1 //===- ScopeInfo.h - Information about a semantic context -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines FunctionScopeInfo and its subclasses, which contain
10 // information about a single function, block, lambda, or method body.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CLANG_SEMA_SCOPEINFO_H
15 #define LLVM_CLANG_SEMA_SCOPEINFO_H
16
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/Type.h"
20 #include "clang/Basic/CapturedStmt.h"
21 #include "clang/Basic/LLVM.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Basic/SourceLocation.h"
24 #include "clang/Sema/CleanupInfo.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseMapInfo.h"
28 #include "llvm/ADT/MapVector.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/StringSwitch.h"
35 #include "llvm/ADT/TinyPtrVector.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <utility>
41
42 namespace clang {
43
44 class BlockDecl;
45 class CapturedDecl;
46 class CXXMethodDecl;
47 class CXXRecordDecl;
48 class ImplicitParamDecl;
49 class NamedDecl;
50 class ObjCIvarRefExpr;
51 class ObjCMessageExpr;
52 class ObjCPropertyDecl;
53 class ObjCPropertyRefExpr;
54 class ParmVarDecl;
55 class RecordDecl;
56 class ReturnStmt;
57 class Scope;
58 class Stmt;
59 class SwitchStmt;
60 class TemplateParameterList;
61 class VarDecl;
62
63 namespace sema {
64
65 /// Contains information about the compound statement currently being
66 /// parsed.
67 class CompoundScopeInfo {
68 public:
69 /// Whether this compound stamement contains `for' or `while' loops
70 /// with empty bodies.
71 bool HasEmptyLoopBodies = false;
72
73 /// Whether this compound statement corresponds to a GNU statement
74 /// expression.
75 bool IsStmtExpr;
76
77 /// FP options at the beginning of the compound statement, prior to
78 /// any pragma.
79 FPOptions InitialFPFeatures;
80
CompoundScopeInfo(bool IsStmtExpr,FPOptions FPO)81 CompoundScopeInfo(bool IsStmtExpr, FPOptions FPO)
82 : IsStmtExpr(IsStmtExpr), InitialFPFeatures(FPO) {}
83
setHasEmptyLoopBodies()84 void setHasEmptyLoopBodies() {
85 HasEmptyLoopBodies = true;
86 }
87 };
88
89 class PossiblyUnreachableDiag {
90 public:
91 PartialDiagnostic PD;
92 SourceLocation Loc;
93 llvm::TinyPtrVector<const Stmt*> Stmts;
94
PossiblyUnreachableDiag(const PartialDiagnostic & PD,SourceLocation Loc,ArrayRef<const Stmt * > Stmts)95 PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc,
96 ArrayRef<const Stmt *> Stmts)
97 : PD(PD), Loc(Loc), Stmts(Stmts) {}
98 };
99
100 /// Retains information about a function, method, or block that is
101 /// currently being parsed.
102 class FunctionScopeInfo {
103 protected:
104 enum ScopeKind {
105 SK_Function,
106 SK_Block,
107 SK_Lambda,
108 SK_CapturedRegion
109 };
110
111 public:
112 /// What kind of scope we are describing.
113 ScopeKind Kind : 3;
114
115 /// Whether this function contains a VLA, \@try, try, C++
116 /// initializer, or anything else that can't be jumped past.
117 bool HasBranchProtectedScope : 1;
118
119 /// Whether this function contains any switches or direct gotos.
120 bool HasBranchIntoScope : 1;
121
122 /// Whether this function contains any indirect gotos.
123 bool HasIndirectGoto : 1;
124
125 /// Whether this function contains any statement marked with
126 /// \c [[clang::musttail]].
127 bool HasMustTail : 1;
128
129 /// Whether a statement was dropped because it was invalid.
130 bool HasDroppedStmt : 1;
131
132 /// True if current scope is for OpenMP declare reduction combiner.
133 bool HasOMPDeclareReductionCombiner : 1;
134
135 /// Whether there is a fallthrough statement in this function.
136 bool HasFallthroughStmt : 1;
137
138 /// Whether this function uses constrained floating point intrinsics
139 bool UsesFPIntrin : 1;
140
141 /// Whether we make reference to a declaration that could be
142 /// unavailable.
143 bool HasPotentialAvailabilityViolations : 1;
144
145 /// A flag that is set when parsing a method that must call super's
146 /// implementation, such as \c -dealloc, \c -finalize, or any method marked
147 /// with \c __attribute__((objc_requires_super)).
148 bool ObjCShouldCallSuper : 1;
149
150 /// True when this is a method marked as a designated initializer.
151 bool ObjCIsDesignatedInit : 1;
152
153 /// This starts true for a method marked as designated initializer and will
154 /// be set to false if there is an invocation to a designated initializer of
155 /// the super class.
156 bool ObjCWarnForNoDesignatedInitChain : 1;
157
158 /// True when this is an initializer method not marked as a designated
159 /// initializer within a class that has at least one initializer marked as a
160 /// designated initializer.
161 bool ObjCIsSecondaryInit : 1;
162
163 /// This starts true for a secondary initializer method and will be set to
164 /// false if there is an invocation of an initializer on 'self'.
165 bool ObjCWarnForNoInitDelegation : 1;
166
167 /// True only when this function has not already built, or attempted
168 /// to build, the initial and final coroutine suspend points
169 bool NeedsCoroutineSuspends : 1;
170
171 /// An enumeration represeting the kind of the first coroutine statement
172 /// in the function. One of co_return, co_await, or co_yield.
173 unsigned char FirstCoroutineStmtKind : 2;
174
175 /// First coroutine statement in the current function.
176 /// (ex co_return, co_await, co_yield)
177 SourceLocation FirstCoroutineStmtLoc;
178
179 /// First 'return' statement in the current function.
