1 //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declarations of classes that represent "derived
10 // types". These are things like "arrays of x" or "structure of x, y, z" or
11 // "function returning x taking (y,z) as parameters", etc...
12 //
13 // The implementations of these classes live in the Type.cpp file.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #ifndef LLVM_IR_DERIVEDTYPES_H
18 #define LLVM_IR_DERIVEDTYPES_H
19
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Type.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/TypeSize.h"
27 #include <cassert>
28 #include <cstdint>
29
30 namespace llvm {
31
32 class Value;
33 class APInt;
34 class LLVMContext;
35
36 /// Class to represent integer types. Note that this class is also used to
37 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
38 /// Int64Ty.
39 /// Integer representation type
40 class IntegerType : public Type {
41 friend class LLVMContextImpl;
42
43 protected:
IntegerType(LLVMContext & C,unsigned NumBits)44 explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
45 setSubclassData(NumBits);
46 }
47
48 public:
49 /// This enum is just used to hold constants we need for IntegerType.
50 enum {
51 MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
52 MAX_INT_BITS = (1<<23) ///< Maximum number of bits that can be specified
53 ///< Note that bit width is stored in the Type classes SubclassData field
54 ///< which has 24 bits. SelectionDAG type legalization can require a
55 ///< power of 2 IntegerType, so limit to the largest representable power
56 ///< of 2, 8388608.
57 };
58
59 /// This static method is the primary way of constructing an IntegerType.
60 /// If an IntegerType with the same NumBits value was previously instantiated,
61 /// that instance will be returned. Otherwise a new one will be created. Only
62 /// one instance with a given NumBits value is ever created.
63 /// Get or create an IntegerType instance.
64 static IntegerType *get(LLVMContext &C, unsigned NumBits);
65
66 /// Returns type twice as wide the input type.
getExtendedType()67 IntegerType *getExtendedType() const {
68 return Type::getIntNTy(getContext(), 2 * getScalarSizeInBits());
69 }
70
71 /// Get the number of bits in this IntegerType
getBitWidth()72 unsigned getBitWidth() const { return getSubclassData(); }
73
74 /// Return a bitmask with ones set for all of the bits that can be set by an
75 /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
getBitMask()76 uint64_t getBitMask() const {
77 return ~uint64_t(0UL) >> (64-getBitWidth());
78 }
79
80 /// Return a uint64_t with just the most significant bit set (the sign bit, if
81 /// the value is treated as a signed number).
getSignBit()82 uint64_t getSignBit() const {
83 return 1ULL << (getBitWidth()-1);
84 }
85
86 /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
87 /// @returns a bit mask with ones set for all the bits of this type.
88 /// Get a bit mask for this type.
89 APInt getMask() const;
90
91 /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)92 static bool classof(const Type *T) {
93 return T->getTypeID() == IntegerTyID;
94 }
95 };
96
getIntegerBitWidth()97 unsigned Type::getIntegerBitWidth() const {
98 return cast<IntegerType>(this)->getBitWidth();
99 }
100
101 /// Class to represent function types
102 ///
103 class FunctionType : public Type {
104 FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
105
106 public:
107 FunctionType(const FunctionType &) = delete;
108 FunctionType &operator=(const FunctionType &) = delete;
109
110 /// This static method is the primary way of constructing a FunctionType.
111 static FunctionType *get(Type *Result,
112 ArrayRef<Type*> Params, bool isVarArg);
113
114 /// Create a FunctionType taking no parameters.
115 static FunctionType *get(Type *Result, bool isVarArg);
116
117 /// Return true if the specified type is valid as a return type.
118 static bool isValidReturnType(Type *RetTy);
119
120 /// Return true if the specified type is valid as an argument type.
121 static bool isValidArgumentType(Type *ArgTy);
122
isVarArg()123 bool isVarArg() const { return getSubclassData()!=0; }
getReturnType()124 Type *getReturnType() const { return ContainedTys[0]; }
125
126 using param_iterator = Type::subtype_iterator;
127
param_begin()128 param_iterator param_begin() const { return ContainedTys + 1; }
param_end()129 param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
params()130 ArrayRef<Type *> params() const {
131 return ArrayRef(param_begin(), param_end());
132 }
133
134 /// Parameter type accessors.
getParamType(unsigned i)135 Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
136
137 /// Return the number of fixed parameters this function type requires.
