore fewer registers used to hold the masks.
9255 if (LHSMask > RHSMask) {
9256 std::swap(LHSMask, RHSMask);
9257 std::swap(LHS, RHS);
9258 }
9259
9260 // Select 0xc for each lane used from source operand. Zero has 0xc mask
9261 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9262 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9263 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9264
9265 // Check of we need to combine values from two sources within a byte.
9266 if (!(LHSUsedLanes & RHSUsedLanes) &&
9267 // If we select high and lower word keep it for SDWA.
9268 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9269 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9270 // Kill zero bytes selected by other mask. Zero value is 0xc.
9271 LHSMask &= ~RHSUsedLanes;
9272 RHSMask &= ~LHSUsedLanes;
9273 // Add 4 to each active LHS lane
9274 LHSMask |= LHSUsedLanes & 0x04040404;
9275 // Combine masks
9276 uint32_t Sel = LHSMask | RHSMask;
9277 SDLoc DL(N);
9278
9279 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9280 LHS.getOperand(0), RHS.getOperand(0),
9281 DAG.getConstant(Sel, DL, MVT::i32));
9282 }
9283 }
9284 }
9285
9286 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9287 return SDValue();
9288
9289 // TODO: This could be a generic combine with a predicate for extracting the
9290 // high half of an integer being free.
9291
9292 // (or i64:x, (zero_extend i32:y)) ->
9293 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9294 if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9295 RHS.getOpcode() != ISD::ZERO_EXTEND)
9296 std::swap(LHS, RHS);
9297
9298 if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9299 SDValue ExtSrc = RHS.getOperand(0);
9300 EVT SrcVT = ExtSrc.getValueType();
9301 if (SrcVT == MVT::i32) {
9302 SDLoc SL(N);
9303 SDValue LowLHS, HiBits;
9304 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9305 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9306
9307 DCI.AddToWorklist(LowOr.getNode());
9308 DCI.AddToWorklist(HiBits.getNode());
9309
9310 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9311 LowOr, HiBits);
9312 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9313 }
9314 }
9315
9316 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9317 if (CRHS) {
9318 if (SDValue Split
9319 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
9320 return Split;
9321 }
9322
9323 return SDValue();
9324 }
9325
performXorCombine(SDNode * N,DAGCombinerInfo & DCI) const9326 SDValue SITargetLowering::performXorCombine(SDNode *N,
9327 DAGCombinerInfo &DCI) const {
9328 EVT VT = N->getValueType(0);
9329 if (VT != MVT::i64)
9330 return SDValue();
9331
9332 SDValue LHS = N->getOperand(0);
9333 SDValue RHS = N->getOperand(1);
9334
9335 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9336 if (CRHS) {
9337 if (SDValue Split
9338 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9339 return Split;
9340 }
9341
9342 return SDValue();
9343 }
9344
9345 // Instructions that will be lowered with a final instruction that zeros the
9346 // high result bits.
9347 // XXX - probably only need to list legal operations.
fp16SrcZerosHighBits(unsigned Opc)9348 static bool fp16SrcZerosHighBits(unsigned Opc) {
9349 switch (Opc) {
9350 case ISD::FADD:
9351 case ISD::FSUB:
9352 case ISD::FMUL:
9353 case ISD::FDIV:
9354 case ISD::FREM:
9355 case ISD::FMA:
9356 case ISD::FMAD:
9357 case ISD::FCANONICALIZE:
9358 case ISD::FP_ROUND:
9359 case ISD::UINT_TO_FP:
9360 case ISD::SINT_TO_FP:
9361 case ISD::FABS:
9362 // Fabs is lowered to a bit operation, but it's an and which will clear the
9363 // high bits anyway.
9364 case ISD::FSQRT:
9365 case ISD::FSIN:
9366 case ISD::FCOS:
9367 case ISD::FPOWI:
9368 case ISD::FPOW:
9369 case ISD::FLOG:
9370 case ISD::FLOG2:
9371 case ISD::FLOG10:
9372 case ISD::FEXP:
9373 case ISD::FEXP2:
9374 case ISD::FCEIL:
9375 case ISD::FTRUNC:
9376 case ISD::FRINT:
9377 case ISD::FNEARBYINT:
9378 case ISD::FROUND:
9379 case ISD::FFLOOR:
9380 case ISD::FMINNUM:
9381 case ISD::FMAXNUM:
9382 case AMDGPUISD::FRACT:
9383 case AMDGPUISD::CLAMP:
9384 case AMDGPUISD::COS_HW:
9385 case AMDGPUISD::SIN_HW:
9386 case AMDGPUISD::FMIN3:
9387 case AMDGPUISD::FMAX3:
9388 case AMDGPUISD::FMED3:
9389 case AMDGPUISD::FMAD_FTZ:
9390 case AMDGPUISD::RCP:
9391 case AMDGPUISD::RSQ:
9392 case AMDGPUISD::RCP_IFLAG:
9393 case AMDGPUISD::LDEXP:
9394 return true;
9395 default:
9396 // fcopysign, select and others may be lowered to 32-bit bit operations
9397 // which don't zero the high bits.
9398 return false;
9399 }
9400 }
9401
performZeroExtendCombine(SDNode * N,DAGCombinerInfo & DCI) const9402 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9403 DAGCombinerInfo &DCI) const {
9404 if (!Subtarget->has16BitInsts() ||
9405 DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9406 return SDValue();
9407
9408 EVT VT = N->getValueType(0);
9409 if (VT != MVT::i32)
9410 return SDValue();
9411
9412 SDValue Src = N->getOperand(0);
9413 if (Src.getValueType() != MVT::i16)
9414 return SDValue();
9415
9416 // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
9417 // FIXME: It is not universally true that the high bits are zeroed on gfx9.
9418 if (Src.getOpcode() == ISD::BITCAST) {
9419 SDValue BCSrc = Src.getOperand(0);
9420 if (BCSrc.getValueType() == MVT::f16 &&
9421 fp16SrcZerosHighBits(BCSrc.getOpcode()))
9422 return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
9423 }
9424
9425 return SDValue();
9426 }
9427
performSignExtendInRegCombine(SDNode * N,DAGCombinerInfo & DCI) const9428 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9429 DAGCombinerInfo &DCI)
9430 const {
9431 SDValue Src = N->getOperand(0);
9432 auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9433
9434 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9435 VTSign->getVT() == MVT::i8) ||
9436 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9437 VTSign->getVT() == MVT::i16)) &&
9438 Src.hasOneUse()) {
9439 auto *M = cast<MemSDNode>(Src);
9440 SDValue Ops[] = {
9441 Src.getOperand(0), // Chain
9442 Src.getOperand(1), // rsrc
9443 Src.getOperand(2), // vindex
9444 Src.getOperand(3), // voffset
9445 Src.getOperand(4), // soffset
9446 Src.getOperand(5), // offset
9447 Src.getOperand(6),
9448 Src.getOperand(7)
9449 };
9450 // replace with BUFFER_LOAD_BYTE/SHORT
9451 SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9452 Src.getOperand(0).getValueType());
9453 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9454 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9455 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9456 ResList,
9457 Ops, M->getMemoryVT(),
9458 M->getMemOperand());
9459 return DCI.DAG.getMergeValues({BufferLoadSignExt,
9460 BufferLoadSignExt.getValue(1)}, SDLoc(N));
9461 }
9462 return SDValue();
9463 }
9464
performClassCombine(SDNode * N,DAGCombinerInfo & DCI) const9465 SDValue SITargetLowering::performClassCombine(SDNode *N,
9466 DAGCombinerInfo &DCI) const {
9467 SelectionDAG &DAG = DCI.DAG;
9468 SDValue Mask = N->getOperand(1);
9469
9470 // fp_class x, 0 -> false
9471 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9472 if (CMask->isNullValue())
9473 return DAG.getConstant(0, SDLoc(N), MVT::i1);
9474 }
9475
9476 if (N->getOperand(0).isUndef())
9477 return DAG.getUNDEF(MVT::i1);
9478
9479 return SDValue();
9480 }
9481
performRcpCombine(SDNode * N,DAGCombinerInfo & DCI) const9482 SDValue SITargetLowering::performRcpCombine(SDNode *N,
9483 DAGCombinerInfo &DCI) const {
9484 EVT VT = N->getValueType(0);
9485 SDValue N0 = N->getOperand(0);
9486
9487 if (N0.isUndef())
9488 return N0;
9489
9490 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9491 N0.getOpcode() == ISD::SINT_TO_FP)) {
9492 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9493 N->getFlags());
9494 }
9495
9496 if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9497 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9498 N0.getOperand(0), N->getFlags());
9499 }
9500
9501 return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9502 }
9503
isCanonicalized(SelectionDAG & DAG,SDValue Op,unsigned MaxDepth) const9504 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
9505 unsigned MaxDepth) const {
9506 unsigned Opcode = Op.getOpcode();
9507 if (Opcode == ISD::FCANONICALIZE)
9508 return true;
9509
9510 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9511 auto F = CFP->getValueAPF();
9512 if (F.isNaN() && F.isSignaling())
9513 return false;
9514 return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
9515 }
9516
9517 // If source is a result of another standard FP operation it is already in
9518 // canonical form.
9519 if (MaxDepth == 0)
9520 return false;
9521
9522 switch (Opcode) {
9523 // These will flush denorms if required.
9524 case ISD::FADD:
9525 case ISD::FSUB:
9526 case ISD::FMUL:
9527 case ISD::FCEIL:
9528 case ISD::FFLOOR:
9529 case ISD::FMA:
9530 case ISD::FMAD:
9531 case ISD::FSQRT:
9532 case ISD::FDIV:
9533 case ISD::FREM:
9534 case ISD::FP_ROUND:
9535 case ISD::FP_EXTEND:
9536 case AMDGPUISD::FMUL_LEGACY:
9537 case AMDGPUISD::FMAD_FTZ:
9538 case AMDGPUISD::RCP:
9539 case AMDGPUISD::RSQ:
9540 case AMDGPUISD::RSQ_CLAMP:
9541 case AMDGPUISD::RCP_LEGACY:
9542 case AMDGPUISD::RCP_IFLAG:
9543 case AMDGPUISD::DIV_SCALE:
9544 case AMDGPUISD::DIV_FMAS:
9545 case AMDGPUISD::DIV_FIXUP:
9546 case AMDGPUISD::FRACT:
9547 case AMDGPUISD::LDEXP:
9548 case AMDGPUISD::CVT_PKRTZ_F16_F32:
9549 case AMDGPUISD::CVT_F32_UBYTE0:
9550 case AMDGPUISD::CVT_F32_UBYTE1:
9551 case AMDGPUISD::CVT_F32_UBYTE2:
9552 case AMDGPUISD::CVT_F32_UBYTE3:
9553 return true;
9554
9555 // It can/will be lowered or combined as a bit operation.
9556 // Need to check their input recursively to handle.
9557 case ISD::FNEG:
9558 case ISD::FABS:
9559 case ISD::FCOPYSIGN:
9560 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9561
9562 case ISD::FSIN:
9563 case ISD::FCOS:
9564 case ISD::FSINCOS:
9565 return Op.getValueType().getScalarType() != MVT::f16;
9566
9567 case ISD::FMINNUM:
9568 case ISD::FMAXNUM:
9569 case ISD::FMINNUM_IEEE:
9570 case ISD::FMAXNUM_IEEE:
9571 case AMDGPUISD::CLAMP:
9572 case AMDGPUISD::FMED3:
9573 case AMDGPUISD::FMAX3:
9574 case AMDGPUISD::FMIN3: {
9575 // FIXME: Shouldn't treat the generic operations different based these.
9576 // However, we aren't really required to flush the result from
9577 // minnum/maxnum..
9578
9579 // snans will be quieted, so we only need to worry about denormals.
9580 if (Subtarget->supportsMinMaxDenormModes() ||
9581 denormalsEnabledForType(DAG, Op.getValueType()))
9582 return true;
9583
9584 // Flushing may be required.
9585 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
9586 // targets need to check their input recursively.
9587
9588 // FIXME: Does this apply with clamp? It's implemented with max.
9589 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
9590 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
9591 return false;
9592 }
9593
9594 return true;
9595 }
9596 case ISD::SELECT: {
9597 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
9598 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
9599 }
9600 case ISD::BUILD_VECTOR: {
9601 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
9602 SDValue SrcOp = Op.getOperand(i);
9603 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
9604 return false;
9605 }
9606
9607 return true;
9608 }
9609 case ISD::EXTRACT_VECTOR_ELT:
9610 case ISD::EXTRACT_SUBVECTOR: {
9611 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9612 }
9613 case ISD::INSERT_VECTOR_ELT: {
9614 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
9615 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
9616 }
9617 case ISD::UNDEF:
9618 // Could be anything.
