1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
4 *
5 * Author Andreas Eversberg (jolly@eversberg.eu)
6 * ported to mqueue mechanism:
7 * Peter Sprenger (sprengermoving-bytes.de)
8 *
9 * inspired by existing hfc-pci driver:
10 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
11 * Copyright 2008 by Karsten Keil (kkeil@suse.de)
12 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu)
13 *
14 * Thanks to Cologne Chip AG for this great controller!
15 */
16
17 /*
18 * module parameters:
19 * type:
20 * By default (0), the card is automatically detected.
21 * Or use the following combinations:
22 * Bit 0-7 = 0x00001 = HFC-E1 (1 port)
23 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
24 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
25 * Bit 8 = 0x00100 = uLaw (instead of aLaw)
26 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
27 * Bit 10 = spare
28 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
29 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
30 * Bit 13 = spare
31 * Bit 14 = 0x04000 = Use external ram (128K)
32 * Bit 15 = 0x08000 = Use external ram (512K)
33 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32
34 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
35 * Bit 18 = spare
36 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
37 * (all other bits are reserved and shall be 0)
38 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
39 * bus (PCM master)
40 *
41 * port: (optional or required for all ports on all installed cards)
42 * HFC-4S/HFC-8S only bits:
43 * Bit 0 = 0x001 = Use master clock for this S/T interface
44 * (ony once per chip).
45 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
46 * Don't use this unless you know what you are doing!
47 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
48 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
49 * received from port 1
50 *
51 * HFC-E1 only bits:
52 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical
53 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
54 * Bit 2 = 0x0004 = Report LOS
55 * Bit 3 = 0x0008 = Report AIS
56 * Bit 4 = 0x0010 = Report SLIP
57 * Bit 5 = 0x0020 = Report RDI
58 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
59 * mode instead.
60 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
61 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
62 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
63 * (E1 only)
64 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
65 * for default.
66 * (all other bits are reserved and shall be 0)
67 *
68 * debug:
69 * NOTE: only one debug value must be given for all cards
70 * enable debugging (see hfc_multi.h for debug options)
71 *
72 * poll:
73 * NOTE: only one poll value must be given for all cards
74 * Give the number of samples for each fifo process.
75 * By default 128 is used. Decrease to reduce delay, increase to
76 * reduce cpu load. If unsure, don't mess with it!
77 * Valid is 8, 16, 32, 64, 128, 256.
78 *
79 * pcm:
80 * NOTE: only one pcm value must be given for every card.
81 * The PCM bus id tells the mISDNdsp module about the connected PCM bus.
82 * By default (0), the PCM bus id is 100 for the card that is PCM master.
83 * If multiple cards are PCM master (because they are not interconnected),
84 * each card with PCM master will have increasing PCM id.
85 * All PCM busses with the same ID are expected to be connected and have
86 * common time slots slots.
87 * Only one chip of the PCM bus must be master, the others slave.
88 * -1 means no support of PCM bus not even.
89 * Omit this value, if all cards are interconnected or none is connected.
90 * If unsure, don't give this parameter.
91 *
92 * dmask and bmask:
93 * NOTE: One dmask value must be given for every HFC-E1 card.
94 * If omitted, the E1 card has D-channel on time slot 16, which is default.
95 * dmask is a 32 bit mask. The bit must be set for an alternate time slot.
96 * If multiple bits are set, multiple virtual card fragments are created.
97 * For each bit set, a bmask value must be given. Each bit on the bmask
98 * value stands for a B-channel. The bmask may not overlap with dmask or
99 * with other bmask values for that card.
100 * Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000
101 * This will create one fragment with D-channel on slot 1 with
102 * B-channels on slots 2..15, and a second fragment with D-channel
103 * on slot 17 with B-channels on slot 18..31. Slot 16 is unused.
104 * If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will
105 * not function.
106 * Example: dmask=0x00000001 bmask=0xfffffffe
107 * This will create a port with all 31 usable timeslots as
108 * B-channels.
109 * If no bits are set on bmask, no B-channel is created for that fragment.
110 * Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask)
111 * This will create 31 ports with one D-channel only.
112 * If you don't know how to use it, you don't need it!
113 *
114 * iomode:
115 * NOTE: only one mode value must be given for every card.
116 * -> See hfc_multi.h for HFC_IO_MODE_* values
117 * By default, the IO mode is pci memory IO (MEMIO).
118 * Some cards require specific IO mode, so it cannot be changed.
119 * It may be useful to set IO mode to register io (REGIO) to solve
120 * PCI bridge problems.
121 * If unsure, don't give this parameter.
122 *
123 * clockdelay_nt:
124 * NOTE: only one clockdelay_nt value must be given once for all cards.
125 * Give the value of the clock control register (A_ST_CLK_DLY)
126 * of the S/T interfaces in NT mode.
127 * This register is needed for the TBR3 certification, so don't change it.
128 *
129 * clockdelay_te:
130 * NOTE: only one clockdelay_te value must be given once
131 * Give the value of the clock control register (A_ST_CLK_DLY)
132 * of the S/T interfaces in TE mode.
133 * This register is needed for the TBR3 certification, so don't change it.
134 *
135 * clock:
136 * NOTE: only one clock value must be given once
137 * Selects interface with clock source for mISDN and applications.
138 * Set to card number starting with 1. Set to -1 to disable.
139 * By default, the first card is used as clock source.
140 *
141 * hwid:
142 * NOTE: only one hwid value must be given once
143 * Enable special embedded devices with XHFC controllers.
144 */
145
146 /*
147 * debug register access (never use this, it will flood your system log)
148 * #define HFC_REGISTER_DEBUG
149 */
150
151 #define HFC_MULTI_VERSION "2.03"
152
153 #include <linux/interrupt.h>
154 #include <linux/module.h>
155 #include <linux/slab.h>
156 #include <linux/pci.h>
157 #include <linux/delay.h>
158 #include <linux/mISDNhw.h>
159 #include <linux/mISDNdsp.h>
160
161 /*
162 #define IRQCOUNT_DEBUG
163 #define IRQ_DEBUG
164 */
165
166 #include "hfc_multi.h"
167 #ifdef ECHOPREP
168 #include "gaintab.h"
169 #endif
170
171 #define MAX_CARDS 8
172 #define MAX_PORTS (8 * MAX_CARDS)
173 #define MAX_FRAGS (32 * MAX_CARDS)
174
175 static LIST_HEAD(HFClist);
176 static DEFINE_SPINLOCK(HFClock); /* global hfc list lock */
177
178 static void ph_state_change(struct dchannel *);
179
180 static struct hfc_multi *syncmaster;
181 static int plxsd_master; /* if we have a master card (yet) */
182 static DEFINE_SPINLOCK(plx_lock); /* may not acquire other lock inside */
183
184 #define TYP_E1 1
185 #define TYP_4S 4
186 #define TYP_8S 8
187
188 static int poll_timer = 6; /* default = 128 samples = 16ms */
189 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
190 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
191 #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
192 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode
193 (0x60 MUST be included!) */
194
195 #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
196 #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
197 #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
198
199 /*
200 * module stuff
201 */
202
203 static uint type[MAX_CARDS];
204 static int pcm[MAX_CARDS];
205 static uint dmask[MAX_CARDS];
206 static uint bmask[MAX_FRAGS];
207 static uint iomode[MAX_CARDS];
208 static uint port[MAX_PORTS];
209 static uint debug;
210 static uint poll;
211 static int clock;
212 static uint timer;
213 static uint clockdelay_te = CLKDEL_TE;
214 static uint clockdelay_nt = CLKDEL_NT;
215 #define HWID_NONE 0
216 #define HWID_MINIP4 1
217 #define HWID_MINIP8 2
218 #define HWID_MINIP16 3
219 static uint hwid = HWID_NONE;
220
221 static int HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99;
222
223 MODULE_AUTHOR("Andreas Eversberg");
224 MODULE_DESCRIPTION("mISDN driver for hfc-4s/hfc-8s/hfc-e1 based cards");
225 MODULE_LICENSE("GPL");
226 MODULE_VERSION(HFC_MULTI_VERSION);
227 module_param(debug, uint, S_IRUGO | S_IWUSR);
228 module_param(poll, uint, S_IRUGO | S_IWUSR);
229 module_param(clock, int, S_IRUGO | S_IWUSR);
230 module_param(timer, uint, S_IRUGO | S_IWUSR);
231 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
232 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
233 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
234 module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
235 module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR);
236 module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR);
237 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
238 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
239 module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
240
241 #ifdef HFC_REGISTER_DEBUG
242 #define HFC_outb(hc, reg, val) \
243 (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
244 #define HFC_outb_nodebug(hc, reg, val) \
245 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
246 #define HFC_inb(hc, reg) \
247 (hc->HFC_inb(hc, reg, __func__, __LINE__))
248 #define HFC_inb_nodebug(hc, reg) \
249 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
250 #define HFC_inw(hc, reg) \
251 (hc->HFC_inw(hc, reg, __func__, __LINE__))
252 #define HFC_inw_nodebug(hc, reg) \
253 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
254 #define HFC_wait(hc) \
255 (hc->HFC_wait(hc, __func__, __LINE__))
256 #define HFC_wait_nodebug(hc) \
257 (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
258 #else
259 #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
260 #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
261 #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
262 #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
263 #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
264 #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
265 #define HFC_wait(hc) (hc->HFC_wait(hc))
266 #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
267 #endif
268
269 #ifdef CONFIG_MISDN_HFCMULTI_8xx
270 #include "hfc_multi_8xx.h"
271 #endif
272
273 /* HFC_IO_MODE_PCIMEM */
274 static void
275 #ifdef HFC_REGISTER_DEBUG
HFC_outb_pcimem(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)276 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
277 const char *function, int line)
278 #else
279 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
280 #endif
281 {
282 writeb(val, hc->pci_membase + reg);
283 }
284 static u_char
285 #ifdef HFC_REGISTER_DEBUG
HFC_inb_pcimem(struct hfc_multi * hc,u_char reg,const char * function,int line)286 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
287 #else
288 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
289 #endif
290 {
291 return readb(hc->pci_membase + reg);
292 }
293 static u_short
294 #ifdef HFC_REGISTER_DEBUG
HFC_inw_pcimem(struct hfc_multi * hc,u_char reg,const char * function,int line)295 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
296 #else
297 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
298 #endif
299 {
300 return readw(hc->pci_membase + reg);
301 }
302 static void
303 #ifdef HFC_REGISTER_DEBUG
HFC_wait_pcimem(struct hfc_multi * hc,const char * function,int line)304 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
305 #else
306 HFC_wait_pcimem(struct hfc_multi *hc)
307 #endif
308 {
309 while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
310 cpu_relax();
311 }
312
313 /* HFC_IO_MODE_REGIO */
314 static void
315 #ifdef HFC_REGISTER_DEBUG
HFC_outb_regio(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)316 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
317 const char *function, int line)
318 #else
319 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
320 #endif
321 {
322 outb(reg, hc->pci_iobase + 4);
323 outb(val, hc->pci_iobase);
324 }
325 static u_char
326 #ifdef HFC_REGISTER_DEBUG
HFC_inb_regio(struct hfc_multi * hc,u_char reg,const char * function,int line)327 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
328 #else
329 HFC_inb_regio(struct hfc_multi *hc, u_char reg)
330 #endif
331 {
332 outb(reg, hc->pci_iobase + 4);
333 return inb(hc->pci_iobase);
334 }
335 static u_short
336 #ifdef HFC_REGISTER_DEBUG
HFC_inw_regio(struct hfc_multi * hc,u_char reg,const char * function,int line)337 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
338 #else
339 HFC_inw_regio(struct hfc_multi *hc, u_char reg)
340 #endif
341 {
342 outb(reg, hc->pci_iobase + 4);
343 return inw(hc->pci_iobase);
344 }
345 static void
346 #ifdef HFC_REGISTER_DEBUG
HFC_wait_regio(struct hfc_multi * hc,const char * function,int line)347 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
348 #else
349 HFC_wait_regio(struct hfc_multi *hc)
350 #endif
351 {
352 outb(R_STATUS, hc->pci_iobase + 4);
353 while (inb(hc->pci_iobase) & V_BUSY)
354 cpu_relax();
355 }
356
357 #ifdef HFC_REGISTER_DEBUG
358 static void
HFC_outb_debug(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)359 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
360 const char *function, int line)
361 {
362 char regname[256] = "", bits[9] = "xxxxxxxx";
363 int i;
364
365 i = -1;
366 while (hfc_register_names[++i].name) {
367 if (hfc_register_names[i].reg == reg)
368 strcat(regname, hfc_register_names[i].name);
369 }
370 if (regname[0] == '\0')
371 strcpy(regname, "register");
372
373 bits[7] = '0' + (!!(val & 1));
374 bits[6] = '0' + (!!(val & 2));
375 bits[5] = '0' + (!!(val & 4));
376 bits[4] = '0' + (!!(val & 8));
377 bits[3] = '0' + (!!(val & 16));
378 bits[2] = '0' + (!!(val & 32));
379 bits[1] = '0' + (!!(val & 64));
380 bits[0] = '0' + (!!(val & 128));
381 printk(KERN_DEBUG
382 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
383 hc->id, reg, regname, val, bits, function, line);
384 HFC_outb_nodebug(hc, reg, val);
385 }
386 static u_char
HFC_inb_debug(struct hfc_multi * hc,u_char reg,const char * function,int line)387 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
388 {
389 char regname[256] = "", bits[9] = "xxxxxxxx";
390 u_char val = HFC_inb_nodebug(hc, reg);
391 int i;
392
393 i = 0;
394 while (hfc_register_names[i++].name)
395 ;
396 while (hfc_register_names[++i].name) {
397 if (hfc_register_names[i].reg == reg)
398 strcat(regname, hfc_register_names[i].name);
399 }
400 if (regname[0] == '\0')
401 strcpy(regname, "register");
402
403 bits[7] = '0' + (!!(val & 1));
404 bits[6] = '0' + (!!(val & 2));
405 bits[5] = '0' + (!!(val & 4));
406 bits[4] = '0' + (!!(val & 8));
407 bits[3] = '0' + (!!(val & 16));
408 bits[2] = '0' + (!!(val & 32));
409 bits[1] = '0' + (!!(val & 64));
410 bits[0] = '0' + (!!(val & 128));
411 printk(KERN_DEBUG
412 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
413 hc->id, reg, regname, val, bits, function, line);
414 return val;
415 }
416 static u_short
HFC_inw_debug(struct hfc_multi * hc,u_char reg,const char * function,int line)417 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
418 {
419 char regname[256] = "";
420 u_short val = HFC_inw_nodebug(hc, reg);
421 int i;
422
423 i = 0;
424 while (hfc_register_names[i++].name)
425 ;
426 while (hfc_register_names[++i].name) {
427 if (hfc_register_names[i].reg == reg)
428 strcat(regname, hfc_register_names[i].name);
429 }
430 if (regname[0] == '\0')
431 strcpy(regname, "register");
432
433 printk(KERN_DEBUG
434 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
435 hc->id, reg, regname, val, function, line);
436 return val;
437 }
438 static void
HFC_wait_debug(struct hfc_multi * hc,const char * function,int line)439 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
440 {
441 printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
442 hc->id, function, line);
443 HFC_wait_nodebug(hc);
444 }
445 #endif
446
447 /* write fifo data (REGIO) */
448 static void
write_fifo_regio(struct hfc_multi * hc,u_char * data,int len)449 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
450 {
451 outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
452 while (len >> 2) {
453 outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
454 data += 4;
455 len -= 4;
456 }
457 while (len >> 1) {
458 outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
459 data += 2;
460 len -= 2;
461 }
462 while (len) {
463 outb(*data, hc->pci_iobase);
464 data++;
465 len--;
466 }
467 }
468 /* write fifo data (PCIMEM) */
469 static void
write_fifo_pcimem(struct hfc_multi * hc,u_char * data,int len)470 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
471 {
472 while (len >> 2) {
473 writel(cpu_to_le32(*(u32 *)data),
474 hc->pci_membase + A_FIFO_DATA0);
475 data += 4;
476 len -= 4;
477 }
478 while (len >> 1) {
479 writew(cpu_to_le16(*(u16 *)data),
480 hc->pci_membase + A_FIFO_DATA0);
481 data += 2;
482 len -= 2;
483 }
484 while (len) {
485 writeb(*data, hc->pci_membase + A_FIFO_DATA0);
486 data++;
487 len--;
488 }
489 }
490
491 /* read fifo data (REGIO) */
492 static void
read_fifo_regio(struct hfc_multi * hc,u_char * data,int len)493 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
494 {
495 outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
496 while (len >> 2) {
497 *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
498 data += 4;
499 len -= 4;
500 }
501 while (len >> 1) {
502 *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
503 data += 2;
504 len -= 2;
505 }
506 while (len) {
507 *data = inb(hc->pci_iobase);
508 data++;
509 len--;
510 }
511 }
512
513 /* read fifo data (PCIMEM) */
514 static void
read_fifo_pcimem(struct hfc_multi * hc,u_char * data,int len)515 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
516 {
517 while (len >> 2) {
518 *(u32 *)data =
519 le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
520 data += 4;
521 len -= 4;
522 }
523 while (len >> 1) {
524 *(u16 *)data =
525 le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
526 data += 2;
527 len -= 2;
528 }
529 while (len) {
530 *data = readb(hc->pci_membase + A_FIFO_DATA0);
531 data++;
532 len--;
533 }
534 }
535
536 static void
enable_hwirq(struct hfc_multi * hc)537 enable_hwirq(struct hfc_multi *hc)
538 {
539 hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
540 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
541 }
542
543 static void
disable_hwirq(struct hfc_multi * hc)544 disable_hwirq(struct hfc_multi *hc)
545 {
546 hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
547 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
548 }
549
550 #define NUM_EC 2
551 #define MAX_TDM_CHAN 32
552
553
554 static inline void
enablepcibridge(struct hfc_multi * c)555 enablepcibridge(struct hfc_multi *c)
556 {
557 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
558 }
559
560 static inline void
disablepcibridge(struct hfc_multi * c)561 disablepcibridge(struct hfc_multi *c)
562 {
563 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
564 }
565
566 static inline unsigned char
readpcibridge(struct hfc_multi * hc,unsigned char address)567 readpcibridge(struct hfc_multi *hc, unsigned char address)
568 {
569 unsigned short cipv;
570 unsigned char data;
571
572 if (!hc->pci_iobase)
573 return 0;
574
575 /* slow down a PCI read access by 1 PCI clock cycle */
576 HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
577
578 if (address == 0)
579 cipv = 0x4000;
580 else
581 cipv = 0x5800;
582
583 /* select local bridge port address by writing to CIP port */
584 /* data = HFC_inb(c, cipv); * was _io before */
585 outw(cipv, hc->pci_iobase + 4);
586 data = inb(hc->pci_iobase);
587
588 /* restore R_CTRL for normal PCI read cycle speed */
589 HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
590
591 return data;
592 }
593
594 static inline void
writepcibridge(struct hfc_multi * hc,unsigned char address,unsigned char data)595 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
596 {
597 unsigned short cipv;
598 unsigned int datav;
599
600 if (!hc->pci_iobase)
601 return;
602
603 if (address == 0)
604 cipv = 0x4000;
605 else
606 cipv = 0x5800;
607
608 /* select local bridge port address by writing to CIP port */
609 outw(cipv, hc->pci_iobase + 4);
610 /* define a 32 bit dword with 4 identical bytes for write sequence */
611 datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
612 ((__u32) data << 24);
613
614 /*
615 * write this 32 bit dword to the bridge data port
616 * this will initiate a write sequence of up to 4 writes to the same
617 * address on the local bus interface the number of write accesses
618 * is undefined but >=1 and depends on the next PCI transaction
619 * during write sequence on the local bus
620 */
621 outl(datav, hc->pci_iobase);
622 }
623
624 static inline void
cpld_set_reg(struct hfc_multi * hc,unsigned char reg)625 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
626 {
627 /* Do data pin read low byte */
628 HFC_outb(hc, R_GPIO_OUT1, reg);
629 }
630
631 static inline void
cpld_write_reg(struct hfc_multi * hc,unsigned char reg,unsigned char val)632 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
633 {
634 cpld_set_reg(hc, reg);
635
636 enablepcibridge(hc);
637 writepcibridge(hc, 1, val);
638 disablepcibridge(hc);
639
640 return;
641 }
642
643 static inline void
vpm_write_address(struct hfc_multi * hc,unsigned short addr)644 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
645 {
646 cpld_write_reg(hc, 0, 0xff & addr);
647 cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
648 }
649
650 static inline unsigned char
vpm_in(struct hfc_multi * c,int which,unsigned short addr)651 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
652 {
653 unsigned char res;
654
655 vpm_write_address(c, addr);
656
657 if (!which)
658 cpld_set_reg(c, 2);
659 else
660 cpld_set_reg(c, 3);
661
662 enablepcibridge(c);
663 res = readpcibridge(c, 1);
664 disablepcibridge(c);
665
666 cpld_set_reg(c, 0);
667
668 return res;
669 }
670
671 static inline void
vpm_out(struct hfc_multi * c,int which,unsigned short addr,unsigned char data)672 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
673 unsigned char data)
674 {
675 vpm_write_address(c, addr);
676
677 enablepcibridge(c);
678
679 if (!which)
680 cpld_set_reg(c, 2);
681 else
682 cpld_set_reg(c, 3);
683
684 writepcibridge(c, 1, data);
685
686 cpld_set_reg(c, 0);
687
688 disablepcibridge(c);
689
690 {
691 unsigned char regin;
692 regin = vpm_in(c, which, addr);
693 if (regin != data)
694 printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
695 "0x%x\n", data, addr, regin);
696 }
697
698 }
699
700
701 static void
vpm_init(struct hfc_multi * wc)702 vpm_init(struct hfc_multi *wc)
703 {
704 unsigned char reg;
705 unsigned int mask;
706 unsigned int i, x, y;
707 unsigned int ver;
708
709 for (x = 0; x < NUM_EC; x++) {
710 /* Setup GPIO's */
711 if (!x) {
712 ver = vpm_in(wc, x, 0x1a0);
713 printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
714 }
715
716 for (y = 0; y < 4; y++) {
717 vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
718 vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
719 vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
720 }
721
722 /* Setup TDM path - sets fsync and tdm_clk as inputs */
723 reg = vpm_in(wc, x, 0x1a3); /* misc_con */
724 vpm_out(wc, x, 0x1a3, reg & ~2);
725
726 /* Setup Echo length (256 taps) */
727 vpm_out(wc, x, 0x022, 1);
728 vpm_out(wc, x, 0x023, 0xff);
729
730 /* Setup timeslots */
731 vpm_out(wc, x, 0x02f, 0x00);
732 mask = 0x02020202 << (x * 4);
733
734 /* Setup the tdm channel masks for all chips */
735 for (i = 0; i < 4; i++)
736 vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
737
738 /* Setup convergence rate */
739 printk(KERN_DEBUG "VPM: A-law mode\n");
740 reg = 0x00 | 0x10 | 0x01;
741 vpm_out(wc, x, 0x20, reg);
742 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
743 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
744
745 vpm_out(wc, x, 0x24, 0x02);
746 reg = vpm_in(wc, x, 0x24);
747 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
748
749 /* Initialize echo cans */
750 for (i = 0; i < MAX_TDM_CHAN; i++) {
751 if (mask & (0x00000001 << i))
752 vpm_out(wc, x, i, 0x00);
753 }
754
755 /*
756 * ARM arch at least disallows a udelay of
757 * more than 2ms... it gives a fake "__bad_udelay"
758 * reference at link-time.
