1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements type-related semantic analysis.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "clang/AST/TypeLocVisitor.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Parse/ParseDiagnostic.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/DelayedDiagnostic.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/ScopeInfo.h"
32 #include "clang/Sema/Template.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallString.h"
35 #include "llvm/Support/ErrorHandling.h"
36
37 using namespace clang;
38
39 enum TypeDiagSelector {
40 TDS_Function,
41 TDS_Pointer,
42 TDS_ObjCObjOrBlock
43 };
44
45 /// isOmittedBlockReturnType - Return true if this declarator is missing a
46 /// return type because this is a omitted return type on a block literal.
isOmittedBlockReturnType(const Declarator & D)47 static bool isOmittedBlockReturnType(const Declarator &D) {
48 if (D.getContext() != Declarator::BlockLiteralContext ||
49 D.getDeclSpec().hasTypeSpecifier())
50 return false;
51
52 if (D.getNumTypeObjects() == 0)
53 return true; // ^{ ... }
54
55 if (D.getNumTypeObjects() == 1 &&
56 D.getTypeObject(0).Kind == DeclaratorChunk::Function)
57 return true; // ^(int X, float Y) { ... }
58
59 return false;
60 }
61
62 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
63 /// doesn't apply to the given type.
diagnoseBadTypeAttribute(Sema & S,const AttributeList & attr,QualType type)64 static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
65 QualType type) {
66 TypeDiagSelector WhichType;
67 bool useExpansionLoc = true;
68 switch (attr.getKind()) {
69 case AttributeList::AT_ObjCGC: WhichType = TDS_Pointer; break;
70 case AttributeList::AT_ObjCOwnership: WhichType = TDS_ObjCObjOrBlock; break;
71 default:
72 // Assume everything else was a function attribute.
73 WhichType = TDS_Function;
74 useExpansionLoc = false;
75 break;
76 }
77
78 SourceLocation loc = attr.getLoc();
79 StringRef name = attr.getName()->getName();
80
81 // The GC attributes are usually written with macros; special-case them.
82 IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
83 : nullptr;
84 if (useExpansionLoc && loc.isMacroID() && II) {
85 if (II->isStr("strong")) {
86 if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
87 } else if (II->isStr("weak")) {
88 if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
89 }
90 }
91
92 S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
93 << type;
94 }
95
96 // objc_gc applies to Objective-C pointers or, otherwise, to the
97 // smallest available pointer type (i.e. 'void*' in 'void**').
98 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
99 case AttributeList::AT_ObjCGC: \
100 case AttributeList::AT_ObjCOwnership
101
102 // Function type attributes.
103 #define FUNCTION_TYPE_ATTRS_CASELIST \
104 case AttributeList::AT_NoReturn: \
105 case AttributeList::AT_CDecl: \
106 case AttributeList::AT_FastCall: \
107 case AttributeList::AT_StdCall: \
108 case AttributeList::AT_ThisCall: \
109 case AttributeList::AT_Pascal: \
110 case AttributeList::AT_VectorCall: \
111 case AttributeList::AT_MSABI: \
112 case AttributeList::AT_SysVABI: \
113 case AttributeList::AT_Regparm: \
114 case AttributeList::AT_Pcs: \
115 case AttributeList::AT_PnaclCall: \
116 case AttributeList::AT_IntelOclBicc
117
118 // Microsoft-specific type qualifiers.
119 #define MS_TYPE_ATTRS_CASELIST \
120 case AttributeList::AT_Ptr32: \
121 case AttributeList::AT_Ptr64: \
122 case AttributeList::AT_SPtr: \
123 case AttributeList::AT_UPtr
124
125 namespace {
126 /// An object which stores processing state for the entire
127 /// GetTypeForDeclarator process.
128 class TypeProcessingState {
129 Sema &sema;
130
131 /// The declarator being processed.
132 Declarator &declarator;
133
134 /// The index of the declarator chunk we're currently processing.
135 /// May be the total number of valid chunks, indicating the
136 /// DeclSpec.
137 unsigned chunkIndex;
138
139 /// Whether there are non-trivial modifications to the decl spec.
140 bool trivial;
141
142 /// Whether we saved the attributes in the decl spec.
143 bool hasSavedAttrs;
144
145 /// The original set of attributes on the DeclSpec.
146 SmallVector<AttributeList*, 2> savedAttrs;
147
148 /// A list of attributes to diagnose the uselessness of when the
149 /// processing is complete.
150 SmallVector<AttributeList*, 2> ignoredTypeAttrs;
151
152 public:
TypeProcessingState(Sema & sema,Declarator & declarator)153 TypeProcessingState(Sema &sema, Declarator &declarator)
154 : sema(sema), declarator(declarator),
155 chunkIndex(declarator.getNumTypeObjects()),
156 trivial(true), hasSavedAttrs(false) {}
157
getSema() const158 Sema &getSema() const {
159 return sema;
160 }
161
getDeclarator() const162 Declarator &getDeclarator() const {
163 return declarator;
164 }
165
isProcessingDeclSpec() const166 bool isProcessingDeclSpec() const {
167 return chunkIndex == declarator.getNumTypeObjects();
168 }
169
getCurrentChunkIndex() const170 unsigned getCurrentChunkIndex() const {
171 return chunkIndex;
172 }
173
setCurrentChunkIndex(unsigned idx)174 void setCurrentChunkIndex(unsigned idx) {
175 assert(idx <= declarator.getNumTypeObjects());
176 chunkIndex = idx;
177 }
178
getCurrentAttrListRef() const179 AttributeList *&getCurrentAttrListRef() const {
180 if (isProcessingDeclSpec())
181 return getMutableDeclSpec().getAttributes().getListRef();
182 return declarator.getTypeObject(chunkIndex).getAttrListRef();
183 }
184
185 /// Save the current set of attributes on the DeclSpec.
saveDeclSpecAttrs()186 void saveDeclSpecAttrs() {
187 // Don't try to save them multiple times.
188 if (hasSavedAttrs) return;
189
190 DeclSpec &spec = getMutableDeclSpec();
191 for (AttributeList *attr = spec.getAttributes().getList(); attr;
192 attr = attr->getNext())
193 savedAttrs.push_back(attr);
194 trivial &= savedAttrs.empty();
195 hasSavedAttrs = true;
196 }
197
198 /// Record that we had nowhere to put the given type attribute.
199 /// We will diagnose such attributes later.
addIgnoredTypeAttr(AttributeList & attr)200 void addIgnoredTypeAttr(AttributeList &attr) {
201 ignoredTypeAttrs.push_back(&attr);
202 }
203
204 /// Diagnose all the ignored type attributes, given that the
205 /// declarator worked out to the given type.
diagnoseIgnoredTypeAttrs(QualType type) const206 void diagnoseIgnoredTypeAttrs(QualType type) const {
207 for (SmallVectorImpl<AttributeList*>::const_iterator
208 i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
209 i != e; ++i)
210 diagnoseBadTypeAttribute(getSema(), **i, type);
211 }
212
~TypeProcessingState()213 ~TypeProcessingState() {
214 if (trivial) return;
215
216 restoreDeclSpecAttrs();
217 }
218
219 private:
getMutableDeclSpec() const220 DeclSpec &getMutableDeclSpec() const {
221 return const_cast<DeclSpec&>(declarator.getDeclSpec());
222 }
223
restoreDeclSpecAttrs()224 void restoreDeclSpecAttrs() {
225 assert(hasSavedAttrs);
226
227 if (savedAttrs.empty()) {
228 getMutableDeclSpec().getAttributes().set(nullptr);
229 return;
230 }
231
232 getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
233 for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
234 savedAttrs[i]->setNext(savedAttrs[i+1]);
235 savedAttrs.back()->setNext(nullptr);
236 }
237 };
238 }
239
spliceAttrIntoList(AttributeList & attr,AttributeList * & head)240 static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
241 attr.setNext(head);
242 head = &attr;
243 }
244
spliceAttrOutOfList(AttributeList & attr,AttributeList * & head)245 static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
246 if (head == &attr) {
247 head = attr.getNext();
248 return;
249 }
250
251 AttributeList *cur = head;
252 while (true) {
253 assert(cur && cur->getNext() && "ran out of attrs?");
254 if (cur->getNext() == &attr) {
255 cur->setNext(attr.getNext());
256 return;
257 }
258 cur = cur->getNext();
259 }
260 }
261
moveAttrFromListToList(AttributeList & attr,AttributeList * & fromList,AttributeList * & toList)262 static void moveAttrFromListToList(AttributeList &attr,
263 AttributeList *&fromList,
264 AttributeList *&toList) {
265 spliceAttrOutOfList(attr, fromList);
266 spliceAttrIntoList(attr, toList);
267 }
268
269 /// The location of a type attribute.
270 enum TypeAttrLocation {
271 /// The attribute is in the decl-specifier-seq.
272 TAL_DeclSpec,
273 /// The attribute is part of a DeclaratorChunk.
274 TAL_DeclChunk,
275 /// The attribute is immediately after the declaration's name.
276 TAL_DeclName
277 };
278
279 static void processTypeAttrs(TypeProcessingState &state,
280 QualType &type, TypeAttrLocation TAL,
281 AttributeList *attrs);
282
283 static bool handleFunctionTypeAttr(TypeProcessingState &state,
284 AttributeList &attr,
285 QualType &type);
286
287 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
288 AttributeList &attr,
289 QualType &type);
290
291 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
292 AttributeList &attr, QualType &type);
293
294 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
295 AttributeList &attr, QualType &type);
296
handleObjCPointerTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType & type)297 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
298 AttributeList &attr, QualType &type) {
299 if (attr.getKind() == AttributeList::AT_ObjCGC)
300 return handleObjCGCTypeAttr(state, attr, type);
301 assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
302 return handleObjCOwnershipTypeAttr(state, attr, type);
303 }
304
305 /// Given the index of a declarator chunk, check whether that chunk
306 /// directly specifies the return type of a function and, if so, find
307 /// an appropriate place for it.
308 ///
309 /// \param i - a notional index which the search will start
310 /// immediately inside
maybeMovePastReturnType(Declarator & declarator,unsigned i)311 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
312 unsigned i) {
313 assert(i <= declarator.getNumTypeObjects());
314
315 DeclaratorChunk *result = nullptr;
316
317 // First, look inwards past parens for a function declarator.
318 for (; i != 0; --i) {
319 DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
320 switch (fnChunk.Kind) {
321 case DeclaratorChunk::Paren:
322 continue;
323
324 // If we find anything except a function, bail out.
325 case DeclaratorChunk::Pointer:
326 case DeclaratorChunk::BlockPointer:
327 case DeclaratorChunk::Array:
328 case DeclaratorChunk::Reference:
329 case DeclaratorChunk::MemberPointer:
330 return result;
331
332 // If we do find a function declarator, scan inwards from that,
333 // looking for a block-pointer declarator.
334 case DeclaratorChunk::Function:
335 for (--i; i != 0; --i) {
336 DeclaratorChunk &blockChunk = declarator.getTypeObject(i-1);
337 switch (blockChunk.Kind) {
338 case DeclaratorChunk::Paren:
339 case DeclaratorChunk::Pointer:
340 case DeclaratorChunk::Array:
341 case DeclaratorChunk::Function:
342 case DeclaratorChunk::Reference:
343 case DeclaratorChunk::MemberPointer:
344 continue;
345 case DeclaratorChunk::BlockPointer:
346 result = &blockChunk;
347 goto continue_outer;
348 }
349 llvm_unreachable("bad declarator chunk kind");
350 }
351
352 // If we run out of declarators doing that, we're done.
353 return result;
354 }
355 llvm_unreachable("bad declarator chunk kind");
356
357 // Okay, reconsider from our new point.
358 continue_outer: ;
359 }
360
361 // Ran out of chunks, bail out.
362 return result;
363 }
364
365 /// Given that an objc_gc attribute was written somewhere on a
366 /// declaration *other* than on the declarator itself (for which, use
367 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
368 /// didn't apply in whatever position it was written in, try to move
369 /// it to a more appropriate position.
distributeObjCPointerTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType type)370 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
371 AttributeList &attr,
372 QualType type) {
373 Declarator &declarator = state.getDeclarator();
374
375 // Move it to the outermost normal or block pointer declarator.
376 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
377 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
378 switch (chunk.Kind) {
379 case DeclaratorChunk::Pointer:
380 case DeclaratorChunk::BlockPointer: {
381 // But don't move an ARC ownership attribute to the return type
382 // of a block.
383 DeclaratorChunk *destChunk = nullptr;
384 if (state.isProcessingDeclSpec() &&
385 attr.getKind() == AttributeList::AT_ObjCOwnership)
386 destChunk = maybeMovePastReturnType(declarator, i - 1);
387 if (!destChunk) destChunk = &chunk;
388
389 moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
390 destChunk->getAttrListRef());
391 return;
392 }
393
394 case DeclaratorChunk::Paren:
395 case DeclaratorChunk::Array:
396 continue;
397
398 // We may be starting at the return type of a block.
399 case DeclaratorChunk::Function:
400 if (state.isProcessingDeclSpec() &&
401 attr.getKind() == AttributeList::AT_ObjCOwnership) {
402 if (DeclaratorChunk *dest = maybeMovePastReturnType(declarator, i)) {
403 moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
404 dest->getAttrListRef());
405 return;
406 }
407 }
408 goto error;
409
410 // Don't walk through these.
411 case DeclaratorChunk::Reference:
412 case DeclaratorChunk::MemberPointer:
413 goto error;
414 }
415 }
416 error:
417
418 diagnoseBadTypeAttribute(state.getSema(), attr, type);
419 }
420
421 /// Distribute an objc_gc type attribute that was written on the
422 /// declarator.
423 static void
distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState & state,AttributeList & attr,QualType & declSpecType)424 distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
425 AttributeList &attr,
426 QualType &declSpecType) {
427 Declarator &declarator = state.getDeclarator();
428
429 // objc_gc goes on the innermost pointer to something that's not a
430 // pointer.
431 unsigned innermost = -1U;
432 bool considerDeclSpec = true;
433 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
434 DeclaratorChunk &chunk = declarator.getTypeObject(i);
435 switch (chunk.Kind) {
436 case DeclaratorChunk::Pointer:
437 case DeclaratorChunk::BlockPointer:
438 innermost = i;
439 continue;
440
441 case DeclaratorChunk::Reference:
442 case DeclaratorChunk::MemberPointer:
443 case DeclaratorChunk::Paren:
444 case DeclaratorChunk::Array:
445 continue;
446
447 case DeclaratorChunk::Function:
448 considerDeclSpec = false;
449 goto done;
450 }
451 }
452 done:
453
454 // That might actually be the decl spec if we weren't blocked by
455 // anything in the declarator.
456 if (considerDeclSpec) {
457 if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
458 // Splice the attribute into the decl spec. Prevents the
459 // attribute from being applied multiple times and gives
460 // the source-location-filler something to work with.
461 state.saveDeclSpecAttrs();
462 moveAttrFromListToList(attr, declarator.getAttrListRef(),
463 declarator.getMutableDeclSpec().getAttributes().getListRef());
464 return;
465 }
466 }
467
468 // Otherwise, if we found an appropriate chunk, splice the attribute
469 // into it.
470 if (innermost != -1U) {
471 moveAttrFromListToList(attr, declarator.getAttrListRef(),
472 declarator.getTypeObject(innermost).getAttrListRef());
473 return;
474 }
475
476 // Otherwise, diagnose when we're done building the type.
477 spliceAttrOutOfList(attr, declarator.getAttrListRef());
478 state.addIgnoredTypeAttr(attr);
479 }
480
481 /// A function type attribute was written somewhere in a declaration
482 /// *other* than on the declarator itself or in the decl spec. Given
483 /// that it didn't apply in whatever position it was written in, try
484 /// to move it to a more appropriate position.
distributeFunctionTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType type)485 static void distributeFunctionTypeAttr(TypeProcessingState &state,
486 AttributeList &attr,
487 QualType type) {
488 Declarator &declarator = state.getDeclarator();
489
490 // Try to push the attribute from the return type of a function to
491 // the function itself.
492 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
493 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
494 switch (chunk.Kind) {
495 case DeclaratorChunk::Function:
496 moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
497 chunk.getAttrListRef());
498 return;
499
500 case DeclaratorChunk::Paren:
501 case DeclaratorChunk::Pointer:
502 case DeclaratorChunk::BlockPointer:
503 case DeclaratorChunk::Array:
504 case DeclaratorChunk::Reference:
505 case DeclaratorChunk::MemberPointer:
506 continue;
507 }
508 }
509
510 diagnoseBadTypeAttribute(state.getSema(), attr, type);
511 }
512
513 /// Try to distribute a function type attribute to the innermost
514 /// function chunk or type. Returns true if the attribute was
515 /// distributed, false if no location was found.
516 static bool
distributeFunctionTypeAttrToInnermost(TypeProcessingState & state,AttributeList & attr,AttributeList * & attrList,QualType & declSpecType)517 distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
518 AttributeList &attr,
519 AttributeList *&attrList,
520 QualType &declSpecType) {
521 Declarator &declarator = state.getDeclarator();
522
523 // Put it on the innermost function chunk, if there is one.
524 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
525 DeclaratorChunk &chunk = declarator.getTypeObject(i);
526 if (chunk.Kind != DeclaratorChunk::Function) continue;
527
528 moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
529 return true;
530 }
531
532 return handleFunctionTypeAttr(state, attr, declSpecType);
533 }
534
535 /// A function type attribute was written in the decl spec. Try to
536 /// apply it somewhere.
537 static void
distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState & state,AttributeList & attr,QualType & declSpecType)538 distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
539 AttributeList &attr,
540 QualType &declSpecType) {
541 state.saveDeclSpecAttrs();
542
543 // C++11 attributes before the decl specifiers actually appertain to
544 // the declarators. Move them straight there. We don't support the
545 // 'put them wherever you like' semantics we allow for GNU attributes.
546 if (attr.isCXX11Attribute()) {
547 moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
548 state.getDeclarator().getAttrListRef());
549 return;
550 }
551
552 // Try to distribute to the innermost.
553 if (distributeFunctionTypeAttrToInnermost(state, attr,
554 state.getCurrentAttrListRef(),
555 declSpecType))
556 return;
557
558 // If that failed, diagnose the bad attribute when the declarator is
559 // fully built.
560 state.addIgnoredTypeAttr(attr);
561 }
562
563 /// A function type attribute was written on the declarator. Try to
564 /// apply it somewhere.
565 static void
distributeFunctionTypeAttrFromDeclarator(TypeProcessingState & state,AttributeList & attr,QualType & declSpecType)566 distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
567 AttributeList &attr,
568 QualType &declSpecType) {
569 Declarator &declarator = state.getDeclarator();
570
571 // Try to distribute to the innermost.
572 if (distributeFunctionTypeAttrToInnermost(state, attr,
573 declarator.getAttrListRef(),
574 declSpecType))
575 return;
576
577 // If that failed, diagnose the bad attribute when the declarator is
578 // fully built.
579 spliceAttrOutOfList(attr, declarator.getAttrListRef());
580 state.addIgnoredTypeAttr(attr);
581 }
582
583 /// \brief Given that there are attributes written on the declarator
584 /// itself, try to distribute any type attributes to the appropriate
585 /// declarator chunk.
586 ///
587 /// These are attributes like the following:
588 /// int f ATTR;
589 /// int (f ATTR)();
590 /// but not necessarily this:
591 /// int f() ATTR;
distributeTypeAttrsFromDeclarator(TypeProcessingState & state,QualType & declSpecType)592 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
593 QualType &declSpecType) {
594 // Collect all the type attributes from the declarator itself.
595 assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
596 AttributeList *attr = state.getDeclarator().getAttributes();
597 AttributeList *next;
598 do {
599 next = attr->getNext();
600
601 // Do not distribute C++11 attributes. They have strict rules for what
602 // they appertain to.
603 if (attr->isCXX11Attribute())
604 continue;
605
606 switch (attr->getKind()) {
607 OBJC_POINTER_TYPE_ATTRS_CASELIST:
608 distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
609 break;
610
611 case AttributeList::AT_NSReturnsRetained:
612 if (!state.getSema().getLangOpts().ObjCAutoRefCount)
613 break;
614 // fallthrough
615
616 FUNCTION_TYPE_ATTRS_CASELIST:
617 distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
618 break;
619
620 MS_TYPE_ATTRS_CASELIST:
621 // Microsoft type attributes cannot go after the declarator-id.
622 continue;
623
624 default:
625 break;
626 }
627 } while ((attr = next));
628 }
629
630 /// Add a synthetic '()' to a block-literal declarator if it is
631 /// required, given the return type.
maybeSynthesizeBlockSignature(TypeProcessingState & state,QualType declSpecType)632 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
633 QualType declSpecType) {
634 Declarator &declarator = state.getDeclarator();
635
636 // First, check whether the declarator would produce a function,
637 // i.e. whether the innermost semantic chunk is a function.
638 if (declarator.isFunctionDeclarator()) {
639 // If so, make that declarator a prototyped declarator.
640 declarator.getFunctionTypeInfo().hasPrototype = true;
641 return;
642 }
643
644 // If there are any type objects, the type as written won't name a
645 // function, regardless of the decl spec type. This is because a
646 // block signature declarator is always an abstract-declarator, and
647 // abstract-declarators can't just be parentheses chunks. Therefore
648 // we need to build a function chunk unless there are no type
649 // objects and the decl spec type is a function.
650 if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
651 return;
652
653 // Note that there *are* cases with invalid declarators where
654 // declarators consist solely of parentheses. In general, these
655 // occur only in failed efforts to make function declarators, so
656 // faking up the function chunk is still the right thing to do.
657
658 // Otherwise, we need to fake up a function declarator.
659 SourceLocation loc = declarator.getLocStart();
660
661 // ...and *prepend* it to the declarator.
662 SourceLocation NoLoc;
663 declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
664 /*HasProto=*/true,
665 /*IsAmbiguous=*/false,
666 /*LParenLoc=*/NoLoc,
667 /*ArgInfo=*/nullptr,
668 /*NumArgs=*/0,
669 /*EllipsisLoc=*/NoLoc,
670 /*RParenLoc=*/NoLoc,
671 /*TypeQuals=*/0,
672 /*RefQualifierIsLvalueRef=*/true,
673 /*RefQualifierLoc=*/NoLoc,
674 /*ConstQualifierLoc=*/NoLoc,
675 /*VolatileQualifierLoc=*/NoLoc,
676 /*RestrictQualifierLoc=*/NoLoc,
677 /*MutableLoc=*/NoLoc, EST_None,
678 /*ESpecLoc=*/NoLoc,
679 /*Exceptions=*/nullptr,
680 /*ExceptionRanges=*/nullptr,
681 /*NumExceptions=*/0,
682 /*NoexceptExpr=*/nullptr,
683 /*ExceptionSpecTokens=*/nullptr,
684 loc, loc, declarator));
685
686 // For consistency, make sure the state still has us as processing
687 // the decl spec.
688 assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
689 state.setCurrentChunkIndex(declarator.getNumTypeObjects());
690 }
691
692 /// \brief Convert the specified declspec to the appropriate type
693 /// object.
694 /// \param state Specifies the declarator containing the declaration specifier
695 /// to be converted, along with other associated processing state.
696 /// \returns The type described by the declaration specifiers. This function
697 /// never returns null.
ConvertDeclSpecToType(TypeProcessingState & state)698 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
699 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
700 // checking.
701
702 Sema &S = state.getSema();
703 Declarator &declarator = state.getDeclarator();
704 const DeclSpec &DS = declarator.getDeclSpec();
705 SourceLocation DeclLoc = declarator.getIdentifierLoc();
706 if (DeclLoc.isInvalid())
707 DeclLoc = DS.getLocStart();
708
709 ASTContext &Context = S.Context;
710
711 QualType Result;
712 switch (DS.getTypeSpecType()) {
713 case DeclSpec::TST_void:
714 Result = Context.VoidTy;
715 break;
716 case DeclSpec::TST_char:
717 if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
718 Result = Context.CharTy;
719 else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
720 Result = Context.SignedCharTy;
721 else {
722 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
723 "Unknown TSS value");
724 Result = Context.UnsignedCharTy;
725 }
726 break;
727 case DeclSpec::TST_wchar:
728 if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
729 Result = Context.WCharTy;
730 else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
731 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
732 << DS.getSpecifierName(DS.getTypeSpecType(),
733 Context.getPrintingPolicy());
734 Result = Context.getSignedWCharType();
735 } else {
736 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
737 "Unknown TSS value");
738 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
739 << DS.getSpecifierName(DS.getTypeSpecType(),
740 Context.getPrintingPolicy());
741 Result = Context.getUnsignedWCharType();
742 }
743 break;
744 case DeclSpec::TST_char16:
745 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
746 "Unknown TSS value");
747 Result = Context.Char16Ty;
748 break;
749 case DeclSpec::TST_char32:
750 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
751 "Unknown TSS value");
752 Result = Context.Char32Ty;
753 break;
754 case DeclSpec::TST_unspecified:
755 // "<proto1,proto2>" is an objc qualified ID with a missing id.
756 if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
757 Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
758 (ObjCProtocolDecl*const*)PQ,
759 DS.getNumProtocolQualifiers());
760 Result = Context.getObjCObjectPointerType(Result);
761 break;
762 }
763
764 // If this is a missing declspec in a block literal return context, then it
765 // is inferred from the return statements inside the block.
766 // The declspec is always missing in a lambda expr context; it is either
767 // specified with a trailing return type or inferred.