180 SourceLocation FirstReturnLoc;
181
182 /// First C++ 'try' or ObjC @try statement in the current function.
183 SourceLocation FirstCXXOrObjCTryLoc;
184 enum { TryLocIsCXX, TryLocIsObjC, Unknown } FirstTryType = Unknown;
185
186 /// First SEH '__try' statement in the current function.
187 SourceLocation FirstSEHTryLoc;
188
189 private:
190 /// Used to determine if errors occurred in this function or block.
191 DiagnosticErrorTrap ErrorTrap;
192
193 public:
194 /// A SwitchStmt, along with a flag indicating if its list of case statements
195 /// is incomplete (because we dropped an invalid one while parsing).
196 using SwitchInfo = llvm::PointerIntPair<SwitchStmt*, 1, bool>;
197
198 /// SwitchStack - This is the current set of active switch statements in the
199 /// block.
200 SmallVector<SwitchInfo, 8> SwitchStack;
201
202 /// The list of return statements that occur within the function or
203 /// block, if there is any chance of applying the named return value
204 /// optimization, or if we need to infer a return type.
205 SmallVector<ReturnStmt*, 4> Returns;
206
207 /// The promise object for this coroutine, if any.
208 VarDecl *CoroutinePromise = nullptr;
209
210 /// A mapping between the coroutine function parameters that were moved
211 /// to the coroutine frame, and their move statements.
212 llvm::SmallMapVector<ParmVarDecl *, Stmt *, 4> CoroutineParameterMoves;
213
214 /// The initial and final coroutine suspend points.
215 std::pair<Stmt *, Stmt *> CoroutineSuspends;
216
217 /// The stack of currently active compound stamement scopes in the
218 /// function.
219 SmallVector<CompoundScopeInfo, 4> CompoundScopes;
220
221 /// The set of blocks that are introduced in this function.
222 llvm::SmallPtrSet<const BlockDecl *, 1> Blocks;
223
224 /// The set of __block variables that are introduced in this function.
225 llvm::TinyPtrVector<VarDecl *> ByrefBlockVars;
226
227 /// A list of PartialDiagnostics created but delayed within the
228 /// current function scope. These diagnostics are vetted for reachability
229 /// prior to being emitted.
230 SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags;
231
232 /// A list of parameters which have the nonnull attribute and are
233 /// modified in the function.
234 llvm::SmallPtrSet<const ParmVarDecl *, 8> ModifiedNonNullParams;
235
236 /// The set of GNU address of label extension "&&label".
237 llvm::SmallVector<AddrLabelExpr *, 4> AddrLabels;
238
239 public:
240 /// Represents a simple identification of a weak object.
241 ///
242 /// Part of the implementation of -Wrepeated-use-of-weak.
243 ///
244 /// This is used to determine if two weak accesses refer to the same object.
245 /// Here are some examples of how various accesses are "profiled":
246 ///
247 /// Access Expression | "Base" Decl | "Property" Decl
248 /// :---------------: | :-----------------: | :------------------------------:
249 /// self.property | self (VarDecl) | property (ObjCPropertyDecl)
250 /// self.implicitProp | self (VarDecl) | -implicitProp (ObjCMethodDecl)
251 /// self->ivar.prop | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl)
252 /// cxxObj.obj.prop | obj (FieldDecl) | prop (ObjCPropertyDecl)
253 /// [self foo].prop | 0 (unknown) | prop (ObjCPropertyDecl)
254 /// self.prop1.prop2 | prop1 (ObjCPropertyDecl) | prop2 (ObjCPropertyDecl)
255 /// MyClass.prop | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl)
256 /// MyClass.foo.prop | +foo (ObjCMethodDecl) | -prop (ObjCPropertyDecl)
257 /// weakVar | 0 (known) | weakVar (VarDecl)
258 /// self->weakIvar | self (VarDecl) | weakIvar (ObjCIvarDecl)
259 ///
260 /// Objects are identified with only two Decls to make it reasonably fast to
261 /// compare them.
262 class WeakObjectProfileTy {
263 /// The base object decl, as described in the class documentation.
264 ///
265 /// The extra flag is "true" if the Base and Property are enough to uniquely
266 /// identify the object in memory.
267 ///
268 /// \sa isExactProfile()
269 using BaseInfoTy = llvm::PointerIntPair<const NamedDecl *, 1, bool>;
270 BaseInfoTy Base;
271
272 /// The "property" decl, as described in the class documentation.
273 ///
274 /// Note that this may not actually be an ObjCPropertyDecl, e.g. in the
275 /// case of "implicit" properties (regular methods accessed via dot syntax).
276 const NamedDecl *Property = nullptr;
277
278 /// Used to find the proper base profile for a given base expression.
279 static BaseInfoTy getBaseInfo(const Expr *BaseE);
280
281 inline WeakObjectProfileTy();
282 static inline WeakObjectProfileTy getSentinel();
283
284 public:
285 WeakObjectProfileTy(const ObjCPropertyRefExpr *RE);
286 WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property);
287 WeakObjectProfileTy(const DeclRefExpr *RE);
288 WeakObjectProfileTy(const ObjCIvarRefExpr *RE);
289
getBase()290 const NamedDecl *getBase() const { return Base.getPointer(); }
getProperty()291 const NamedDecl *getProperty() const { return Property; }
292
293 /// Returns true if the object base specifies a known object in memory,
294 /// rather than, say, an instance variable or property of another object.
295 ///
296 /// Note that this ignores the effects of aliasing; that is, \c foo.bar is
297 /// considered an exact profile if \c foo is a local variable, even if
298 /// another variable \c foo2 refers to the same object as \c foo.
