1 /*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
23 */
24
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27
28 #include "exec/breakpoint.h"
29 #include "hw/registerfields.h"
30 #include "tcg/tcg-gvec-desc.h"
31 #include "syndrome.h"
32 #include "cpu-features.h"
33
34 /* register banks for CPU modes */
35 #define BANK_USRSYS 0
36 #define BANK_SVC 1
37 #define BANK_ABT 2
38 #define BANK_UND 3
39 #define BANK_IRQ 4
40 #define BANK_FIQ 5
41 #define BANK_HYP 6
42 #define BANK_MON 7
43
arm_env_mmu_index(CPUARMState * env)44 static inline int arm_env_mmu_index(CPUARMState *env)
45 {
46 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
47 }
48
excp_is_internal(int excp)49 static inline bool excp_is_internal(int excp)
50 {
51 /* Return true if this exception number represents a QEMU-internal
52 * exception that will not be passed to the guest.
53 */
54 return excp == EXCP_INTERRUPT
55 || excp == EXCP_HLT
56 || excp == EXCP_DEBUG
57 || excp == EXCP_HALTED
58 || excp == EXCP_EXCEPTION_EXIT
59 || excp == EXCP_KERNEL_TRAP
60 || excp == EXCP_SEMIHOST;
61 }
62
63 /*
64 * Default frequency for the generic timer, in Hz.
65 * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
66 * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
67 * which gives a 16ns tick period.
68 *
69 * We will use the back-compat value:
70 * - for QEMU CPU types added before we standardized on 1GHz
71 * - for versioned machine types with a version of 9.0 or earlier
72 * In any case, the machine model may override via the cntfrq property.
73 */
74 #define GTIMER_DEFAULT_HZ 1000000000
75 #define GTIMER_BACKCOMPAT_HZ 62500000
76
77 /* Bit definitions for the v7M CONTROL register */
78 FIELD(V7M_CONTROL, NPRIV, 0, 1)
79 FIELD(V7M_CONTROL, SPSEL, 1, 1)
80 FIELD(V7M_CONTROL, FPCA, 2, 1)
81 FIELD(V7M_CONTROL, SFPA, 3, 1)
82
83 /* Bit definitions for v7M exception return payload */
84 FIELD(V7M_EXCRET, ES, 0, 1)
85 FIELD(V7M_EXCRET, RES0, 1, 1)
86 FIELD(V7M_EXCRET, SPSEL, 2, 1)
87 FIELD(V7M_EXCRET, MODE, 3, 1)
88 FIELD(V7M_EXCRET, FTYPE, 4, 1)
89 FIELD(V7M_EXCRET, DCRS, 5, 1)
90 FIELD(V7M_EXCRET, S, 6, 1)
91 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
92
93 /* Minimum value which is a magic number for exception return */
94 #define EXC_RETURN_MIN_MAGIC 0xff000000
95 /* Minimum number which is a magic number for function or exception return
96 * when using v8M security extension
97 */
98 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
99
100 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
101 FIELD(DBGWCR, E, 0, 1)
102 FIELD(DBGWCR, PAC, 1, 2)
103 FIELD(DBGWCR, LSC, 3, 2)
104 FIELD(DBGWCR, BAS, 5, 8)
105 FIELD(DBGWCR, HMC, 13, 1)
106 FIELD(DBGWCR, SSC, 14, 2)
107 FIELD(DBGWCR, LBN, 16, 4)
108 FIELD(DBGWCR, WT, 20, 1)
109 FIELD(DBGWCR, MASK, 24, 5)
110 FIELD(DBGWCR, SSCE, 29, 1)
111
112 #define VTCR_NSW (1u << 29)
113 #define VTCR_NSA (1u << 30)
114 #define VSTCR_SW VTCR_NSW
115 #define VSTCR_SA VTCR_NSA
116
117 /* Bit definitions for CPACR (AArch32 only) */
118 FIELD(CPACR, CP10, 20, 2)
119 FIELD(CPACR, CP11, 22, 2)
120 FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
121 FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
122 FIELD(CPACR, ASEDIS, 31, 1)
123
124 /* Bit definitions for CPACR_EL1 (AArch64 only) */
125 FIELD(CPACR_EL1, ZEN, 16, 2)
126 FIELD(CPACR_EL1, FPEN, 20, 2)
127 FIELD(CPACR_EL1, SMEN, 24, 2)
128 FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
129
130 /* Bit definitions for HCPTR (AArch32 only) */
131 FIELD(HCPTR, TCP10, 10, 1)
132 FIELD(HCPTR, TCP11, 11, 1)
133 FIELD(HCPTR, TASE, 15, 1)
134 FIELD(HCPTR, TTA, 20, 1)
135 FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
136 FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
137
138 /* Bit definitions for CPTR_EL2 (AArch64 only) */
139 FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
140 FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
141 FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
142 FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
143 FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
144 FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
145 FIELD(CPTR_EL2, TTA, 28, 1)
146 FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
147 FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
148
149 /* Bit definitions for CPTR_EL3 (AArch64 only) */
150 FIELD(CPTR_EL3, EZ, 8, 1)
151 FIELD(CPTR_EL3, TFP, 10, 1)
152 FIELD(CPTR_EL3, ESM, 12, 1)
153 FIELD(CPTR_EL3, TTA, 20, 1)
154 FIELD(CPTR_EL3, TAM, 30, 1)
155 FIELD(CPTR_EL3, TCPAC, 31, 1)
156
157 #define MDCR_MTPME (1U << 28)
158 #define MDCR_TDCC (1U << 27)
159 #define MDCR_HLP (1U << 26) /* MDCR_EL2 */
160 #define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
161 #define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
162 #define MDCR_EPMAD (1U << 21)
163 #define MDCR_EDAD (1U << 20)
164 #define MDCR_TTRF (1U << 19)
165 #define MDCR_STE (1U << 18) /* MDCR_EL3 */
166 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */
167 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
168 #define MDCR_SDD (1U << 16)
169 #define MDCR_SPD (3U << 14)
170 #define MDCR_TDRA (1U << 11)
171 #define MDCR_TDOSA (1U << 10)
172 #define MDCR_TDA (1U << 9)
173 #define MDCR_TDE (1U << 8)
174 #define MDCR_HPME (1U << 7)
175 #define MDCR_TPM (1U << 6)
176 #define MDCR_TPMCR (1U << 5)
177 #define MDCR_HPMN (0x1fU)
178
179 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
180 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
181 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
182 MDCR_STE | MDCR_SPME | MDCR_SPD)
183
184 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
185 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
186 #define TTBCR_PD0 (1U << 4)
187 #define TTBCR_PD1 (1U << 5)
188 #define TTBCR_EPD0 (1U << 7)
189 #define TTBCR_IRGN0 (3U << 8)
190 #define TTBCR_ORGN0 (3U << 10)
191 #define TTBCR_SH0 (3U << 12)
192 #define TTBCR_T1SZ (3U << 16)
193 #define TTBCR_A1 (1U << 22)
194 #define TTBCR_EPD1 (1U << 23)
195 #define TTBCR_IRGN1 (3U << 24)
196 #define TTBCR_ORGN1 (3U << 26)
197 #define TTBCR_SH1 (1U << 28)
198 #define TTBCR_EAE (1U << 31)
199
200 FIELD(VTCR, T0SZ, 0, 6)
201 FIELD(VTCR, SL0, 6, 2)
202 FIELD(VTCR, IRGN0, 8, 2)
203 FIELD(VTCR, ORGN0, 10, 2)
204 FIELD(VTCR, SH0, 12, 2)
205 FIELD(VTCR, TG0, 14, 2)
206 FIELD(VTCR, PS, 16, 3)
207 FIELD(VTCR, VS, 19, 1)
208 FIELD(VTCR, HA, 21, 1)
209 FIELD(VTCR, HD, 22, 1)
210 FIELD(VTCR, HWU59, 25, 1)
211 FIELD(VTCR, HWU60, 26, 1)
212 FIELD(VTCR, HWU61, 27, 1)
213 FIELD(VTCR, HWU62, 28, 1)
214 FIELD(VTCR, NSW, 29, 1)
215 FIELD(VTCR, NSA, 30, 1)
216 FIELD(VTCR, DS, 32, 1)
217 FIELD(VTCR, SL2, 33, 1)
218
219 #define HCRX_ENAS0 (1ULL << 0)
220 #define HCRX_ENALS (1ULL << 1)
221 #define HCRX_ENASR (1ULL << 2)
222 #define HCRX_FNXS (1ULL << 3)
223 #define HCRX_FGTNXS (1ULL << 4)
224 #define HCRX_SMPME (1ULL << 5)
225 #define HCRX_TALLINT (1ULL << 6)
226 #define HCRX_VINMI (1ULL << 7)
227 #define HCRX_VFNMI (1ULL << 8)
228 #define HCRX_CMOW (1ULL << 9)
229 #define HCRX_MCE2 (1ULL << 10)
230 #define HCRX_MSCEN (1ULL << 11)
231
232 #define HPFAR_NS (1ULL << 63)
233
234 #define HSTR_TTEE (1 << 16)
235 #define HSTR_TJDBX (1 << 17)
236
237 /*
238 * Depending on the value of HCR_EL2.E2H, bits 0 and 1
239 * have different bit definitions, and EL1PCTEN might be
240 * bit 0 or bit 10. We use _E2H1 and _E2H0 suffixes to
241 * disambiguate if necessary.