768 if (S.getLangOpts().CPlusPlus14 &&
769 declarator.getContext() == Declarator::LambdaExprContext) {
770 // In C++1y, a lambda's implicit return type is 'auto'.
771 Result = Context.getAutoDeductType();
772 break;
773 } else if (declarator.getContext() == Declarator::LambdaExprContext ||
774 isOmittedBlockReturnType(declarator)) {
775 Result = Context.DependentTy;
776 break;
777 }
778
779 // Unspecified typespec defaults to int in C90. However, the C90 grammar
780 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
781 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
782 // Note that the one exception to this is function definitions, which are
783 // allowed to be completely missing a declspec. This is handled in the
784 // parser already though by it pretending to have seen an 'int' in this
785 // case.
786 if (S.getLangOpts().ImplicitInt) {
787 // In C89 mode, we only warn if there is a completely missing declspec
788 // when one is not allowed.
789 if (DS.isEmpty()) {
790 S.Diag(DeclLoc, diag::ext_missing_declspec)
791 << DS.getSourceRange()
792 << FixItHint::CreateInsertion(DS.getLocStart(), "int");
793 }
794 } else if (!DS.hasTypeSpecifier()) {
795 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
796 // "At least one type specifier shall be given in the declaration
797 // specifiers in each declaration, and in the specifier-qualifier list in
798 // each struct declaration and type name."
799 if (S.getLangOpts().CPlusPlus) {
800 S.Diag(DeclLoc, diag::err_missing_type_specifier)
801 << DS.getSourceRange();
802
803 // When this occurs in C++ code, often something is very broken with the
804 // value being declared, poison it as invalid so we don't get chains of
805 // errors.
806 declarator.setInvalidType(true);
807 } else {
808 S.Diag(DeclLoc, diag::ext_missing_type_specifier)
809 << DS.getSourceRange();
810 }
811 }
812
813 // FALL THROUGH.
814 case DeclSpec::TST_int: {
815 if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
816 switch (DS.getTypeSpecWidth()) {
817 case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
818 case DeclSpec::TSW_short: Result = Context.ShortTy; break;
819 case DeclSpec::TSW_long: Result = Context.LongTy; break;
820 case DeclSpec::TSW_longlong:
821 Result = Context.LongLongTy;
822
823 // 'long long' is a C99 or C++11 feature.
824 if (!S.getLangOpts().C99) {
825 if (S.getLangOpts().CPlusPlus)
826 S.Diag(DS.getTypeSpecWidthLoc(),
827 S.getLangOpts().CPlusPlus11 ?
828 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
829 else
830 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
831 }
832 break;
833 }
834 } else {
835 switch (DS.getTypeSpecWidth()) {
836 case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
837 case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
838 case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
839 case DeclSpec::TSW_longlong:
840 Result = Context.UnsignedLongLongTy;
841
842 // 'long long' is a C99 or C++11 feature.
843 if (!S.getLangOpts().C99) {
844 if (S.getLangOpts().CPlusPlus)
845 S.Diag(DS.getTypeSpecWidthLoc(),
846 S.getLangOpts().CPlusPlus11 ?
847 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
848 else
849 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
850 }
851 break;
852 }
853 }
854 break;
855 }
856 case DeclSpec::TST_int128:
857 if (!S.Context.getTargetInfo().hasInt128Type())
858 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
859 if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
860 Result = Context.UnsignedInt128Ty;
861 else
862 Result = Context.Int128Ty;
863 break;
864 case DeclSpec::TST_half: Result = Context.HalfTy; break;
865 case DeclSpec::TST_float: Result = Context.FloatTy; break;
866 case DeclSpec::TST_double:
867 if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
868 Result = Context.LongDoubleTy;
869 else
870 Result = Context.DoubleTy;
871
872 if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
873 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
874 declarator.setInvalidType(true);
875 }
876 break;
877 case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
878 case DeclSpec::TST_decimal32: // _Decimal32
879 case DeclSpec::TST_decimal64: // _Decimal64
880 case DeclSpec::TST_decimal128: // _Decimal128
881 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
882 Result = Context.IntTy;
883 declarator.setInvalidType(true);
884 break;
885 case DeclSpec::TST_class:
886 case DeclSpec::TST_enum:
887 case DeclSpec::TST_union:
888 case DeclSpec::TST_struct:
889 case DeclSpec::TST_interface: {
890 TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
891 if (!D) {
892 // This can happen in C++ with ambiguous lookups.
893 Result = Context.IntTy;
894 declarator.setInvalidType(true);
895 break;
896 }
897
898 // If the type is deprecated or unavailable, diagnose it.
899 S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
900
901 assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
902 DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
903
904 // TypeQuals handled by caller.
905 Result = Context.getTypeDeclType(D);
906
907 // In both C and C++, make an ElaboratedType.
908 ElaboratedTypeKeyword Keyword
909 = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
910 Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
911 break;
912 }
913 case DeclSpec::TST_typename: {
914 assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
915 DS.getTypeSpecSign() == 0 &&
916 "Can't handle qualifiers on typedef names yet!");
917 Result = S.GetTypeFromParser(DS.getRepAsType());
918 if (Result.isNull())
919 declarator.setInvalidType(true);
920 else if (DeclSpec::ProtocolQualifierListTy PQ
921 = DS.getProtocolQualifiers()) {
922 if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
923 // Silently drop any existing protocol qualifiers.
924 // TODO: determine whether that's the right thing to do.
925 if (ObjT->getNumProtocols())
926 Result = ObjT->getBaseType();
927
928 if (DS.getNumProtocolQualifiers())
929 Result = Context.getObjCObjectType(Result,
930 (ObjCProtocolDecl*const*) PQ,
931 DS.getNumProtocolQualifiers());
932 } else if (Result->isObjCIdType()) {
933 // id<protocol-list>
934 Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
935 (ObjCProtocolDecl*const*) PQ,
936 DS.getNumProtocolQualifiers());
937 Result = Context.getObjCObjectPointerType(Result);
938 } else if (Result->isObjCClassType()) {
939 // Class<protocol-list>
940 Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
941 (ObjCProtocolDecl*const*) PQ,
942 DS.getNumProtocolQualifiers());
943 Result = Context.getObjCObjectPointerType(Result);
944 } else {
945 S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
946 << DS.getSourceRange();
947 declarator.setInvalidType(true);
948 }
949 }
950
951 // TypeQuals handled by caller.
952 break;
953 }
954 case DeclSpec::TST_typeofType:
955 // FIXME: Preserve type source info.
956 Result = S.GetTypeFromParser(DS.getRepAsType());
957 assert(!Result.isNull() && "Didn't get a type for typeof?");
958 if (!Result->isDependentType())
959 if (const TagType *TT = Result->getAs<TagType>())
960 S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
961 // TypeQuals handled by caller.
962 Result = Context.getTypeOfType(Result);
963 break;
964 case DeclSpec::TST_typeofExpr: {
965 Expr *E = DS.getRepAsExpr();
966 assert(E && "Didn't get an expression for typeof?");
967 // TypeQuals handled by caller.
968 Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
969 if (Result.isNull()) {
970 Result = Context.IntTy;
971 declarator.setInvalidType(true);
972 }
973 break;
974 }
975 case DeclSpec::TST_decltype: {
976 Expr *E = DS.getRepAsExpr();
977 assert(E && "Didn't get an expression for decltype?");
978 // TypeQuals handled by caller.
979 Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
980 if (Result.isNull()) {
981 Result = Context.IntTy;
982 declarator.setInvalidType(true);
983 }
984 break;
985 }
986 case DeclSpec::TST_underlyingType:
987 Result = S.GetTypeFromParser(DS.getRepAsType());
988 assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
989 Result = S.BuildUnaryTransformType(Result,
990 UnaryTransformType::EnumUnderlyingType,
991 DS.getTypeSpecTypeLoc());
992 if (Result.isNull()) {
993 Result = Context.IntTy;
994 declarator.setInvalidType(true);
995 }
996 break;
997
998 case DeclSpec::TST_auto:
999 // TypeQuals handled by caller.
1000 // If auto is mentioned in a lambda parameter context, convert it to a
1001 // template parameter type immediately, with the appropriate depth and
1002 // index, and update sema's state (LambdaScopeInfo) for the current lambda
1003 // being analyzed (which tracks the invented type template parameter).
1004 if (declarator.getContext() == Declarator::LambdaExprParameterContext) {
1005 sema::LambdaScopeInfo *LSI = S.getCurLambda();
1006 assert(LSI && "No LambdaScopeInfo on the stack!");
1007 const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
1008 const unsigned AutoParameterPosition = LSI->AutoTemplateParams.size();
1009 const bool IsParameterPack = declarator.hasEllipsis();
1010
1011 // Turns out we must create the TemplateTypeParmDecl here to
1012 // retrieve the corresponding template parameter type.
1013 TemplateTypeParmDecl *CorrespondingTemplateParam =
1014 TemplateTypeParmDecl::Create(Context,
1015 // Temporarily add to the TranslationUnit DeclContext. When the
1016 // associated TemplateParameterList is attached to a template
1017 // declaration (such as FunctionTemplateDecl), the DeclContext
1018 // for each template parameter gets updated appropriately via
1019 // a call to AdoptTemplateParameterList.
1020 Context.getTranslationUnitDecl(),
1021 /*KeyLoc*/ SourceLocation(),
1022 /*NameLoc*/ declarator.getLocStart(),
1023 TemplateParameterDepth,
1024 AutoParameterPosition, // our template param index
1025 /* Identifier*/ nullptr, false, IsParameterPack);
1026 LSI->AutoTemplateParams.push_back(CorrespondingTemplateParam);
1027 // Replace the 'auto' in the function parameter with this invented
1028 // template type parameter.
1029 Result = QualType(CorrespondingTemplateParam->getTypeForDecl(), 0);
1030 } else {
1031 Result = Context.getAutoType(QualType(), /*decltype(auto)*/false, false);
1032 }
1033 break;
1034
1035 case DeclSpec::TST_decltype_auto:
1036 Result = Context.getAutoType(QualType(),
1037 /*decltype(auto)*/true,
1038 /*IsDependent*/ false);
1039 break;
1040
1041 case DeclSpec::TST_unknown_anytype:
1042 Result = Context.UnknownAnyTy;
1043 break;
1044
1045 case DeclSpec::TST_atomic:
1046 Result = S.GetTypeFromParser(DS.getRepAsType());
1047 assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1048 Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1049 if (Result.isNull()) {
1050 Result = Context.IntTy;
1051 declarator.setInvalidType(true);
1052 }
1053 break;
1054
1055 case DeclSpec::TST_error:
1056 Result = Context.IntTy;
1057 declarator.setInvalidType(true);
1058 break;
1059 }
1060
1061 // Handle complex types.
1062 if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1063 if (S.getLangOpts().Freestanding)
1064 S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1065 Result = Context.getComplexType(Result);
1066 } else if (DS.isTypeAltiVecVector()) {
1067 unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1068 assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1069 VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1070 if (DS.isTypeAltiVecPixel())
1071 VecKind = VectorType::AltiVecPixel;
1072 else if (DS.isTypeAltiVecBool())
1073 VecKind = VectorType::AltiVecBool;
1074 Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1075 }
1076
1077 // FIXME: Imaginary.
1078 if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1079 S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1080
1081 // Before we process any type attributes, synthesize a block literal
1082 // function declarator if necessary.
1083 if (declarator.getContext() == Declarator::BlockLiteralContext)
1084 maybeSynthesizeBlockSignature(state, Result);
1085
1086 // Apply any type attributes from the decl spec. This may cause the
1087 // list of type attributes to be temporarily saved while the type
1088 // attributes are pushed around.
1089 if (AttributeList *attrs = DS.getAttributes().getList())
1090 processTypeAttrs(state, Result, TAL_DeclSpec, attrs);
1091
1092 // Apply const/volatile/restrict qualifiers to T.
1093 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1094
1095 // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
1096 // of a function type includes any type qualifiers, the behavior is
1097 // undefined."
1098 if (Result->isFunctionType() && TypeQuals) {
1099 if (TypeQuals & DeclSpec::TQ_const)
1100 S.Diag(DS.getConstSpecLoc(), diag::warn_typecheck_function_qualifiers)
1101 << Result << DS.getSourceRange();
1102 else if (TypeQuals & DeclSpec::TQ_volatile)
1103 S.Diag(DS.getVolatileSpecLoc(),
1104 diag::warn_typecheck_function_qualifiers)
1105 << Result << DS.getSourceRange();
1106 else {
1107 assert((TypeQuals & (DeclSpec::TQ_restrict | DeclSpec::TQ_atomic)) &&
1108 "Has CVRA quals but not C, V, R, or A?");
1109 // No diagnostic; we'll diagnose 'restrict' or '_Atomic' applied to a
1110 // function type later, in BuildQualifiedType.
1111 }
1112 }
1113
1114 // C++11 [dcl.ref]p1:
1115 // Cv-qualified references are ill-formed except when the
1116 // cv-qualifiers are introduced through the use of a typedef-name
1117 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1118 //
1119 // There don't appear to be any other contexts in which a cv-qualified
1120 // reference type could be formed, so the 'ill-formed' clause here appears
1121 // to never happen.
1122 if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1123 TypeQuals && Result->isReferenceType()) {
1124 // If this occurs outside a template instantiation, warn the user about
1125 // it; they probably didn't mean to specify a redundant qualifier.
1126 typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
1127 QualLoc Quals[] = {
1128 QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
1129 QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
1130 QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())
1131 };
1132 for (unsigned I = 0, N = llvm::array_lengthof(Quals); I != N; ++I) {
1133 if (S.ActiveTemplateInstantiations.empty()) {
1134 if (TypeQuals & Quals[I].first)
1135 S.Diag(Quals[I].second, diag::warn_typecheck_reference_qualifiers)
1136 << DeclSpec::getSpecifierName(Quals[I].first) << Result
1137 << FixItHint::CreateRemoval(Quals[I].second);
1138 }
1139 TypeQuals &= ~Quals[I].first;
1140 }
1141 }
1142
1143 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1144 // than once in the same specifier-list or qualifier-list, either directly
1145 // or via one or more typedefs."
1146 if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1147 && TypeQuals & Result.getCVRQualifiers()) {
1148 if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1149 S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1150 << "const";
1151 }
1152
1153 if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1154 S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1155 << "volatile";
1156 }
1157
1158 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1159 // produce a warning in this case.
1160 }
1161
1162 QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1163
1164 // If adding qualifiers fails, just use the unqualified type.
1165 if (Qualified.isNull())
1166 declarator.setInvalidType(true);
1167 else
1168 Result = Qualified;
1169 }
1170
1171 assert(!Result.isNull() && "This function should not return a null type");
1172 return Result;
1173 }
1174
getPrintableNameForEntity(DeclarationName Entity)1175 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1176 if (Entity)
1177 return Entity.getAsString();
1178
1179 return "type name";
1180 }
1181
BuildQualifiedType(QualType T,SourceLocation Loc,Qualifiers Qs,const DeclSpec * DS)1182 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1183 Qualifiers Qs, const DeclSpec *DS) {
1184 if (T.isNull())
1185 return QualType();
1186
1187 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1188 // object or incomplete types shall not be restrict-qualified."
1189 if (Qs.hasRestrict()) {
1190 unsigned DiagID = 0;
1191 QualType ProblemTy;
1192
1193 if (T->isAnyPointerType() || T->isReferenceType() ||
1194 T->isMemberPointerType()) {
1195 QualType EltTy;
1196 if (T->isObjCObjectPointerType())
1197 EltTy = T;
1198 else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1199 EltTy = PTy->getPointeeType();
1200 else
1201 EltTy = T->getPointeeType();
1202
1203 // If we have a pointer or reference, the pointee must have an object
1204 // incomplete type.
1205 if (!EltTy->isIncompleteOrObjectType()) {
1206 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1207 ProblemTy = EltTy;
1208 }
1209 } else if (!T->isDependentType()) {
1210 DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1211 ProblemTy = T;
1212 }
1213
1214 if (DiagID) {
1215 Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1216 Qs.removeRestrict();
1217 }
1218 }
1219
1220 return Context.getQualifiedType(T, Qs);
1221 }
1222
BuildQualifiedType(QualType T,SourceLocation Loc,unsigned CVRA,const DeclSpec * DS)1223 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1224 unsigned CVRA, const DeclSpec *DS) {
1225 if (T.isNull())
1226 return QualType();
1227
1228 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic.
1229 unsigned CVR = CVRA & ~DeclSpec::TQ_atomic;
1230
1231 // C11 6.7.3/5:
1232 // If the same qualifier appears more than once in the same
1233 // specifier-qualifier-list, either directly or via one or more typedefs,
1234 // the behavior is the same as if it appeared only once.
1235 //
1236 // It's not specified what happens when the _Atomic qualifier is applied to
1237 // a type specified with the _Atomic specifier, but we assume that this
1238 // should be treated as if the _Atomic qualifier appeared multiple times.
1239 if (CVRA & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1240 // C11 6.7.3/5:
1241 // If other qualifiers appear along with the _Atomic qualifier in a
1242 // specifier-qualifier-list, the resulting type is the so-qualified
1243 // atomic type.
1244 //
1245 // Don't need to worry about array types here, since _Atomic can't be
1246 // applied to such types.
1247 SplitQualType Split = T.getSplitUnqualifiedType();
1248 T = BuildAtomicType(QualType(Split.Ty, 0),
1249 DS ? DS->getAtomicSpecLoc() : Loc);
1250 if (T.isNull())
1251 return T;
1252 Split.Quals.addCVRQualifiers(CVR);
1253 return BuildQualifiedType(T, Loc, Split.Quals);
1254 }
1255
1256 return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR), DS);
1257 }
1258
1259 /// \brief Build a paren type including \p T.
BuildParenType(QualType T)1260 QualType Sema::BuildParenType(QualType T) {
1261 return Context.getParenType(T);
1262 }
1263
1264 /// Given that we're building a pointer or reference to the given
inferARCLifetimeForPointee(Sema & S,QualType type,SourceLocation loc,bool isReference)1265 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1266 SourceLocation loc,
1267 bool isReference) {
1268 // Bail out if retention is unrequired or already specified.
1269 if (!type->isObjCLifetimeType() ||
1270 type.getObjCLifetime() != Qualifiers::OCL_None)
1271 return type;
1272
1273 Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1274
1275 // If the object type is const-qualified, we can safely use
1276 // __unsafe_unretained. This is safe (because there are no read
1277 // barriers), and it'll be safe to coerce anything but __weak* to
1278 // the resulting type.
1279 if (type.isConstQualified()) {
1280 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1281
1282 // Otherwise, check whether the static type does not require
1283 // retaining. This currently only triggers for Class (possibly
1284 // protocol-qualifed, and arrays thereof).
1285 } else if (type->isObjCARCImplicitlyUnretainedType()) {
1286 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1287
1288 // If we are in an unevaluated context, like sizeof, skip adding a
1289 // qualification.
1290 } else if (S.isUnevaluatedContext()) {
1291 return type;
1292
1293 // If that failed, give an error and recover using __strong. __strong
1294 // is the option most likely to prevent spurious second-order diagnostics,
1295 // like when binding a reference to a field.
1296 } else {
1297 // These types can show up in private ivars in system headers, so
1298 // we need this to not be an error in those cases. Instead we
1299 // want to delay.
1300 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1301 S.DelayedDiagnostics.add(
1302 sema::DelayedDiagnostic::makeForbiddenType(loc,
1303 diag::err_arc_indirect_no_ownership, type, isReference));
1304 } else {
1305 S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1306 }
1307 implicitLifetime = Qualifiers::OCL_Strong;
1308 }
1309 assert(implicitLifetime && "didn't infer any lifetime!");
1310
1311 Qualifiers qs;
1312 qs.addObjCLifetime(implicitLifetime);
1313 return S.Context.getQualifiedType(type, qs);
1314 }
1315
getFunctionQualifiersAsString(const FunctionProtoType * FnTy)1316 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1317 std::string Quals =
1318 Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
1319
1320 switch (FnTy->getRefQualifier()) {
1321 case RQ_None:
1322 break;
1323
1324 case RQ_LValue:
1325 if (!Quals.empty())
1326 Quals += ' ';
1327 Quals += '&';
1328 break;
1329
1330 case RQ_RValue:
1331 if (!Quals.empty())
1332 Quals += ' ';
1333 Quals += "&&";
1334 break;
1335 }
1336
1337 return Quals;
1338 }
1339
1340 namespace {
1341 /// Kinds of declarator that cannot contain a qualified function type.
1342 ///
1343 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1344 /// a function type with a cv-qualifier or a ref-qualifier can only appear
1345 /// at the topmost level of a type.
1346 ///
1347 /// Parens and member pointers are permitted. We don't diagnose array and
1348 /// function declarators, because they don't allow function types at all.
1349 ///
1350 /// The values of this enum are used in diagnostics.
1351 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1352 }
1353
1354 /// Check whether the type T is a qualified function type, and if it is,
1355 /// diagnose that it cannot be contained within the given kind of declarator.
checkQualifiedFunction(Sema & S,QualType T,SourceLocation Loc,QualifiedFunctionKind QFK)1356 static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
1357 QualifiedFunctionKind QFK) {
1358 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1359 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1360 if (!FPT || (FPT->getTypeQuals() == 0 && FPT->getRefQualifier() == RQ_None))
1361 return false;
1362
1363 S.Diag(Loc, diag::err_compound_qualified_function_type)
1364 << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1365 << getFunctionQualifiersAsString(FPT);
1366 return true;
1367 }
1368
1369 /// \brief Build a pointer type.
1370 ///
1371 /// \param T The type to which we'll be building a pointer.
1372 ///
1373 /// \param Loc The location of the entity whose type involves this
1374 /// pointer type or, if there is no such entity, the location of the
1375 /// type that will have pointer type.
1376 ///
1377 /// \param Entity The name of the entity that involves the pointer
1378 /// type, if known.
1379 ///
1380 /// \returns A suitable pointer type, if there are no
1381 /// errors. Otherwise, returns a NULL type.
BuildPointerType(QualType T,SourceLocation Loc,DeclarationName Entity)1382 QualType Sema::BuildPointerType(QualType T,
1383 SourceLocation Loc, DeclarationName Entity) {
1384 if (T->isReferenceType()) {
1385 // C++ 8.3.2p4: There shall be no ... pointers to references ...
1386 Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1387 << getPrintableNameForEntity(Entity) << T;
1388 return QualType();
1389 }
1390
1391 if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1392 return QualType();
1393
1394 assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1395
1396 // In ARC, it is forbidden to build pointers to unqualified pointers.
1397 if (getLangOpts().ObjCAutoRefCount)
1398 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1399
1400 // Build the pointer type.
1401 return Context.getPointerType(T);
1402 }
1403
1404 /// \brief Build a reference type.
1405 ///
1406 /// \param T The type to which we'll be building a reference.
1407 ///
1408 /// \param Loc The location of the entity whose type involves this
1409 /// reference type or, if there is no such entity, the location of the
1410 /// type that will have reference type.
1411 ///
1412 /// \param Entity The name of the entity that involves the reference
1413 /// type, if known.
1414 ///
1415 /// \returns A suitable reference type, if there are no
1416 /// errors. Otherwise, returns a NULL type.
BuildReferenceType(QualType T,bool SpelledAsLValue,SourceLocation Loc,DeclarationName Entity)1417 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1418 SourceLocation Loc,
1419 DeclarationName Entity) {
1420 assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1421 "Unresolved overloaded function type");
1422
1423 // C++0x [dcl.ref]p6:
1424 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1425 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1426 // type T, an attempt to create the type "lvalue reference to cv TR" creates
1427 // the type "lvalue reference to T", while an attempt to create the type
1428 // "rvalue reference to cv TR" creates the type TR.
1429 bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1430
1431 // C++ [dcl.ref]p4: There shall be no references to references.
1432 //
1433 // According to C++ DR 106, references to references are only
1434 // diagnosed when they are written directly (e.g., "int & &"),
1435 // but not when they happen via a typedef:
1436 //
1437 // typedef int& intref;
1438 // typedef intref& intref2;
1439 //
1440 // Parser::ParseDeclaratorInternal diagnoses the case where
1441 // references are written directly; here, we handle the
1442 // collapsing of references-to-references as described in C++0x.
1443 // DR 106 and 540 introduce reference-collapsing into C++98/03.
1444
1445 // C++ [dcl.ref]p1:
1446 // A declarator that specifies the type "reference to cv void"
1447 // is ill-formed.
1448 if (T->isVoidType()) {
1449 Diag(Loc, diag::err_reference_to_void);
1450 return QualType();
1451 }
1452
1453 if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
1454 return QualType();
1455
1456 // In ARC, it is forbidden to build references to unqualified pointers.
1457 if (getLangOpts().ObjCAutoRefCount)
1458 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1459
1460 // Handle restrict on references.
1461 if (LValueRef)
1462 return Context.getLValueReferenceType(T, SpelledAsLValue);
1463 return Context.getRValueReferenceType(T);
1464 }
1465
1466 /// Check whether the specified array size makes the array type a VLA. If so,
1467 /// return true, if not, return the size of the array in SizeVal.
isArraySizeVLA(Sema & S,Expr * ArraySize,llvm::APSInt & SizeVal)1468 static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1469 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1470 // (like gnu99, but not c99) accept any evaluatable value as an extension.
1471 class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1472 public:
1473 VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1474
1475 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
1476 }
1477
1478 void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
1479 S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
1480 }
1481 } Diagnoser;
1482
1483 return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
1484 S.LangOpts.GNUMode).isInvalid();
1485 }
1486
1487
1488 /// \brief Build an array type.
