1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17
18 struct ctl_table;
19 struct user_struct;
20 struct mmu_gather;
21 struct node;
22
23 void free_huge_folio(struct folio *folio);
24
25 #ifdef CONFIG_HUGETLB_PAGE
26
27 #include <linux/pagemap.h>
28 #include <linux/shm.h>
29 #include <asm/tlbflush.h>
30
31 /*
32 * For HugeTLB page, there are more metadata to save in the struct page. But
33 * the head struct page cannot meet our needs, so we have to abuse other tail
34 * struct page to store the metadata.
35 */
36 #define __NR_USED_SUBPAGE 3
37
38 struct hugepage_subpool {
39 spinlock_t lock;
40 long count;
41 long max_hpages; /* Maximum huge pages or -1 if no maximum. */
42 long used_hpages; /* Used count against maximum, includes */
43 /* both allocated and reserved pages. */
44 struct hstate *hstate;
45 long min_hpages; /* Minimum huge pages or -1 if no minimum. */
46 long rsv_hpages; /* Pages reserved against global pool to */
47 /* satisfy minimum size. */
48 };
49
50 struct resv_map {
51 struct kref refs;
52 spinlock_t lock;
53 struct list_head regions;
54 long adds_in_progress;
55 struct list_head region_cache;
56 long region_cache_count;
57 struct rw_semaphore rw_sema;
58 #ifdef CONFIG_CGROUP_HUGETLB
59 /*
60 * On private mappings, the counter to uncharge reservations is stored
61 * here. If these fields are 0, then either the mapping is shared, or
62 * cgroup accounting is disabled for this resv_map.
63 */
64 struct page_counter *reservation_counter;
65 unsigned long pages_per_hpage;
66 struct cgroup_subsys_state *css;
67 #endif
68 };
69
70 /*
71 * Region tracking -- allows tracking of reservations and instantiated pages
72 * across the pages in a mapping.
73 *
74 * The region data structures are embedded into a resv_map and protected
75 * by a resv_map's lock. The set of regions within the resv_map represent
76 * reservations for huge pages, or huge pages that have already been
77 * instantiated within the map. The from and to elements are huge page
78 * indices into the associated mapping. from indicates the starting index
79 * of the region. to represents the first index past the end of the region.
80 *
81 * For example, a file region structure with from == 0 and to == 4 represents
82 * four huge pages in a mapping. It is important to note that the to element
83 * represents the first element past the end of the region. This is used in
84 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
85 *
86 * Interval notation of the form [from, to) will be used to indicate that
87 * the endpoint from is inclusive and to is exclusive.
88 */
89 struct file_region {
90 struct list_head link;
91 long from;
92 long to;
93 #ifdef CONFIG_CGROUP_HUGETLB
94 /*
95 * On shared mappings, each reserved region appears as a struct
96 * file_region in resv_map. These fields hold the info needed to
97 * uncharge each reservation.
98 */
99 struct page_counter *reservation_counter;
100 struct cgroup_subsys_state *css;
101 #endif
102 };
103
104 struct hugetlb_vma_lock {
105 struct kref refs;
106 struct rw_semaphore rw_sema;
107 struct vm_area_struct *vma;
108 };
109
110 extern struct resv_map *resv_map_alloc(void);
111 void resv_map_release(struct kref *ref);
112
113 extern spinlock_t hugetlb_lock;
114 extern int hugetlb_max_hstate __read_mostly;
115 #define for_each_hstate(h) \
116 for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
117
118 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
119 long min_hpages);
120 void hugepage_put_subpool(struct hugepage_subpool *spool);
121
122 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
123 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
124 int move_hugetlb_page_tables(struct vm_area_struct *vma,
125 struct vm_area_struct *new_vma,
126 unsigned long old_addr, unsigned long new_addr,
127 unsigned long len);
128 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
129 struct vm_area_struct *, struct vm_area_struct *);
130 void unmap_hugepage_range(struct vm_area_struct *,
131 unsigned long, unsigned long, struct page *,
132 zap_flags_t);
133 void __unmap_hugepage_range(struct mmu_gather *tlb,
134 struct vm_area_struct *vma,
135 unsigned long start, unsigned long end,
136 struct page *ref_page, zap_flags_t zap_flags);
137 void hugetlb_report_meminfo(struct seq_file *);
138 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
139 void hugetlb_show_meminfo_node(int nid);
140 unsigned long hugetlb_total_pages(void);
141 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
142 unsigned long address, unsigned int flags);
143 #ifdef CONFIG_USERFAULTFD
144 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
145 struct vm_area_struct *dst_vma,
146 unsigned long dst_addr,
147 unsigned long src_addr,
148 uffd_flags_t flags,
149 struct folio **foliop);
150 #endif /* CONFIG_USERFAULTFD */
151 bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
152 struct vm_area_struct *vma,
153 vm_flags_t vm_flags);
154 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
155 long freed);
156 bool isolate_hugetlb(struct folio *folio, struct list_head *list);
157 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
158 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
159 bool *migratable_cleared);
160 void folio_putback_active_hugetlb(struct folio *folio);
161 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
162 void hugetlb_fix_reserve_counts(struct inode *inode);
163 extern struct mutex *hugetlb_fault_mutex_table;
164 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
165
166 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
167 unsigned long addr, pud_t *pud);
168 bool hugetlbfs_pagecache_present(struct hstate *h,
169 struct vm_area_struct *vma,
170 unsigned long address);
171
172 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio);
173
174 extern int sysctl_hugetlb_shm_group;
175 extern struct list_head huge_boot_pages[MAX_NUMNODES];
176
177 /* arch callbacks */
178
179 #ifndef CONFIG_HIGHPTE
180 /*
181 * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
182 * which may go down to the lowest PTE level in their huge_pte_offset() and
183 * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
184 */
pte_offset_huge(pmd_t * pmd,unsigned long address)185 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
186 {
187 return pte_offset_kernel(pmd, address);
188 }
pte_alloc_huge(struct mm_struct * mm,pmd_t * pmd,unsigned long address)189 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
190 unsigned long address)
191 {
192 return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
193 }
194 #endif
195
196 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
197 unsigned long addr, unsigned long sz);
198 /*
199 * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
200 * Returns the pte_t* if found, or NULL if the address is not mapped.