759 * long delays in kernel code are pretty sucky anyway
760 * for now work around it using 5 x 2ms instead of 1 x 10ms
761 */
762
763 udelay(2000);
764 udelay(2000);
765 udelay(2000);
766 udelay(2000);
767 udelay(2000);
768
769 /* Put in bypass mode */
770 for (i = 0; i < MAX_TDM_CHAN; i++) {
771 if (mask & (0x00000001 << i))
772 vpm_out(wc, x, i, 0x01);
773 }
774
775 /* Enable bypass */
776 for (i = 0; i < MAX_TDM_CHAN; i++) {
777 if (mask & (0x00000001 << i))
778 vpm_out(wc, x, 0x78 + i, 0x01);
779 }
780
781 }
782 }
783
784 #ifdef UNUSED
785 static void
vpm_check(struct hfc_multi * hctmp)786 vpm_check(struct hfc_multi *hctmp)
787 {
788 unsigned char gpi2;
789
790 gpi2 = HFC_inb(hctmp, R_GPI_IN2);
791
792 if ((gpi2 & 0x3) != 0x3)
793 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
794 }
795 #endif /* UNUSED */
796
797
798 /*
799 * Interface to enable/disable the HW Echocan
800 *
801 * these functions are called within a spin_lock_irqsave on
802 * the channel instance lock, so we are not disturbed by irqs
803 *
804 * we can later easily change the interface to make other
805 * things configurable, for now we configure the taps
806 *
807 */
808
809 static void
vpm_echocan_on(struct hfc_multi * hc,int ch,int taps)810 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
811 {
812 unsigned int timeslot;
813 unsigned int unit;
814 struct bchannel *bch = hc->chan[ch].bch;
815 #ifdef TXADJ
816 int txadj = -4;
817 struct sk_buff *skb;
818 #endif
819 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
820 return;
821
822 if (!bch)
823 return;
824
825 #ifdef TXADJ
826 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
827 sizeof(int), &txadj, GFP_ATOMIC);
828 if (skb)
829 recv_Bchannel_skb(bch, skb);
830 #endif
831
832 timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
833 unit = ch % 4;
834
835 printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
836 taps, timeslot);
837
838 vpm_out(hc, unit, timeslot, 0x7e);
839 }
840
841 static void
vpm_echocan_off(struct hfc_multi * hc,int ch)842 vpm_echocan_off(struct hfc_multi *hc, int ch)
843 {
844 unsigned int timeslot;
845 unsigned int unit;
846 struct bchannel *bch = hc->chan[ch].bch;
847 #ifdef TXADJ
848 int txadj = 0;
849 struct sk_buff *skb;
850 #endif
851
852 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
853 return;
854
855 if (!bch)
856 return;
857
858 #ifdef TXADJ
859 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
860 sizeof(int), &txadj, GFP_ATOMIC);
861 if (skb)
862 recv_Bchannel_skb(bch, skb);
863 #endif
864
865 timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
866 unit = ch % 4;
867
868 printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
869 timeslot);
870 /* FILLME */
871 vpm_out(hc, unit, timeslot, 0x01);
872 }
873
874
875 /*
876 * Speech Design resync feature
877 * NOTE: This is called sometimes outside interrupt handler.
878 * We must lock irqsave, so no other interrupt (other card) will occur!
879 * Also multiple interrupts may nest, so must lock each access (lists, card)!
880 */
881 static inline void
hfcmulti_resync(struct hfc_multi * locked,struct hfc_multi * newmaster,int rm)882 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
883 {
884 struct hfc_multi *hc, *next, *pcmmaster = NULL;
885 void __iomem *plx_acc_32;
886 u_int pv;
887 u_long flags;
888
889 spin_lock_irqsave(&HFClock, flags);
890 spin_lock(&plx_lock); /* must be locked inside other locks */
891
892 if (debug & DEBUG_HFCMULTI_PLXSD)
893 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
894 __func__, syncmaster);
895
896 /* select new master */
897 if (newmaster) {
898 if (debug & DEBUG_HFCMULTI_PLXSD)
899 printk(KERN_DEBUG "using provided controller\n");
900 } else {
901 list_for_each_entry_safe(hc, next, &HFClist, list) {
902 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
903 if (hc->syncronized) {
904 newmaster = hc;
905 break;
906 }
907 }
908 }
909 }
910
911 /* Disable sync of all cards */
912 list_for_each_entry_safe(hc, next, &HFClist, list) {
913 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
914 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
915 pv = readl(plx_acc_32);
916 pv &= ~PLX_SYNC_O_EN;
917 writel(pv, plx_acc_32);
918 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
919 pcmmaster = hc;
920 if (hc->ctype == HFC_TYPE_E1) {
921 if (debug & DEBUG_HFCMULTI_PLXSD)
922 printk(KERN_DEBUG
923 "Schedule SYNC_I\n");
924 hc->e1_resync |= 1; /* get SYNC_I */
925 }
926 }
927 }
928 }
929
930 if (newmaster) {
931 hc = newmaster;
932 if (debug & DEBUG_HFCMULTI_PLXSD)
933 printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
934 "interface.\n", hc->id, hc);
935 /* Enable new sync master */
936 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
937 pv = readl(plx_acc_32);
938 pv |= PLX_SYNC_O_EN;
939 writel(pv, plx_acc_32);
940 /* switch to jatt PLL, if not disabled by RX_SYNC */
941 if (hc->ctype == HFC_TYPE_E1
942 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
943 if (debug & DEBUG_HFCMULTI_PLXSD)
944 printk(KERN_DEBUG "Schedule jatt PLL\n");
945 hc->e1_resync |= 2; /* switch to jatt */
946 }
947 } else {
948 if (pcmmaster) {
949 hc = pcmmaster;
950 if (debug & DEBUG_HFCMULTI_PLXSD)
951 printk(KERN_DEBUG
952 "id=%d (0x%p) = PCM master syncronized "
953 "with QUARTZ\n", hc->id, hc);
954 if (hc->ctype == HFC_TYPE_E1) {
955 /* Use the crystal clock for the PCM
956 master card */
957 if (debug & DEBUG_HFCMULTI_PLXSD)
958 printk(KERN_DEBUG
959 "Schedule QUARTZ for HFC-E1\n");
960 hc->e1_resync |= 4; /* switch quartz */
961 } else {
962 if (debug & DEBUG_HFCMULTI_PLXSD)
963 printk(KERN_DEBUG
964 "QUARTZ is automatically "
965 "enabled by HFC-%dS\n", hc->ctype);
966 }
967 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
968 pv = readl(plx_acc_32);
969 pv |= PLX_SYNC_O_EN;
970 writel(pv, plx_acc_32);
971 } else
972 if (!rm)
973 printk(KERN_ERR "%s no pcm master, this MUST "
974 "not happen!\n", __func__);
975 }
976 syncmaster = newmaster;
977
978 spin_unlock(&plx_lock);
979 spin_unlock_irqrestore(&HFClock, flags);
980 }
981
982 /* This must be called AND hc must be locked irqsave!!! */
983 static inline void
plxsd_checksync(struct hfc_multi * hc,int rm)984 plxsd_checksync(struct hfc_multi *hc, int rm)
985 {
986 if (hc->syncronized) {
987 if (syncmaster == NULL) {
988 if (debug & DEBUG_HFCMULTI_PLXSD)
989 printk(KERN_DEBUG "%s: GOT sync on card %d"
990 " (id=%d)\n", __func__, hc->id + 1,
991 hc->id);
992 hfcmulti_resync(hc, hc, rm);
993 }
994 } else {
995 if (syncmaster == hc) {
996 if (debug & DEBUG_HFCMULTI_PLXSD)
997 printk(KERN_DEBUG "%s: LOST sync on card %d"
998 " (id=%d)\n", __func__, hc->id + 1,
999 hc->id);
1000 hfcmulti_resync(hc, NULL, rm);
1001 }
1002 }
1003 }
1004
1005
1006 /*
1007 * free hardware resources used by driver
1008 */
1009 static void
release_io_hfcmulti(struct hfc_multi * hc)1010 release_io_hfcmulti(struct hfc_multi *hc)
1011 {
1012 void __iomem *plx_acc_32;
1013 u_int pv;
1014 u_long plx_flags;
1015
1016 if (debug & DEBUG_HFCMULTI_INIT)
1017 printk(KERN_DEBUG "%s: entered\n", __func__);
1018
1019 /* soft reset also masks all interrupts */
1020 hc->hw.r_cirm |= V_SRES;
1021 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1022 udelay(1000);
1023 hc->hw.r_cirm &= ~V_SRES;
1024 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1025 udelay(1000); /* instead of 'wait' that may cause locking */
1026
1027 /* release Speech Design card, if PLX was initialized */
1028 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1029 if (debug & DEBUG_HFCMULTI_PLXSD)
1030 printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1031 __func__, hc->id + 1);
1032 spin_lock_irqsave(&plx_lock, plx_flags);
1033 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1034 writel(PLX_GPIOC_INIT, plx_acc_32);
1035 pv = readl(plx_acc_32);
1036 /* Termination off */
1037 pv &= ~PLX_TERM_ON;
1038 /* Disconnect the PCM */
1039 pv |= PLX_SLAVE_EN_N;
1040 pv &= ~PLX_MASTER_EN;
1041 pv &= ~PLX_SYNC_O_EN;
1042 /* Put the DSP in Reset */
1043 pv &= ~PLX_DSP_RES_N;
1044 writel(pv, plx_acc_32);
1045 if (debug & DEBUG_HFCMULTI_INIT)
1046 printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
1047 __func__, pv);
1048 spin_unlock_irqrestore(&plx_lock, plx_flags);
1049 }
1050
1051 /* disable memory mapped ports / io ports */
1052 test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1053 if (hc->pci_dev)
1054 pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1055 if (hc->pci_membase)
1056 iounmap(hc->pci_membase);
1057 if (hc->plx_membase)
1058 iounmap(hc->plx_membase);
1059 if (hc->pci_iobase)
1060 release_region(hc->pci_iobase, 8);
1061 if (hc->xhfc_membase)
1062 iounmap((void *)hc->xhfc_membase);
1063
1064 if (hc->pci_dev) {
1065 pci_disable_device(hc->pci_dev);
1066 pci_set_drvdata(hc->pci_dev, NULL);
1067 }
1068 if (debug & DEBUG_HFCMULTI_INIT)
1069 printk(KERN_DEBUG "%s: done\n", __func__);
1070 }
1071
1072 /*
1073 * function called to reset the HFC chip. A complete software reset of chip
1074 * and fifos is done. All configuration of the chip is done.
1075 */
1076
1077 static int
init_chip(struct hfc_multi * hc)1078 init_chip(struct hfc_multi *hc)
1079 {
1080 u_long flags, val, val2 = 0, rev;
1081 int i, err = 0;
1082 u_char r_conf_en, rval;
1083 void __iomem *plx_acc_32;
1084 u_int pv;
1085 u_long plx_flags, hfc_flags;
1086 int plx_count;
1087 struct hfc_multi *pos, *next, *plx_last_hc;
1088
1089 spin_lock_irqsave(&hc->lock, flags);
1090 /* reset all registers */
1091 memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1092
1093 /* revision check */
1094 if (debug & DEBUG_HFCMULTI_INIT)
1095 printk(KERN_DEBUG "%s: entered\n", __func__);
1096 val = HFC_inb(hc, R_CHIP_ID);
1097 if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1098 (val >> 1) != 0x31) {
1099 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1100 err = -EIO;
1101 goto out;
1102 }
1103 rev = HFC_inb(hc, R_CHIP_RV);
1104 printk(KERN_INFO
1105 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1106 val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1107 " (old FIFO handling)" : "");
1108 if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
1109 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1110 printk(KERN_WARNING
1111 "HFC_multi: NOTE: Your chip is revision 0, "
1112 "ask Cologne Chip for update. Newer chips "
1113 "have a better FIFO handling. Old chips "
1114 "still work but may have slightly lower "
1115 "HDLC transmit performance.\n");
1116 }
1117 if (rev > 1) {
1118 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1119 "consider chip revision = %ld. The chip / "
1120 "bridge may not work.\n", rev);
1121 }
1122
1123 /* set s-ram size */
1124 hc->Flen = 0x10;
1125 hc->Zmin = 0x80;
1126 hc->Zlen = 384;
1127 hc->DTMFbase = 0x1000;
1128 if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1129 if (debug & DEBUG_HFCMULTI_INIT)
1130 printk(KERN_DEBUG "%s: changing to 128K external RAM\n",
1131 __func__);
1132 hc->hw.r_ctrl |= V_EXT_RAM;
1133 hc->hw.r_ram_sz = 1;
1134 hc->Flen = 0x20;
1135 hc->Zmin = 0xc0;
1136 hc->Zlen = 1856;
1137 hc->DTMFbase = 0x2000;
1138 }
1139 if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1140 if (debug & DEBUG_HFCMULTI_INIT)
1141 printk(KERN_DEBUG "%s: changing to 512K external RAM\n",
1142 __func__);
1143 hc->hw.r_ctrl |= V_EXT_RAM;
1144 hc->hw.r_ram_sz = 2;
1145 hc->Flen = 0x20;
1146 hc->Zmin = 0xc0;
1147 hc->Zlen = 8000;
1148 hc->DTMFbase = 0x2000;
1149 }
1150 if (hc->ctype == HFC_TYPE_XHFC) {
1151 hc->Flen = 0x8;
1152 hc->Zmin = 0x0;
1153 hc->Zlen = 64;
1154 hc->DTMFbase = 0x0;
1155 }
1156 hc->max_trans = poll << 1;
1157 if (hc->max_trans > hc->Zlen)
1158 hc->max_trans = hc->Zlen;
1159
1160 /* Speech Design PLX bridge */
1161 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1162 if (debug & DEBUG_HFCMULTI_PLXSD)
1163 printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1164 __func__, hc->id + 1);
1165 spin_lock_irqsave(&plx_lock, plx_flags);
1166 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1167 writel(PLX_GPIOC_INIT, plx_acc_32);
1168 pv = readl(plx_acc_32);
1169 /* The first and the last cards are terminating the PCM bus */
1170 pv |= PLX_TERM_ON; /* hc is currently the last */
1171 /* Disconnect the PCM */
1172 pv |= PLX_SLAVE_EN_N;
1173 pv &= ~PLX_MASTER_EN;
1174 pv &= ~PLX_SYNC_O_EN;
1175 /* Put the DSP in Reset */
1176 pv &= ~PLX_DSP_RES_N;
1177 writel(pv, plx_acc_32);
1178 spin_unlock_irqrestore(&plx_lock, plx_flags);
1179 if (debug & DEBUG_HFCMULTI_INIT)
1180 printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
1181 __func__, pv);
1182 /*
1183 * If we are the 3rd PLXSD card or higher, we must turn
1184 * termination of last PLXSD card off.
1185 */
1186 spin_lock_irqsave(&HFClock, hfc_flags);
1187 plx_count = 0;
1188 plx_last_hc = NULL;
1189 list_for_each_entry_safe(pos, next, &HFClist, list) {
1190 if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1191 plx_count++;
1192 if (pos != hc)
1193 plx_last_hc = pos;
1194 }
1195 }
1196 if (plx_count >= 3) {
1197 if (debug & DEBUG_HFCMULTI_PLXSD)
1198 printk(KERN_DEBUG "%s: card %d is between, so "
1199 "we disable termination\n",
1200 __func__, plx_last_hc->id + 1);
1201 spin_lock_irqsave(&plx_lock, plx_flags);
1202 plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1203 pv = readl(plx_acc_32);
1204 pv &= ~PLX_TERM_ON;
1205 writel(pv, plx_acc_32);
1206 spin_unlock_irqrestore(&plx_lock, plx_flags);
1207 if (debug & DEBUG_HFCMULTI_INIT)
1208 printk(KERN_DEBUG
1209 "%s: term off: PLX_GPIO=%x\n",
1210 __func__, pv);
1211 }
1212 spin_unlock_irqrestore(&HFClock, hfc_flags);
1213 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1214 }
1215
1216 if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1217 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1218
1219 /* we only want the real Z2 read-pointer for revision > 0 */
1220 if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1221 hc->hw.r_ram_sz |= V_FZ_MD;
1222
1223 /* select pcm mode */
1224 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1225 if (debug & DEBUG_HFCMULTI_INIT)
1226 printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1227 __func__);
1228 } else
1229 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1230 if (debug & DEBUG_HFCMULTI_INIT)
1231 printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1232 __func__);
1233 hc->hw.r_pcm_md0 |= V_PCM_MD;
1234 } else {
1235 if (debug & DEBUG_HFCMULTI_INIT)
1236 printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1237 __func__);
1238 }
1239
1240 /* soft reset */
1241 HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1242 if (hc->ctype == HFC_TYPE_XHFC)
1243 HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1244 0x11 /* 16 Bytes TX/RX */);
1245 else
1246 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1247 HFC_outb(hc, R_FIFO_MD, 0);
1248 if (hc->ctype == HFC_TYPE_XHFC)
1249 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1250 else
1251 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1252 | V_RLD_EPR;
1253 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1254 udelay(100);
1255 hc->hw.r_cirm = 0;
1256 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1257 udelay(100);
1258 if (hc->ctype != HFC_TYPE_XHFC)
1259 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1260
1261 /* Speech Design PLX bridge pcm and sync mode */
1262 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1263 spin_lock_irqsave(&plx_lock, plx_flags);
1264 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1265 pv = readl(plx_acc_32);
1266 /* Connect PCM */
1267 if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1268 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1269 pv |= PLX_SYNC_O_EN;
1270 if (debug & DEBUG_HFCMULTI_INIT)
1271 printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
1272 __func__, pv);
1273 } else {
1274 pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1275 pv &= ~PLX_SYNC_O_EN;
1276 if (debug & DEBUG_HFCMULTI_INIT)
1277 printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
1278 __func__, pv);
1279 }
1280 writel(pv, plx_acc_32);
1281 spin_unlock_irqrestore(&plx_lock, plx_flags);
1282 }
1283
1284 /* PCM setup */
1285 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1286 if (hc->slots == 32)
1287 HFC_outb(hc, R_PCM_MD1, 0x00);
1288 if (hc->slots == 64)
1289 HFC_outb(hc, R_PCM_MD1, 0x10);
1290 if (hc->slots == 128)
1291 HFC_outb(hc, R_PCM_MD1, 0x20);
1292 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1293 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1294 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1295 else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1296 HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
1297 else
1298 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1299 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1300 for (i = 0; i < 256; i++) {
1301 HFC_outb_nodebug(hc, R_SLOT, i);
1302 HFC_outb_nodebug(hc, A_SL_CFG, 0);
1303 if (hc->ctype != HFC_TYPE_XHFC)
1304 HFC_outb_nodebug(hc, A_CONF, 0);
1305 hc->slot_owner[i] = -1;
1306 }
1307
1308 /* set clock speed */
1309 if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1310 if (debug & DEBUG_HFCMULTI_INIT)
1311 printk(KERN_DEBUG
1312 "%s: setting double clock\n", __func__);
1313 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1314 }
1315
1316 if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1317 HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1318
1319 /* B410P GPIO */
1320 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1321 printk(KERN_NOTICE "Setting GPIOs\n");
1322 HFC_outb(hc, R_GPIO_SEL, 0x30);
1323 HFC_outb(hc, R_GPIO_EN1, 0x3);
1324 udelay(1000);
1325 printk(KERN_NOTICE "calling vpm_init\n");
1326 vpm_init(hc);
1327 }
1328
1329 /* check if R_F0_CNT counts (8 kHz frame count) */
1330 val = HFC_inb(hc, R_F0_CNTL);
1331 val += HFC_inb(hc, R_F0_CNTH) << 8;
1332 if (debug & DEBUG_HFCMULTI_INIT)
1333 printk(KERN_DEBUG
1334 "HFC_multi F0_CNT %ld after reset\n", val);
1335 spin_unlock_irqrestore(&hc->lock, flags);
1336 set_current_state(TASK_UNINTERRUPTIBLE);
1337 schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */
1338 spin_lock_irqsave(&hc->lock, flags);
1339 val2 = HFC_inb(hc, R_F0_CNTL);
1340 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1341 if (debug & DEBUG_HFCMULTI_INIT)
1342 printk(KERN_DEBUG
1343 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1344 val2);
1345 if (val2 >= val + 8) { /* 1 ms */
1346 /* it counts, so we keep the pcm mode */
1347 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1348 printk(KERN_INFO "controller is PCM bus MASTER\n");
1349 else
1350 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1351 printk(KERN_INFO "controller is PCM bus SLAVE\n");
1352 else {
1353 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1354 printk(KERN_INFO "controller is PCM bus SLAVE "
1355 "(auto detected)\n");
1356 }
1357 } else {
1358 /* does not count */
1359 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1360 controller_fail:
1361 printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1362 "pulse. Seems that controller fails.\n");
1363 err = -EIO;
1364 goto out;
1365 }
1366 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1367 printk(KERN_INFO "controller is PCM bus SLAVE "
1368 "(ignoring missing PCM clock)\n");
1369 } else {
1370 /* only one pcm master */
1371 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1372 && plxsd_master) {
1373 printk(KERN_ERR "HFC_multi ERROR, no clock "
1374 "on another Speech Design card found. "
1375 "Please be sure to connect PCM cable.\n");
1376 err = -EIO;
1377 goto out;
1378 }
1379 /* retry with master clock */
1380 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1381 spin_lock_irqsave(&plx_lock, plx_flags);
1382 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1383 pv = readl(plx_acc_32);
1384 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1385 pv |= PLX_SYNC_O_EN;
1386 writel(pv, plx_acc_32);
1387 spin_unlock_irqrestore(&plx_lock, plx_flags);
1388 if (debug & DEBUG_HFCMULTI_INIT)
1389 printk(KERN_DEBUG "%s: master: "
1390 "PLX_GPIO=%x\n", __func__, pv);
1391 }
1392 hc->hw.r_pcm_md0 |= V_PCM_MD;
1393 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1394 spin_unlock_irqrestore(&hc->lock, flags);
1395 set_current_state(TASK_UNINTERRUPTIBLE);
1396 schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */
1397 spin_lock_irqsave(&hc->lock, flags);
1398 val2 = HFC_inb(hc, R_F0_CNTL);
1399 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1400 if (debug & DEBUG_HFCMULTI_INIT)
1401 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1402 "10 ms (2nd try)\n", val2);
1403 if (val2 >= val + 8) { /* 1 ms */
1404 test_and_set_bit(HFC_CHIP_PCM_MASTER,
1405 &hc->chip);
1406 printk(KERN_INFO "controller is PCM bus MASTER "
1407 "(auto detected)\n");
1408 } else
1409 goto controller_fail;
1410 }
1411 }
1412
1413 /* Release the DSP Reset */
1414 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1415 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1416 plxsd_master = 1;
1417 spin_lock_irqsave(&plx_lock, plx_flags);
1418 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1419 pv = readl(plx_acc_32);
1420 pv |= PLX_DSP_RES_N;
1421 writel(pv, plx_acc_32);
