xref: /openbsd/gnu/llvm/llvm/include/llvm/IR/Type.h (revision d415bd75)
1 //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the Type class.  For more "Type"
10 // stuff, look in DerivedTypes.h.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_TYPE_H
15 #define LLVM_IR_TYPE_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/Support/CBindingWrapping.h"
19 #include "llvm/Support/Casting.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/TypeSize.h"
23 #include <cassert>
24 #include <cstdint>
25 #include <iterator>
26 
27 namespace llvm {
28 
29 class IntegerType;
30 struct fltSemantics;
31 class LLVMContext;
32 class PointerType;
33 class raw_ostream;
34 class StringRef;
35 template <typename PtrType> class SmallPtrSetImpl;
36 
37 /// The instances of the Type class are immutable: once they are created,
38 /// they are never changed.  Also note that only one instance of a particular
39 /// type is ever created.  Thus seeing if two types are equal is a matter of
40 /// doing a trivial pointer comparison. To enforce that no two equal instances
41 /// are created, Type instances can only be created via static factory methods
42 /// in class Type and in derived classes.  Once allocated, Types are never
43 /// free'd.
44 ///
45 class Type {
46 public:
47   //===--------------------------------------------------------------------===//
48   /// Definitions of all of the base types for the Type system.  Based on this
49   /// value, you can cast to a class defined in DerivedTypes.h.
50   /// Note: If you add an element to this, you need to add an element to the
51   /// Type::getPrimitiveType function, or else things will break!
52   /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
53   ///
54   enum TypeID {
55     // PrimitiveTypes
56     HalfTyID = 0,  ///< 16-bit floating point type
57     BFloatTyID,    ///< 16-bit floating point type (7-bit significand)
58     FloatTyID,     ///< 32-bit floating point type
59     DoubleTyID,    ///< 64-bit floating point type
60     X86_FP80TyID,  ///< 80-bit floating point type (X87)
61     FP128TyID,     ///< 128-bit floating point type (112-bit significand)
62     PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC)
63     VoidTyID,      ///< type with no size
64     LabelTyID,     ///< Labels
65     MetadataTyID,  ///< Metadata
66     X86_MMXTyID,   ///< MMX vectors (64 bits, X86 specific)
67     X86_AMXTyID,   ///< AMX vectors (8192 bits, X86 specific)
68     TokenTyID,     ///< Tokens
69 
70     // Derived types... see DerivedTypes.h file.
71     IntegerTyID,        ///< Arbitrary bit width integers
72     FunctionTyID,       ///< Functions
73     PointerTyID,        ///< Pointers
74     StructTyID,         ///< Structures
75     ArrayTyID,          ///< Arrays
76     FixedVectorTyID,    ///< Fixed width SIMD vector type
77     ScalableVectorTyID, ///< Scalable SIMD vector type
78     TypedPointerTyID,   ///< Typed pointer used by some GPU targets
79     TargetExtTyID,      ///< Target extension type
80   };
81 
82 private:
83   /// This refers to the LLVMContext in which this type was uniqued.
84   LLVMContext &Context;
85 
86   TypeID   ID : 8;            // The current base type of this type.
87   unsigned SubclassData : 24; // Space for subclasses to store data.
88                               // Note that this should be synchronized with
89                               // MAX_INT_BITS value in IntegerType class.
90 
91 protected:
92   friend class LLVMContextImpl;
93 
Type(LLVMContext & C,TypeID tid)94   explicit Type(LLVMContext &C, TypeID tid)
95     : Context(C), ID(tid), SubclassData(0) {}
96   ~Type() = default;
97 
getSubclassData()98   unsigned getSubclassData() const { return SubclassData; }
99 
setSubclassData(unsigned val)100   void setSubclassData(unsigned val) {
101     SubclassData = val;
102     // Ensure we don't have any accidental truncation.
103     assert(getSubclassData() == val && "Subclass data too large for field");
104   }
105 
106   /// Keeps track of how many Type*'s there are in the ContainedTys list.
107   unsigned NumContainedTys = 0;
108 
109   /// A pointer to the array of Types contained by this Type. For example, this
110   /// includes the arguments of a function type, the elements of a structure,
111   /// the pointee of a pointer, the element type of an array, etc. This pointer
112   /// may be 0 for types that don't contain other types (Integer, Double,
113   /// Float).