299 ///
300 /// For increased precision, accesses with base variables that are
301 /// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to
302 /// be exact, though this is not true for arbitrary variables
303 /// (foo.prop1.prop2).
isExactProfile()304 bool isExactProfile() const {
305 return Base.getInt();
306 }
307
308 bool operator==(const WeakObjectProfileTy &Other) const {
309 return Base == Other.Base && Property == Other.Property;
310 }
311
312 // For use in DenseMap.
313 // We can't specialize the usual llvm::DenseMapInfo at the end of the file
314 // because by that point the DenseMap in FunctionScopeInfo has already been
315 // instantiated.
316 class DenseMapInfo {
317 public:
getEmptyKey()318 static inline WeakObjectProfileTy getEmptyKey() {
319 return WeakObjectProfileTy();
320 }
321
getTombstoneKey()322 static inline WeakObjectProfileTy getTombstoneKey() {
323 return WeakObjectProfileTy::getSentinel();
324 }
325
getHashValue(const WeakObjectProfileTy & Val)326 static unsigned getHashValue(const WeakObjectProfileTy &Val) {
327 using Pair = std::pair<BaseInfoTy, const NamedDecl *>;
328
329 return llvm::DenseMapInfo<Pair>::getHashValue(Pair(Val.Base,
330 Val.Property));
331 }
332
isEqual(const WeakObjectProfileTy & LHS,const WeakObjectProfileTy & RHS)333 static bool isEqual(const WeakObjectProfileTy &LHS,
334 const WeakObjectProfileTy &RHS) {
335 return LHS == RHS;
336 }
337 };
338 };
339
340 /// Represents a single use of a weak object.
341 ///
342 /// Stores both the expression and whether the access is potentially unsafe
343 /// (i.e. it could potentially be warned about).
344 ///
345 /// Part of the implementation of -Wrepeated-use-of-weak.
346 class WeakUseTy {
347 llvm::PointerIntPair<const Expr *, 1, bool> Rep;
348
349 public:
WeakUseTy(const Expr * Use,bool IsRead)350 WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {}
351
getUseExpr()352 const Expr *getUseExpr() const { return Rep.getPointer(); }
isUnsafe()353 bool isUnsafe() const { return Rep.getInt(); }
markSafe()354 void markSafe() { Rep.setInt(false); }
355
356 bool operator==(const WeakUseTy &Other) const {
357 return Rep == Other.Rep;
358 }
359 };
360
361 /// Used to collect uses of a particular weak object in a function body.
362 ///
363 /// Part of the implementation of -Wrepeated-use-of-weak.
364 using WeakUseVector = SmallVector<WeakUseTy, 4>;
365
366 /// Used to collect all uses of weak objects in a function body.
367 ///
368 /// Part of the implementation of -Wrepeated-use-of-weak.
369 using WeakObjectUseMap =
370 llvm::SmallDenseMap<WeakObjectProfileTy, WeakUseVector, 8,
371 WeakObjectProfileTy::DenseMapInfo>;
372
373 private:
374 /// Used to collect all uses of weak objects in this function body.
375 ///
376 /// Part of the implementation of -Wrepeated-use-of-weak.
377 WeakObjectUseMap WeakObjectUses;
378
379 protected:
380 FunctionScopeInfo(const FunctionScopeInfo&) = default;
381
382 public:
FunctionScopeInfo(DiagnosticsEngine & Diag)383 FunctionScopeInfo(DiagnosticsEngine &Diag)
384 : Kind(SK_Function), HasBranchProtectedScope(false),
385 HasBranchIntoScope(false), HasIndirectGoto(false), HasMustTail(false),
386 HasDroppedStmt(false), HasOMPDeclareReductionCombiner(false),
387 HasFallthroughStmt(false), UsesFPIntrin(false),
388 HasPotentialAvailabilityViolations(false), ObjCShouldCallSuper(false),
389 ObjCIsDesignatedInit(false), ObjCWarnForNoDesignatedInitChain(false),
390 ObjCIsSecondaryInit(false), ObjCWarnForNoInitDelegation(false),
391 NeedsCoroutineSuspends(true), ErrorTrap(Diag) {}
392
393 virtual ~FunctionScopeInfo();
394
395 /// Determine whether an unrecoverable error has occurred within this
396 /// function. Note that this may return false even if the function body is
397 /// invalid, because the errors may be suppressed if they're caused by prior
398 /// invalid declarations.
399 ///
400 /// FIXME: Migrate the caller of this to use containsErrors() instead once
401 /// it's ready.
hasUnrecoverableErrorOccurred()402 bool hasUnrecoverableErrorOccurred() const {
403 return ErrorTrap.hasUnrecoverableErrorOccurred();
404 }
405
406 /// Record that a weak object was accessed.
407 ///
408 /// Part of the implementation of -Wrepeated-use-of-weak.
409 template <typename ExprT>
410 inline void recordUseOfWeak(const ExprT *E, bool IsRead = true);
411
412 void recordUseOfWeak(const ObjCMessageExpr *Msg,
413 const ObjCPropertyDecl *Prop);
414
415 /// Record that a given expression is a "safe" access of a weak object (e.g.
416 /// assigning it to a strong variable.)
417 ///
418 /// Part of the implementation of -Wrepeated-use-of-weak.