1489 ///
1490 /// \param T The type of each element in the array.
1491 ///
1492 /// \param ASM C99 array size modifier (e.g., '*', 'static').
1493 ///
1494 /// \param ArraySize Expression describing the size of the array.
1495 ///
1496 /// \param Brackets The range from the opening '[' to the closing ']'.
1497 ///
1498 /// \param Entity The name of the entity that involves the array
1499 /// type, if known.
1500 ///
1501 /// \returns A suitable array type, if there are no errors. Otherwise,
1502 /// returns a NULL type.
BuildArrayType(QualType T,ArrayType::ArraySizeModifier ASM,Expr * ArraySize,unsigned Quals,SourceRange Brackets,DeclarationName Entity)1503 QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1504 Expr *ArraySize, unsigned Quals,
1505 SourceRange Brackets, DeclarationName Entity) {
1506
1507 SourceLocation Loc = Brackets.getBegin();
1508 if (getLangOpts().CPlusPlus) {
1509 // C++ [dcl.array]p1:
1510 // T is called the array element type; this type shall not be a reference
1511 // type, the (possibly cv-qualified) type void, a function type or an
1512 // abstract class type.
1513 //
1514 // C++ [dcl.array]p3:
1515 // When several "array of" specifications are adjacent, [...] only the
1516 // first of the constant expressions that specify the bounds of the arrays
1517 // may be omitted.
1518 //
1519 // Note: function types are handled in the common path with C.
1520 if (T->isReferenceType()) {
1521 Diag(Loc, diag::err_illegal_decl_array_of_references)
1522 << getPrintableNameForEntity(Entity) << T;
1523 return QualType();
1524 }
1525
1526 if (T->isVoidType() || T->isIncompleteArrayType()) {
1527 Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1528 return QualType();
1529 }
1530
1531 if (RequireNonAbstractType(Brackets.getBegin(), T,
1532 diag::err_array_of_abstract_type))
1533 return QualType();
1534
1535 // Mentioning a member pointer type for an array type causes us to lock in
1536 // an inheritance model, even if it's inside an unused typedef.
1537 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
1538 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
1539 if (!MPTy->getClass()->isDependentType())
1540 RequireCompleteType(Loc, T, 0);
1541
1542 } else {
1543 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1544 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1545 if (RequireCompleteType(Loc, T,
1546 diag::err_illegal_decl_array_incomplete_type))
1547 return QualType();
1548 }
1549
1550 if (T->isFunctionType()) {
1551 Diag(Loc, diag::err_illegal_decl_array_of_functions)
1552 << getPrintableNameForEntity(Entity) << T;
1553 return QualType();
1554 }
1555
1556 if (const RecordType *EltTy = T->getAs<RecordType>()) {
1557 // If the element type is a struct or union that contains a variadic
1558 // array, accept it as a GNU extension: C99 6.7.2.1p2.
1559 if (EltTy->getDecl()->hasFlexibleArrayMember())
1560 Diag(Loc, diag::ext_flexible_array_in_array) << T;
1561 } else if (T->isObjCObjectType()) {
1562 Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1563 return QualType();
1564 }
1565
1566 // Do placeholder conversions on the array size expression.
1567 if (ArraySize && ArraySize->hasPlaceholderType()) {
1568 ExprResult Result = CheckPlaceholderExpr(ArraySize);
1569 if (Result.isInvalid()) return QualType();
1570 ArraySize = Result.get();
1571 }
1572
1573 // Do lvalue-to-rvalue conversions on the array size expression.
1574 if (ArraySize && !ArraySize->isRValue()) {
1575 ExprResult Result = DefaultLvalueConversion(ArraySize);
1576 if (Result.isInvalid())
1577 return QualType();
1578
1579 ArraySize = Result.get();
1580 }
1581
1582 // C99 6.7.5.2p1: The size expression shall have integer type.
1583 // C++11 allows contextual conversions to such types.
1584 if (!getLangOpts().CPlusPlus11 &&
1585 ArraySize && !ArraySize->isTypeDependent() &&
1586 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1587 Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1588 << ArraySize->getType() << ArraySize->getSourceRange();
1589 return QualType();
1590 }
1591
1592 llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1593 if (!ArraySize) {
1594 if (ASM == ArrayType::Star)
1595 T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
1596 else
1597 T = Context.getIncompleteArrayType(T, ASM, Quals);
1598 } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1599 T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1600 } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1601 !T->isConstantSizeType()) ||
1602 isArraySizeVLA(*this, ArraySize, ConstVal)) {
1603 // Even in C++11, don't allow contextual conversions in the array bound
1604 // of a VLA.
1605 if (getLangOpts().CPlusPlus11 &&
1606 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1607 Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1608 << ArraySize->getType() << ArraySize->getSourceRange();
1609 return QualType();
1610 }
1611
1612 // C99: an array with an element type that has a non-constant-size is a VLA.
1613 // C99: an array with a non-ICE size is a VLA. We accept any expression
1614 // that we can fold to a non-zero positive value as an extension.
1615 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1616 } else {
1617 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1618 // have a value greater than zero.
1619 if (ConstVal.isSigned() && ConstVal.isNegative()) {
1620 if (Entity)
1621 Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1622 << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1623 else
1624 Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1625 << ArraySize->getSourceRange();
1626 return QualType();
1627 }
1628 if (ConstVal == 0) {
1629 // GCC accepts zero sized static arrays. We allow them when
1630 // we're not in a SFINAE context.
1631 Diag(ArraySize->getLocStart(),
1632 isSFINAEContext()? diag::err_typecheck_zero_array_size
1633 : diag::ext_typecheck_zero_array_size)
1634 << ArraySize->getSourceRange();
1635
1636 if (ASM == ArrayType::Static) {
1637 Diag(ArraySize->getLocStart(),
1638 diag::warn_typecheck_zero_static_array_size)
1639 << ArraySize->getSourceRange();
1640 ASM = ArrayType::Normal;
1641 }
1642 } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1643 !T->isIncompleteType() && !T->isUndeducedType()) {
1644 // Is the array too large?
1645 unsigned ActiveSizeBits
1646 = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1647 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1648 Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1649 << ConstVal.toString(10)
1650 << ArraySize->getSourceRange();
1651 return QualType();
1652 }
1653 }
1654
1655 T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1656 }
1657
1658 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
1659 if (getLangOpts().OpenCL && T->isVariableArrayType()) {
1660 Diag(Loc, diag::err_opencl_vla);
1661 return QualType();
1662 }
1663 // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1664 if (!getLangOpts().C99) {
1665 if (T->isVariableArrayType()) {
1666 // Prohibit the use of non-POD types in VLAs.
1667 QualType BaseT = Context.getBaseElementType(T);
1668 if (!T->isDependentType() &&
1669 !RequireCompleteType(Loc, BaseT, 0) &&
1670 !BaseT.isPODType(Context) &&
1671 !BaseT->isObjCLifetimeType()) {
1672 Diag(Loc, diag::err_vla_non_pod)
1673 << BaseT;
1674 return QualType();
1675 }
1676 // Prohibit the use of VLAs during template argument deduction.
1677 else if (isSFINAEContext()) {
1678 Diag(Loc, diag::err_vla_in_sfinae);
1679 return QualType();
1680 }
1681 // Just extwarn about VLAs.
1682 else
1683 Diag(Loc, diag::ext_vla);
1684 } else if (ASM != ArrayType::Normal || Quals != 0)
1685 Diag(Loc,
1686 getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
1687 : diag::ext_c99_array_usage) << ASM;
1688 }
1689
1690 if (T->isVariableArrayType()) {
1691 // Warn about VLAs for -Wvla.
1692 Diag(Loc, diag::warn_vla_used);
1693 }
1694
1695 return T;
1696 }
1697
1698 /// \brief Build an ext-vector type.
1699 ///
1700 /// Run the required checks for the extended vector type.
BuildExtVectorType(QualType T,Expr * ArraySize,SourceLocation AttrLoc)1701 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1702 SourceLocation AttrLoc) {
1703 // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1704 // in conjunction with complex types (pointers, arrays, functions, etc.).
1705 if (!T->isDependentType() &&
1706 !T->isIntegerType() && !T->isRealFloatingType()) {
1707 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1708 return QualType();
1709 }
1710
1711 if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1712 llvm::APSInt vecSize(32);
1713 if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1714 Diag(AttrLoc, diag::err_attribute_argument_type)
1715 << "ext_vector_type" << AANT_ArgumentIntegerConstant
1716 << ArraySize->getSourceRange();
1717 return QualType();
1718 }
1719
1720 // unlike gcc's vector_size attribute, the size is specified as the
1721 // number of elements, not the number of bytes.
1722 unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1723
1724 if (vectorSize == 0) {
1725 Diag(AttrLoc, diag::err_attribute_zero_size)
1726 << ArraySize->getSourceRange();
1727 return QualType();
1728 }
1729
1730 if (VectorType::isVectorSizeTooLarge(vectorSize)) {
1731 Diag(AttrLoc, diag::err_attribute_size_too_large)
1732 << ArraySize->getSourceRange();
1733 return QualType();
1734 }
1735
1736 return Context.getExtVectorType(T, vectorSize);
1737 }
1738
1739 return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1740 }
1741
CheckFunctionReturnType(QualType T,SourceLocation Loc)1742 bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
1743 if (T->isArrayType() || T->isFunctionType()) {
1744 Diag(Loc, diag::err_func_returning_array_function)
1745 << T->isFunctionType() << T;
1746 return true;
1747 }
1748
1749 // Functions cannot return half FP.
1750 if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
1751 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1752 FixItHint::CreateInsertion(Loc, "*");
1753 return true;
1754 }
1755
1756 // Methods cannot return interface types. All ObjC objects are
1757 // passed by reference.
1758 if (T->isObjCObjectType()) {
1759 Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) << 0 << T;
1760 return 0;
1761 }
1762
1763 return false;
1764 }
1765
BuildFunctionType(QualType T,MutableArrayRef<QualType> ParamTypes,SourceLocation Loc,DeclarationName Entity,const FunctionProtoType::ExtProtoInfo & EPI)1766 QualType Sema::BuildFunctionType(QualType T,
1767 MutableArrayRef<QualType> ParamTypes,
1768 SourceLocation Loc, DeclarationName Entity,
1769 const FunctionProtoType::ExtProtoInfo &EPI) {
1770 bool Invalid = false;
1771
1772 Invalid |= CheckFunctionReturnType(T, Loc);
1773
1774 for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
1775 // FIXME: Loc is too inprecise here, should use proper locations for args.
1776 QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1777 if (ParamType->isVoidType()) {
1778 Diag(Loc, diag::err_param_with_void_type);
1779 Invalid = true;
1780 } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
1781 // Disallow half FP arguments.
1782 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1783 FixItHint::CreateInsertion(Loc, "*");
1784 Invalid = true;
1785 }
1786
1787 ParamTypes[Idx] = ParamType;
1788 }
1789
1790 if (Invalid)
1791 return QualType();
1792
1793 return Context.getFunctionType(T, ParamTypes, EPI);
1794 }
1795
1796 /// \brief Build a member pointer type \c T Class::*.
1797 ///
1798 /// \param T the type to which the member pointer refers.
1799 /// \param Class the class type into which the member pointer points.
1800 /// \param Loc the location where this type begins
1801 /// \param Entity the name of the entity that will have this member pointer type
1802 ///
1803 /// \returns a member pointer type, if successful, or a NULL type if there was
1804 /// an error.
BuildMemberPointerType(QualType T,QualType Class,SourceLocation Loc,DeclarationName Entity)1805 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1806 SourceLocation Loc,
1807 DeclarationName Entity) {
1808 // Verify that we're not building a pointer to pointer to function with
1809 // exception specification.
1810 if (CheckDistantExceptionSpec(T)) {
1811 Diag(Loc, diag::err_distant_exception_spec);
1812
1813 // FIXME: If we're doing this as part of template instantiation,
1814 // we should return immediately.
1815
1816 // Build the type anyway, but use the canonical type so that the
1817 // exception specifiers are stripped off.
1818 T = Context.getCanonicalType(T);
1819 }
1820
1821 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1822 // with reference type, or "cv void."
1823 if (T->isReferenceType()) {
1824 Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1825 << getPrintableNameForEntity(Entity) << T;
1826 return QualType();
1827 }
1828
1829 if (T->isVoidType()) {
1830 Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1831 << getPrintableNameForEntity(Entity);
1832 return QualType();
1833 }
1834
1835 if (!Class->isDependentType() && !Class->isRecordType()) {
1836 Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1837 return QualType();
1838 }
1839
1840 // Adjust the default free function calling convention to the default method
1841 // calling convention.
1842 if (T->isFunctionType())
1843 adjustMemberFunctionCC(T, /*IsStatic=*/false);
1844
1845 return Context.getMemberPointerType(T, Class.getTypePtr());
1846 }
1847
1848 /// \brief Build a block pointer type.
1849 ///
1850 /// \param T The type to which we'll be building a block pointer.
1851 ///
1852 /// \param Loc The source location, used for diagnostics.
1853 ///
1854 /// \param Entity The name of the entity that involves the block pointer
1855 /// type, if known.
1856 ///
1857 /// \returns A suitable block pointer type, if there are no
1858 /// errors. Otherwise, returns a NULL type.
BuildBlockPointerType(QualType T,SourceLocation Loc,DeclarationName Entity)1859 QualType Sema::BuildBlockPointerType(QualType T,
1860 SourceLocation Loc,
1861 DeclarationName Entity) {
1862 if (!T->isFunctionType()) {
1863 Diag(Loc, diag::err_nonfunction_block_type);
1864 return QualType();
1865 }
1866
1867 if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
1868 return QualType();
1869
1870 return Context.getBlockPointerType(T);
1871 }
1872
GetTypeFromParser(ParsedType Ty,TypeSourceInfo ** TInfo)1873 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1874 QualType QT = Ty.get();
1875 if (QT.isNull()) {
1876 if (TInfo) *TInfo = nullptr;
1877 return QualType();
1878 }
1879
1880 TypeSourceInfo *DI = nullptr;
1881 if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1882 QT = LIT->getType();
1883 DI = LIT->getTypeSourceInfo();
1884 }
1885
1886 if (TInfo) *TInfo = DI;
1887 return QT;
1888 }
1889
1890 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1891 Qualifiers::ObjCLifetime ownership,
1892 unsigned chunkIndex);
1893
1894 /// Given that this is the declaration of a parameter under ARC,
1895 /// attempt to infer attributes and such for pointer-to-whatever
1896 /// types.
inferARCWriteback(TypeProcessingState & state,QualType & declSpecType)1897 static void inferARCWriteback(TypeProcessingState &state,
1898 QualType &declSpecType) {
1899 Sema &S = state.getSema();
1900 Declarator &declarator = state.getDeclarator();
1901
1902 // TODO: should we care about decl qualifiers?
1903
1904 // Check whether the declarator has the expected form. We walk
1905 // from the inside out in order to make the block logic work.
1906 unsigned outermostPointerIndex = 0;
1907 bool isBlockPointer = false;
1908 unsigned numPointers = 0;
1909 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1910 unsigned chunkIndex = i;
1911 DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1912 switch (chunk.Kind) {
1913 case DeclaratorChunk::Paren:
1914 // Ignore parens.
1915 break;
1916
1917 case DeclaratorChunk::Reference:
1918 case DeclaratorChunk::Pointer:
1919 // Count the number of pointers. Treat references
1920 // interchangeably as pointers; if they're mis-ordered, normal
1921 // type building will discover that.
1922 outermostPointerIndex = chunkIndex;
1923 numPointers++;
1924 break;
1925
1926 case DeclaratorChunk::BlockPointer:
1927 // If we have a pointer to block pointer, that's an acceptable
1928 // indirect reference; anything else is not an application of
1929 // the rules.
1930 if (numPointers != 1) return;
1931 numPointers++;
1932 outermostPointerIndex = chunkIndex;
1933 isBlockPointer = true;
1934
1935 // We don't care about pointer structure in return values here.
1936 goto done;
1937
1938 case DeclaratorChunk::Array: // suppress if written (id[])?
1939 case DeclaratorChunk::Function:
1940 case DeclaratorChunk::MemberPointer:
1941 return;
1942 }
1943 }
1944 done:
1945
1946 // If we have *one* pointer, then we want to throw the qualifier on
1947 // the declaration-specifiers, which means that it needs to be a
1948 // retainable object type.
1949 if (numPointers == 1) {
1950 // If it's not a retainable object type, the rule doesn't apply.
1951 if (!declSpecType->isObjCRetainableType()) return;
1952
1953 // If it already has lifetime, don't do anything.
1954 if (declSpecType.getObjCLifetime()) return;
1955
1956 // Otherwise, modify the type in-place.
1957 Qualifiers qs;
1958
1959 if (declSpecType->isObjCARCImplicitlyUnretainedType())
1960 qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1961 else
1962 qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1963 declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1964
1965 // If we have *two* pointers, then we want to throw the qualifier on
1966 // the outermost pointer.
1967 } else if (numPointers == 2) {
1968 // If we don't have a block pointer, we need to check whether the
1969 // declaration-specifiers gave us something that will turn into a
1970 // retainable object pointer after we slap the first pointer on it.
1971 if (!isBlockPointer && !declSpecType->isObjCObjectType())
1972 return;
1973
1974 // Look for an explicit lifetime attribute there.
1975 DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1976 if (chunk.Kind != DeclaratorChunk::Pointer &&
1977 chunk.Kind != DeclaratorChunk::BlockPointer)
1978 return;
1979 for (const AttributeList *attr = chunk.getAttrs(); attr;
1980 attr = attr->getNext())
1981 if (attr->getKind() == AttributeList::AT_ObjCOwnership)
1982 return;
1983
1984 transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1985 outermostPointerIndex);
1986
1987 // Any other number of pointers/references does not trigger the rule.
1988 } else return;
1989
1990 // TODO: mark whether we did this inference?
1991 }
1992
diagnoseIgnoredQualifiers(unsigned DiagID,unsigned Quals,SourceLocation FallbackLoc,SourceLocation ConstQualLoc,SourceLocation VolatileQualLoc,SourceLocation RestrictQualLoc,SourceLocation AtomicQualLoc)1993 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
1994 SourceLocation FallbackLoc,
1995 SourceLocation ConstQualLoc,
1996 SourceLocation VolatileQualLoc,
1997 SourceLocation RestrictQualLoc,
1998 SourceLocation AtomicQualLoc) {
1999 if (!Quals)
2000 return;
2001
2002 struct Qual {
2003 unsigned Mask;
2004 const char *Name;
2005 SourceLocation Loc;
2006 } const QualKinds[4] = {
2007 { DeclSpec::TQ_const, "const", ConstQualLoc },
2008 { DeclSpec::TQ_volatile, "volatile", VolatileQualLoc },
2009 { DeclSpec::TQ_restrict, "restrict", RestrictQualLoc },
2010 { DeclSpec::TQ_atomic, "_Atomic", AtomicQualLoc }
2011 };
2012
2013 SmallString<32> QualStr;
2014 unsigned NumQuals = 0;
2015 SourceLocation Loc;
2016 FixItHint FixIts[4];
2017
2018 // Build a string naming the redundant qualifiers.
2019 for (unsigned I = 0; I != 4; ++I) {
2020 if (Quals & QualKinds[I].Mask) {
2021 if (!QualStr.empty()) QualStr += ' ';
2022 QualStr += QualKinds[I].Name;
2023
2024 // If we have a location for the qualifier, offer a fixit.
2025 SourceLocation QualLoc = QualKinds[I].Loc;
2026 if (!QualLoc.isInvalid()) {
2027 FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2028 if (Loc.isInvalid() ||
2029 getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2030 Loc = QualLoc;
2031 }
2032
2033 ++NumQuals;
2034 }
2035 }
2036
2037 Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2038 << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2039 }
2040
2041 // Diagnose pointless type qualifiers on the return type of a function.
diagnoseRedundantReturnTypeQualifiers(Sema & S,QualType RetTy,Declarator & D,unsigned FunctionChunkIndex)2042 static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
2043 Declarator &D,
2044 unsigned FunctionChunkIndex) {
2045 if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
2046 // FIXME: TypeSourceInfo doesn't preserve location information for
2047 // qualifiers.
2048 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2049 RetTy.getLocalCVRQualifiers(),
2050 D.getIdentifierLoc());
2051 return;
2052 }
2053
2054 for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2055 End = D.getNumTypeObjects();
2056 OuterChunkIndex != End; ++OuterChunkIndex) {
2057 DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2058 switch (OuterChunk.Kind) {
2059 case DeclaratorChunk::Paren:
2060 continue;
2061
2062 case DeclaratorChunk::Pointer: {
2063 DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2064 S.diagnoseIgnoredQualifiers(
2065 diag::warn_qual_return_type,
2066 PTI.TypeQuals,
2067 SourceLocation(),
2068 SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2069 SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2070 SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2071 SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc));
2072 return;
2073 }
2074
2075 case DeclaratorChunk::Function:
2076 case DeclaratorChunk::BlockPointer:
2077 case DeclaratorChunk::Reference:
2078 case DeclaratorChunk::Array:
2079 case DeclaratorChunk::MemberPointer:
2080 // FIXME: We can't currently provide an accurate source location and a
2081 // fix-it hint for these.
2082 unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2083 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2084 RetTy.getCVRQualifiers() | AtomicQual,
2085 D.getIdentifierLoc());
2086 return;
2087 }
2088
2089 llvm_unreachable("unknown declarator chunk kind");
2090 }
2091
2092 // If the qualifiers come from a conversion function type, don't diagnose
2093 // them -- they're not necessarily redundant, since such a conversion
2094 // operator can be explicitly called as "x.operator const int()".
2095 if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
2096 return;
2097
2098 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2099 // which are present there.
2100 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2101 D.getDeclSpec().getTypeQualifiers(),
2102 D.getIdentifierLoc(),
2103 D.getDeclSpec().getConstSpecLoc(),
2104 D.getDeclSpec().getVolatileSpecLoc(),
2105 D.getDeclSpec().getRestrictSpecLoc(),
2106 D.getDeclSpec().getAtomicSpecLoc());
2107 }
2108
GetDeclSpecTypeForDeclarator(TypeProcessingState & state,TypeSourceInfo * & ReturnTypeInfo)2109 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
2110 TypeSourceInfo *&ReturnTypeInfo) {
2111 Sema &SemaRef = state.getSema();
2112 Declarator &D = state.getDeclarator();
2113 QualType T;
2114 ReturnTypeInfo = nullptr;
2115
2116 // The TagDecl owned by the DeclSpec.
2117 TagDecl *OwnedTagDecl = nullptr;
2118
2119 bool ContainsPlaceholderType = false;
2120
2121 switch (D.getName().getKind()) {
2122 case UnqualifiedId::IK_ImplicitSelfParam:
2123 case UnqualifiedId::IK_OperatorFunctionId:
2124 case UnqualifiedId::IK_Identifier:
2125 case UnqualifiedId::IK_LiteralOperatorId:
2126 case UnqualifiedId::IK_TemplateId:
2127 T = ConvertDeclSpecToType(state);
2128 ContainsPlaceholderType = D.getDeclSpec().containsPlaceholderType();
2129
2130 if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
2131 OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2132 // Owned declaration is embedded in declarator.
2133 OwnedTagDecl->setEmbeddedInDeclarator(true);
2134 }
2135 break;
2136
2137 case UnqualifiedId::IK_ConstructorName:
2138 case UnqualifiedId::IK_ConstructorTemplateId:
2139 case UnqualifiedId::IK_DestructorName:
2140 // Constructors and destructors don't have return types. Use
2141 // "void" instead.
2142 T = SemaRef.Context.VoidTy;
2143 if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
2144 processTypeAttrs(state, T, TAL_DeclSpec, attrs);
2145 break;
2146
2147 case UnqualifiedId::IK_ConversionFunctionId:
2148 // The result type of a conversion function is the type that it
2149 // converts to.
2150 T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
2151 &ReturnTypeInfo);
2152 ContainsPlaceholderType = T->getContainedAutoType();
2153 break;
2154 }
2155
2156 if (D.getAttributes())
2157 distributeTypeAttrsFromDeclarator(state, T);
2158
2159 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
2160 // In C++11, a function declarator using 'auto' must have a trailing return
2161 // type (this is checked later) and we can skip this. In other languages
2162 // using auto, we need to check regardless.
2163 // C++14 In generic lambdas allow 'auto' in their parameters.