1422 spin_unlock_irqrestore(&plx_lock, plx_flags);
1423 if (debug & DEBUG_HFCMULTI_INIT)
1424 printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
1425 __func__, pv);
1426 }
1427
1428 /* pcm id */
1429 if (hc->pcm)
1430 printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1431 hc->pcm);
1432 else {
1433 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1434 || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1435 PCM_cnt++; /* SD has proprietary bridging */
1436 }
1437 hc->pcm = PCM_cnt;
1438 printk(KERN_INFO "controller has PCM BUS ID %d "
1439 "(auto selected)\n", hc->pcm);
1440 }
1441
1442 /* set up timer */
1443 HFC_outb(hc, R_TI_WD, poll_timer);
1444 hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1445
1446 /* set E1 state machine IRQ */
1447 if (hc->ctype == HFC_TYPE_E1)
1448 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1449
1450 /* set DTMF detection */
1451 if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1452 if (debug & DEBUG_HFCMULTI_INIT)
1453 printk(KERN_DEBUG "%s: enabling DTMF detection "
1454 "for all B-channel\n", __func__);
1455 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1456 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1457 hc->hw.r_dtmf |= V_ULAW_SEL;
1458 HFC_outb(hc, R_DTMF_N, 102 - 1);
1459 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1460 }
1461
1462 /* conference engine */
1463 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1464 r_conf_en = V_CONF_EN | V_ULAW;
1465 else
1466 r_conf_en = V_CONF_EN;
1467 if (hc->ctype != HFC_TYPE_XHFC)
1468 HFC_outb(hc, R_CONF_EN, r_conf_en);
1469
1470 /* setting leds */
1471 switch (hc->leds) {
1472 case 1: /* HFC-E1 OEM */
1473 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1474 HFC_outb(hc, R_GPIO_SEL, 0x32);
1475 else
1476 HFC_outb(hc, R_GPIO_SEL, 0x30);
1477
1478 HFC_outb(hc, R_GPIO_EN1, 0x0f);
1479 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1480
1481 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1482 break;
1483
1484 case 2: /* HFC-4S OEM */
1485 case 3:
1486 HFC_outb(hc, R_GPIO_SEL, 0xf0);
1487 HFC_outb(hc, R_GPIO_EN1, 0xff);
1488 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1489 break;
1490 }
1491
1492 if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1493 hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1494 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1495 }
1496
1497 /* set master clock */
1498 if (hc->masterclk >= 0) {
1499 if (debug & DEBUG_HFCMULTI_INIT)
1500 printk(KERN_DEBUG "%s: setting ST master clock "
1501 "to port %d (0..%d)\n",
1502 __func__, hc->masterclk, hc->ports - 1);
1503 hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
1504 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1505 }
1506
1507
1508
1509 /* setting misc irq */
1510 HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1511 if (debug & DEBUG_HFCMULTI_INIT)
1512 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1513 hc->hw.r_irqmsk_misc);
1514
1515 /* RAM access test */
1516 HFC_outb(hc, R_RAM_ADDR0, 0);
1517 HFC_outb(hc, R_RAM_ADDR1, 0);
1518 HFC_outb(hc, R_RAM_ADDR2, 0);
1519 for (i = 0; i < 256; i++) {
1520 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1521 HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff));
1522 }
1523 for (i = 0; i < 256; i++) {
1524 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1525 HFC_inb_nodebug(hc, R_RAM_DATA);
1526 rval = HFC_inb_nodebug(hc, R_INT_DATA);
1527 if (rval != ((i * 3) & 0xff)) {
1528 printk(KERN_DEBUG
1529 "addr:%x val:%x should:%x\n", i, rval,
1530 (i * 3) & 0xff);
1531 err++;
1532 }
1533 }
1534 if (err) {
1535 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1536 err = -EIO;
1537 goto out;
1538 }
1539
1540 if (debug & DEBUG_HFCMULTI_INIT)
1541 printk(KERN_DEBUG "%s: done\n", __func__);
1542 out:
1543 spin_unlock_irqrestore(&hc->lock, flags);
1544 return err;
1545 }
1546
1547
1548 /*
1549 * control the watchdog
1550 */
1551 static void
hfcmulti_watchdog(struct hfc_multi * hc)1552 hfcmulti_watchdog(struct hfc_multi *hc)
1553 {
1554 hc->wdcount++;
1555
1556 if (hc->wdcount > 10) {
1557 hc->wdcount = 0;
1558 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1559 V_GPIO_OUT3 : V_GPIO_OUT2;
1560
1561 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1562 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1563 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1564 }
1565 }
1566
1567
1568
1569 /*
1570 * output leds
1571 */
1572 static void
hfcmulti_leds(struct hfc_multi * hc)1573 hfcmulti_leds(struct hfc_multi *hc)
1574 {
1575 unsigned long lled;
1576 unsigned long leddw;
1577 int i, state, active, leds;
1578 struct dchannel *dch;
1579 int led[4];
1580
1581 switch (hc->leds) {
1582 case 1: /* HFC-E1 OEM */
1583 /* 2 red steady: LOS
1584 * 1 red steady: L1 not active
1585 * 2 green steady: L1 active
1586 * 1st green flashing: activity on TX
1587 * 2nd green flashing: activity on RX
1588 */
1589 led[0] = 0;
1590 led[1] = 0;
1591 led[2] = 0;
1592 led[3] = 0;
1593 dch = hc->chan[hc->dnum[0]].dch;
1594 if (dch) {
1595 if (hc->chan[hc->dnum[0]].los)
1596 led[1] = 1;
1597 if (hc->e1_state != 1) {
1598 led[0] = 1;
1599 hc->flash[2] = 0;
1600 hc->flash[3] = 0;
1601 } else {
1602 led[2] = 1;
1603 led[3] = 1;
1604 if (!hc->flash[2] && hc->activity_tx)
1605 hc->flash[2] = poll;
1606 if (!hc->flash[3] && hc->activity_rx)
1607 hc->flash[3] = poll;
1608 if (hc->flash[2] && hc->flash[2] < 1024)
1609 led[2] = 0;
1610 if (hc->flash[3] && hc->flash[3] < 1024)
1611 led[3] = 0;
1612 if (hc->flash[2] >= 2048)
1613 hc->flash[2] = 0;
1614 if (hc->flash[3] >= 2048)
1615 hc->flash[3] = 0;
1616 if (hc->flash[2])
1617 hc->flash[2] += poll;
1618 if (hc->flash[3])
1619 hc->flash[3] += poll;
1620 }
1621 }
1622 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1623 /* leds are inverted */
1624 if (leds != (int)hc->ledstate) {
1625 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1626 hc->ledstate = leds;
1627 }
1628 break;
1629
1630 case 2: /* HFC-4S OEM */
1631 /* red steady: PH_DEACTIVATE
1632 * green steady: PH_ACTIVATE
1633 * green flashing: activity on TX
1634 */
1635 for (i = 0; i < 4; i++) {
1636 state = 0;
1637 active = -1;
1638 dch = hc->chan[(i << 2) | 2].dch;
1639 if (dch) {
1640 state = dch->state;
1641 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1642 active = 3;
1643 else
1644 active = 7;
1645 }
1646 if (state) {
1647 if (state == active) {
1648 led[i] = 1; /* led green */
1649 hc->activity_tx |= hc->activity_rx;
1650 if (!hc->flash[i] &&
1651 (hc->activity_tx & (1 << i)))
1652 hc->flash[i] = poll;
1653 if (hc->flash[i] && hc->flash[i] < 1024)
1654 led[i] = 0; /* led off */
1655 if (hc->flash[i] >= 2048)
1656 hc->flash[i] = 0;
1657 if (hc->flash[i])
1658 hc->flash[i] += poll;
1659 } else {
1660 led[i] = 2; /* led red */
1661 hc->flash[i] = 0;
1662 }
1663 } else
1664 led[i] = 0; /* led off */
1665 }
1666 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1667 leds = 0;
1668 for (i = 0; i < 4; i++) {
1669 if (led[i] == 1) {
1670 /*green*/
1671 leds |= (0x2 << (i * 2));
1672 } else if (led[i] == 2) {
1673 /*red*/
1674 leds |= (0x1 << (i * 2));
1675 }
1676 }
1677 if (leds != (int)hc->ledstate) {
1678 vpm_out(hc, 0, 0x1a8 + 3, leds);
1679 hc->ledstate = leds;
1680 }
1681 } else {
1682 leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1683 ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1684 ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1685 ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1686 if (leds != (int)hc->ledstate) {
1687 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1688 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1689 hc->ledstate = leds;
1690 }
1691 }
1692 break;
1693
1694 case 3: /* HFC 1S/2S Beronet */
1695 /* red steady: PH_DEACTIVATE
1696 * green steady: PH_ACTIVATE
1697 * green flashing: activity on TX
1698 */
1699 for (i = 0; i < 2; i++) {
1700 state = 0;
1701 active = -1;
1702 dch = hc->chan[(i << 2) | 2].dch;
1703 if (dch) {
1704 state = dch->state;
1705 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1706 active = 3;
1707 else
1708 active = 7;
1709 }
1710 if (state) {
1711 if (state == active) {
1712 led[i] = 1; /* led green */
1713 hc->activity_tx |= hc->activity_rx;
1714 if (!hc->flash[i] &&
1715 (hc->activity_tx & (1 << i)))
1716 hc->flash[i] = poll;
1717 if (hc->flash[i] < 1024)
1718 led[i] = 0; /* led off */
1719 if (hc->flash[i] >= 2048)
1720 hc->flash[i] = 0;
1721 if (hc->flash[i])
1722 hc->flash[i] += poll;
1723 } else {
1724 led[i] = 2; /* led red */
1725 hc->flash[i] = 0;
1726 }
1727 } else
1728 led[i] = 0; /* led off */
1729 }
1730 leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2)
1731 | ((led[1]&1) << 3);
1732 if (leds != (int)hc->ledstate) {
1733 HFC_outb_nodebug(hc, R_GPIO_EN1,
1734 ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1735 HFC_outb_nodebug(hc, R_GPIO_OUT1,
1736 ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1737 hc->ledstate = leds;
1738 }
1739 break;
1740 case 8: /* HFC 8S+ Beronet */
1741 /* off: PH_DEACTIVATE
1742 * steady: PH_ACTIVATE
1743 * flashing: activity on TX
1744 */
1745 lled = 0xff; /* leds off */
1746 for (i = 0; i < 8; i++) {
1747 state = 0;
1748 active = -1;
1749 dch = hc->chan[(i << 2) | 2].dch;
1750 if (dch) {
1751 state = dch->state;
1752 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1753 active = 3;
1754 else
1755 active = 7;
1756 }
1757 if (state) {
1758 if (state == active) {
1759 lled &= ~(1 << i); /* led on */
1760 hc->activity_tx |= hc->activity_rx;
1761 if (!hc->flash[i] &&
1762 (hc->activity_tx & (1 << i)))
1763 hc->flash[i] = poll;
1764 if (hc->flash[i] < 1024)
1765 lled |= 1 << i; /* led off */
1766 if (hc->flash[i] >= 2048)
1767 hc->flash[i] = 0;
1768 if (hc->flash[i])
1769 hc->flash[i] += poll;
1770 } else
1771 hc->flash[i] = 0;
1772 }
1773 }
1774 leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1775 if (leddw != hc->ledstate) {
1776 /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1777 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1778 /* was _io before */
1779 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1780 outw(0x4000, hc->pci_iobase + 4);
1781 outl(leddw, hc->pci_iobase);
1782 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1783 hc->ledstate = leddw;
1784 }
1785 break;
1786 }
1787 hc->activity_tx = 0;
1788 hc->activity_rx = 0;
1789 }
1790 /*
1791 * read dtmf coefficients
1792 */
1793
1794 static void
hfcmulti_dtmf(struct hfc_multi * hc)1795 hfcmulti_dtmf(struct hfc_multi *hc)
1796 {
1797 s32 *coeff;
1798 u_int mantissa;
1799 int co, ch;
1800 struct bchannel *bch = NULL;
1801 u8 exponent;
1802 int dtmf = 0;
1803 int addr;
1804 u16 w_float;
1805 struct sk_buff *skb;
1806 struct mISDNhead *hh;
1807
1808 if (debug & DEBUG_HFCMULTI_DTMF)
1809 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1810 for (ch = 0; ch <= 31; ch++) {
1811 /* only process enabled B-channels */
1812 bch = hc->chan[ch].bch;
1813 if (!bch)
1814 continue;
1815 if (!hc->created[hc->chan[ch].port])
1816 continue;
1817 if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1818 continue;
1819 if (debug & DEBUG_HFCMULTI_DTMF)
1820 printk(KERN_DEBUG "%s: dtmf channel %d:",
1821 __func__, ch);
1822 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1823 dtmf = 1;
1824 for (co = 0; co < 8; co++) {
1825 /* read W(n-1) coefficient */
1826 addr = hc->DTMFbase + ((co << 7) | (ch << 2));
1827 HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1828 HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8);
1829 HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16)
1830 | V_ADDR_INC);
1831 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1832 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1833 if (debug & DEBUG_HFCMULTI_DTMF)
1834 printk(" %04x", w_float);
1835
1836 /* decode float (see chip doc) */
1837 mantissa = w_float & 0x0fff;
1838 if (w_float & 0x8000)
1839 mantissa |= 0xfffff000;
1840 exponent = (w_float >> 12) & 0x7;
1841 if (exponent) {
1842 mantissa ^= 0x1000;
1843 mantissa <<= (exponent - 1);
1844 }
1845
1846 /* store coefficient */
1847 coeff[co << 1] = mantissa;
1848
1849 /* read W(n) coefficient */
1850 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1851 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1852 if (debug & DEBUG_HFCMULTI_DTMF)
1853 printk(" %04x", w_float);
1854
1855 /* decode float (see chip doc) */
1856 mantissa = w_float & 0x0fff;
1857 if (w_float & 0x8000)
1858 mantissa |= 0xfffff000;
1859 exponent = (w_float >> 12) & 0x7;
1860 if (exponent) {
1861 mantissa ^= 0x1000;
1862 mantissa <<= (exponent - 1);
1863 }
1864
1865 /* store coefficient */
1866 coeff[(co << 1) | 1] = mantissa;
1867 }
1868 if (debug & DEBUG_HFCMULTI_DTMF)
1869 printk(" DTMF ready %08x %08x %08x %08x "
1870 "%08x %08x %08x %08x\n",
1871 coeff[0], coeff[1], coeff[2], coeff[3],
1872 coeff[4], coeff[5], coeff[6], coeff[7]);
1873 hc->chan[ch].coeff_count++;
1874 if (hc->chan[ch].coeff_count == 8) {
1875 hc->chan[ch].coeff_count = 0;
1876 skb = mI_alloc_skb(512, GFP_ATOMIC);
1877 if (!skb) {
1878 printk(KERN_DEBUG "%s: No memory for skb\n",
1879 __func__);
1880 continue;
1881 }
1882 hh = mISDN_HEAD_P(skb);
1883 hh->prim = PH_CONTROL_IND;
1884 hh->id = DTMF_HFC_COEF;
1885 skb_put_data(skb, hc->chan[ch].coeff, 512);
1886 recv_Bchannel_skb(bch, skb);
1887 }
1888 }
1889
1890 /* restart DTMF processing */
1891 hc->dtmf = dtmf;
1892 if (dtmf)
1893 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1894 }
1895
1896
1897 /*
1898 * fill fifo as much as possible
1899 */
1900
1901 static void
hfcmulti_tx(struct hfc_multi * hc,int ch)1902 hfcmulti_tx(struct hfc_multi *hc, int ch)
1903 {
1904 int i, ii, temp, tmp_len, len = 0;
1905 int Zspace, z1, z2; /* must be int for calculation */
1906 int Fspace, f1, f2;
1907 u_char *d;
1908 int *txpending, slot_tx;
1909 struct bchannel *bch;
1910 struct dchannel *dch;
1911 struct sk_buff **sp = NULL;
1912 int *idxp;
1913
1914 bch = hc->chan[ch].bch;
1915 dch = hc->chan[ch].dch;
1916 if ((!dch) && (!bch))
1917 return;
1918
1919 txpending = &hc->chan[ch].txpending;
1920 slot_tx = hc->chan[ch].slot_tx;
1921 if (dch) {
1922 if (!test_bit(FLG_ACTIVE, &dch->Flags))
1923 return;
1924 sp = &dch->tx_skb;
1925 idxp = &dch->tx_idx;
1926 } else {
1927 if (!test_bit(FLG_ACTIVE, &bch->Flags))
1928 return;
1929 sp = &bch->tx_skb;
1930 idxp = &bch->tx_idx;
1931 }
1932 if (*sp)
1933 len = (*sp)->len;
1934
1935 if ((!len) && *txpending != 1)
1936 return; /* no data */
1937
1938 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1939 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1940 (hc->chan[ch].slot_rx < 0) &&
1941 (hc->chan[ch].slot_tx < 0))
1942 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1943 else
1944 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1945 HFC_wait_nodebug(hc);
1946
1947 if (*txpending == 2) {
1948 /* reset fifo */
1949 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1950 HFC_wait_nodebug(hc);
1951 HFC_outb(hc, A_SUBCH_CFG, 0);
1952 *txpending = 1;
1953 }
1954 next_frame:
1955 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1956 f1 = HFC_inb_nodebug(hc, A_F1);
1957 f2 = HFC_inb_nodebug(hc, A_F2);
1958 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1959 if (debug & DEBUG_HFCMULTI_FIFO)
1960 printk(KERN_DEBUG
1961 "%s(card %d): reread f2 because %d!=%d\n",
1962 __func__, hc->id + 1, temp, f2);
1963 f2 = temp; /* repeat until F2 is equal */
1964 }
1965 Fspace = f2 - f1 - 1;
1966 if (Fspace < 0)
1967 Fspace += hc->Flen;
1968 /*
1969 * Old FIFO handling doesn't give us the current Z2 read
1970 * pointer, so we cannot send the next frame before the fifo
1971 * is empty. It makes no difference except for a slightly
1972 * lower performance.
1973 */
1974 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1975 if (f1 != f2)
1976 Fspace = 0;
1977 else
1978 Fspace = 1;
1979 }
1980 /* one frame only for ST D-channels, to allow resending */
1981 if (hc->ctype != HFC_TYPE_E1 && dch) {
1982 if (f1 != f2)
1983 Fspace = 0;
1984 }
1985 /* F-counter full condition */
1986 if (Fspace == 0)
1987 return;
1988 }
1989 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1990 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1991 while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
1992 if (debug & DEBUG_HFCMULTI_FIFO)
1993 printk(KERN_DEBUG "%s(card %d): reread z2 because "
1994 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
1995 z2 = temp; /* repeat unti Z2 is equal */
1996 }
1997 hc->chan[ch].Zfill = z1 - z2;
1998 if (hc->chan[ch].Zfill < 0)
1999 hc->chan[ch].Zfill += hc->Zlen;
2000 Zspace = z2 - z1;
2001 if (Zspace <= 0)
2002 Zspace += hc->Zlen;
2003 Zspace -= 4; /* keep not too full, so pointers will not overrun */
2004 /* fill transparent data only to maxinum transparent load (minus 4) */
2005 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2006 Zspace = Zspace - hc->Zlen + hc->max_trans;
2007 if (Zspace <= 0) /* no space of 4 bytes */
2008 return;
2009
2010 /* if no data */
2011 if (!len) {
2012 if (z1 == z2) { /* empty */
2013 /* if done with FIFO audio data during PCM connection */
2014 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2015 *txpending && slot_tx >= 0) {
2016 if (debug & DEBUG_HFCMULTI_MODE)
2017 printk(KERN_DEBUG
2018 "%s: reconnecting PCM due to no "
2019 "more FIFO data: channel %d "
2020 "slot_tx %d\n",
2021 __func__, ch, slot_tx);
2022 /* connect slot */
2023 if (hc->ctype == HFC_TYPE_XHFC)
2024 HFC_outb(hc, A_CON_HDLC, 0xc0
2025 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2026 /* Enable FIFO, no interrupt */
2027 else
2028 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2029 V_HDLC_TRP | V_IFF);
2030 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2031 HFC_wait_nodebug(hc);
2032 if (hc->ctype == HFC_TYPE_XHFC)
2033 HFC_outb(hc, A_CON_HDLC, 0xc0
2034 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2035 /* Enable FIFO, no interrupt */
2036 else
2037 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2038 V_HDLC_TRP | V_IFF);
2039 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2040 HFC_wait_nodebug(hc);
2041 }
2042 *txpending = 0;
2043 }
2044 return; /* no data */
2045 }
2046
2047 /* "fill fifo if empty" feature */
2048 if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2049 && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2050 if (debug & DEBUG_HFCMULTI_FILL)
2051 printk(KERN_DEBUG "%s: buffer empty, so we have "
2052 "underrun\n", __func__);
2053 /* fill buffer, to prevent future underrun */
2054 hc->write_fifo(hc, hc->silence_data, poll >> 1);
2055 Zspace -= (poll >> 1);
2056 }
2057
2058 /* if audio data and connected slot */
2059 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2060 && slot_tx >= 0) {
2061 if (debug & DEBUG_HFCMULTI_MODE)
2062 printk(KERN_DEBUG "%s: disconnecting PCM due to "
2063 "FIFO data: channel %d slot_tx %d\n",
2064 __func__, ch, slot_tx);
2065 /* disconnect slot */
2066 if (hc->ctype == HFC_TYPE_XHFC)
2067 HFC_outb(hc, A_CON_HDLC, 0x80
2068 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2069 /* Enable FIFO, no interrupt */
2070 else
2071 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2072 V_HDLC_TRP | V_IFF);
2073 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2074 HFC_wait_nodebug(hc);
2075 if (hc->ctype == HFC_TYPE_XHFC)
2076 HFC_outb(hc, A_CON_HDLC, 0x80
2077 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2078 /* Enable FIFO, no interrupt */
2079 else
2080 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2081 V_HDLC_TRP | V_IFF);
2082 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2083 HFC_wait_nodebug(hc);
2084 }
2085 *txpending = 1;
2086
2087 /* show activity */
2088 if (dch)
2089 hc->activity_tx |= 1 << hc->chan[ch].port;
2090
2091 /* fill fifo to what we have left */
2092 ii = len;
2093 if (dch || test_bit(FLG_HDLC, &bch->Flags))
2094 temp = 1;
2095 else
2096 temp = 0;
2097 i = *idxp;
2098 d = (*sp)->data + i;
2099 if (ii - i > Zspace)
2100 ii = Zspace + i;
2101 if (debug & DEBUG_HFCMULTI_FIFO)
2102 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2103 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2104 __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2105 temp ? "HDLC" : "TRANS");
2106
2107 /* Have to prep the audio data */
2108 hc->write_fifo(hc, d, ii - i);
2109 hc->chan[ch].Zfill += ii - i;
2110 *idxp = ii;
2111
2112 /* if not all data has been written */
2113 if (ii != len) {
2114 /* NOTE: fifo is started by the calling function */
2115 return;
2116 }
2117
2118 /* if all data has been written, terminate frame */
2119 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2120 /* increment f-counter */
2121 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2122 HFC_wait_nodebug(hc);
2123 }
2124
2125 tmp_len = (*sp)->len;
2126 dev_kfree_skb(*sp);
2127 /* check for next frame */
2128 if (bch && get_next_bframe(bch)) {
2129 len = tmp_len;
2130 goto next_frame;
2131 }
2132 if (dch && get_next_dframe(dch)) {
2133 len = tmp_len;
2134 goto next_frame;
2135 }
2136
2137 /*
2138 * now we have no more data, so in case of transparent,
2139 * we set the last byte in fifo to 'silence' in case we will get
2140 * no more data at all. this prevents sending an undefined value.