419 void markSafeWeakUse(const Expr *E);
420
getWeakObjectUses()421 const WeakObjectUseMap &getWeakObjectUses() const {
422 return WeakObjectUses;
423 }
424
setHasBranchIntoScope()425 void setHasBranchIntoScope() {
426 HasBranchIntoScope = true;
427 }
428
setHasBranchProtectedScope()429 void setHasBranchProtectedScope() {
430 HasBranchProtectedScope = true;
431 }
432
setHasIndirectGoto()433 void setHasIndirectGoto() {
434 HasIndirectGoto = true;
435 }
436
setHasMustTail()437 void setHasMustTail() { HasMustTail = true; }
438
setHasDroppedStmt()439 void setHasDroppedStmt() {
440 HasDroppedStmt = true;
441 }
442
setHasOMPDeclareReductionCombiner()443 void setHasOMPDeclareReductionCombiner() {
444 HasOMPDeclareReductionCombiner = true;
445 }
446
setHasFallthroughStmt()447 void setHasFallthroughStmt() {
448 HasFallthroughStmt = true;
449 }
450
setUsesFPIntrin()451 void setUsesFPIntrin() {
452 UsesFPIntrin = true;
453 }
454
setHasCXXTry(SourceLocation TryLoc)455 void setHasCXXTry(SourceLocation TryLoc) {
456 setHasBranchProtectedScope();
457 FirstCXXOrObjCTryLoc = TryLoc;
458 FirstTryType = TryLocIsCXX;
459 }
460
setHasObjCTry(SourceLocation TryLoc)461 void setHasObjCTry(SourceLocation TryLoc) {
462 setHasBranchProtectedScope();
463 FirstCXXOrObjCTryLoc = TryLoc;
464 FirstTryType = TryLocIsObjC;
465 }
466
setHasSEHTry(SourceLocation TryLoc)467 void setHasSEHTry(SourceLocation TryLoc) {
468 setHasBranchProtectedScope();
469 FirstSEHTryLoc = TryLoc;
470 }
471
NeedsScopeChecking()472 bool NeedsScopeChecking() const {
473 return !HasDroppedStmt && (HasIndirectGoto || HasMustTail ||
474 (HasBranchProtectedScope && HasBranchIntoScope));
475 }
476
477 // Add a block introduced in this function.
addBlock(const BlockDecl * BD)478 void addBlock(const BlockDecl *BD) {
479 Blocks.insert(BD);
480 }
481
482 // Add a __block variable introduced in this function.
addByrefBlockVar(VarDecl * VD)483 void addByrefBlockVar(VarDecl *VD) {
484 ByrefBlockVars.push_back(VD);
485 }
486
isCoroutine()487 bool isCoroutine() const { return !FirstCoroutineStmtLoc.isInvalid(); }
488
setFirstCoroutineStmt(SourceLocation Loc,StringRef Keyword)489 void setFirstCoroutineStmt(SourceLocation Loc, StringRef Keyword) {
490 assert(FirstCoroutineStmtLoc.isInvalid() &&
491 "first coroutine statement location already set");
492 FirstCoroutineStmtLoc = Loc;
493 FirstCoroutineStmtKind = llvm::StringSwitch<unsigned char>(Keyword)
494 .Case("co_return", 0)
495 .Case("co_await", 1)
496 .Case("co_yield", 2);
497 }
498
getFirstCoroutineStmtKeyword()499 StringRef getFirstCoroutineStmtKeyword() const {
500 assert(FirstCoroutineStmtLoc.isValid()
501 && "no coroutine statement available");
502 switch (FirstCoroutineStmtKind) {
503 case 0: return "co_return";
504 case 1: return "co_await";
505 case 2: return "co_yield";
506 default:
507 llvm_unreachable("FirstCoroutineStmtKind has an invalid value");
508 };
509 }
510
511 void setNeedsCoroutineSuspends(bool value = true) {
512 assert((!value || CoroutineSuspends.first == nullptr) &&
513 "we already have valid suspend points");
514 NeedsCoroutineSuspends = value;
515 }
516
hasInvalidCoroutineSuspends()517 bool hasInvalidCoroutineSuspends() const {
518 return !NeedsCoroutineSuspends && CoroutineSuspends.first == nullptr;
519 }
520
setCoroutineSuspends(Stmt * Initial,Stmt * Final)521 void setCoroutineSuspends(Stmt *Initial, Stmt *Final) {
522 assert(Initial && Final && "suspend points cannot be null");
523 assert(CoroutineSuspends.first == nullptr && "suspend points already set");
524 NeedsCoroutineSuspends = false;
525 CoroutineSuspends.first = Initial;
526 CoroutineSuspends.second = Final;
527 }
528
529 /// Clear out the information in this function scope, making it
530 /// suitable for reuse.
531 void Clear();
532
isPlainFunction()533 bool isPlainFunction() const { return Kind == SK_Function; }
534 };
535
536 class Capture {
537 // There are three categories of capture: capturing 'this', capturing
538 // local variables, and C++1y initialized captures (which can have an
539 // arbitrary initializer, and don't really capture in the traditional
540 // sense at all).
541 //
542 // There are three ways to capture a local variable:
543 // - capture by copy in the C++11 sense,
544 // - capture by reference in the C++11 sense, and
545 // - __block capture.
546 // Lambdas explicitly specify capture by copy or capture by reference.
547 // For blocks, __block capture applies to variables with that annotation,
548 // variables of reference type are captured by reference, and other
549 // variables are captured by copy.
550 enum CaptureKind {
551 Cap_ByCopy, Cap_ByRef, Cap_Block, Cap_VLA
552 };
553
554 union {
555 /// If Kind == Cap_VLA, the captured type.
556 const VariableArrayType *CapturedVLA;
557
558 /// Otherwise, the captured variable (if any).
559 ValueDecl *CapturedVar;
560 };
561
562 /// The source location at which the first capture occurred.
563 SourceLocation Loc;
564
565 /// The location of the ellipsis that expands a parameter pack.
566 SourceLocation EllipsisLoc;
567
568 /// The type as it was captured, which is the type of the non-static data
569 /// member that would hold the capture.
570 QualType CaptureType;
571
572 /// The CaptureKind of this capture.