2164 if (ContainsPlaceholderType &&
2165 (!SemaRef.getLangOpts().CPlusPlus11 || !D.isFunctionDeclarator())) {
2166 int Error = -1;
2167
2168 switch (D.getContext()) {
2169 case Declarator::KNRTypeListContext:
2170 llvm_unreachable("K&R type lists aren't allowed in C++");
2171 case Declarator::LambdaExprContext:
2172 llvm_unreachable("Can't specify a type specifier in lambda grammar");
2173 case Declarator::ObjCParameterContext:
2174 case Declarator::ObjCResultContext:
2175 case Declarator::PrototypeContext:
2176 Error = 0;
2177 break;
2178 case Declarator::LambdaExprParameterContext:
2179 if (!(SemaRef.getLangOpts().CPlusPlus14
2180 && D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto))
2181 Error = 14;
2182 break;
2183 case Declarator::MemberContext:
2184 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
2185 break;
2186 switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
2187 case TTK_Enum: llvm_unreachable("unhandled tag kind");
2188 case TTK_Struct: Error = 1; /* Struct member */ break;
2189 case TTK_Union: Error = 2; /* Union member */ break;
2190 case TTK_Class: Error = 3; /* Class member */ break;
2191 case TTK_Interface: Error = 4; /* Interface member */ break;
2192 }
2193 break;
2194 case Declarator::CXXCatchContext:
2195 case Declarator::ObjCCatchContext:
2196 Error = 5; // Exception declaration
2197 break;
2198 case Declarator::TemplateParamContext:
2199 Error = 6; // Template parameter
2200 break;
2201 case Declarator::BlockLiteralContext:
2202 Error = 7; // Block literal
2203 break;
2204 case Declarator::TemplateTypeArgContext:
2205 Error = 8; // Template type argument
2206 break;
2207 case Declarator::AliasDeclContext:
2208 case Declarator::AliasTemplateContext:
2209 Error = 10; // Type alias
2210 break;
2211 case Declarator::TrailingReturnContext:
2212 if (!SemaRef.getLangOpts().CPlusPlus14)
2213 Error = 11; // Function return type
2214 break;
2215 case Declarator::ConversionIdContext:
2216 if (!SemaRef.getLangOpts().CPlusPlus14)
2217 Error = 12; // conversion-type-id
2218 break;
2219 case Declarator::TypeNameContext:
2220 Error = 13; // Generic
2221 break;
2222 case Declarator::FileContext:
2223 case Declarator::BlockContext:
2224 case Declarator::ForContext:
2225 case Declarator::ConditionContext:
2226 case Declarator::CXXNewContext:
2227 break;
2228 }
2229
2230 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2231 Error = 9;
2232
2233 // In Objective-C it is an error to use 'auto' on a function declarator.
2234 if (D.isFunctionDeclarator())
2235 Error = 11;
2236
2237 // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
2238 // contains a trailing return type. That is only legal at the outermost
2239 // level. Check all declarator chunks (outermost first) anyway, to give
2240 // better diagnostics.
2241 if (SemaRef.getLangOpts().CPlusPlus11 && Error != -1) {
2242 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2243 unsigned chunkIndex = e - i - 1;
2244 state.setCurrentChunkIndex(chunkIndex);
2245 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2246 if (DeclType.Kind == DeclaratorChunk::Function) {
2247 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2248 if (FTI.hasTrailingReturnType()) {
2249 Error = -1;
2250 break;
2251 }
2252 }
2253 }
2254 }
2255
2256 SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
2257 if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
2258 AutoRange = D.getName().getSourceRange();
2259
2260 if (Error != -1) {
2261 const bool IsDeclTypeAuto =
2262 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_decltype_auto;
2263 SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
2264 << IsDeclTypeAuto << Error << AutoRange;
2265 T = SemaRef.Context.IntTy;
2266 D.setInvalidType(true);
2267 } else
2268 SemaRef.Diag(AutoRange.getBegin(),
2269 diag::warn_cxx98_compat_auto_type_specifier)
2270 << AutoRange;
2271 }
2272
2273 if (SemaRef.getLangOpts().CPlusPlus &&
2274 OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
2275 // Check the contexts where C++ forbids the declaration of a new class
2276 // or enumeration in a type-specifier-seq.
2277 switch (D.getContext()) {
2278 case Declarator::TrailingReturnContext:
2279 // Class and enumeration definitions are syntactically not allowed in
2280 // trailing return types.
2281 llvm_unreachable("parser should not have allowed this");
2282 break;
2283 case Declarator::FileContext:
2284 case Declarator::MemberContext:
2285 case Declarator::BlockContext:
2286 case Declarator::ForContext:
2287 case Declarator::BlockLiteralContext:
2288 case Declarator::LambdaExprContext:
2289 // C++11 [dcl.type]p3:
2290 // A type-specifier-seq shall not define a class or enumeration unless
2291 // it appears in the type-id of an alias-declaration (7.1.3) that is not
2292 // the declaration of a template-declaration.
2293 case Declarator::AliasDeclContext:
2294 break;
2295 case Declarator::AliasTemplateContext:
2296 SemaRef.Diag(OwnedTagDecl->getLocation(),
2297 diag::err_type_defined_in_alias_template)
2298 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2299 D.setInvalidType(true);
2300 break;
2301 case Declarator::TypeNameContext:
2302 case Declarator::ConversionIdContext:
2303 case Declarator::TemplateParamContext:
2304 case Declarator::CXXNewContext:
2305 case Declarator::CXXCatchContext:
2306 case Declarator::ObjCCatchContext:
2307 case Declarator::TemplateTypeArgContext:
2308 SemaRef.Diag(OwnedTagDecl->getLocation(),
2309 diag::err_type_defined_in_type_specifier)
2310 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2311 D.setInvalidType(true);
2312 break;
2313 case Declarator::PrototypeContext:
2314 case Declarator::LambdaExprParameterContext:
2315 case Declarator::ObjCParameterContext:
2316 case Declarator::ObjCResultContext:
2317 case Declarator::KNRTypeListContext:
2318 // C++ [dcl.fct]p6:
2319 // Types shall not be defined in return or parameter types.
2320 SemaRef.Diag(OwnedTagDecl->getLocation(),
2321 diag::err_type_defined_in_param_type)
2322 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2323 D.setInvalidType(true);
2324 break;
2325 case Declarator::ConditionContext:
2326 // C++ 6.4p2:
2327 // The type-specifier-seq shall not contain typedef and shall not declare
2328 // a new class or enumeration.
2329 SemaRef.Diag(OwnedTagDecl->getLocation(),
2330 diag::err_type_defined_in_condition);
2331 D.setInvalidType(true);
2332 break;
2333 }
2334 }
2335
2336 assert(!T.isNull() && "This function should not return a null type");
2337 return T;
2338 }
2339
2340 /// Produce an appropriate diagnostic for an ambiguity between a function
2341 /// declarator and a C++ direct-initializer.
warnAboutAmbiguousFunction(Sema & S,Declarator & D,DeclaratorChunk & DeclType,QualType RT)2342 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
2343 DeclaratorChunk &DeclType, QualType RT) {
2344 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2345 assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
2346
2347 // If the return type is void there is no ambiguity.
2348 if (RT->isVoidType())
2349 return;
2350
2351 // An initializer for a non-class type can have at most one argument.
2352 if (!RT->isRecordType() && FTI.NumParams > 1)
2353 return;
2354
2355 // An initializer for a reference must have exactly one argument.
2356 if (RT->isReferenceType() && FTI.NumParams != 1)
2357 return;
2358
2359 // Only warn if this declarator is declaring a function at block scope, and
2360 // doesn't have a storage class (such as 'extern') specified.
2361 if (!D.isFunctionDeclarator() ||
2362 D.getFunctionDefinitionKind() != FDK_Declaration ||
2363 !S.CurContext->isFunctionOrMethod() ||
2364 D.getDeclSpec().getStorageClassSpec()
2365 != DeclSpec::SCS_unspecified)
2366 return;
2367
2368 // Inside a condition, a direct initializer is not permitted. We allow one to
2369 // be parsed in order to give better diagnostics in condition parsing.
2370 if (D.getContext() == Declarator::ConditionContext)
2371 return;
2372
2373 SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
2374
2375 S.Diag(DeclType.Loc,
2376 FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
2377 : diag::warn_empty_parens_are_function_decl)
2378 << ParenRange;
2379
2380 // If the declaration looks like:
2381 // T var1,
2382 // f();
2383 // and name lookup finds a function named 'f', then the ',' was
2384 // probably intended to be a ';'.
2385 if (!D.isFirstDeclarator() && D.getIdentifier()) {
2386 FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
2387 FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
2388 if (Comma.getFileID() != Name.getFileID() ||
2389 Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
2390 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
2391 Sema::LookupOrdinaryName);
2392 if (S.LookupName(Result, S.getCurScope()))
2393 S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
2394 << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
2395 << D.getIdentifier();
2396 }
2397 }
2398
2399 if (FTI.NumParams > 0) {
2400 // For a declaration with parameters, eg. "T var(T());", suggest adding
2401 // parens around the first parameter to turn the declaration into a
2402 // variable declaration.
2403 SourceRange Range = FTI.Params[0].Param->getSourceRange();
2404 SourceLocation B = Range.getBegin();
2405 SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
2406 // FIXME: Maybe we should suggest adding braces instead of parens
2407 // in C++11 for classes that don't have an initializer_list constructor.
2408 S.Diag(B, diag::note_additional_parens_for_variable_declaration)
2409 << FixItHint::CreateInsertion(B, "(")
2410 << FixItHint::CreateInsertion(E, ")");
2411 } else {
2412 // For a declaration without parameters, eg. "T var();", suggest replacing
2413 // the parens with an initializer to turn the declaration into a variable
2414 // declaration.
2415 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
2416
2417 // Empty parens mean value-initialization, and no parens mean
2418 // default initialization. These are equivalent if the default
2419 // constructor is user-provided or if zero-initialization is a
2420 // no-op.
2421 if (RD && RD->hasDefinition() &&
2422 (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
2423 S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
2424 << FixItHint::CreateRemoval(ParenRange);
2425 else {
2426 std::string Init =
2427 S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
2428 if (Init.empty() && S.LangOpts.CPlusPlus11)
2429 Init = "{}";
2430 if (!Init.empty())
2431 S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
2432 << FixItHint::CreateReplacement(ParenRange, Init);
2433 }
2434 }
2435 }
2436
2437 /// Helper for figuring out the default CC for a function declarator type. If
2438 /// this is the outermost chunk, then we can determine the CC from the
2439 /// declarator context. If not, then this could be either a member function
2440 /// type or normal function type.
2441 static CallingConv
getCCForDeclaratorChunk(Sema & S,Declarator & D,const DeclaratorChunk::FunctionTypeInfo & FTI,unsigned ChunkIndex)2442 getCCForDeclaratorChunk(Sema &S, Declarator &D,
2443 const DeclaratorChunk::FunctionTypeInfo &FTI,
2444 unsigned ChunkIndex) {
2445 assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
2446
2447 bool IsCXXInstanceMethod = false;
2448
2449 if (S.getLangOpts().CPlusPlus) {
2450 // Look inwards through parentheses to see if this chunk will form a
2451 // member pointer type or if we're the declarator. Any type attributes
2452 // between here and there will override the CC we choose here.
2453 unsigned I = ChunkIndex;
2454 bool FoundNonParen = false;
2455 while (I && !FoundNonParen) {
2456 --I;
2457 if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
2458 FoundNonParen = true;
2459 }
2460
2461 if (FoundNonParen) {
2462 // If we're not the declarator, we're a regular function type unless we're
2463 // in a member pointer.
2464 IsCXXInstanceMethod =
2465 D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
2466 } else {
2467 // We're the innermost decl chunk, so must be a function declarator.
2468 assert(D.isFunctionDeclarator());
2469
2470 // If we're inside a record, we're declaring a method, but it could be
2471 // explicitly or implicitly static.
2472 IsCXXInstanceMethod =
2473 D.isFirstDeclarationOfMember() &&
2474 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
2475 !D.isStaticMember();
2476 }
2477 }
2478
2479 return S.Context.getDefaultCallingConvention(FTI.isVariadic,
2480 IsCXXInstanceMethod);
2481 }
2482
GetFullTypeForDeclarator(TypeProcessingState & state,QualType declSpecType,TypeSourceInfo * TInfo)2483 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2484 QualType declSpecType,
2485 TypeSourceInfo *TInfo) {
2486 // The TypeSourceInfo that this function returns will not be a null type.
2487 // If there is an error, this function will fill in a dummy type as fallback.
2488 QualType T = declSpecType;
2489 Declarator &D = state.getDeclarator();
2490 Sema &S = state.getSema();
2491 ASTContext &Context = S.Context;
2492 const LangOptions &LangOpts = S.getLangOpts();
2493
2494 // The name we're declaring, if any.
2495 DeclarationName Name;
2496 if (D.getIdentifier())
2497 Name = D.getIdentifier();
2498
2499 // Does this declaration declare a typedef-name?
2500 bool IsTypedefName =
2501 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2502 D.getContext() == Declarator::AliasDeclContext ||
2503 D.getContext() == Declarator::AliasTemplateContext;
2504
2505 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2506 bool IsQualifiedFunction = T->isFunctionProtoType() &&
2507 (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2508 T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2509
2510 // If T is 'decltype(auto)', the only declarators we can have are parens
2511 // and at most one function declarator if this is a function declaration.
2512 if (const AutoType *AT = T->getAs<AutoType>()) {
2513 if (AT->isDecltypeAuto()) {
2514 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2515 unsigned Index = E - I - 1;
2516 DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
2517 unsigned DiagId = diag::err_decltype_auto_compound_type;
2518 unsigned DiagKind = 0;
2519 switch (DeclChunk.Kind) {
2520 case DeclaratorChunk::Paren:
2521 continue;
2522 case DeclaratorChunk::Function: {
2523 unsigned FnIndex;
2524 if (D.isFunctionDeclarationContext() &&
2525 D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
2526 continue;
2527 DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
2528 break;
2529 }
2530 case DeclaratorChunk::Pointer:
2531 case DeclaratorChunk::BlockPointer:
2532 case DeclaratorChunk::MemberPointer:
2533 DiagKind = 0;
2534 break;
2535 case DeclaratorChunk::Reference:
2536 DiagKind = 1;
2537 break;
2538 case DeclaratorChunk::Array:
2539 DiagKind = 2;
2540 break;
2541 }
2542
2543 S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
2544 D.setInvalidType(true);
2545 break;
2546 }
2547 }
2548 }
2549
2550 // Walk the DeclTypeInfo, building the recursive type as we go.
2551 // DeclTypeInfos are ordered from the identifier out, which is
2552 // opposite of what we want :).
2553 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2554 unsigned chunkIndex = e - i - 1;
2555 state.setCurrentChunkIndex(chunkIndex);
2556 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2557 IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
2558 switch (DeclType.Kind) {
2559 case DeclaratorChunk::Paren:
2560 T = S.BuildParenType(T);
2561 break;
2562 case DeclaratorChunk::BlockPointer:
2563 // If blocks are disabled, emit an error.
2564 if (!LangOpts.Blocks)
2565 S.Diag(DeclType.Loc, diag::err_blocks_disable);
2566
2567 T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2568 if (DeclType.Cls.TypeQuals)
2569 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2570 break;
2571 case DeclaratorChunk::Pointer:
2572 // Verify that we're not building a pointer to pointer to function with
2573 // exception specification.
2574 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2575 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2576 D.setInvalidType(true);
2577 // Build the type anyway.
2578 }
2579 if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2580 T = Context.getObjCObjectPointerType(T);
2581 if (DeclType.Ptr.TypeQuals)
2582 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2583 break;
2584 }
2585 T = S.BuildPointerType(T, DeclType.Loc, Name);
2586 if (DeclType.Ptr.TypeQuals)
2587 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2588
2589 break;
2590 case DeclaratorChunk::Reference: {
2591 // Verify that we're not building a reference to pointer to function with
2592 // exception specification.
2593 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2594 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2595 D.setInvalidType(true);
2596 // Build the type anyway.
2597 }
2598 T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2599
2600 if (DeclType.Ref.HasRestrict)
2601 T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2602 break;
2603 }
2604 case DeclaratorChunk::Array: {
2605 // Verify that we're not building an array of pointers to function with
2606 // exception specification.
2607 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2608 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2609 D.setInvalidType(true);
2610 // Build the type anyway.
2611 }
2612 DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2613 Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2614 ArrayType::ArraySizeModifier ASM;
2615 if (ATI.isStar)
2616 ASM = ArrayType::Star;
2617 else if (ATI.hasStatic)
2618 ASM = ArrayType::Static;
2619 else
2620 ASM = ArrayType::Normal;
2621 if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2622 // FIXME: This check isn't quite right: it allows star in prototypes
2623 // for function definitions, and disallows some edge cases detailed
2624 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2625 S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2626 ASM = ArrayType::Normal;
2627 D.setInvalidType(true);
2628 }
2629
2630 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
2631 // shall appear only in a declaration of a function parameter with an
2632 // array type, ...
2633 if (ASM == ArrayType::Static || ATI.TypeQuals) {
2634 if (!(D.isPrototypeContext() ||
2635 D.getContext() == Declarator::KNRTypeListContext)) {
2636 S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
2637 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2638 // Remove the 'static' and the type qualifiers.
2639 if (ASM == ArrayType::Static)
2640 ASM = ArrayType::Normal;
2641 ATI.TypeQuals = 0;
2642 D.setInvalidType(true);
2643 }
2644
2645 // C99 6.7.5.2p1: ... and then only in the outermost array type
2646 // derivation.
2647 unsigned x = chunkIndex;
2648 while (x != 0) {
2649 // Walk outwards along the declarator chunks.
2650 x--;
2651 const DeclaratorChunk &DC = D.getTypeObject(x);
2652 switch (DC.Kind) {
2653 case DeclaratorChunk::Paren:
2654 continue;
2655 case DeclaratorChunk::Array:
2656 case DeclaratorChunk::Pointer:
2657 case DeclaratorChunk::Reference:
2658 case DeclaratorChunk::MemberPointer:
2659 S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
2660 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2661 if (ASM == ArrayType::Static)
2662 ASM = ArrayType::Normal;
2663 ATI.TypeQuals = 0;
2664 D.setInvalidType(true);
2665 break;
2666 case DeclaratorChunk::Function:
2667 case DeclaratorChunk::BlockPointer:
2668 // These are invalid anyway, so just ignore.
2669 break;
2670 }
2671 }
2672 }
2673 const AutoType *AT = T->getContainedAutoType();
2674 // Allow arrays of auto if we are a generic lambda parameter.
2675 // i.e. [](auto (&array)[5]) { return array[0]; }; OK
2676 if (AT && D.getContext() != Declarator::LambdaExprParameterContext) {
2677 // We've already diagnosed this for decltype(auto).
2678 if (!AT->isDecltypeAuto())
2679 S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
2680 << getPrintableNameForEntity(Name) << T;
2681 T = QualType();
2682 break;
2683 }
2684
2685 T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2686 SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2687 break;
2688 }
2689 case DeclaratorChunk::Function: {
2690 // If the function declarator has a prototype (i.e. it is not () and
2691 // does not have a K&R-style identifier list), then the arguments are part
2692 // of the type, otherwise the argument list is ().
2693 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2694 IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2695
2696 // Check for auto functions and trailing return type and adjust the
2697 // return type accordingly.
2698 if (!D.isInvalidType()) {
2699 // trailing-return-type is only required if we're declaring a function,
2700 // and not, for instance, a pointer to a function.
2701 if (D.getDeclSpec().containsPlaceholderType() &&
2702 !FTI.hasTrailingReturnType() && chunkIndex == 0 &&
2703 !S.getLangOpts().CPlusPlus14) {
2704 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2705 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
2706 ? diag::err_auto_missing_trailing_return
2707 : diag::err_deduced_return_type);
2708 T = Context.IntTy;
2709 D.setInvalidType(true);
2710 } else if (FTI.hasTrailingReturnType()) {
2711 // T must be exactly 'auto' at this point. See CWG issue 681.
2712 if (isa<ParenType>(T)) {
2713 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2714 diag::err_trailing_return_in_parens)
2715 << T << D.getDeclSpec().getSourceRange();
2716 D.setInvalidType(true);
2717 } else if (D.getContext() != Declarator::LambdaExprContext &&
2718 (T.hasQualifiers() || !isa<AutoType>(T) ||
2719 cast<AutoType>(T)->isDecltypeAuto())) {
2720 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2721 diag::err_trailing_return_without_auto)
2722 << T << D.getDeclSpec().getSourceRange();
2723 D.setInvalidType(true);
2724 }
2725 T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
2726 if (T.isNull()) {
2727 // An error occurred parsing the trailing return type.
2728 T = Context.IntTy;
2729 D.setInvalidType(true);
2730 }
2731 }
2732 }
2733
2734 // C99 6.7.5.3p1: The return type may not be a function or array type.
2735 // For conversion functions, we'll diagnose this particular error later.
2736 if ((T->isArrayType() || T->isFunctionType()) &&
2737 (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2738 unsigned diagID = diag::err_func_returning_array_function;
2739 // Last processing chunk in block context means this function chunk
2740 // represents the block.
2741 if (chunkIndex == 0 &&
2742 D.getContext() == Declarator::BlockLiteralContext)
2743 diagID = diag::err_block_returning_array_function;
2744 S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2745 T = Context.IntTy;
2746 D.setInvalidType(true);
2747 }
2748
2749 // Do not allow returning half FP value.
2750 // FIXME: This really should be in BuildFunctionType.
2751 if (T->isHalfType()) {
2752 if (S.getLangOpts().OpenCL) {
2753 if (!S.getOpenCLOptions().cl_khr_fp16) {
2754 S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
2755 D.setInvalidType(true);
2756 }
2757 } else if (!S.getLangOpts().HalfArgsAndReturns) {
2758 S.Diag(D.getIdentifierLoc(),
2759 diag::err_parameters_retval_cannot_have_fp16_type) << 1;
2760 D.setInvalidType(true);
2761 }
2762 }
2763
2764 // Methods cannot return interface types. All ObjC objects are
2765 // passed by reference.
2766 if (T->isObjCObjectType()) {
2767 SourceLocation DiagLoc, FixitLoc;
2768 if (TInfo) {
2769 DiagLoc = TInfo->getTypeLoc().getLocStart();
2770 FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getLocEnd());
2771 } else {
2772 DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
2773 FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getLocEnd());
2774 }
2775 S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
2776 << 0 << T
2777 << FixItHint::CreateInsertion(FixitLoc, "*");
2778
2779 T = Context.getObjCObjectPointerType(T);
2780 if (TInfo) {
2781 TypeLocBuilder TLB;
2782 TLB.pushFullCopy(TInfo->getTypeLoc());
2783 ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
2784 TLoc.setStarLoc(FixitLoc);
2785 TInfo = TLB.getTypeSourceInfo(Context, T);
2786 }
2787
2788 D.setInvalidType(true);
2789 }
2790
2791 // cv-qualifiers on return types are pointless except when the type is a
2792 // class type in C++.
2793 if ((T.getCVRQualifiers() || T->isAtomicType()) &&
2794 !(S.getLangOpts().CPlusPlus &&
2795 (T->isDependentType() || T->isRecordType())))
2796 diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
2797
2798 // Objective-C ARC ownership qualifiers are ignored on the function
2799 // return type (by type canonicalization). Complain if this attribute
2800 // was written here.
2801 if (T.getQualifiers().hasObjCLifetime()) {
2802 SourceLocation AttrLoc;
2803 if (chunkIndex + 1 < D.getNumTypeObjects()) {
2804 DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2805 for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
2806 Attr; Attr = Attr->getNext()) {
2807 if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2808 AttrLoc = Attr->getLoc();
2809 break;
2810 }
2811 }
2812 }
2813 if (AttrLoc.isInvalid()) {
2814 for (const AttributeList *Attr
2815 = D.getDeclSpec().getAttributes().getList();
2816 Attr; Attr = Attr->getNext()) {
2817 if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2818 AttrLoc = Attr->getLoc();
2819 break;
2820 }
2821 }
2822 }
2823
2824 if (AttrLoc.isValid()) {
2825 // The ownership attributes are almost always written via
2826 // the predefined
2827 // __strong/__weak/__autoreleasing/__unsafe_unretained.
2828 if (AttrLoc.isMacroID())
2829 AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
2830
2831 S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
2832 << T.getQualifiers().getObjCLifetime();
2833 }
2834 }
2835
2836 if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
2837 // C++ [dcl.fct]p6:
2838 // Types shall not be defined in return or parameter types.
2839 TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2840 S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2841 << Context.getTypeDeclType(Tag);
2842 }
2843
2844 // Exception specs are not allowed in typedefs. Complain, but add it
2845 // anyway.
2846 if (IsTypedefName && FTI.getExceptionSpecType())
2847 S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2848 << (D.getContext() == Declarator::AliasDeclContext ||
2849 D.getContext() == Declarator::AliasTemplateContext);
2850
2851 // If we see "T var();" or "T var(T());" at block scope, it is probably
2852 // an attempt to initialize a variable, not a function declaration.
2853 if (FTI.isAmbiguous)
2854 warnAboutAmbiguousFunction(S, D, DeclType, T);
2855
2856 FunctionType::ExtInfo EI(getCCForDeclaratorChunk(S, D, FTI, chunkIndex));
2857
2858 if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2859 // Simple void foo(), where the incoming T is the result type.
2860 T = Context.getFunctionNoProtoType(T, EI);
2861 } else {
2862 // We allow a zero-parameter variadic function in C if the
2863 // function is marked with the "overloadable" attribute. Scan
2864 // for this attribute now.
2865 if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
2866 bool Overloadable = false;
2867 for (const AttributeList *Attrs = D.getAttributes();
2868 Attrs; Attrs = Attrs->getNext()) {
2869 if (Attrs->getKind() == AttributeList::AT_Overloadable) {
2870 Overloadable = true;
2871 break;
2872 }
2873 }
2874
2875 if (!Overloadable)
2876 S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
2877 }
2878
2879 if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
2880 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2881 // definition.
2882 S.Diag(FTI.Params[0].IdentLoc,
2883 diag::err_ident_list_in_fn_declaration);
2884 D.setInvalidType(true);
2885 // Recover by creating a K&R-style function type.