138 /// This does not consider varargs.
getNumParams()139 unsigned getNumParams() const { return NumContainedTys - 1; }
140
141 /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)142 static bool classof(const Type *T) {
143 return T->getTypeID() == FunctionTyID;
144 }
145 };
146 static_assert(alignof(FunctionType) >= alignof(Type *),
147 "Alignment sufficient for objects appended to FunctionType");
148
isFunctionVarArg()149 bool Type::isFunctionVarArg() const {
150 return cast<FunctionType>(this)->isVarArg();
151 }
152
getFunctionParamType(unsigned i)153 Type *Type::getFunctionParamType(unsigned i) const {
154 return cast<FunctionType>(this)->getParamType(i);
155 }
156
getFunctionNumParams()157 unsigned Type::getFunctionNumParams() const {
158 return cast<FunctionType>(this)->getNumParams();
159 }
160
161 /// A handy container for a FunctionType+Callee-pointer pair, which can be
162 /// passed around as a single entity. This assists in replacing the use of
163 /// PointerType::getElementType() to access the function's type, since that's
164 /// slated for removal as part of the [opaque pointer types] project.
165 class FunctionCallee {
166 public:
167 // Allow implicit conversion from types which have a getFunctionType member
168 // (e.g. Function and InlineAsm).
169 template <typename T, typename U = decltype(&T::getFunctionType)>
FunctionCallee(T * Fn)170 FunctionCallee(T *Fn)
171 : FnTy(Fn ? Fn->getFunctionType() : nullptr), Callee(Fn) {}
172
FunctionCallee(FunctionType * FnTy,Value * Callee)173 FunctionCallee(FunctionType *FnTy, Value *Callee)
174 : FnTy(FnTy), Callee(Callee) {
175 assert((FnTy == nullptr) == (Callee == nullptr));
176 }
177
FunctionCallee(std::nullptr_t)178 FunctionCallee(std::nullptr_t) {}
179
180 FunctionCallee() = default;
181
getFunctionType()182 FunctionType *getFunctionType() { return FnTy; }
183
getCallee()184 Value *getCallee() { return Callee; }
185
186 explicit operator bool() { return Callee; }
187
188 private:
189 FunctionType *FnTy = nullptr;
190 Value *Callee = nullptr;
191 };
192
193 /// Class to represent struct types. There are two different kinds of struct
194 /// types: Literal structs and Identified structs.
195 ///
196 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
197 /// always have a body when created. You can get one of these by using one of
198 /// the StructType::get() forms.
199 ///
200 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
201 /// uniqued. The names for identified structs are managed at the LLVMContext
202 /// level, so there can only be a single identified struct with a given name in
203 /// a particular LLVMContext. Identified structs may also optionally be opaque
204 /// (have no body specified). You get one of these by using one of the
205 /// StructType::create() forms.
206 ///
207 /// Independent of what kind of struct you have, the body of a struct type are
208 /// laid out in memory consecutively with the elements directly one after the
209 /// other (if the struct is packed) or (if not packed) with padding between the
210 /// elements as defined by DataLayout (which is required to match what the code
211 /// generator for a target expects).
212 ///
213 class StructType : public Type {
StructType(LLVMContext & C)214 StructType(LLVMContext &C) : Type(C, StructTyID) {}
215
216 enum {
217 /// This is the contents of the SubClassData field.
218 SCDB_HasBody = 1,
219 SCDB_Packed = 2,
220 SCDB_IsLiteral = 4,
221 SCDB_IsSized = 8
222 };
223
224 /// For a named struct that actually has a name, this is a pointer to the
225 /// symbol table entry (maintained by LLVMContext) for the struct.
226 /// This is null if the type is an literal struct or if it is a identified
227 /// type that has an empty name.