9619 return false;
9620
9621 case ISD::BITCAST:
9622 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9623 case ISD::TRUNCATE: {
9624 // Hack round the mess we make when legalizing extract_vector_elt
9625 if (Op.getValueType() == MVT::i16) {
9626 SDValue TruncSrc = Op.getOperand(0);
9627 if (TruncSrc.getValueType() == MVT::i32 &&
9628 TruncSrc.getOpcode() == ISD::BITCAST &&
9629 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
9630 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
9631 }
9632 }
9633 return false;
9634 }
9635 case ISD::INTRINSIC_WO_CHAIN: {
9636 unsigned IntrinsicID
9637 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9638 // TODO: Handle more intrinsics
9639 switch (IntrinsicID) {
9640 case Intrinsic::amdgcn_cvt_pkrtz:
9641 case Intrinsic::amdgcn_cubeid:
9642 case Intrinsic::amdgcn_frexp_mant:
9643 case Intrinsic::amdgcn_fdot2:
9644 case Intrinsic::amdgcn_rcp:
9645 case Intrinsic::amdgcn_rsq:
9646 case Intrinsic::amdgcn_rsq_clamp:
9647 case Intrinsic::amdgcn_rcp_legacy:
9648 case Intrinsic::amdgcn_rsq_legacy:
9649 case Intrinsic::amdgcn_trig_preop:
9650 return true;
9651 default:
9652 break;
9653 }
9654
9655 LLVM_FALLTHROUGH;
9656 }
9657 default:
9658 return denormalsEnabledForType(DAG, Op.getValueType()) &&
9659 DAG.isKnownNeverSNaN(Op);
9660 }
9661
9662 llvm_unreachable("invalid operation");
9663 }
9664
isCanonicalized(Register Reg,MachineFunction & MF,unsigned MaxDepth) const9665 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF,
9666 unsigned MaxDepth) const {
9667 MachineRegisterInfo &MRI = MF.getRegInfo();
9668 MachineInstr *MI = MRI.getVRegDef(Reg);
9669 unsigned Opcode = MI->getOpcode();
9670
9671 if (Opcode == AMDGPU::G_FCANONICALIZE)
9672 return true;
9673
9674 if (Opcode == AMDGPU::G_FCONSTANT) {
9675 auto F = MI->getOperand(1).getFPImm()->getValueAPF();
9676 if (F.isNaN() && F.isSignaling())
9677 return false;
9678 return !F.isDenormal() || denormalsEnabledForType(MRI.getType(Reg), MF);
9679 }
9680
9681 if (MaxDepth == 0)
9682 return false;
9683
9684 switch (Opcode) {
9685 case AMDGPU::G_FMINNUM_IEEE:
9686 case AMDGPU::G_FMAXNUM_IEEE: {
9687 if (Subtarget->supportsMinMaxDenormModes() ||
9688 denormalsEnabledForType(MRI.getType(Reg), MF))
9689 return true;
9690 for (unsigned I = 1, E = MI->getNumOperands(); I != E; ++I) {
9691 if (!isCanonicalized(MI->getOperand(I).getReg(), MF, MaxDepth - 1))
9692 return false;
9693 }
9694 return true;
9695 }
9696 default:
9697 return denormalsEnabledForType(MRI.getType(Reg), MF) &&
9698 isKnownNeverSNaN(Reg, MRI);
9699 }
9700
9701 llvm_unreachable("invalid operation");
9702 }
9703
9704 // Constant fold canonicalize.
getCanonicalConstantFP(SelectionDAG & DAG,const SDLoc & SL,EVT VT,const APFloat & C) const9705 SDValue SITargetLowering::getCanonicalConstantFP(
9706 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
9707 // Flush denormals to 0 if not enabled.
9708 if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
9709 return DAG.getConstantFP(0.0, SL, VT);
9710
9711 if (C.isNaN()) {
9712 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
9713 if (C.isSignaling()) {
9714 // Quiet a signaling NaN.
9715 // FIXME: Is this supposed to preserve payload bits?
9716 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9717 }
9718
9719 // Make sure it is the canonical NaN bitpattern.
9720 //
9721 // TODO: Can we use -1 as the canonical NaN value since it's an inline
9722 // immediate?
9723 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
9724 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9725 }
9726
9727 // Already canonical.
9728 return DAG.getConstantFP(C, SL, VT);
9729 }
9730
vectorEltWillFoldAway(SDValue Op)9731 static bool vectorEltWillFoldAway(SDValue Op) {
9732 return Op.isUndef() || isa<ConstantFPSDNode>(Op);
9733 }
9734
performFCanonicalizeCombine(SDNode * N,DAGCombinerInfo & DCI) const9735 SDValue SITargetLowering::performFCanonicalizeCombine(
9736 SDNode *N,
9737 DAGCombinerInfo &DCI) const {
9738 SelectionDAG &DAG = DCI.DAG;
9739 SDValue N0 = N->getOperand(0);
9740 EVT VT = N->getValueType(0);
9741
9742 // fcanonicalize undef -> qnan
9743 if (N0.isUndef()) {
9744 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
9745 return DAG.getConstantFP(QNaN, SDLoc(N), VT);
9746 }
9747
9748 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
9749 EVT VT = N->getValueType(0);
9750 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
9751 }
9752
9753 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
9754 // (fcanonicalize k)
9755 //
9756 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
9757
9758 // TODO: This could be better with wider vectors that will be split to v2f16,
9759 // and to consider uses since there aren't that many packed operations.
9760 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
9761 isTypeLegal(MVT::v2f16)) {
9762 SDLoc SL(N);
9763 SDValue NewElts[2];
9764 SDValue Lo = N0.getOperand(0);
9765 SDValue Hi = N0.getOperand(1);
9766 EVT EltVT = Lo.getValueType();
9767
9768 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
9769 for (unsigned I = 0; I != 2; ++I) {
9770 SDValue Op = N0.getOperand(I);
9771 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9772 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
9773 CFP->getValueAPF());
9774 } else if (Op.isUndef()) {
9775 // Handled below based on what the other operand is.
9776 NewElts[I] = Op;
9777 } else {
9778 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
9779 }
9780 }
9781
9782 // If one half is undef, and one is constant, perfer a splat vector rather
9783 // than the normal qNaN. If it's a register, prefer 0.0 since that's
9784 // cheaper to use and may be free with a packed operation.
9785 if (NewElts[0].isUndef()) {
9786 if (isa<ConstantFPSDNode>(NewElts[1]))
9787 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
9788 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
9789 }
9790
9791 if (NewElts[1].isUndef()) {
9792 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
9793 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
9794 }
9795
9796 return DAG.getBuildVector(VT, SL, NewElts);
9797 }
9798 }
9799
9800 unsigned SrcOpc = N0.getOpcode();
9801
9802 // If it's free to do so, push canonicalizes further up the source, which may
9803 // find a canonical source.
9804 //
9805 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
9806 // sNaNs.
9807 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
9808 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9809 if (CRHS && N0.hasOneUse()) {
9810 SDLoc SL(N);
9811 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
9812 N0.getOperand(0));
9813 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
9814 DCI.AddToWorklist(Canon0.getNode());
9815
9816 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
9817 }
9818 }
9819
9820 return isCanonicalized(DAG, N0) ? N0 : SDValue();
9821 }
9822
minMaxOpcToMin3Max3Opc(unsigned Opc)9823 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
9824 switch (Opc) {
9825 case ISD::FMAXNUM:
9826 case ISD::FMAXNUM_IEEE:
9827 return AMDGPUISD::FMAX3;
9828 case ISD::SMAX:
9829 return AMDGPUISD::SMAX3;
9830 case ISD::UMAX:
9831 return AMDGPUISD::UMAX3;
9832 case ISD::FMINNUM:
9833 case ISD::FMINNUM_IEEE:
9834 return AMDGPUISD::FMIN3;
9835 case ISD::SMIN:
9836 return AMDGPUISD::SMIN3;
9837 case ISD::UMIN:
9838 return AMDGPUISD::UMIN3;
9839 default:
9840 llvm_unreachable("Not a min/max opcode");
9841 }
9842 }
9843
performIntMed3ImmCombine(SelectionDAG & DAG,const SDLoc & SL,SDValue Op0,SDValue Op1,bool Signed) const9844 SDValue SITargetLowering::performIntMed3ImmCombine(
9845 SelectionDAG &DAG, const SDLoc &SL,
9846 SDValue Op0, SDValue Op1, bool Signed) const {
9847 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
9848 if (!K1)
9849 return SDValue();
9850
9851 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
9852 if (!K0)
9853 return SDValue();
9854
9855 if (Signed) {
9856 if (K0->getAPIntValue().sge(K1->getAPIntValue()))
9857 return SDValue();
9858 } else {
9859 if (K0->getAPIntValue().uge(K1->getAPIntValue()))
9860 return SDValue();
9861 }
9862
9863 EVT VT = K0->getValueType(0);
9864 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
9865 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
9866 return DAG.getNode(Med3Opc, SL, VT,
9867 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
9868 }
9869
9870 // If there isn't a 16-bit med3 operation, convert to 32-bit.
9871 if (VT == MVT::i16) {
9872 MVT NVT = MVT::i32;
9873 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9874
9875 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
9876 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
9877 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
9878
9879 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
9880 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
9881 }
9882
9883 return SDValue();
9884 }
9885
getSplatConstantFP(SDValue Op)9886 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
9887 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
9888 return C;
9889
9890 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
9891 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
9892 return C;
9893 }
9894
9895 return nullptr;
9896 }
9897
performFPMed3ImmCombine(SelectionDAG & DAG,const SDLoc & SL,SDValue Op0,SDValue Op1) const9898 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
9899 const SDLoc &SL,
9900 SDValue Op0,
9901 SDValue Op1) const {
9902 ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
9903 if (!K1)
9904 return SDValue();
9905
9906 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
9907 if (!K0)
9908 return SDValue();
9909
9910 // Ordered >= (although NaN inputs should have folded away by now).
9911 if (K0->getValueAPF() > K1->getValueAPF())
9912 return SDValue();
9913
9914 const MachineFunction &MF = DAG.getMachineFunction();
9915 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9916
9917 // TODO: Check IEEE bit enabled?
9918 EVT VT = Op0.getValueType();
9919 if (Info->getMode().DX10Clamp) {
9920 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
9921 // hardware fmed3 behavior converting to a min.
9922 // FIXME: Should this be allowing -0.0?
9923 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
9924 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
9925 }
9926
9927 // med3 for f16 is only available on gfx9+, and not available for v2f16.
9928 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
9929 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
9930 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
9931 // then give the other result, which is different from med3 with a NaN
9932 // input.
9933 SDValue Var = Op0.getOperand(0);
9934 if (!DAG.isKnownNeverSNaN(Var))
9935 return SDValue();
9936
9937 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9938
9939 if ((!K0->hasOneUse() ||
9940 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
9941 (!K1->hasOneUse() ||
9942 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
9943 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
9944 Var, SDValue(K0, 0), SDValue(K1, 0));
9945 }
9946 }
9947
9948 return SDValue();
9949 }
9950
performMinMaxCombine(SDNode * N,DAGCombinerInfo & DCI) const9951 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
9952 DAGCombinerInfo &DCI) const {
9953 SelectionDAG &DAG = DCI.DAG;
9954
9955 EVT VT = N->getValueType(0);
9956 unsigned Opc = N->getOpcode();
9957 SDValue Op0 = N->getOperand(0);
9958 SDValue Op1 = N->getOperand(1);
9959
9960 // Only do this if the inner op has one use since this will just increases
9961 // register pressure for no benefit.
9962
9963 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
9964 !VT.isVector() &&
9965 (VT == MVT::i32 || VT == MVT::f32 ||
9966 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
9967 // max(max(a, b), c) -> max3(a, b, c)
9968 // min(min(a, b), c) -> min3(a, b, c)
9969 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
9970 SDLoc DL(N);
9971 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9972 DL,
9973 N->getValueType(0),
9974 Op0.getOperand(0),
9975 Op0.getOperand(1),
9976 Op1);
9977 }
9978
9979 // Try commuted.
9980 // max(a, max(b, c)) -> max3(a, b, c)
9981 // min(a, min(b, c)) -> min3(a, b, c)
9982 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
9983 SDLoc DL(N);
9984 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9985 DL,
9986 N->getValueType(0),
9987 Op0,
9988 Op1.getOperand(0),
9989 Op1.getOperand(1));
9990 }
9991 }
9992
9993 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
9994 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
9995 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
9996 return Med3;
9997 }
9998
9999 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
10000 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
10001 return Med3;
10002 }
10003
10004 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
10005 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
10006 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
10007 (Opc == AMDGPUISD::FMIN_LEGACY &&
10008 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
10009 (VT == MVT::f32 || VT == MVT::f64 ||
10010 (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
10011 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
10012 Op0.hasOneUse()) {
10013 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
10014 return Res;
10015 }
10016
10017 return SDValue();
10018 }
10019
isClampZeroToOne(SDValue A,SDValue B)10020 static bool isClampZeroToOne(SDValue A, SDValue B) {
10021 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
10022 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
10023 // FIXME: Should this be allowing -0.0?
10024 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
10025 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
10026 }
10027 }
10028
10029 return false;
10030 }
10031
10032 // FIXME: Should only worry about snans for version with chain.
performFMed3Combine(SDNode * N,DAGCombinerInfo & DCI) const10033 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
10034 DAGCombinerInfo &DCI) const {
10035 EVT VT = N->getValueType(0);
10036 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
10037 // NaNs. With a NaN input, the order of the operands may change the result.