201 *
202 * IMPORTANT: we should normally not directly call this function, instead
203 * this is only a common interface to implement arch-specific
204 * walker. Please use hugetlb_walk() instead, because that will attempt to
205 * verify the locking for you.
206 *
207 * Since this function will walk all the pgtable pages (including not only
208 * high-level pgtable page, but also PUD entry that can be unshared
209 * concurrently for VM_SHARED), the caller of this function should be
210 * responsible of its thread safety. One can follow this rule:
211 *
212 * (1) For private mappings: pmd unsharing is not possible, so holding the
213 * mmap_lock for either read or write is sufficient. Most callers
214 * already hold the mmap_lock, so normally, no special action is
215 * required.
216 *
217 * (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
218 * pgtable page can go away from under us! It can be done by a pmd
219 * unshare with a follow up munmap() on the other process), then we
220 * need either:
221 *
222 * (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
223 * won't happen upon the range (it also makes sure the pte_t we
224 * read is the right and stable one), or,
225 *
226 * (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
227 * sure even if unshare happened the racy unmap() will wait until
228 * i_mmap_rwsem is released.
229 *
230 * Option (2.1) is the safest, which guarantees pte stability from pmd
231 * sharing pov, until the vma lock released. Option (2.2) doesn't protect
232 * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
233 * access.
234 */
235 pte_t *huge_pte_offset(struct mm_struct *mm,
236 unsigned long addr, unsigned long sz);
237 unsigned long hugetlb_mask_last_page(struct hstate *h);
238 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
239 unsigned long addr, pte_t *ptep);
240 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
241 unsigned long *start, unsigned long *end);
242
243 extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
244 unsigned long *begin, unsigned long *end);
245 extern void __hugetlb_zap_end(struct vm_area_struct *vma,
246 struct zap_details *details);
247
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)248 static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
249 unsigned long *start, unsigned long *end)
250 {
251 if (is_vm_hugetlb_page(vma))
252 __hugetlb_zap_begin(vma, start, end);
253 }
254
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)255 static inline void hugetlb_zap_end(struct vm_area_struct *vma,
256 struct zap_details *details)
257 {
258 if (is_vm_hugetlb_page(vma))
259 __hugetlb_zap_end(vma, details);
260 }
261
262 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
263 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
264 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
265 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
266 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
267 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
268 void hugetlb_vma_lock_release(struct kref *kref);
269 long hugetlb_change_protection(struct vm_area_struct *vma,
270 unsigned long address, unsigned long end, pgprot_t newprot,
271 unsigned long cp_flags);
272 bool is_hugetlb_entry_migration(pte_t pte);
273 bool is_hugetlb_entry_hwpoisoned(pte_t pte);
274 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
275
276 #else /* !CONFIG_HUGETLB_PAGE */
277
hugetlb_dup_vma_private(struct vm_area_struct * vma)278 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
279 {
280 }
281
clear_vma_resv_huge_pages(struct vm_area_struct * vma)282 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
283 {
284 }
285
hugetlb_total_pages(void)286 static inline unsigned long hugetlb_total_pages(void)
287 {
288 return 0;
289 }
290
hugetlb_folio_mapping_lock_write(struct folio * folio)291 static inline struct address_space *hugetlb_folio_mapping_lock_write(
292 struct folio *folio)
293 {
294 return NULL;
295 }
296
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)297 static inline int huge_pmd_unshare(struct mm_struct *mm,
298 struct vm_area_struct *vma,
299 unsigned long addr, pte_t *ptep)
300 {
301 return 0;
302 }
303
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)304 static inline void adjust_range_if_pmd_sharing_possible(
305 struct vm_area_struct *vma,
306 unsigned long *start, unsigned long *end)
307 {
308 }
309
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)310 static inline void hugetlb_zap_begin(
311 struct vm_area_struct *vma,
312 unsigned long *start, unsigned long *end)
313 {
314 }
315
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)316 static inline void hugetlb_zap_end(
317 struct vm_area_struct *vma,
318 struct zap_details *details)
319 {
320 }
321
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)322 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
323 struct mm_struct *src,
324 struct vm_area_struct *dst_vma,