228 void *SymbolTableEntry = nullptr;
229
230 public:
231 StructType(const StructType &) = delete;
232 StructType &operator=(const StructType &) = delete;
233
234 /// This creates an identified struct.
235 static StructType *create(LLVMContext &Context, StringRef Name);
236 static StructType *create(LLVMContext &Context);
237
238 static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
239 bool isPacked = false);
240 static StructType *create(ArrayRef<Type *> Elements);
241 static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
242 StringRef Name, bool isPacked = false);
243 static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
244 template <class... Tys>
245 static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *>
create(StringRef Name,Type * elt1,Tys * ...elts)246 create(StringRef Name, Type *elt1, Tys *... elts) {
247 assert(elt1 && "Cannot create a struct type with no elements with this");
248 return create(ArrayRef<Type *>({elt1, elts...}), Name);
249 }
250
251 /// This static method is the primary way to create a literal StructType.
252 static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
253 bool isPacked = false);
254
255 /// Create an empty structure type.
256 static StructType *get(LLVMContext &Context, bool isPacked = false);
257
258 /// This static method is a convenience method for creating structure types by
259 /// specifying the elements as arguments. Note that this method always returns
260 /// a non-packed struct, and requires at least one element type.
261 template <class... Tys>
262 static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *>
get(Type * elt1,Tys * ...elts)263 get(Type *elt1, Tys *... elts) {
264 assert(elt1 && "Cannot create a struct type with no elements with this");
265 LLVMContext &Ctx = elt1->getContext();
266 return StructType::get(Ctx, ArrayRef<Type *>({elt1, elts...}));
267 }
268
269 /// Return the type with the specified name, or null if there is none by that
270 /// name.
271 static StructType *getTypeByName(LLVMContext &C, StringRef Name);
272
isPacked()273 bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
274
275 /// Return true if this type is uniqued by structural equivalence, false if it
276 /// is a struct definition.
isLiteral()277 bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
278
279 /// Return true if this is a type with an identity that has no body specified
280 /// yet. These prints as 'opaque' in .ll files.
isOpaque()281 bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
282
283 /// isSized - Return true if this is a sized type.
284 bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
285
286 /// Returns true if this struct contains a scalable vector.
287 bool containsScalableVectorType() const;
288
289 /// Return true if this is a named struct that has a non-empty name.
hasName()290 bool hasName() const { return SymbolTableEntry != nullptr; }
291
292 /// Return the name for this struct type if it has an identity.
293 /// This may return an empty string for an unnamed struct type. Do not call
294 /// this on an literal type.
295 StringRef getName() const;
296
297 /// Change the name of this type to the specified name, or to a name with a
298 /// suffix if there is a collision. Do not call this on an literal type.
299 void setName(StringRef Name);
300
301 /// Specify a body for an opaque identified type.
302 void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
303
304 template <typename... Tys>
305 std::enable_if_t<are_base_of<Type, Tys...>::value, void>
setBody(Type * elt1,Tys * ...elts)306 setBody(Type *elt1, Tys *... elts) {
307 assert(elt1 && "Cannot create a struct type with no elements with this");
308 setBody(ArrayRef<Type *>({elt1, elts...}));
309 }
310
311 /// Return true if the specified type is valid as a element type.
312 static bool isValidElementType(Type *ElemTy);
313
314 // Iterator access to the elements.
315 using element_iterator = Type::subtype_iterator;
316
element_begin()317 element_iterator element_begin() const { return ContainedTys; }
element_end()318 element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
elements()319 ArrayRef<Type *> elements() const {
320 return ArrayRef(element_begin(), element_end());
321 }
322
323 /// Return true if this is layout identical to the specified struct.
324 bool isLayoutIdentical(StructType *Other) const;
325
326 /// Random access to the elements
getNumElements()327 unsigned getNumElements() const { return NumContainedTys; }
getElementType(unsigned N)328 Type *getElementType(unsigned N) const {
329 assert(N < NumContainedTys && "Element number out of range!");
330 return ContainedTys[N];
331 }
332 /// Given an index value into the type, return the type of the element.