2141 */
2142 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2143 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2144 }
2145
2146
2147 /* NOTE: only called if E1 card is in active state */
2148 static void
hfcmulti_rx(struct hfc_multi * hc,int ch)2149 hfcmulti_rx(struct hfc_multi *hc, int ch)
2150 {
2151 int temp;
2152 int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2153 int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2154 int again = 0;
2155 struct bchannel *bch;
2156 struct dchannel *dch = NULL;
2157 struct sk_buff *skb, **sp = NULL;
2158 int maxlen;
2159
2160 bch = hc->chan[ch].bch;
2161 if (bch) {
2162 if (!test_bit(FLG_ACTIVE, &bch->Flags))
2163 return;
2164 } else if (hc->chan[ch].dch) {
2165 dch = hc->chan[ch].dch;
2166 if (!test_bit(FLG_ACTIVE, &dch->Flags))
2167 return;
2168 } else {
2169 return;
2170 }
2171 next_frame:
2172 /* on first AND before getting next valid frame, R_FIFO must be written
2173 to. */
2174 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2175 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2176 (hc->chan[ch].slot_rx < 0) &&
2177 (hc->chan[ch].slot_tx < 0))
2178 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2179 else
2180 HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1);
2181 HFC_wait_nodebug(hc);
2182
2183 /* ignore if rx is off BUT change fifo (above) to start pending TX */
2184 if (hc->chan[ch].rx_off) {
2185 if (bch)
2186 bch->dropcnt += poll; /* not exact but fair enough */
2187 return;
2188 }
2189
2190 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2191 f1 = HFC_inb_nodebug(hc, A_F1);
2192 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2193 if (debug & DEBUG_HFCMULTI_FIFO)
2194 printk(KERN_DEBUG
2195 "%s(card %d): reread f1 because %d!=%d\n",
2196 __func__, hc->id + 1, temp, f1);
2197 f1 = temp; /* repeat until F1 is equal */
2198 }
2199 f2 = HFC_inb_nodebug(hc, A_F2);
2200 }
2201 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2202 while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2203 if (debug & DEBUG_HFCMULTI_FIFO)
2204 printk(KERN_DEBUG "%s(card %d): reread z2 because "
2205 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2206 z1 = temp; /* repeat until Z1 is equal */
2207 }
2208 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2209 Zsize = z1 - z2;
2210 if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2211 /* complete hdlc frame */
2212 Zsize++;
2213 if (Zsize < 0)
2214 Zsize += hc->Zlen;
2215 /* if buffer is empty */
2216 if (Zsize <= 0)
2217 return;
2218
2219 if (bch) {
2220 maxlen = bchannel_get_rxbuf(bch, Zsize);
2221 if (maxlen < 0) {
2222 pr_warn("card%d.B%d: No bufferspace for %d bytes\n",
2223 hc->id + 1, bch->nr, Zsize);
2224 return;
2225 }
2226 sp = &bch->rx_skb;
2227 maxlen = bch->maxlen;
2228 } else { /* Dchannel */
2229 sp = &dch->rx_skb;
2230 maxlen = dch->maxlen + 3;
2231 if (*sp == NULL) {
2232 *sp = mI_alloc_skb(maxlen, GFP_ATOMIC);
2233 if (*sp == NULL) {
2234 pr_warn("card%d: No mem for dch rx_skb\n",
2235 hc->id + 1);
2236 return;
2237 }
2238 }
2239 }
2240 /* show activity */
2241 if (dch)
2242 hc->activity_rx |= 1 << hc->chan[ch].port;
2243
2244 /* empty fifo with what we have */
2245 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2246 if (debug & DEBUG_HFCMULTI_FIFO)
2247 printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2248 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2249 "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2250 Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2251 f1, f2, Zsize + (*sp)->len, again);
2252 /* HDLC */
2253 if ((Zsize + (*sp)->len) > maxlen) {
2254 if (debug & DEBUG_HFCMULTI_FIFO)
2255 printk(KERN_DEBUG
2256 "%s(card %d): hdlc-frame too large.\n",
2257 __func__, hc->id + 1);
2258 skb_trim(*sp, 0);
2259 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2260 HFC_wait_nodebug(hc);
2261 return;
2262 }
2263
2264 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2265
2266 if (f1 != f2) {
2267 /* increment Z2,F2-counter */
2268 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2269 HFC_wait_nodebug(hc);
2270 /* check size */
2271 if ((*sp)->len < 4) {
2272 if (debug & DEBUG_HFCMULTI_FIFO)
2273 printk(KERN_DEBUG
2274 "%s(card %d): Frame below minimum "
2275 "size\n", __func__, hc->id + 1);
2276 skb_trim(*sp, 0);
2277 goto next_frame;
2278 }
2279 /* there is at least one complete frame, check crc */
2280 if ((*sp)->data[(*sp)->len - 1]) {
2281 if (debug & DEBUG_HFCMULTI_CRC)
2282 printk(KERN_DEBUG
2283 "%s: CRC-error\n", __func__);
2284 skb_trim(*sp, 0);
2285 goto next_frame;
2286 }
2287 skb_trim(*sp, (*sp)->len - 3);
2288 if ((*sp)->len < MISDN_COPY_SIZE) {
2289 skb = *sp;
2290 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2291 if (*sp) {
2292 skb_put_data(*sp, skb->data, skb->len);
2293 skb_trim(skb, 0);
2294 } else {
2295 printk(KERN_DEBUG "%s: No mem\n",
2296 __func__);
2297 *sp = skb;
2298 skb = NULL;
2299 }
2300 } else {
2301 skb = NULL;
2302 }
2303 if (debug & DEBUG_HFCMULTI_FIFO) {
2304 printk(KERN_DEBUG "%s(card %d):",
2305 __func__, hc->id + 1);
2306 temp = 0;
2307 while (temp < (*sp)->len)
2308 printk(" %02x", (*sp)->data[temp++]);
2309 printk("\n");
2310 }
2311 if (dch)
2312 recv_Dchannel(dch);
2313 else
2314 recv_Bchannel(bch, MISDN_ID_ANY, false);
2315 *sp = skb;
2316 again++;
2317 goto next_frame;
2318 }
2319 /* there is an incomplete frame */
2320 } else {
2321 /* transparent */
2322 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2323 if (debug & DEBUG_HFCMULTI_FIFO)
2324 printk(KERN_DEBUG
2325 "%s(card %d): fifo(%d) reading %d bytes "
2326 "(z1=%04x, z2=%04x) TRANS\n",
2327 __func__, hc->id + 1, ch, Zsize, z1, z2);
2328 /* only bch is transparent */
2329 recv_Bchannel(bch, hc->chan[ch].Zfill, false);
2330 }
2331 }
2332
2333
2334 /*
2335 * Interrupt handler
2336 */
2337 static void
signal_state_up(struct dchannel * dch,int info,char * msg)2338 signal_state_up(struct dchannel *dch, int info, char *msg)
2339 {
2340 struct sk_buff *skb;
2341 int id, data = info;
2342
2343 if (debug & DEBUG_HFCMULTI_STATE)
2344 printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2345
2346 id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2347
2348 skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2349 GFP_ATOMIC);
2350 if (!skb)
2351 return;
2352 recv_Dchannel_skb(dch, skb);
2353 }
2354
2355 static inline void
handle_timer_irq(struct hfc_multi * hc)2356 handle_timer_irq(struct hfc_multi *hc)
2357 {
2358 int ch, temp;
2359 struct dchannel *dch;
2360 u_long flags;
2361
2362 /* process queued resync jobs */
2363 if (hc->e1_resync) {
2364 /* lock, so e1_resync gets not changed */
2365 spin_lock_irqsave(&HFClock, flags);
2366 if (hc->e1_resync & 1) {
2367 if (debug & DEBUG_HFCMULTI_PLXSD)
2368 printk(KERN_DEBUG "Enable SYNC_I\n");
2369 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2370 /* disable JATT, if RX_SYNC is set */
2371 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2372 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2373 }
2374 if (hc->e1_resync & 2) {
2375 if (debug & DEBUG_HFCMULTI_PLXSD)
2376 printk(KERN_DEBUG "Enable jatt PLL\n");
2377 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2378 }
2379 if (hc->e1_resync & 4) {
2380 if (debug & DEBUG_HFCMULTI_PLXSD)
2381 printk(KERN_DEBUG
2382 "Enable QUARTZ for HFC-E1\n");
2383 /* set jatt to quartz */
2384 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2385 | V_JATT_OFF);
2386 /* switch to JATT, in case it is not already */
2387 HFC_outb(hc, R_SYNC_OUT, 0);
2388 }
2389 hc->e1_resync = 0;
2390 spin_unlock_irqrestore(&HFClock, flags);
2391 }
2392
2393 if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
2394 for (ch = 0; ch <= 31; ch++) {
2395 if (hc->created[hc->chan[ch].port]) {
2396 hfcmulti_tx(hc, ch);
2397 /* fifo is started when switching to rx-fifo */
2398 hfcmulti_rx(hc, ch);
2399 if (hc->chan[ch].dch &&
2400 hc->chan[ch].nt_timer > -1) {
2401 dch = hc->chan[ch].dch;
2402 if (!(--hc->chan[ch].nt_timer)) {
2403 schedule_event(dch,
2404 FLG_PHCHANGE);
2405 if (debug &
2406 DEBUG_HFCMULTI_STATE)
2407 printk(KERN_DEBUG
2408 "%s: nt_timer at "
2409 "state %x\n",
2410 __func__,
2411 dch->state);
2412 }
2413 }
2414 }
2415 }
2416 if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
2417 dch = hc->chan[hc->dnum[0]].dch;
2418 /* LOS */
2419 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2420 hc->chan[hc->dnum[0]].los = temp;
2421 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
2422 if (!temp && hc->chan[hc->dnum[0]].los)
2423 signal_state_up(dch, L1_SIGNAL_LOS_ON,
2424 "LOS detected");
2425 if (temp && !hc->chan[hc->dnum[0]].los)
2426 signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2427 "LOS gone");
2428 }
2429 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) {
2430 /* AIS */
2431 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2432 if (!temp && hc->chan[hc->dnum[0]].ais)
2433 signal_state_up(dch, L1_SIGNAL_AIS_ON,
2434 "AIS detected");
2435 if (temp && !hc->chan[hc->dnum[0]].ais)
2436 signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2437 "AIS gone");
2438 hc->chan[hc->dnum[0]].ais = temp;
2439 }
2440 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) {
2441 /* SLIP */
2442 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2443 if (!temp && hc->chan[hc->dnum[0]].slip_rx)
2444 signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2445 " bit SLIP detected RX");
2446 hc->chan[hc->dnum[0]].slip_rx = temp;
2447 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2448 if (!temp && hc->chan[hc->dnum[0]].slip_tx)
2449 signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2450 " bit SLIP detected TX");
2451 hc->chan[hc->dnum[0]].slip_tx = temp;
2452 }
2453 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) {
2454 /* RDI */
2455 temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2456 if (!temp && hc->chan[hc->dnum[0]].rdi)
2457 signal_state_up(dch, L1_SIGNAL_RDI_ON,
2458 "RDI detected");
2459 if (temp && !hc->chan[hc->dnum[0]].rdi)
2460 signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2461 "RDI gone");
2462 hc->chan[hc->dnum[0]].rdi = temp;
2463 }
2464 temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2465 switch (hc->chan[hc->dnum[0]].sync) {
2466 case 0:
2467 if ((temp & 0x60) == 0x60) {
2468 if (debug & DEBUG_HFCMULTI_SYNC)
2469 printk(KERN_DEBUG
2470 "%s: (id=%d) E1 now "
2471 "in clock sync\n",
2472 __func__, hc->id);
2473 HFC_outb(hc, R_RX_OFF,
2474 hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2475 HFC_outb(hc, R_TX_OFF,
2476 hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2477 hc->chan[hc->dnum[0]].sync = 1;
2478 goto check_framesync;
2479 }
2480 break;
2481 case 1:
2482 if ((temp & 0x60) != 0x60) {
2483 if (debug & DEBUG_HFCMULTI_SYNC)
2484 printk(KERN_DEBUG
2485 "%s: (id=%d) E1 "
2486 "lost clock sync\n",
2487 __func__, hc->id);
2488 hc->chan[hc->dnum[0]].sync = 0;
2489 break;
2490 }
2491 check_framesync:
2492 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2493 if (temp == 0x27) {
2494 if (debug & DEBUG_HFCMULTI_SYNC)
2495 printk(KERN_DEBUG
2496 "%s: (id=%d) E1 "
2497 "now in frame sync\n",
2498 __func__, hc->id);
2499 hc->chan[hc->dnum[0]].sync = 2;
2500 }
2501 break;
2502 case 2:
2503 if ((temp & 0x60) != 0x60) {
2504 if (debug & DEBUG_HFCMULTI_SYNC)
2505 printk(KERN_DEBUG
2506 "%s: (id=%d) E1 lost "
2507 "clock & frame sync\n",
2508 __func__, hc->id);
2509 hc->chan[hc->dnum[0]].sync = 0;
2510 break;
2511 }
2512 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2513 if (temp != 0x27) {
2514 if (debug & DEBUG_HFCMULTI_SYNC)
2515 printk(KERN_DEBUG
2516 "%s: (id=%d) E1 "
2517 "lost frame sync\n",
2518 __func__, hc->id);
2519 hc->chan[hc->dnum[0]].sync = 1;
2520 }
2521 break;
2522 }
2523 }
2524
2525 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2526 hfcmulti_watchdog(hc);
2527
2528 if (hc->leds)
2529 hfcmulti_leds(hc);
2530 }
2531
2532 static void
ph_state_irq(struct hfc_multi * hc,u_char r_irq_statech)2533 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2534 {
2535 struct dchannel *dch;
2536 int ch;
2537 int active;
2538 u_char st_status, temp;
2539
2540 /* state machine */
2541 for (ch = 0; ch <= 31; ch++) {
2542 if (hc->chan[ch].dch) {
2543 dch = hc->chan[ch].dch;
2544 if (r_irq_statech & 1) {
2545 HFC_outb_nodebug(hc, R_ST_SEL,
2546 hc->chan[ch].port);
2547 /* undocumented: delay after R_ST_SEL */
2548 udelay(1);
2549 /* undocumented: status changes during read */
2550 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2551 while (st_status != (temp =
2552 HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2553 if (debug & DEBUG_HFCMULTI_STATE)
2554 printk(KERN_DEBUG "%s: reread "
2555 "STATE because %d!=%d\n",
2556 __func__, temp,
2557 st_status);
2558 st_status = temp; /* repeat */
2559 }
2560
2561 /* Speech Design TE-sync indication */
2562 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2563 dch->dev.D.protocol == ISDN_P_TE_S0) {
2564 if (st_status & V_FR_SYNC_ST)
2565 hc->syncronized |=
2566 (1 << hc->chan[ch].port);
2567 else
2568 hc->syncronized &=
2569 ~(1 << hc->chan[ch].port);
2570 }
2571 dch->state = st_status & 0x0f;
2572 if (dch->dev.D.protocol == ISDN_P_NT_S0)
2573 active = 3;
2574 else
2575 active = 7;
2576 if (dch->state == active) {
2577 HFC_outb_nodebug(hc, R_FIFO,
2578 (ch << 1) | 1);
2579 HFC_wait_nodebug(hc);
2580 HFC_outb_nodebug(hc,
2581 R_INC_RES_FIFO, V_RES_F);
2582 HFC_wait_nodebug(hc);
2583 dch->tx_idx = 0;
2584 }
2585 schedule_event(dch, FLG_PHCHANGE);
2586 if (debug & DEBUG_HFCMULTI_STATE)
2587 printk(KERN_DEBUG
2588 "%s: S/T newstate %x port %d\n",
2589 __func__, dch->state,
2590 hc->chan[ch].port);
2591 }
2592 r_irq_statech >>= 1;
2593 }
2594 }
2595 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2596 plxsd_checksync(hc, 0);
2597 }
2598
2599 static void
fifo_irq(struct hfc_multi * hc,int block)2600 fifo_irq(struct hfc_multi *hc, int block)
2601 {
2602 int ch, j;
2603 struct dchannel *dch;
2604 struct bchannel *bch;
2605 u_char r_irq_fifo_bl;
2606
2607 r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2608 j = 0;
2609 while (j < 8) {
2610 ch = (block << 2) + (j >> 1);
2611 dch = hc->chan[ch].dch;
2612 bch = hc->chan[ch].bch;
2613 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2614 j += 2;
2615 continue;
2616 }
2617 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2618 test_bit(FLG_ACTIVE, &dch->Flags)) {
2619 hfcmulti_tx(hc, ch);
2620 /* start fifo */
2621 HFC_outb_nodebug(hc, R_FIFO, 0);
2622 HFC_wait_nodebug(hc);
2623 }
2624 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2625 test_bit(FLG_ACTIVE, &bch->Flags)) {
2626 hfcmulti_tx(hc, ch);
2627 /* start fifo */
2628 HFC_outb_nodebug(hc, R_FIFO, 0);
2629 HFC_wait_nodebug(hc);
2630 }
2631 j++;
2632 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2633 test_bit(FLG_ACTIVE, &dch->Flags)) {
2634 hfcmulti_rx(hc, ch);
2635 }
2636 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2637 test_bit(FLG_ACTIVE, &bch->Flags)) {
2638 hfcmulti_rx(hc, ch);
2639 }
2640 j++;
2641 }
2642 }
2643
2644 #ifdef IRQ_DEBUG
2645 int irqsem;
2646 #endif
2647 static irqreturn_t
hfcmulti_interrupt(int intno,void * dev_id)2648 hfcmulti_interrupt(int intno, void *dev_id)
2649 {
2650 #ifdef IRQCOUNT_DEBUG
2651 static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2652 iq5 = 0, iq6 = 0, iqcnt = 0;
2653 #endif
2654 struct hfc_multi *hc = dev_id;
2655 struct dchannel *dch;
2656 u_char r_irq_statech, status, r_irq_misc, r_irq_oview;
2657 int i;
2658 void __iomem *plx_acc;
2659 u_short wval;
2660 u_char e1_syncsta, temp, temp2;
2661 u_long flags;
2662
2663 if (!hc) {
2664 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2665 return IRQ_NONE;
2666 }
2667
2668 spin_lock(&hc->lock);
2669
2670 #ifdef IRQ_DEBUG
2671 if (irqsem)
2672 printk(KERN_ERR "irq for card %d during irq from "
2673 "card %d, this is no bug.\n", hc->id + 1, irqsem);
2674 irqsem = hc->id + 1;
2675 #endif
2676 #ifdef CONFIG_MISDN_HFCMULTI_8xx
2677 if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2678 goto irq_notforus;
2679 #endif
2680 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2681 spin_lock_irqsave(&plx_lock, flags);
2682 plx_acc = hc->plx_membase + PLX_INTCSR;
2683 wval = readw(plx_acc);
2684 spin_unlock_irqrestore(&plx_lock, flags);
2685 if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2686 goto irq_notforus;
2687 }
2688
2689 status = HFC_inb_nodebug(hc, R_STATUS);
2690 r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2691 #ifdef IRQCOUNT_DEBUG
2692 if (r_irq_statech)
2693 iq1++;
2694 if (status & V_DTMF_STA)
2695 iq2++;
2696 if (status & V_LOST_STA)
2697 iq3++;
2698 if (status & V_EXT_IRQSTA)
2699 iq4++;
2700 if (status & V_MISC_IRQSTA)
2701 iq5++;
2702 if (status & V_FR_IRQSTA)
2703 iq6++;
2704 if (iqcnt++ > 5000) {
2705 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2706 iq1, iq2, iq3, iq4, iq5, iq6);
2707 iqcnt = 0;
2708 }
2709 #endif
2710
2711 if (!r_irq_statech &&
2712 !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2713 V_MISC_IRQSTA | V_FR_IRQSTA))) {
2714 /* irq is not for us */
2715 goto irq_notforus;
2716 }
2717 hc->irqcnt++;
2718 if (r_irq_statech) {
2719 if (hc->ctype != HFC_TYPE_E1)
2720 ph_state_irq(hc, r_irq_statech);
2721 }
2722 if (status & V_LOST_STA) {
2723 /* LOST IRQ */
2724 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2725 }
2726 if (status & V_MISC_IRQSTA) {
2727 /* misc IRQ */
2728 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2729 r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2730 if (r_irq_misc & V_STA_IRQ) {
2731 if (hc->ctype == HFC_TYPE_E1) {
2732 /* state machine */
2733 dch = hc->chan[hc->dnum[0]].dch;
2734 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2735 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2736 && hc->e1_getclock) {
2737 if (e1_syncsta & V_FR_SYNC_E1)
2738 hc->syncronized = 1;
2739 else
2740 hc->syncronized = 0;
2741 }
2742 /* undocumented: status changes during read */
2743 temp = HFC_inb_nodebug(hc, R_E1_RD_STA);
2744 while (temp != (temp2 =
2745 HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2746 if (debug & DEBUG_HFCMULTI_STATE)
2747 printk(KERN_DEBUG "%s: reread "
2748 "STATE because %d!=%d\n",
2749 __func__, temp, temp2);
2750 temp = temp2; /* repeat */
2751 }
2752 /* broadcast state change to all fragments */
2753 if (debug & DEBUG_HFCMULTI_STATE)
2754 printk(KERN_DEBUG
2755 "%s: E1 (id=%d) newstate %x\n",
2756 __func__, hc->id, temp & 0x7);
2757 for (i = 0; i < hc->ports; i++) {
2758 dch = hc->chan[hc->dnum[i]].dch;
2759 dch->state = temp & 0x7;
2760 schedule_event(dch, FLG_PHCHANGE);
2761 }
2762
2763 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2764 plxsd_checksync(hc, 0);
2765 }
2766 }
2767 if (r_irq_misc & V_TI_IRQ) {
2768 if (hc->iclock_on)
2769 mISDN_clock_update(hc->iclock, poll, NULL);
2770 handle_timer_irq(hc);
2771 }
2772
2773 if (r_irq_misc & V_DTMF_IRQ)
2774 hfcmulti_dtmf(hc);
2775
2776 if (r_irq_misc & V_IRQ_PROC) {
2777 static int irq_proc_cnt;
2778 if (!irq_proc_cnt++)
2779 printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
2780 " this should not happen\n", __func__);
2781 }
2782
2783 }
2784 if (status & V_FR_IRQSTA) {
2785 /* FIFO IRQ */
2786 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2787 for (i = 0; i < 8; i++) {
2788 if (r_irq_oview & (1 << i))
2789 fifo_irq(hc, i);
2790 }
2791 }
2792
2793 #ifdef IRQ_DEBUG
2794 irqsem = 0;
2795 #endif
2796 spin_unlock(&hc->lock);
2797 return IRQ_HANDLED;
2798
2799 irq_notforus:
2800 #ifdef IRQ_DEBUG
2801 irqsem = 0;
2802 #endif
2803 spin_unlock(&hc->lock);
2804 return IRQ_NONE;
2805 }
2806
2807
2808 /*
2809 * timer callback for D-chan busy resolution. Currently no function
2810 */
2811
2812 static void
hfcmulti_dbusy_timer(struct timer_list * t)2813 hfcmulti_dbusy_timer(struct timer_list *t)
2814 {
2815 }
2816
2817
2818 /*
2819 * activate/deactivate hardware for selected channels and mode
2820 *
2821 * configure B-channel with the given protocol
2822 * ch eqals to the HFC-channel (0-31)
2823 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2824 * for S/T, 1-31 for E1)
2825 * the hdlc interrupts will be set/unset
2826 */
2827 static int
mode_hfcmulti(struct hfc_multi * hc,int ch,int protocol,int slot_tx,int bank_tx,int slot_rx,int bank_rx)2828 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2829 int bank_tx, int slot_rx, int bank_rx)
2830 {
2831 int flow_tx = 0, flow_rx = 0, routing = 0;
2832 int oslot_tx, oslot_rx;
2833 int conf;
2834
2835 if (ch < 0 || ch > 31)
2836 return -EINVAL;
2837 oslot_tx = hc->chan[ch].slot_tx;
2838 oslot_rx = hc->chan[ch].slot_rx;
2839 conf = hc->chan[ch].conf;
2840
2841 if (debug & DEBUG_HFCMULTI_MODE)
2842 printk(KERN_DEBUG
2843 "%s: card %d channel %d protocol %x slot old=%d new=%d "
2844 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2845 __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2846 bank_tx, oslot_rx, slot_rx, bank_rx);
2847
2848 if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2849 /* remove from slot */
2850 if (debug & DEBUG_HFCMULTI_MODE)
2851 printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2852 __func__, oslot_tx);
2853 if (hc->slot_owner[oslot_tx << 1] == ch) {
2854 HFC_outb(hc, R_SLOT, oslot_tx << 1);
2855 HFC_outb(hc, A_SL_CFG, 0);
2856 if (hc->ctype != HFC_TYPE_XHFC)
2857 HFC_outb(hc, A_CONF, 0);
2858 hc->slot_owner[oslot_tx << 1] = -1;
2859 } else {
2860 if (debug & DEBUG_HFCMULTI_MODE)
2861 printk(KERN_DEBUG
2862 "%s: we are not owner of this tx slot "
2863 "anymore, channel %d is.\n",
2864 __func__, hc->slot_owner[oslot_tx << 1]);
2865 }