325 struct vm_area_struct *src_vma)
326 {
327 BUG();
328 return 0;
329 }
330
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)331 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
332 struct vm_area_struct *new_vma,
333 unsigned long old_addr,
334 unsigned long new_addr,
335 unsigned long len)
336 {
337 BUG();
338 return 0;
339 }
340
hugetlb_report_meminfo(struct seq_file * m)341 static inline void hugetlb_report_meminfo(struct seq_file *m)
342 {
343 }
344
hugetlb_report_node_meminfo(char * buf,int len,int nid)345 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
346 {
347 return 0;
348 }
349
hugetlb_show_meminfo_node(int nid)350 static inline void hugetlb_show_meminfo_node(int nid)
351 {
352 }
353
prepare_hugepage_range(struct file * file,unsigned long addr,unsigned long len)354 static inline int prepare_hugepage_range(struct file *file,
355 unsigned long addr, unsigned long len)
356 {
357 return -EINVAL;
358 }
359
hugetlb_vma_lock_read(struct vm_area_struct * vma)360 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
361 {
362 }
363
hugetlb_vma_unlock_read(struct vm_area_struct * vma)364 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
365 {
366 }
367
hugetlb_vma_lock_write(struct vm_area_struct * vma)368 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
369 {
370 }
371
hugetlb_vma_unlock_write(struct vm_area_struct * vma)372 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
373 {
374 }
375
hugetlb_vma_trylock_write(struct vm_area_struct * vma)376 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
377 {
378 return 1;
379 }
380
hugetlb_vma_assert_locked(struct vm_area_struct * vma)381 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
382 {
383 }
384
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)385 static inline int is_hugepage_only_range(struct mm_struct *mm,
386 unsigned long addr, unsigned long len)
387 {
388 return 0;
389 }
390
hugetlb_free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)391 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
392 unsigned long addr, unsigned long end,
393 unsigned long floor, unsigned long ceiling)
394 {
395 BUG();
396 }
397
398 #ifdef CONFIG_USERFAULTFD
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)399 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
400 struct vm_area_struct *dst_vma,
401 unsigned long dst_addr,
402 unsigned long src_addr,
403 uffd_flags_t flags,
404 struct folio **foliop)
405 {
406 BUG();
407 return 0;
408 }
409 #endif /* CONFIG_USERFAULTFD */
410
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)411 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
412 unsigned long sz)
413 {
414 return NULL;
415 }
416
isolate_hugetlb(struct folio * folio,struct list_head * list)417 static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list)
418 {
419 return false;
420 }
421
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)422 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
423 {
424 return 0;
425 }
426
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)427 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
428 bool *migratable_cleared)
429 {
430 return 0;
431 }
432
folio_putback_active_hugetlb(struct folio * folio)433 static inline void folio_putback_active_hugetlb(struct folio *folio)
434 {
435 }
436
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)437 static inline void move_hugetlb_state(struct folio *old_folio,
438 struct folio *new_folio, int reason)
439 {
440 }
441
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)442 static inline long hugetlb_change_protection(
443 struct vm_area_struct *vma, unsigned long address,
444 unsigned long end, pgprot_t newprot,
445 unsigned long cp_flags)
446 {
447 return 0;
448 }
449
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)450 static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
451 struct vm_area_struct *vma, unsigned long start,
452 unsigned long end, struct page *ref_page,
453 zap_flags_t zap_flags)
454 {
455 BUG();
456 }
457
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)458 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
459 struct vm_area_struct *vma, unsigned long address,
460 unsigned int flags)
461 {
462 BUG();
463 return 0;
464 }
465
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)466 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
467
468 #endif /* !CONFIG_HUGETLB_PAGE */
469
470 #ifndef pgd_write
pgd_write(pgd_t pgd)471 static inline int pgd_write(pgd_t pgd)
472 {
473 BUG();
474 return 0;
475 }
476 #endif
477
478 #define HUGETLB_ANON_FILE "anon_hugepage"
479
480 enum {
481 /*
482 * The file will be used as an shm file so shmfs accounting rules
483 * apply
484 */
485 HUGETLB_SHMFS_INODE = 1,
486 /*
487 * The file is being created on the internal vfs mount and shmfs
488 * accounting rules do not apply
489 */
490 HUGETLB_ANONHUGE_INODE = 2,
491 };
492
493 #ifdef CONFIG_HUGETLBFS
494 struct hugetlbfs_sb_info {
495 long max_inodes; /* inodes allowed */