114   Type * const *ContainedTys = nullptr;
115 
116 public:
117   /// Print the current type.
118   /// Omit the type details if \p NoDetails == true.
119   /// E.g., let %st = type { i32, i16 }
120   /// When \p NoDetails is true, we only print %st.
121   /// Put differently, \p NoDetails prints the type as if
122   /// inlined with the operands when printing an instruction.
123   void print(raw_ostream &O, bool IsForDebug = false,
124              bool NoDetails = false) const;
125 
126   void dump() const;
127 
128   /// Return the LLVMContext in which this type was uniqued.
getContext()129   LLVMContext &getContext() const { return Context; }
130 
131   //===--------------------------------------------------------------------===//
132   // Accessors for working with types.
133   //
134 
135   /// Return the type id for the type. This will return one of the TypeID enum
136   /// elements defined above.
getTypeID()137   TypeID getTypeID() const { return ID; }
138 
139   /// Return true if this is 'void'.
isVoidTy()140   bool isVoidTy() const { return getTypeID() == VoidTyID; }
141 
142   /// Return true if this is 'half', a 16-bit IEEE fp type.
isHalfTy()143   bool isHalfTy() const { return getTypeID() == HalfTyID; }
144 
145   /// Return true if this is 'bfloat', a 16-bit bfloat type.
isBFloatTy()146   bool isBFloatTy() const { return getTypeID() == BFloatTyID; }
147 
148   /// Return true if this is a 16-bit float type.
is16bitFPTy()149   bool is16bitFPTy() const {
150     return getTypeID() == BFloatTyID || getTypeID() == HalfTyID;
151   }
152 
153   /// Return true if this is 'float', a 32-bit IEEE fp type.
isFloatTy()154   bool isFloatTy() const { return getTypeID() == FloatTyID; }
155 
156   /// Return true if this is 'double', a 64-bit IEEE fp type.
isDoubleTy()157   bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
158 
159   /// Return true if this is x86 long double.
isX86_FP80Ty()160   bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
161 
162   /// Return true if this is 'fp128'.
isFP128Ty()163   bool isFP128Ty() const { return getTypeID() == FP128TyID; }
164 
165   /// Return true if this is powerpc long double.
isPPC_FP128Ty()166   bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
167 
168   /// Return true if this is a well-behaved IEEE-like type, which has a IEEE
169   /// compatible layout as defined by isIEEE(), and does not have unnormal
170   /// values
isIEEELikeFPTy()171   bool isIEEELikeFPTy() const {
172     switch (getTypeID()) {
173     case DoubleTyID:
174     case FloatTyID:
175     case HalfTyID:
176     case BFloatTyID:
177     case FP128TyID:
178       return true;
179     default:
180       return false;
181     }
182   }
183 
184   /// Return true if this is one of the floating-point types
isFloatingPointTy()185   bool isFloatingPointTy() const {
186     return isIEEELikeFPTy() || getTypeID() == X86_FP80TyID ||
187            getTypeID() == PPC_FP128TyID;
188   }
189 
190   /// Returns true if this is a floating-point type that is an unevaluated sum
191   /// of multiple floating-point units.
192   /// An example of such a type is ppc_fp128, also known as double-double, which
193   /// consists of two IEEE 754 doubles.
isMultiUnitFPType()194   bool isMultiUnitFPType() const {
195     return getTypeID() == PPC_FP128TyID;
196   }
197 
198   const fltSemantics &getFltSemantics() const;
199 
200   /// Return true if this is X86 MMX.
isX86_MMXTy()201   bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
202 
203   /// Return true if this is X86 AMX.
isX86_AMXTy()204   bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; }
205 
206   /// Return true if this is a target extension type.
isTargetExtTy()207   bool isTargetExtTy() const { return getTypeID() == TargetExtTyID; }
208 
209   /// Return true if this is a FP type or a vector of FP.
isFPOrFPVectorTy()210   bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
211 
212   /// Return true if this is 'label'.
isLabelTy()213   bool isLabelTy() const { return getTypeID() == LabelTyID; }
214 
215   /// Return true if this is 'metadata'.
isMetadataTy()216   bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
217 
218   /// Return true if this is 'token'.
isTokenTy()219   bool isTokenTy() const { return getTypeID() == TokenTyID; }
220 
221   /// True if this is an instance of IntegerType.
isIntegerTy()222   bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
223 
224   /// Return true if this is an IntegerType of the given width.