333 Type *getTypeAtIndex(const Value *V) const;
getTypeAtIndex(unsigned N)334 Type *getTypeAtIndex(unsigned N) const { return getElementType(N); }
335 bool indexValid(const Value *V) const;
indexValid(unsigned Idx)336 bool indexValid(unsigned Idx) const { return Idx < getNumElements(); }
337
338 /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)339 static bool classof(const Type *T) {
340 return T->getTypeID() == StructTyID;
341 }
342 };
343
getStructName()344 StringRef Type::getStructName() const {
345 return cast<StructType>(this)->getName();
346 }
347
getStructNumElements()348 unsigned Type::getStructNumElements() const {
349 return cast<StructType>(this)->getNumElements();
350 }
351
getStructElementType(unsigned N)352 Type *Type::getStructElementType(unsigned N) const {
353 return cast<StructType>(this)->getElementType(N);
354 }
355
356 /// Class to represent array types.
357 class ArrayType : public Type {
358 /// The element type of the array.
359 Type *ContainedType;
360 /// Number of elements in the array.
361 uint64_t NumElements;
362
363 ArrayType(Type *ElType, uint64_t NumEl);
364
365 public:
366 ArrayType(const ArrayType &) = delete;
367 ArrayType &operator=(const ArrayType &) = delete;
368
getNumElements()369 uint64_t getNumElements() const { return NumElements; }
getElementType()370 Type *getElementType() const { return ContainedType; }
371
372 /// This static method is the primary way to construct an ArrayType
373 static ArrayType *get(Type *ElementType, uint64_t NumElements);
374
375 /// Return true if the specified type is valid as a element type.
376 static bool isValidElementType(Type *ElemTy);
377
378 /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)379 static bool classof(const Type *T) {
380 return T->getTypeID() == ArrayTyID;
381 }
382 };
383
getArrayNumElements()384 uint64_t Type::getArrayNumElements() const {
385 return cast<ArrayType>(this)->getNumElements();
386 }
387
388 /// Base class of all SIMD vector types
389 class VectorType : public Type {
390 /// A fully specified VectorType is of the form <vscale x n x Ty>. 'n' is the
391 /// minimum number of elements of type Ty contained within the vector, and
392 /// 'vscale x' indicates that the total element count is an integer multiple
393 /// of 'n', where the multiple is either guaranteed to be one, or is
394 /// statically unknown at compile time.
395 ///
396 /// If the multiple is known to be 1, then the extra term is discarded in
397 /// textual IR:
398 ///
399 /// <4 x i32> - a vector containing 4 i32s
400 /// <vscale x 4 x i32> - a vector containing an unknown integer multiple
401 /// of 4 i32s
402
403 /// The element type of the vector.
404 Type *ContainedType;
405
406 protected:
407 /// The element quantity of this vector. The meaning of this value depends
408 /// on the type of vector:
409 /// - For FixedVectorType = <ElementQuantity x ty>, there are
410 /// exactly ElementQuantity elements in this vector.
411 /// - For ScalableVectorType = <vscale x ElementQuantity x ty>,
412 /// there are vscale * ElementQuantity elements in this vector, where
413 /// vscale is a runtime-constant integer greater than 0.
414 const unsigned ElementQuantity;
415
416 VectorType(Type *ElType, unsigned EQ, Type::TypeID TID);
417
418 public:
419 VectorType(const VectorType &) = delete;
420 VectorType &operator=(const VectorType &) = delete;
421
getElementType()422 Type *getElementType() const { return ContainedType; }
423
424 /// This static method is the primary way to construct an VectorType.