242 */
243 FIELD(CNTHCTL, EL0PCTEN_E2H1, 0, 1)
244 FIELD(CNTHCTL, EL0VCTEN_E2H1, 1, 1)
245 FIELD(CNTHCTL, EL1PCTEN_E2H0, 0, 1)
246 FIELD(CNTHCTL, EL1PCEN_E2H0, 1, 1)
247 FIELD(CNTHCTL, EVNTEN, 2, 1)
248 FIELD(CNTHCTL, EVNTDIR, 3, 1)
249 FIELD(CNTHCTL, EVNTI, 4, 4)
250 FIELD(CNTHCTL, EL0VTEN, 8, 1)
251 FIELD(CNTHCTL, EL0PTEN, 9, 1)
252 FIELD(CNTHCTL, EL1PCTEN_E2H1, 10, 1)
253 FIELD(CNTHCTL, EL1PTEN, 11, 1)
254 FIELD(CNTHCTL, ECV, 12, 1)
255 FIELD(CNTHCTL, EL1TVT, 13, 1)
256 FIELD(CNTHCTL, EL1TVCT, 14, 1)
257 FIELD(CNTHCTL, EL1NVPCT, 15, 1)
258 FIELD(CNTHCTL, EL1NVVCT, 16, 1)
259 FIELD(CNTHCTL, EVNTIS, 17, 1)
260 FIELD(CNTHCTL, CNTVMASK, 18, 1)
261 FIELD(CNTHCTL, CNTPMASK, 19, 1)
262
263 /* We use a few fake FSR values for internal purposes in M profile.
264 * M profile cores don't have A/R format FSRs, but currently our
265 * get_phys_addr() code assumes A/R profile and reports failures via
266 * an A/R format FSR value. We then translate that into the proper
267 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
268 * Mostly the FSR values we use for this are those defined for v7PMSA,
269 * since we share some of that codepath. A few kinds of fault are
270 * only for M profile and have no A/R equivalent, though, so we have
271 * to pick a value from the reserved range (which we never otherwise
272 * generate) to use for these.
273 * These values will never be visible to the guest.
274 */
275 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
276 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
277
278 /**
279 * raise_exception: Raise the specified exception.
280 * Raise a guest exception with the specified value, syndrome register
281 * and target exception level. This should be called from helper functions,
282 * and never returns because we will longjump back up to the CPU main loop.
283 */
284 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
285 uint32_t syndrome, uint32_t target_el);
286
287 /*
288 * Similarly, but also use unwinding to restore cpu state.
289 */
290 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
291 uint32_t syndrome, uint32_t target_el,
292 uintptr_t ra);
293
294 /*
295 * For AArch64, map a given EL to an index in the banked_spsr array.
296 * Note that this mapping and the AArch32 mapping defined in bank_number()
297 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
298 * mandated mapping between each other.
299 */
aarch64_banked_spsr_index(unsigned int el)300 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
301 {
302 static const unsigned int map[4] = {
303 [1] = BANK_SVC, /* EL1. */
304 [2] = BANK_HYP, /* EL2. */
305 [3] = BANK_MON, /* EL3. */
306 };
307 assert(el >= 1 && el <= 3);
308 return map[el];
309 }
310
311 /* Map CPU modes onto saved register banks. */
bank_number(int mode)312 static inline int bank_number(int mode)
313 {
314 switch (mode) {
315 case ARM_CPU_MODE_USR:
316 case ARM_CPU_MODE_SYS:
317 return BANK_USRSYS;
318 case ARM_CPU_MODE_SVC:
319 return BANK_SVC;
320 case ARM_CPU_MODE_ABT:
321 return BANK_ABT;
322 case ARM_CPU_MODE_UND:
323 return BANK_UND;
324 case ARM_CPU_MODE_IRQ:
325 return BANK_IRQ;
326 case ARM_CPU_MODE_FIQ:
327 return BANK_FIQ;
328 case ARM_CPU_MODE_HYP:
329 return BANK_HYP;
330 case ARM_CPU_MODE_MON:
331 return BANK_MON;
332 }
333 g_assert_not_reached();
334 }
335
336 /**
337 * r14_bank_number: Map CPU mode onto register bank for r14
338 *
339 * Given an AArch32 CPU mode, return the index into the saved register
340 * banks to use for the R14 (LR) in that mode. This is the same as
341 * bank_number(), except for the special case of Hyp mode, where
342 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
343 * This should be used as the index into env->banked_r14[], and
344 * bank_number() used for the index into env->banked_r13[] and
345 * env->banked_spsr[].
346 */
r14_bank_number(int mode)347 static inline int r14_bank_number(int mode)
348 {
349 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
350 }
351
352 void arm_cpu_register(const ARMCPUInfo *info);
353 void aarch64_cpu_register(const ARMCPUInfo *info);
354
355 void register_cp_regs_for_features(ARMCPU *cpu);
356 void init_cpreg_list(ARMCPU *cpu);
357
358 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
359 void arm_translate_init(void);
360
361 void arm_cpu_register_gdb_commands(ARMCPU *cpu);
362 void aarch64_cpu_register_gdb_commands(ARMCPU *cpu, GString *,
363 GPtrArray *, GPtrArray *);
364
365 void arm_restore_state_to_opc(CPUState *cs,
366 const TranslationBlock *tb,
367 const uint64_t *data);
368
369 #ifdef CONFIG_TCG
370 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
371
372 /* Our implementation of TCGCPUOps::cpu_exec_halt */
373 bool arm_cpu_exec_halt(CPUState *cs);
374 #endif /* CONFIG_TCG */
375
376 typedef enum ARMFPRounding {
377 FPROUNDING_TIEEVEN,
378 FPROUNDING_POSINF,
379 FPROUNDING_NEGINF,
380 FPROUNDING_ZERO,
381 FPROUNDING_TIEAWAY,
382 FPROUNDING_ODD
383 } ARMFPRounding;
384
385 extern const FloatRoundMode arm_rmode_to_sf_map[6];
386
arm_rmode_to_sf(ARMFPRounding rmode)387 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
388 {
389 assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
390 return arm_rmode_to_sf_map[rmode];
391 }
392
aarch64_save_sp(CPUARMState * env,int el)393 static inline void aarch64_save_sp(CPUARMState *env, int el)
394 {
395 if (env->pstate & PSTATE_SP) {
396 env->sp_el[el] = env->xregs[31];
397 } else {
398 env->sp_el[0] = env->xregs[31];
399 }
400 }
401
aarch64_restore_sp(CPUARMState * env,int el)402 static inline void aarch64_restore_sp(CPUARMState *env, int el)
403 {
404 if (env->pstate & PSTATE_SP) {
405 env->xregs[31] = env->sp_el[el];
406 } else {
407 env->xregs[31] = env->sp_el[0];
408 }
409 }
410
update_spsel(CPUARMState * env,uint32_t imm)411 static inline void update_spsel(CPUARMState *env, uint32_t imm)
412 {
413 unsigned int cur_el = arm_current_el(env);
414 /* Update PSTATE SPSel bit; this requires us to update the
415 * working stack pointer in xregs[31].