225   bool isIntegerTy(unsigned Bitwidth) const;
226 
227   /// Return true if this is an integer type or a vector of integer types.
isIntOrIntVectorTy()228   bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
229 
230   /// Return true if this is an integer type or a vector of integer types of
231   /// the given width.
isIntOrIntVectorTy(unsigned BitWidth)232   bool isIntOrIntVectorTy(unsigned BitWidth) const {
233     return getScalarType()->isIntegerTy(BitWidth);
234   }
235 
236   /// Return true if this is an integer type or a pointer type.
isIntOrPtrTy()237   bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
238 
239   /// True if this is an instance of FunctionType.
isFunctionTy()240   bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
241 
242   /// True if this is an instance of StructType.
isStructTy()243   bool isStructTy() const { return getTypeID() == StructTyID; }
244 
245   /// True if this is an instance of ArrayType.
isArrayTy()246   bool isArrayTy() const { return getTypeID() == ArrayTyID; }
247 
248   /// True if this is an instance of PointerType.
isPointerTy()249   bool isPointerTy() const { return getTypeID() == PointerTyID; }
250 
251   /// True if this is an instance of an opaque PointerType.
252   bool isOpaquePointerTy() const;
253 
254   /// Return true if this is a pointer type or a vector of pointer types.
isPtrOrPtrVectorTy()255   bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
256 
257   /// True if this is an instance of VectorType.
isVectorTy()258   inline bool isVectorTy() const {
259     return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID;
260   }
261 
262   /// Return true if this type could be converted with a lossless BitCast to
263   /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
264   /// same size only where no re-interpretation of the bits is done.
265   /// Determine if this type could be losslessly bitcast to Ty
266   bool canLosslesslyBitCastTo(Type *Ty) const;
267 
268   /// Return true if this type is empty, that is, it has no elements or all of
269   /// its elements are empty.
270   bool isEmptyTy() const;
271 
272   /// Return true if the type is "first class", meaning it is a valid type for a
273   /// Value.
isFirstClassType()274   bool isFirstClassType() const {
275     return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
276   }
277 
278   /// Return true if the type is a valid type for a register in codegen. This
279   /// includes all first-class types except struct and array types.
isSingleValueType()280   bool isSingleValueType() const {
281     return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
282            isPointerTy() || isVectorTy() || isX86_AMXTy() || isTargetExtTy();
283   }
284 
285   /// Return true if the type is an aggregate type. This means it is valid as
286   /// the first operand of an insertvalue or extractvalue instruction. This
287   /// includes struct and array types, but does not include vector types.
isAggregateType()288   bool isAggregateType() const {
289     return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
290   }
291 
292   /// Return true if it makes sense to take the size of this type. To get the
293   /// actual size for a particular target, it is reasonable to use the
294   /// DataLayout subsystem to do this.
295   bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
296     // If it's a primitive, it is always sized.
297     if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
298         getTypeID() == PointerTyID || getTypeID() == X86_MMXTyID ||
299         getTypeID() == X86_AMXTyID)
300       return true;
301     // If it is not something that can have a size (e.g. a function or label),
302     // it doesn't have a size.
303     if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
304         !isVectorTy() && getTypeID() != TargetExtTyID)
305       return false;
306     // Otherwise we have to try harder to decide.
307     return isSizedDerivedType(Visited);
308   }
309 
310   /// Return the basic size of this type if it is a primitive type. These are
311   /// fixed by LLVM and are not target-dependent.
312   /// This will return zero if the type does not have a size or is not a
313   /// primitive type.
314   ///
315   /// If this is a scalable vector type, the scalable property will be set and
316   /// the runtime size will be a positive integer multiple of the base size.
317   ///
318   /// Note that this may not reflect the size of memory allocated for an
319   /// instance of the type or the number of bytes that are written when an
320   /// instance of the type is stored to memory. The DataLayout class provides
321   /// additional query functions to provide this information.
322   ///
323   TypeSize getPrimitiveSizeInBits() const LLVM_READONLY;
324 
325   /// If this is a vector type, return the getPrimitiveSizeInBits value for the
326   /// element type. Otherwise return the getPrimitiveSizeInBits value for this
327   /// type.