573 unsigned Kind : 2;
574
575 /// Whether this is a nested capture (a capture of an enclosing capturing
576 /// scope's capture).
577 unsigned Nested : 1;
578
579 /// Whether this is a capture of '*this'.
580 unsigned CapturesThis : 1;
581
582 /// Whether an explicit capture has been odr-used in the body of the
583 /// lambda.
584 unsigned ODRUsed : 1;
585
586 /// Whether an explicit capture has been non-odr-used in the body of
587 /// the lambda.
588 unsigned NonODRUsed : 1;
589
590 /// Whether the capture is invalid (a capture was required but the entity is
591 /// non-capturable).
592 unsigned Invalid : 1;
593
594 public:
Capture(ValueDecl * Var,bool Block,bool ByRef,bool IsNested,SourceLocation Loc,SourceLocation EllipsisLoc,QualType CaptureType,bool Invalid)595 Capture(ValueDecl *Var, bool Block, bool ByRef, bool IsNested,
596 SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType,
597 bool Invalid)
598 : CapturedVar(Var), Loc(Loc), EllipsisLoc(EllipsisLoc),
599 CaptureType(CaptureType), Kind(Block ? Cap_Block
600 : ByRef ? Cap_ByRef
601 : Cap_ByCopy),
602 Nested(IsNested), CapturesThis(false), ODRUsed(false),
603 NonODRUsed(false), Invalid(Invalid) {}
604
605 enum IsThisCapture { ThisCapture };
Capture(IsThisCapture,bool IsNested,SourceLocation Loc,QualType CaptureType,const bool ByCopy,bool Invalid)606 Capture(IsThisCapture, bool IsNested, SourceLocation Loc,
607 QualType CaptureType, const bool ByCopy, bool Invalid)
608 : Loc(Loc), CaptureType(CaptureType),
609 Kind(ByCopy ? Cap_ByCopy : Cap_ByRef), Nested(IsNested),
610 CapturesThis(true), ODRUsed(false), NonODRUsed(false),
611 Invalid(Invalid) {}
612
613 enum IsVLACapture { VLACapture };
Capture(IsVLACapture,const VariableArrayType * VLA,bool IsNested,SourceLocation Loc,QualType CaptureType)614 Capture(IsVLACapture, const VariableArrayType *VLA, bool IsNested,
615 SourceLocation Loc, QualType CaptureType)
616 : CapturedVLA(VLA), Loc(Loc), CaptureType(CaptureType), Kind(Cap_VLA),
617 Nested(IsNested), CapturesThis(false), ODRUsed(false),
618 NonODRUsed(false), Invalid(false) {}
619
isThisCapture()620 bool isThisCapture() const { return CapturesThis; }
isVariableCapture()621 bool isVariableCapture() const {
622 return !isThisCapture() && !isVLATypeCapture();
623 }
624
isCopyCapture()625 bool isCopyCapture() const { return Kind == Cap_ByCopy; }
isReferenceCapture()626 bool isReferenceCapture() const { return Kind == Cap_ByRef; }
isBlockCapture()627 bool isBlockCapture() const { return Kind == Cap_Block; }
isVLATypeCapture()628 bool isVLATypeCapture() const { return Kind == Cap_VLA; }
629
isNested()630 bool isNested() const { return Nested; }
631
isInvalid()632 bool isInvalid() const { return Invalid; }
633
634 /// Determine whether this capture is an init-capture.
635 bool isInitCapture() const;
636
isODRUsed()637 bool isODRUsed() const { return ODRUsed; }
isNonODRUsed()638 bool isNonODRUsed() const { return NonODRUsed; }
markUsed(bool IsODRUse)639 void markUsed(bool IsODRUse) {
640 if (IsODRUse)
641 ODRUsed = true;
642 else
643 NonODRUsed = true;
644 }
645
getVariable()646 ValueDecl *getVariable() const {
647 assert(isVariableCapture());
648 return CapturedVar;
649 }
650
getCapturedVLAType()651 const VariableArrayType *getCapturedVLAType() const {
652 assert(isVLATypeCapture());
653 return CapturedVLA;
654 }
655
656 /// Retrieve the location at which this variable was captured.
getLocation()657 SourceLocation getLocation() const { return Loc; }
658
659 /// Retrieve the source location of the ellipsis, whose presence
660 /// indicates that the capture is a pack expansion.
getEllipsisLoc()661 SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
662
663 /// Retrieve the capture type for this capture, which is effectively
664 /// the type of the non-static data member in the lambda/block structure
665 /// that would store this capture.
getCaptureType()666 QualType getCaptureType() const { return CaptureType; }
667 };
668
669 class CapturingScopeInfo : public FunctionScopeInfo {
670 protected:
671 CapturingScopeInfo(const CapturingScopeInfo&) = default;
672
673 public:
674 enum ImplicitCaptureStyle {
675 ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block,
676 ImpCap_CapturedRegion
677 };
678
679 ImplicitCaptureStyle ImpCaptureStyle;
680
CapturingScopeInfo(DiagnosticsEngine & Diag,ImplicitCaptureStyle Style)681 CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style)
682 : FunctionScopeInfo(Diag), ImpCaptureStyle(Style) {}
683
684 /// CaptureMap - A map of captured variables to (index+1) into Captures.
685 llvm::DenseMap<ValueDecl *, unsigned> CaptureMap;
686
687 /// CXXThisCaptureIndex - The (index+1) of the capture of 'this';
688 /// zero if 'this' is not captured.
689 unsigned CXXThisCaptureIndex = 0;
690
691 /// Captures - The captures.
692 SmallVector<Capture, 4> Captures;
693
694 /// - Whether the target type of return statements in this context
695 /// is deduced (e.g. a lambda or block with omitted return type).