416 */
417 if (!((imm ^ env->pstate) & PSTATE_SP)) {
418 return;
419 }
420 aarch64_save_sp(env, cur_el);
421 env->pstate = deposit32(env->pstate, 0, 1, imm);
422
423 /* We rely on illegal updates to SPsel from EL0 to get trapped
424 * at translation time.
425 */
426 assert(cur_el >= 1 && cur_el <= 3);
427 aarch64_restore_sp(env, cur_el);
428 }
429
430 /*
431 * arm_pamax
432 * @cpu: ARMCPU
433 *
434 * Returns the implementation defined bit-width of physical addresses.
435 * The ARMv8 reference manuals refer to this as PAMax().
436 */
437 unsigned int arm_pamax(ARMCPU *cpu);
438
439 /*
440 * round_down_to_parange_index
441 * @bit_size: uint8_t
442 *
443 * Rounds down the bit_size supplied to the first supported ARM physical
444 * address range and returns the index for this. The index is intended to
445 * be used to set ID_AA64MMFR0_EL1's PARANGE bits.
446 */
447 uint8_t round_down_to_parange_index(uint8_t bit_size);
448
449 /*
450 * round_down_to_parange_bit_size
451 * @bit_size: uint8_t
452 *
453 * Rounds down the bit_size supplied to the first supported ARM physical
454 * address range bit size and returns this.
455 */
456 uint8_t round_down_to_parange_bit_size(uint8_t bit_size);
457
458 /* Return true if extended addresses are enabled.
459 * This is always the case if our translation regime is 64 bit,
460 * but depends on TTBCR.EAE for 32 bit.
461 */
extended_addresses_enabled(CPUARMState * env)462 static inline bool extended_addresses_enabled(CPUARMState *env)
463 {
464 uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
465 if (arm_feature(env, ARM_FEATURE_PMSA) &&
466 arm_feature(env, ARM_FEATURE_V8)) {
467 return true;
468 }
469 return arm_el_is_aa64(env, 1) ||
470 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
471 }
472
473 /* Update a QEMU watchpoint based on the information the guest has set in the
474 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
475 */
476 void hw_watchpoint_update(ARMCPU *cpu, int n);
477 /* Update the QEMU watchpoints for every guest watchpoint. This does a
478 * complete delete-and-reinstate of the QEMU watchpoint list and so is
479 * suitable for use after migration or on reset.
480 */
481 void hw_watchpoint_update_all(ARMCPU *cpu);
482 /* Update a QEMU breakpoint based on the information the guest has set in the
483 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
484 */
485 void hw_breakpoint_update(ARMCPU *cpu, int n);
486 /* Update the QEMU breakpoints for every guest breakpoint. This does a
487 * complete delete-and-reinstate of the QEMU breakpoint list and so is
488 * suitable for use after migration or on reset.
489 */
490 void hw_breakpoint_update_all(ARMCPU *cpu);
491
492 /* Callback function for checking if a breakpoint should trigger. */
493 bool arm_debug_check_breakpoint(CPUState *cs);
494
495 /* Callback function for checking if a watchpoint should trigger. */
496 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
497
498 /* Adjust addresses (in BE32 mode) before testing against watchpoint
499 * addresses.
500 */
501 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
502
503 /* Callback function for when a watchpoint or breakpoint triggers. */
504 void arm_debug_excp_handler(CPUState *cs);
505
506 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
arm_is_psci_call(ARMCPU * cpu,int excp_type)507 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
508 {
509 return false;
510 }
arm_handle_psci_call(ARMCPU * cpu)511 static inline void arm_handle_psci_call(ARMCPU *cpu)
512 {
513 g_assert_not_reached();
514 }
515 #else
516 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
517 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
518 /* Actually handle a PSCI call */
519 void arm_handle_psci_call(ARMCPU *cpu);
520 #endif
521
522 /**
523 * arm_clear_exclusive: clear the exclusive monitor
524 * @env: CPU env
525 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
526 */
arm_clear_exclusive(CPUARMState * env)527 static inline void arm_clear_exclusive(CPUARMState *env)
528 {
529 env->exclusive_addr = -1;
530 }
531
532 /**
533 * ARMFaultType: type of an ARM MMU fault
534 * This corresponds to the v8A pseudocode's Fault enumeration,
535 * with extensions for QEMU internal conditions.
536 */
537 typedef enum ARMFaultType {
538 ARMFault_None,
539 ARMFault_AccessFlag,
540 ARMFault_Alignment,
541 ARMFault_Background,
542 ARMFault_Domain,
543 ARMFault_Permission,
544 ARMFault_Translation,
545 ARMFault_AddressSize,
546 ARMFault_SyncExternal,
547 ARMFault_SyncExternalOnWalk,
548 ARMFault_SyncParity,
549 ARMFault_SyncParityOnWalk,
550 ARMFault_AsyncParity,
551 ARMFault_AsyncExternal,
552 ARMFault_Debug,
553 ARMFault_TLBConflict,
554 ARMFault_UnsuppAtomicUpdate,
555 ARMFault_Lockdown,
556 ARMFault_Exclusive,
557 ARMFault_ICacheMaint,
558 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
559 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
560 ARMFault_GPCFOnWalk,
561 ARMFault_GPCFOnOutput,
562 } ARMFaultType;
563
564 typedef enum ARMGPCF {
565 GPCF_None,
566 GPCF_AddressSize,
567 GPCF_Walk,
568 GPCF_EABT,
569 GPCF_Fail,
570 } ARMGPCF;
571
572 /**
573 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
574 * @type: Type of fault
575 * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
576 * @level: Table walk level (for translation, access flag and permission faults)
577 * @domain: Domain of the fault address (for non-LPAE CPUs only)
578 * @s2addr: Address that caused a fault at stage 2
579 * @paddr: physical address that caused a fault for gpc
580 * @paddr_space: physical address space that caused a fault for gpc
581 * @stage2: True if we faulted at stage 2
582 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
583 * @s1ns: True if we faulted on a non-secure IPA while in secure state
584 * @ea: True if we should set the EA (external abort type) bit in syndrome
585 */
586 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
587 struct ARMMMUFaultInfo {
588 ARMFaultType type;
589 ARMGPCF gpcf;
590 target_ulong s2addr;
591 target_ulong paddr;
592 ARMSecuritySpace paddr_space;
593 int level;
594 int domain;
595 bool stage2;
596 bool s1ptw;
597 bool s1ns;
598 bool ea;
599 };
600
601 /**
602 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
603 * Compare pseudocode EncodeSDFSC(), though unlike that function
604 * we set up a whole FSR-format code including domain field and
605 * putting the high bit of the FSC into bit 10.