10038
10039 SelectionDAG &DAG = DCI.DAG;
10040 SDLoc SL(N);
10041
10042 SDValue Src0 = N->getOperand(0);
10043 SDValue Src1 = N->getOperand(1);
10044 SDValue Src2 = N->getOperand(2);
10045
10046 if (isClampZeroToOne(Src0, Src1)) {
10047 // const_a, const_b, x -> clamp is safe in all cases including signaling
10048 // nans.
10049 // FIXME: Should this be allowing -0.0?
10050 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
10051 }
10052
10053 const MachineFunction &MF = DAG.getMachineFunction();
10054 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10055
10056 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
10057 // handling no dx10-clamp?
10058 if (Info->getMode().DX10Clamp) {
10059 // If NaNs is clamped to 0, we are free to reorder the inputs.
10060
10061 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10062 std::swap(Src0, Src1);
10063
10064 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
10065 std::swap(Src1, Src2);
10066
10067 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10068 std::swap(Src0, Src1);
10069
10070 if (isClampZeroToOne(Src1, Src2))
10071 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
10072 }
10073
10074 return SDValue();
10075 }
10076
performCvtPkRTZCombine(SDNode * N,DAGCombinerInfo & DCI) const10077 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
10078 DAGCombinerInfo &DCI) const {
10079 SDValue Src0 = N->getOperand(0);
10080 SDValue Src1 = N->getOperand(1);
10081 if (Src0.isUndef() && Src1.isUndef())
10082 return DCI.DAG.getUNDEF(N->getValueType(0));
10083 return SDValue();
10084 }
10085
10086 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
10087 // expanded into a set of cmp/select instructions.
shouldExpandVectorDynExt(unsigned EltSize,unsigned NumElem,bool IsDivergentIdx)10088 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
10089 unsigned NumElem,
10090 bool IsDivergentIdx) {
10091 if (UseDivergentRegisterIndexing)
10092 return false;
10093
10094 unsigned VecSize = EltSize * NumElem;
10095
10096 // Sub-dword vectors of size 2 dword or less have better implementation.
10097 if (VecSize <= 64 && EltSize < 32)
10098 return false;
10099
10100 // Always expand the rest of sub-dword instructions, otherwise it will be
10101 // lowered via memory.
10102 if (EltSize < 32)
10103 return true;
10104
10105 // Always do this if var-idx is divergent, otherwise it will become a loop.
10106 if (IsDivergentIdx)
10107 return true;
10108
10109 // Large vectors would yield too many compares and v_cndmask_b32 instructions.
10110 unsigned NumInsts = NumElem /* Number of compares */ +
10111 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
10112 return NumInsts <= 16;
10113 }
10114
shouldExpandVectorDynExt(SDNode * N)10115 static bool shouldExpandVectorDynExt(SDNode *N) {
10116 SDValue Idx = N->getOperand(N->getNumOperands() - 1);
10117 if (isa<ConstantSDNode>(Idx))
10118 return false;
10119
10120 SDValue Vec = N->getOperand(0);
10121 EVT VecVT = Vec.getValueType();
10122 EVT EltVT = VecVT.getVectorElementType();
10123 unsigned EltSize = EltVT.getSizeInBits();
10124 unsigned NumElem = VecVT.getVectorNumElements();
10125
10126 return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem,
10127 Idx->isDivergent());
10128 }
10129
performExtractVectorEltCombine(SDNode * N,DAGCombinerInfo & DCI) const10130 SDValue SITargetLowering::performExtractVectorEltCombine(
10131 SDNode *N, DAGCombinerInfo &DCI) const {
10132 SDValue Vec = N->getOperand(0);
10133 SelectionDAG &DAG = DCI.DAG;
10134
10135 EVT VecVT = Vec.getValueType();
10136 EVT EltVT = VecVT.getVectorElementType();
10137
10138 if ((Vec.getOpcode() == ISD::FNEG ||
10139 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
10140 SDLoc SL(N);
10141 EVT EltVT = N->getValueType(0);
10142 SDValue Idx = N->getOperand(1);
10143 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10144 Vec.getOperand(0), Idx);
10145 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
10146 }
10147
10148 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
10149 // =>
10150 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
10151 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
10152 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
10153 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
10154 SDLoc SL(N);
10155 EVT EltVT = N->getValueType(0);
10156 SDValue Idx = N->getOperand(1);
10157 unsigned Opc = Vec.getOpcode();
10158
10159 switch(Opc) {
10160 default:
10161 break;
10162 // TODO: Support other binary operations.
10163 case ISD::FADD:
10164 case ISD::FSUB:
10165 case ISD::FMUL:
10166 case ISD::ADD:
10167 case ISD::UMIN:
10168 case ISD::UMAX:
10169 case ISD::SMIN:
10170 case ISD::SMAX:
10171 case ISD::FMAXNUM:
10172 case ISD::FMINNUM:
10173 case ISD::FMAXNUM_IEEE:
10174 case ISD::FMINNUM_IEEE: {
10175 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10176 Vec.getOperand(0), Idx);
10177 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10178 Vec.getOperand(1), Idx);
10179
10180 DCI.AddToWorklist(Elt0.getNode());
10181 DCI.AddToWorklist(Elt1.getNode());
10182 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
10183 }
10184 }
10185 }
10186
10187 unsigned VecSize = VecVT.getSizeInBits();
10188 unsigned EltSize = EltVT.getSizeInBits();
10189
10190 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10191 if (::shouldExpandVectorDynExt(N)) {
10192 SDLoc SL(N);
10193 SDValue Idx = N->getOperand(1);
10194 SDValue V;
10195 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10196 SDValue IC = DAG.getVectorIdxConstant(I, SL);
10197 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10198 if (I == 0)
10199 V = Elt;
10200 else
10201 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10202 }
10203 return V;
10204 }
10205
10206 if (!DCI.isBeforeLegalize())
10207 return SDValue();
10208
10209 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10210 // elements. This exposes more load reduction opportunities by replacing
10211 // multiple small extract_vector_elements with a single 32-bit extract.
10212 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10213 if (isa<MemSDNode>(Vec) &&
10214 EltSize <= 16 &&
10215 EltVT.isByteSized() &&
10216 VecSize > 32 &&
10217 VecSize % 32 == 0 &&
10218 Idx) {
10219 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10220
10221 unsigned BitIndex = Idx->getZExtValue() * EltSize;
10222 unsigned EltIdx = BitIndex / 32;
10223 unsigned LeftoverBitIdx = BitIndex % 32;
10224 SDLoc SL(N);
10225
10226 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10227 DCI.AddToWorklist(Cast.getNode());
10228
10229 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10230 DAG.getConstant(EltIdx, SL, MVT::i32));
10231 DCI.AddToWorklist(Elt.getNode());
10232 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10233 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10234 DCI.AddToWorklist(Srl.getNode());
10235
10236 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
10237 DCI.AddToWorklist(Trunc.getNode());
10238 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
10239 }
10240
10241 return SDValue();
10242 }
10243
10244 SDValue
performInsertVectorEltCombine(SDNode * N,DAGCombinerInfo & DCI) const10245 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10246 DAGCombinerInfo &DCI) const {
10247 SDValue Vec = N->getOperand(0);
10248 SDValue Idx = N->getOperand(2);
10249 EVT VecVT = Vec.getValueType();
10250 EVT EltVT = VecVT.getVectorElementType();
10251
10252 // INSERT_VECTOR_ELT (<n x e>, var-idx)
10253 // => BUILD_VECTOR n x select (e, const-idx)
10254 if (!::shouldExpandVectorDynExt(N))
10255 return SDValue();
10256
10257 SelectionDAG &DAG = DCI.DAG;
10258 SDLoc SL(N);
10259 SDValue Ins = N->getOperand(1);
10260 EVT IdxVT = Idx.getValueType();
10261
10262 SmallVector<SDValue, 16> Ops;
10263 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10264 SDValue IC = DAG.getConstant(I, SL, IdxVT);
10265 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10266 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10267 Ops.push_back(V);
10268 }
10269
10270 return DAG.getBuildVector(VecVT, SL, Ops);
10271 }
10272
getFusedOpcode(const SelectionDAG & DAG,const SDNode * N0,const SDNode * N1) const10273 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10274 const SDNode *N0,
10275 const SDNode *N1) const {
10276 EVT VT = N0->getValueType(0);
10277
10278 // Only do this if we are not trying to support denormals. v_mad_f32 does not
10279 // support denormals ever.
10280 if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10281 (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10282 getSubtarget()->hasMadF16())) &&
10283 isOperationLegal(ISD::FMAD, VT))
10284 return ISD::FMAD;
10285
10286 const TargetOptions &Options = DAG.getTarget().Options;
10287 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10288 (N0->getFlags().hasAllowContract() &&
10289 N1->getFlags().hasAllowContract())) &&
10290 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10291 return ISD::FMA;
10292 }
10293
10294 return 0;
10295 }
10296
10297 // For a reassociatable opcode perform:
10298 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
reassociateScalarOps(SDNode * N,SelectionDAG & DAG) const10299 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10300 SelectionDAG &DAG) const {
10301 EVT VT = N->getValueType(0);
10302 if (VT != MVT::i32 && VT != MVT::i64)
10303 return SDValue();
10304
10305 unsigned Opc = N->getOpcode();
10306 SDValue Op0 = N->getOperand(0);
10307 SDValue Op1 = N->getOperand(1);
10308
10309 if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10310 return SDValue();
10311
10312 if (Op0->isDivergent())
10313 std::swap(Op0, Op1);
10314
10315 if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10316 return SDValue();
10317
10318 SDValue Op2 = Op1.getOperand(1);
10319 Op1 = Op1.getOperand(0);
10320 if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10321 return SDValue();
10322
10323 if (Op1->isDivergent())
10324 std::swap(Op1, Op2);
10325
10326 // If either operand is constant this will conflict with
10327 // DAGCombiner::ReassociateOps().
10328 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
10329 DAG.isConstantIntBuildVectorOrConstantInt(Op1))
10330 return SDValue();
10331
10332 SDLoc SL(N);
10333 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10334 return DAG.getNode(Opc, SL, VT, Add1, Op2);
10335 }
10336
getMad64_32(SelectionDAG & DAG,const SDLoc & SL,EVT VT,SDValue N0,SDValue N1,SDValue N2,bool Signed)10337 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10338 EVT VT,
10339 SDValue N0, SDValue N1, SDValue N2,
10340 bool Signed) {
10341 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10342 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10343 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10344 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10345 }
10346
performAddCombine(SDNode * N,DAGCombinerInfo & DCI) const10347 SDValue SITargetLowering::performAddCombine(SDNode *N,
10348 DAGCombinerInfo &DCI) const {
10349 SelectionDAG &DAG = DCI.DAG;
10350 EVT VT = N->getValueType(0);
10351 SDLoc SL(N);
10352 SDValue LHS = N->getOperand(0);
10353 SDValue RHS = N->getOperand(1);
10354
10355 if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
10356 && Subtarget->hasMad64_32() &&
10357 !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
10358 VT.getScalarSizeInBits() <= 64) {
10359 if (LHS.getOpcode() != ISD::MUL)
10360 std::swap(LHS, RHS);
10361
10362 SDValue MulLHS = LHS.getOperand(0);
10363 SDValue MulRHS = LHS.getOperand(1);
10364 SDValue AddRHS = RHS;
10365
10366 // TODO: Maybe restrict if SGPR inputs.
10367 if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
10368 numBitsUnsigned(MulRHS, DAG) <= 32) {
10369 MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
10370 MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
10371 AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
10372 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
10373 }
10374
10375 if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
10376 MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
10377 MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
10378 AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
10379 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
10380 }
10381
10382 return SDValue();
10383 }
10384
10385 if (SDValue V = reassociateScalarOps(N, DAG)) {
10386 return V;
10387 }
10388
10389 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10390 return SDValue();
10391
10392 // add x, zext (setcc) => addcarry x, 0, setcc
10393 // add x, sext (setcc) => subcarry x, 0, setcc
10394 unsigned Opc = LHS.getOpcode();
10395 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
10396 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
10397 std::swap(RHS, LHS);
10398
10399 Opc = RHS.getOpcode();
10400 switch (Opc) {
10401 default: break;
10402 case ISD::ZERO_EXTEND:
10403 case ISD::SIGN_EXTEND:
10404 case ISD::ANY_EXTEND: {
10405 auto Cond = RHS.getOperand(0);
10406 // If this won't be a real VOPC output, we would still need to insert an
10407 // extra instruction anyway.