696 bool HasImplicitReturnType = false;
697
698 /// ReturnType - The target type of return statements in this context,
699 /// or null if unknown.
700 QualType ReturnType;
701
addCapture(ValueDecl * Var,bool isBlock,bool isByref,bool isNested,SourceLocation Loc,SourceLocation EllipsisLoc,QualType CaptureType,bool Invalid)702 void addCapture(ValueDecl *Var, bool isBlock, bool isByref, bool isNested,
703 SourceLocation Loc, SourceLocation EllipsisLoc,
704 QualType CaptureType, bool Invalid) {
705 Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc,
706 EllipsisLoc, CaptureType, Invalid));
707 CaptureMap[Var] = Captures.size();
708 }
709
addVLATypeCapture(SourceLocation Loc,const VariableArrayType * VLAType,QualType CaptureType)710 void addVLATypeCapture(SourceLocation Loc, const VariableArrayType *VLAType,
711 QualType CaptureType) {
712 Captures.push_back(Capture(Capture::VLACapture, VLAType,
713 /*FIXME: IsNested*/ false, Loc, CaptureType));
714 }
715
716 void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType,
717 bool ByCopy);
718
719 /// Determine whether the C++ 'this' is captured.
isCXXThisCaptured()720 bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; }
721
722 /// Retrieve the capture of C++ 'this', if it has been captured.
getCXXThisCapture()723 Capture &getCXXThisCapture() {
724 assert(isCXXThisCaptured() && "this has not been captured");
725 return Captures[CXXThisCaptureIndex - 1];
726 }
727
728 /// Determine whether the given variable has been captured.
isCaptured(ValueDecl * Var)729 bool isCaptured(ValueDecl *Var) const { return CaptureMap.count(Var); }
730
731 /// Determine whether the given variable-array type has been captured.
732 bool isVLATypeCaptured(const VariableArrayType *VAT) const;
733
734 /// Retrieve the capture of the given variable, if it has been
735 /// captured already.
getCapture(ValueDecl * Var)736 Capture &getCapture(ValueDecl *Var) {
737 assert(isCaptured(Var) && "Variable has not been captured");
738 return Captures[CaptureMap[Var] - 1];
739 }
740
getCapture(ValueDecl * Var)741 const Capture &getCapture(ValueDecl *Var) const {
742 llvm::DenseMap<ValueDecl *, unsigned>::const_iterator Known =
743 CaptureMap.find(Var);
744 assert(Known != CaptureMap.end() && "Variable has not been captured");
745 return Captures[Known->second - 1];
746 }
747
classof(const FunctionScopeInfo * FSI)748 static bool classof(const FunctionScopeInfo *FSI) {
749 return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda
750 || FSI->Kind == SK_CapturedRegion;
751 }
752 };
753
754 /// Retains information about a block that is currently being parsed.
755 class BlockScopeInfo final : public CapturingScopeInfo {
756 public:
757 BlockDecl *TheDecl;
758
759 /// TheScope - This is the scope for the block itself, which contains
760 /// arguments etc.
761 Scope *TheScope;
762
763 /// BlockType - The function type of the block, if one was given.
764 /// Its return type may be BuiltinType::Dependent.
765 QualType FunctionType;
766
BlockScopeInfo(DiagnosticsEngine & Diag,Scope * BlockScope,BlockDecl * Block)767 BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block)
768 : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block),
769 TheScope(BlockScope) {
770 Kind = SK_Block;
771 }
772
773 ~BlockScopeInfo() override;
774
classof(const FunctionScopeInfo * FSI)775 static bool classof(const FunctionScopeInfo *FSI) {
776 return FSI->Kind == SK_Block;
777 }
778 };
779
780 /// Retains information about a captured region.
781 class CapturedRegionScopeInfo final : public CapturingScopeInfo {
782 public:
783 /// The CapturedDecl for this statement.
784 CapturedDecl *TheCapturedDecl;
785
786 /// The captured record type.
787 RecordDecl *TheRecordDecl;
788
789 /// This is the enclosing scope of the captured region.
790 Scope *TheScope;
791
792 /// The implicit parameter for the captured variables.
793 ImplicitParamDecl *ContextParam;
794
795 /// The kind of captured region.
796 unsigned short CapRegionKind;
797
798 unsigned short OpenMPLevel;
799 unsigned short OpenMPCaptureLevel;
800
CapturedRegionScopeInfo(DiagnosticsEngine & Diag,Scope * S,CapturedDecl * CD,RecordDecl * RD,ImplicitParamDecl * Context,CapturedRegionKind K,unsigned OpenMPLevel,unsigned OpenMPCaptureLevel)801 CapturedRegionScopeInfo(DiagnosticsEngine &Diag, Scope *S, CapturedDecl *CD,
802 RecordDecl *RD, ImplicitParamDecl *Context,
803 CapturedRegionKind K, unsigned OpenMPLevel,
804 unsigned OpenMPCaptureLevel)
805 : CapturingScopeInfo(Diag, ImpCap_CapturedRegion),
806 TheCapturedDecl(CD), TheRecordDecl(RD), TheScope(S),
807 ContextParam(Context), CapRegionKind(K), OpenMPLevel(OpenMPLevel),
808 OpenMPCaptureLevel(OpenMPCaptureLevel) {
809 Kind = SK_CapturedRegion;
810 }
811
812 ~CapturedRegionScopeInfo() override;
813
814 /// A descriptive name for the kind of captured region this is.
getRegionName()815 StringRef getRegionName() const {
816 switch (CapRegionKind) {
817 case CR_Default:
818 return "default captured statement";
819 case CR_ObjCAtFinally:
820 return "Objective-C @finally statement";
821 case CR_OpenMP:
822 return "OpenMP region";
823 }
824 llvm_unreachable("Invalid captured region kind!");
825 }
826
classof(const FunctionScopeInfo * FSI)827 static bool classof(const FunctionScopeInfo *FSI) {
828 return FSI->Kind == SK_CapturedRegion;
829 }
830 };
831
832 class LambdaScopeInfo final :
833 public CapturingScopeInfo, public InventedTemplateParameterInfo {
834 public:
835 /// The class that describes the lambda.