2866 }
2867
2868 if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2869 /* remove from slot */
2870 if (debug & DEBUG_HFCMULTI_MODE)
2871 printk(KERN_DEBUG
2872 "%s: remove from slot %d (RX)\n",
2873 __func__, oslot_rx);
2874 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2875 HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2876 HFC_outb(hc, A_SL_CFG, 0);
2877 hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2878 } else {
2879 if (debug & DEBUG_HFCMULTI_MODE)
2880 printk(KERN_DEBUG
2881 "%s: we are not owner of this rx slot "
2882 "anymore, channel %d is.\n",
2883 __func__,
2884 hc->slot_owner[(oslot_rx << 1) | 1]);
2885 }
2886 }
2887
2888 if (slot_tx < 0) {
2889 flow_tx = 0x80; /* FIFO->ST */
2890 /* disable pcm slot */
2891 hc->chan[ch].slot_tx = -1;
2892 hc->chan[ch].bank_tx = 0;
2893 } else {
2894 /* set pcm slot */
2895 if (hc->chan[ch].txpending)
2896 flow_tx = 0x80; /* FIFO->ST */
2897 else
2898 flow_tx = 0xc0; /* PCM->ST */
2899 /* put on slot */
2900 routing = bank_tx ? 0xc0 : 0x80;
2901 if (conf >= 0 || bank_tx > 1)
2902 routing = 0x40; /* loop */
2903 if (debug & DEBUG_HFCMULTI_MODE)
2904 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2905 " %d flow %02x routing %02x conf %d (TX)\n",
2906 __func__, ch, slot_tx, bank_tx,
2907 flow_tx, routing, conf);
2908 HFC_outb(hc, R_SLOT, slot_tx << 1);
2909 HFC_outb(hc, A_SL_CFG, (ch << 1) | routing);
2910 if (hc->ctype != HFC_TYPE_XHFC)
2911 HFC_outb(hc, A_CONF,
2912 (conf < 0) ? 0 : (conf | V_CONF_SL));
2913 hc->slot_owner[slot_tx << 1] = ch;
2914 hc->chan[ch].slot_tx = slot_tx;
2915 hc->chan[ch].bank_tx = bank_tx;
2916 }
2917 if (slot_rx < 0) {
2918 /* disable pcm slot */
2919 flow_rx = 0x80; /* ST->FIFO */
2920 hc->chan[ch].slot_rx = -1;
2921 hc->chan[ch].bank_rx = 0;
2922 } else {
2923 /* set pcm slot */
2924 if (hc->chan[ch].txpending)
2925 flow_rx = 0x80; /* ST->FIFO */
2926 else
2927 flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2928 /* put on slot */
2929 routing = bank_rx ? 0x80 : 0xc0; /* reversed */
2930 if (conf >= 0 || bank_rx > 1)
2931 routing = 0x40; /* loop */
2932 if (debug & DEBUG_HFCMULTI_MODE)
2933 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2934 " %d flow %02x routing %02x conf %d (RX)\n",
2935 __func__, ch, slot_rx, bank_rx,
2936 flow_rx, routing, conf);
2937 HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR);
2938 HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing);
2939 hc->slot_owner[(slot_rx << 1) | 1] = ch;
2940 hc->chan[ch].slot_rx = slot_rx;
2941 hc->chan[ch].bank_rx = bank_rx;
2942 }
2943
2944 switch (protocol) {
2945 case (ISDN_P_NONE):
2946 /* disable TX fifo */
2947 HFC_outb(hc, R_FIFO, ch << 1);
2948 HFC_wait(hc);
2949 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2950 HFC_outb(hc, A_SUBCH_CFG, 0);
2951 HFC_outb(hc, A_IRQ_MSK, 0);
2952 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2953 HFC_wait(hc);
2954 /* disable RX fifo */
2955 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
2956 HFC_wait(hc);
2957 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2958 HFC_outb(hc, A_SUBCH_CFG, 0);
2959 HFC_outb(hc, A_IRQ_MSK, 0);
2960 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2961 HFC_wait(hc);
2962 if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
2963 hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2964 ((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
2965 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2966 /* undocumented: delay after R_ST_SEL */
2967 udelay(1);
2968 HFC_outb(hc, A_ST_CTRL0,
2969 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2970 }
2971 if (hc->chan[ch].bch) {
2972 test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2973 test_and_clear_bit(FLG_TRANSPARENT,
2974 &hc->chan[ch].bch->Flags);
2975 }
2976 break;
2977 case (ISDN_P_B_RAW): /* B-channel */
2978
2979 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2980 (hc->chan[ch].slot_rx < 0) &&
2981 (hc->chan[ch].slot_tx < 0)) {
2982
2983 printk(KERN_DEBUG
2984 "Setting B-channel %d to echo cancelable "
2985 "state on PCM slot %d\n", ch,
2986 ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
2987 printk(KERN_DEBUG
2988 "Enabling pass through for channel\n");
2989 vpm_out(hc, ch, ((ch / 4) * 8) +
2990 ((ch % 4) * 4) + 1, 0x01);
2991 /* rx path */
2992 /* S/T -> PCM */
2993 HFC_outb(hc, R_FIFO, (ch << 1));
2994 HFC_wait(hc);
2995 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2996 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2997 ((ch % 4) * 4) + 1) << 1);
2998 HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
2999
3000 /* PCM -> FIFO */
3001 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3002 HFC_wait(hc);
3003 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3004 HFC_outb(hc, A_SUBCH_CFG, 0);
3005 HFC_outb(hc, A_IRQ_MSK, 0);
3006 if (hc->chan[ch].protocol != protocol) {
3007 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3008 HFC_wait(hc);
3009 }
3010 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3011 ((ch % 4) * 4) + 1) << 1) | 1);
3012 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3013
3014 /* tx path */
3015 /* PCM -> S/T */
3016 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3017 HFC_wait(hc);
3018 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3019 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3020 ((ch % 4) * 4)) << 1) | 1);
3021 HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3022
3023 /* FIFO -> PCM */
3024 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3025 HFC_wait(hc);
3026 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3027 HFC_outb(hc, A_SUBCH_CFG, 0);
3028 HFC_outb(hc, A_IRQ_MSK, 0);
3029 if (hc->chan[ch].protocol != protocol) {
3030 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3031 HFC_wait(hc);
3032 }
3033 /* tx silence */
3034 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3035 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3036 ((ch % 4) * 4)) << 1);
3037 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3038 } else {
3039 /* enable TX fifo */
3040 HFC_outb(hc, R_FIFO, ch << 1);
3041 HFC_wait(hc);
3042 if (hc->ctype == HFC_TYPE_XHFC)
3043 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3044 V_HDLC_TRP | V_IFF);
3045 /* Enable FIFO, no interrupt */
3046 else
3047 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3048 V_HDLC_TRP | V_IFF);
3049 HFC_outb(hc, A_SUBCH_CFG, 0);
3050 HFC_outb(hc, A_IRQ_MSK, 0);
3051 if (hc->chan[ch].protocol != protocol) {
3052 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3053 HFC_wait(hc);
3054 }
3055 /* tx silence */
3056 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3057 /* enable RX fifo */
3058 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3059 HFC_wait(hc);
3060 if (hc->ctype == HFC_TYPE_XHFC)
3061 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3062 V_HDLC_TRP);
3063 /* Enable FIFO, no interrupt*/
3064 else
3065 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3066 V_HDLC_TRP);
3067 HFC_outb(hc, A_SUBCH_CFG, 0);
3068 HFC_outb(hc, A_IRQ_MSK, 0);
3069 if (hc->chan[ch].protocol != protocol) {
3070 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3071 HFC_wait(hc);
3072 }
3073 }
3074 if (hc->ctype != HFC_TYPE_E1) {
3075 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3076 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3077 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3078 /* undocumented: delay after R_ST_SEL */
3079 udelay(1);
3080 HFC_outb(hc, A_ST_CTRL0,
3081 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3082 }
3083 if (hc->chan[ch].bch)
3084 test_and_set_bit(FLG_TRANSPARENT,
3085 &hc->chan[ch].bch->Flags);
3086 break;
3087 case (ISDN_P_B_HDLC): /* B-channel */
3088 case (ISDN_P_TE_S0): /* D-channel */
3089 case (ISDN_P_NT_S0):
3090 case (ISDN_P_TE_E1):
3091 case (ISDN_P_NT_E1):
3092 /* enable TX fifo */
3093 HFC_outb(hc, R_FIFO, ch << 1);
3094 HFC_wait(hc);
3095 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
3096 /* E1 or B-channel */
3097 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3098 HFC_outb(hc, A_SUBCH_CFG, 0);
3099 } else {
3100 /* D-Channel without HDLC fill flags */
3101 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3102 HFC_outb(hc, A_SUBCH_CFG, 2);
3103 }
3104 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3105 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3106 HFC_wait(hc);
3107 /* enable RX fifo */
3108 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3109 HFC_wait(hc);
3110 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3111 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
3112 HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3113 else
3114 HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3115 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3116 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3117 HFC_wait(hc);
3118 if (hc->chan[ch].bch) {
3119 test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3120 if (hc->ctype != HFC_TYPE_E1) {
3121 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3122 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3123 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3124 /* undocumented: delay after R_ST_SEL */
3125 udelay(1);
3126 HFC_outb(hc, A_ST_CTRL0,
3127 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3128 }
3129 }
3130 break;
3131 default:
3132 printk(KERN_DEBUG "%s: protocol not known %x\n",
3133 __func__, protocol);
3134 hc->chan[ch].protocol = ISDN_P_NONE;
3135 return -ENOPROTOOPT;
3136 }
3137 hc->chan[ch].protocol = protocol;
3138 return 0;
3139 }
3140
3141
3142 /*
3143 * connect/disconnect PCM
3144 */
3145
3146 static void
hfcmulti_pcm(struct hfc_multi * hc,int ch,int slot_tx,int bank_tx,int slot_rx,int bank_rx)3147 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3148 int slot_rx, int bank_rx)
3149 {
3150 if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3151 /* disable PCM */
3152 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3153 return;
3154 }
3155
3156 /* enable pcm */
3157 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3158 slot_rx, bank_rx);
3159 }
3160
3161 /*
3162 * set/disable conference
3163 */
3164
3165 static void
hfcmulti_conf(struct hfc_multi * hc,int ch,int num)3166 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3167 {
3168 if (num >= 0 && num <= 7)
3169 hc->chan[ch].conf = num;
3170 else
3171 hc->chan[ch].conf = -1;
3172 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3173 hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3174 hc->chan[ch].bank_rx);
3175 }
3176
3177
3178 /*
3179 * set/disable sample loop
3180 */
3181
3182 /* NOTE: this function is experimental and therefore disabled */
3183
3184 /*
3185 * Layer 1 callback function
3186 */
3187 static int
hfcm_l1callback(struct dchannel * dch,u_int cmd)3188 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3189 {
3190 struct hfc_multi *hc = dch->hw;
3191 struct sk_buff_head free_queue;
3192 u_long flags;
3193
3194 switch (cmd) {
3195 case INFO3_P8:
3196 case INFO3_P10:
3197 break;
3198 case HW_RESET_REQ:
3199 /* start activation */
3200 spin_lock_irqsave(&hc->lock, flags);
3201 if (hc->ctype == HFC_TYPE_E1) {
3202 if (debug & DEBUG_HFCMULTI_MSG)
3203 printk(KERN_DEBUG
3204 "%s: HW_RESET_REQ no BRI\n",
3205 __func__);
3206 } else {
3207 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3208 /* undocumented: delay after R_ST_SEL */
3209 udelay(1);
3210 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3211 udelay(6); /* wait at least 5,21us */
3212 HFC_outb(hc, A_ST_WR_STATE, 3);
3213 HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3));
3214 /* activate */
3215 }
3216 spin_unlock_irqrestore(&hc->lock, flags);
3217 l1_event(dch->l1, HW_POWERUP_IND);
3218 break;
3219 case HW_DEACT_REQ:
3220 __skb_queue_head_init(&free_queue);
3221 /* start deactivation */
3222 spin_lock_irqsave(&hc->lock, flags);
3223 if (hc->ctype == HFC_TYPE_E1) {
3224 if (debug & DEBUG_HFCMULTI_MSG)
3225 printk(KERN_DEBUG
3226 "%s: HW_DEACT_REQ no BRI\n",
3227 __func__);
3228 } else {
3229 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3230 /* undocumented: delay after R_ST_SEL */
3231 udelay(1);
3232 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3233 /* deactivate */
3234 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3235 hc->syncronized &=
3236 ~(1 << hc->chan[dch->slot].port);
3237 plxsd_checksync(hc, 0);
3238 }
3239 }
3240 skb_queue_splice_init(&dch->squeue, &free_queue);
3241 if (dch->tx_skb) {
3242 __skb_queue_tail(&free_queue, dch->tx_skb);
3243 dch->tx_skb = NULL;
3244 }
3245 dch->tx_idx = 0;
3246 if (dch->rx_skb) {
3247 __skb_queue_tail(&free_queue, dch->rx_skb);
3248 dch->rx_skb = NULL;
3249 }
3250 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3251 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3252 del_timer(&dch->timer);
3253 spin_unlock_irqrestore(&hc->lock, flags);
3254 __skb_queue_purge(&free_queue);
3255 break;
3256 case HW_POWERUP_REQ:
3257 spin_lock_irqsave(&hc->lock, flags);
3258 if (hc->ctype == HFC_TYPE_E1) {
3259 if (debug & DEBUG_HFCMULTI_MSG)
3260 printk(KERN_DEBUG
3261 "%s: HW_POWERUP_REQ no BRI\n",
3262 __func__);
3263 } else {
3264 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3265 /* undocumented: delay after R_ST_SEL */
3266 udelay(1);
3267 HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3268 udelay(6); /* wait at least 5,21us */
3269 HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3270 }
3271 spin_unlock_irqrestore(&hc->lock, flags);
3272 break;
3273 case PH_ACTIVATE_IND:
3274 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3275 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3276 GFP_ATOMIC);
3277 break;
3278 case PH_DEACTIVATE_IND:
3279 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3280 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3281 GFP_ATOMIC);
3282 break;
3283 default:
3284 if (dch->debug & DEBUG_HW)
3285 printk(KERN_DEBUG "%s: unknown command %x\n",
3286 __func__, cmd);
3287 return -1;
3288 }
3289 return 0;
3290 }
3291
3292 /*
3293 * Layer2 -> Layer 1 Transfer
3294 */
3295
3296 static int
handle_dmsg(struct mISDNchannel * ch,struct sk_buff * skb)3297 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3298 {
3299 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
3300 struct dchannel *dch = container_of(dev, struct dchannel, dev);
3301 struct hfc_multi *hc = dch->hw;
3302 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3303 int ret = -EINVAL;
3304 unsigned int id;
3305 u_long flags;
3306
3307 switch (hh->prim) {
3308 case PH_DATA_REQ:
3309 if (skb->len < 1)
3310 break;
3311 spin_lock_irqsave(&hc->lock, flags);
3312 ret = dchannel_senddata(dch, skb);
3313 if (ret > 0) { /* direct TX */
3314 id = hh->id; /* skb can be freed */
3315 hfcmulti_tx(hc, dch->slot);
3316 ret = 0;
3317 /* start fifo */
3318 HFC_outb(hc, R_FIFO, 0);
3319 HFC_wait(hc);
3320 spin_unlock_irqrestore(&hc->lock, flags);
3321 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3322 } else
3323 spin_unlock_irqrestore(&hc->lock, flags);
3324 return ret;
3325 case PH_ACTIVATE_REQ:
3326 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3327 spin_lock_irqsave(&hc->lock, flags);
3328 ret = 0;
3329 if (debug & DEBUG_HFCMULTI_MSG)
3330 printk(KERN_DEBUG
3331 "%s: PH_ACTIVATE port %d (0..%d)\n",
3332 __func__, hc->chan[dch->slot].port,
3333 hc->ports - 1);
3334 /* start activation */
3335 if (hc->ctype == HFC_TYPE_E1) {
3336 ph_state_change(dch);
3337 if (debug & DEBUG_HFCMULTI_STATE)
3338 printk(KERN_DEBUG
3339 "%s: E1 report state %x \n",
3340 __func__, dch->state);
3341 } else {
3342 HFC_outb(hc, R_ST_SEL,
3343 hc->chan[dch->slot].port);
3344 /* undocumented: delay after R_ST_SEL */
3345 udelay(1);
3346 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3347 /* G1 */
3348 udelay(6); /* wait at least 5,21us */
3349 HFC_outb(hc, A_ST_WR_STATE, 1);
3350 HFC_outb(hc, A_ST_WR_STATE, 1 |
3351 (V_ST_ACT * 3)); /* activate */
3352 dch->state = 1;
3353 }
3354 spin_unlock_irqrestore(&hc->lock, flags);
3355 } else
3356 ret = l1_event(dch->l1, hh->prim);
3357 break;
3358 case PH_DEACTIVATE_REQ:
3359 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3360 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3361 struct sk_buff_head free_queue;
3362
3363 __skb_queue_head_init(&free_queue);
3364 spin_lock_irqsave(&hc->lock, flags);
3365 if (debug & DEBUG_HFCMULTI_MSG)
3366 printk(KERN_DEBUG
3367 "%s: PH_DEACTIVATE port %d (0..%d)\n",
3368 __func__, hc->chan[dch->slot].port,
3369 hc->ports - 1);
3370 /* start deactivation */
3371 if (hc->ctype == HFC_TYPE_E1) {
3372 if (debug & DEBUG_HFCMULTI_MSG)
3373 printk(KERN_DEBUG
3374 "%s: PH_DEACTIVATE no BRI\n",
3375 __func__);
3376 } else {
3377 HFC_outb(hc, R_ST_SEL,
3378 hc->chan[dch->slot].port);
3379 /* undocumented: delay after R_ST_SEL */
3380 udelay(1);
3381 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3382 /* deactivate */
3383 dch->state = 1;
3384 }
3385 skb_queue_splice_init(&dch->squeue, &free_queue);
3386 if (dch->tx_skb) {
3387 __skb_queue_tail(&free_queue, dch->tx_skb);
3388 dch->tx_skb = NULL;
3389 }
3390 dch->tx_idx = 0;
3391 if (dch->rx_skb) {
3392 __skb_queue_tail(&free_queue, dch->rx_skb);
3393 dch->rx_skb = NULL;
3394 }
3395 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3396 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3397 del_timer(&dch->timer);
3398 #ifdef FIXME
3399 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3400 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3401 #endif
3402 ret = 0;
3403 spin_unlock_irqrestore(&hc->lock, flags);
3404 __skb_queue_purge(&free_queue);
3405 } else
3406 ret = l1_event(dch->l1, hh->prim);
3407 break;
3408 }
3409 if (!ret)
3410 dev_kfree_skb(skb);
3411 return ret;
3412 }
3413
3414 static void
deactivate_bchannel(struct bchannel * bch)3415 deactivate_bchannel(struct bchannel *bch)
3416 {
3417 struct hfc_multi *hc = bch->hw;
3418 u_long flags;
3419
3420 spin_lock_irqsave(&hc->lock, flags);
3421 mISDN_clear_bchannel(bch);
3422 hc->chan[bch->slot].coeff_count = 0;
3423 hc->chan[bch->slot].rx_off = 0;
3424 hc->chan[bch->slot].conf = -1;
3425 mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3426 spin_unlock_irqrestore(&hc->lock, flags);
3427 }
3428
3429 static int
handle_bmsg(struct mISDNchannel * ch,struct sk_buff * skb)3430 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3431 {
3432 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3433 struct hfc_multi *hc = bch->hw;
3434 int ret = -EINVAL;
3435 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3436 unsigned long flags;
3437
3438 switch (hh->prim) {
3439 case PH_DATA_REQ:
3440 if (!skb->len)
3441 break;
3442 spin_lock_irqsave(&hc->lock, flags);
3443 ret = bchannel_senddata(bch, skb);
3444 if (ret > 0) { /* direct TX */
3445 hfcmulti_tx(hc, bch->slot);
3446 ret = 0;
3447 /* start fifo */
3448 HFC_outb_nodebug(hc, R_FIFO, 0);
3449 HFC_wait_nodebug(hc);
3450 }
3451 spin_unlock_irqrestore(&hc->lock, flags);
3452 return ret;
3453 case PH_ACTIVATE_REQ:
3454 if (debug & DEBUG_HFCMULTI_MSG)
3455 printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3456 __func__, bch->slot);
3457 spin_lock_irqsave(&hc->lock, flags);
3458 /* activate B-channel if not already activated */
3459 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3460 hc->chan[bch->slot].txpending = 0;
3461 ret = mode_hfcmulti(hc, bch->slot,
3462 ch->protocol,
3463 hc->chan[bch->slot].slot_tx,
3464 hc->chan[bch->slot].bank_tx,
3465 hc->chan[bch->slot].slot_rx,
3466 hc->chan[bch->slot].bank_rx);
3467 if (!ret) {
3468 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3469 && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3470 /* start decoder */
3471 hc->dtmf = 1;
3472 if (debug & DEBUG_HFCMULTI_DTMF)
3473 printk(KERN_DEBUG
3474 "%s: start dtmf decoder\n",
3475 __func__);
3476 HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3477 V_RST_DTMF);
3478 }
3479 }
3480 } else
3481 ret = 0;
3482 spin_unlock_irqrestore(&hc->lock, flags);
3483 if (!ret)
3484 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3485 GFP_KERNEL);
3486 break;
3487 case PH_CONTROL_REQ:
3488 spin_lock_irqsave(&hc->lock, flags);
3489 switch (hh->id) {
3490 case HFC_SPL_LOOP_ON: /* set sample loop */
3491 if (debug & DEBUG_HFCMULTI_MSG)
3492 printk(KERN_DEBUG
3493 "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3494 __func__, skb->len);
3495 ret = 0;
3496 break;
3497 case HFC_SPL_LOOP_OFF: /* set silence */
3498 if (debug & DEBUG_HFCMULTI_MSG)
3499 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3500 __func__);
3501 ret = 0;
3502 break;
3503 default:
3504 printk(KERN_ERR
3505 "%s: unknown PH_CONTROL_REQ info %x\n",
3506 __func__, hh->id);
3507 ret = -EINVAL;
3508 }
3509 spin_unlock_irqrestore(&hc->lock, flags);
3510 break;
3511 case PH_DEACTIVATE_REQ:
3512 deactivate_bchannel(bch); /* locked there */
3513 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3514 GFP_KERNEL);
3515 ret = 0;
3516 break;
3517 }
3518 if (!ret)
3519 dev_kfree_skb(skb);
3520 return ret;
3521 }
3522
3523 /*
3524 * bchannel control function
3525 */
3526 static int
channel_bctrl(struct bchannel * bch,struct mISDN_ctrl_req * cq)3527 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3528 {
3529 int ret = 0;
3530 struct dsp_features *features =
3531 (struct dsp_features *)(*((u_long *)&cq->p1));
3532 struct hfc_multi *hc = bch->hw;
3533 int slot_tx;
3534 int bank_tx;
3535 int slot_rx;
3536 int bank_rx;
3537 int num;
3538
3539 switch (cq->op) {
3540 case MISDN_CTRL_GETOP:
3541 ret = mISDN_ctrl_bchannel(bch, cq);