425 static VectorType *get(Type *ElementType, ElementCount EC);
426
get(Type * ElementType,unsigned NumElements,bool Scalable)427 static VectorType *get(Type *ElementType, unsigned NumElements,
428 bool Scalable) {
429 return VectorType::get(ElementType,
430 ElementCount::get(NumElements, Scalable));
431 }
432
get(Type * ElementType,const VectorType * Other)433 static VectorType *get(Type *ElementType, const VectorType *Other) {
434 return VectorType::get(ElementType, Other->getElementCount());
435 }
436
437 /// This static method gets a VectorType with the same number of elements as
438 /// the input type, and the element type is an integer type of the same width
439 /// as the input element type.
getInteger(VectorType * VTy)440 static VectorType *getInteger(VectorType *VTy) {
441 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
442 assert(EltBits && "Element size must be of a non-zero size");
443 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
444 return VectorType::get(EltTy, VTy->getElementCount());
445 }
446
447 /// This static method is like getInteger except that the element types are
448 /// twice as wide as the elements in the input type.
getExtendedElementVectorType(VectorType * VTy)449 static VectorType *getExtendedElementVectorType(VectorType *VTy) {
450 assert(VTy->isIntOrIntVectorTy() && "VTy expected to be a vector of ints.");
451 auto *EltTy = cast<IntegerType>(VTy->getElementType());
452 return VectorType::get(EltTy->getExtendedType(), VTy->getElementCount());
453 }
454
455 // This static method gets a VectorType with the same number of elements as
456 // the input type, and the element type is an integer or float type which
457 // is half as wide as the elements in the input type.
getTruncatedElementVectorType(VectorType * VTy)458 static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
459 Type *EltTy;
460 if (VTy->getElementType()->isFloatingPointTy()) {
461 switch(VTy->getElementType()->getTypeID()) {
462 case DoubleTyID:
463 EltTy = Type::getFloatTy(VTy->getContext());
464 break;
465 case FloatTyID:
466 EltTy = Type::getHalfTy(VTy->getContext());
467 break;
468 default:
469 llvm_unreachable("Cannot create narrower fp vector element type");
470 }
471 } else {
472 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
473 assert((EltBits & 1) == 0 &&
474 "Cannot truncate vector element with odd bit-width");
475 EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
476 }
477 return VectorType::get(EltTy, VTy->getElementCount());
478 }
479
480 // This static method returns a VectorType with a smaller number of elements
481 // of a larger type than the input element type. For example, a <16 x i8>
482 // subdivided twice would return <4 x i32>
getSubdividedVectorType(VectorType * VTy,int NumSubdivs)483 static VectorType *getSubdividedVectorType(VectorType *VTy, int NumSubdivs) {
484 for (int i = 0; i < NumSubdivs; ++i) {
485 VTy = VectorType::getDoubleElementsVectorType(VTy);
486 VTy = VectorType::getTruncatedElementVectorType(VTy);
487 }
488 return VTy;
489 }
490
491 /// This static method returns a VectorType with half as many elements as the
492 /// input type and the same element type.
getHalfElementsVectorType(VectorType * VTy)493 static VectorType *getHalfElementsVectorType(VectorType *VTy) {
494 auto EltCnt = VTy->getElementCount();
495 assert(EltCnt.isKnownEven() &&
496 "Cannot halve vector with odd number of elements.");
497 return VectorType::get(VTy->getElementType(),
498 EltCnt.divideCoefficientBy(2));
499 }
500
501 /// This static method returns a VectorType with twice as many elements as the
502 /// input type and the same element type.
getDoubleElementsVectorType(VectorType * VTy)503 static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
504 auto EltCnt = VTy->getElementCount();
505 assert((EltCnt.getKnownMinValue() * 2ull) <= UINT_MAX &&
506 "Too many elements in vector");
507 return VectorType::get(VTy->getElementType(), EltCnt * 2);
508 }
509
510 /// Return true if the specified type is valid as a element type.
511 static bool isValidElementType(Type *ElemTy);
512
513 /// Return an ElementCount instance to represent the (possibly scalable)
514 /// number of elements in the vector.