10408 if (!isBoolSGPR(Cond))
10409 break;
10410 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10411 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10412 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
10413 return DAG.getNode(Opc, SL, VTList, Args);
10414 }
10415 case ISD::ADDCARRY: {
10416 // add x, (addcarry y, 0, cc) => addcarry x, y, cc
10417 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10418 if (!C || C->getZExtValue() != 0) break;
10419 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
10420 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
10421 }
10422 }
10423 return SDValue();
10424 }
10425
performSubCombine(SDNode * N,DAGCombinerInfo & DCI) const10426 SDValue SITargetLowering::performSubCombine(SDNode *N,
10427 DAGCombinerInfo &DCI) const {
10428 SelectionDAG &DAG = DCI.DAG;
10429 EVT VT = N->getValueType(0);
10430
10431 if (VT != MVT::i32)
10432 return SDValue();
10433
10434 SDLoc SL(N);
10435 SDValue LHS = N->getOperand(0);
10436 SDValue RHS = N->getOperand(1);
10437
10438 // sub x, zext (setcc) => subcarry x, 0, setcc
10439 // sub x, sext (setcc) => addcarry x, 0, setcc
10440 unsigned Opc = RHS.getOpcode();
10441 switch (Opc) {
10442 default: break;
10443 case ISD::ZERO_EXTEND:
10444 case ISD::SIGN_EXTEND:
10445 case ISD::ANY_EXTEND: {
10446 auto Cond = RHS.getOperand(0);
10447 // If this won't be a real VOPC output, we would still need to insert an
10448 // extra instruction anyway.
10449 if (!isBoolSGPR(Cond))
10450 break;
10451 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10452 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10453 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
10454 return DAG.getNode(Opc, SL, VTList, Args);
10455 }
10456 }
10457
10458 if (LHS.getOpcode() == ISD::SUBCARRY) {
10459 // sub (subcarry x, 0, cc), y => subcarry x, y, cc
10460 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
10461 if (!C || !C->isNullValue())
10462 return SDValue();
10463 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
10464 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
10465 }
10466 return SDValue();
10467 }
10468
performAddCarrySubCarryCombine(SDNode * N,DAGCombinerInfo & DCI) const10469 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
10470 DAGCombinerInfo &DCI) const {
10471
10472 if (N->getValueType(0) != MVT::i32)
10473 return SDValue();
10474
10475 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10476 if (!C || C->getZExtValue() != 0)
10477 return SDValue();
10478
10479 SelectionDAG &DAG = DCI.DAG;
10480 SDValue LHS = N->getOperand(0);
10481
10482 // addcarry (add x, y), 0, cc => addcarry x, y, cc
10483 // subcarry (sub x, y), 0, cc => subcarry x, y, cc
10484 unsigned LHSOpc = LHS.getOpcode();
10485 unsigned Opc = N->getOpcode();
10486 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
10487 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
10488 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
10489 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
10490 }
10491 return SDValue();
10492 }
10493
performFAddCombine(SDNode * N,DAGCombinerInfo & DCI) const10494 SDValue SITargetLowering::performFAddCombine(SDNode *N,
10495 DAGCombinerInfo &DCI) const {
10496 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10497 return SDValue();
10498
10499 SelectionDAG &DAG = DCI.DAG;
10500 EVT VT = N->getValueType(0);
10501
10502 SDLoc SL(N);
10503 SDValue LHS = N->getOperand(0);
10504 SDValue RHS = N->getOperand(1);
10505
10506 // These should really be instruction patterns, but writing patterns with
10507 // source modiifiers is a pain.
10508
10509 // fadd (fadd (a, a), b) -> mad 2.0, a, b
10510 if (LHS.getOpcode() == ISD::FADD) {
10511 SDValue A = LHS.getOperand(0);
10512 if (A == LHS.getOperand(1)) {
10513 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10514 if (FusedOp != 0) {
10515 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10516 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
10517 }
10518 }
10519 }
10520
10521 // fadd (b, fadd (a, a)) -> mad 2.0, a, b
10522 if (RHS.getOpcode() == ISD::FADD) {
10523 SDValue A = RHS.getOperand(0);
10524 if (A == RHS.getOperand(1)) {
10525 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10526 if (FusedOp != 0) {
10527 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10528 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
10529 }
10530 }
10531 }
10532
10533 return SDValue();
10534 }
10535
performFSubCombine(SDNode * N,DAGCombinerInfo & DCI) const10536 SDValue SITargetLowering::performFSubCombine(SDNode *N,
10537 DAGCombinerInfo &DCI) const {
10538 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10539 return SDValue();
10540
10541 SelectionDAG &DAG = DCI.DAG;
10542 SDLoc SL(N);
10543 EVT VT = N->getValueType(0);
10544 assert(!VT.isVector());
10545
10546 // Try to get the fneg to fold into the source modifier. This undoes generic
10547 // DAG combines and folds them into the mad.
10548 //
10549 // Only do this if we are not trying to support denormals. v_mad_f32 does
10550 // not support denormals ever.
10551 SDValue LHS = N->getOperand(0);
10552 SDValue RHS = N->getOperand(1);
10553 if (LHS.getOpcode() == ISD::FADD) {
10554 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
10555 SDValue A = LHS.getOperand(0);
10556 if (A == LHS.getOperand(1)) {
10557 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10558 if (FusedOp != 0){
10559 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10560 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
10561
10562 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
10563 }
10564 }
10565 }
10566
10567 if (RHS.getOpcode() == ISD::FADD) {
10568 // (fsub c, (fadd a, a)) -> mad -2.0, a, c
10569
10570 SDValue A = RHS.getOperand(0);
10571 if (A == RHS.getOperand(1)) {
10572 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10573 if (FusedOp != 0){
10574 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
10575 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
10576 }
10577 }
10578 }
10579
10580 return SDValue();
10581 }
10582
performFMACombine(SDNode * N,DAGCombinerInfo & DCI) const10583 SDValue SITargetLowering::performFMACombine(SDNode *N,
10584 DAGCombinerInfo &DCI) const {
10585 SelectionDAG &DAG = DCI.DAG;
10586 EVT VT = N->getValueType(0);
10587 SDLoc SL(N);
10588
10589 if (!Subtarget->hasDot7Insts() || VT != MVT::f32)
10590 return SDValue();
10591
10592 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
10593 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
10594 SDValue Op1 = N->getOperand(0);
10595 SDValue Op2 = N->getOperand(1);
10596 SDValue FMA = N->getOperand(2);
10597
10598 if (FMA.getOpcode() != ISD::FMA ||
10599 Op1.getOpcode() != ISD::FP_EXTEND ||
10600 Op2.getOpcode() != ISD::FP_EXTEND)
10601 return SDValue();
10602
10603 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
10604 // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
10605 // is sufficient to allow generaing fdot2.
10606 const TargetOptions &Options = DAG.getTarget().Options;
10607 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10608 (N->getFlags().hasAllowContract() &&
10609 FMA->getFlags().hasAllowContract())) {
10610 Op1 = Op1.getOperand(0);
10611 Op2 = Op2.getOperand(0);
10612 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10613 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10614 return SDValue();
10615
10616 SDValue Vec1 = Op1.getOperand(0);
10617 SDValue Idx1 = Op1.getOperand(1);
10618 SDValue Vec2 = Op2.getOperand(0);
10619
10620 SDValue FMAOp1 = FMA.getOperand(0);
10621 SDValue FMAOp2 = FMA.getOperand(1);
10622 SDValue FMAAcc = FMA.getOperand(2);
10623
10624 if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
10625 FMAOp2.getOpcode() != ISD::FP_EXTEND)
10626 return SDValue();
10627
10628 FMAOp1 = FMAOp1.getOperand(0);
10629 FMAOp2 = FMAOp2.getOperand(0);
10630 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10631 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10632 return SDValue();
10633
10634 SDValue Vec3 = FMAOp1.getOperand(0);
10635 SDValue Vec4 = FMAOp2.getOperand(0);
10636 SDValue Idx2 = FMAOp1.getOperand(1);
10637
10638 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
10639 // Idx1 and Idx2 cannot be the same.
10640 Idx1 == Idx2)
10641 return SDValue();
10642
10643 if (Vec1 == Vec2 || Vec3 == Vec4)
10644 return SDValue();
10645
10646 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
10647 return SDValue();
10648
10649 if ((Vec1 == Vec3 && Vec2 == Vec4) ||
10650 (Vec1 == Vec4 && Vec2 == Vec3)) {
10651 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
10652 DAG.getTargetConstant(0, SL, MVT::i1));
10653 }
10654 }
10655 return SDValue();
10656 }
10657
performSetCCCombine(SDNode * N,DAGCombinerInfo & DCI) const10658 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
10659 DAGCombinerInfo &DCI) const {
10660 SelectionDAG &DAG = DCI.DAG;
10661 SDLoc SL(N);
10662
10663 SDValue LHS = N->getOperand(0);
10664 SDValue RHS = N->getOperand(1);
10665 EVT VT = LHS.getValueType();
10666 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10667
10668 auto CRHS = dyn_cast<ConstantSDNode>(RHS);
10669 if (!CRHS) {
10670 CRHS = dyn_cast<ConstantSDNode>(LHS);
10671 if (CRHS) {
10672 std::swap(LHS, RHS);
10673 CC = getSetCCSwappedOperands(CC);
10674 }
10675 }
10676
10677 if (CRHS) {
10678 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
10679 isBoolSGPR(LHS.getOperand(0))) {
10680 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
10681 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
10682 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1
10683 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc
10684 if ((CRHS->isAllOnesValue() &&
10685 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
10686 (CRHS->isNullValue() &&
10687 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
10688 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10689 DAG.getConstant(-1, SL, MVT::i1));
10690 if ((CRHS->isAllOnesValue() &&
10691 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
10692 (CRHS->isNullValue() &&
10693 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
10694 return LHS.getOperand(0);
10695 }
10696
10697 uint64_t CRHSVal = CRHS->getZExtValue();
10698 if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10699 LHS.getOpcode() == ISD::SELECT &&
10700 isa<ConstantSDNode>(LHS.getOperand(1)) &&
10701 isa<ConstantSDNode>(LHS.getOperand(2)) &&
10702 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
10703 isBoolSGPR(LHS.getOperand(0))) {
10704 // Given CT != FT:
10705 // setcc (select cc, CT, CF), CF, eq => xor cc, -1
10706 // setcc (select cc, CT, CF), CF, ne => cc
10707 // setcc (select cc, CT, CF), CT, ne => xor cc, -1
10708 // setcc (select cc, CT, CF), CT, eq => cc
10709 uint64_t CT = LHS.getConstantOperandVal(1);
10710 uint64_t CF = LHS.getConstantOperandVal(2);
10711
10712 if ((CF == CRHSVal && CC == ISD::SETEQ) ||
10713 (CT == CRHSVal && CC == ISD::SETNE))
10714 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10715 DAG.getConstant(-1, SL, MVT::i1));
10716 if ((CF == CRHSVal && CC == ISD::SETNE) ||
10717 (CT == CRHSVal && CC == ISD::SETEQ))
10718 return LHS.getOperand(0);
10719 }
10720 }
10721
10722 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
10723 VT != MVT::f16))
10724 return SDValue();
10725
10726 // Match isinf/isfinite pattern
10727 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
10728 // (fcmp one (fabs x), inf) -> (fp_class x,
10729 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
10730 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
10731 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
10732 if (!CRHS)
10733 return SDValue();
10734
10735 const APFloat &APF = CRHS->getValueAPF();
10736 if (APF.isInfinity() && !APF.isNegative()) {
10737 const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
10738 SIInstrFlags::N_INFINITY;
10739 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
10740 SIInstrFlags::P_ZERO |
10741 SIInstrFlags::N_NORMAL |
10742 SIInstrFlags::P_NORMAL |
10743 SIInstrFlags::N_SUBNORMAL |
10744 SIInstrFlags::P_SUBNORMAL;
10745 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
10746 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
10747 DAG.getConstant(Mask, SL, MVT::i32));
10748 }
10749 }
10750
10751 return SDValue();
10752 }
10753
performCvtF32UByteNCombine(SDNode * N,DAGCombinerInfo & DCI) const10754 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
10755 DAGCombinerInfo &DCI) const {
10756 SelectionDAG &DAG = DCI.DAG;
10757 SDLoc SL(N);
10758 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
10759
10760 SDValue Src = N->getOperand(0);
10761 SDValue Shift = N->getOperand(0);
10762
10763 // TODO: Extend type shouldn't matter (assuming legal types).
10764 if (Shift.getOpcode() == ISD::ZERO_EXTEND)
10765 Shift = Shift.getOperand(0);
10766
10767 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
10768 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x
10769 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
10770 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
10771 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
10772 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
10773 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
10774 Shift = DAG.getZExtOrTrunc(Shift.getOperand(0),
10775 SDLoc(Shift.getOperand(0)), MVT::i32);
10776
10777 unsigned ShiftOffset = 8 * Offset;
10778 if (Shift.getOpcode() == ISD::SHL)
10779 ShiftOffset -= C->getZExtValue();
10780 else
10781 ShiftOffset += C->getZExtValue();
10782
10783 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
10784 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
10785 MVT::f32, Shift);
10786 }
10787 }
10788 }
10789
10790 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10791 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
10792 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
10793 // We simplified Src. If this node is not dead, visit it again so it is
10794 // folded properly.
10795 if (N->getOpcode() != ISD::DELETED_NODE)
10796 DCI.AddToWorklist(N);
10797 return SDValue(N, 0);
10798 }
10799
10800 // Handle (or x, (srl y, 8)) pattern when known bits are zero.