328   unsigned getScalarSizeInBits() const LLVM_READONLY;
329 
330   /// Return the width of the mantissa of this type. This is only valid on
331   /// floating-point types. If the FP type does not have a stable mantissa (e.g.
332   /// ppc long double), this method returns -1.
333   int getFPMantissaWidth() const;
334 
335   /// Return whether the type is IEEE compatible, as defined by the eponymous
336   /// method in APFloat.
337   bool isIEEE() const;
338 
339   /// If this is a vector type, return the element type, otherwise return
340   /// 'this'.
getScalarType()341   inline Type *getScalarType() const {
342     if (isVectorTy())
343       return getContainedType(0);
344     return const_cast<Type *>(this);
345   }
346 
347   //===--------------------------------------------------------------------===//
348   // Type Iteration support.
349   //
350   using subtype_iterator = Type * const *;
351 
subtype_begin()352   subtype_iterator subtype_begin() const { return ContainedTys; }
subtype_end()353   subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
subtypes()354   ArrayRef<Type*> subtypes() const {
355     return ArrayRef(subtype_begin(), subtype_end());
356   }
357 
358   using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
359 
subtype_rbegin()360   subtype_reverse_iterator subtype_rbegin() const {
361     return subtype_reverse_iterator(subtype_end());
362   }
subtype_rend()363   subtype_reverse_iterator subtype_rend() const {
364     return subtype_reverse_iterator(subtype_begin());
365   }
366 
367   /// This method is used to implement the type iterator (defined at the end of
368   /// the file). For derived types, this returns the types 'contained' in the
369   /// derived type.
getContainedType(unsigned i)370   Type *getContainedType(unsigned i) const {
371     assert(i < NumContainedTys && "Index out of range!");
372     return ContainedTys[i];
373   }
374 
375   /// Return the number of types in the derived type.
getNumContainedTypes()376   unsigned getNumContainedTypes() const { return NumContainedTys; }
377 
378   //===--------------------------------------------------------------------===//
379   // Helper methods corresponding to subclass methods.  This forces a cast to
380   // the specified subclass and calls its accessor.  "getArrayNumElements" (for
381   // example) is shorthand for cast<ArrayType>(Ty)->getNumElements().  This is
382   // only intended to cover the core methods that are frequently used, helper
383   // methods should not be added here.
384 
385   inline unsigned getIntegerBitWidth() const;
386 
387   inline Type *getFunctionParamType(unsigned i) const;
388   inline unsigned getFunctionNumParams() const;
389   inline bool isFunctionVarArg() const;
390 
391   inline StringRef getStructName() const;
392   inline unsigned getStructNumElements() const;
393   inline Type *getStructElementType(unsigned N) const;
394 
395   inline uint64_t getArrayNumElements() const;
396 
getArrayElementType()397   Type *getArrayElementType() const {
398     assert(getTypeID() == ArrayTyID);
399     return ContainedTys[0];
400   }
401 
402   inline StringRef getTargetExtName() const;
403 
404   /// This method is deprecated without replacement. Pointer element types are
405   /// not available with opaque pointers.
406   [[deprecated("Deprecated without replacement, see "
407                "https://llvm.org/docs/OpaquePointers.html for context and "
408                "migration instructions")]]
getPointerElementType()409   Type *getPointerElementType() const {
410     return getNonOpaquePointerElementType();
411   }
412 
413   /// Only use this method in code that is not reachable with opaque pointers,
414   /// or part of deprecated methods that will be removed as part of the opaque
415   /// pointers transition.
getNonOpaquePointerElementType()416   Type *getNonOpaquePointerElementType() const {
417     assert(getTypeID() == PointerTyID);
418     assert(NumContainedTys &&
419            "Attempting to get element type of opaque pointer");
420     return ContainedTys[0];
421   }
422 
423   /// Given vector type, change the element type,
424   /// whilst keeping the old number of elements.
425   /// For non-vectors simply returns \p EltTy.
426   inline Type *getWithNewType(Type *EltTy) const;
427 
428   /// Given an integer or vector type, change the lane bitwidth to NewBitwidth,
429   /// whilst keeping the old number of lanes.