606 */
arm_fi_to_sfsc(ARMMMUFaultInfo * fi)607 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
608 {
609 uint32_t fsc;
610
611 switch (fi->type) {
612 case ARMFault_None:
613 return 0;
614 case ARMFault_AccessFlag:
615 fsc = fi->level == 1 ? 0x3 : 0x6;
616 break;
617 case ARMFault_Alignment:
618 fsc = 0x1;
619 break;
620 case ARMFault_Permission:
621 fsc = fi->level == 1 ? 0xd : 0xf;
622 break;
623 case ARMFault_Domain:
624 fsc = fi->level == 1 ? 0x9 : 0xb;
625 break;
626 case ARMFault_Translation:
627 fsc = fi->level == 1 ? 0x5 : 0x7;
628 break;
629 case ARMFault_SyncExternal:
630 fsc = 0x8 | (fi->ea << 12);
631 break;
632 case ARMFault_SyncExternalOnWalk:
633 fsc = fi->level == 1 ? 0xc : 0xe;
634 fsc |= (fi->ea << 12);
635 break;
636 case ARMFault_SyncParity:
637 fsc = 0x409;
638 break;
639 case ARMFault_SyncParityOnWalk:
640 fsc = fi->level == 1 ? 0x40c : 0x40e;
641 break;
642 case ARMFault_AsyncParity:
643 fsc = 0x408;
644 break;
645 case ARMFault_AsyncExternal:
646 fsc = 0x406 | (fi->ea << 12);
647 break;
648 case ARMFault_Debug:
649 fsc = 0x2;
650 break;
651 case ARMFault_TLBConflict:
652 fsc = 0x400;
653 break;
654 case ARMFault_Lockdown:
655 fsc = 0x404;
656 break;
657 case ARMFault_Exclusive:
658 fsc = 0x405;
659 break;
660 case ARMFault_ICacheMaint:
661 fsc = 0x4;
662 break;
663 case ARMFault_Background:
664 fsc = 0x0;
665 break;
666 case ARMFault_QEMU_NSCExec:
667 fsc = M_FAKE_FSR_NSC_EXEC;
668 break;
669 case ARMFault_QEMU_SFault:
670 fsc = M_FAKE_FSR_SFAULT;
671 break;
672 default:
673 /* Other faults can't occur in a context that requires a
674 * short-format status code.
675 */
676 g_assert_not_reached();
677 }
678
679 fsc |= (fi->domain << 4);
680 return fsc;
681 }
682
683 /**
684 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
685 * Compare pseudocode EncodeLDFSC(), though unlike that function
686 * we fill in also the LPAE bit 9 of a DFSR format.
687 */
arm_fi_to_lfsc(ARMMMUFaultInfo * fi)688 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
689 {
690 uint32_t fsc;
691
692 switch (fi->type) {
693 case ARMFault_None:
694 return 0;
695 case ARMFault_AddressSize:
696 assert(fi->level >= -1 && fi->level <= 3);
697 if (fi->level < 0) {
698 fsc = 0b101001;
699 } else {
700 fsc = fi->level;
701 }
702 break;
703 case ARMFault_AccessFlag:
704 assert(fi->level >= 0 && fi->level <= 3);
705 fsc = 0b001000 | fi->level;
706 break;
707 case ARMFault_Permission:
708 assert(fi->level >= 0 && fi->level <= 3);
709 fsc = 0b001100 | fi->level;
710 break;
711 case ARMFault_Translation:
712 assert(fi->level >= -1 && fi->level <= 3);
713 if (fi->level < 0) {
714 fsc = 0b101011;
715 } else {
716 fsc = 0b000100 | fi->level;
717 }
718 break;
719 case ARMFault_SyncExternal:
720 fsc = 0x10 | (fi->ea << 12);
721 break;
722 case ARMFault_SyncExternalOnWalk:
723 assert(fi->level >= -1 && fi->level <= 3);
724 if (fi->level < 0) {
725 fsc = 0b010011;
726 } else {
727 fsc = 0b010100 | fi->level;
728 }
729 fsc |= fi->ea << 12;
730 break;
731 case ARMFault_SyncParity:
732 fsc = 0x18;
733 break;
734 case ARMFault_SyncParityOnWalk:
735 assert(fi->level >= -1 && fi->level <= 3);
736 if (fi->level < 0) {
737 fsc = 0b011011;
738 } else {
739 fsc = 0b011100 | fi->level;
740 }
741 break;
742 case ARMFault_AsyncParity:
743 fsc = 0x19;
744 break;
745 case ARMFault_AsyncExternal:
746 fsc = 0x11 | (fi->ea << 12);
747 break;
748 case ARMFault_Alignment:
749 fsc = 0x21;
750 break;
751 case ARMFault_Debug:
752 fsc = 0x22;
753 break;
754 case ARMFault_TLBConflict:
755 fsc = 0x30;
756 break;
757 case ARMFault_UnsuppAtomicUpdate:
758 fsc = 0x31;
759 break;
760 case ARMFault_Lockdown:
761 fsc = 0x34;
762 break;
763 case ARMFault_Exclusive:
764 fsc = 0x35;
765 break;
766 case ARMFault_GPCFOnWalk:
767 assert(fi->level >= -1 && fi->level <= 3);
768 if (fi->level < 0) {
769 fsc = 0b100011;
770 } else {
771 fsc = 0b100100 | fi->level;
772 }
773 break;
774 case ARMFault_GPCFOnOutput:
775 fsc = 0b101000;
776 break;
777 default:
778 /* Other faults can't occur in a context that requires a
779 * long-format status code.
780 */
781 g_assert_not_reached();
782 }
783
784 fsc |= 1 << 9;
785 return fsc;
786 }
787
arm_extabort_type(MemTxResult result)788 static inline bool arm_extabort_type(MemTxResult result)
789 {
790 /* The EA bit in syndromes and fault status registers is an
791 * IMPDEF classification of external aborts. ARM implementations
792 * usually use this to indicate AXI bus Decode error (0) or
793 * Slave error (1); in QEMU we follow that.
794 */
795 return result != MEMTX_DECODE_ERROR;
796 }
797
798 #ifdef CONFIG_USER_ONLY
799 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
800 MMUAccessType access_type,
801 bool maperr, uintptr_t ra);
802 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
803 MMUAccessType access_type, uintptr_t ra);
804 #else
805 bool arm_cpu_tlb_fill_align(CPUState *cs, CPUTLBEntryFull *out, vaddr addr,
806 MMUAccessType access_type, int mmu_idx,
807 MemOp memop, int size, bool probe, uintptr_t ra);
808 #endif
809
arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)810 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
811 {
812 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
813 }
814
core_to_arm_mmu_idx(CPUARMState * env,int mmu_idx)815 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
816 {
817 if (arm_feature(env, ARM_FEATURE_M)) {
818 return mmu_idx | ARM_MMU_IDX_M;
819 } else {
820 return mmu_idx | ARM_MMU_IDX_A;
821 }
822 }
823
core_to_aa64_mmu_idx(int mmu_idx)824 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
825 {
826 /* AArch64 is always a-profile. */
827 return mmu_idx | ARM_MMU_IDX_A;
828 }
829
830 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
831
832 /* Return the MMU index for a v7M CPU in the specified security state */
833 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
834
835 /*
836 * Return true if the stage 1 translation regime is using LPAE
837 * format page tables
838 */
839 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
840
841 /* Raise a data fault alignment exception for the specified virtual address */
842 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
843 MMUAccessType access_type,
844 int mmu_idx, uintptr_t retaddr);
845
846 #ifndef CONFIG_USER_ONLY
847 /* arm_cpu_do_transaction_failed: handle a memory system error response
848 * (eg "no device/memory present at address") by raising an external abort
849 * exception
850 */
851 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
852 vaddr addr, unsigned size,
853 MMUAccessType access_type,
854 int mmu_idx, MemTxAttrs attrs,
855 MemTxResult response, uintptr_t retaddr);
856 #endif
857
858 /* Call any registered EL change hooks */
arm_call_pre_el_change_hook(ARMCPU * cpu)859 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
860 {
861 ARMELChangeHook *hook, *next;
862 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
863 hook->hook(cpu, hook->opaque);
864 }
865 }
arm_call_el_change_hook(ARMCPU * cpu)866 static inline void arm_call_el_change_hook(ARMCPU *cpu)
867 {
868 ARMELChangeHook *hook, *next;
869 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
870 hook->hook(cpu, hook->opaque);
871 }
872 }
873
874 /*
875 * Return true if this address translation regime has two ranges.
876 * Note that this will not return the correct answer for AArch32
877 * Secure PL1&0 (i.e. mmu indexes E3, E30_0, E30_3_PAN), but it is
878 * never called from a context where EL3 can be AArch32. (The
879 * correct return value for ARMMMUIdx_E3 would be different for
880 * that case, so we can't just make the function return the
881 * correct value anyway; we would need an extra "bool e3_is_aarch32"
882 * argument which all the current callsites would pass as 'false'.)