10801 if (SDValue DemandedSrc =
10802 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
10803 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
10804
10805 return SDValue();
10806 }
10807
performClampCombine(SDNode * N,DAGCombinerInfo & DCI) const10808 SDValue SITargetLowering::performClampCombine(SDNode *N,
10809 DAGCombinerInfo &DCI) const {
10810 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
10811 if (!CSrc)
10812 return SDValue();
10813
10814 const MachineFunction &MF = DCI.DAG.getMachineFunction();
10815 const APFloat &F = CSrc->getValueAPF();
10816 APFloat Zero = APFloat::getZero(F.getSemantics());
10817 if (F < Zero ||
10818 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
10819 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
10820 }
10821
10822 APFloat One(F.getSemantics(), "1.0");
10823 if (F > One)
10824 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
10825
10826 return SDValue(CSrc, 0);
10827 }
10828
10829
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const10830 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
10831 DAGCombinerInfo &DCI) const {
10832 if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
10833 return SDValue();
10834 switch (N->getOpcode()) {
10835 case ISD::ADD:
10836 return performAddCombine(N, DCI);
10837 case ISD::SUB:
10838 return performSubCombine(N, DCI);
10839 case ISD::ADDCARRY:
10840 case ISD::SUBCARRY:
10841 return performAddCarrySubCarryCombine(N, DCI);
10842 case ISD::FADD:
10843 return performFAddCombine(N, DCI);
10844 case ISD::FSUB:
10845 return performFSubCombine(N, DCI);
10846 case ISD::SETCC:
10847 return performSetCCCombine(N, DCI);
10848 case ISD::FMAXNUM:
10849 case ISD::FMINNUM:
10850 case ISD::FMAXNUM_IEEE:
10851 case ISD::FMINNUM_IEEE:
10852 case ISD::SMAX:
10853 case ISD::SMIN:
10854 case ISD::UMAX:
10855 case ISD::UMIN:
10856 case AMDGPUISD::FMIN_LEGACY:
10857 case AMDGPUISD::FMAX_LEGACY:
10858 return performMinMaxCombine(N, DCI);
10859 case ISD::FMA:
10860 return performFMACombine(N, DCI);
10861 case ISD::AND:
10862 return performAndCombine(N, DCI);
10863 case ISD::OR:
10864 return performOrCombine(N, DCI);
10865 case ISD::XOR:
10866 return performXorCombine(N, DCI);
10867 case ISD::ZERO_EXTEND:
10868 return performZeroExtendCombine(N, DCI);
10869 case ISD::SIGN_EXTEND_INREG:
10870 return performSignExtendInRegCombine(N , DCI);
10871 case AMDGPUISD::FP_CLASS:
10872 return performClassCombine(N, DCI);
10873 case ISD::FCANONICALIZE:
10874 return performFCanonicalizeCombine(N, DCI);
10875 case AMDGPUISD::RCP:
10876 return performRcpCombine(N, DCI);
10877 case AMDGPUISD::FRACT:
10878 case AMDGPUISD::RSQ:
10879 case AMDGPUISD::RCP_LEGACY:
10880 case AMDGPUISD::RCP_IFLAG:
10881 case AMDGPUISD::RSQ_CLAMP:
10882 case AMDGPUISD::LDEXP: {
10883 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
10884 SDValue Src = N->getOperand(0);
10885 if (Src.isUndef())
10886 return Src;
10887 break;
10888 }
10889 case ISD::SINT_TO_FP:
10890 case ISD::UINT_TO_FP:
10891 return performUCharToFloatCombine(N, DCI);
10892 case AMDGPUISD::CVT_F32_UBYTE0:
10893 case AMDGPUISD::CVT_F32_UBYTE1:
10894 case AMDGPUISD::CVT_F32_UBYTE2:
10895 case AMDGPUISD::CVT_F32_UBYTE3:
10896 return performCvtF32UByteNCombine(N, DCI);
10897 case AMDGPUISD::FMED3:
10898 return performFMed3Combine(N, DCI);
10899 case AMDGPUISD::CVT_PKRTZ_F16_F32:
10900 return performCvtPkRTZCombine(N, DCI);
10901 case AMDGPUISD::CLAMP:
10902 return performClampCombine(N, DCI);
10903 case ISD::SCALAR_TO_VECTOR: {
10904 SelectionDAG &DAG = DCI.DAG;
10905 EVT VT = N->getValueType(0);
10906
10907 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
10908 if (VT == MVT::v2i16 || VT == MVT::v2f16) {
10909 SDLoc SL(N);
10910 SDValue Src = N->getOperand(0);
10911 EVT EltVT = Src.getValueType();
10912 if (EltVT == MVT::f16)
10913 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
10914
10915 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
10916 return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
10917 }
10918
10919 break;
10920 }
10921 case ISD::EXTRACT_VECTOR_ELT:
10922 return performExtractVectorEltCombine(N, DCI);
10923 case ISD::INSERT_VECTOR_ELT:
10924 return performInsertVectorEltCombine(N, DCI);
10925 case ISD::LOAD: {
10926 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
10927 return Widended;
10928 LLVM_FALLTHROUGH;
10929 }
10930 default: {
10931 if (!DCI.isBeforeLegalize()) {
10932 if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
10933 return performMemSDNodeCombine(MemNode, DCI);
10934 }
10935
10936 break;
10937 }
10938 }
10939
10940 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
10941 }
10942
10943 /// Helper function for adjustWritemask
SubIdx2Lane(unsigned Idx)10944 static unsigned SubIdx2Lane(unsigned Idx) {
10945 switch (Idx) {
10946 default: return ~0u;
10947 case AMDGPU::sub0: return 0;
10948 case AMDGPU::sub1: return 1;
10949 case AMDGPU::sub2: return 2;
10950 case AMDGPU::sub3: return 3;
10951 case AMDGPU::sub4: return 4; // Possible with TFE/LWE
10952 }
10953 }
10954
10955 /// Adjust the writemask of MIMG instructions
adjustWritemask(MachineSDNode * & Node,SelectionDAG & DAG) const10956 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
10957 SelectionDAG &DAG) const {
10958 unsigned Opcode = Node->getMachineOpcode();
10959
10960 // Subtract 1 because the vdata output is not a MachineSDNode operand.
10961 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
10962 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
10963 return Node; // not implemented for D16
10964
10965 SDNode *Users[5] = { nullptr };
10966 unsigned Lane = 0;
10967 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
10968 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
10969 unsigned NewDmask = 0;
10970 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
10971 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
10972 bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
10973 Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
10974 unsigned TFCLane = 0;
10975 bool HasChain = Node->getNumValues() > 1;
10976
10977 if (OldDmask == 0) {
10978 // These are folded out, but on the chance it happens don't assert.
10979 return Node;
10980 }
10981
10982 unsigned OldBitsSet = countPopulation(OldDmask);
10983 // Work out which is the TFE/LWE lane if that is enabled.
10984 if (UsesTFC) {
10985 TFCLane = OldBitsSet;
10986 }
10987
10988 // Try to figure out the used register components
10989 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
10990 I != E; ++I) {
10991
10992 // Don't look at users of the chain.
10993 if (I.getUse().getResNo() != 0)
10994 continue;
10995
10996 // Abort if we can't understand the usage
10997 if (!I->isMachineOpcode() ||
10998 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
10999 return Node;
11000
11001 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
11002 // Note that subregs are packed, i.e. Lane==0 is the first bit set
11003 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
11004 // set, etc.
11005 Lane = SubIdx2Lane(I->getConstantOperandVal(1));
11006 if (Lane == ~0u)
11007 return Node;
11008
11009 // Check if the use is for the TFE/LWE generated result at VGPRn+1.
11010 if (UsesTFC && Lane == TFCLane) {
11011 Users[Lane] = *I;
11012 } else {
11013 // Set which texture component corresponds to the lane.
11014 unsigned Comp;
11015 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
11016 Comp = countTrailingZeros(Dmask);
11017 Dmask &= ~(1 << Comp);
11018 }
11019
11020 // Abort if we have more than one user per component.
11021 if (Users[Lane])
11022 return Node;
11023
11024 Users[Lane] = *I;
11025 NewDmask |= 1 << Comp;
11026 }
11027 }
11028
11029 // Don't allow 0 dmask, as hardware assumes one channel enabled.
11030 bool NoChannels = !NewDmask;
11031 if (NoChannels) {
11032 if (!UsesTFC) {
11033 // No uses of the result and not using TFC. Then do nothing.
11034 return Node;
11035 }
11036 // If the original dmask has one channel - then nothing to do
11037 if (OldBitsSet == 1)
11038 return Node;
11039 // Use an arbitrary dmask - required for the instruction to work
11040 NewDmask = 1;
11041 }
11042 // Abort if there's no change
11043 if (NewDmask == OldDmask)
11044 return Node;
11045
11046 unsigned BitsSet = countPopulation(NewDmask);
11047
11048 // Check for TFE or LWE - increase the number of channels by one to account
11049 // for the extra return value
11050 // This will need adjustment for D16 if this is also included in
11051 // adjustWriteMask (this function) but at present D16 are excluded.
11052 unsigned NewChannels = BitsSet + UsesTFC;
11053
11054 int NewOpcode =
11055 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
11056 assert(NewOpcode != -1 &&
11057 NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
11058 "failed to find equivalent MIMG op");
11059
11060 // Adjust the writemask in the node
11061 SmallVector<SDValue, 12> Ops;
11062 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
11063 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
11064 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
11065
11066 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
11067
11068 MVT ResultVT = NewChannels == 1 ?
11069 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
11070 NewChannels == 5 ? 8 : NewChannels);
11071 SDVTList NewVTList = HasChain ?
11072 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
11073
11074
11075 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
11076 NewVTList, Ops);
11077
11078 if (HasChain) {
11079 // Update chain.
11080 DAG.setNodeMemRefs(NewNode, Node->memoperands());
11081 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
11082 }
11083
11084 if (NewChannels == 1) {
11085 assert(Node->hasNUsesOfValue(1, 0));
11086 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
11087 SDLoc(Node), Users[Lane]->getValueType(0),
11088 SDValue(NewNode, 0));
11089 DAG.ReplaceAllUsesWith(Users[Lane], Copy);
11090 return nullptr;
11091 }
11092
11093 // Update the users of the node with the new indices
11094 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
11095 SDNode *User = Users[i];
11096 if (!User) {
11097 // Handle the special case of NoChannels. We set NewDmask to 1 above, but
11098 // Users[0] is still nullptr because channel 0 doesn't really have a use.
11099 if (i || !NoChannels)
11100 continue;
11101 } else {
11102 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
11103 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
11104 }
11105
11106 switch (Idx) {
11107 default: break;
11108 case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
11109 case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
11110 case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
11111 case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
11112 }
11113 }
11114
11115 DAG.RemoveDeadNode(Node);
11116 return nullptr;
11117 }
11118
isFrameIndexOp(SDValue Op)11119 static bool isFrameIndexOp(SDValue Op) {
11120 if (Op.getOpcode() == ISD::AssertZext)
11121 Op = Op.getOperand(0);
11122
11123 return isa<FrameIndexSDNode>(Op);
11124 }
11125
11126 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
11127 /// with frame index operands.
11128 /// LLVM assumes that inputs are to these instructions are registers.
legalizeTargetIndependentNode(SDNode * Node,SelectionDAG & DAG) const11129 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
11130 SelectionDAG &DAG) const {
11131 if (Node->getOpcode() == ISD::CopyToReg) {
11132 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
11133 SDValue SrcVal = Node->getOperand(2);
11134
11135 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
11136 // to try understanding copies to physical registers.
11137 if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
11138 SDLoc SL(Node);
11139 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11140 SDValue VReg = DAG.getRegister(
11141 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
11142
11143 SDNode *Glued = Node->getGluedNode();
11144 SDValue ToVReg
11145 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
11146 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
11147 SDValue ToResultReg
11148 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
11149 VReg, ToVReg.getValue(1));
11150 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
11151 DAG.RemoveDeadNode(Node);
11152 return ToResultReg.getNode();
11153 }
11154 }
11155
11156 SmallVector<SDValue, 8> Ops;
11157 for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
11158 if (!isFrameIndexOp(Node->getOperand(i))) {
11159 Ops.push_back(Node->getOperand(i));
11160 continue;
11161 }
11162
11163 SDLoc DL(Node);
11164 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
11165 Node->getOperand(i).getValueType(),
11166 Node->getOperand(i)), 0));
11167 }
11168
11169 return DAG.UpdateNodeOperands(Node, Ops);
11170 }
11171
11172 /// Fold the instructions after selecting them.
11173 /// Returns null if users were already updated.
PostISelFolding(MachineSDNode * Node,SelectionDAG & DAG) const11174 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
11175 SelectionDAG &DAG) const {
11176 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11177 unsigned Opcode = Node->getMachineOpcode();
11178
11179 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
11180 !TII->isGather4(Opcode) &&
11181 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) {
11182 return adjustWritemask(Node, DAG);
11183 }
11184
11185 if (Opcode == AMDGPU::INSERT_SUBREG ||
11186 Opcode == AMDGPU::REG_SEQUENCE) {
11187 legalizeTargetIndependentNode(Node, DAG);
11188 return Node;
11189 }
11190
11191 switch (Opcode) {
11192 case AMDGPU::V_DIV_SCALE_F32_e64:
11193 case AMDGPU::V_DIV_SCALE_F64_e64: {
11194 // Satisfy the operand register constraint when one of the inputs is
11195 // undefined. Ordinarily each undef value will have its own implicit_def of
11196 // a vreg, so force these to use a single register.