836 CXXRecordDecl *Lambda = nullptr;
837
838 /// The lambda's compiler-generated \c operator().
839 CXXMethodDecl *CallOperator = nullptr;
840
841 /// Source range covering the lambda introducer [...].
842 SourceRange IntroducerRange;
843
844 /// Source location of the '&' or '=' specifying the default capture
845 /// type, if any.
846 SourceLocation CaptureDefaultLoc;
847
848 /// The number of captures in the \c Captures list that are
849 /// explicit captures.
850 unsigned NumExplicitCaptures = 0;
851
852 /// Whether this is a mutable lambda.
853 bool Mutable = false;
854
855 /// Whether the (empty) parameter list is explicit.
856 bool ExplicitParams = false;
857
858 /// Whether any of the capture expressions requires cleanups.
859 CleanupInfo Cleanup;
860
861 /// Whether the lambda contains an unexpanded parameter pack.
862 bool ContainsUnexpandedParameterPack = false;
863
864 /// Packs introduced by this lambda, if any.
865 SmallVector<NamedDecl*, 4> LocalPacks;
866
867 /// Source range covering the explicit template parameter list (if it exists).
868 SourceRange ExplicitTemplateParamsRange;
869
870 /// The requires-clause immediately following the explicit template parameter
871 /// list, if any. (Note that there may be another requires-clause included as
872 /// part of the lambda-declarator.)
873 ExprResult RequiresClause;
874
875 /// If this is a generic lambda, and the template parameter
876 /// list has been created (from the TemplateParams) then store
877 /// a reference to it (cache it to avoid reconstructing it).
878 TemplateParameterList *GLTemplateParameterList = nullptr;
879
880 /// Contains all variable-referring-expressions (i.e. DeclRefExprs
881 /// or MemberExprs) that refer to local variables in a generic lambda
882 /// or a lambda in a potentially-evaluated-if-used context.
883 ///
884 /// Potentially capturable variables of a nested lambda that might need
885 /// to be captured by the lambda are housed here.
886 /// This is specifically useful for generic lambdas or
887 /// lambdas within a potentially evaluated-if-used context.
888 /// If an enclosing variable is named in an expression of a lambda nested
889 /// within a generic lambda, we don't always know whether the variable
890 /// will truly be odr-used (i.e. need to be captured) by that nested lambda,
891 /// until its instantiation. But we still need to capture it in the
892 /// enclosing lambda if all intervening lambdas can capture the variable.
893 llvm::SmallVector<Expr*, 4> PotentiallyCapturingExprs;
894
895 /// Contains all variable-referring-expressions that refer
896 /// to local variables that are usable as constant expressions and
897 /// do not involve an odr-use (they may still need to be captured
898 /// if the enclosing full-expression is instantiation dependent).
899 llvm::SmallSet<Expr *, 8> NonODRUsedCapturingExprs;
900
901 /// A map of explicit capture indices to their introducer source ranges.
902 llvm::DenseMap<unsigned, SourceRange> ExplicitCaptureRanges;
903
904 /// Contains all of the variables defined in this lambda that shadow variables
905 /// that were defined in parent contexts. Used to avoid warnings when the
906 /// shadowed variables are uncaptured by this lambda.
907 struct ShadowedOuterDecl {
908 const VarDecl *VD;
909 const VarDecl *ShadowedDecl;
910 };
911 llvm::SmallVector<ShadowedOuterDecl, 4> ShadowingDecls;
912
913 SourceLocation PotentialThisCaptureLocation;
914
LambdaScopeInfo(DiagnosticsEngine & Diag)915 LambdaScopeInfo(DiagnosticsEngine &Diag)
916 : CapturingScopeInfo(Diag, ImpCap_None) {
917 Kind = SK_Lambda;
918 }
919
920 /// Note when all explicit captures have been added.
finishedExplicitCaptures()921 void finishedExplicitCaptures() {
922 NumExplicitCaptures = Captures.size();
923 }
924
classof(const FunctionScopeInfo * FSI)925 static bool classof(const FunctionScopeInfo *FSI) {
926 return FSI->Kind == SK_Lambda;
927 }
928
929 /// Is this scope known to be for a generic lambda? (This will be false until
930 /// we parse a template parameter list or the first 'auto'-typed parameter).
isGenericLambda()931 bool isGenericLambda() const {
932 return !TemplateParams.empty() || GLTemplateParameterList;
933 }
934
935 /// Add a variable that might potentially be captured by the
936 /// lambda and therefore the enclosing lambdas.
937 ///
938 /// This is also used by enclosing lambda's to speculatively capture
939 /// variables that nested lambda's - depending on their enclosing
940 /// specialization - might need to capture.
941 /// Consider:
942 /// void f(int, int); <-- don't capture
943 /// void f(const int&, double); <-- capture
944 /// void foo() {
945 /// const int x = 10;
946 /// auto L = [=](auto a) { // capture 'x'
947 /// return [=](auto b) {
948 /// f(x, a); // we may or may not need to capture 'x'
949 /// };
950 /// };
951 /// }
addPotentialCapture(Expr * VarExpr)952 void addPotentialCapture(Expr *VarExpr) {
953 assert(isa<DeclRefExpr>(VarExpr) || isa<MemberExpr>(VarExpr) ||
954 isa<FunctionParmPackExpr>(VarExpr));
955 PotentiallyCapturingExprs.push_back(VarExpr);
956 }
957
addPotentialThisCapture(SourceLocation Loc)958 void addPotentialThisCapture(SourceLocation Loc) {
959 PotentialThisCaptureLocation = Loc;
960 }
961
hasPotentialThisCapture()962 bool hasPotentialThisCapture() const {
963 return PotentialThisCaptureLocation.isValid();
964 }
965
966 /// Mark a variable's reference in a lambda as non-odr using.