496 long free_inodes; /* inodes free */
497 spinlock_t stat_lock;
498 struct hstate *hstate;
499 struct hugepage_subpool *spool;
500 kuid_t uid;
501 kgid_t gid;
502 umode_t mode;
503 };
504
HUGETLBFS_SB(struct super_block * sb)505 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
506 {
507 return sb->s_fs_info;
508 }
509
510 struct hugetlbfs_inode_info {
511 struct inode vfs_inode;
512 unsigned int seals;
513 };
514
HUGETLBFS_I(struct inode * inode)515 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
516 {
517 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
518 }
519
520 extern const struct vm_operations_struct hugetlb_vm_ops;
521 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
522 int creat_flags, int page_size_log);
523
is_file_hugepages(const struct file * file)524 static inline bool is_file_hugepages(const struct file *file)
525 {
526 return file->f_op->fop_flags & FOP_HUGE_PAGES;
527 }
528
hstate_inode(struct inode * i)529 static inline struct hstate *hstate_inode(struct inode *i)
530 {
531 return HUGETLBFS_SB(i->i_sb)->hstate;
532 }
533 #else /* !CONFIG_HUGETLBFS */
534
535 #define is_file_hugepages(file) false
536 static inline struct file *
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)537 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
538 int creat_flags, int page_size_log)
539 {
540 return ERR_PTR(-ENOSYS);
541 }
542
hstate_inode(struct inode * i)543 static inline struct hstate *hstate_inode(struct inode *i)
544 {
545 return NULL;
546 }
547 #endif /* !CONFIG_HUGETLBFS */
548
549 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
550 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
551 unsigned long len, unsigned long pgoff,
552 unsigned long flags);
553 #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
554
555 unsigned long
556 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
557 unsigned long len, unsigned long pgoff,
558 unsigned long flags);
559
560 /*
561 * huegtlb page specific state flags. These flags are located in page.private
562 * of the hugetlb head page. Functions created via the below macros should be
563 * used to manipulate these flags.
564 *
565 * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
566 * allocation time. Cleared when page is fully instantiated. Free
567 * routine checks flag to restore a reservation on error paths.
568 * Synchronization: Examined or modified by code that knows it has
569 * the only reference to page. i.e. After allocation but before use
570 * or when the page is being freed.
571 * HPG_migratable - Set after a newly allocated page is added to the page
572 * cache and/or page tables. Indicates the page is a candidate for
573 * migration.
574 * Synchronization: Initially set after new page allocation with no
575 * locking. When examined and modified during migration processing
576 * (isolate, migrate, putback) the hugetlb_lock is held.
577 * HPG_temporary - Set on a page that is temporarily allocated from the buddy
578 * allocator. Typically used for migration target pages when no pages
579 * are available in the pool. The hugetlb free page path will
580 * immediately free pages with this flag set to the buddy allocator.
581 * Synchronization: Can be set after huge page allocation from buddy when
582 * code knows it has only reference. All other examinations and
583 * modifications require hugetlb_lock.
584 * HPG_freed - Set when page is on the free lists.
585 * Synchronization: hugetlb_lock held for examination and modification.
586 * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
587 * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
588 * that is not tracked by raw_hwp_page list.
589 */
590 enum hugetlb_page_flags {
591 HPG_restore_reserve = 0,
592 HPG_migratable,
593 HPG_temporary,
594 HPG_freed,
595 HPG_vmemmap_optimized,
596 HPG_raw_hwp_unreliable,
597 __NR_HPAGEFLAGS,
598 };
599
600 /*
601 * Macros to create test, set and clear function definitions for
602 * hugetlb specific page flags.
603 */
604 #ifdef CONFIG_HUGETLB_PAGE
605 #define TESTHPAGEFLAG(uname, flname) \
606 static __always_inline \
607 bool folio_test_hugetlb_##flname(struct folio *folio) \
608 { void *private = &folio->private; \
609 return test_bit(HPG_##flname, private); \
610 }
611
612 #define SETHPAGEFLAG(uname, flname) \
613 static __always_inline \
614 void folio_set_hugetlb_##flname(struct folio *folio) \
615 { void *private = &folio->private; \
616 set_bit(HPG_##flname, private); \
617 }
618
619 #define CLEARHPAGEFLAG(uname, flname) \
620 static __always_inline \
621 void folio_clear_hugetlb_##flname(struct folio *folio) \
622 { void *private = &folio->private; \
623 clear_bit(HPG_##flname, private); \
624 }
625 #else
626 #define TESTHPAGEFLAG(uname, flname) \
627 static inline bool \
628 folio_test_hugetlb_##flname(struct folio *folio) \
629 { return 0; }
630
631 #define SETHPAGEFLAG(uname, flname) \
632 static inline void \