3542 cq->op |= MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP;
3543 break;
3544 case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3545 ret = mISDN_ctrl_bchannel(bch, cq);
3546 hc->chan[bch->slot].rx_off = !!cq->p1;
3547 if (!hc->chan[bch->slot].rx_off) {
3548 /* reset fifo on rx on */
3549 HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3550 HFC_wait_nodebug(hc);
3551 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3552 HFC_wait_nodebug(hc);
3553 }
3554 if (debug & DEBUG_HFCMULTI_MSG)
3555 printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3556 __func__, bch->nr, hc->chan[bch->slot].rx_off);
3557 break;
3558 case MISDN_CTRL_FILL_EMPTY:
3559 ret = mISDN_ctrl_bchannel(bch, cq);
3560 hc->silence = bch->fill[0];
3561 memset(hc->silence_data, hc->silence, sizeof(hc->silence_data));
3562 break;
3563 case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3564 if (debug & DEBUG_HFCMULTI_MSG)
3565 printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3566 __func__);
3567 /* create confirm */
3568 features->hfc_id = hc->id;
3569 if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3570 features->hfc_dtmf = 1;
3571 if (test_bit(HFC_CHIP_CONF, &hc->chip))
3572 features->hfc_conf = 1;
3573 features->hfc_loops = 0;
3574 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3575 features->hfc_echocanhw = 1;
3576 } else {
3577 features->pcm_id = hc->pcm;
3578 features->pcm_slots = hc->slots;
3579 features->pcm_banks = 2;
3580 }
3581 break;
3582 case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3583 slot_tx = cq->p1 & 0xff;
3584 bank_tx = cq->p1 >> 8;
3585 slot_rx = cq->p2 & 0xff;
3586 bank_rx = cq->p2 >> 8;
3587 if (debug & DEBUG_HFCMULTI_MSG)
3588 printk(KERN_DEBUG
3589 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3590 "slot %d bank %d (RX)\n",
3591 __func__, slot_tx, bank_tx,
3592 slot_rx, bank_rx);
3593 if (slot_tx < hc->slots && bank_tx <= 2 &&
3594 slot_rx < hc->slots && bank_rx <= 2)
3595 hfcmulti_pcm(hc, bch->slot,
3596 slot_tx, bank_tx, slot_rx, bank_rx);
3597 else {
3598 printk(KERN_WARNING
3599 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3600 "slot %d bank %d (RX) out of range\n",
3601 __func__, slot_tx, bank_tx,
3602 slot_rx, bank_rx);
3603 ret = -EINVAL;
3604 }
3605 break;
3606 case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3607 if (debug & DEBUG_HFCMULTI_MSG)
3608 printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3609 __func__);
3610 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3611 break;
3612 case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3613 num = cq->p1 & 0xff;
3614 if (debug & DEBUG_HFCMULTI_MSG)
3615 printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3616 __func__, num);
3617 if (num <= 7)
3618 hfcmulti_conf(hc, bch->slot, num);
3619 else {
3620 printk(KERN_WARNING
3621 "%s: HW_CONF_JOIN conf %d out of range\n",
3622 __func__, num);
3623 ret = -EINVAL;
3624 }
3625 break;
3626 case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3627 if (debug & DEBUG_HFCMULTI_MSG)
3628 printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3629 hfcmulti_conf(hc, bch->slot, -1);
3630 break;
3631 case MISDN_CTRL_HFC_ECHOCAN_ON:
3632 if (debug & DEBUG_HFCMULTI_MSG)
3633 printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3634 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3635 vpm_echocan_on(hc, bch->slot, cq->p1);
3636 else
3637 ret = -EINVAL;
3638 break;
3639
3640 case MISDN_CTRL_HFC_ECHOCAN_OFF:
3641 if (debug & DEBUG_HFCMULTI_MSG)
3642 printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3643 __func__);
3644 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3645 vpm_echocan_off(hc, bch->slot);
3646 else
3647 ret = -EINVAL;
3648 break;
3649 default:
3650 ret = mISDN_ctrl_bchannel(bch, cq);
3651 break;
3652 }
3653 return ret;
3654 }
3655
3656 static int
hfcm_bctrl(struct mISDNchannel * ch,u_int cmd,void * arg)3657 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3658 {
3659 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3660 struct hfc_multi *hc = bch->hw;
3661 int err = -EINVAL;
3662 u_long flags;
3663
3664 if (bch->debug & DEBUG_HW)
3665 printk(KERN_DEBUG "%s: cmd:%x %p\n",
3666 __func__, cmd, arg);
3667 switch (cmd) {
3668 case CLOSE_CHANNEL:
3669 test_and_clear_bit(FLG_OPEN, &bch->Flags);
3670 deactivate_bchannel(bch); /* locked there */
3671 ch->protocol = ISDN_P_NONE;
3672 ch->peer = NULL;
3673 module_put(THIS_MODULE);
3674 err = 0;
3675 break;
3676 case CONTROL_CHANNEL:
3677 spin_lock_irqsave(&hc->lock, flags);
3678 err = channel_bctrl(bch, arg);
3679 spin_unlock_irqrestore(&hc->lock, flags);
3680 break;
3681 default:
3682 printk(KERN_WARNING "%s: unknown prim(%x)\n",
3683 __func__, cmd);
3684 }
3685 return err;
3686 }
3687
3688 /*
3689 * handle D-channel events
3690 *
3691 * handle state change event
3692 */
3693 static void
ph_state_change(struct dchannel * dch)3694 ph_state_change(struct dchannel *dch)
3695 {
3696 struct hfc_multi *hc;
3697 int ch, i;
3698
3699 if (!dch) {
3700 printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
3701 return;
3702 }
3703 hc = dch->hw;
3704 ch = dch->slot;
3705
3706 if (hc->ctype == HFC_TYPE_E1) {
3707 if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3708 if (debug & DEBUG_HFCMULTI_STATE)
3709 printk(KERN_DEBUG
3710 "%s: E1 TE (id=%d) newstate %x\n",
3711 __func__, hc->id, dch->state);
3712 } else {
3713 if (debug & DEBUG_HFCMULTI_STATE)
3714 printk(KERN_DEBUG
3715 "%s: E1 NT (id=%d) newstate %x\n",
3716 __func__, hc->id, dch->state);
3717 }
3718 switch (dch->state) {
3719 case (1):
3720 if (hc->e1_state != 1) {
3721 for (i = 1; i <= 31; i++) {
3722 /* reset fifos on e1 activation */
3723 HFC_outb_nodebug(hc, R_FIFO,
3724 (i << 1) | 1);
3725 HFC_wait_nodebug(hc);
3726 HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3727 V_RES_F);
3728 HFC_wait_nodebug(hc);
3729 }
3730 }
3731 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3732 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3733 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3734 break;
3735
3736 default:
3737 if (hc->e1_state != 1)
3738 return;
3739 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3740 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3741 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3742 }
3743 hc->e1_state = dch->state;
3744 } else {
3745 if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3746 if (debug & DEBUG_HFCMULTI_STATE)
3747 printk(KERN_DEBUG
3748 "%s: S/T TE newstate %x\n",
3749 __func__, dch->state);
3750 switch (dch->state) {
3751 case (0):
3752 l1_event(dch->l1, HW_RESET_IND);
3753 break;
3754 case (3):
3755 l1_event(dch->l1, HW_DEACT_IND);
3756 break;
3757 case (5):
3758 case (8):
3759 l1_event(dch->l1, ANYSIGNAL);
3760 break;
3761 case (6):
3762 l1_event(dch->l1, INFO2);
3763 break;
3764 case (7):
3765 l1_event(dch->l1, INFO4_P8);
3766 break;
3767 }
3768 } else {
3769 if (debug & DEBUG_HFCMULTI_STATE)
3770 printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3771 __func__, dch->state);
3772 switch (dch->state) {
3773 case (2):
3774 if (hc->chan[ch].nt_timer == 0) {
3775 hc->chan[ch].nt_timer = -1;
3776 HFC_outb(hc, R_ST_SEL,
3777 hc->chan[ch].port);
3778 /* undocumented: delay after R_ST_SEL */
3779 udelay(1);
3780 HFC_outb(hc, A_ST_WR_STATE, 4 |
3781 V_ST_LD_STA); /* G4 */
3782 udelay(6); /* wait at least 5,21us */
3783 HFC_outb(hc, A_ST_WR_STATE, 4);
3784 dch->state = 4;
3785 } else {
3786 /* one extra count for the next event */
3787 hc->chan[ch].nt_timer =
3788 nt_t1_count[poll_timer] + 1;
3789 HFC_outb(hc, R_ST_SEL,
3790 hc->chan[ch].port);
3791 /* undocumented: delay after R_ST_SEL */
3792 udelay(1);
3793 /* allow G2 -> G3 transition */
3794 HFC_outb(hc, A_ST_WR_STATE, 2 |
3795 V_SET_G2_G3);
3796 }
3797 break;
3798 case (1):
3799 hc->chan[ch].nt_timer = -1;
3800 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3801 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3802 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3803 break;
3804 case (4):
3805 hc->chan[ch].nt_timer = -1;
3806 break;
3807 case (3):
3808 hc->chan[ch].nt_timer = -1;
3809 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3810 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3811 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3812 break;
3813 }
3814 }
3815 }
3816 }
3817
3818 /*
3819 * called for card mode init message
3820 */
3821
3822 static void
hfcmulti_initmode(struct dchannel * dch)3823 hfcmulti_initmode(struct dchannel *dch)
3824 {
3825 struct hfc_multi *hc = dch->hw;
3826 u_char a_st_wr_state, r_e1_wr_sta;
3827 int i, pt;
3828
3829 if (debug & DEBUG_HFCMULTI_INIT)
3830 printk(KERN_DEBUG "%s: entered\n", __func__);
3831
3832 i = dch->slot;
3833 pt = hc->chan[i].port;
3834 if (hc->ctype == HFC_TYPE_E1) {
3835 /* E1 */
3836 hc->chan[hc->dnum[pt]].slot_tx = -1;
3837 hc->chan[hc->dnum[pt]].slot_rx = -1;
3838 hc->chan[hc->dnum[pt]].conf = -1;
3839 if (hc->dnum[pt]) {
3840 mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol,
3841 -1, 0, -1, 0);
3842 timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3843 }
3844 for (i = 1; i <= 31; i++) {
3845 if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
3846 continue;
3847 hc->chan[i].slot_tx = -1;
3848 hc->chan[i].slot_rx = -1;
3849 hc->chan[i].conf = -1;
3850 mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3851 }
3852 }
3853 if (hc->ctype == HFC_TYPE_E1 && pt == 0) {
3854 /* E1, port 0 */
3855 dch = hc->chan[hc->dnum[0]].dch;
3856 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
3857 HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3858 HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3859 }
3860 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) {
3861 HFC_outb(hc, R_RX0, 0);
3862 hc->hw.r_tx0 = 0 | V_OUT_EN;
3863 } else {
3864 HFC_outb(hc, R_RX0, 1);
3865 hc->hw.r_tx0 = 1 | V_OUT_EN;
3866 }
3867 hc->hw.r_tx1 = V_ATX | V_NTRI;
3868 HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3869 HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3870 HFC_outb(hc, R_TX_FR0, 0x00);
3871 HFC_outb(hc, R_TX_FR1, 0xf8);
3872
3873 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3874 HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3875
3876 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3877
3878 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3879 HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3880
3881 if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3882 if (debug & DEBUG_HFCMULTI_INIT)
3883 printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3884 __func__);
3885 r_e1_wr_sta = 0; /* G0 */
3886 hc->e1_getclock = 0;
3887 } else {
3888 if (debug & DEBUG_HFCMULTI_INIT)
3889 printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3890 __func__);
3891 r_e1_wr_sta = 0; /* F0 */
3892 hc->e1_getclock = 1;
3893 }
3894 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3895 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3896 else
3897 HFC_outb(hc, R_SYNC_OUT, 0);
3898 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3899 hc->e1_getclock = 1;
3900 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3901 hc->e1_getclock = 0;
3902 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3903 /* SLAVE (clock master) */
3904 if (debug & DEBUG_HFCMULTI_INIT)
3905 printk(KERN_DEBUG
3906 "%s: E1 port is clock master "
3907 "(clock from PCM)\n", __func__);
3908 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3909 } else {
3910 if (hc->e1_getclock) {
3911 /* MASTER (clock slave) */
3912 if (debug & DEBUG_HFCMULTI_INIT)
3913 printk(KERN_DEBUG
3914 "%s: E1 port is clock slave "
3915 "(clock to PCM)\n", __func__);
3916 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3917 } else {
3918 /* MASTER (clock master) */
3919 if (debug & DEBUG_HFCMULTI_INIT)
3920 printk(KERN_DEBUG "%s: E1 port is "
3921 "clock master "
3922 "(clock from QUARTZ)\n",
3923 __func__);
3924 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3925 V_PCM_SYNC | V_JATT_OFF);
3926 HFC_outb(hc, R_SYNC_OUT, 0);
3927 }
3928 }
3929 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3930 HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3931 HFC_outb(hc, R_PWM0, 0x50);
3932 HFC_outb(hc, R_PWM1, 0xff);
3933 /* state machine setup */
3934 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3935 udelay(6); /* wait at least 5,21us */
3936 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3937 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3938 hc->syncronized = 0;
3939 plxsd_checksync(hc, 0);
3940 }
3941 }
3942 if (hc->ctype != HFC_TYPE_E1) {
3943 /* ST */
3944 hc->chan[i].slot_tx = -1;
3945 hc->chan[i].slot_rx = -1;
3946 hc->chan[i].conf = -1;
3947 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3948 timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3949 hc->chan[i - 2].slot_tx = -1;
3950 hc->chan[i - 2].slot_rx = -1;
3951 hc->chan[i - 2].conf = -1;
3952 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3953 hc->chan[i - 1].slot_tx = -1;
3954 hc->chan[i - 1].slot_rx = -1;
3955 hc->chan[i - 1].conf = -1;
3956 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3957 /* select interface */
3958 HFC_outb(hc, R_ST_SEL, pt);
3959 /* undocumented: delay after R_ST_SEL */
3960 udelay(1);
3961 if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3962 if (debug & DEBUG_HFCMULTI_INIT)
3963 printk(KERN_DEBUG
3964 "%s: ST port %d is NT-mode\n",
3965 __func__, pt);
3966 /* clock delay */
3967 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3968 a_st_wr_state = 1; /* G1 */
3969 hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3970 } else {
3971 if (debug & DEBUG_HFCMULTI_INIT)
3972 printk(KERN_DEBUG
3973 "%s: ST port %d is TE-mode\n",
3974 __func__, pt);
3975 /* clock delay */
3976 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3977 a_st_wr_state = 2; /* F2 */
3978 hc->hw.a_st_ctrl0[pt] = 0;
3979 }
3980 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3981 hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3982 if (hc->ctype == HFC_TYPE_XHFC) {
3983 hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
3984 HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
3985 0x7c << 1 /* V_ST_PULSE */);
3986 }
3987 /* line setup */
3988 HFC_outb(hc, A_ST_CTRL0, hc->hw.a_st_ctrl0[pt]);
3989 /* disable E-channel */
3990 if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
3991 test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
3992 HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
3993 else
3994 HFC_outb(hc, A_ST_CTRL1, 0);
3995 /* enable B-channel receive */
3996 HFC_outb(hc, A_ST_CTRL2, V_B1_RX_EN | V_B2_RX_EN);
3997 /* state machine setup */
3998 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
3999 udelay(6); /* wait at least 5,21us */
4000 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
4001 hc->hw.r_sci_msk |= 1 << pt;
4002 /* state machine interrupts */
4003 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4004 /* unset sync on port */
4005 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4006 hc->syncronized &=
4007 ~(1 << hc->chan[dch->slot].port);
4008 plxsd_checksync(hc, 0);
4009 }
4010 }
4011 if (debug & DEBUG_HFCMULTI_INIT)
4012 printk("%s: done\n", __func__);
4013 }
4014
4015
4016 static int
open_dchannel(struct hfc_multi * hc,struct dchannel * dch,struct channel_req * rq)4017 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4018 struct channel_req *rq)
4019 {
4020 int err = 0;
4021 u_long flags;
4022
4023 if (debug & DEBUG_HW_OPEN)
4024 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4025 dch->dev.id, __builtin_return_address(0));
4026 if (rq->protocol == ISDN_P_NONE)
4027 return -EINVAL;
4028 if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4029 (dch->dev.D.protocol != rq->protocol)) {
4030 if (debug & DEBUG_HFCMULTI_MODE)
4031 printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4032 __func__, dch->dev.D.protocol, rq->protocol);
4033 }
4034 if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4035 (rq->protocol != ISDN_P_TE_S0))
4036 l1_event(dch->l1, CLOSE_CHANNEL);
4037 if (dch->dev.D.protocol != rq->protocol) {
4038 if (rq->protocol == ISDN_P_TE_S0) {
4039 err = create_l1(dch, hfcm_l1callback);
4040 if (err)
4041 return err;
4042 }
4043 dch->dev.D.protocol = rq->protocol;
4044 spin_lock_irqsave(&hc->lock, flags);
4045 hfcmulti_initmode(dch);
4046 spin_unlock_irqrestore(&hc->lock, flags);
4047 }
4048 if (test_bit(FLG_ACTIVE, &dch->Flags))
4049 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4050 0, NULL, GFP_KERNEL);
4051 rq->ch = &dch->dev.D;
4052 if (!try_module_get(THIS_MODULE))
4053 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4054 return 0;
4055 }
4056
4057 static int
open_bchannel(struct hfc_multi * hc,struct dchannel * dch,struct channel_req * rq)4058 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4059 struct channel_req *rq)
4060 {
4061 struct bchannel *bch;
4062 int ch;
4063
4064 if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
4065 return -EINVAL;
4066 if (rq->protocol == ISDN_P_NONE)
4067 return -EINVAL;
4068 if (hc->ctype == HFC_TYPE_E1)
4069 ch = rq->adr.channel;
4070 else
4071 ch = (rq->adr.channel - 1) + (dch->slot - 2);
4072 bch = hc->chan[ch].bch;
4073 if (!bch) {
4074 printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4075 __func__, ch);
4076 return -EINVAL;
4077 }
4078 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4079 return -EBUSY; /* b-channel can be only open once */
4080 bch->ch.protocol = rq->protocol;
4081 hc->chan[ch].rx_off = 0;
4082 rq->ch = &bch->ch;
4083 if (!try_module_get(THIS_MODULE))
4084 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4085 return 0;
4086 }
4087
4088 /*
4089 * device control function
4090 */
4091 static int
channel_dctrl(struct dchannel * dch,struct mISDN_ctrl_req * cq)4092 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4093 {
4094 struct hfc_multi *hc = dch->hw;
4095 int ret = 0;
4096 int wd_mode, wd_cnt;
4097
4098 switch (cq->op) {
4099 case MISDN_CTRL_GETOP:
4100 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3;
4101 break;
4102 case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4103 wd_cnt = cq->p1 & 0xf;
4104 wd_mode = !!(cq->p1 >> 4);
4105 if (debug & DEBUG_HFCMULTI_MSG)
4106 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4107 ", counter 0x%x\n", __func__,
4108 wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4109 /* set the watchdog timer */
4110 HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4111 hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4112 if (hc->ctype == HFC_TYPE_XHFC)
4113 hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4114 /* init the watchdog register and reset the counter */
4115 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4116 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4117 /* enable the watchdog output for Speech-Design */
4118 HFC_outb(hc, R_GPIO_SEL, V_GPIO_SEL7);
4119 HFC_outb(hc, R_GPIO_EN1, V_GPIO_EN15);
4120 HFC_outb(hc, R_GPIO_OUT1, 0);
4121 HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4122 }
4123 break;
4124 case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4125 if (debug & DEBUG_HFCMULTI_MSG)
4126 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4127 __func__);
4128 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4129 break;
4130 case MISDN_CTRL_L1_TIMER3:
4131 ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
4132 break;
4133 default:
4134 printk(KERN_WARNING "%s: unknown Op %x\n",
4135 __func__, cq->op);
4136 ret = -EINVAL;
4137 break;
4138 }
4139 return ret;
4140 }
4141
4142 static int
hfcm_dctrl(struct mISDNchannel * ch,u_int cmd,void * arg)4143 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4144 {
4145 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
4146 struct dchannel *dch = container_of(dev, struct dchannel, dev);
4147 struct hfc_multi *hc = dch->hw;
4148 struct channel_req *rq;
4149 int err = 0;
4150 u_long flags;
4151
4152 if (dch->debug & DEBUG_HW)
4153 printk(KERN_DEBUG "%s: cmd:%x %p\n",
4154 __func__, cmd, arg);
4155 switch (cmd) {
4156 case OPEN_CHANNEL:
4157 rq = arg;
4158 switch (rq->protocol) {
4159 case ISDN_P_TE_S0:
4160 case ISDN_P_NT_S0:
4161 if (hc->ctype == HFC_TYPE_E1) {
4162 err = -EINVAL;
4163 break;
4164 }
4165 err = open_dchannel(hc, dch, rq); /* locked there */
4166 break;
4167 case ISDN_P_TE_E1:
4168 case ISDN_P_NT_E1:
4169 if (hc->ctype != HFC_TYPE_E1) {
4170 err = -EINVAL;
4171 break;
4172 }
4173 err = open_dchannel(hc, dch, rq); /* locked there */
4174 break;
4175 default:
4176 spin_lock_irqsave(&hc->lock, flags);
4177 err = open_bchannel(hc, dch, rq);
4178 spin_unlock_irqrestore(&hc->lock, flags);
4179 }
4180 break;
4181 case CLOSE_CHANNEL:
4182 if (debug & DEBUG_HW_OPEN)
4183 printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4184 __func__, dch->dev.id,
4185 __builtin_return_address(0));
4186 module_put(THIS_MODULE);
4187 break;
4188 case CONTROL_CHANNEL:
4189 spin_lock_irqsave(&hc->lock, flags);
4190 err = channel_dctrl(dch, arg);
4191 spin_unlock_irqrestore(&hc->lock, flags);
4192 break;
4193 default:
4194 if (dch->debug & DEBUG_HW)
4195 printk(KERN_DEBUG "%s: unknown command %x\n",
4196 __func__, cmd);
4197 err = -EINVAL;
4198 }
4199 return err;
4200 }
4201
4202 static int
clockctl(void * priv,int enable)4203 clockctl(void *priv, int enable)
4204 {
4205 struct hfc_multi *hc = priv;
4206
4207 hc->iclock_on = enable;
4208 return 0;
4209 }
4210
4211 /*
4212 * initialize the card
4213 */
4214
4215 /*
4216 * start timer irq, wait some time and check if we have interrupts.