883 */
regime_has_2_ranges(ARMMMUIdx mmu_idx)884 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
885 {
886 switch (mmu_idx) {
887 case ARMMMUIdx_Stage1_E0:
888 case ARMMMUIdx_Stage1_E1:
889 case ARMMMUIdx_Stage1_E1_PAN:
890 case ARMMMUIdx_E10_0:
891 case ARMMMUIdx_E10_1:
892 case ARMMMUIdx_E10_1_PAN:
893 case ARMMMUIdx_E20_0:
894 case ARMMMUIdx_E20_2:
895 case ARMMMUIdx_E20_2_PAN:
896 return true;
897 default:
898 return false;
899 }
900 }
901
regime_is_pan(CPUARMState * env,ARMMMUIdx mmu_idx)902 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
903 {
904 switch (mmu_idx) {
905 case ARMMMUIdx_Stage1_E1_PAN:
906 case ARMMMUIdx_E10_1_PAN:
907 case ARMMMUIdx_E20_2_PAN:
908 case ARMMMUIdx_E30_3_PAN:
909 return true;
910 default:
911 return false;
912 }
913 }
914
regime_is_stage2(ARMMMUIdx mmu_idx)915 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
916 {
917 return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
918 }
919
920 /* Return the exception level which controls this address translation regime */
regime_el(CPUARMState * env,ARMMMUIdx mmu_idx)921 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
922 {
923 switch (mmu_idx) {
924 case ARMMMUIdx_E20_0:
925 case ARMMMUIdx_E20_2:
926 case ARMMMUIdx_E20_2_PAN:
927 case ARMMMUIdx_Stage2:
928 case ARMMMUIdx_Stage2_S:
929 case ARMMMUIdx_E2:
930 return 2;
931 case ARMMMUIdx_E3:
932 case ARMMMUIdx_E30_0:
933 case ARMMMUIdx_E30_3_PAN:
934 return 3;
935 case ARMMMUIdx_E10_0:
936 case ARMMMUIdx_Stage1_E0:
937 case ARMMMUIdx_Stage1_E1:
938 case ARMMMUIdx_Stage1_E1_PAN:
939 case ARMMMUIdx_E10_1:
940 case ARMMMUIdx_E10_1_PAN:
941 case ARMMMUIdx_MPrivNegPri:
942 case ARMMMUIdx_MUserNegPri:
943 case ARMMMUIdx_MPriv:
944 case ARMMMUIdx_MUser:
945 case ARMMMUIdx_MSPrivNegPri:
946 case ARMMMUIdx_MSUserNegPri:
947 case ARMMMUIdx_MSPriv:
948 case ARMMMUIdx_MSUser:
949 return 1;
950 default:
951 g_assert_not_reached();
952 }
953 }
954
regime_is_user(CPUARMState * env,ARMMMUIdx mmu_idx)955 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
956 {
957 switch (mmu_idx) {
958 case ARMMMUIdx_E10_0:
959 case ARMMMUIdx_E20_0:
960 case ARMMMUIdx_E30_0:
961 case ARMMMUIdx_Stage1_E0:
962 case ARMMMUIdx_MUser:
963 case ARMMMUIdx_MSUser:
964 case ARMMMUIdx_MUserNegPri:
965 case ARMMMUIdx_MSUserNegPri:
966 return true;
967 default:
968 return false;
969 }
970 }
971
972 /* Return the SCTLR value which controls this address translation regime */
regime_sctlr(CPUARMState * env,ARMMMUIdx mmu_idx)973 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
974 {
975 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
976 }
977
978 /*
979 * These are the fields in VTCR_EL2 which affect both the Secure stage 2
980 * and the Non-Secure stage 2 translation regimes (and hence which are
981 * not present in VSTCR_EL2).
982 */
983 #define VTCR_SHARED_FIELD_MASK \
984 (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
985 R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
986 R_VTCR_DS_MASK)
987
988 /* Return the value of the TCR controlling this translation regime */
regime_tcr(CPUARMState * env,ARMMMUIdx mmu_idx)989 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
990 {
991 if (mmu_idx == ARMMMUIdx_Stage2) {
992 return env->cp15.vtcr_el2;
993 }
994 if (mmu_idx == ARMMMUIdx_Stage2_S) {
995 /*
996 * Secure stage 2 shares fields from VTCR_EL2. We merge those
997 * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
998 * value so the callers don't need to special case this.
999 *
1000 * If a future architecture change defines bits in VSTCR_EL2 that
1001 * overlap with these VTCR_EL2 fields we may need to revisit this.
1002 */
1003 uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
1004 v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
1005 return v;
1006 }
1007 return env->cp15.tcr_el[regime_el(env, mmu_idx)];
1008 }
1009
1010 /* Return true if the translation regime is using LPAE format page tables */
regime_using_lpae_format(CPUARMState * env,ARMMMUIdx mmu_idx)1011 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
1012 {
1013 int el = regime_el(env, mmu_idx);
1014 if (el == 2 || arm_el_is_aa64(env, el)) {
1015 return true;
1016 }
1017 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1018 arm_feature(env, ARM_FEATURE_V8)) {
1019 return true;
1020 }
1021 if (arm_feature(env, ARM_FEATURE_LPAE)
1022 && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
1023 return true;
1024 }
1025 return false;
1026 }
1027
1028 /**
1029 * arm_num_brps: Return number of implemented breakpoints.
1030 * Note that the ID register BRPS field is "number of bps - 1",
1031 * and we return the actual number of breakpoints.
1032 */
arm_num_brps(ARMCPU * cpu)1033 static inline int arm_num_brps(ARMCPU *cpu)
1034 {
1035 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1036 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
1037 } else {
1038 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
1039 }
1040 }
1041
1042 /**
1043 * arm_num_wrps: Return number of implemented watchpoints.
1044 * Note that the ID register WRPS field is "number of wps - 1",
1045 * and we return the actual number of watchpoints.
1046 */
arm_num_wrps(ARMCPU * cpu)1047 static inline int arm_num_wrps(ARMCPU *cpu)
1048 {
1049 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1050 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
1051 } else {
1052 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
1053 }
1054 }
1055
1056 /**
1057 * arm_num_ctx_cmps: Return number of implemented context comparators.
1058 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
1059 * and we return the actual number of comparators.
1060 */
arm_num_ctx_cmps(ARMCPU * cpu)1061 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
1062 {
1063 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1064 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
1065 } else {
1066 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
1067 }
1068 }
1069
1070 /**
1071 * v7m_using_psp: Return true if using process stack pointer
1072 * Return true if the CPU is currently using the process stack
1073 * pointer, or false if it is using the main stack pointer.
1074 */
v7m_using_psp(CPUARMState * env)1075 static inline bool v7m_using_psp(CPUARMState *env)
1076 {
1077 /* Handler mode always uses the main stack; for thread mode
1078 * the CONTROL.SPSEL bit determines the answer.
1079 * Note that in v7M it is not possible to be in Handler mode with
1080 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
1081 */
1082 return !arm_v7m_is_handler_mode(env) &&
1083 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
1084 }
1085
1086 /**
1087 * v7m_sp_limit: Return SP limit for current CPU state
1088 * Return the SP limit value for the current CPU security state
1089 * and stack pointer.
1090 */
v7m_sp_limit(CPUARMState * env)1091 static inline uint32_t v7m_sp_limit(CPUARMState *env)
1092 {
1093 if (v7m_using_psp(env)) {
1094 return env->v7m.psplim[env->v7m.secure];
1095 } else {
1096 return env->v7m.msplim[env->v7m.secure];
1097 }
1098 }
1099
1100 /**
1101 * v7m_cpacr_pass:
1102 * Return true if the v7M CPACR permits access to the FPU for the specified
1103 * security state and privilege level.
1104 */
v7m_cpacr_pass(CPUARMState * env,bool is_secure,bool is_priv)1105 static inline bool v7m_cpacr_pass(CPUARMState *env,
1106 bool is_secure, bool is_priv)
1107 {
1108 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
1109 case 0:
1110 case 2: /* UNPREDICTABLE: we treat like 0 */
1111 return false;
1112 case 1:
1113 return is_priv;
1114 case 3:
1115 return true;
1116 default:
1117 g_assert_not_reached();
1118 }
1119 }
1120
1121 /**
1122 * aarch32_mode_name(): Return name of the AArch32 CPU mode
1123 * @psr: Program Status Register indicating CPU mode
1124 *
1125 * Returns, for debug logging purposes, a printable representation
1126 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
1127 * the low bits of the specified PSR.