633 folio_set_hugetlb_##flname(struct folio *folio) \
634 { }
635
636 #define CLEARHPAGEFLAG(uname, flname) \
637 static inline void \
638 folio_clear_hugetlb_##flname(struct folio *folio) \
639 { }
640 #endif
641
642 #define HPAGEFLAG(uname, flname) \
643 TESTHPAGEFLAG(uname, flname) \
644 SETHPAGEFLAG(uname, flname) \
645 CLEARHPAGEFLAG(uname, flname) \
646
647 /*
648 * Create functions associated with hugetlb page flags
649 */
650 HPAGEFLAG(RestoreReserve, restore_reserve)
651 HPAGEFLAG(Migratable, migratable)
652 HPAGEFLAG(Temporary, temporary)
653 HPAGEFLAG(Freed, freed)
654 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
655 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
656
657 #ifdef CONFIG_HUGETLB_PAGE
658
659 #define HSTATE_NAME_LEN 32
660 /* Defines one hugetlb page size */
661 struct hstate {
662 struct mutex resize_lock;
663 struct lock_class_key resize_key;
664 int next_nid_to_alloc;
665 int next_nid_to_free;
666 unsigned int order;
667 unsigned int demote_order;
668 unsigned long mask;
669 unsigned long max_huge_pages;
670 unsigned long nr_huge_pages;
671 unsigned long free_huge_pages;
672 unsigned long resv_huge_pages;
673 unsigned long surplus_huge_pages;
674 unsigned long nr_overcommit_huge_pages;
675 struct list_head hugepage_activelist;
676 struct list_head hugepage_freelists[MAX_NUMNODES];
677 unsigned int max_huge_pages_node[MAX_NUMNODES];
678 unsigned int nr_huge_pages_node[MAX_NUMNODES];
679 unsigned int free_huge_pages_node[MAX_NUMNODES];
680 unsigned int surplus_huge_pages_node[MAX_NUMNODES];
681 char name[HSTATE_NAME_LEN];
682 };
683
684 struct huge_bootmem_page {
685 struct list_head list;
686 struct hstate *hstate;
687 };
688
689 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
690 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
691 unsigned long addr, int avoid_reserve);
692 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
693 nodemask_t *nmask, gfp_t gfp_mask,
694 bool allow_alloc_fallback);
695 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
696 nodemask_t *nmask, gfp_t gfp_mask);
697
698 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
699 pgoff_t idx);
700 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
701 unsigned long address, struct folio *folio);
702
703 /* arch callback */
704 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
705 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
706 bool __init hugetlb_node_alloc_supported(void);
707
708 void __init hugetlb_add_hstate(unsigned order);
709 bool __init arch_hugetlb_valid_size(unsigned long size);
710 struct hstate *size_to_hstate(unsigned long size);
711
712 #ifndef HUGE_MAX_HSTATE
713 #define HUGE_MAX_HSTATE 1
714 #endif
715
716 extern struct hstate hstates[HUGE_MAX_HSTATE];
717 extern unsigned int default_hstate_idx;
718
719 #define default_hstate (hstates[default_hstate_idx])
720
hugetlb_folio_subpool(struct folio * folio)721 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
722 {
723 return folio->_hugetlb_subpool;
724 }
725
hugetlb_set_folio_subpool(struct folio * folio,struct hugepage_subpool * subpool)726 static inline void hugetlb_set_folio_subpool(struct folio *folio,
727 struct hugepage_subpool *subpool)
728 {
729 folio->_hugetlb_subpool = subpool;
730 }
731
hstate_file(struct file * f)732 static inline struct hstate *hstate_file(struct file *f)
733 {
734 return hstate_inode(file_inode(f));
735 }
736
hstate_sizelog(int page_size_log)737 static inline struct hstate *hstate_sizelog(int page_size_log)
738 {
739 if (!page_size_log)
740 return &default_hstate;
741
742 if (page_size_log < BITS_PER_LONG)
743 return size_to_hstate(1UL << page_size_log);
744
745 return NULL;
746 }
747
hstate_vma(struct vm_area_struct * vma)748 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
749 {
750 return hstate_file(vma->vm_file);
751 }
752
huge_page_size(const struct hstate * h)753 static inline unsigned long huge_page_size(const struct hstate *h)
754 {
755 return (unsigned long)PAGE_SIZE << h->order;
756 }
757
758 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
759
760 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
761
huge_page_mask(struct hstate * h)762 static inline unsigned long huge_page_mask(struct hstate *h)
763 {
764 return h->mask;
765 }
766
huge_page_order(struct hstate * h)767 static inline unsigned int huge_page_order(struct hstate *h)
768 {
769 return h->order;
770 }
771
huge_page_shift(struct hstate * h)772 static inline unsigned huge_page_shift(struct hstate *h)
773 {
774 return h->order + PAGE_SHIFT;
775 }
776
hstate_is_gigantic(struct hstate * h)777 static inline bool hstate_is_gigantic(struct hstate *h)
778 {
779 return huge_page_order(h) > MAX_PAGE_ORDER;
780 }
781
pages_per_huge_page(const struct hstate * h)782 static inline unsigned int pages_per_huge_page(const struct hstate *h)
783 {
784 return 1 << h->order;
785 }
786
blocks_per_huge_page(struct hstate * h)787 static inline unsigned int blocks_per_huge_page(struct hstate *h)