4217 * if not, reset chip and try again.
4218 */
4219 static int
init_card(struct hfc_multi * hc)4220 init_card(struct hfc_multi *hc)
4221 {
4222 int err = -EIO;
4223 u_long flags;
4224 void __iomem *plx_acc;
4225 u_long plx_flags;
4226
4227 if (debug & DEBUG_HFCMULTI_INIT)
4228 printk(KERN_DEBUG "%s: entered\n", __func__);
4229
4230 spin_lock_irqsave(&hc->lock, flags);
4231 /* set interrupts but leave global interrupt disabled */
4232 hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4233 disable_hwirq(hc);
4234 spin_unlock_irqrestore(&hc->lock, flags);
4235
4236 if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
4237 "HFC-multi", hc)) {
4238 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4239 hc->irq);
4240 hc->irq = 0;
4241 return -EIO;
4242 }
4243
4244 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4245 spin_lock_irqsave(&plx_lock, plx_flags);
4246 plx_acc = hc->plx_membase + PLX_INTCSR;
4247 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4248 plx_acc); /* enable PCI & LINT1 irq */
4249 spin_unlock_irqrestore(&plx_lock, plx_flags);
4250 }
4251
4252 if (debug & DEBUG_HFCMULTI_INIT)
4253 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4254 __func__, hc->irq, hc->irqcnt);
4255 err = init_chip(hc);
4256 if (err)
4257 goto error;
4258 /*
4259 * Finally enable IRQ output
4260 * this is only allowed, if an IRQ routine is already
4261 * established for this HFC, so don't do that earlier
4262 */
4263 spin_lock_irqsave(&hc->lock, flags);
4264 enable_hwirq(hc);
4265 spin_unlock_irqrestore(&hc->lock, flags);
4266 /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4267 set_current_state(TASK_UNINTERRUPTIBLE);
4268 schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */
4269 /* turn IRQ off until chip is completely initialized */
4270 spin_lock_irqsave(&hc->lock, flags);
4271 disable_hwirq(hc);
4272 spin_unlock_irqrestore(&hc->lock, flags);
4273 if (debug & DEBUG_HFCMULTI_INIT)
4274 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4275 __func__, hc->irq, hc->irqcnt);
4276 if (hc->irqcnt) {
4277 if (debug & DEBUG_HFCMULTI_INIT)
4278 printk(KERN_DEBUG "%s: done\n", __func__);
4279
4280 return 0;
4281 }
4282 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4283 printk(KERN_INFO "ignoring missing interrupts\n");
4284 return 0;
4285 }
4286
4287 printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4288 hc->irq);
4289
4290 err = -EIO;
4291
4292 error:
4293 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4294 spin_lock_irqsave(&plx_lock, plx_flags);
4295 plx_acc = hc->plx_membase + PLX_INTCSR;
4296 writew(0x00, plx_acc); /*disable IRQs*/
4297 spin_unlock_irqrestore(&plx_lock, plx_flags);
4298 }
4299
4300 if (debug & DEBUG_HFCMULTI_INIT)
4301 printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
4302 if (hc->irq) {
4303 free_irq(hc->irq, hc);
4304 hc->irq = 0;
4305 }
4306
4307 if (debug & DEBUG_HFCMULTI_INIT)
4308 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4309 return err;
4310 }
4311
4312 /*
4313 * find pci device and set it up
4314 */
4315
4316 static int
setup_pci(struct hfc_multi * hc,struct pci_dev * pdev,const struct pci_device_id * ent)4317 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4318 const struct pci_device_id *ent)
4319 {
4320 struct hm_map *m = (struct hm_map *)ent->driver_data;
4321
4322 printk(KERN_INFO
4323 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4324 m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4325
4326 hc->pci_dev = pdev;
4327 if (m->clock2)
4328 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4329
4330 if (ent->vendor == PCI_VENDOR_ID_DIGIUM &&
4331 ent->device == PCI_DEVICE_ID_DIGIUM_HFC4S) {
4332 test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4333 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4334 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4335 hc->slots = 32;
4336 }
4337
4338 if (hc->pci_dev->irq <= 0) {
4339 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4340 return -EIO;
4341 }
4342 if (pci_enable_device(hc->pci_dev)) {
4343 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4344 return -EIO;
4345 }
4346 hc->leds = m->leds;
4347 hc->ledstate = 0xAFFEAFFE;
4348 hc->opticalsupport = m->opticalsupport;
4349
4350 hc->pci_iobase = 0;
4351 hc->pci_membase = NULL;
4352 hc->plx_membase = NULL;
4353
4354 /* set memory access methods */
4355 if (m->io_mode) /* use mode from card config */
4356 hc->io_mode = m->io_mode;
4357 switch (hc->io_mode) {
4358 case HFC_IO_MODE_PLXSD:
4359 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4360 hc->slots = 128; /* required */
4361 hc->HFC_outb = HFC_outb_pcimem;
4362 hc->HFC_inb = HFC_inb_pcimem;
4363 hc->HFC_inw = HFC_inw_pcimem;
4364 hc->HFC_wait = HFC_wait_pcimem;
4365 hc->read_fifo = read_fifo_pcimem;
4366 hc->write_fifo = write_fifo_pcimem;
4367 hc->plx_origmembase = hc->pci_dev->resource[0].start;
4368 /* MEMBASE 1 is PLX PCI Bridge */
4369
4370 if (!hc->plx_origmembase) {
4371 printk(KERN_WARNING
4372 "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4373 pci_disable_device(hc->pci_dev);
4374 return -EIO;
4375 }
4376
4377 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4378 if (!hc->plx_membase) {
4379 printk(KERN_WARNING
4380 "HFC-multi: failed to remap plx address space. "
4381 "(internal error)\n");
4382 pci_disable_device(hc->pci_dev);
4383 return -EIO;
4384 }
4385 printk(KERN_INFO
4386 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4387 (u_long)hc->plx_membase, hc->plx_origmembase);
4388
4389 hc->pci_origmembase = hc->pci_dev->resource[2].start;
4390 /* MEMBASE 1 is PLX PCI Bridge */
4391 if (!hc->pci_origmembase) {
4392 printk(KERN_WARNING
4393 "HFC-multi: No IO-Memory for PCI card found\n");
4394 pci_disable_device(hc->pci_dev);
4395 return -EIO;
4396 }
4397
4398 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4399 if (!hc->pci_membase) {
4400 printk(KERN_WARNING "HFC-multi: failed to remap io "
4401 "address space. (internal error)\n");
4402 pci_disable_device(hc->pci_dev);
4403 return -EIO;
4404 }
4405
4406 printk(KERN_INFO
4407 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4408 "leds-type %d\n",
4409 hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4410 hc->pci_dev->irq, HZ, hc->leds);
4411 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4412 break;
4413 case HFC_IO_MODE_PCIMEM:
4414 hc->HFC_outb = HFC_outb_pcimem;
4415 hc->HFC_inb = HFC_inb_pcimem;
4416 hc->HFC_inw = HFC_inw_pcimem;
4417 hc->HFC_wait = HFC_wait_pcimem;
4418 hc->read_fifo = read_fifo_pcimem;
4419 hc->write_fifo = write_fifo_pcimem;
4420 hc->pci_origmembase = hc->pci_dev->resource[1].start;
4421 if (!hc->pci_origmembase) {
4422 printk(KERN_WARNING
4423 "HFC-multi: No IO-Memory for PCI card found\n");
4424 pci_disable_device(hc->pci_dev);
4425 return -EIO;
4426 }
4427
4428 hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4429 if (!hc->pci_membase) {
4430 printk(KERN_WARNING
4431 "HFC-multi: failed to remap io address space. "
4432 "(internal error)\n");
4433 pci_disable_device(hc->pci_dev);
4434 return -EIO;
4435 }
4436 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4437 "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4438 hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4439 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4440 break;
4441 case HFC_IO_MODE_REGIO:
4442 hc->HFC_outb = HFC_outb_regio;
4443 hc->HFC_inb = HFC_inb_regio;
4444 hc->HFC_inw = HFC_inw_regio;
4445 hc->HFC_wait = HFC_wait_regio;
4446 hc->read_fifo = read_fifo_regio;
4447 hc->write_fifo = write_fifo_regio;
4448 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4449 if (!hc->pci_iobase) {
4450 printk(KERN_WARNING
4451 "HFC-multi: No IO for PCI card found\n");
4452 pci_disable_device(hc->pci_dev);
4453 return -EIO;
4454 }
4455
4456 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4457 printk(KERN_WARNING "HFC-multi: failed to request "
4458 "address space at 0x%08lx (internal error)\n",
4459 hc->pci_iobase);
4460 pci_disable_device(hc->pci_dev);
4461 return -EIO;
4462 }
4463
4464 printk(KERN_INFO
4465 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4466 m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4467 hc->pci_dev->irq, HZ, hc->leds);
4468 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4469 break;
4470 default:
4471 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4472 pci_disable_device(hc->pci_dev);
4473 return -EIO;
4474 }
4475
4476 pci_set_drvdata(hc->pci_dev, hc);
4477
4478 /* At this point the needed PCI config is done */
4479 /* fifos are still not enabled */
4480 return 0;
4481 }
4482
4483
4484 /*
4485 * remove port
4486 */
4487
4488 static void
release_port(struct hfc_multi * hc,struct dchannel * dch)4489 release_port(struct hfc_multi *hc, struct dchannel *dch)
4490 {
4491 int pt, ci, i = 0;
4492 u_long flags;
4493 struct bchannel *pb;
4494
4495 ci = dch->slot;
4496 pt = hc->chan[ci].port;
4497
4498 if (debug & DEBUG_HFCMULTI_INIT)
4499 printk(KERN_DEBUG "%s: entered for port %d\n",
4500 __func__, pt + 1);
4501
4502 if (pt >= hc->ports) {
4503 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4504 __func__, pt + 1);
4505 return;
4506 }
4507
4508 if (debug & DEBUG_HFCMULTI_INIT)
4509 printk(KERN_DEBUG "%s: releasing port=%d\n",
4510 __func__, pt + 1);
4511
4512 if (dch->dev.D.protocol == ISDN_P_TE_S0)
4513 l1_event(dch->l1, CLOSE_CHANNEL);
4514
4515 hc->chan[ci].dch = NULL;
4516
4517 if (hc->created[pt]) {
4518 hc->created[pt] = 0;
4519 mISDN_unregister_device(&dch->dev);
4520 }
4521
4522 spin_lock_irqsave(&hc->lock, flags);
4523
4524 if (dch->timer.function) {
4525 del_timer(&dch->timer);
4526 dch->timer.function = NULL;
4527 }
4528
4529 if (hc->ctype == HFC_TYPE_E1) { /* E1 */
4530 /* remove sync */
4531 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4532 hc->syncronized = 0;
4533 plxsd_checksync(hc, 1);
4534 }
4535 /* free channels */
4536 for (i = 0; i <= 31; i++) {
4537 if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
4538 continue;
4539 if (hc->chan[i].bch) {
4540 if (debug & DEBUG_HFCMULTI_INIT)
4541 printk(KERN_DEBUG
4542 "%s: free port %d channel %d\n",
4543 __func__, hc->chan[i].port + 1, i);
4544 pb = hc->chan[i].bch;
4545 hc->chan[i].bch = NULL;
4546 spin_unlock_irqrestore(&hc->lock, flags);
4547 mISDN_freebchannel(pb);
4548 kfree(pb);
4549 kfree(hc->chan[i].coeff);
4550 spin_lock_irqsave(&hc->lock, flags);
4551 }
4552 }
4553 } else {
4554 /* remove sync */
4555 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4556 hc->syncronized &=
4557 ~(1 << hc->chan[ci].port);
4558 plxsd_checksync(hc, 1);
4559 }
4560 /* free channels */
4561 if (hc->chan[ci - 2].bch) {
4562 if (debug & DEBUG_HFCMULTI_INIT)
4563 printk(KERN_DEBUG
4564 "%s: free port %d channel %d\n",
4565 __func__, hc->chan[ci - 2].port + 1,
4566 ci - 2);
4567 pb = hc->chan[ci - 2].bch;
4568 hc->chan[ci - 2].bch = NULL;
4569 spin_unlock_irqrestore(&hc->lock, flags);
4570 mISDN_freebchannel(pb);
4571 kfree(pb);
4572 kfree(hc->chan[ci - 2].coeff);
4573 spin_lock_irqsave(&hc->lock, flags);
4574 }
4575 if (hc->chan[ci - 1].bch) {
4576 if (debug & DEBUG_HFCMULTI_INIT)
4577 printk(KERN_DEBUG
4578 "%s: free port %d channel %d\n",
4579 __func__, hc->chan[ci - 1].port + 1,
4580 ci - 1);
4581 pb = hc->chan[ci - 1].bch;
4582 hc->chan[ci - 1].bch = NULL;
4583 spin_unlock_irqrestore(&hc->lock, flags);
4584 mISDN_freebchannel(pb);
4585 kfree(pb);
4586 kfree(hc->chan[ci - 1].coeff);
4587 spin_lock_irqsave(&hc->lock, flags);
4588 }
4589 }
4590
4591 spin_unlock_irqrestore(&hc->lock, flags);
4592
4593 if (debug & DEBUG_HFCMULTI_INIT)
4594 printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__,
4595 pt+1, ci);
4596 mISDN_freedchannel(dch);
4597 kfree(dch);
4598
4599 if (debug & DEBUG_HFCMULTI_INIT)
4600 printk(KERN_DEBUG "%s: done!\n", __func__);
4601 }
4602
4603 static void
release_card(struct hfc_multi * hc)4604 release_card(struct hfc_multi *hc)
4605 {
4606 u_long flags;
4607 int ch;
4608
4609 if (debug & DEBUG_HFCMULTI_INIT)
4610 printk(KERN_DEBUG "%s: release card (%d) entered\n",
4611 __func__, hc->id);
4612
4613 /* unregister clock source */
4614 if (hc->iclock)
4615 mISDN_unregister_clock(hc->iclock);
4616
4617 /* disable and free irq */
4618 spin_lock_irqsave(&hc->lock, flags);
4619 disable_hwirq(hc);
4620 spin_unlock_irqrestore(&hc->lock, flags);
4621 udelay(1000);
4622 if (hc->irq) {
4623 if (debug & DEBUG_HFCMULTI_INIT)
4624 printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n",
4625 __func__, hc->irq, hc);
4626 free_irq(hc->irq, hc);
4627 hc->irq = 0;
4628
4629 }
4630
4631 /* disable D-channels & B-channels */
4632 if (debug & DEBUG_HFCMULTI_INIT)
4633 printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4634 __func__);
4635 for (ch = 0; ch <= 31; ch++) {
4636 if (hc->chan[ch].dch)
4637 release_port(hc, hc->chan[ch].dch);
4638 }
4639
4640 /* dimm leds */
4641 if (hc->leds)
4642 hfcmulti_leds(hc);
4643
4644 /* release hardware */
4645 release_io_hfcmulti(hc);
4646
4647 if (debug & DEBUG_HFCMULTI_INIT)
4648 printk(KERN_DEBUG "%s: remove instance from list\n",
4649 __func__);
4650 list_del(&hc->list);
4651
4652 if (debug & DEBUG_HFCMULTI_INIT)
4653 printk(KERN_DEBUG "%s: delete instance\n", __func__);
4654 if (hc == syncmaster)
4655 syncmaster = NULL;
4656 kfree(hc);
4657 if (debug & DEBUG_HFCMULTI_INIT)
4658 printk(KERN_DEBUG "%s: card successfully removed\n",
4659 __func__);
4660 }
4661
4662 static void
init_e1_port_hw(struct hfc_multi * hc,struct hm_map * m)4663 init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m)
4664 {
4665 /* set optical line type */
4666 if (port[Port_cnt] & 0x001) {
4667 if (!m->opticalsupport) {
4668 printk(KERN_INFO
4669 "This board has no optical "
4670 "support\n");
4671 } else {
4672 if (debug & DEBUG_HFCMULTI_INIT)
4673 printk(KERN_DEBUG
4674 "%s: PORT set optical "
4675 "interfacs: card(%d) "
4676 "port(%d)\n",
4677 __func__,
4678 HFC_cnt + 1, 1);
4679 test_and_set_bit(HFC_CFG_OPTICAL,
4680 &hc->chan[hc->dnum[0]].cfg);
4681 }
4682 }
4683 /* set LOS report */
4684 if (port[Port_cnt] & 0x004) {
4685 if (debug & DEBUG_HFCMULTI_INIT)
4686 printk(KERN_DEBUG "%s: PORT set "
4687 "LOS report: card(%d) port(%d)\n",
4688 __func__, HFC_cnt + 1, 1);
4689 test_and_set_bit(HFC_CFG_REPORT_LOS,
4690 &hc->chan[hc->dnum[0]].cfg);
4691 }
4692 /* set AIS report */
4693 if (port[Port_cnt] & 0x008) {
4694 if (debug & DEBUG_HFCMULTI_INIT)
4695 printk(KERN_DEBUG "%s: PORT set "
4696 "AIS report: card(%d) port(%d)\n",
4697 __func__, HFC_cnt + 1, 1);
4698 test_and_set_bit(HFC_CFG_REPORT_AIS,
4699 &hc->chan[hc->dnum[0]].cfg);
4700 }
4701 /* set SLIP report */
4702 if (port[Port_cnt] & 0x010) {
4703 if (debug & DEBUG_HFCMULTI_INIT)
4704 printk(KERN_DEBUG
4705 "%s: PORT set SLIP report: "
4706 "card(%d) port(%d)\n",
4707 __func__, HFC_cnt + 1, 1);
4708 test_and_set_bit(HFC_CFG_REPORT_SLIP,
4709 &hc->chan[hc->dnum[0]].cfg);
4710 }
4711 /* set RDI report */
4712 if (port[Port_cnt] & 0x020) {
4713 if (debug & DEBUG_HFCMULTI_INIT)
4714 printk(KERN_DEBUG
4715 "%s: PORT set RDI report: "
4716 "card(%d) port(%d)\n",
4717 __func__, HFC_cnt + 1, 1);
4718 test_and_set_bit(HFC_CFG_REPORT_RDI,
4719 &hc->chan[hc->dnum[0]].cfg);
4720 }
4721 /* set CRC-4 Mode */
4722 if (!(port[Port_cnt] & 0x100)) {
4723 if (debug & DEBUG_HFCMULTI_INIT)
4724 printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4725 " card(%d) port(%d)\n",
4726 __func__, HFC_cnt + 1, 1);
4727 test_and_set_bit(HFC_CFG_CRC4,
4728 &hc->chan[hc->dnum[0]].cfg);
4729 } else {
4730 if (debug & DEBUG_HFCMULTI_INIT)
4731 printk(KERN_DEBUG "%s: PORT turn off CRC4"
4732 " report: card(%d) port(%d)\n",
4733 __func__, HFC_cnt + 1, 1);
4734 }
4735 /* set forced clock */
4736 if (port[Port_cnt] & 0x0200) {
4737 if (debug & DEBUG_HFCMULTI_INIT)
4738 printk(KERN_DEBUG "%s: PORT force getting clock from "
4739 "E1: card(%d) port(%d)\n",
4740 __func__, HFC_cnt + 1, 1);
4741 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4742 } else
4743 if (port[Port_cnt] & 0x0400) {
4744 if (debug & DEBUG_HFCMULTI_INIT)
4745 printk(KERN_DEBUG "%s: PORT force putting clock to "
4746 "E1: card(%d) port(%d)\n",
4747 __func__, HFC_cnt + 1, 1);
4748 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4749 }
4750 /* set JATT PLL */
4751 if (port[Port_cnt] & 0x0800) {
4752 if (debug & DEBUG_HFCMULTI_INIT)
4753 printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4754 "E1: card(%d) port(%d)\n",
4755 __func__, HFC_cnt + 1, 1);
4756 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4757 }
4758 /* set elastic jitter buffer */
4759 if (port[Port_cnt] & 0x3000) {
4760 hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3;
4761 if (debug & DEBUG_HFCMULTI_INIT)
4762 printk(KERN_DEBUG
4763 "%s: PORT set elastic "
4764 "buffer to %d: card(%d) port(%d)\n",
4765 __func__, hc->chan[hc->dnum[0]].jitter,
4766 HFC_cnt + 1, 1);
4767 } else
4768 hc->chan[hc->dnum[0]].jitter = 2; /* default */
4769 }
4770
4771 static int
init_e1_port(struct hfc_multi * hc,struct hm_map * m,int pt)4772 init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt)
4773 {
4774 struct dchannel *dch;
4775 struct bchannel *bch;
4776 int ch, ret = 0;
4777 char name[MISDN_MAX_IDLEN];
4778 int bcount = 0;
4779
4780 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4781 if (!dch)
4782 return -ENOMEM;
4783 dch->debug = debug;
4784 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4785 dch->hw = hc;
4786 dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4787 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4788 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4789 dch->dev.D.send = handle_dmsg;
4790 dch->dev.D.ctrl = hfcm_dctrl;
4791 dch->slot = hc->dnum[pt];
4792 hc->chan[hc->dnum[pt]].dch = dch;
4793 hc->chan[hc->dnum[pt]].port = pt;
4794 hc->chan[hc->dnum[pt]].nt_timer = -1;
4795 for (ch = 1; ch <= 31; ch++) {
4796 if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */
4797 continue;
4798 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4799 if (!bch) {
4800 printk(KERN_ERR "%s: no memory for bchannel\n",
4801 __func__);
4802 ret = -ENOMEM;
4803 goto free_chan;
4804 }
4805 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4806 if (!hc->chan[ch].coeff) {
4807 printk(KERN_ERR "%s: no memory for coeffs\n",
4808 __func__);
4809 ret = -ENOMEM;
4810 kfree(bch);
4811 goto free_chan;
4812 }
4813 bch->nr = ch;
4814 bch->slot = ch;
4815 bch->debug = debug;
4816 mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4817 bch->hw = hc;
4818 bch->ch.send = handle_bmsg;
4819 bch->ch.ctrl = hfcm_bctrl;
4820 bch->ch.nr = ch;
4821 list_add(&bch->ch.list, &dch->dev.bchannels);
4822 hc->chan[ch].bch = bch;
4823 hc->chan[ch].port = pt;
4824 set_channelmap(bch->nr, dch->dev.channelmap);
4825 bcount++;
4826 }
4827 dch->dev.nrbchan = bcount;
4828 if (pt == 0)
4829 init_e1_port_hw(hc, m);
4830 if (hc->ports > 1)
4831 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d",
4832 HFC_cnt + 1, pt+1);
4833 else
4834 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4835 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4836 if (ret)
4837 goto free_chan;
4838 hc->created[pt] = 1;
4839 return ret;
4840 free_chan:
4841 release_port(hc, dch);
4842 return ret;
4843 }
4844
4845 static int
init_multi_port(struct hfc_multi * hc,int pt)4846 init_multi_port(struct hfc_multi *hc, int pt)
4847 {
4848 struct dchannel *dch;
4849 struct bchannel *bch;
4850 int ch, i, ret = 0;
4851 char name[MISDN_MAX_IDLEN];
4852
4853 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4854 if (!dch)
4855 return -ENOMEM;
4856 dch->debug = debug;
4857 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4858 dch->hw = hc;
4859 dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4860 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4861 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4862 dch->dev.D.send = handle_dmsg;
4863 dch->dev.D.ctrl = hfcm_dctrl;
4864 dch->dev.nrbchan = 2;
4865 i = pt << 2;
4866 dch->slot = i + 2;
4867 hc->chan[i + 2].dch = dch;
4868 hc->chan[i + 2].port = pt;
4869 hc->chan[i + 2].nt_timer = -1;
4870 for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4871 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4872 if (!bch) {
4873 printk(KERN_ERR "%s: no memory for bchannel\n",
4874 __func__);
4875 ret = -ENOMEM;
4876 goto free_chan;
4877 }
4878 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4879 if (!hc->chan[i + ch].coeff) {
4880 printk(KERN_ERR "%s: no memory for coeffs\n",
4881 __func__);
4882 ret = -ENOMEM;
4883 kfree(bch);
4884 goto free_chan;
4885 }
4886 bch->nr = ch + 1;
4887 bch->slot = i + ch;
4888 bch->debug = debug;
4889 mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4890 bch->hw = hc;
4891 bch->ch.send = handle_bmsg;
4892 bch->ch.ctrl = hfcm_bctrl;
4893 bch->ch.nr = ch + 1;
4894 list_add(&bch->ch.list, &dch->dev.bchannels);
4895 hc->chan[i + ch].bch = bch;
4896 hc->chan[i + ch].port = pt;
4897 set_channelmap(bch->nr, dch->dev.channelmap);
4898 }
4899 /* set master clock */
4900 if (port[Port_cnt] & 0x001) {
4901 if (debug & DEBUG_HFCMULTI_INIT)
4902 printk(KERN_DEBUG
4903 "%s: PROTOCOL set master clock: "
4904 "card(%d) port(%d)\n",
4905 __func__, HFC_cnt + 1, pt + 1);
4906 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4907 printk(KERN_ERR "Error: Master clock "