430   inline Type *getWithNewBitWidth(unsigned NewBitWidth) const;
431 
432   /// Given scalar/vector integer type, returns a type with elements twice as
433   /// wide as in the original type. For vectors, preserves element count.
434   inline Type *getExtendedType() const;
435 
436   /// Get the address space of this pointer or pointer vector type.
437   inline unsigned getPointerAddressSpace() const;
438 
439   //===--------------------------------------------------------------------===//
440   // Static members exported by the Type class itself.  Useful for getting
441   // instances of Type.
442   //
443 
444   /// Return a type based on an identifier.
445   static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
446 
447   //===--------------------------------------------------------------------===//
448   // These are the builtin types that are always available.
449   //
450   static Type *getVoidTy(LLVMContext &C);
451   static Type *getLabelTy(LLVMContext &C);
452   static Type *getHalfTy(LLVMContext &C);
453   static Type *getBFloatTy(LLVMContext &C);
454   static Type *getFloatTy(LLVMContext &C);
455   static Type *getDoubleTy(LLVMContext &C);
456   static Type *getMetadataTy(LLVMContext &C);
457   static Type *getX86_FP80Ty(LLVMContext &C);
458   static Type *getFP128Ty(LLVMContext &C);
459   static Type *getPPC_FP128Ty(LLVMContext &C);
460   static Type *getX86_MMXTy(LLVMContext &C);
461   static Type *getX86_AMXTy(LLVMContext &C);
462   static Type *getTokenTy(LLVMContext &C);
463   static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
464   static IntegerType *getInt1Ty(LLVMContext &C);
465   static IntegerType *getInt8Ty(LLVMContext &C);
466   static IntegerType *getInt16Ty(LLVMContext &C);
467   static IntegerType *getInt32Ty(LLVMContext &C);
468   static IntegerType *getInt64Ty(LLVMContext &C);
469   static IntegerType *getInt128Ty(LLVMContext &C);
getScalarTy(LLVMContext & C)470   template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
471     int noOfBits = sizeof(ScalarTy) * CHAR_BIT;
472     if (std::is_integral<ScalarTy>::value) {
473       return (Type*) Type::getIntNTy(C, noOfBits);
474     } else if (std::is_floating_point<ScalarTy>::value) {
475       switch (noOfBits) {
476       case 32:
477         return Type::getFloatTy(C);
478       case 64:
479         return Type::getDoubleTy(C);
480       }
481     }
482     llvm_unreachable("Unsupported type in Type::getScalarTy");
483   }
484   static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S);
485 
486   //===--------------------------------------------------------------------===//
487   // Convenience methods for getting pointer types with one of the above builtin
488   // types as pointee.
489   //
490   static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
491   static PointerType *getBFloatPtrTy(LLVMContext &C, unsigned AS = 0);
492   static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
493   static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
494   static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
495   static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
496   static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
497   static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
498   static PointerType *getX86_AMXPtrTy(LLVMContext &C, unsigned AS = 0);
499   static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
500   static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
501   static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
502   static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
503   static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
504   static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
505 
506   /// Return a pointer to the current type. This is equivalent to
507   /// PointerType::get(Foo, AddrSpace).
508   /// TODO: Remove this after opaque pointer transition is complete.
509   PointerType *getPointerTo(unsigned AddrSpace = 0) const;
510 
511 private:
512   /// Derived types like structures and arrays are sized iff all of the members
513   /// of the type are sized as well. Since asking for their size is relatively
514   /// uncommon, move this operation out-of-line.
515   bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
516 };
517 
518 // Printing of types.
519 inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
520   T.print(OS);
521   return OS;
522 }
523 
524 // allow isa<PointerType>(x) to work without DerivedTypes.h included.
525 template <> struct isa_impl<PointerType, Type> {
526   static inline bool doit(const Type &Ty) {
527     return Ty.getTypeID() == Type::PointerTyID;
528   }
529 };
530 
531 // Create wrappers for C Binding types (see CBindingWrapping.h).
532 DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)
533 
534 /* Specialized opaque type conversions.
535  */
536 inline Type **unwrap(LLVMTypeRef* Tys) {
537   return reinterpret_cast<Type**>(Tys);
538 }
539 
540 inline LLVMTypeRef *wrap(Type **Tys) {
541   return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
542 }
543 
544 } // end namespace llvm
545 
546 #endif // LLVM_IR_TYPE_H
547