788 {
789 return huge_page_size(h) / 512;
790 }
791
filemap_lock_hugetlb_folio(struct hstate * h,struct address_space * mapping,pgoff_t idx)792 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
793 struct address_space *mapping, pgoff_t idx)
794 {
795 return filemap_lock_folio(mapping, idx << huge_page_order(h));
796 }
797
798 #include <asm/hugetlb.h>
799
800 #ifndef is_hugepage_only_range
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)801 static inline int is_hugepage_only_range(struct mm_struct *mm,
802 unsigned long addr, unsigned long len)
803 {
804 return 0;
805 }
806 #define is_hugepage_only_range is_hugepage_only_range
807 #endif
808
809 #ifndef arch_clear_hugetlb_flags
arch_clear_hugetlb_flags(struct folio * folio)810 static inline void arch_clear_hugetlb_flags(struct folio *folio) { }
811 #define arch_clear_hugetlb_flags arch_clear_hugetlb_flags
812 #endif
813
814 #ifndef arch_make_huge_pte
arch_make_huge_pte(pte_t entry,unsigned int shift,vm_flags_t flags)815 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
816 vm_flags_t flags)
817 {
818 return pte_mkhuge(entry);
819 }
820 #endif
821
folio_hstate(struct folio * folio)822 static inline struct hstate *folio_hstate(struct folio *folio)
823 {
824 VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
825 return size_to_hstate(folio_size(folio));
826 }
827
hstate_index_to_shift(unsigned index)828 static inline unsigned hstate_index_to_shift(unsigned index)
829 {
830 return hstates[index].order + PAGE_SHIFT;
831 }
832
hstate_index(struct hstate * h)833 static inline int hstate_index(struct hstate *h)
834 {
835 return h - hstates;
836 }
837
838 int dissolve_free_hugetlb_folio(struct folio *folio);
839 int dissolve_free_hugetlb_folios(unsigned long start_pfn,
840 unsigned long end_pfn);
841
842 #ifdef CONFIG_MEMORY_FAILURE
843 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
844 #else
folio_clear_hugetlb_hwpoison(struct folio * folio)845 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
846 {
847 }
848 #endif
849
850 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
851 #ifndef arch_hugetlb_migration_supported
arch_hugetlb_migration_supported(struct hstate * h)852 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
853 {
854 if ((huge_page_shift(h) == PMD_SHIFT) ||
855 (huge_page_shift(h) == PUD_SHIFT) ||
856 (huge_page_shift(h) == PGDIR_SHIFT))
857 return true;
858 else
859 return false;
860 }
861 #endif
862 #else
arch_hugetlb_migration_supported(struct hstate * h)863 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
864 {
865 return false;
866 }
867 #endif
868
hugepage_migration_supported(struct hstate * h)869 static inline bool hugepage_migration_supported(struct hstate *h)
870 {
871 return arch_hugetlb_migration_supported(h);
872 }
873
874 /*
875 * Movability check is different as compared to migration check.
876 * It determines whether or not a huge page should be placed on
877 * movable zone or not. Movability of any huge page should be
878 * required only if huge page size is supported for migration.
879 * There won't be any reason for the huge page to be movable if
880 * it is not migratable to start with. Also the size of the huge
881 * page should be large enough to be placed under a movable zone
882 * and still feasible enough to be migratable. Just the presence
883 * in movable zone does not make the migration feasible.
884 *
885 * So even though large huge page sizes like the gigantic ones
886 * are migratable they should not be movable because its not
887 * feasible to migrate them from movable zone.
888 */
hugepage_movable_supported(struct hstate * h)889 static inline bool hugepage_movable_supported(struct hstate *h)
890 {
891 if (!hugepage_migration_supported(h))
892 return false;
893
894 if (hstate_is_gigantic(h))
895 return false;
896 return true;
897 }
898
899 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)900 static inline gfp_t htlb_alloc_mask(struct hstate *h)
901 {
902 gfp_t gfp = __GFP_COMP | __GFP_NOWARN;
903
904 gfp |= hugepage_movable_supported(h) ? GFP_HIGHUSER_MOVABLE : GFP_HIGHUSER;
905
906 return gfp;
907 }
908
htlb_modify_alloc_mask(struct hstate * h,gfp_t gfp_mask)909 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
910 {
911 gfp_t modified_mask = htlb_alloc_mask(h);
912
913 /* Some callers might want to enforce node */
914 modified_mask |= (gfp_mask & __GFP_THISNODE);
915
916 modified_mask |= (gfp_mask & __GFP_NOWARN);
917
918 return modified_mask;
919 }
920
htlb_allow_alloc_fallback(int reason)921 static inline bool htlb_allow_alloc_fallback(int reason)
922 {
923 bool allowed_fallback = false;
924
925 /*
926 * Note: the memory offline, memory failure and migration syscalls will
927 * be allowed to fallback to other nodes due to lack of a better chioce,
928 * that might break the per-node hugetlb pool. While other cases will
929 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool.