4908 "for port(%d) of card(%d) is only"
4909 " possible with TE-mode\n",
4910 pt + 1, HFC_cnt + 1);
4911 ret = -EINVAL;
4912 goto free_chan;
4913 }
4914 if (hc->masterclk >= 0) {
4915 printk(KERN_ERR "Error: Master clock "
4916 "for port(%d) of card(%d) already "
4917 "defined for port(%d)\n",
4918 pt + 1, HFC_cnt + 1, hc->masterclk + 1);
4919 ret = -EINVAL;
4920 goto free_chan;
4921 }
4922 hc->masterclk = pt;
4923 }
4924 /* set transmitter line to non capacitive */
4925 if (port[Port_cnt] & 0x002) {
4926 if (debug & DEBUG_HFCMULTI_INIT)
4927 printk(KERN_DEBUG
4928 "%s: PROTOCOL set non capacitive "
4929 "transmitter: card(%d) port(%d)\n",
4930 __func__, HFC_cnt + 1, pt + 1);
4931 test_and_set_bit(HFC_CFG_NONCAP_TX,
4932 &hc->chan[i + 2].cfg);
4933 }
4934 /* disable E-channel */
4935 if (port[Port_cnt] & 0x004) {
4936 if (debug & DEBUG_HFCMULTI_INIT)
4937 printk(KERN_DEBUG
4938 "%s: PROTOCOL disable E-channel: "
4939 "card(%d) port(%d)\n",
4940 __func__, HFC_cnt + 1, pt + 1);
4941 test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4942 &hc->chan[i + 2].cfg);
4943 }
4944 if (hc->ctype == HFC_TYPE_XHFC) {
4945 snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
4946 HFC_cnt + 1, pt + 1);
4947 ret = mISDN_register_device(&dch->dev, NULL, name);
4948 } else {
4949 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4950 hc->ctype, HFC_cnt + 1, pt + 1);
4951 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4952 }
4953 if (ret)
4954 goto free_chan;
4955 hc->created[pt] = 1;
4956 return ret;
4957 free_chan:
4958 release_port(hc, dch);
4959 return ret;
4960 }
4961
4962 static int
hfcmulti_init(struct hm_map * m,struct pci_dev * pdev,const struct pci_device_id * ent)4963 hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
4964 const struct pci_device_id *ent)
4965 {
4966 int ret_err = 0;
4967 int pt;
4968 struct hfc_multi *hc;
4969 u_long flags;
4970 u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4971 int i, ch;
4972 u_int maskcheck;
4973
4974 if (HFC_cnt >= MAX_CARDS) {
4975 printk(KERN_ERR "too many cards (max=%d).\n",
4976 MAX_CARDS);
4977 return -EINVAL;
4978 }
4979 if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4980 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4981 "type[%d] %d was supplied as module parameter\n",
4982 m->vendor_name, m->card_name, m->type, HFC_cnt,
4983 type[HFC_cnt] & 0xff);
4984 printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4985 "first, to see cards and their types.");
4986 return -EINVAL;
4987 }
4988 if (debug & DEBUG_HFCMULTI_INIT)
4989 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4990 __func__, m->vendor_name, m->card_name, m->type,
4991 type[HFC_cnt]);
4992
4993 /* allocate card+fifo structure */
4994 hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4995 if (!hc) {
4996 printk(KERN_ERR "No kmem for HFC-Multi card\n");
4997 return -ENOMEM;
4998 }
4999 spin_lock_init(&hc->lock);
5000 hc->mtyp = m;
5001 hc->ctype = m->type;
5002 hc->ports = m->ports;
5003 hc->id = HFC_cnt;
5004 hc->pcm = pcm[HFC_cnt];
5005 hc->io_mode = iomode[HFC_cnt];
5006 if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) {
5007 /* fragment card */
5008 pt = 0;
5009 maskcheck = 0;
5010 for (ch = 0; ch <= 31; ch++) {
5011 if (!((1 << ch) & dmask[E1_cnt]))
5012 continue;
5013 hc->dnum[pt] = ch;
5014 hc->bmask[pt] = bmask[bmask_cnt++];
5015 if ((maskcheck & hc->bmask[pt])
5016 || (dmask[E1_cnt] & hc->bmask[pt])) {
5017 printk(KERN_INFO
5018 "HFC-E1 #%d has overlapping B-channels on fragment #%d\n",
5019 E1_cnt + 1, pt);
5020 kfree(hc);
5021 return -EINVAL;
5022 }
5023 maskcheck |= hc->bmask[pt];
5024 printk(KERN_INFO
5025 "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n",
5026 E1_cnt + 1, ch, hc->bmask[pt]);
5027 pt++;
5028 }
5029 hc->ports = pt;
5030 }
5031 if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) {
5032 /* default card layout */
5033 hc->dnum[0] = 16;
5034 hc->bmask[0] = 0xfffefffe;
5035 hc->ports = 1;
5036 }
5037
5038 /* set chip specific features */
5039 hc->masterclk = -1;
5040 if (type[HFC_cnt] & 0x100) {
5041 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
5042 hc->silence = 0xff; /* ulaw silence */
5043 } else
5044 hc->silence = 0x2a; /* alaw silence */
5045 if ((poll >> 1) > sizeof(hc->silence_data)) {
5046 printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5047 "please fix\n");
5048 kfree(hc);
5049 return -EINVAL;
5050 }
5051 for (i = 0; i < (poll >> 1); i++)
5052 hc->silence_data[i] = hc->silence;
5053
5054 if (hc->ctype != HFC_TYPE_XHFC) {
5055 if (!(type[HFC_cnt] & 0x200))
5056 test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5057 test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5058 }
5059
5060 if (type[HFC_cnt] & 0x800)
5061 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5062 if (type[HFC_cnt] & 0x1000) {
5063 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5064 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5065 }
5066 if (type[HFC_cnt] & 0x4000)
5067 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5068 if (type[HFC_cnt] & 0x8000)
5069 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5070 hc->slots = 32;
5071 if (type[HFC_cnt] & 0x10000)
5072 hc->slots = 64;
5073 if (type[HFC_cnt] & 0x20000)
5074 hc->slots = 128;
5075 if (type[HFC_cnt] & 0x80000) {
5076 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5077 hc->wdcount = 0;
5078 hc->wdbyte = V_GPIO_OUT2;
5079 printk(KERN_NOTICE "Watchdog enabled\n");
5080 }
5081
5082 if (pdev && ent)
5083 /* setup pci, hc->slots may change due to PLXSD */
5084 ret_err = setup_pci(hc, pdev, ent);
5085 else
5086 #ifdef CONFIG_MISDN_HFCMULTI_8xx
5087 ret_err = setup_embedded(hc, m);
5088 #else
5089 {
5090 printk(KERN_WARNING "Embedded IO Mode not selected\n");
5091 ret_err = -EIO;
5092 }
5093 #endif
5094 if (ret_err) {
5095 if (hc == syncmaster)
5096 syncmaster = NULL;
5097 kfree(hc);
5098 return ret_err;
5099 }
5100
5101 hc->HFC_outb_nodebug = hc->HFC_outb;
5102 hc->HFC_inb_nodebug = hc->HFC_inb;
5103 hc->HFC_inw_nodebug = hc->HFC_inw;
5104 hc->HFC_wait_nodebug = hc->HFC_wait;
5105 #ifdef HFC_REGISTER_DEBUG
5106 hc->HFC_outb = HFC_outb_debug;
5107 hc->HFC_inb = HFC_inb_debug;
5108 hc->HFC_inw = HFC_inw_debug;
5109 hc->HFC_wait = HFC_wait_debug;
5110 #endif
5111 /* create channels */
5112 for (pt = 0; pt < hc->ports; pt++) {
5113 if (Port_cnt >= MAX_PORTS) {
5114 printk(KERN_ERR "too many ports (max=%d).\n",
5115 MAX_PORTS);
5116 ret_err = -EINVAL;
5117 goto free_card;
5118 }
5119 if (hc->ctype == HFC_TYPE_E1)
5120 ret_err = init_e1_port(hc, m, pt);
5121 else
5122 ret_err = init_multi_port(hc, pt);
5123 if (debug & DEBUG_HFCMULTI_INIT)
5124 printk(KERN_DEBUG
5125 "%s: Registering D-channel, card(%d) port(%d) "
5126 "result %d\n",
5127 __func__, HFC_cnt + 1, pt + 1, ret_err);
5128
5129 if (ret_err) {
5130 while (pt) { /* release already registered ports */
5131 pt--;
5132 if (hc->ctype == HFC_TYPE_E1)
5133 release_port(hc,
5134 hc->chan[hc->dnum[pt]].dch);
5135 else
5136 release_port(hc,
5137 hc->chan[(pt << 2) + 2].dch);
5138 }
5139 goto free_card;
5140 }
5141 if (hc->ctype != HFC_TYPE_E1)
5142 Port_cnt++; /* for each S0 port */
5143 }
5144 if (hc->ctype == HFC_TYPE_E1) {
5145 Port_cnt++; /* for each E1 port */
5146 E1_cnt++;
5147 }
5148
5149 /* disp switches */
5150 switch (m->dip_type) {
5151 case DIP_4S:
5152 /*
5153 * Get DIP setting for beroNet 1S/2S/4S cards
5154 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5155 * GPI 19/23 (R_GPI_IN2))
5156 */
5157 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5158 ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5159 (~HFC_inb(hc, R_GPI_IN2) & 0x08);
5160
5161 /* Port mode (TE/NT) jumpers */
5162 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4) & 0xf);
5163
5164 if (test_bit(HFC_CHIP_B410P, &hc->chip))
5165 pmj = ~pmj & 0xf;
5166
5167 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5168 m->vendor_name, m->card_name, dips, pmj);
5169 break;
5170 case DIP_8S:
5171 /*
5172 * Get DIP Setting for beroNet 8S0+ cards
5173 * Enable PCI auxbridge function
5174 */
5175 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5176 /* prepare access to auxport */
5177 outw(0x4000, hc->pci_iobase + 4);
5178 /*
5179 * some dummy reads are required to
5180 * read valid DIP switch data
5181 */
5182 dips = inb(hc->pci_iobase);
5183 dips = inb(hc->pci_iobase);
5184 dips = inb(hc->pci_iobase);
5185 dips = ~inb(hc->pci_iobase) & 0x3F;
5186 outw(0x0, hc->pci_iobase + 4);
5187 /* disable PCI auxbridge function */
5188 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5189 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5190 m->vendor_name, m->card_name, dips);
5191 break;
5192 case DIP_E1:
5193 /*
5194 * get DIP Setting for beroNet E1 cards
5195 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5196 */
5197 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4;
5198 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5199 m->vendor_name, m->card_name, dips);
5200 break;
5201 }
5202
5203 /* add to list */
5204 spin_lock_irqsave(&HFClock, flags);
5205 list_add_tail(&hc->list, &HFClist);
5206 spin_unlock_irqrestore(&HFClock, flags);
5207
5208 /* use as clock source */
5209 if (clock == HFC_cnt + 1)
5210 hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5211
5212 /* initialize hardware */
5213 hc->irq = (m->irq) ? : hc->pci_dev->irq;
5214 ret_err = init_card(hc);
5215 if (ret_err) {
5216 printk(KERN_ERR "init card returns %d\n", ret_err);
5217 release_card(hc);
5218 return ret_err;
5219 }
5220
5221 /* start IRQ and return */
5222 spin_lock_irqsave(&hc->lock, flags);
5223 enable_hwirq(hc);
5224 spin_unlock_irqrestore(&hc->lock, flags);
5225 return 0;
5226
5227 free_card:
5228 release_io_hfcmulti(hc);
5229 if (hc == syncmaster)
5230 syncmaster = NULL;
5231 kfree(hc);
5232 return ret_err;
5233 }
5234
hfc_remove_pci(struct pci_dev * pdev)5235 static void hfc_remove_pci(struct pci_dev *pdev)
5236 {
5237 struct hfc_multi *card = pci_get_drvdata(pdev);
5238 u_long flags;
5239
5240 if (debug)
5241 printk(KERN_INFO "removing hfc_multi card vendor:%x "
5242 "device:%x subvendor:%x subdevice:%x\n",
5243 pdev->vendor, pdev->device,
5244 pdev->subsystem_vendor, pdev->subsystem_device);
5245
5246 if (card) {
5247 spin_lock_irqsave(&HFClock, flags);
5248 release_card(card);
5249 spin_unlock_irqrestore(&HFClock, flags);
5250 } else {
5251 if (debug)
5252 printk(KERN_DEBUG "%s: drvdata already removed\n",
5253 __func__);
5254 }
5255 }
5256
5257 #define VENDOR_CCD "Cologne Chip AG"
5258 #define VENDOR_BN "beroNet GmbH"
5259 #define VENDOR_DIG "Digium Inc."
5260 #define VENDOR_JH "Junghanns.NET GmbH"
5261 #define VENDOR_PRIM "PrimuX"
5262
5263 static const struct hm_map hfcm_map[] = {
5264 /*0*/ {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5265 /*1*/ {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5266 /*2*/ {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5267 /*3*/ {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5268 /*4*/ {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5269 /*5*/ {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5270 /*6*/ {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5271 /*7*/ {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5272 /*8*/ {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5273 /*9*/ {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5274 /*10*/ {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5275 /*11*/ {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5276
5277 /*12*/ {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5278 /*13*/ {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5279 HFC_IO_MODE_REGIO, 0},
5280 /*14*/ {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5281 /*15*/ {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5282
5283 /*16*/ {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5284 /*17*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5285 /*18*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5286
5287 /*19*/ {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5288 /*20*/ {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5289 /*21*/ {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5290 /*22*/ {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5291
5292 /*23*/ {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5293 /*24*/ {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5294 /*25*/ {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5295
5296 /*26*/ {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5297 HFC_IO_MODE_PLXSD, 0},
5298 /*27*/ {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5299 HFC_IO_MODE_PLXSD, 0},
5300 /*28*/ {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5301 /*29*/ {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5302 /*30*/ {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5303 /*31*/ {VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5304 HFC_IO_MODE_EMBSD, XHFC_IRQ},
5305 /*32*/ {VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5306 /*33*/ {VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5307 /*34*/ {VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5308 };
5309
5310 #undef H
5311 #define H(x) ((unsigned long)&hfcm_map[x])
5312 static const struct pci_device_id hfmultipci_ids[] = {
5313
5314 /* Cards with HFC-4S Chip */
5315 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5316 PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5317 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5318 PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5319 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5320 PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5321 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5322 PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5323 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5324 PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5325 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5326 PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5327 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5328 PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5329 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5330 PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5331 { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5332 PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5333 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5334 PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5335 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5336 PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5337 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5338 PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5339 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5340 PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5341 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5342 PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5343 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5344 0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5345 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5346 0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5347
5348 /* Cards with HFC-8S Chip */
5349 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5350 PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5351 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5352 PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5353 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5354 PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5355 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5356 PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5357 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5358 PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */
5359 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5360 PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST */
5361 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5362 PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5363 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5364 PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5365 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5366 PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S */
5367
5368
5369 /* Cards with HFC-E1 Chip */
5370 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5371 PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5372 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5373 PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5374 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5375 PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5376 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5377 PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5378
5379 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5380 PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5381 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5382 PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5383 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5384 PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5385
5386 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5387 PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5388 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5389 PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5390
5391 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5392 PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5393
5394 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5395 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5396 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
5397 {0, }
5398 };
5399 #undef H
5400
5401 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5402
5403 static int
hfcmulti_probe(struct pci_dev * pdev,const struct pci_device_id * ent)5404 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5405 {
5406 struct hm_map *m = (struct hm_map *)ent->driver_data;
5407 int ret;
5408
5409 if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5410 ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5411 ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5412 ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5413 printk(KERN_ERR
5414 "Unknown HFC multiport controller (vendor:%04x device:%04x "
5415 "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5416 pdev->device, pdev->subsystem_vendor,
5417 pdev->subsystem_device);
5418 printk(KERN_ERR
5419 "Please contact the driver maintainer for support.\n");
5420 return -ENODEV;
5421 }
5422 ret = hfcmulti_init(m, pdev, ent);
5423 if (ret)
5424 return ret;
5425 HFC_cnt++;
5426 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5427 return 0;
5428 }
5429
5430 static struct pci_driver hfcmultipci_driver = {
5431 .name = "hfc_multi",
5432 .probe = hfcmulti_probe,
5433 .remove = hfc_remove_pci,
5434 .id_table = hfmultipci_ids,
5435 };
5436
5437 static void __exit
HFCmulti_cleanup(void)5438 HFCmulti_cleanup(void)
5439 {
5440 struct hfc_multi *card, *next;
5441
5442 /* get rid of all devices of this driver */
5443 list_for_each_entry_safe(card, next, &HFClist, list)
5444 release_card(card);
5445 pci_unregister_driver(&hfcmultipci_driver);
5446 }
5447
5448 static int __init
HFCmulti_init(void)5449 HFCmulti_init(void)
5450 {
5451 int err;
5452 int i, xhfc = 0;
5453 struct hm_map m;
5454
5455 printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5456
5457 #ifdef IRQ_DEBUG
5458 printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5459 #endif
5460
5461 if (debug & DEBUG_HFCMULTI_INIT)
5462 printk(KERN_DEBUG "%s: init entered\n", __func__);
5463
5464 switch (poll) {
5465 case 0:
5466 poll_timer = 6;
5467 poll = 128;
5468 break;
5469 case 8:
5470 poll_timer = 2;
5471 break;
5472 case 16:
5473 poll_timer = 3;
5474 break;
5475 case 32:
5476 poll_timer = 4;
5477 break;
5478 case 64:
5479 poll_timer = 5;
5480 break;
5481 case 128:
5482 poll_timer = 6;
5483 break;
5484 case 256:
5485 poll_timer = 7;
5486 break;
5487 default:
5488 printk(KERN_ERR
5489 "%s: Wrong poll value (%d).\n", __func__, poll);
5490 err = -EINVAL;
5491 return err;
5492
5493 }
5494
5495 if (!clock)
5496 clock = 1;
5497
5498 /* Register the embedded devices.
5499 * This should be done before the PCI cards registration */
5500 switch (hwid) {
5501 case HWID_MINIP4:
5502 xhfc = 1;
5503 m = hfcm_map[31];
5504 break;
5505 case HWID_MINIP8:
5506 xhfc = 2;
5507 m = hfcm_map[31];
5508 break;
5509 case HWID_MINIP16:
5510 xhfc = 4;
5511 m = hfcm_map[31];
5512 break;
5513 default:
5514 xhfc = 0;
5515 }
5516
5517 for (i = 0; i < xhfc; ++i) {
5518 err = hfcmulti_init(&m, NULL, NULL);
5519 if (err) {
5520 printk(KERN_ERR "error registering embedded driver: "
5521 "%x\n", err);
5522 return err;
5523 }
5524 HFC_cnt++;
5525 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5526 }
5527
5528 /* Register the PCI cards */
5529 err = pci_register_driver(&hfcmultipci_driver);
5530 if (err < 0) {
5531 printk(KERN_ERR "error registering pci driver: %x\n", err);
5532 return err;
5533 }
5534
5535 return 0;
5536 }
5537
5538
5539 module_init(HFCmulti_init);
5540 module_exit(HFCmulti_cleanup);
5541