515 inline ElementCount getElementCount() const;
516
517 /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)518 static bool classof(const Type *T) {
519 return T->getTypeID() == FixedVectorTyID ||
520 T->getTypeID() == ScalableVectorTyID;
521 }
522 };
523
524 /// Class to represent fixed width SIMD vectors
525 class FixedVectorType : public VectorType {
526 protected:
FixedVectorType(Type * ElTy,unsigned NumElts)527 FixedVectorType(Type *ElTy, unsigned NumElts)
528 : VectorType(ElTy, NumElts, FixedVectorTyID) {}
529
530 public:
531 static FixedVectorType *get(Type *ElementType, unsigned NumElts);
532
get(Type * ElementType,const FixedVectorType * FVTy)533 static FixedVectorType *get(Type *ElementType, const FixedVectorType *FVTy) {
534 return get(ElementType, FVTy->getNumElements());
535 }
536
getInteger(FixedVectorType * VTy)537 static FixedVectorType *getInteger(FixedVectorType *VTy) {
538 return cast<FixedVectorType>(VectorType::getInteger(VTy));
539 }
540
getExtendedElementVectorType(FixedVectorType * VTy)541 static FixedVectorType *getExtendedElementVectorType(FixedVectorType *VTy) {
542 return cast<FixedVectorType>(VectorType::getExtendedElementVectorType(VTy));
543 }
544
getTruncatedElementVectorType(FixedVectorType * VTy)545 static FixedVectorType *getTruncatedElementVectorType(FixedVectorType *VTy) {
546 return cast<FixedVectorType>(
547 VectorType::getTruncatedElementVectorType(VTy));
548 }
549
getSubdividedVectorType(FixedVectorType * VTy,int NumSubdivs)550 static FixedVectorType *getSubdividedVectorType(FixedVectorType *VTy,
551 int NumSubdivs) {
552 return cast<FixedVectorType>(
553 VectorType::getSubdividedVectorType(VTy, NumSubdivs));
554 }
555
getHalfElementsVectorType(FixedVectorType * VTy)556 static FixedVectorType *getHalfElementsVectorType(FixedVectorType *VTy) {
557 return cast<FixedVectorType>(VectorType::getHalfElementsVectorType(VTy));
558 }
559
getDoubleElementsVectorType(FixedVectorType * VTy)560 static FixedVectorType *getDoubleElementsVectorType(FixedVectorType *VTy) {
561 return cast<FixedVectorType>(VectorType::getDoubleElementsVectorType(VTy));
562 }
563
classof(const Type * T)564 static bool classof(const Type *T) {
565 return T->getTypeID() == FixedVectorTyID;
566 }
567
getNumElements()568 unsigned getNumElements() const { return ElementQuantity; }
569 };
570
571 /// Class to represent scalable SIMD vectors
572 class ScalableVectorType : public VectorType {
573 protected:
ScalableVectorType(Type * ElTy,unsigned MinNumElts)574 ScalableVectorType(Type *ElTy, unsigned MinNumElts)
575 : VectorType(ElTy, MinNumElts, ScalableVectorTyID) {}
576
577 public:
578 static ScalableVectorType *get(Type *ElementType, unsigned MinNumElts);
579
get(Type * ElementType,const ScalableVectorType * SVTy)580 static ScalableVectorType *get(Type *ElementType,
581 const ScalableVectorType *SVTy) {
582 return get(ElementType, SVTy->getMinNumElements());
583 }
584
getInteger(ScalableVectorType * VTy)585 static ScalableVectorType *getInteger(ScalableVectorType *VTy) {
586 return cast<ScalableVectorType>(VectorType::getInteger(VTy));
587 }
588
589 static ScalableVectorType *
getExtendedElementVectorType(ScalableVectorType * VTy)590 getExtendedElementVectorType(ScalableVectorType *VTy) {
591 return cast<ScalableVectorType>(
592 VectorType::getExtendedElementVectorType(VTy));
593 }
594
595 static ScalableVectorType *
getTruncatedElementVectorType(ScalableVectorType * VTy)596 getTruncatedElementVectorType(ScalableVectorType *VTy) {
597 return cast<ScalableVectorType>(
598 VectorType::getTruncatedElementVectorType(VTy));
599 }
600
getSubdividedVectorType(ScalableVectorType * VTy,int NumSubdivs)601 static ScalableVectorType *getSubdividedVectorType(ScalableVectorType *VTy,
602 int NumSubdivs) {
603 return cast<ScalableVectorType>(
604 VectorType::getSubdividedVectorType(VTy, NumSubdivs));
605 }
606
607 static ScalableVectorType *
getHalfElementsVectorType(ScalableVectorType * VTy)608 getHalfElementsVectorType(ScalableVectorType *VTy) {
609 return cast<ScalableVectorType>(VectorType::getHalfElementsVectorType(VTy));
610 }
611
612 static ScalableVectorType *
getDoubleElementsVectorType(ScalableVectorType * VTy)613 getDoubleElementsVectorType(ScalableVectorType *VTy) {
614 return cast<ScalableVectorType>(
615 VectorType::getDoubleElementsVectorType(VTy));
616 }
617
618 /// Get the minimum number of elements in this vector. The actual number of
619 /// elements in the vector is an integer multiple of this value.