930 */
931 switch (reason) {
932 case MR_MEMORY_HOTPLUG:
933 case MR_MEMORY_FAILURE:
934 case MR_SYSCALL:
935 case MR_MEMPOLICY_MBIND:
936 allowed_fallback = true;
937 break;
938 default:
939 break;
940 }
941
942 return allowed_fallback;
943 }
944
huge_pte_lockptr(struct hstate * h,struct mm_struct * mm,pte_t * pte)945 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
946 struct mm_struct *mm, pte_t *pte)
947 {
948 const unsigned long size = huge_page_size(h);
949
950 VM_WARN_ON(size == PAGE_SIZE);
951
952 /*
953 * hugetlb must use the exact same PT locks as core-mm page table
954 * walkers would. When modifying a PTE table, hugetlb must take the
955 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
956 * PT lock etc.
957 *
958 * The expectation is that any hugetlb folio smaller than a PMD is
959 * always mapped into a single PTE table and that any hugetlb folio
960 * smaller than a PUD (but at least as big as a PMD) is always mapped
961 * into a single PMD table.
962 *
963 * If that does not hold for an architecture, then that architecture
964 * must disable split PT locks such that all *_lockptr() functions
965 * will give us the same result: the per-MM PT lock.
966 *
967 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where
968 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr()
969 * and core-mm would use pmd_lockptr(). However, in such configurations
970 * split PMD locks are disabled -- they don't make sense on a single
971 * PGDIR page table -- and the end result is the same.
972 */
973 if (size >= PUD_SIZE)
974 return pud_lockptr(mm, (pud_t *) pte);
975 else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE))
976 return pmd_lockptr(mm, (pmd_t *) pte);
977 /* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */
978 return ptep_lockptr(mm, pte);
979 }
980
981 #ifndef hugepages_supported
982 /*
983 * Some platform decide whether they support huge pages at boot
984 * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
985 * when there is no such support
986 */
987 #define hugepages_supported() (HPAGE_SHIFT != 0)
988 #endif
989
990 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
991
hugetlb_count_init(struct mm_struct * mm)992 static inline void hugetlb_count_init(struct mm_struct *mm)
993 {
994 atomic_long_set(&mm->hugetlb_usage, 0);
995 }
996
hugetlb_count_add(long l,struct mm_struct * mm)997 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
998 {
999 atomic_long_add(l, &mm->hugetlb_usage);
1000 }
1001
hugetlb_count_sub(long l,struct mm_struct * mm)1002 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1003 {
1004 atomic_long_sub(l, &mm->hugetlb_usage);
1005 }
1006
1007 #ifndef huge_ptep_modify_prot_start
1008 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
huge_ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1009 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1010 unsigned long addr, pte_t *ptep)
1011 {
1012 return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep);
1013 }
1014 #endif
1015
1016 #ifndef huge_ptep_modify_prot_commit
1017 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
huge_ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1018 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1019 unsigned long addr, pte_t *ptep,
1020 pte_t old_pte, pte_t pte)
1021 {
1022 unsigned long psize = huge_page_size(hstate_vma(vma));
1023
1024 set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1025 }
1026 #endif
1027
1028 #ifdef CONFIG_NUMA
1029 void hugetlb_register_node(struct node *node);
1030 void hugetlb_unregister_node(struct node *node);
1031 #endif
1032
1033 /*
1034 * Check if a given raw @page in a hugepage is HWPOISON.
1035 */
1036 bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1037
1038 #else /* CONFIG_HUGETLB_PAGE */
1039 struct hstate {};
1040
1041 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1042 {
1043 return NULL;
1044 }
1045
1046 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1047 struct address_space *mapping, pgoff_t idx)
1048 {
1049 return NULL;
1050 }
1051
1052 static inline int isolate_or_dissolve_huge_page(struct page *page,
1053 struct list_head *list)
1054 {
1055 return -ENOMEM;
1056 }
1057
1058 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1059 unsigned long addr,
1060 int avoid_reserve)
1061 {
1062 return NULL;
1063 }
1064
1065 static inline struct folio *
1066 alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
1067 nodemask_t *nmask, gfp_t gfp_mask)
1068 {
1069 return NULL;
1070 }
1071
1072 static inline struct folio *
1073 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1074 nodemask_t *nmask, gfp_t gfp_mask,
1075 bool allow_alloc_fallback)
1076 {
1077 return NULL;
1078 }
1079
1080 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1081 {
1082 return 0;
1083 }
1084
1085 static inline struct hstate *hstate_file(struct file *f)
1086 {
1087 return NULL;
1088 }
1089
1090 static inline struct hstate *hstate_sizelog(int page_size_log)
1091 {
1092 return NULL;
1093 }
1094
1095 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1096 {
1097 return NULL;
1098 }
1099
1100 static inline struct hstate *folio_hstate(struct folio *folio)
1101 {
1102 return NULL;
1103 }
1104
1105 static inline struct hstate *size_to_hstate(unsigned long size)
1106 {