1128 */
aarch32_mode_name(uint32_t psr)1129 static inline const char *aarch32_mode_name(uint32_t psr)
1130 {
1131 static const char cpu_mode_names[16][4] = {
1132 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
1133 "???", "???", "hyp", "und", "???", "???", "???", "sys"
1134 };
1135
1136 return cpu_mode_names[psr & 0xf];
1137 }
1138
1139 /**
1140 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
1141 *
1142 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
1143 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
1144 * Must be called with the BQL held.
1145 */
1146 void arm_cpu_update_virq(ARMCPU *cpu);
1147
1148 /**
1149 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
1150 *
1151 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
1152 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
1153 * Must be called with the BQL held.
1154 */
1155 void arm_cpu_update_vfiq(ARMCPU *cpu);
1156
1157 /**
1158 * arm_cpu_update_vinmi: Update CPU_INTERRUPT_VINMI bit in cs->interrupt_request
1159 *
1160 * Update the CPU_INTERRUPT_VINMI bit in cs->interrupt_request, following
1161 * a change to either the input VNMI line from the GIC or the HCRX_EL2.VINMI.
1162 * Must be called with the BQL held.
1163 */
1164 void arm_cpu_update_vinmi(ARMCPU *cpu);
1165
1166 /**
1167 * arm_cpu_update_vfnmi: Update CPU_INTERRUPT_VFNMI bit in cs->interrupt_request
1168 *
1169 * Update the CPU_INTERRUPT_VFNMI bit in cs->interrupt_request, following
1170 * a change to the HCRX_EL2.VFNMI.
1171 * Must be called with the BQL held.
1172 */
1173 void arm_cpu_update_vfnmi(ARMCPU *cpu);
1174
1175 /**
1176 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
1177 *
1178 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
1179 * following a change to the HCR_EL2.VSE bit.
1180 */
1181 void arm_cpu_update_vserr(ARMCPU *cpu);
1182
1183 /**
1184 * arm_mmu_idx_el:
1185 * @env: The cpu environment
1186 * @el: The EL to use.
1187 *
1188 * Return the full ARMMMUIdx for the translation regime for EL.
1189 */
1190 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
1191
1192 /**
1193 * arm_mmu_idx:
1194 * @env: The cpu environment
1195 *
1196 * Return the full ARMMMUIdx for the current translation regime.
1197 */
1198 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
1199
1200 /**
1201 * arm_stage1_mmu_idx:
1202 * @env: The cpu environment
1203 *
1204 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
1205 */
1206 #ifdef CONFIG_USER_ONLY
stage_1_mmu_idx(ARMMMUIdx mmu_idx)1207 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
1208 {
1209 return ARMMMUIdx_Stage1_E0;
1210 }
arm_stage1_mmu_idx(CPUARMState * env)1211 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
1212 {
1213 return ARMMMUIdx_Stage1_E0;
1214 }
1215 #else
1216 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
1217 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
1218 #endif
1219
1220 /**
1221 * arm_mmu_idx_is_stage1_of_2:
1222 * @mmu_idx: The ARMMMUIdx to test
1223 *
1224 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1225 * first stage of a two stage regime.
1226 */
arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)1227 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1228 {
1229 switch (mmu_idx) {
1230 case ARMMMUIdx_Stage1_E0:
1231 case ARMMMUIdx_Stage1_E1:
1232 case ARMMMUIdx_Stage1_E1_PAN:
1233 return true;
1234 default:
1235 return false;
1236 }
1237 }
1238
aarch32_cpsr_valid_mask(uint64_t features,const ARMISARegisters * id)1239 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1240 const ARMISARegisters *id)
1241 {
1242 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1243
1244 if ((features >> ARM_FEATURE_V4T) & 1) {
1245 valid |= CPSR_T;
1246 }
1247 if ((features >> ARM_FEATURE_V5) & 1) {
1248 valid |= CPSR_Q; /* V5TE in reality*/
1249 }
1250 if ((features >> ARM_FEATURE_V6) & 1) {
1251 valid |= CPSR_E | CPSR_GE;
1252 }
1253 if ((features >> ARM_FEATURE_THUMB2) & 1) {
1254 valid |= CPSR_IT;
1255 }
1256 if (isar_feature_aa32_jazelle(id)) {
1257 valid |= CPSR_J;
1258 }
1259 if (isar_feature_aa32_pan(id)) {
1260 valid |= CPSR_PAN;
1261 }
1262 if (isar_feature_aa32_dit(id)) {
1263 valid |= CPSR_DIT;
1264 }
1265 if (isar_feature_aa32_ssbs(id)) {
1266 valid |= CPSR_SSBS;
1267 }
1268
1269 return valid;
1270 }
1271
aarch64_pstate_valid_mask(const ARMISARegisters * id)1272 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1273 {
1274 uint32_t valid;
1275
1276 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1277 if (isar_feature_aa64_bti(id)) {
1278 valid |= PSTATE_BTYPE;
1279 }
1280 if (isar_feature_aa64_pan(id)) {
1281 valid |= PSTATE_PAN;
1282 }
1283 if (isar_feature_aa64_uao(id)) {
1284 valid |= PSTATE_UAO;
1285 }
1286 if (isar_feature_aa64_dit(id)) {
1287 valid |= PSTATE_DIT;
1288 }
1289 if (isar_feature_aa64_ssbs(id)) {
1290 valid |= PSTATE_SSBS;
1291 }
1292 if (isar_feature_aa64_mte(id)) {
1293 valid |= PSTATE_TCO;
1294 }
1295 if (isar_feature_aa64_nmi(id)) {
1296 valid |= PSTATE_ALLINT;
1297 }
1298
1299 return valid;
1300 }
1301
1302 /* Granule size (i.e. page size) */
1303 typedef enum ARMGranuleSize {
1304 /* Same order as TG0 encoding */
1305 Gran4K,
1306 Gran64K,
1307 Gran16K,
1308 GranInvalid,
1309 } ARMGranuleSize;
1310
1311 /**
1312 * arm_granule_bits: Return address size of the granule in bits
1313 *
1314 * Return the address size of the granule in bits. This corresponds
1315 * to the pseudocode TGxGranuleBits().
1316 */
arm_granule_bits(ARMGranuleSize gran)1317 static inline int arm_granule_bits(ARMGranuleSize gran)
1318 {
1319 switch (gran) {
1320 case Gran64K:
1321 return 16;
1322 case Gran16K:
1323 return 14;
1324 case Gran4K:
1325 return 12;
1326 default:
1327 g_assert_not_reached();
1328 }
1329 }
1330
1331 /*
1332 * Parameters of a given virtual address, as extracted from the
1333 * translation control register (TCR) for a given regime.