11197 SDValue Src0 = Node->getOperand(1);
11198 SDValue Src1 = Node->getOperand(3);
11199 SDValue Src2 = Node->getOperand(5);
11200
11201 if ((Src0.isMachineOpcode() &&
11202 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11203 (Src0 == Src1 || Src0 == Src2))
11204 break;
11205
11206 MVT VT = Src0.getValueType().getSimpleVT();
11207 const TargetRegisterClass *RC =
11208 getRegClassFor(VT, Src0.getNode()->isDivergent());
11209
11210 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11211 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11212
11213 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11214 UndefReg, Src0, SDValue());
11215
11216 // src0 must be the same register as src1 or src2, even if the value is
11217 // undefined, so make sure we don't violate this constraint.
11218 if (Src0.isMachineOpcode() &&
11219 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11220 if (Src1.isMachineOpcode() &&
11221 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11222 Src0 = Src1;
11223 else if (Src2.isMachineOpcode() &&
11224 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11225 Src0 = Src2;
11226 else {
11227 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
11228 Src0 = UndefReg;
11229 Src1 = UndefReg;
11230 }
11231 } else
11232 break;
11233
11234 SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
11235 Ops[1] = Src0;
11236 Ops[3] = Src1;
11237 Ops[5] = Src2;
11238 Ops.push_back(ImpDef.getValue(1));
11239 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
11240 }
11241 default:
11242 break;
11243 }
11244
11245 return Node;
11246 }
11247
11248 // Any MIMG instructions that use tfe or lwe require an initialization of the
11249 // result register that will be written in the case of a memory access failure.
11250 // The required code is also added to tie this init code to the result of the
11251 // img instruction.
AddIMGInit(MachineInstr & MI) const11252 void SITargetLowering::AddIMGInit(MachineInstr &MI) const {
11253 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11254 const SIRegisterInfo &TRI = TII->getRegisterInfo();
11255 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
11256 MachineBasicBlock &MBB = *MI.getParent();
11257
11258 MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
11259 MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
11260 MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
11261
11262 if (!TFE && !LWE) // intersect_ray
11263 return;
11264
11265 unsigned TFEVal = TFE ? TFE->getImm() : 0;
11266 unsigned LWEVal = LWE->getImm();
11267 unsigned D16Val = D16 ? D16->getImm() : 0;
11268
11269 if (!TFEVal && !LWEVal)
11270 return;
11271
11272 // At least one of TFE or LWE are non-zero
11273 // We have to insert a suitable initialization of the result value and
11274 // tie this to the dest of the image instruction.
11275
11276 const DebugLoc &DL = MI.getDebugLoc();
11277
11278 int DstIdx =
11279 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
11280
11281 // Calculate which dword we have to initialize to 0.
11282 MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
11283
11284 // check that dmask operand is found.
11285 assert(MO_Dmask && "Expected dmask operand in instruction");
11286
11287 unsigned dmask = MO_Dmask->getImm();
11288 // Determine the number of active lanes taking into account the
11289 // Gather4 special case
11290 unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask);
11291
11292 bool Packed = !Subtarget->hasUnpackedD16VMem();
11293
11294 unsigned InitIdx =
11295 D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
11296
11297 // Abandon attempt if the dst size isn't large enough
11298 // - this is in fact an error but this is picked up elsewhere and
11299 // reported correctly.
11300 uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
11301 if (DstSize < InitIdx)
11302 return;
11303
11304 // Create a register for the intialization value.
11305 Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11306 unsigned NewDst = 0; // Final initialized value will be in here
11307
11308 // If PRTStrictNull feature is enabled (the default) then initialize
11309 // all the result registers to 0, otherwise just the error indication
11310 // register (VGPRn+1)
11311 unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
11312 unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
11313
11314 BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
11315 for (; SizeLeft; SizeLeft--, CurrIdx++) {
11316 NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11317 // Initialize dword
11318 Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
11319 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
11320 .addImm(0);
11321 // Insert into the super-reg
11322 BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
11323 .addReg(PrevDst)
11324 .addReg(SubReg)
11325 .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx));
11326
11327 PrevDst = NewDst;
11328 }
11329
11330 // Add as an implicit operand
11331 MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
11332
11333 // Tie the just added implicit operand to the dst
11334 MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
11335 }
11336
11337 /// Assign the register class depending on the number of
11338 /// bits set in the writemask
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const11339 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11340 SDNode *Node) const {
11341 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11342
11343 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
11344
11345 if (TII->isVOP3(MI.getOpcode())) {
11346 // Make sure constant bus requirements are respected.
11347 TII->legalizeOperandsVOP3(MRI, MI);
11348
11349 // Prefer VGPRs over AGPRs in mAI instructions where possible.
11350 // This saves a chain-copy of registers and better ballance register
11351 // use between vgpr and agpr as agpr tuples tend to be big.
11352 if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) {
11353 unsigned Opc = MI.getOpcode();
11354 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11355 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
11356 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
11357 if (I == -1)
11358 break;
11359 MachineOperand &Op = MI.getOperand(I);
11360 if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID &&
11361 OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) ||
11362 !Op.getReg().isVirtual() || !TRI->isAGPR(MRI, Op.getReg()))
11363 continue;
11364 auto *Src = MRI.getUniqueVRegDef(Op.getReg());
11365 if (!Src || !Src->isCopy() ||
11366 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
11367 continue;
11368 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
11369 auto *NewRC = TRI->getEquivalentVGPRClass(RC);
11370 // All uses of agpr64 and agpr32 can also accept vgpr except for
11371 // v_accvgpr_read, but we do not produce agpr reads during selection,
11372 // so no use checks are needed.
11373 MRI.setRegClass(Op.getReg(), NewRC);
11374 }
11375 }
11376
11377 return;
11378 }
11379
11380 // Replace unused atomics with the no return version.
11381 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
11382 if (NoRetAtomicOp != -1) {
11383 if (!Node->hasAnyUseOfValue(0)) {
11384 int CPolIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
11385 AMDGPU::OpName::cpol);
11386 if (CPolIdx != -1) {
11387 MachineOperand &CPol = MI.getOperand(CPolIdx);
11388 CPol.setImm(CPol.getImm() & ~AMDGPU::CPol::GLC);
11389 }
11390 MI.RemoveOperand(0);
11391 MI.setDesc(TII->get(NoRetAtomicOp));
11392 return;
11393 }
11394
11395 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
11396 // instruction, because the return type of these instructions is a vec2 of
11397 // the memory type, so it can be tied to the input operand.
11398 // This means these instructions always have a use, so we need to add a
11399 // special case to check if the atomic has only one extract_subreg use,
11400 // which itself has no uses.
11401 if ((Node->hasNUsesOfValue(1, 0) &&
11402 Node->use_begin()->isMachineOpcode() &&
11403 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
11404 !Node->use_begin()->hasAnyUseOfValue(0))) {
11405 Register Def = MI.getOperand(0).getReg();
11406
11407 // Change this into a noret atomic.
11408 MI.setDesc(TII->get(NoRetAtomicOp));
11409 MI.RemoveOperand(0);
11410
11411 // If we only remove the def operand from the atomic instruction, the
11412 // extract_subreg will be left with a use of a vreg without a def.
11413 // So we need to insert an implicit_def to avoid machine verifier
11414 // errors.
11415 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
11416 TII->get(AMDGPU::IMPLICIT_DEF), Def);
11417 }
11418 return;
11419 }
11420
11421 if (TII->isMIMG(MI) && !MI.mayStore())
11422 AddIMGInit(MI);
11423 }
11424
buildSMovImm32(SelectionDAG & DAG,const SDLoc & DL,uint64_t Val)11425 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
11426 uint64_t Val) {
11427 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
11428 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
11429 }
11430
wrapAddr64Rsrc(SelectionDAG & DAG,const SDLoc & DL,SDValue Ptr) const11431 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
11432 const SDLoc &DL,
11433 SDValue Ptr) const {
11434 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11435
11436 // Build the half of the subregister with the constants before building the
11437 // full 128-bit register. If we are building multiple resource descriptors,
11438 // this will allow CSEing of the 2-component register.
11439 const SDValue Ops0[] = {
11440 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
11441 buildSMovImm32(DAG, DL, 0),
11442 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11443 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
11444 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
11445 };
11446
11447 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
11448 MVT::v2i32, Ops0), 0);
11449
11450 // Combine the constants and the pointer.
11451 const SDValue Ops1[] = {
11452 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11453 Ptr,
11454 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
11455 SubRegHi,
11456 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
11457 };
11458
11459 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
11460 }
11461
11462 /// Return a resource descriptor with the 'Add TID' bit enabled
11463 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
11464 /// of the resource descriptor) to create an offset, which is added to
11465 /// the resource pointer.
buildRSRC(SelectionDAG & DAG,const SDLoc & DL,SDValue Ptr,uint32_t RsrcDword1,uint64_t RsrcDword2And3) const11466 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
11467 SDValue Ptr, uint32_t RsrcDword1,
11468 uint64_t RsrcDword2And3) const {
11469 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
11470 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
11471 if (RsrcDword1) {
11472 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
11473 DAG.getConstant(RsrcDword1, DL, MVT::i32)),
11474 0);
11475 }
11476
11477 SDValue DataLo = buildSMovImm32(DAG, DL,
11478 RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
11479 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
11480
11481 const SDValue Ops[] = {
11482 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11483 PtrLo,
11484 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11485 PtrHi,
11486 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
11487 DataLo,
11488 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
11489 DataHi,
11490 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
11491 };
11492
11493 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
11494 }
11495
11496 //===----------------------------------------------------------------------===//
11497 // SI Inline Assembly Support
11498 //===----------------------------------------------------------------------===//
11499
11500 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI_,StringRef Constraint,MVT VT) const11501 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_,
11502 StringRef Constraint,
11503 MVT VT) const {
11504 const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
11505
11506 const TargetRegisterClass *RC = nullptr;
11507 if (Constraint.size() == 1) {
11508 const unsigned BitWidth = VT.getSizeInBits();
11509 switch (Constraint[0]) {
11510 default:
11511 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11512 case 's':
11513 case 'r':
11514 switch (BitWidth) {
11515 case 16:
11516 RC = &AMDGPU::SReg_32RegClass;
11517 break;
11518 case 64:
11519 RC = &AMDGPU::SGPR_64RegClass;
11520 break;
11521 default:
11522 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
11523 if (!RC)
11524 return std::make_pair(0U, nullptr);
11525 break;
11526 }
11527 break;
11528 case 'v':
11529 switch (BitWidth) {
11530 case 16:
11531 RC = &AMDGPU::VGPR_32RegClass;
11532 break;
11533 default:
11534 RC = TRI->getVGPRClassForBitWidth(BitWidth);
11535 if (!RC)
11536 return std::make_pair(0U, nullptr);
11537 break;
11538 }
11539 break;
11540 case 'a':
11541 if (!Subtarget->hasMAIInsts())
11542 break;
11543 switch (BitWidth) {
11544 case 16:
11545 RC = &AMDGPU::AGPR_32RegClass;
11546 break;
11547 default:
11548 RC = TRI->getAGPRClassForBitWidth(BitWidth);
11549 if (!RC)
11550 return std::make_pair(0U, nullptr);
11551 break;
11552 }
11553 break;
11554 }
11555 // We actually support i128, i16 and f16 as inline parameters
11556 // even if they are not reported as legal
11557 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
11558 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
11559 return std::make_pair(0U, RC);
11560 }
11561
11562 if (Constraint.size() > 1) {
11563 if (Constraint[1] == 'v') {
11564 RC = &AMDGPU::VGPR_32RegClass;
11565 } else if (Constraint[1] == 's') {
11566 RC = &AMDGPU::SGPR_32RegClass;
11567 } else if (Constraint[1] == 'a') {
11568 RC = &AMDGPU::AGPR_32RegClass;
11569 }
11570
11571 if (RC) {
11572 uint32_t Idx;
11573 bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
11574 if (!Failed && Idx < RC->getNumRegs())
11575 return std::make_pair(RC->getRegister(Idx), RC);
11576 }
11577 }
11578
11579 // FIXME: Returns VS_32 for physical SGPR constraints
11580 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11581 }
11582