1107 return NULL;
1108 }
1109
1110 static inline unsigned long huge_page_size(struct hstate *h)
1111 {
1112 return PAGE_SIZE;
1113 }
1114
1115 static inline unsigned long huge_page_mask(struct hstate *h)
1116 {
1117 return PAGE_MASK;
1118 }
1119
1120 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1121 {
1122 return PAGE_SIZE;
1123 }
1124
1125 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1126 {
1127 return PAGE_SIZE;
1128 }
1129
1130 static inline unsigned int huge_page_order(struct hstate *h)
1131 {
1132 return 0;
1133 }
1134
1135 static inline unsigned int huge_page_shift(struct hstate *h)
1136 {
1137 return PAGE_SHIFT;
1138 }
1139
1140 static inline bool hstate_is_gigantic(struct hstate *h)
1141 {
1142 return false;
1143 }
1144
1145 static inline unsigned int pages_per_huge_page(struct hstate *h)
1146 {
1147 return 1;
1148 }
1149
1150 static inline unsigned hstate_index_to_shift(unsigned index)
1151 {
1152 return 0;
1153 }
1154
1155 static inline int hstate_index(struct hstate *h)
1156 {
1157 return 0;
1158 }
1159
1160 static inline int dissolve_free_hugetlb_folio(struct folio *folio)
1161 {
1162 return 0;
1163 }
1164
1165 static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn,
1166 unsigned long end_pfn)
1167 {
1168 return 0;
1169 }
1170
1171 static inline bool hugepage_migration_supported(struct hstate *h)
1172 {
1173 return false;
1174 }
1175
1176 static inline bool hugepage_movable_supported(struct hstate *h)
1177 {
1178 return false;
1179 }
1180
1181 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1182 {
1183 return 0;
1184 }
1185
1186 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1187 {
1188 return 0;
1189 }
1190
1191 static inline bool htlb_allow_alloc_fallback(int reason)
1192 {
1193 return false;
1194 }
1195
1196 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1197 struct mm_struct *mm, pte_t *pte)
1198 {
1199 return &mm->page_table_lock;
1200 }
1201
1202 static inline void hugetlb_count_init(struct mm_struct *mm)
1203 {
1204 }
1205
1206 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1207 {
1208 }
1209
1210 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1211 {
1212 }
1213
1214 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1215 unsigned long addr, pte_t *ptep)
1216 {
1217 #ifdef CONFIG_MMU
1218 return ptep_get(ptep);
1219 #else
1220 return *ptep;
1221 #endif
1222 }
1223
1224 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1225 pte_t *ptep, pte_t pte, unsigned long sz)
1226 {
1227 }
1228
1229 static inline void hugetlb_register_node(struct node *node)
1230 {
1231 }
1232
1233 static inline void hugetlb_unregister_node(struct node *node)
1234 {
1235 }
1236
1237 static inline bool hugetlbfs_pagecache_present(
1238 struct hstate *h, struct vm_area_struct *vma, unsigned long address)
1239 {
1240 return false;
1241 }
1242 #endif /* CONFIG_HUGETLB_PAGE */
1243
huge_pte_lock(struct hstate * h,struct mm_struct * mm,pte_t * pte)1244 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1245 struct mm_struct *mm, pte_t *pte)
1246 {
1247 spinlock_t *ptl;
1248
1249 ptl = huge_pte_lockptr(h, mm, pte);
1250 spin_lock(ptl);
1251 return ptl;
1252 }
1253
1254 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1255 extern void __init hugetlb_cma_reserve(int order);
1256 #else
hugetlb_cma_reserve(int order)1257 static inline __init void hugetlb_cma_reserve(int order)
1258 {
1259 }
1260 #endif
1261
1262 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
hugetlb_pmd_shared(pte_t * pte)1263 static inline bool hugetlb_pmd_shared(pte_t *pte)
1264 {
1265 return page_count(virt_to_page(pte)) > 1;
1266 }
1267 #else
hugetlb_pmd_shared(pte_t * pte)1268 static inline bool hugetlb_pmd_shared(pte_t *pte)
1269 {
1270 return false;
1271 }
1272 #endif
1273
1274 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1275
1276 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1277 /*
1278 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1279 * implement this.
1280 */
1281 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1282 #endif
1283
__vma_shareable_lock(struct vm_area_struct * vma)1284 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1285 {
1286 return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1287 }
1288
1289 bool __vma_private_lock(struct vm_area_struct *vma);
1290
1291 /*
1292 * Safe version of huge_pte_offset() to check the locks. See comments
1293 * above huge_pte_offset().
1294 */
1295 static inline pte_t *
hugetlb_walk(struct vm_area_struct * vma,unsigned long addr,unsigned long sz)1296 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1297 {
1298 #if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP)
1299 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1300
1301 /*
1302 * If pmd sharing possible, locking needed to safely walk the
1303 * hugetlb pgtables. More information can be found at the comment
1304 * above huge_pte_offset() in the same file.
1305 *
1306 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1307 */
1308 if (__vma_shareable_lock(vma))
1309 WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1310 !lockdep_is_held(
1311 &vma->vm_file->f_mapping->i_mmap_rwsem));
1312 #endif
1313 return huge_pte_offset(vma->vm_mm, addr, sz);
1314 }
1315
1316 #endif /* _LINUX_HUGETLB_H */
1317