1334 */
1335 typedef struct ARMVAParameters {
1336 unsigned tsz : 8;
1337 unsigned ps : 3;
1338 unsigned sh : 2;
1339 unsigned select : 1;
1340 bool tbi : 1;
1341 bool epd : 1;
1342 bool hpd : 1;
1343 bool tsz_oob : 1; /* tsz has been clamped to legal range */
1344 bool ds : 1;
1345 bool ha : 1;
1346 bool hd : 1;
1347 ARMGranuleSize gran : 2;
1348 } ARMVAParameters;
1349
1350 /**
1351 * aa64_va_parameters: Return parameters for an AArch64 virtual address
1352 * @env: CPU
1353 * @va: virtual address to look up
1354 * @mmu_idx: determines translation regime to use
1355 * @data: true if this is a data access
1356 * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1357 * (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1358 */
1359 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1360 ARMMMUIdx mmu_idx, bool data,
1361 bool el1_is_aa32);
1362
1363 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1364 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1365 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1366
1367 /* Determine if allocation tags are available. */
allocation_tag_access_enabled(CPUARMState * env,int el,uint64_t sctlr)1368 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1369 uint64_t sctlr)
1370 {
1371 if (el < 3
1372 && arm_feature(env, ARM_FEATURE_EL3)
1373 && !(env->cp15.scr_el3 & SCR_ATA)) {
1374 return false;
1375 }
1376 if (el < 2 && arm_is_el2_enabled(env)) {
1377 uint64_t hcr = arm_hcr_el2_eff(env);
1378 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1379 return false;
1380 }
1381 }
1382 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1383 return sctlr != 0;
1384 }
1385
1386 #ifndef CONFIG_USER_ONLY
1387
1388 /* Security attributes for an address, as returned by v8m_security_lookup. */
1389 typedef struct V8M_SAttributes {
1390 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1391 bool ns;
1392 bool nsc;
1393 uint8_t sregion;
1394 bool srvalid;
1395 uint8_t iregion;
1396 bool irvalid;
1397 } V8M_SAttributes;
1398
1399 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1400 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1401 bool secure, V8M_SAttributes *sattrs);
1402
1403 /* Cacheability and shareability attributes for a memory access */
1404 typedef struct ARMCacheAttrs {
1405 /*
1406 * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1407 * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1408 */
1409 unsigned int attrs:8;
1410 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1411 bool is_s2_format:1;
1412 } ARMCacheAttrs;
1413
1414 /* Fields that are valid upon success. */
1415 typedef struct GetPhysAddrResult {
1416 CPUTLBEntryFull f;
1417 ARMCacheAttrs cacheattrs;
1418 } GetPhysAddrResult;
1419
1420 /**
1421 * get_phys_addr: get the physical address for a virtual address
1422 * @env: CPUARMState
1423 * @address: virtual address to get physical address for
1424 * @access_type: 0 for read, 1 for write, 2 for execute
1425 * @memop: memory operation feeding this access, or 0 for none
1426 * @mmu_idx: MMU index indicating required translation regime
1427 * @result: set on translation success.
1428 * @fi: set to fault info if the translation fails
1429 *
1430 * Find the physical address corresponding to the given virtual address,
1431 * by doing a translation table walk on MMU based systems or using the
1432 * MPU state on MPU based systems.
1433 *
1434 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1435 * prot and page_size may not be filled in, and the populated fsr value provides
1436 * information on why the translation aborted, in the format of a
1437 * DFSR/IFSR fault register, with the following caveats:
1438 * * we honour the short vs long DFSR format differences.
1439 * * the WnR bit is never set (the caller must do this).
1440 * * for PSMAv5 based systems we don't bother to return a full FSR format
1441 * value.
1442 */
1443 bool get_phys_addr(CPUARMState *env, vaddr address,
1444 MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx,
1445 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1446 __attribute__((nonnull));
1447
1448 /**
1449 * get_phys_addr_with_space_nogpc: get the physical address for a virtual
1450 * address
1451 * @env: CPUARMState
1452 * @address: virtual address to get physical address for
1453 * @access_type: 0 for read, 1 for write, 2 for execute
1454 * @memop: memory operation feeding this access, or 0 for none
1455 * @mmu_idx: MMU index indicating required translation regime
1456 * @space: security space for the access
1457 * @result: set on translation success.
1458 * @fi: set to fault info if the translation fails
1459 *
1460 * Similar to get_phys_addr, but use the given security space and don't perform
1461 * a Granule Protection Check on the resulting address.
1462 */
1463 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address,
1464 MMUAccessType access_type, MemOp memop,
1465 ARMMMUIdx mmu_idx, ARMSecuritySpace space,
1466 GetPhysAddrResult *result,
1467 ARMMMUFaultInfo *fi)
1468 __attribute__((nonnull));
1469
1470 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1471 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1472 bool is_secure, GetPhysAddrResult *result,
1473 ARMMMUFaultInfo *fi, uint32_t *mregion);
1474
1475 void arm_log_exception(CPUState *cs);
1476
1477 #endif /* !CONFIG_USER_ONLY */
1478
1479 /*
1480 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1481 * the same simd_desc() encoding due to restrictions on size.
1482 * Use these instead.
1483 */
1484 FIELD(PREDDESC, OPRSZ, 0, 6)
1485 FIELD(PREDDESC, ESZ, 6, 2)
1486 FIELD(PREDDESC, DATA, 8, 24)
1487
1488 /*
1489 * The SVE simd_data field, for memory ops, contains either
1490 * rd (5 bits) or a shift count (2 bits).
1491 */
1492 #define SVE_MTEDESC_SHIFT 5
1493
1494 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1495 FIELD(MTEDESC, MIDX, 0, 4)
1496 FIELD(MTEDESC, TBI, 4, 2)
1497 FIELD(MTEDESC, TCMA, 6, 2)
1498 FIELD(MTEDESC, WRITE, 8, 1)
1499 FIELD(MTEDESC, ALIGN, 9, 3)
1500 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - SVE_MTEDESC_SHIFT - 12) /* size - 1 */
1501
1502 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1503 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1504
1505 /**
1506 * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation
1507 * @env: CPU env
1508 * @ptr: start address of memory region (dirty pointer)
1509 * @size: length of region (guaranteed not to cross a page boundary)
1510 * @desc: MTEDESC descriptor word (0 means no MTE checks)
1511 * Returns: the size of the region that can be copied without hitting
1512 * an MTE tag failure
1513 *
1514 * Note that we assume that the caller has already checked the TBI
1515 * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1516 * required.
1517 */
1518 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1519 uint32_t desc);
1520
1521 /**
1522 * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS
1523 * operation going in the reverse direction
1524 * @env: CPU env
1525 * @ptr: *end* address of memory region (dirty pointer)
1526 * @size: length of region (guaranteed not to cross a page boundary)
1527 * @desc: MTEDESC descriptor word (0 means no MTE checks)
1528 * Returns: the size of the region that can be copied without hitting
1529 * an MTE tag failure
1530 *
1531 * Note that we assume that the caller has already checked the TBI
1532 * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1533 * required.
1534 */
1535 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1536 uint32_t desc);
1537
1538 /**
1539 * mte_check_fail: Record an MTE tag check failure
1540 * @env: CPU env
1541 * @desc: MTEDESC descriptor word
1542 * @dirty_ptr: Failing dirty address
1543 * @ra: TCG retaddr
1544 *
1545 * This may never return (if the MTE tag checks are configured to fault).
1546 */
1547 void mte_check_fail(CPUARMState *env, uint32_t desc,
1548 uint64_t dirty_ptr, uintptr_t ra);
1549
1550 /**
1551 * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation
1552 * @env: CPU env
1553 * @dirty_ptr: Start address of memory region (dirty pointer)
1554 * @size: length of region (guaranteed not to cross page boundary)
1555 * @desc: MTEDESC descriptor word
1556 */
1557 void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size,
1558 uint32_t desc);
1559
allocation_tag_from_addr(uint64_t ptr)1560 static inline int allocation_tag_from_addr(uint64_t ptr)
1561 {
1562 return extract64(ptr, 56, 4);
1563 }
1564
address_with_allocation_tag(uint64_t ptr,int rtag)1565 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1566 {
1567 return deposit64(ptr, 56, 4, rtag);
1568 }
1569
1570 /* Return true if tbi bits mean that the access is checked. */
tbi_check(uint32_t desc,int bit55)1571 static inline bool tbi_check(uint32_t desc, int bit55)
1572 {
1573 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1574 }
1575
1576 /* Return true if tcma bits mean that the access is unchecked. */
tcma_check(uint32_t desc,int bit55,int ptr_tag)1577 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1578 {
1579 /*
1580 * We had extracted bit55 and ptr_tag for other reasons, so fold
1581 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1582 */
1583 bool match = ((ptr_tag + bit55) & 0xf) == 0;
1584 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1585 return tcma && match;
1586 }
1587
1588 /*
1589 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
1590 * for the tag to be present in the FAR_ELx register. But for user-only
1591 * mode, we do not have a TLB with which to implement this, so we must
1592 * remove the top byte.