967 ///
968 /// For generic lambdas, if a variable is named in a potentially evaluated
969 /// expression, where the enclosing full expression is dependent then we
970 /// must capture the variable (given a default capture).
971 /// This is accomplished by recording all references to variables
972 /// (DeclRefExprs or MemberExprs) within said nested lambda in its array of
973 /// PotentialCaptures. All such variables have to be captured by that lambda,
974 /// except for as described below.
975 /// If that variable is usable as a constant expression and is named in a
976 /// manner that does not involve its odr-use (e.g. undergoes
977 /// lvalue-to-rvalue conversion, or discarded) record that it is so. Upon the
978 /// act of analyzing the enclosing full expression (ActOnFinishFullExpr)
979 /// if we can determine that the full expression is not instantiation-
980 /// dependent, then we can entirely avoid its capture.
981 ///
982 /// const int n = 0;
983 /// [&] (auto x) {
984 /// (void)+n + x;
985 /// };
986 /// Interestingly, this strategy would involve a capture of n, even though
987 /// it's obviously not odr-used here, because the full-expression is
988 /// instantiation-dependent. It could be useful to avoid capturing such
989 /// variables, even when they are referred to in an instantiation-dependent
990 /// expression, if we can unambiguously determine that they shall never be
991 /// odr-used. This would involve removal of the variable-referring-expression
992 /// from the array of PotentialCaptures during the lvalue-to-rvalue
993 /// conversions. But per the working draft N3797, (post-chicago 2013) we must
994 /// capture such variables.
995 /// Before anyone is tempted to implement a strategy for not-capturing 'n',
996 /// consider the insightful warning in:
997 /// /cfe-commits/Week-of-Mon-20131104/092596.html
998 /// "The problem is that the set of captures for a lambda is part of the ABI
999 /// (since lambda layout can be made visible through inline functions and the
1000 /// like), and there are no guarantees as to which cases we'll manage to build
1001 /// an lvalue-to-rvalue conversion in, when parsing a template -- some
1002 /// seemingly harmless change elsewhere in Sema could cause us to start or stop
1003 /// building such a node. So we need a rule that anyone can implement and get
1004 /// exactly the same result".
markVariableExprAsNonODRUsed(Expr * CapturingVarExpr)1005 void markVariableExprAsNonODRUsed(Expr *CapturingVarExpr) {
1006 assert(isa<DeclRefExpr>(CapturingVarExpr) ||
1007 isa<MemberExpr>(CapturingVarExpr) ||
1008 isa<FunctionParmPackExpr>(CapturingVarExpr));
1009 NonODRUsedCapturingExprs.insert(CapturingVarExpr);
1010 }
isVariableExprMarkedAsNonODRUsed(Expr * CapturingVarExpr)1011 bool isVariableExprMarkedAsNonODRUsed(Expr *CapturingVarExpr) const {
1012 assert(isa<DeclRefExpr>(CapturingVarExpr) ||
1013 isa<MemberExpr>(CapturingVarExpr) ||
1014 isa<FunctionParmPackExpr>(CapturingVarExpr));
1015 return NonODRUsedCapturingExprs.count(CapturingVarExpr);
1016 }
removePotentialCapture(Expr * E)1017 void removePotentialCapture(Expr *E) {
1018 llvm::erase_value(PotentiallyCapturingExprs, E);
1019 }
clearPotentialCaptures()1020 void clearPotentialCaptures() {
1021 PotentiallyCapturingExprs.clear();
1022 PotentialThisCaptureLocation = SourceLocation();
1023 }
getNumPotentialVariableCaptures()1024 unsigned getNumPotentialVariableCaptures() const {
1025 return PotentiallyCapturingExprs.size();
1026 }
1027
hasPotentialCaptures()1028 bool hasPotentialCaptures() const {
1029 return getNumPotentialVariableCaptures() ||
1030 PotentialThisCaptureLocation.isValid();
1031 }
1032
1033 void visitPotentialCaptures(
1034 llvm::function_ref<void(ValueDecl *, Expr *)> Callback) const;
1035 };
1036
WeakObjectProfileTy()1037 FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy()
1038 : Base(nullptr, false) {}
1039
1040 FunctionScopeInfo::WeakObjectProfileTy
getSentinel()1041 FunctionScopeInfo::WeakObjectProfileTy::getSentinel() {
1042 FunctionScopeInfo::WeakObjectProfileTy Result;
1043 Result.Base.setInt(true);
1044 return Result;
1045 }
1046
1047 template <typename ExprT>
recordUseOfWeak(const ExprT * E,bool IsRead)1048 void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) {
1049 assert(E);
1050 WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)];
1051 Uses.push_back(WeakUseTy(E, IsRead));
1052 }
1053
addThisCapture(bool isNested,SourceLocation Loc,QualType CaptureType,bool ByCopy)1054 inline void CapturingScopeInfo::addThisCapture(bool isNested,
1055 SourceLocation Loc,
1056 QualType CaptureType,
1057 bool ByCopy) {
1058 Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType,
1059 ByCopy, /*Invalid*/ false));
1060 CXXThisCaptureIndex = Captures.size();
1061 }
1062
1063 } // namespace sema
1064
1065 } // namespace clang
1066
1067 #endif // LLVM_CLANG_SEMA_SCOPEINFO_H
1068