isImmConstraint(StringRef Constraint)11583 static bool isImmConstraint(StringRef Constraint) {
11584 if (Constraint.size() == 1) {
11585 switch (Constraint[0]) {
11586 default: break;
11587 case 'I':
11588 case 'J':
11589 case 'A':
11590 case 'B':
11591 case 'C':
11592 return true;
11593 }
11594 } else if (Constraint == "DA" ||
11595 Constraint == "DB") {
11596 return true;
11597 }
11598 return false;
11599 }
11600
11601 SITargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const11602 SITargetLowering::getConstraintType(StringRef Constraint) const {
11603 if (Constraint.size() == 1) {
11604 switch (Constraint[0]) {
11605 default: break;
11606 case 's':
11607 case 'v':
11608 case 'a':
11609 return C_RegisterClass;
11610 }
11611 }
11612 if (isImmConstraint(Constraint)) {
11613 return C_Other;
11614 }
11615 return TargetLowering::getConstraintType(Constraint);
11616 }
11617
clearUnusedBits(uint64_t Val,unsigned Size)11618 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
11619 if (!AMDGPU::isInlinableIntLiteral(Val)) {
11620 Val = Val & maskTrailingOnes<uint64_t>(Size);
11621 }
11622 return Val;
11623 }
11624
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const11625 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11626 std::string &Constraint,
11627 std::vector<SDValue> &Ops,
11628 SelectionDAG &DAG) const {
11629 if (isImmConstraint(Constraint)) {
11630 uint64_t Val;
11631 if (getAsmOperandConstVal(Op, Val) &&
11632 checkAsmConstraintVal(Op, Constraint, Val)) {
11633 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
11634 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
11635 }
11636 } else {
11637 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11638 }
11639 }
11640
getAsmOperandConstVal(SDValue Op,uint64_t & Val) const11641 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
11642 unsigned Size = Op.getScalarValueSizeInBits();
11643 if (Size > 64)
11644 return false;
11645
11646 if (Size == 16 && !Subtarget->has16BitInsts())
11647 return false;
11648
11649 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11650 Val = C->getSExtValue();
11651 return true;
11652 }
11653 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
11654 Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11655 return true;
11656 }
11657 if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
11658 if (Size != 16 || Op.getNumOperands() != 2)
11659 return false;
11660 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
11661 return false;
11662 if (ConstantSDNode *C = V->getConstantSplatNode()) {
11663 Val = C->getSExtValue();
11664 return true;
11665 }
11666 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
11667 Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11668 return true;
11669 }
11670 }
11671
11672 return false;
11673 }
11674
checkAsmConstraintVal(SDValue Op,const std::string & Constraint,uint64_t Val) const11675 bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
11676 const std::string &Constraint,
11677 uint64_t Val) const {
11678 if (Constraint.size() == 1) {
11679 switch (Constraint[0]) {
11680 case 'I':
11681 return AMDGPU::isInlinableIntLiteral(Val);
11682 case 'J':
11683 return isInt<16>(Val);
11684 case 'A':
11685 return checkAsmConstraintValA(Op, Val);
11686 case 'B':
11687 return isInt<32>(Val);
11688 case 'C':
11689 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
11690 AMDGPU::isInlinableIntLiteral(Val);
11691 default:
11692 break;
11693 }
11694 } else if (Constraint.size() == 2) {
11695 if (Constraint == "DA") {
11696 int64_t HiBits = static_cast<int32_t>(Val >> 32);
11697 int64_t LoBits = static_cast<int32_t>(Val);
11698 return checkAsmConstraintValA(Op, HiBits, 32) &&
11699 checkAsmConstraintValA(Op, LoBits, 32);
11700 }
11701 if (Constraint == "DB") {
11702 return true;
11703 }
11704 }
11705 llvm_unreachable("Invalid asm constraint");
11706 }
11707
checkAsmConstraintValA(SDValue Op,uint64_t Val,unsigned MaxSize) const11708 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
11709 uint64_t Val,
11710 unsigned MaxSize) const {
11711 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
11712 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
11713 if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
11714 (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
11715 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
11716 return true;
11717 }
11718 return false;
11719 }
11720
getAlignedAGPRClassID(unsigned UnalignedClassID)11721 static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
11722 switch (UnalignedClassID) {
11723 case AMDGPU::VReg_64RegClassID:
11724 return AMDGPU::VReg_64_Align2RegClassID;
11725 case AMDGPU::VReg_96RegClassID:
11726 return AMDGPU::VReg_96_Align2RegClassID;
11727 case AMDGPU::VReg_128RegClassID:
11728 return AMDGPU::VReg_128_Align2RegClassID;
11729 case AMDGPU::VReg_160RegClassID:
11730 return AMDGPU::VReg_160_Align2RegClassID;
11731 case AMDGPU::VReg_192RegClassID:
11732 return AMDGPU::VReg_192_Align2RegClassID;
11733 case AMDGPU::VReg_256RegClassID:
11734 return AMDGPU::VReg_256_Align2RegClassID;
11735 case AMDGPU::VReg_512RegClassID:
11736 return AMDGPU::VReg_512_Align2RegClassID;
11737 case AMDGPU::VReg_1024RegClassID:
11738 return AMDGPU::VReg_1024_Align2RegClassID;
11739 case AMDGPU::AReg_64RegClassID:
11740 return AMDGPU::AReg_64_Align2RegClassID;
11741 case AMDGPU::AReg_96RegClassID:
11742 return AMDGPU::AReg_96_Align2RegClassID;
11743 case AMDGPU::AReg_128RegClassID:
11744 return AMDGPU::AReg_128_Align2RegClassID;
11745 case AMDGPU::AReg_160RegClassID:
11746 return AMDGPU::AReg_160_Align2RegClassID;
11747 case AMDGPU::AReg_192RegClassID:
11748 return AMDGPU::AReg_192_Align2RegClassID;
11749 case AMDGPU::AReg_256RegClassID:
11750 return AMDGPU::AReg_256_Align2RegClassID;
11751 case AMDGPU::AReg_512RegClassID:
11752 return AMDGPU::AReg_512_Align2RegClassID;
11753 case AMDGPU::AReg_1024RegClassID:
11754 return AMDGPU::AReg_1024_Align2RegClassID;
11755 default:
11756 return -1;
11757 }
11758 }
11759
11760 // Figure out which registers should be reserved for stack access. Only after
11761 // the function is legalized do we know all of the non-spill stack objects or if
11762 // calls are present.
finalizeLowering(MachineFunction & MF) const11763 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
11764 MachineRegisterInfo &MRI = MF.getRegInfo();
11765 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11766 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
11767 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11768 const SIInstrInfo *TII = ST.getInstrInfo();
11769
11770 if (Info->isEntryFunction()) {
11771 // Callable functions have fixed registers used for stack access.
11772 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
11773 }
11774
11775 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
11776 Info->getStackPtrOffsetReg()));
11777 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
11778 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
11779
11780 // We need to worry about replacing the default register with itself in case
11781 // of MIR testcases missing the MFI.
11782 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
11783 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
11784
11785 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
11786 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
11787
11788 Info->limitOccupancy(MF);
11789
11790 if (ST.isWave32() && !MF.empty()) {
11791 for (auto &MBB : MF) {
11792 for (auto &MI : MBB) {
11793 TII->fixImplicitOperands(MI);
11794 }
11795 }
11796 }
11797
11798 // FIXME: This is a hack to fixup AGPR classes to use the properly aligned
11799 // classes if required. Ideally the register class constraints would differ
11800 // per-subtarget, but there's no easy way to achieve that right now. This is
11801 // not a problem for VGPRs because the correctly aligned VGPR class is implied
11802 // from using them as the register class for legal types.
11803 if (ST.needsAlignedVGPRs()) {
11804 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
11805 const Register Reg = Register::index2VirtReg(I);
11806 const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
11807 if (!RC)
11808 continue;
11809 int NewClassID = getAlignedAGPRClassID(RC->getID());
11810 if (NewClassID != -1)
11811 MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
11812 }
11813 }
11814
11815 TargetLoweringBase::finalizeLowering(MF);
11816
11817 // Allocate a VGPR for future SGPR Spill if
11818 // "amdgpu-reserve-vgpr-for-sgpr-spill" option is used
11819 // FIXME: We won't need this hack if we split SGPR allocation from VGPR
11820 if (VGPRReserveforSGPRSpill && TRI->spillSGPRToVGPR() &&
11821 !Info->VGPRReservedForSGPRSpill && !Info->isEntryFunction())
11822 Info->reserveVGPRforSGPRSpills(MF);
11823 }
11824
computeKnownBitsForFrameIndex(const int FI,KnownBits & Known,const MachineFunction & MF) const11825 void SITargetLowering::computeKnownBitsForFrameIndex(
11826 const int FI, KnownBits &Known, const MachineFunction &MF) const {
11827 TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
11828
11829 // Set the high bits to zero based on the maximum allowed scratch size per
11830 // wave. We can't use vaddr in MUBUF instructions if we don't know the address
11831 // calculation won't overflow, so assume the sign bit is never set.
11832 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
11833 }
11834
knownBitsForWorkitemID(const GCNSubtarget & ST,GISelKnownBits & KB,KnownBits & Known,unsigned Dim)11835 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
11836 KnownBits &Known, unsigned Dim) {
11837 unsigned MaxValue =
11838 ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
11839 Known.Zero.setHighBits(countLeadingZeros(MaxValue));
11840 }
11841
computeKnownBitsForTargetInstr(GISelKnownBits & KB,Register R,KnownBits & Known,const APInt & DemandedElts,const MachineRegisterInfo & MRI,unsigned Depth) const11842 void SITargetLowering::computeKnownBitsForTargetInstr(
11843 GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
11844 const MachineRegisterInfo &MRI, unsigned Depth) const {
11845 const MachineInstr *MI = MRI.getVRegDef(R);
11846 switch (MI->getOpcode()) {
11847 case AMDGPU::G_INTRINSIC: {
11848 switch (MI->getIntrinsicID()) {
11849 case Intrinsic::amdgcn_workitem_id_x:
11850 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
11851 break;
11852 case Intrinsic::amdgcn_workitem_id_y:
11853 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
11854 break;
11855 case Intrinsic::amdgcn_workitem_id_z:
11856 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
11857 break;
11858 case Intrinsic::amdgcn_mbcnt_lo:
11859 case Intrinsic::amdgcn_mbcnt_hi: {
11860 // These return at most the wavefront size - 1.
11861 unsigned Size = MRI.getType(R).getSizeInBits();
11862 Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
11863 break;
11864 }
11865 case Intrinsic::amdgcn_groupstaticsize: {
11866 // We can report everything over the maximum size as 0. We can't report
11867 // based on the actual size because we don't know if it's accurate or not
11868 // at any given point.
11869 Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize()));
11870 break;
11871 }
11872 }
11873 break;
11874 }
11875 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
11876 Known.Zero.setHighBits(24);
11877 break;
11878 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
11879 Known.Zero.setHighBits(16);
11880 break;
11881 }
11882 }
11883
computeKnownAlignForTargetInstr(GISelKnownBits & KB,Register R,const MachineRegisterInfo & MRI,unsigned Depth) const11884 Align SITargetLowering::computeKnownAlignForTargetInstr(
11885 GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
11886 unsigned Depth) const {
11887 const MachineInstr *MI = MRI.getVRegDef(R);
11888 switch (MI->getOpcode()) {
11889 case AMDGPU::G_INTRINSIC:
11890 case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
11891 // FIXME: Can this move to generic code? What about the case where the call
11892 // site specifies a lower alignment?
11893 Intrinsic::ID IID = MI->getIntrinsicID();
11894 LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
11895 AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
11896 if (MaybeAlign RetAlign = Attrs.getRetAlignment())
11897 return *RetAlign;
11898 return Align(1);
11899 }
11900 default:
11901 return Align(1);
11902 }
11903 }
11904
getPrefLoopAlignment(MachineLoop * ML) const11905 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
11906 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
11907 const Align CacheLineAlign = Align(64);
11908
11909 // Pre-GFX10 target did not benefit from loop alignment
11910 if (!ML || DisableLoopAlignment ||
11911 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
11912 getSubtarget()->hasInstFwdPrefetchBug())
11913 return PrefAlign;
11914
11915 // On GFX10 I$ is 4 x 64 bytes cache lines.
11916 // By default prefetcher keeps one cache line behind and reads two ahead.
11917 // We can modify it with S_INST_PREFETCH for larger loops to have two lines
11918 // behind and one ahead.
11919 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
11920 // If loop fits 64 bytes it always spans no more than two cache lines and
11921 // does not need an alignment.
11922 // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
11923 // Else if loop is less or equal 192 bytes we need two lines behind.
11924
11925 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11926 const MachineBasicBlock *Header = ML->getHeader();
11927 if (Header->getAlignment() != PrefAlign)
11928 return Header->getAlignment(); // Already processed.
11929
11930 unsigned LoopSize = 0;
11931 for (const MachineBasicBlock *MBB : ML->blocks()) {
11932 // If inner loop block is aligned assume in average half of the alignment
11933 // size to be added as nops.
11934 if (MBB != Header)
11935 LoopSize += MBB->getAlignment().value() / 2;
11936
11937 for (const MachineInstr &MI : *MBB) {
11938 LoopSize += TII->getInstSizeInBytes(MI);
11939 if (LoopSize > 192)
11940 return PrefAlign;
11941 }
11942 }
11943
11944 if (LoopSize <= 64)
11945 return PrefAlign;
11946
11947 if (LoopSize <= 128)
11948 return CacheLineAlign;
11949
11950 // If any of parent loops is surrounded by prefetch instructions do not
11951 // insert new for inner loop, which would reset parent's settings.