2886 T = Context.getFunctionNoProtoType(T, EI);
2887 break;
2888 }
2889
2890 FunctionProtoType::ExtProtoInfo EPI;
2891 EPI.ExtInfo = EI;
2892 EPI.Variadic = FTI.isVariadic;
2893 EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
2894 EPI.TypeQuals = FTI.TypeQuals;
2895 EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2896 : FTI.RefQualifierIsLValueRef? RQ_LValue
2897 : RQ_RValue;
2898
2899 // Otherwise, we have a function with a parameter list that is
2900 // potentially variadic.
2901 SmallVector<QualType, 16> ParamTys;
2902 ParamTys.reserve(FTI.NumParams);
2903
2904 SmallVector<bool, 16> ConsumedParameters;
2905 ConsumedParameters.reserve(FTI.NumParams);
2906 bool HasAnyConsumedParameters = false;
2907
2908 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
2909 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
2910 QualType ParamTy = Param->getType();
2911 assert(!ParamTy.isNull() && "Couldn't parse type?");
2912
2913 // Look for 'void'. void is allowed only as a single parameter to a
2914 // function with no other parameters (C99 6.7.5.3p10). We record
2915 // int(void) as a FunctionProtoType with an empty parameter list.
2916 if (ParamTy->isVoidType()) {
2917 // If this is something like 'float(int, void)', reject it. 'void'
2918 // is an incomplete type (C99 6.2.5p19) and function decls cannot
2919 // have parameters of incomplete type.
2920 if (FTI.NumParams != 1 || FTI.isVariadic) {
2921 S.Diag(DeclType.Loc, diag::err_void_only_param);
2922 ParamTy = Context.IntTy;
2923 Param->setType(ParamTy);
2924 } else if (FTI.Params[i].Ident) {
2925 // Reject, but continue to parse 'int(void abc)'.
2926 S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
2927 ParamTy = Context.IntTy;
2928 Param->setType(ParamTy);
2929 } else {
2930 // Reject, but continue to parse 'float(const void)'.
2931 if (ParamTy.hasQualifiers())
2932 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2933
2934 // Do not add 'void' to the list.
2935 break;
2936 }
2937 } else if (ParamTy->isHalfType()) {
2938 // Disallow half FP parameters.
2939 // FIXME: This really should be in BuildFunctionType.
2940 if (S.getLangOpts().OpenCL) {
2941 if (!S.getOpenCLOptions().cl_khr_fp16) {
2942 S.Diag(Param->getLocation(),
2943 diag::err_opencl_half_param) << ParamTy;
2944 D.setInvalidType();
2945 Param->setInvalidDecl();
2946 }
2947 } else if (!S.getLangOpts().HalfArgsAndReturns) {
2948 S.Diag(Param->getLocation(),
2949 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
2950 D.setInvalidType();
2951 }
2952 } else if (!FTI.hasPrototype) {
2953 if (ParamTy->isPromotableIntegerType()) {
2954 ParamTy = Context.getPromotedIntegerType(ParamTy);
2955 Param->setKNRPromoted(true);
2956 } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
2957 if (BTy->getKind() == BuiltinType::Float) {
2958 ParamTy = Context.DoubleTy;
2959 Param->setKNRPromoted(true);
2960 }
2961 }
2962 }
2963
2964 if (LangOpts.ObjCAutoRefCount) {
2965 bool Consumed = Param->hasAttr<NSConsumedAttr>();
2966 ConsumedParameters.push_back(Consumed);
2967 HasAnyConsumedParameters |= Consumed;
2968 }
2969
2970 ParamTys.push_back(ParamTy);
2971 }
2972
2973 if (HasAnyConsumedParameters)
2974 EPI.ConsumedParameters = ConsumedParameters.data();
2975
2976 SmallVector<QualType, 4> Exceptions;
2977 SmallVector<ParsedType, 2> DynamicExceptions;
2978 SmallVector<SourceRange, 2> DynamicExceptionRanges;
2979 Expr *NoexceptExpr = nullptr;
2980
2981 if (FTI.getExceptionSpecType() == EST_Dynamic) {
2982 // FIXME: It's rather inefficient to have to split into two vectors
2983 // here.
2984 unsigned N = FTI.NumExceptions;
2985 DynamicExceptions.reserve(N);
2986 DynamicExceptionRanges.reserve(N);
2987 for (unsigned I = 0; I != N; ++I) {
2988 DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
2989 DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
2990 }
2991 } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2992 NoexceptExpr = FTI.NoexceptExpr;
2993 }
2994
2995 S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
2996 FTI.getExceptionSpecType(),
2997 DynamicExceptions,
2998 DynamicExceptionRanges,
2999 NoexceptExpr,
3000 Exceptions,
3001 EPI.ExceptionSpec);
3002
3003 T = Context.getFunctionType(T, ParamTys, EPI);
3004 }
3005
3006 break;
3007 }
3008 case DeclaratorChunk::MemberPointer:
3009 // The scope spec must refer to a class, or be dependent.
3010 CXXScopeSpec &SS = DeclType.Mem.Scope();
3011 QualType ClsType;
3012 if (SS.isInvalid()) {
3013 // Avoid emitting extra errors if we already errored on the scope.
3014 D.setInvalidType(true);
3015 } else if (S.isDependentScopeSpecifier(SS) ||
3016 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
3017 NestedNameSpecifier *NNS = SS.getScopeRep();
3018 NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
3019 switch (NNS->getKind()) {
3020 case NestedNameSpecifier::Identifier:
3021 ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
3022 NNS->getAsIdentifier());
3023 break;
3024
3025 case NestedNameSpecifier::Namespace:
3026 case NestedNameSpecifier::NamespaceAlias:
3027 case NestedNameSpecifier::Global:
3028 case NestedNameSpecifier::Super:
3029 llvm_unreachable("Nested-name-specifier must name a type");
3030
3031 case NestedNameSpecifier::TypeSpec:
3032 case NestedNameSpecifier::TypeSpecWithTemplate:
3033 ClsType = QualType(NNS->getAsType(), 0);
3034 // Note: if the NNS has a prefix and ClsType is a nondependent
3035 // TemplateSpecializationType, then the NNS prefix is NOT included
3036 // in ClsType; hence we wrap ClsType into an ElaboratedType.
3037 // NOTE: in particular, no wrap occurs if ClsType already is an
3038 // Elaborated, DependentName, or DependentTemplateSpecialization.
3039 if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
3040 ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
3041 break;
3042 }
3043 } else {
3044 S.Diag(DeclType.Mem.Scope().getBeginLoc(),
3045 diag::err_illegal_decl_mempointer_in_nonclass)
3046 << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
3047 << DeclType.Mem.Scope().getRange();
3048 D.setInvalidType(true);
3049 }
3050
3051 if (!ClsType.isNull())
3052 T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
3053 D.getIdentifier());
3054 if (T.isNull()) {
3055 T = Context.IntTy;
3056 D.setInvalidType(true);
3057 } else if (DeclType.Mem.TypeQuals) {
3058 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
3059 }
3060 break;
3061 }
3062
3063 if (T.isNull()) {
3064 D.setInvalidType(true);
3065 T = Context.IntTy;
3066 }
3067
3068 // See if there are any attributes on this declarator chunk.
3069 if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
3070 processTypeAttrs(state, T, TAL_DeclChunk, attrs);
3071 }
3072
3073 assert(!T.isNull() && "T must not be null after this point");
3074
3075 if (LangOpts.CPlusPlus && T->isFunctionType()) {
3076 const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
3077 assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
3078
3079 // C++ 8.3.5p4:
3080 // A cv-qualifier-seq shall only be part of the function type
3081 // for a nonstatic member function, the function type to which a pointer
3082 // to member refers, or the top-level function type of a function typedef
3083 // declaration.
3084 //
3085 // Core issue 547 also allows cv-qualifiers on function types that are
3086 // top-level template type arguments.
3087 bool FreeFunction;
3088 if (!D.getCXXScopeSpec().isSet()) {
3089 FreeFunction = ((D.getContext() != Declarator::MemberContext &&
3090 D.getContext() != Declarator::LambdaExprContext) ||
3091 D.getDeclSpec().isFriendSpecified());
3092 } else {
3093 DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
3094 FreeFunction = (DC && !DC->isRecord());
3095 }
3096
3097 // C++11 [dcl.fct]p6 (w/DR1417):
3098 // An attempt to specify a function type with a cv-qualifier-seq or a
3099 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
3100 // - the function type for a non-static member function,
3101 // - the function type to which a pointer to member refers,
3102 // - the top-level function type of a function typedef declaration or
3103 // alias-declaration,
3104 // - the type-id in the default argument of a type-parameter, or
3105 // - the type-id of a template-argument for a type-parameter
3106 //
3107 // FIXME: Checking this here is insufficient. We accept-invalid on:
3108 //
3109 // template<typename T> struct S { void f(T); };
3110 // S<int() const> s;
3111 //
3112 // ... for instance.
3113 if (IsQualifiedFunction &&
3114 !(!FreeFunction &&
3115 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
3116 !IsTypedefName &&
3117 D.getContext() != Declarator::TemplateTypeArgContext) {
3118 SourceLocation Loc = D.getLocStart();
3119 SourceRange RemovalRange;
3120 unsigned I;
3121 if (D.isFunctionDeclarator(I)) {
3122 SmallVector<SourceLocation, 4> RemovalLocs;
3123 const DeclaratorChunk &Chunk = D.getTypeObject(I);
3124 assert(Chunk.Kind == DeclaratorChunk::Function);
3125 if (Chunk.Fun.hasRefQualifier())
3126 RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
3127 if (Chunk.Fun.TypeQuals & Qualifiers::Const)
3128 RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
3129 if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
3130 RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
3131 if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
3132 RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
3133 if (!RemovalLocs.empty()) {
3134 std::sort(RemovalLocs.begin(), RemovalLocs.end(),
3135 BeforeThanCompare<SourceLocation>(S.getSourceManager()));
3136 RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
3137 Loc = RemovalLocs.front();
3138 }
3139 }
3140
3141 S.Diag(Loc, diag::err_invalid_qualified_function_type)
3142 << FreeFunction << D.isFunctionDeclarator() << T
3143 << getFunctionQualifiersAsString(FnTy)
3144 << FixItHint::CreateRemoval(RemovalRange);
3145
3146 // Strip the cv-qualifiers and ref-qualifiers from the type.
3147 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
3148 EPI.TypeQuals = 0;
3149 EPI.RefQualifier = RQ_None;
3150
3151 T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
3152 EPI);
3153 // Rebuild any parens around the identifier in the function type.
3154 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3155 if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
3156 break;
3157 T = S.BuildParenType(T);
3158 }
3159 }
3160 }
3161
3162 // Apply any undistributed attributes from the declarator.
3163 if (AttributeList *attrs = D.getAttributes())
3164 processTypeAttrs(state, T, TAL_DeclName, attrs);
3165
3166 // Diagnose any ignored type attributes.
3167 state.diagnoseIgnoredTypeAttrs(T);
3168
3169 // C++0x [dcl.constexpr]p9:
3170 // A constexpr specifier used in an object declaration declares the object
3171 // as const.
3172 if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
3173 T.addConst();
3174 }
3175
3176 // If there was an ellipsis in the declarator, the declaration declares a
3177 // parameter pack whose type may be a pack expansion type.
3178 if (D.hasEllipsis()) {
3179 // C++0x [dcl.fct]p13:
3180 // A declarator-id or abstract-declarator containing an ellipsis shall
3181 // only be used in a parameter-declaration. Such a parameter-declaration
3182 // is a parameter pack (14.5.3). [...]
3183 switch (D.getContext()) {
3184 case Declarator::PrototypeContext:
3185 case Declarator::LambdaExprParameterContext:
3186 // C++0x [dcl.fct]p13:
3187 // [...] When it is part of a parameter-declaration-clause, the
3188 // parameter pack is a function parameter pack (14.5.3). The type T
3189 // of the declarator-id of the function parameter pack shall contain
3190 // a template parameter pack; each template parameter pack in T is
3191 // expanded by the function parameter pack.
3192 //
3193 // We represent function parameter packs as function parameters whose
3194 // type is a pack expansion.
3195 if (!T->containsUnexpandedParameterPack()) {
3196 S.Diag(D.getEllipsisLoc(),
3197 diag::err_function_parameter_pack_without_parameter_packs)
3198 << T << D.getSourceRange();
3199 D.setEllipsisLoc(SourceLocation());
3200 } else {
3201 T = Context.getPackExpansionType(T, None);
3202 }
3203 break;
3204 case Declarator::TemplateParamContext:
3205 // C++0x [temp.param]p15:
3206 // If a template-parameter is a [...] is a parameter-declaration that
3207 // declares a parameter pack (8.3.5), then the template-parameter is a
3208 // template parameter pack (14.5.3).
3209 //
3210 // Note: core issue 778 clarifies that, if there are any unexpanded
3211 // parameter packs in the type of the non-type template parameter, then
3212 // it expands those parameter packs.
3213 if (T->containsUnexpandedParameterPack())
3214 T = Context.getPackExpansionType(T, None);
3215 else
3216 S.Diag(D.getEllipsisLoc(),
3217 LangOpts.CPlusPlus11
3218 ? diag::warn_cxx98_compat_variadic_templates
3219 : diag::ext_variadic_templates);
3220 break;
3221
3222 case Declarator::FileContext:
3223 case Declarator::KNRTypeListContext:
3224 case Declarator::ObjCParameterContext: // FIXME: special diagnostic here?
3225 case Declarator::ObjCResultContext: // FIXME: special diagnostic here?
3226 case Declarator::TypeNameContext:
3227 case Declarator::CXXNewContext:
3228 case Declarator::AliasDeclContext:
3229 case Declarator::AliasTemplateContext:
3230 case Declarator::MemberContext:
3231 case Declarator::BlockContext:
3232 case Declarator::ForContext:
3233 case Declarator::ConditionContext:
3234 case Declarator::CXXCatchContext:
3235 case Declarator::ObjCCatchContext:
3236 case Declarator::BlockLiteralContext:
3237 case Declarator::LambdaExprContext:
3238 case Declarator::ConversionIdContext:
3239 case Declarator::TrailingReturnContext:
3240 case Declarator::TemplateTypeArgContext:
3241 // FIXME: We may want to allow parameter packs in block-literal contexts
3242 // in the future.
3243 S.Diag(D.getEllipsisLoc(),
3244 diag::err_ellipsis_in_declarator_not_parameter);
3245 D.setEllipsisLoc(SourceLocation());
3246 break;
3247 }
3248 }
3249
3250 assert(!T.isNull() && "T must not be null at the end of this function");
3251 if (D.isInvalidType())
3252 return Context.getTrivialTypeSourceInfo(T);
3253
3254 return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
3255 }
3256
3257 /// GetTypeForDeclarator - Convert the type for the specified
3258 /// declarator to Type instances.
3259 ///
3260 /// The result of this call will never be null, but the associated
3261 /// type may be a null type if there's an unrecoverable error.
GetTypeForDeclarator(Declarator & D,Scope * S)3262 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
3263 // Determine the type of the declarator. Not all forms of declarator
3264 // have a type.
3265
3266 TypeProcessingState state(*this, D);
3267
3268 TypeSourceInfo *ReturnTypeInfo = nullptr;
3269 QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3270
3271 if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
3272 inferARCWriteback(state, T);
3273
3274 return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
3275 }
3276
transferARCOwnershipToDeclSpec(Sema & S,QualType & declSpecTy,Qualifiers::ObjCLifetime ownership)3277 static void transferARCOwnershipToDeclSpec(Sema &S,
3278 QualType &declSpecTy,
3279 Qualifiers::ObjCLifetime ownership) {
3280 if (declSpecTy->isObjCRetainableType() &&
3281 declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
3282 Qualifiers qs;
3283 qs.addObjCLifetime(ownership);
3284 declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
3285 }
3286 }
3287
transferARCOwnershipToDeclaratorChunk(TypeProcessingState & state,Qualifiers::ObjCLifetime ownership,unsigned chunkIndex)3288 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
3289 Qualifiers::ObjCLifetime ownership,
3290 unsigned chunkIndex) {
3291 Sema &S = state.getSema();
3292 Declarator &D = state.getDeclarator();
3293
3294 // Look for an explicit lifetime attribute.
3295 DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
3296 for (const AttributeList *attr = chunk.getAttrs(); attr;
3297 attr = attr->getNext())
3298 if (attr->getKind() == AttributeList::AT_ObjCOwnership)
3299 return;
3300
3301 const char *attrStr = nullptr;
3302 switch (ownership) {
3303 case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
3304 case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
3305 case Qualifiers::OCL_Strong: attrStr = "strong"; break;
3306 case Qualifiers::OCL_Weak: attrStr = "weak"; break;
3307 case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
3308 }
3309
3310 IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
3311 Arg->Ident = &S.Context.Idents.get(attrStr);
3312 Arg->Loc = SourceLocation();
3313
3314 ArgsUnion Args(Arg);
3315
3316 // If there wasn't one, add one (with an invalid source location
3317 // so that we don't make an AttributedType for it).
3318 AttributeList *attr = D.getAttributePool()
3319 .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
3320 /*scope*/ nullptr, SourceLocation(),
3321 /*args*/ &Args, 1, AttributeList::AS_GNU);
3322 spliceAttrIntoList(*attr, chunk.getAttrListRef());
3323
3324 // TODO: mark whether we did this inference?
3325 }
3326
3327 /// \brief Used for transferring ownership in casts resulting in l-values.
transferARCOwnership(TypeProcessingState & state,QualType & declSpecTy,Qualifiers::ObjCLifetime ownership)3328 static void transferARCOwnership(TypeProcessingState &state,
3329 QualType &declSpecTy,
3330 Qualifiers::ObjCLifetime ownership) {
3331 Sema &S = state.getSema();
3332 Declarator &D = state.getDeclarator();
3333
3334 int inner = -1;
3335 bool hasIndirection = false;
3336 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3337 DeclaratorChunk &chunk = D.getTypeObject(i);
3338 switch (chunk.Kind) {
3339 case DeclaratorChunk::Paren:
3340 // Ignore parens.
3341 break;
3342
3343 case DeclaratorChunk::Array:
3344 case DeclaratorChunk::Reference:
3345 case DeclaratorChunk::Pointer:
3346 if (inner != -1)
3347 hasIndirection = true;
3348 inner = i;
3349 break;
3350
3351 case DeclaratorChunk::BlockPointer:
3352 if (inner != -1)
3353 transferARCOwnershipToDeclaratorChunk(state, ownership, i);
3354 return;
3355
3356 case DeclaratorChunk::Function:
3357 case DeclaratorChunk::MemberPointer:
3358 return;
3359 }
3360 }
3361
3362 if (inner == -1)
3363 return;
3364
3365 DeclaratorChunk &chunk = D.getTypeObject(inner);
3366 if (chunk.Kind == DeclaratorChunk::Pointer) {
3367 if (declSpecTy->isObjCRetainableType())
3368 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3369 if (declSpecTy->isObjCObjectType() && hasIndirection)
3370 return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
3371 } else {
3372 assert(chunk.Kind == DeclaratorChunk::Array ||
3373 chunk.Kind == DeclaratorChunk::Reference);
3374 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3375 }
3376 }
3377
GetTypeForDeclaratorCast(Declarator & D,QualType FromTy)3378 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
3379 TypeProcessingState state(*this, D);
3380
3381 TypeSourceInfo *ReturnTypeInfo = nullptr;
3382 QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3383
3384 if (getLangOpts().ObjCAutoRefCount) {
3385 Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
3386 if (ownership != Qualifiers::OCL_None)
3387 transferARCOwnership(state, declSpecTy, ownership);
3388 }
3389
3390 return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
3391 }
3392
3393 /// Map an AttributedType::Kind to an AttributeList::Kind.
getAttrListKind(AttributedType::Kind kind)3394 static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
3395 switch (kind) {
3396 case AttributedType::attr_address_space:
3397 return AttributeList::AT_AddressSpace;
3398 case AttributedType::attr_regparm:
3399 return AttributeList::AT_Regparm;
3400 case AttributedType::attr_vector_size:
3401 return AttributeList::AT_VectorSize;
3402 case AttributedType::attr_neon_vector_type:
3403 return AttributeList::AT_NeonVectorType;
3404 case AttributedType::attr_neon_polyvector_type:
3405 return AttributeList::AT_NeonPolyVectorType;
3406 case AttributedType::attr_objc_gc:
3407 return AttributeList::AT_ObjCGC;
3408 case AttributedType::attr_objc_ownership:
3409 return AttributeList::AT_ObjCOwnership;
3410 case AttributedType::attr_noreturn:
3411 return AttributeList::AT_NoReturn;
3412 case AttributedType::attr_cdecl:
3413 return AttributeList::AT_CDecl;
3414 case AttributedType::attr_fastcall:
3415 return AttributeList::AT_FastCall;
3416 case AttributedType::attr_stdcall:
3417 return AttributeList::AT_StdCall;
3418 case AttributedType::attr_thiscall:
3419 return AttributeList::AT_ThisCall;
3420 case AttributedType::attr_pascal:
3421 return AttributeList::AT_Pascal;
3422 case AttributedType::attr_vectorcall:
3423 return AttributeList::AT_VectorCall;
3424 case AttributedType::attr_pcs:
3425 case AttributedType::attr_pcs_vfp:
3426 return AttributeList::AT_Pcs;
3427 case AttributedType::attr_pnaclcall:
3428 return AttributeList::AT_PnaclCall;
3429 case AttributedType::attr_inteloclbicc:
3430 return AttributeList::AT_IntelOclBicc;
3431 case AttributedType::attr_ms_abi:
3432 return AttributeList::AT_MSABI;
3433 case AttributedType::attr_sysv_abi:
3434 return AttributeList::AT_SysVABI;
3435 case AttributedType::attr_ptr32:
3436 return AttributeList::AT_Ptr32;
3437 case AttributedType::attr_ptr64:
3438 return AttributeList::AT_Ptr64;
3439 case AttributedType::attr_sptr:
3440 return AttributeList::AT_SPtr;
3441 case AttributedType::attr_uptr:
3442 return AttributeList::AT_UPtr;
3443 }
3444 llvm_unreachable("unexpected attribute kind!");
3445 }
3446
fillAttributedTypeLoc(AttributedTypeLoc TL,const AttributeList * attrs)3447 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
3448 const AttributeList *attrs) {
3449 AttributedType::Kind kind = TL.getAttrKind();
3450
3451 assert(attrs && "no type attributes in the expected location!");
3452 AttributeList::Kind parsedKind = getAttrListKind(kind);
3453 while (attrs->getKind() != parsedKind) {
3454 attrs = attrs->getNext();
3455 assert(attrs && "no matching attribute in expected location!");
3456 }
3457
3458 TL.setAttrNameLoc(attrs->getLoc());
3459 if (TL.hasAttrExprOperand()) {
3460 assert(attrs->isArgExpr(0) && "mismatched attribute operand kind");
3461 TL.setAttrExprOperand(attrs->getArgAsExpr(0));
3462 } else if (TL.hasAttrEnumOperand()) {
3463 assert((attrs->isArgIdent(0) || attrs->isArgExpr(0)) &&
3464 "unexpected attribute operand kind");
3465 if (attrs->isArgIdent(0))
3466 TL.setAttrEnumOperandLoc(attrs->getArgAsIdent(0)->Loc);
3467 else
3468 TL.setAttrEnumOperandLoc(attrs->getArgAsExpr(0)->getExprLoc());
3469 }
3470
3471 // FIXME: preserve this information to here.
3472 if (TL.hasAttrOperand())
3473 TL.setAttrOperandParensRange(SourceRange());
3474 }
3475
3476 namespace {
3477 class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
3478 ASTContext &Context;
3479 const DeclSpec &DS;
3480
3481 public:
TypeSpecLocFiller(ASTContext & Context,const DeclSpec & DS)3482 TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
3483 : Context(Context), DS(DS) {}
3484
VisitAttributedTypeLoc(AttributedTypeLoc TL)3485 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3486 fillAttributedTypeLoc(TL, DS.getAttributes().getList());
3487 Visit(TL.getModifiedLoc());
3488 }
VisitQualifiedTypeLoc(QualifiedTypeLoc TL)3489 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3490 Visit(TL.getUnqualifiedLoc());
3491 }
VisitTypedefTypeLoc(TypedefTypeLoc TL)3492 void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
3493 TL.setNameLoc(DS.getTypeSpecTypeLoc());
3494 }
VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL)3495 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
3496 TL.setNameLoc(DS.getTypeSpecTypeLoc());
3497 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
3498 // addition field. What we have is good enough for dispay of location
3499 // of 'fixit' on interface name.
3500 TL.setNameEndLoc(DS.getLocEnd());
3501 }
VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL)3502 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
3503 // Handle the base type, which might not have been written explicitly.
3504 if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
3505 TL.setHasBaseTypeAsWritten(false);
3506 TL.getBaseLoc().initialize(Context, SourceLocation());
3507 } else {
3508 TL.setHasBaseTypeAsWritten(true);
3509 Visit(TL.getBaseLoc());
3510 }
3511
3512 // Protocol qualifiers.
3513 if (DS.getProtocolQualifiers()) {
3514 assert(TL.getNumProtocols() > 0);
3515 assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
3516 TL.setLAngleLoc(DS.getProtocolLAngleLoc());
3517 TL.setRAngleLoc(DS.getSourceRange().getEnd());
3518 for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
3519 TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
3520 } else {
3521 assert(TL.getNumProtocols() == 0);
3522 TL.setLAngleLoc(SourceLocation());
3523 TL.setRAngleLoc(SourceLocation());
3524 }
3525 }
VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL)3526 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3527 TL.setStarLoc(SourceLocation());
3528 Visit(TL.getPointeeLoc());
3529 }
VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL)3530 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
3531 TypeSourceInfo *TInfo = nullptr;
3532 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3533
3534 // If we got no declarator info from previous Sema routines,
3535 // just fill with the typespec loc.