1593 */
useronly_clean_ptr(uint64_t ptr)1594 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1595 {
1596 #ifdef CONFIG_USER_ONLY
1597 /* TBI0 is known to be enabled, while TBI1 is disabled. */
1598 ptr &= sextract64(ptr, 0, 56);
1599 #endif
1600 return ptr;
1601 }
1602
useronly_maybe_clean_ptr(uint32_t desc,uint64_t ptr)1603 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1604 {
1605 #ifdef CONFIG_USER_ONLY
1606 int64_t clean_ptr = sextract64(ptr, 0, 56);
1607 if (tbi_check(desc, clean_ptr < 0)) {
1608 ptr = clean_ptr;
1609 }
1610 #endif
1611 return ptr;
1612 }
1613
1614 /* Values for M-profile PSR.ECI for MVE insns */
1615 enum MVEECIState {
1616 ECI_NONE = 0, /* No completed beats */
1617 ECI_A0 = 1, /* Completed: A0 */
1618 ECI_A0A1 = 2, /* Completed: A0, A1 */
1619 /* 3 is reserved */
1620 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1621 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1622 /* All other values reserved */
1623 };
1624
1625 /* Definitions for the PMU registers */
1626 #define PMCRN_MASK 0xf800
1627 #define PMCRN_SHIFT 11
1628 #define PMCRLP 0x80
1629 #define PMCRLC 0x40
1630 #define PMCRDP 0x20
1631 #define PMCRX 0x10
1632 #define PMCRD 0x8
1633 #define PMCRC 0x4
1634 #define PMCRP 0x2
1635 #define PMCRE 0x1
1636 /*
1637 * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1638 * which can be written as 1 to trigger behaviour but which stay RAZ).
1639 */
1640 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1641
1642 #define PMXEVTYPER_P 0x80000000
1643 #define PMXEVTYPER_U 0x40000000
1644 #define PMXEVTYPER_NSK 0x20000000
1645 #define PMXEVTYPER_NSU 0x10000000
1646 #define PMXEVTYPER_NSH 0x08000000
1647 #define PMXEVTYPER_M 0x04000000
1648 #define PMXEVTYPER_MT 0x02000000
1649 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1650 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1651 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1652 PMXEVTYPER_M | PMXEVTYPER_MT | \
1653 PMXEVTYPER_EVTCOUNT)
1654
1655 #define PMCCFILTR 0xf8000000
1656 #define PMCCFILTR_M PMXEVTYPER_M
1657 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1658
pmu_num_counters(CPUARMState * env)1659 static inline uint32_t pmu_num_counters(CPUARMState *env)
1660 {
1661 ARMCPU *cpu = env_archcpu(env);
1662
1663 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1664 }
1665
1666 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
pmu_counter_mask(CPUARMState * env)1667 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1668 {
1669 return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1670 }
1671
1672 #ifdef TARGET_AARCH64
1673 GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cpu, int base_reg);
1674 int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg);
1675 int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg);
1676 int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg);
1677 int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg);
1678 int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg);
1679 int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg);
1680 int aarch64_gdb_get_tag_ctl_reg(CPUState *cs, GByteArray *buf, int reg);
1681 int aarch64_gdb_set_tag_ctl_reg(CPUState *cs, uint8_t *buf, int reg);
1682 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1683 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1684 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1685 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1686 void aarch64_max_tcg_initfn(Object *obj);
1687 void aarch64_add_pauth_properties(Object *obj);
1688 void aarch64_add_sve_properties(Object *obj);
1689 void aarch64_add_sme_properties(Object *obj);
1690 #endif
1691
1692 /* Read the CONTROL register as the MRS instruction would. */
1693 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1694
1695 /*
1696 * Return a pointer to the location where we currently store the
1697 * stack pointer for the requested security state and thread mode.
1698 * This pointer will become invalid if the CPU state is updated
1699 * such that the stack pointers are switched around (eg changing
1700 * the SPSEL control bit).
1701 */
1702 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1703 bool threadmode, bool spsel);
1704
1705 bool el_is_in_host(CPUARMState *env, int el);
1706
1707 void aa32_max_features(ARMCPU *cpu);
1708 int exception_target_el(CPUARMState *env);
1709 bool arm_singlestep_active(CPUARMState *env);
1710 bool arm_generate_debug_exceptions(CPUARMState *env);
1711
1712 /**
1713 * pauth_ptr_mask:
1714 * @param: parameters defining the MMU setup
1715 *
1716 * Return a mask of the address bits that contain the authentication code,
1717 * given the MMU config defined by @param.
1718 */
pauth_ptr_mask(ARMVAParameters param)1719 static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1720 {
1721 int bot_pac_bit = 64 - param.tsz;
1722 int top_pac_bit = 64 - 8 * param.tbi;
1723
1724 return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1725 }
1726
1727 /* Add the cpreg definitions for debug related system registers */
1728 void define_debug_regs(ARMCPU *cpu);
1729
1730 /* Effective value of MDCR_EL2 */
arm_mdcr_el2_eff(CPUARMState * env)1731 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1732 {
1733 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1734 }
1735
1736 /* Powers of 2 for sve_vq_map et al. */
1737 #define SVE_VQ_POW2_MAP \
1738 ((1 << (1 - 1)) | (1 << (2 - 1)) | \
1739 (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1740
1741 /*
1742 * Return true if it is possible to take a fine-grained-trap to EL2.
1743 */
arm_fgt_active(CPUARMState * env,int el)1744 static inline bool arm_fgt_active(CPUARMState *env, int el)
1745 {
1746 /*
1747 * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1748 * that can affect EL0, but it is harmless to do the test also for
1749 * traps on registers that are only accessible at EL1 because if the test
1750 * returns true then we can't be executing at EL1 anyway.
1751 * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1752 * traps from AArch32 only happen for the EL0 is AArch32 case.
1753 */
1754 return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1755 el < 2 && arm_is_el2_enabled(env) &&
1756 arm_el_is_aa64(env, 1) &&
1757 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1758 (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1759 }
1760
1761 void assert_hflags_rebuild_correctly(CPUARMState *env);
1762
1763 /*
1764 * Although the ARM implementation of hardware assisted debugging
1765 * allows for different breakpoints per-core, the current GDB
1766 * interface treats them as a global pool of registers (which seems to
1767 * be the case for x86, ppc and s390). As a result we store one copy
1768 * of registers which is used for all active cores.
1769 *
1770 * Write access is serialised by virtue of the GDB protocol which
1771 * updates things. Read access (i.e. when the values are copied to the
1772 * vCPU) is also gated by GDB's run control.
1773 *
1774 * This is not unreasonable as most of the time debugging kernels you
1775 * never know which core will eventually execute your function.
1776 */
1777
1778 typedef struct {
1779 uint64_t bcr;
1780 uint64_t bvr;
1781 } HWBreakpoint;
1782
1783 /*
1784 * The watchpoint registers can cover more area than the requested
1785 * watchpoint so we need to store the additional information
1786 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
1787 * when the watchpoint is hit.
1788 */
1789 typedef struct {
1790 uint64_t wcr;
1791 uint64_t wvr;
1792 CPUWatchpoint details;
1793 } HWWatchpoint;
1794
1795 /* Maximum and current break/watch point counts */
1796 extern int max_hw_bps, max_hw_wps;
1797 extern GArray *hw_breakpoints, *hw_watchpoints;
1798
1799 #define cur_hw_wps (hw_watchpoints->len)
1800 #define cur_hw_bps (hw_breakpoints->len)
1801 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
1802 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
1803
1804 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
1805 int insert_hw_breakpoint(target_ulong pc);
1806 int delete_hw_breakpoint(target_ulong pc);
1807
1808 bool check_watchpoint_in_range(int i, target_ulong addr);
1809 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
1810 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1811 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1812
1813 /* Return the current value of the system counter in ticks */
1814 uint64_t gt_get_countervalue(CPUARMState *env);
1815 /*
1816 * Return the currently applicable offset between the system counter
1817 * and CNTVCT_EL0 (this will be either 0 or the value of CNTVOFF_EL2).
1818 */
1819 uint64_t gt_virt_cnt_offset(CPUARMState *env);
1820 #endif
1821