11952 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
11953 if (MachineBasicBlock *Exit = P->getExitBlock()) {
11954 auto I = Exit->getFirstNonDebugInstr();
11955 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
11956 return CacheLineAlign;
11957 }
11958 }
11959
11960 MachineBasicBlock *Pre = ML->getLoopPreheader();
11961 MachineBasicBlock *Exit = ML->getExitBlock();
11962
11963 if (Pre && Exit) {
11964 BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
11965 TII->get(AMDGPU::S_INST_PREFETCH))
11966 .addImm(1); // prefetch 2 lines behind PC
11967
11968 BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
11969 TII->get(AMDGPU::S_INST_PREFETCH))
11970 .addImm(2); // prefetch 1 line behind PC
11971 }
11972
11973 return CacheLineAlign;
11974 }
11975
11976 LLVM_ATTRIBUTE_UNUSED
isCopyFromRegOfInlineAsm(const SDNode * N)11977 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
11978 assert(N->getOpcode() == ISD::CopyFromReg);
11979 do {
11980 // Follow the chain until we find an INLINEASM node.
11981 N = N->getOperand(0).getNode();
11982 if (N->getOpcode() == ISD::INLINEASM ||
11983 N->getOpcode() == ISD::INLINEASM_BR)
11984 return true;
11985 } while (N->getOpcode() == ISD::CopyFromReg);
11986 return false;
11987 }
11988
isSDNodeSourceOfDivergence(const SDNode * N,FunctionLoweringInfo * FLI,LegacyDivergenceAnalysis * KDA) const11989 bool SITargetLowering::isSDNodeSourceOfDivergence(
11990 const SDNode *N, FunctionLoweringInfo *FLI,
11991 LegacyDivergenceAnalysis *KDA) const {
11992 switch (N->getOpcode()) {
11993 case ISD::CopyFromReg: {
11994 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
11995 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
11996 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11997 Register Reg = R->getReg();
11998
11999 // FIXME: Why does this need to consider isLiveIn?
12000 if (Reg.isPhysical() || MRI.isLiveIn(Reg))
12001 return !TRI->isSGPRReg(MRI, Reg);
12002
12003 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
12004 return KDA->isDivergent(V);
12005
12006 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
12007 return !TRI->isSGPRReg(MRI, Reg);
12008 }
12009 case ISD::LOAD: {
12010 const LoadSDNode *L = cast<LoadSDNode>(N);
12011 unsigned AS = L->getAddressSpace();
12012 // A flat load may access private memory.
12013 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
12014 }
12015 case ISD::CALLSEQ_END:
12016 return true;
12017 case ISD::INTRINSIC_WO_CHAIN:
12018 return AMDGPU::isIntrinsicSourceOfDivergence(
12019 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
12020 case ISD::INTRINSIC_W_CHAIN:
12021 return AMDGPU::isIntrinsicSourceOfDivergence(
12022 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
12023 case AMDGPUISD::ATOMIC_CMP_SWAP:
12024 case AMDGPUISD::ATOMIC_INC:
12025 case AMDGPUISD::ATOMIC_DEC:
12026 case AMDGPUISD::ATOMIC_LOAD_FMIN:
12027 case AMDGPUISD::ATOMIC_LOAD_FMAX:
12028 case AMDGPUISD::BUFFER_ATOMIC_SWAP:
12029 case AMDGPUISD::BUFFER_ATOMIC_ADD:
12030 case AMDGPUISD::BUFFER_ATOMIC_SUB:
12031 case AMDGPUISD::BUFFER_ATOMIC_SMIN:
12032 case AMDGPUISD::BUFFER_ATOMIC_UMIN:
12033 case AMDGPUISD::BUFFER_ATOMIC_SMAX:
12034 case AMDGPUISD::BUFFER_ATOMIC_UMAX:
12035 case AMDGPUISD::BUFFER_ATOMIC_AND:
12036 case AMDGPUISD::BUFFER_ATOMIC_OR:
12037 case AMDGPUISD::BUFFER_ATOMIC_XOR:
12038 case AMDGPUISD::BUFFER_ATOMIC_INC:
12039 case AMDGPUISD::BUFFER_ATOMIC_DEC:
12040 case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP:
12041 case AMDGPUISD::BUFFER_ATOMIC_CSUB:
12042 case AMDGPUISD::BUFFER_ATOMIC_FADD:
12043 case AMDGPUISD::BUFFER_ATOMIC_FMIN:
12044 case AMDGPUISD::BUFFER_ATOMIC_FMAX:
12045 // Target-specific read-modify-write atomics are sources of divergence.
12046 return true;
12047 default:
12048 if (auto *A = dyn_cast<AtomicSDNode>(N)) {
12049 // Generic read-modify-write atomics are sources of divergence.
12050 return A->readMem() && A->writeMem();
12051 }
12052 return false;
12053 }
12054 }
12055
denormalsEnabledForType(const SelectionDAG & DAG,EVT VT) const12056 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
12057 EVT VT) const {
12058 switch (VT.getScalarType().getSimpleVT().SimpleTy) {
12059 case MVT::f32:
12060 return hasFP32Denormals(DAG.getMachineFunction());
12061 case MVT::f64:
12062 case MVT::f16:
12063 return hasFP64FP16Denormals(DAG.getMachineFunction());
12064 default:
12065 return false;
12066 }
12067 }
12068
denormalsEnabledForType(LLT Ty,MachineFunction & MF) const12069 bool SITargetLowering::denormalsEnabledForType(LLT Ty,
12070 MachineFunction &MF) const {
12071 switch (Ty.getScalarSizeInBits()) {
12072 case 32:
12073 return hasFP32Denormals(MF);
12074 case 64:
12075 case 16:
12076 return hasFP64FP16Denormals(MF);
12077 default:
12078 return false;
12079 }
12080 }
12081
isKnownNeverNaNForTargetNode(SDValue Op,const SelectionDAG & DAG,bool SNaN,unsigned Depth) const12082 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
12083 const SelectionDAG &DAG,
12084 bool SNaN,
12085 unsigned Depth) const {
12086 if (Op.getOpcode() == AMDGPUISD::CLAMP) {
12087 const MachineFunction &MF = DAG.getMachineFunction();
12088 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12089
12090 if (Info->getMode().DX10Clamp)
12091 return true; // Clamped to 0.
12092 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
12093 }
12094
12095 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
12096 SNaN, Depth);
12097 }
12098
12099 // Global FP atomic instructions have a hardcoded FP mode and do not support
12100 // FP32 denormals, and only support v2f16 denormals.
fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst * RMW)12101 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
12102 const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
12103 auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
12104 if (&Flt == &APFloat::IEEEsingle())
12105 return DenormMode == DenormalMode::getPreserveSign();
12106 return DenormMode == DenormalMode::getIEEE();
12107 }
12108
12109 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * RMW) const12110 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
12111 switch (RMW->getOperation()) {
12112 case AtomicRMWInst::FAdd: {
12113 Type *Ty = RMW->getType();
12114
12115 // We don't have a way to support 16-bit atomics now, so just leave them
12116 // as-is.
12117 if (Ty->isHalfTy())
12118 return AtomicExpansionKind::None;
12119
12120 if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy()))
12121 return AtomicExpansionKind::CmpXChg;
12122
12123 unsigned AS = RMW->getPointerAddressSpace();
12124
12125 if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) &&
12126 Subtarget->hasAtomicFaddInsts()) {
12127 // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe
12128 // floating point atomic instructions. May generate more efficient code,
12129 // but may not respect rounding and denormal modes, and may give incorrect
12130 // results for certain memory destinations.
12131 if (RMW->getFunction()
12132 ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12133 .getValueAsString() != "true")
12134 return AtomicExpansionKind::CmpXChg;
12135
12136 if (Subtarget->hasGFX90AInsts()) {
12137 if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS)
12138 return AtomicExpansionKind::CmpXChg;
12139
12140 auto SSID = RMW->getSyncScopeID();
12141 if (SSID == SyncScope::System ||
12142 SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"))
12143 return AtomicExpansionKind::CmpXChg;
12144
12145 return AtomicExpansionKind::None;
12146 }
12147
12148 if (AS == AMDGPUAS::FLAT_ADDRESS)
12149 return AtomicExpansionKind::CmpXChg;
12150
12151 return RMW->use_empty() ? AtomicExpansionKind::None
12152 : AtomicExpansionKind::CmpXChg;
12153 }
12154
12155 // DS FP atomics do repect the denormal mode, but the rounding mode is fixed
12156 // to round-to-nearest-even.
12157 // The only exception is DS_ADD_F64 which never flushes regardless of mode.
12158 if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) {
12159 if (!Ty->isDoubleTy())
12160 return AtomicExpansionKind::None;
12161
12162 return (fpModeMatchesGlobalFPAtomicMode(RMW) ||
12163 RMW->getFunction()
12164 ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12165 .getValueAsString() == "true")
12166 ? AtomicExpansionKind::None
12167 : AtomicExpansionKind::CmpXChg;
12168 }
12169
12170 return AtomicExpansionKind::CmpXChg;
12171 }
12172 default:
12173 break;
12174 }
12175
12176 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
12177 }
12178
12179 const TargetRegisterClass *
getRegClassFor(MVT VT,bool isDivergent) const12180 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
12181 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
12182 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12183 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
12184 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
12185 : &AMDGPU::SReg_32RegClass;
12186 if (!TRI->isSGPRClass(RC) && !isDivergent)
12187 return TRI->getEquivalentSGPRClass(RC);
12188 else if (TRI->isSGPRClass(RC) && isDivergent)
12189 return TRI->getEquivalentVGPRClass(RC);
12190
12191 return RC;
12192 }
12193
12194 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
12195 // uniform values (as produced by the mask results of control flow intrinsics)
12196 // used outside of divergent blocks. The phi users need to also be treated as
12197 // always uniform.
hasCFUser(const Value * V,SmallPtrSet<const Value *,16> & Visited,unsigned WaveSize)12198 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
12199 unsigned WaveSize) {
12200 // FIXME: We asssume we never cast the mask results of a control flow
12201 // intrinsic.
12202 // Early exit if the type won't be consistent as a compile time hack.
12203 IntegerType *IT = dyn_cast<IntegerType>(V->getType());
12204 if (!IT || IT->getBitWidth() != WaveSize)
12205 return false;
12206
12207 if (!isa<Instruction>(V))
12208 return false;
12209 if (!Visited.insert(V).second)
12210 return false;
12211 bool Result = false;
12212 for (auto U : V->users()) {
12213 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
12214 if (V == U->getOperand(1)) {
12215 switch (Intrinsic->getIntrinsicID()) {
12216 default:
12217 Result = false;
12218 break;
12219 case Intrinsic::amdgcn_if_break:
12220 case Intrinsic::amdgcn_if:
12221 case Intrinsic::amdgcn_else:
12222 Result = true;
12223 break;
12224 }
12225 }
12226 if (V == U->getOperand(0)) {
12227 switch (Intrinsic->getIntrinsicID()) {
12228 default:
12229 Result = false;
12230 break;
12231 case Intrinsic::amdgcn_end_cf:
12232 case Intrinsic::amdgcn_loop:
12233 Result = true;
12234 break;
12235 }
12236 }
12237 } else {
12238 Result = hasCFUser(U, Visited, WaveSize);
12239 }
12240 if (Result)
12241 break;
12242 }
12243 return Result;
12244 }
12245
requiresUniformRegister(MachineFunction & MF,const Value * V) const12246 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
12247 const Value *V) const {
12248 if (const CallInst *CI = dyn_cast<CallInst>(V)) {
12249 if (CI->isInlineAsm()) {
12250 // FIXME: This cannot give a correct answer. This should only trigger in
12251 // the case where inline asm returns mixed SGPR and VGPR results, used
12252 // outside the defining block. We don't have a specific result to
12253 // consider, so this assumes if any value is SGPR, the overall register
12254 // also needs to be SGPR.
12255 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
12256 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
12257 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
12258 for (auto &TC : TargetConstraints) {
12259 if (TC.Type == InlineAsm::isOutput) {
12260 ComputeConstraintToUse(TC, SDValue());
12261 unsigned AssignedReg;
12262 const TargetRegisterClass *RC;
12263 std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint(
12264 SIRI, TC.ConstraintCode, TC.ConstraintVT);
12265 if (RC) {
12266 MachineRegisterInfo &MRI = MF.getRegInfo();
12267 if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg))
12268 return true;
12269 else if (SIRI->isSGPRClass(RC))
12270 return true;
12271 }
12272 }
12273 }
12274 }
12275 }
12276 SmallPtrSet<const Value *, 16> Visited;
12277 return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
12278 }
12279
12280 std::pair<InstructionCost, MVT>
getTypeLegalizationCost(const DataLayout & DL,Type * Ty) const12281 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
12282 Type *Ty) const {
12283 std::pair<InstructionCost, MVT> Cost =
12284 TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
12285 auto Size = DL.getTypeSizeInBits(Ty);
12286 // Maximum load or store can handle 8 dwords for scalar and 4 for
12287 // vector ALU. Let's assume anything above 8 dwords is expensive
12288 // even if legal.
12289 if (Size <= 256)
12290 return Cost;
12291
12292 Cost.first = (Size + 255) / 256;
12293 return Cost;
12294 }
12295