3536 if (!TInfo) {
3537 TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
3538 return;
3539 }
3540
3541 TypeLoc OldTL = TInfo->getTypeLoc();
3542 if (TInfo->getType()->getAs<ElaboratedType>()) {
3543 ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
3544 TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
3545 .castAs<TemplateSpecializationTypeLoc>();
3546 TL.copy(NamedTL);
3547 } else {
3548 TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
3549 assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
3550 }
3551
3552 }
VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL)3553 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
3554 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
3555 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3556 TL.setParensRange(DS.getTypeofParensRange());
3557 }
VisitTypeOfTypeLoc(TypeOfTypeLoc TL)3558 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
3559 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
3560 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3561 TL.setParensRange(DS.getTypeofParensRange());
3562 assert(DS.getRepAsType());
3563 TypeSourceInfo *TInfo = nullptr;
3564 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3565 TL.setUnderlyingTInfo(TInfo);
3566 }
VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL)3567 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
3568 // FIXME: This holds only because we only have one unary transform.
3569 assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
3570 TL.setKWLoc(DS.getTypeSpecTypeLoc());
3571 TL.setParensRange(DS.getTypeofParensRange());
3572 assert(DS.getRepAsType());
3573 TypeSourceInfo *TInfo = nullptr;
3574 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3575 TL.setUnderlyingTInfo(TInfo);
3576 }
VisitBuiltinTypeLoc(BuiltinTypeLoc TL)3577 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
3578 // By default, use the source location of the type specifier.
3579 TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
3580 if (TL.needsExtraLocalData()) {
3581 // Set info for the written builtin specifiers.
3582 TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
3583 // Try to have a meaningful source location.
3584 if (TL.getWrittenSignSpec() != TSS_unspecified)
3585 // Sign spec loc overrides the others (e.g., 'unsigned long').
3586 TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
3587 else if (TL.getWrittenWidthSpec() != TSW_unspecified)
3588 // Width spec loc overrides type spec loc (e.g., 'short int').
3589 TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
3590 }
3591 }
VisitElaboratedTypeLoc(ElaboratedTypeLoc TL)3592 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
3593 ElaboratedTypeKeyword Keyword
3594 = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
3595 if (DS.getTypeSpecType() == TST_typename) {
3596 TypeSourceInfo *TInfo = nullptr;
3597 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3598 if (TInfo) {
3599 TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
3600 return;
3601 }
3602 }
3603 TL.setElaboratedKeywordLoc(Keyword != ETK_None
3604 ? DS.getTypeSpecTypeLoc()
3605 : SourceLocation());
3606 const CXXScopeSpec& SS = DS.getTypeSpecScope();
3607 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3608 Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
3609 }
VisitDependentNameTypeLoc(DependentNameTypeLoc TL)3610 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
3611 assert(DS.getTypeSpecType() == TST_typename);
3612 TypeSourceInfo *TInfo = nullptr;
3613 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3614 assert(TInfo);
3615 TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
3616 }
VisitDependentTemplateSpecializationTypeLoc(DependentTemplateSpecializationTypeLoc TL)3617 void VisitDependentTemplateSpecializationTypeLoc(
3618 DependentTemplateSpecializationTypeLoc TL) {
3619 assert(DS.getTypeSpecType() == TST_typename);
3620 TypeSourceInfo *TInfo = nullptr;
3621 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3622 assert(TInfo);
3623 TL.copy(
3624 TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
3625 }
VisitTagTypeLoc(TagTypeLoc TL)3626 void VisitTagTypeLoc(TagTypeLoc TL) {
3627 TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
3628 }
VisitAtomicTypeLoc(AtomicTypeLoc TL)3629 void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
3630 // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
3631 // or an _Atomic qualifier.
3632 if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
3633 TL.setKWLoc(DS.getTypeSpecTypeLoc());
3634 TL.setParensRange(DS.getTypeofParensRange());
3635
3636 TypeSourceInfo *TInfo = nullptr;
3637 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3638 assert(TInfo);
3639 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
3640 } else {
3641 TL.setKWLoc(DS.getAtomicSpecLoc());
3642 // No parens, to indicate this was spelled as an _Atomic qualifier.
3643 TL.setParensRange(SourceRange());
3644 Visit(TL.getValueLoc());
3645 }
3646 }
3647
VisitTypeLoc(TypeLoc TL)3648 void VisitTypeLoc(TypeLoc TL) {
3649 // FIXME: add other typespec types and change this to an assert.
3650 TL.initialize(Context, DS.getTypeSpecTypeLoc());
3651 }
3652 };
3653
3654 class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
3655 ASTContext &Context;
3656 const DeclaratorChunk &Chunk;
3657
3658 public:
DeclaratorLocFiller(ASTContext & Context,const DeclaratorChunk & Chunk)3659 DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
3660 : Context(Context), Chunk(Chunk) {}
3661
VisitQualifiedTypeLoc(QualifiedTypeLoc TL)3662 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3663 llvm_unreachable("qualified type locs not expected here!");
3664 }
VisitDecayedTypeLoc(DecayedTypeLoc TL)3665 void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
3666 llvm_unreachable("decayed type locs not expected here!");
3667 }
3668
VisitAttributedTypeLoc(AttributedTypeLoc TL)3669 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3670 fillAttributedTypeLoc(TL, Chunk.getAttrs());
3671 }
VisitAdjustedTypeLoc(AdjustedTypeLoc TL)3672 void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
3673 // nothing
3674 }
VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL)3675 void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3676 assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3677 TL.setCaretLoc(Chunk.Loc);
3678 }
VisitPointerTypeLoc(PointerTypeLoc TL)3679 void VisitPointerTypeLoc(PointerTypeLoc TL) {
3680 assert(Chunk.Kind == DeclaratorChunk::Pointer);
3681 TL.setStarLoc(Chunk.Loc);
3682 }
VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL)3683 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3684 assert(Chunk.Kind == DeclaratorChunk::Pointer);
3685 TL.setStarLoc(Chunk.Loc);
3686 }
VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL)3687 void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3688 assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3689 const CXXScopeSpec& SS = Chunk.Mem.Scope();
3690 NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3691
3692 const Type* ClsTy = TL.getClass();
3693 QualType ClsQT = QualType(ClsTy, 0);
3694 TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3695 // Now copy source location info into the type loc component.
3696 TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3697 switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3698 case NestedNameSpecifier::Identifier:
3699 assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3700 {
3701 DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
3702 DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3703 DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3704 DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3705 }
3706 break;
3707
3708 case NestedNameSpecifier::TypeSpec:
3709 case NestedNameSpecifier::TypeSpecWithTemplate:
3710 if (isa<ElaboratedType>(ClsTy)) {
3711 ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
3712 ETLoc.setElaboratedKeywordLoc(SourceLocation());
3713 ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3714 TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3715 NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3716 } else {
3717 ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3718 }
3719 break;
3720
3721 case NestedNameSpecifier::Namespace:
3722 case NestedNameSpecifier::NamespaceAlias:
3723 case NestedNameSpecifier::Global:
3724 case NestedNameSpecifier::Super:
3725 llvm_unreachable("Nested-name-specifier must name a type");
3726 }
3727
3728 // Finally fill in MemberPointerLocInfo fields.
3729 TL.setStarLoc(Chunk.Loc);
3730 TL.setClassTInfo(ClsTInfo);
3731 }
VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL)3732 void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3733 assert(Chunk.Kind == DeclaratorChunk::Reference);
3734 // 'Amp' is misleading: this might have been originally
3735 /// spelled with AmpAmp.
3736 TL.setAmpLoc(Chunk.Loc);
3737 }
VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL)3738 void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3739 assert(Chunk.Kind == DeclaratorChunk::Reference);
3740 assert(!Chunk.Ref.LValueRef);
3741 TL.setAmpAmpLoc(Chunk.Loc);
3742 }
VisitArrayTypeLoc(ArrayTypeLoc TL)3743 void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3744 assert(Chunk.Kind == DeclaratorChunk::Array);
3745 TL.setLBracketLoc(Chunk.Loc);
3746 TL.setRBracketLoc(Chunk.EndLoc);
3747 TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3748 }
VisitFunctionTypeLoc(FunctionTypeLoc TL)3749 void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3750 assert(Chunk.Kind == DeclaratorChunk::Function);
3751 TL.setLocalRangeBegin(Chunk.Loc);
3752 TL.setLocalRangeEnd(Chunk.EndLoc);
3753
3754 const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3755 TL.setLParenLoc(FTI.getLParenLoc());
3756 TL.setRParenLoc(FTI.getRParenLoc());
3757 for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
3758 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
3759 TL.setParam(tpi++, Param);
3760 }
3761 // FIXME: exception specs
3762 }
VisitParenTypeLoc(ParenTypeLoc TL)3763 void VisitParenTypeLoc(ParenTypeLoc TL) {
3764 assert(Chunk.Kind == DeclaratorChunk::Paren);
3765 TL.setLParenLoc(Chunk.Loc);
3766 TL.setRParenLoc(Chunk.EndLoc);
3767 }
3768
VisitTypeLoc(TypeLoc TL)3769 void VisitTypeLoc(TypeLoc TL) {
3770 llvm_unreachable("unsupported TypeLoc kind in declarator!");
3771 }
3772 };
3773 }
3774
fillAtomicQualLoc(AtomicTypeLoc ATL,const DeclaratorChunk & Chunk)3775 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
3776 SourceLocation Loc;
3777 switch (Chunk.Kind) {
3778 case DeclaratorChunk::Function:
3779 case DeclaratorChunk::Array:
3780 case DeclaratorChunk::Paren:
3781 llvm_unreachable("cannot be _Atomic qualified");
3782
3783 case DeclaratorChunk::Pointer:
3784 Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
3785 break;
3786
3787 case DeclaratorChunk::BlockPointer:
3788 case DeclaratorChunk::Reference:
3789 case DeclaratorChunk::MemberPointer:
3790 // FIXME: Provide a source location for the _Atomic keyword.
3791 break;
3792 }
3793
3794 ATL.setKWLoc(Loc);
3795 ATL.setParensRange(SourceRange());
3796 }
3797
3798 /// \brief Create and instantiate a TypeSourceInfo with type source information.
3799 ///
3800 /// \param T QualType referring to the type as written in source code.
3801 ///
3802 /// \param ReturnTypeInfo For declarators whose return type does not show
3803 /// up in the normal place in the declaration specifiers (such as a C++
3804 /// conversion function), this pointer will refer to a type source information
3805 /// for that return type.
3806 TypeSourceInfo *
GetTypeSourceInfoForDeclarator(Declarator & D,QualType T,TypeSourceInfo * ReturnTypeInfo)3807 Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3808 TypeSourceInfo *ReturnTypeInfo) {
3809 TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3810 UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3811
3812 // Handle parameter packs whose type is a pack expansion.
3813 if (isa<PackExpansionType>(T)) {
3814 CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
3815 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3816 }
3817
3818 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3819 // An AtomicTypeLoc might be produced by an atomic qualifier in this
3820 // declarator chunk.
3821 if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
3822 fillAtomicQualLoc(ATL, D.getTypeObject(i));
3823 CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
3824 }
3825
3826 while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
3827 fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3828 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3829 }
3830
3831 // FIXME: Ordering here?
3832 while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
3833 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3834
3835 DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3836 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3837 }
3838
3839 // If we have different source information for the return type, use
3840 // that. This really only applies to C++ conversion functions.
3841 if (ReturnTypeInfo) {
3842 TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3843 assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3844 memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3845 } else {
3846 TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3847 }
3848
3849 return TInfo;
3850 }
3851
3852 /// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
CreateParsedType(QualType T,TypeSourceInfo * TInfo)3853 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3854 // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3855 // and Sema during declaration parsing. Try deallocating/caching them when
3856 // it's appropriate, instead of allocating them and keeping them around.
3857 LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3858 TypeAlignment);
3859 new (LocT) LocInfoType(T, TInfo);
3860 assert(LocT->getTypeClass() != T->getTypeClass() &&
3861 "LocInfoType's TypeClass conflicts with an existing Type class");
3862 return ParsedType::make(QualType(LocT, 0));
3863 }
3864
getAsStringInternal(std::string & Str,const PrintingPolicy & Policy) const3865 void LocInfoType::getAsStringInternal(std::string &Str,
3866 const PrintingPolicy &Policy) const {
3867 llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3868 " was used directly instead of getting the QualType through"
3869 " GetTypeFromParser");
3870 }
3871
ActOnTypeName(Scope * S,Declarator & D)3872 TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3873 // C99 6.7.6: Type names have no identifier. This is already validated by
3874 // the parser.
3875 assert(D.getIdentifier() == nullptr &&
3876 "Type name should have no identifier!");
3877
3878 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3879 QualType T = TInfo->getType();
3880 if (D.isInvalidType())
3881 return true;
3882
3883 // Make sure there are no unused decl attributes on the declarator.
3884 // We don't want to do this for ObjC parameters because we're going
3885 // to apply them to the actual parameter declaration.
3886 // Likewise, we don't want to do this for alias declarations, because
3887 // we are actually going to build a declaration from this eventually.
3888 if (D.getContext() != Declarator::ObjCParameterContext &&
3889 D.getContext() != Declarator::AliasDeclContext &&
3890 D.getContext() != Declarator::AliasTemplateContext)
3891 checkUnusedDeclAttributes(D);
3892
3893 if (getLangOpts().CPlusPlus) {
3894 // Check that there are no default arguments (C++ only).
3895 CheckExtraCXXDefaultArguments(D);
3896 }
3897
3898 return CreateParsedType(T, TInfo);
3899 }
3900
ActOnObjCInstanceType(SourceLocation Loc)3901 ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3902 QualType T = Context.getObjCInstanceType();
3903 TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3904 return CreateParsedType(T, TInfo);
3905 }
3906
3907
3908 //===----------------------------------------------------------------------===//
3909 // Type Attribute Processing
3910 //===----------------------------------------------------------------------===//
3911
3912 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3913 /// specified type. The attribute contains 1 argument, the id of the address
3914 /// space for the type.
HandleAddressSpaceTypeAttribute(QualType & Type,const AttributeList & Attr,Sema & S)3915 static void HandleAddressSpaceTypeAttribute(QualType &Type,
3916 const AttributeList &Attr, Sema &S){
3917
3918 // If this type is already address space qualified, reject it.
3919 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3920 // qualifiers for two or more different address spaces."
3921 if (Type.getAddressSpace()) {
3922 S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3923 Attr.setInvalid();
3924 return;
3925 }
3926
3927 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3928 // qualified by an address-space qualifier."
3929 if (Type->isFunctionType()) {
3930 S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3931 Attr.setInvalid();
3932 return;
3933 }
3934
3935 unsigned ASIdx;
3936 if (Attr.getKind() == AttributeList::AT_AddressSpace) {
3937 // Check the attribute arguments.
3938 if (Attr.getNumArgs() != 1) {
3939 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
3940 << Attr.getName() << 1;
3941 Attr.setInvalid();
3942 return;
3943 }
3944 Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
3945 llvm::APSInt addrSpace(32);
3946 if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3947 !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3948 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
3949 << Attr.getName() << AANT_ArgumentIntegerConstant
3950 << ASArgExpr->getSourceRange();
3951 Attr.setInvalid();
3952 return;
3953 }
3954
3955 // Bounds checking.
3956 if (addrSpace.isSigned()) {
3957 if (addrSpace.isNegative()) {
3958 S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3959 << ASArgExpr->getSourceRange();
3960 Attr.setInvalid();
3961 return;
3962 }
3963 addrSpace.setIsSigned(false);
3964 }
3965 llvm::APSInt max(addrSpace.getBitWidth());
3966 max = Qualifiers::MaxAddressSpace;
3967 if (addrSpace > max) {
3968 S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3969 << int(Qualifiers::MaxAddressSpace) << ASArgExpr->getSourceRange();
3970 Attr.setInvalid();
3971 return;
3972 }
3973 ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3974 } else {
3975 // The keyword-based type attributes imply which address space to use.
3976 switch (Attr.getKind()) {
3977 case AttributeList::AT_OpenCLGlobalAddressSpace:
3978 ASIdx = LangAS::opencl_global; break;
3979 case AttributeList::AT_OpenCLLocalAddressSpace:
3980 ASIdx = LangAS::opencl_local; break;
3981 case AttributeList::AT_OpenCLConstantAddressSpace:
3982 ASIdx = LangAS::opencl_constant; break;
3983 case AttributeList::AT_OpenCLGenericAddressSpace:
3984 ASIdx = LangAS::opencl_generic; break;
3985 default:
3986 assert(Attr.getKind() == AttributeList::AT_OpenCLPrivateAddressSpace);
3987 ASIdx = 0; break;
3988 }
3989 }
3990
3991 Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3992 }
3993
3994 /// Does this type have a "direct" ownership qualifier? That is,
3995 /// is it written like "__strong id", as opposed to something like
3996 /// "typeof(foo)", where that happens to be strong?
hasDirectOwnershipQualifier(QualType type)3997 static bool hasDirectOwnershipQualifier(QualType type) {
3998 // Fast path: no qualifier at all.
3999 assert(type.getQualifiers().hasObjCLifetime());
4000
4001 while (true) {
4002 // __strong id
4003 if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
4004 if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
4005 return true;
4006
4007 type = attr->getModifiedType();
4008
4009 // X *__strong (...)
4010 } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
4011 type = paren->getInnerType();
4012
4013 // That's it for things we want to complain about. In particular,
4014 // we do not want to look through typedefs, typeof(expr),
4015 // typeof(type), or any other way that the type is somehow
4016 // abstracted.
4017 } else {
4018
4019 return false;
4020 }
4021 }
4022 }
4023
4024 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
4025 /// attribute on the specified type.
4026 ///
4027 /// Returns 'true' if the attribute was handled.
handleObjCOwnershipTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType & type)4028 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
4029 AttributeList &attr,
4030 QualType &type) {
4031 bool NonObjCPointer = false;
4032
4033 if (!type->isDependentType() && !type->isUndeducedType()) {
4034 if (const PointerType *ptr = type->getAs<PointerType>()) {
4035 QualType pointee = ptr->getPointeeType();
4036 if (pointee->isObjCRetainableType() || pointee->isPointerType())
4037 return false;
4038 // It is important not to lose the source info that there was an attribute
4039 // applied to non-objc pointer. We will create an attributed type but
4040 // its type will be the same as the original type.
4041 NonObjCPointer = true;
4042 } else if (!type->isObjCRetainableType()) {
4043 return false;
4044 }
4045
4046 // Don't accept an ownership attribute in the declspec if it would
4047 // just be the return type of a block pointer.
4048 if (state.isProcessingDeclSpec()) {
4049 Declarator &D = state.getDeclarator();
4050 if (maybeMovePastReturnType(D, D.getNumTypeObjects()))
4051 return false;
4052 }
4053 }
4054
4055 Sema &S = state.getSema();
4056 SourceLocation AttrLoc = attr.getLoc();
4057 if (AttrLoc.isMacroID())
4058 AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
4059
4060 if (!attr.isArgIdent(0)) {
4061 S.Diag(AttrLoc, diag::err_attribute_argument_type)
4062 << attr.getName() << AANT_ArgumentString;
4063 attr.setInvalid();
4064 return true;
4065 }
4066
4067 // Consume lifetime attributes without further comment outside of
4068 // ARC mode.
4069 if (!S.getLangOpts().ObjCAutoRefCount)
4070 return true;
4071
4072 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
4073 Qualifiers::ObjCLifetime lifetime;
4074 if (II->isStr("none"))
4075 lifetime = Qualifiers::OCL_ExplicitNone;
4076 else if (II->isStr("strong"))
4077 lifetime = Qualifiers::OCL_Strong;
4078 else if (II->isStr("weak"))
4079 lifetime = Qualifiers::OCL_Weak;
4080 else if (II->isStr("autoreleasing"))
4081 lifetime = Qualifiers::OCL_Autoreleasing;
4082 else {
4083 S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
4084 << attr.getName() << II;
4085 attr.setInvalid();
4086 return true;
4087 }
4088
4089 SplitQualType underlyingType = type.split();
4090
4091 // Check for redundant/conflicting ownership qualifiers.
4092 if (Qualifiers::ObjCLifetime previousLifetime
4093 = type.getQualifiers().getObjCLifetime()) {
4094 // If it's written directly, that's an error.
4095 if (hasDirectOwnershipQualifier(type)) {
4096 S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
4097 << type;
4098 return true;
4099 }
4100
4101 // Otherwise, if the qualifiers actually conflict, pull sugar off
4102 // until we reach a type that is directly qualified.
4103 if (previousLifetime != lifetime) {
4104 // This should always terminate: the canonical type is
4105 // qualified, so some bit of sugar must be hiding it.
4106 while (!underlyingType.Quals.hasObjCLifetime()) {
4107 underlyingType = underlyingType.getSingleStepDesugaredType();
4108 }
4109 underlyingType.Quals.removeObjCLifetime();
4110 }
4111 }
4112
4113 underlyingType.Quals.addObjCLifetime(lifetime);
4114
4115 if (NonObjCPointer) {
4116 StringRef name = attr.getName()->getName();
4117 switch (lifetime) {
4118 case Qualifiers::OCL_None:
4119 case Qualifiers::OCL_ExplicitNone:
4120 break;
4121 case Qualifiers::OCL_Strong: name = "__strong"; break;
4122 case Qualifiers::OCL_Weak: name = "__weak"; break;
4123 case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
4124 }
4125 S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
4126 << TDS_ObjCObjOrBlock << type;
4127 }
4128
4129 QualType origType = type;
4130 if (!NonObjCPointer)
4131 type = S.Context.getQualifiedType(underlyingType);
4132
4133 // If we have a valid source location for the attribute, use an
4134 // AttributedType instead.
4135 if (AttrLoc.isValid())
4136 type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
4137 origType, type);
4138
4139 // Forbid __weak if the runtime doesn't support it.
4140 if (lifetime == Qualifiers::OCL_Weak &&
4141 !S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
4142
4143 // Actually, delay this until we know what we're parsing.
4144 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
4145 S.DelayedDiagnostics.add(
4146 sema::DelayedDiagnostic::makeForbiddenType(
4147 S.getSourceManager().getExpansionLoc(AttrLoc),
4148 diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
4149 } else {
4150 S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
4151 }
4152
4153 attr.setInvalid();
4154 return true;
4155 }
4156
4157 // Forbid __weak for class objects marked as
4158 // objc_arc_weak_reference_unavailable
4159 if (lifetime == Qualifiers::OCL_Weak) {
4160 if (const ObjCObjectPointerType *ObjT =
4161 type->getAs<ObjCObjectPointerType>()) {
4162 if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
4163 if (Class->isArcWeakrefUnavailable()) {
4164 S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
4165 S.Diag(ObjT->getInterfaceDecl()->getLocation(),
4166 diag::note_class_declared);
4167 }
4168 }
4169 }
4170 }
4171
4172 return true;
4173 }
4174
4175 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
4176 /// attribute on the specified type. Returns true to indicate that
4177 /// the attribute was handled, false to indicate that the type does
4178 /// not permit the attribute.
handleObjCGCTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType & type)4179 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
4180 AttributeList &attr,
4181 QualType &type) {
4182 Sema &S = state.getSema();
4183
4184 // Delay if this isn't some kind of pointer.
4185 if (!type->isPointerType() &&
4186 !type->isObjCObjectPointerType() &&
4187 !type->isBlockPointerType())
4188 return false;
4189
4190 if (type.getObjCGCAttr() != Qualifiers::GCNone) {
4191 S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
4192 attr.setInvalid();
4193 return true;
4194 }
4195
4196 // Check the attribute arguments.
4197 if (!attr.isArgIdent(0)) {
4198 S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
4199 << attr.getName() << AANT_ArgumentString;
4200 attr.setInvalid();
4201 return true;
4202 }
4203 Qualifiers::GC GCAttr;
4204 if (attr.getNumArgs() > 1) {
4205 S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4206 << attr.getName() << 1;
4207 attr.setInvalid();
4208 return true;
4209 }
4210
4211 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
4212 if (II->isStr("weak"))
4213 GCAttr = Qualifiers::Weak;
4214 else if (II->isStr("strong"))
4215 GCAttr = Qualifiers::Strong;
4216 else {
4217 S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
4218 << attr.getName() << II;
4219 attr.setInvalid();
4220 return true;
4221 }
4222
4223 QualType origType = type;
4224 type = S.Context.getObjCGCQualType(origType, GCAttr);
4225
4226 // Make an attributed type to preserve the source information.
4227 if (attr.getLoc().isValid())
4228 type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
4229 origType, type);
4230
4231 return true;
4232 }
4233
4234 namespace {
4235 /// A helper class to unwrap a type down to a function for the
4236 /// purposes of applying attributes there.
4237 ///
4238 /// Use:
4239 /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
4240 /// if (unwrapped.isFunctionType()) {
4241 /// const FunctionType *fn = unwrapped.get();
4242 /// // change fn somehow
4243 /// T = unwrapped.wrap(fn);
4244 /// }
4245 struct FunctionTypeUnwrapper {
4246 enum WrapKind {
4247 Desugar,
4248 Parens,
4249 Pointer,
4250 BlockPointer,
4251 Reference,
4252 MemberPointer
4253 };
4254
4255 QualType Original;
4256 const FunctionType *Fn;
4257 SmallVector<unsigned char /*WrapKind*/, 8> Stack;
4258
FunctionTypeUnwrapper__anon7ba70c020411::FunctionTypeUnwrapper4259 FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
4260 while (true) {
4261 const Type *Ty = T.getTypePtr();
4262 if (isa<FunctionType>(Ty)) {
4263 Fn = cast<FunctionType>(Ty);
4264 return;
4265 } else if (isa<ParenType>(Ty)) {
4266 T = cast<ParenType>(Ty)->getInnerType();
4267 Stack.push_back(Parens);
4268 } else if (isa<PointerType>(Ty)) {
4269 T = cast<PointerType>(Ty)->getPointeeType();
4270 Stack.push_back(Pointer);
4271 } else if (isa<BlockPointerType>(Ty)) {
4272 T = cast<BlockPointerType>(Ty)->getPointeeType();
4273 Stack.push_back(BlockPointer);
4274 } else if (isa<MemberPointerType>(Ty)) {
4275 T = cast<MemberPointerType>(Ty)->getPointeeType();
4276 Stack.push_back(MemberPointer);
4277 } else if (isa<ReferenceType>(Ty)) {
4278 T = cast<ReferenceType>(Ty)->getPointeeType();
4279 Stack.push_back(Reference);
4280 } else {
4281 const Type *DTy = Ty->getUnqualifiedDesugaredType();
4282 if (Ty == DTy) {
4283 Fn = nullptr;
4284 return;
4285 }
4286
4287 T = QualType(DTy, 0);
4288 Stack.push_back(Desugar);
4289 }
4290 }
4291 }
4292
isFunctionType__anon7ba70c020411::FunctionTypeUnwrapper4293 bool isFunctionType() const { return (Fn != nullptr); }
get__anon7ba70c020411::FunctionTypeUnwrapper4294 const FunctionType *get() const { return Fn; }
4295
wrap__anon7ba70c020411::FunctionTypeUnwrapper4296 QualType wrap(Sema &S, const FunctionType *New) {
4297 // If T wasn't modified from the unwrapped type, do nothing.
4298 if (New == get()) return Original;
4299
4300 Fn = New;
4301 return wrap(S.Context, Original, 0);
4302 }
4303
4304 private:
wrap__anon7ba70c020411::FunctionTypeUnwrapper4305 QualType wrap(ASTContext &C, QualType Old, unsigned I) {
4306 if (I == Stack.size())
4307 return C.getQualifiedType(Fn, Old.getQualifiers());
4308
4309 // Build up the inner type, applying the qualifiers from the old
4310 // type to the new type.
4311 SplitQualType SplitOld = Old.split();
4312
4313 // As a special case, tail-recurse if there are no qualifiers.
4314 if (SplitOld.Quals.empty())
4315 return wrap(C, SplitOld.Ty, I);
4316 return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
4317 }
4318
wrap__anon7ba70c020411::FunctionTypeUnwrapper4319 QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
4320 if (I == Stack.size()) return QualType(Fn, 0);
4321
4322 switch (static_cast<WrapKind>(Stack[I++])) {
4323 case Desugar:
4324 // This is the point at which we potentially lose source
4325 // information.
4326 return wrap(C, Old->getUnqualifiedDesugaredType(), I);
4327
4328 case Parens: {
4329 QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
4330 return C.getParenType(New);
4331 }
4332
4333 case Pointer: {
4334 QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
4335 return C.getPointerType(New);
4336 }
4337
4338 case BlockPointer: {
4339 QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
4340 return C.getBlockPointerType(New);
4341 }
4342
4343 case MemberPointer: {
4344 const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
4345 QualType New = wrap(C, OldMPT->getPointeeType(), I);
4346 return C.getMemberPointerType(New, OldMPT->getClass());
4347 }
4348
4349 case Reference: {
4350 const ReferenceType *OldRef = cast<ReferenceType>(Old);
4351 QualType New = wrap(C, OldRef->getPointeeType(), I);
4352 if (isa<LValueReferenceType>(OldRef))
4353 return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
4354 else
4355 return C.getRValueReferenceType(New);
4356 }
4357 }
4358
4359 llvm_unreachable("unknown wrapping kind");
4360 }
4361 };
4362 }
4363
handleMSPointerTypeQualifierAttr(TypeProcessingState & State,AttributeList & Attr,QualType & Type)4364 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
4365 AttributeList &Attr,
4366 QualType &Type) {
4367 Sema &S = State.getSema();
4368
4369 AttributeList::Kind Kind = Attr.getKind();
4370 QualType Desugared = Type;
4371 const AttributedType *AT = dyn_cast<AttributedType>(Type);
4372 while (AT) {
4373 AttributedType::Kind CurAttrKind = AT->getAttrKind();
4374
4375 // You cannot specify duplicate type attributes, so if the attribute has
4376 // already been applied, flag it.
4377 if (getAttrListKind(CurAttrKind) == Kind) {
4378 S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute_exact)
4379 << Attr.getName();
4380 return true;
4381 }
4382
4383 // You cannot have both __sptr and __uptr on the same type, nor can you
4384 // have __ptr32 and __ptr64.
4385 if ((CurAttrKind == AttributedType::attr_ptr32 &&
4386 Kind == AttributeList::AT_Ptr64) ||
4387 (CurAttrKind == AttributedType::attr_ptr64 &&
4388 Kind == AttributeList::AT_Ptr32)) {
4389 S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
4390 << "'__ptr32'" << "'__ptr64'";
4391 return true;
4392 } else if ((CurAttrKind == AttributedType::attr_sptr &&
4393 Kind == AttributeList::AT_UPtr) ||
4394 (CurAttrKind == AttributedType::attr_uptr &&
4395 Kind == AttributeList::AT_SPtr)) {
4396 S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
4397 << "'__sptr'" << "'__uptr'";
4398 return true;
4399 }
4400
4401 Desugared = AT->getEquivalentType();
4402 AT = dyn_cast<AttributedType>(Desugared);
4403 }
4404
4405 // Pointer type qualifiers can only operate on pointer types, but not
4406 // pointer-to-member types.
4407 if (!isa<PointerType>(Desugared)) {
4408 S.Diag(Attr.getLoc(), Type->isMemberPointerType() ?
4409 diag::err_attribute_no_member_pointers :
4410 diag::err_attribute_pointers_only) << Attr.getName();
4411 return true;
4412 }
4413
4414 AttributedType::Kind TAK;
4415 switch (Kind) {
4416 default: llvm_unreachable("Unknown attribute kind");
4417 case AttributeList::AT_Ptr32: TAK = AttributedType::attr_ptr32; break;
4418 case AttributeList::AT_Ptr64: TAK = AttributedType::attr_ptr64; break;
4419 case AttributeList::AT_SPtr: TAK = AttributedType::attr_sptr; break;
4420 case AttributeList::AT_UPtr: TAK = AttributedType::attr_uptr; break;
4421 }
4422
4423 Type = S.Context.getAttributedType(TAK, Type, Type);
4424 return false;
4425 }
4426
getCCTypeAttrKind(AttributeList & Attr)4427 static AttributedType::Kind getCCTypeAttrKind(AttributeList &Attr) {
4428 assert(!Attr.isInvalid());
4429 switch (Attr.getKind()) {
4430 default:
4431 llvm_unreachable("not a calling convention attribute");
4432 case AttributeList::AT_CDecl:
4433 return AttributedType::attr_cdecl;
4434 case AttributeList::AT_FastCall:
4435 return AttributedType::attr_fastcall;
4436 case AttributeList::AT_StdCall:
4437 return AttributedType::attr_stdcall;
4438 case AttributeList::AT_ThisCall:
4439 return AttributedType::attr_thiscall;
4440 case AttributeList::AT_Pascal:
4441 return AttributedType::attr_pascal;
4442 case AttributeList::AT_VectorCall:
4443 return AttributedType::attr_vectorcall;
4444 case AttributeList::AT_Pcs: {
4445 // The attribute may have had a fixit applied where we treated an
4446 // identifier as a string literal. The contents of the string are valid,
4447 // but the form may not be.
4448 StringRef Str;
4449 if (Attr.isArgExpr(0))
4450 Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
4451 else
4452 Str = Attr.getArgAsIdent(0)->Ident->getName();
4453 return llvm::StringSwitch<AttributedType::Kind>(Str)
4454 .Case("aapcs", AttributedType::attr_pcs)
4455 .Case("aapcs-vfp", AttributedType::attr_pcs_vfp);
4456 }
4457 case AttributeList::AT_PnaclCall:
4458 return AttributedType::attr_pnaclcall;
4459 case AttributeList::AT_IntelOclBicc:
4460 return AttributedType::attr_inteloclbicc;
4461 case AttributeList::AT_MSABI:
4462 return AttributedType::attr_ms_abi;
4463 case AttributeList::AT_SysVABI:
4464 return AttributedType::attr_sysv_abi;
4465 }
4466 llvm_unreachable("unexpected attribute kind!");
4467 }
4468
4469 /// Process an individual function attribute. Returns true to
4470 /// indicate that the attribute was handled, false if it wasn't.
handleFunctionTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType & type)4471 static bool handleFunctionTypeAttr(TypeProcessingState &state,
4472 AttributeList &attr,
4473 QualType &type) {
4474 Sema &S = state.getSema();
4475
4476 FunctionTypeUnwrapper unwrapped(S, type);
4477
4478 if (attr.getKind() == AttributeList::AT_NoReturn) {
4479 if (S.CheckNoReturnAttr(attr))
4480 return true;
4481
4482 // Delay if this is not a function type.
4483 if (!unwrapped.isFunctionType())
4484 return false;
4485
4486 // Otherwise we can process right away.
4487 FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
4488 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4489 return true;
4490 }
4491
4492 // ns_returns_retained is not always a type attribute, but if we got
4493 // here, we're treating it as one right now.
4494 if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
4495 assert(S.getLangOpts().ObjCAutoRefCount &&
4496 "ns_returns_retained treated as type attribute in non-ARC");
4497 if (attr.getNumArgs()) return true;
4498
4499 // Delay if this is not a function type.
4500 if (!unwrapped.isFunctionType())
4501 return false;
4502
4503 FunctionType::ExtInfo EI
4504 = unwrapped.get()->getExtInfo().withProducesResult(true);
4505 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4506 return true;
4507 }
4508
4509 if (attr.getKind() == AttributeList::AT_Regparm) {
4510 unsigned value;
4511 if (S.CheckRegparmAttr(attr, value))
4512 return true;
4513
4514 // Delay if this is not a function type.
4515 if (!unwrapped.isFunctionType())
4516 return false;
4517
4518 // Diagnose regparm with fastcall.
4519 const FunctionType *fn = unwrapped.get();
4520 CallingConv CC = fn->getCallConv();
4521 if (CC == CC_X86FastCall) {
4522 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4523 << FunctionType::getNameForCallConv(CC)
4524 << "regparm";
4525 attr.setInvalid();
4526 return true;
4527 }
4528
4529 FunctionType::ExtInfo EI =
4530 unwrapped.get()->getExtInfo().withRegParm(value);
4531 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4532 return true;
4533 }
4534
4535 // Delay if the type didn't work out to a function.
4536 if (!unwrapped.isFunctionType()) return false;
4537
4538 // Otherwise, a calling convention.
4539 CallingConv CC;
4540 if (S.CheckCallingConvAttr(attr, CC))
4541 return true;
4542
4543 const FunctionType *fn = unwrapped.get();
4544 CallingConv CCOld = fn->getCallConv();
4545 AttributedType::Kind CCAttrKind = getCCTypeAttrKind(attr);
4546
4547 if (CCOld != CC) {
4548 // Error out on when there's already an attribute on the type
4549 // and the CCs don't match.
4550 const AttributedType *AT = S.getCallingConvAttributedType(type);
4551 if (AT && AT->getAttrKind() != CCAttrKind) {
4552 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4553 << FunctionType::getNameForCallConv(CC)
4554 << FunctionType::getNameForCallConv(CCOld);
4555 attr.setInvalid();
4556 return true;
4557 }
4558 }
4559
4560 // Diagnose use of callee-cleanup calling convention on variadic functions.
4561 if (!supportsVariadicCall(CC)) {
4562 const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
4563 if (FnP && FnP->isVariadic()) {
4564 unsigned DiagID = diag::err_cconv_varargs;
4565 // stdcall and fastcall are ignored with a warning for GCC and MS
4566 // compatibility.
4567 if (CC == CC_X86StdCall || CC == CC_X86FastCall)
4568 DiagID = diag::warn_cconv_varargs;
4569
4570 S.Diag(attr.getLoc(), DiagID) << FunctionType::getNameForCallConv(CC);
4571 attr.setInvalid();
4572 return true;
4573 }
4574 }
4575
4576 // Also diagnose fastcall with regparm.
4577 if (CC == CC_X86FastCall && fn->getHasRegParm()) {
4578 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4579 << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
4580 attr.setInvalid();
4581 return true;
4582 }
4583
4584 // Modify the CC from the wrapped function type, wrap it all back, and then
4585 // wrap the whole thing in an AttributedType as written. The modified type
4586 // might have a different CC if we ignored the attribute.
4587 FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
4588 QualType Equivalent =
4589 unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4590 type = S.Context.getAttributedType(CCAttrKind, type, Equivalent);
4591 return true;
4592 }
4593
hasExplicitCallingConv(QualType & T)4594 bool Sema::hasExplicitCallingConv(QualType &T) {
4595 QualType R = T.IgnoreParens();
4596 while (const AttributedType *AT = dyn_cast<AttributedType>(R)) {
4597 if (AT->isCallingConv())
4598 return true;
4599 R = AT->getModifiedType().IgnoreParens();
4600 }
4601 return false;
4602 }
4603
adjustMemberFunctionCC(QualType & T,bool IsStatic)4604 void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic) {
4605 FunctionTypeUnwrapper Unwrapped(*this, T);
4606 const FunctionType *FT = Unwrapped.get();
4607 bool IsVariadic = (isa<FunctionProtoType>(FT) &&
4608 cast<FunctionProtoType>(FT)->isVariadic());
4609
4610 // Only adjust types with the default convention. For example, on Windows we
4611 // should adjust a __cdecl type to __thiscall for instance methods, and a
4612 // __thiscall type to __cdecl for static methods.
4613 CallingConv CurCC = FT->getCallConv();
4614 CallingConv FromCC =
4615 Context.getDefaultCallingConvention(IsVariadic, IsStatic);
4616 CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
4617 if (CurCC != FromCC || FromCC == ToCC)
4618 return;
4619
4620 if (hasExplicitCallingConv(T))
4621 return;
4622
4623 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
4624 QualType Wrapped = Unwrapped.wrap(*this, FT);
4625 T = Context.getAdjustedType(T, Wrapped);
4626 }
4627
4628 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
4629 /// and float scalars, although arrays, pointers, and function return values are
4630 /// allowed in conjunction with this construct. Aggregates with this attribute
4631 /// are invalid, even if they are of the same size as a corresponding scalar.
4632 /// The raw attribute should contain precisely 1 argument, the vector size for
4633 /// the variable, measured in bytes. If curType and rawAttr are well formed,
4634 /// this routine will return a new vector type.
HandleVectorSizeAttr(QualType & CurType,const AttributeList & Attr,Sema & S)4635 static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
4636 Sema &S) {
4637 // Check the attribute arguments.
4638 if (Attr.getNumArgs() != 1) {
4639 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4640 << Attr.getName() << 1;
4641 Attr.setInvalid();
4642 return;
4643 }
4644 Expr *sizeExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4645 llvm::APSInt vecSize(32);
4646 if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4647 !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
4648 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4649 << Attr.getName() << AANT_ArgumentIntegerConstant
4650 << sizeExpr->getSourceRange();
4651 Attr.setInvalid();
4652 return;
4653 }
4654 // The base type must be integer (not Boolean or enumeration) or float, and
4655 // can't already be a vector.
4656 if (!CurType->isBuiltinType() || CurType->isBooleanType() ||
4657 (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
4658 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4659 Attr.setInvalid();
4660 return;
4661 }
4662 unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4663 // vecSize is specified in bytes - convert to bits.
4664 unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
4665
4666 // the vector size needs to be an integral multiple of the type size.
4667 if (vectorSize % typeSize) {
4668 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4669 << sizeExpr->getSourceRange();
4670 Attr.setInvalid();
4671 return;
4672 }
4673 if (VectorType::isVectorSizeTooLarge(vectorSize / typeSize)) {
4674 S.Diag(Attr.getLoc(), diag::err_attribute_size_too_large)
4675 << sizeExpr->getSourceRange();
4676 Attr.setInvalid();
4677 return;
4678 }
4679 if (vectorSize == 0) {
4680 S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
4681 << sizeExpr->getSourceRange();
4682 Attr.setInvalid();
4683 return;
4684 }
4685
4686 // Success! Instantiate the vector type, the number of elements is > 0, and
4687 // not required to be a power of 2, unlike GCC.
4688 CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
4689 VectorType::GenericVector);
4690 }
4691
4692 /// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
4693 /// a type.
HandleExtVectorTypeAttr(QualType & CurType,const AttributeList & Attr,Sema & S)4694 static void HandleExtVectorTypeAttr(QualType &CurType,
4695 const AttributeList &Attr,
4696 Sema &S) {
4697 // check the attribute arguments.
4698 if (Attr.getNumArgs() != 1) {
4699 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4700 << Attr.getName() << 1;
4701 return;
4702 }
4703
4704 Expr *sizeExpr;
4705
4706 // Special case where the argument is a template id.
4707 if (Attr.isArgIdent(0)) {
4708 CXXScopeSpec SS;
4709 SourceLocation TemplateKWLoc;
4710 UnqualifiedId id;
4711 id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
4712
4713 ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
4714 id, false, false);
4715 if (Size.isInvalid())
4716 return;
4717
4718 sizeExpr = Size.get();
4719 } else {
4720 sizeExpr = Attr.getArgAsExpr(0);
4721 }
4722
4723 // Create the vector type.
4724 QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
4725 if (!T.isNull())
4726 CurType = T;
4727 }
4728
isPermittedNeonBaseType(QualType & Ty,VectorType::VectorKind VecKind,Sema & S)4729 static bool isPermittedNeonBaseType(QualType &Ty,
4730 VectorType::VectorKind VecKind, Sema &S) {
4731 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
4732 if (!BTy)
4733 return false;
4734
4735 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
4736
4737 // Signed poly is mathematically wrong, but has been baked into some ABIs by
4738 // now.
4739 bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
4740 Triple.getArch() == llvm::Triple::aarch64_be;
4741 if (VecKind == VectorType::NeonPolyVector) {
4742 if (IsPolyUnsigned) {
4743 // AArch64 polynomial vectors are unsigned and support poly64.
4744 return BTy->getKind() == BuiltinType::UChar ||
4745 BTy->getKind() == BuiltinType::UShort ||
4746 BTy->getKind() == BuiltinType::ULong ||
4747 BTy->getKind() == BuiltinType::ULongLong;
4748 } else {
4749 // AArch32 polynomial vector are signed.
4750 return BTy->getKind() == BuiltinType::SChar ||
4751 BTy->getKind() == BuiltinType::Short;
4752 }
4753 }
4754
4755 // Non-polynomial vector types: the usual suspects are allowed, as well as
4756 // float64_t on AArch64.
4757 bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
4758 Triple.getArch() == llvm::Triple::aarch64_be;
4759
4760 if (Is64Bit && BTy->getKind() == BuiltinType::Double)
4761 return true;
4762
4763 return BTy->getKind() == BuiltinType::SChar ||
4764 BTy->getKind() == BuiltinType::UChar ||
4765 BTy->getKind() == BuiltinType::Short ||
4766 BTy->getKind() == BuiltinType::UShort ||
4767 BTy->getKind() == BuiltinType::Int ||
4768 BTy->getKind() == BuiltinType::UInt ||
4769 BTy->getKind() == BuiltinType::Long ||
4770 BTy->getKind() == BuiltinType::ULong ||
4771 BTy->getKind() == BuiltinType::LongLong ||
4772 BTy->getKind() == BuiltinType::ULongLong ||
4773 BTy->getKind() == BuiltinType::Float ||
4774 BTy->getKind() == BuiltinType::Half;
4775 }
4776
4777 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
4778 /// "neon_polyvector_type" attributes are used to create vector types that
4779 /// are mangled according to ARM's ABI. Otherwise, these types are identical
4780 /// to those created with the "vector_size" attribute. Unlike "vector_size"
4781 /// the argument to these Neon attributes is the number of vector elements,
4782 /// not the vector size in bytes. The vector width and element type must
4783 /// match one of the standard Neon vector types.
HandleNeonVectorTypeAttr(QualType & CurType,const AttributeList & Attr,Sema & S,VectorType::VectorKind VecKind)4784 static void HandleNeonVectorTypeAttr(QualType& CurType,
4785 const AttributeList &Attr, Sema &S,
4786 VectorType::VectorKind VecKind) {
4787 // Target must have NEON
4788 if (!S.Context.getTargetInfo().hasFeature("neon")) {
4789 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr.getName();
4790 Attr.setInvalid();
4791 return;
4792 }
4793 // Check the attribute arguments.
4794 if (Attr.getNumArgs() != 1) {
4795 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4796 << Attr.getName() << 1;
4797 Attr.setInvalid();
4798 return;
4799 }
4800 // The number of elements must be an ICE.
4801 Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4802 llvm::APSInt numEltsInt(32);
4803 if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
4804 !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
4805 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4806 << Attr.getName() << AANT_ArgumentIntegerConstant
4807 << numEltsExpr->getSourceRange();
4808 Attr.setInvalid();
4809 return;
4810 }
4811 // Only certain element types are supported for Neon vectors.
4812 if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
4813 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4814 Attr.setInvalid();
4815 return;
4816 }
4817
4818 // The total size of the vector must be 64 or 128 bits.
4819 unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4820 unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
4821 unsigned vecSize = typeSize * numElts;
4822 if (vecSize != 64 && vecSize != 128) {
4823 S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
4824 Attr.setInvalid();
4825 return;
4826 }
4827
4828 CurType = S.Context.getVectorType(CurType, numElts, VecKind);
4829 }
4830
processTypeAttrs(TypeProcessingState & state,QualType & type,TypeAttrLocation TAL,AttributeList * attrs)4831 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
4832 TypeAttrLocation TAL, AttributeList *attrs) {
4833 // Scan through and apply attributes to this type where it makes sense. Some
4834 // attributes (such as __address_space__, __vector_size__, etc) apply to the
4835 // type, but others can be present in the type specifiers even though they
4836 // apply to the decl. Here we apply type attributes and ignore the rest.
4837
4838 AttributeList *next;
4839 do {
4840 AttributeList &attr = *attrs;
4841 next = attr.getNext();
4842
4843 // Skip attributes that were marked to be invalid.
4844 if (attr.isInvalid())
4845 continue;
4846
4847 if (attr.isCXX11Attribute()) {
4848 // [[gnu::...]] attributes are treated as declaration attributes, so may
4849 // not appertain to a DeclaratorChunk, even if we handle them as type
4850 // attributes.
4851 if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
4852 if (TAL == TAL_DeclChunk) {
4853 state.getSema().Diag(attr.getLoc(),
4854 diag::warn_cxx11_gnu_attribute_on_type)
4855 << attr.getName();
4856 continue;
4857 }
4858 } else if (TAL != TAL_DeclChunk) {
4859 // Otherwise, only consider type processing for a C++11 attribute if
4860 // it's actually been applied to a type.
4861 continue;
4862 }
4863 }
4864
4865 // If this is an attribute we can handle, do so now,
4866 // otherwise, add it to the FnAttrs list for rechaining.
4867 switch (attr.getKind()) {
4868 default:
4869 // A C++11 attribute on a declarator chunk must appertain to a type.
4870 if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
4871 state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
4872 << attr.getName();
4873 attr.setUsedAsTypeAttr();
4874 }
4875 break;
4876
4877 case AttributeList::UnknownAttribute:
4878 if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
4879 state.getSema().Diag(attr.getLoc(),
4880 diag::warn_unknown_attribute_ignored)
4881 << attr.getName();
4882 break;
4883
4884 case AttributeList::IgnoredAttribute:
4885 break;
4886
4887 case AttributeList::AT_MayAlias:
4888 // FIXME: This attribute needs to actually be handled, but if we ignore
4889 // it it breaks large amounts of Linux software.
4890 attr.setUsedAsTypeAttr();
4891 break;
4892 case AttributeList::AT_OpenCLPrivateAddressSpace:
4893 case AttributeList::AT_OpenCLGlobalAddressSpace:
4894 case AttributeList::AT_OpenCLLocalAddressSpace:
4895 case AttributeList::AT_OpenCLConstantAddressSpace:
4896 case AttributeList::AT_OpenCLGenericAddressSpace:
4897 case AttributeList::AT_AddressSpace:
4898 HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
4899 attr.setUsedAsTypeAttr();
4900 break;
4901 OBJC_POINTER_TYPE_ATTRS_CASELIST:
4902 if (!handleObjCPointerTypeAttr(state, attr, type))
4903 distributeObjCPointerTypeAttr(state, attr, type);
4904 attr.setUsedAsTypeAttr();
4905 break;
4906 case AttributeList::AT_VectorSize:
4907 HandleVectorSizeAttr(type, attr, state.getSema());
4908 attr.setUsedAsTypeAttr();
4909 break;
4910 case AttributeList::AT_ExtVectorType:
4911 HandleExtVectorTypeAttr(type, attr, state.getSema());
4912 attr.setUsedAsTypeAttr();
4913 break;
4914 case AttributeList::AT_NeonVectorType:
4915 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4916 VectorType::NeonVector);
4917 attr.setUsedAsTypeAttr();
4918 break;
4919 case AttributeList::AT_NeonPolyVectorType:
4920 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4921 VectorType::NeonPolyVector);
4922 attr.setUsedAsTypeAttr();
4923 break;
4924 case AttributeList::AT_OpenCLImageAccess:
4925 // FIXME: there should be some type checking happening here, I would
4926 // imagine, but the original handler's checking was entirely superfluous.
4927 attr.setUsedAsTypeAttr();
4928 break;
4929
4930 MS_TYPE_ATTRS_CASELIST:
4931 if (!handleMSPointerTypeQualifierAttr(state, attr, type))
4932 attr.setUsedAsTypeAttr();
4933 break;
4934
4935 case AttributeList::AT_NSReturnsRetained:
4936 if (!state.getSema().getLangOpts().ObjCAutoRefCount)
4937 break;
4938 // fallthrough into the function attrs
4939
4940 FUNCTION_TYPE_ATTRS_CASELIST:
4941 attr.setUsedAsTypeAttr();
4942
4943 // Never process function type attributes as part of the
4944 // declaration-specifiers.
4945 if (TAL == TAL_DeclSpec)
4946 distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
4947
4948 // Otherwise, handle the possible delays.
4949 else if (!handleFunctionTypeAttr(state, attr, type))
4950 distributeFunctionTypeAttr(state, attr, type);
4951 break;
4952 }
4953 } while ((attrs = next));
4954 }
4955
4956 /// \brief Ensure that the type of the given expression is complete.
4957 ///
4958 /// This routine checks whether the expression \p E has a complete type. If the
4959 /// expression refers to an instantiable construct, that instantiation is
4960 /// performed as needed to complete its type. Furthermore
4961 /// Sema::RequireCompleteType is called for the expression's type (or in the
4962 /// case of a reference type, the referred-to type).
4963 ///
4964 /// \param E The expression whose type is required to be complete.
4965 /// \param Diagnoser The object that will emit a diagnostic if the type is
4966 /// incomplete.
4967 ///
4968 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4969 /// otherwise.
RequireCompleteExprType(Expr * E,TypeDiagnoser & Diagnoser)4970 bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
4971 QualType T = E->getType();
4972
4973 // Fast path the case where the type is already complete.
4974 if (!T->isIncompleteType())
4975 // FIXME: The definition might not be visible.
4976 return false;
4977
4978 // Incomplete array types may be completed by the initializer attached to
4979 // their definitions. For static data members of class templates and for
4980 // variable templates, we need to instantiate the definition to get this
4981 // initializer and complete the type.
4982 if (T->isIncompleteArrayType()) {
4983 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4984 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4985 if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
4986 SourceLocation PointOfInstantiation = E->getExprLoc();
4987
4988 if (MemberSpecializationInfo *MSInfo =
4989 Var->getMemberSpecializationInfo()) {
4990 // If we don't already have a point of instantiation, this is it.
4991 if (MSInfo->getPointOfInstantiation().isInvalid()) {
4992 MSInfo->setPointOfInstantiation(PointOfInstantiation);
4993
4994 // This is a modification of an existing AST node. Notify
4995 // listeners.
4996 if (ASTMutationListener *L = getASTMutationListener())
4997 L->StaticDataMemberInstantiated(Var);
4998 }
4999 } else {
5000 VarTemplateSpecializationDecl *VarSpec =
5001 cast<VarTemplateSpecializationDecl>(Var);
5002 if (VarSpec->getPointOfInstantiation().isInvalid())
5003 VarSpec->setPointOfInstantiation(PointOfInstantiation);
5004 }
5005
5006 InstantiateVariableDefinition(PointOfInstantiation, Var);
5007
5008 // Update the type to the newly instantiated definition's type both
5009 // here and within the expression.
5010 if (VarDecl *Def = Var->getDefinition()) {
5011 DRE->setDecl(Def);
5012 T = Def->getType();
5013 DRE->setType(T);
5014 E->setType(T);
5015 }
5016
5017 // We still go on to try to complete the type independently, as it
5018 // may also require instantiations or diagnostics if it remains
5019 // incomplete.
5020 }
5021 }
5022 }
5023 }
5024
5025 // FIXME: Are there other cases which require instantiating something other
5026 // than the type to complete the type of an expression?
5027
5028 // Look through reference types and complete the referred type.
5029 if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5030 T = Ref->getPointeeType();
5031
5032 return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
5033 }
5034
5035 namespace {
5036 struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
5037 unsigned DiagID;
5038
TypeDiagnoserDiag__anon7ba70c020511::TypeDiagnoserDiag5039 TypeDiagnoserDiag(unsigned DiagID)
5040 : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
5041
diagnose__anon7ba70c020511::TypeDiagnoserDiag5042 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5043 if (Suppressed) return;
5044 S.Diag(Loc, DiagID) << T;
5045 }
5046 };
5047 }
5048
RequireCompleteExprType(Expr * E,unsigned DiagID)5049 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
5050 TypeDiagnoserDiag Diagnoser(DiagID);
5051 return RequireCompleteExprType(E, Diagnoser);
5052 }
5053
5054 /// @brief Ensure that the type T is a complete type.
5055 ///
5056 /// This routine checks whether the type @p T is complete in any
5057 /// context where a complete type is required. If @p T is a complete
5058 /// type, returns false. If @p T is a class template specialization,
5059 /// this routine then attempts to perform class template
5060 /// instantiation. If instantiation fails, or if @p T is incomplete
5061 /// and cannot be completed, issues the diagnostic @p diag (giving it
5062 /// the type @p T) and returns true.
5063 ///
5064 /// @param Loc The location in the source that the incomplete type
5065 /// diagnostic should refer to.
5066 ///
5067 /// @param T The type that this routine is examining for completeness.
5068 ///
5069 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
5070 /// @c false otherwise.
RequireCompleteType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)5071 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
5072 TypeDiagnoser &Diagnoser) {
5073 if (RequireCompleteTypeImpl(Loc, T, Diagnoser))
5074 return true;
5075 if (const TagType *Tag = T->getAs<TagType>()) {
5076 if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
5077 Tag->getDecl()->setCompleteDefinitionRequired();
5078 Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
5079 }
5080 }
5081 return false;
5082 }
5083
5084 /// \brief Determine whether there is any declaration of \p D that was ever a
5085 /// definition (perhaps before module merging) and is currently visible.
5086 /// \param D The definition of the entity.
5087 /// \param Suggested Filled in with the declaration that should be made visible
5088 /// in order to provide a definition of this entity.
hasVisibleDefinition(Sema & S,NamedDecl * D,NamedDecl ** Suggested)5089 static bool hasVisibleDefinition(Sema &S, NamedDecl *D, NamedDecl **Suggested) {
5090 // Easy case: if we don't have modules, all declarations are visible.
5091 if (!S.getLangOpts().Modules)
5092 return true;
5093
5094 // If this definition was instantiated from a template, map back to the
5095 // pattern from which it was instantiated.
5096 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
5097 if (auto *Pattern = RD->getTemplateInstantiationPattern())
5098 RD = Pattern;
5099 D = RD->getDefinition();
5100 } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
5101 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
5102 ED = NewED;
5103 if (ED->isFixed()) {
5104 // If the enum has a fixed underlying type, any declaration of it will do.
5105 *Suggested = nullptr;
5106 for (auto *Redecl : ED->redecls()) {
5107 if (LookupResult::isVisible(S, Redecl))
5108 return true;
5109 if (Redecl->isThisDeclarationADefinition() ||
5110 (Redecl->isCanonicalDecl() && !*Suggested))
5111 *Suggested = Redecl;
5112 }
5113 return false;
5114 }
5115 D = ED->getDefinition();
5116 }
5117 assert(D && "missing definition for pattern of instantiated definition");
5118
5119 // FIXME: If we merged any other decl into D, and that declaration is visible,
5120 // then we should consider a definition to be visible.
5121 *Suggested = D;
5122 return LookupResult::isVisible(S, D);
5123 }
5124
5125 /// Locks in the inheritance model for the given class and all of its bases.
assignInheritanceModel(Sema & S,CXXRecordDecl * RD)5126 static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
5127 RD = RD->getMostRecentDecl();
5128 if (!RD->hasAttr<MSInheritanceAttr>()) {
5129 MSInheritanceAttr::Spelling IM;
5130
5131 switch (S.MSPointerToMemberRepresentationMethod) {
5132 case LangOptions::PPTMK_BestCase:
5133 IM = RD->calculateInheritanceModel();
5134 break;
5135 case LangOptions::PPTMK_FullGeneralitySingleInheritance:
5136 IM = MSInheritanceAttr::Keyword_single_inheritance;
5137 break;
5138 case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
5139 IM = MSInheritanceAttr::Keyword_multiple_inheritance;
5140 break;
5141 case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
5142 IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
5143 break;
5144 }
5145
5146 RD->addAttr(MSInheritanceAttr::CreateImplicit(
5147 S.getASTContext(), IM,
5148 /*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
5149 LangOptions::PPTMK_BestCase,
5150 S.ImplicitMSInheritanceAttrLoc.isValid()
5151 ? S.ImplicitMSInheritanceAttrLoc
5152 : RD->getSourceRange()));
5153 }
5154 }
5155
5156 /// \brief The implementation of RequireCompleteType
RequireCompleteTypeImpl(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)5157 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
5158 TypeDiagnoser &Diagnoser) {
5159 // FIXME: Add this assertion to make sure we always get instantiation points.
5160 // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
5161 // FIXME: Add this assertion to help us flush out problems with
5162 // checking for dependent types and type-dependent expressions.
5163 //
5164 // assert(!T->isDependentType() &&
5165 // "Can't ask whether a dependent type is complete");
5166
5167 // If we have a complete type, we're done.
5168 NamedDecl *Def = nullptr;
5169 if (!T->isIncompleteType(&Def)) {
5170 // If we know about the definition but it is not visible, complain.
5171 NamedDecl *SuggestedDef = nullptr;
5172 if (!Diagnoser.Suppressed && Def &&
5173 !hasVisibleDefinition(*this, Def, &SuggestedDef)) {
5174 // Suppress this error outside of a SFINAE context if we've already
5175 // emitted the error once for this type. There's no usefulness in
5176 // repeating the diagnostic.
5177 // FIXME: Add a Fix-It that imports the corresponding module or includes
5178 // the header.
5179 Module *Owner = SuggestedDef->getOwningModule();
5180 Diag(Loc, diag::err_module_private_definition)
5181 << T << Owner->getFullModuleName();
5182 Diag(SuggestedDef->getLocation(), diag::note_previous_definition);
5183
5184 // Try to recover by implicitly importing this module.
5185 createImplicitModuleImportForErrorRecovery(Loc, Owner);
5186 }
5187
5188 // We lock in the inheritance model once somebody has asked us to ensure
5189 // that a pointer-to-member type is complete.
5190 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5191 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
5192 if (!MPTy->getClass()->isDependentType()) {
5193 RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), 0);
5194 assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
5195 }
5196 }
5197 }
5198
5199 return false;
5200 }
5201
5202 const TagType *Tag = T->getAs<TagType>();
5203 const ObjCInterfaceType *IFace = T->getAs<ObjCInterfaceType>();
5204
5205 // If there's an unimported definition of this type in a module (for
5206 // instance, because we forward declared it, then imported the definition),
5207 // import that definition now.
5208 //
5209 // FIXME: What about other cases where an import extends a redeclaration
5210 // chain for a declaration that can be accessed through a mechanism other
5211 // than name lookup (eg, referenced in a template, or a variable whose type
5212 // could be completed by the module)?
5213 if (Tag || IFace) {
5214 NamedDecl *D =
5215 Tag ? static_cast<NamedDecl *>(Tag->getDecl()) : IFace->getDecl();
5216
5217 // Avoid diagnosing invalid decls as incomplete.
5218 if (D->isInvalidDecl())
5219 return true;
5220
5221 // Give the external AST source a chance to complete the type.
5222 if (auto *Source = Context.getExternalSource()) {
5223 if (Tag)
5224 Source->CompleteType(Tag->getDecl());
5225 else
5226 Source->CompleteType(IFace->getDecl());
5227
5228 // If the external source completed the type, go through the motions
5229 // again to ensure we're allowed to use the completed type.
5230 if (!T->isIncompleteType())
5231 return RequireCompleteTypeImpl(Loc, T, Diagnoser);
5232 }
5233 }
5234
5235 // If we have a class template specialization or a class member of a
5236 // class template specialization, or an array with known size of such,
5237 // try to instantiate it.
5238 QualType MaybeTemplate = T;
5239 while (const ConstantArrayType *Array
5240 = Context.getAsConstantArrayType(MaybeTemplate))
5241 MaybeTemplate = Array->getElementType();
5242 if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
5243 if (ClassTemplateSpecializationDecl *ClassTemplateSpec
5244 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
5245 if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
5246 return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
5247 TSK_ImplicitInstantiation,
5248 /*Complain=*/!Diagnoser.Suppressed);
5249 } else if (CXXRecordDecl *Rec
5250 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
5251 CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
5252 if (!Rec->isBeingDefined() && Pattern) {
5253 MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
5254 assert(MSI && "Missing member specialization information?");
5255 // This record was instantiated from a class within a template.
5256 if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5257 return InstantiateClass(Loc, Rec, Pattern,
5258 getTemplateInstantiationArgs(Rec),
5259 TSK_ImplicitInstantiation,
5260 /*Complain=*/!Diagnoser.Suppressed);
5261 }
5262 }
5263 }
5264
5265 if (Diagnoser.Suppressed)
5266 return true;
5267
5268 // We have an incomplete type. Produce a diagnostic.
5269 if (Ident___float128 &&
5270 T == Context.getTypeDeclType(Context.getFloat128StubType())) {
5271 Diag(Loc, diag::err_typecheck_decl_incomplete_type___float128);
5272 return true;
5273 }
5274
5275 Diagnoser.diagnose(*this, Loc, T);
5276
5277 // If the type was a forward declaration of a class/struct/union
5278 // type, produce a note.
5279 if (Tag && !Tag->getDecl()->isInvalidDecl())
5280 Diag(Tag->getDecl()->getLocation(),
5281 Tag->isBeingDefined() ? diag::note_type_being_defined
5282 : diag::note_forward_declaration)
5283 << QualType(Tag, 0);
5284
5285 // If the Objective-C class was a forward declaration, produce a note.
5286 if (IFace && !IFace->getDecl()->isInvalidDecl())
5287 Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
5288
5289 // If we have external information that we can use to suggest a fix,
5290 // produce a note.
5291 if (ExternalSource)
5292 ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
5293
5294 return true;
5295 }
5296
RequireCompleteType(SourceLocation Loc,QualType T,unsigned DiagID)5297 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
5298 unsigned DiagID) {
5299 TypeDiagnoserDiag Diagnoser(DiagID);
5300 return RequireCompleteType(Loc, T, Diagnoser);
5301 }
5302
5303 /// \brief Get diagnostic %select index for tag kind for
5304 /// literal type diagnostic message.
5305 /// WARNING: Indexes apply to particular diagnostics only!
5306 ///
5307 /// \returns diagnostic %select index.
getLiteralDiagFromTagKind(TagTypeKind Tag)5308 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
5309 switch (Tag) {
5310 case TTK_Struct: return 0;
5311 case TTK_Interface: return 1;
5312 case TTK_Class: return 2;
5313 default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
5314 }
5315 }
5316
5317 /// @brief Ensure that the type T is a literal type.
5318 ///
5319 /// This routine checks whether the type @p T is a literal type. If @p T is an
5320 /// incomplete type, an attempt is made to complete it. If @p T is a literal
5321 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
5322 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
5323 /// it the type @p T), along with notes explaining why the type is not a
5324 /// literal type, and returns true.
5325 ///
5326 /// @param Loc The location in the source that the non-literal type
5327 /// diagnostic should refer to.
5328 ///
5329 /// @param T The type that this routine is examining for literalness.
5330 ///
5331 /// @param Diagnoser Emits a diagnostic if T is not a literal type.
5332 ///
5333 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
5334 /// @c false otherwise.
RequireLiteralType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)5335 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
5336 TypeDiagnoser &Diagnoser) {
5337 assert(!T->isDependentType() && "type should not be dependent");
5338
5339 QualType ElemType = Context.getBaseElementType(T);
5340 RequireCompleteType(Loc, ElemType, 0);
5341
5342 if (T->isLiteralType(Context))
5343 return false;
5344
5345 if (Diagnoser.Suppressed)
5346 return true;
5347
5348 Diagnoser.diagnose(*this, Loc, T);
5349
5350 if (T->isVariableArrayType())
5351 return true;
5352
5353 const RecordType *RT = ElemType->getAs<RecordType>();
5354 if (!RT)
5355 return true;
5356
5357 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5358
5359 // A partially-defined class type can't be a literal type, because a literal
5360 // class type must have a trivial destructor (which can't be checked until
5361 // the class definition is complete).
5362 if (!RD->isCompleteDefinition()) {
5363 RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
5364 return true;
5365 }
5366
5367 // If the class has virtual base classes, then it's not an aggregate, and
5368 // cannot have any constexpr constructors or a trivial default constructor,
5369 // so is non-literal. This is better to diagnose than the resulting absence
5370 // of constexpr constructors.
5371 if (RD->getNumVBases()) {
5372 Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
5373 << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
5374 for (const auto &I : RD->vbases())
5375 Diag(I.getLocStart(), diag::note_constexpr_virtual_base_here)
5376 << I.getSourceRange();
5377 } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
5378 !RD->hasTrivialDefaultConstructor()) {
5379 Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
5380 } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
5381 for (const auto &I : RD->bases()) {
5382 if (!I.getType()->isLiteralType(Context)) {
5383 Diag(I.getLocStart(),
5384 diag::note_non_literal_base_class)
5385 << RD << I.getType() << I.getSourceRange();
5386 return true;
5387 }
5388 }
5389 for (const auto *I : RD->fields()) {
5390 if (!I->getType()->isLiteralType(Context) ||
5391 I->getType().isVolatileQualified()) {
5392 Diag(I->getLocation(), diag::note_non_literal_field)
5393 << RD << I << I->getType()
5394 << I->getType().isVolatileQualified();
5395 return true;
5396 }
5397 }
5398 } else if (!RD->hasTrivialDestructor()) {
5399 // All fields and bases are of literal types, so have trivial destructors.
5400 // If this class's destructor is non-trivial it must be user-declared.
5401 CXXDestructorDecl *Dtor = RD->getDestructor();
5402 assert(Dtor && "class has literal fields and bases but no dtor?");
5403 if (!Dtor)
5404 return true;
5405
5406 Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
5407 diag::note_non_literal_user_provided_dtor :
5408 diag::note_non_literal_nontrivial_dtor) << RD;
5409 if (!Dtor->isUserProvided())
5410 SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
5411 }
5412
5413 return true;
5414 }
5415
RequireLiteralType(SourceLocation Loc,QualType T,unsigned DiagID)5416 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
5417 TypeDiagnoserDiag Diagnoser(DiagID);
5418 return RequireLiteralType(Loc, T, Diagnoser);
5419 }
5420
5421 /// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
5422 /// and qualified by the nested-name-specifier contained in SS.
getElaboratedType(ElaboratedTypeKeyword Keyword,const CXXScopeSpec & SS,QualType T)5423 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
5424 const CXXScopeSpec &SS, QualType T) {
5425 if (T.isNull())
5426 return T;
5427 NestedNameSpecifier *NNS;
5428 if (SS.isValid())
5429 NNS = SS.getScopeRep();
5430 else {
5431 if (Keyword == ETK_None)
5432 return T;
5433 NNS = nullptr;
5434 }
5435 return Context.getElaboratedType(Keyword, NNS, T);
5436 }
5437
BuildTypeofExprType(Expr * E,SourceLocation Loc)5438 QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
5439 ExprResult ER = CheckPlaceholderExpr(E);
5440 if (ER.isInvalid()) return QualType();
5441 E = ER.get();
5442
5443 if (!E->isTypeDependent()) {
5444 QualType T = E->getType();
5445 if (const TagType *TT = T->getAs<TagType>())
5446 DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
5447 }
5448 return Context.getTypeOfExprType(E);
5449 }
5450
5451 /// getDecltypeForExpr - Given an expr, will return the decltype for
5452 /// that expression, according to the rules in C++11
5453 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
getDecltypeForExpr(Sema & S,Expr * E)5454 static QualType getDecltypeForExpr(Sema &S, Expr *E) {
5455 if (E->isTypeDependent())
5456 return S.Context.DependentTy;
5457
5458 // C++11 [dcl.type.simple]p4:
5459 // The type denoted by decltype(e) is defined as follows:
5460 //
5461 // - if e is an unparenthesized id-expression or an unparenthesized class
5462 // member access (5.2.5), decltype(e) is the type of the entity named
5463 // by e. If there is no such entity, or if e names a set of overloaded
5464 // functions, the program is ill-formed;
5465 //
5466 // We apply the same rules for Objective-C ivar and property references.
5467 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
5468 if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
5469 return VD->getType();
5470 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5471 if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
5472 return FD->getType();
5473 } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
5474 return IR->getDecl()->getType();
5475 } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
5476 if (PR->isExplicitProperty())
5477 return PR->getExplicitProperty()->getType();
5478 } else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
5479 return PE->getType();
5480 }
5481
5482 // C++11 [expr.lambda.prim]p18:
5483 // Every occurrence of decltype((x)) where x is a possibly
5484 // parenthesized id-expression that names an entity of automatic
5485 // storage duration is treated as if x were transformed into an
5486 // access to a corresponding data member of the closure type that
5487 // would have been declared if x were an odr-use of the denoted
5488 // entity.
5489 using namespace sema;
5490 if (S.getCurLambda()) {
5491 if (isa<ParenExpr>(E)) {
5492 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
5493 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
5494 QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
5495 if (!T.isNull())
5496 return S.Context.getLValueReferenceType(T);
5497 }
5498 }
5499 }
5500 }
5501
5502
5503 // C++11 [dcl.type.simple]p4:
5504 // [...]
5505 QualType T = E->getType();
5506 switch (E->getValueKind()) {
5507 // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
5508 // type of e;
5509 case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
5510 // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
5511 // type of e;
5512 case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
5513 // - otherwise, decltype(e) is the type of e.
5514 case VK_RValue: break;
5515 }
5516
5517 return T;
5518 }
5519
BuildDecltypeType(Expr * E,SourceLocation Loc,bool AsUnevaluated)5520 QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
5521 bool AsUnevaluated) {
5522 ExprResult ER = CheckPlaceholderExpr(E);
5523 if (ER.isInvalid()) return QualType();
5524 E = ER.get();
5525
5526 if (AsUnevaluated && ActiveTemplateInstantiations.empty() &&
5527 E->HasSideEffects(Context, false)) {
5528 // The expression operand for decltype is in an unevaluated expression
5529 // context, so side effects could result in unintended consequences.
5530 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
5531 }
5532
5533 return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
5534 }
5535
BuildUnaryTransformType(QualType BaseType,UnaryTransformType::UTTKind UKind,SourceLocation Loc)5536 QualType Sema::BuildUnaryTransformType(QualType BaseType,
5537 UnaryTransformType::UTTKind UKind,
5538 SourceLocation Loc) {
5539 switch (UKind) {
5540 case UnaryTransformType::EnumUnderlyingType:
5541 if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
5542 Diag(Loc, diag::err_only_enums_have_underlying_types);
5543 return QualType();
5544 } else {
5545 QualType Underlying = BaseType;
5546 if (!BaseType->isDependentType()) {
5547 // The enum could be incomplete if we're parsing its definition or
5548 // recovering from an error.
5549 NamedDecl *FwdDecl = nullptr;
5550 if (BaseType->isIncompleteType(&FwdDecl)) {
5551 Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
5552 Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
5553 return QualType();
5554 }
5555
5556 EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
5557 assert(ED && "EnumType has no EnumDecl");
5558
5559 DiagnoseUseOfDecl(ED, Loc);
5560
5561 Underlying = ED->getIntegerType();
5562 assert(!Underlying.isNull());
5563 }
5564 return Context.getUnaryTransformType(BaseType, Underlying,
5565 UnaryTransformType::EnumUnderlyingType);
5566 }
5567 }
5568 llvm_unreachable("unknown unary transform type");
5569 }
5570
BuildAtomicType(QualType T,SourceLocation Loc)5571 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
5572 if (!T->isDependentType()) {
5573 // FIXME: It isn't entirely clear whether incomplete atomic types
5574 // are allowed or not; for simplicity, ban them for the moment.
5575 if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
5576 return QualType();
5577
5578 int DisallowedKind = -1;
5579 if (T->isArrayType())
5580 DisallowedKind = 1;
5581 else if (T->isFunctionType())
5582 DisallowedKind = 2;
5583 else if (T->isReferenceType())
5584 DisallowedKind = 3;
5585 else if (T->isAtomicType())
5586 DisallowedKind = 4;
5587 else if (T.hasQualifiers())
5588 DisallowedKind = 5;
5589 else if (!T.isTriviallyCopyableType(Context))
5590 // Some other non-trivially-copyable type (probably a C++ class)
5591 DisallowedKind = 6;
5592
5593 if (DisallowedKind != -1) {
5594 Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
5595 return QualType();
5596 }
5597
5598 // FIXME: Do we need any handling for ARC here?
5599 }
5600
5601 // Build the pointer type.
5602 return Context.getAtomicType(T);
5603 }
5604