getMinNumElements()620 uint64_t getMinNumElements() const { return ElementQuantity; }
621
classof(const Type * T)622 static bool classof(const Type *T) {
623 return T->getTypeID() == ScalableVectorTyID;
624 }
625 };
626
getElementCount()627 inline ElementCount VectorType::getElementCount() const {
628 return ElementCount::get(ElementQuantity, isa<ScalableVectorType>(this));
629 }
630
631 /// Class to represent pointers.
632 class PointerType : public Type {
633 explicit PointerType(Type *ElType, unsigned AddrSpace);
634 explicit PointerType(LLVMContext &C, unsigned AddrSpace);
635
636 Type *PointeeTy;
637
638 public:
639 PointerType(const PointerType &) = delete;
640 PointerType &operator=(const PointerType &) = delete;
641
642 /// This constructs a pointer to an object of the specified type in a numbered
643 /// address space.
644 static PointerType *get(Type *ElementType, unsigned AddressSpace);
645 /// This constructs an opaque pointer to an object in a numbered address
646 /// space.
647 static PointerType *get(LLVMContext &C, unsigned AddressSpace);
648
649 /// This constructs a pointer to an object of the specified type in the
650 /// default address space (address space zero).
getUnqual(Type * ElementType)651 static PointerType *getUnqual(Type *ElementType) {
652 return PointerType::get(ElementType, 0);
653 }
654
655 /// This constructs an opaque pointer to an object in the
656 /// default address space (address space zero).
getUnqual(LLVMContext & C)657 static PointerType *getUnqual(LLVMContext &C) {
658 return PointerType::get(C, 0);
659 }
660
661 /// This constructs a pointer type with the same pointee type as input
662 /// PointerType (or opaque pointer if the input PointerType is opaque) and the
663 /// given address space. This is only useful during the opaque pointer
664 /// transition.
665 /// TODO: remove after opaque pointer transition is complete.
getWithSamePointeeType(PointerType * PT,unsigned AddressSpace)666 static PointerType *getWithSamePointeeType(PointerType *PT,
667 unsigned AddressSpace) {
668 if (PT->isOpaque())
669 return get(PT->getContext(), AddressSpace);
670 return get(PT->PointeeTy, AddressSpace);
671 }
672
isOpaque()673 bool isOpaque() const { return !PointeeTy; }
674
675 /// Return true if the specified type is valid as a element type.
676 static bool isValidElementType(Type *ElemTy);
677
678 /// Return true if we can load or store from a pointer to this type.
679 static bool isLoadableOrStorableType(Type *ElemTy);
680
681 /// Return the address space of the Pointer type.
getAddressSpace()682 inline unsigned getAddressSpace() const { return getSubclassData(); }
683
684 /// Return true if either this is an opaque pointer type or if this pointee
685 /// type matches Ty. Primarily used for checking if an instruction's pointer
686 /// operands are valid types. Will be useless after non-opaque pointers are
687 /// removed.
isOpaqueOrPointeeTypeMatches(Type * Ty)688 bool isOpaqueOrPointeeTypeMatches(Type *Ty) {
689 return isOpaque() || PointeeTy == Ty;
690 }
691
692 /// Return true if both pointer types have the same element type. Two opaque
693 /// pointers are considered to have the same element type, while an opaque
694 /// and a non-opaque pointer have different element types.
695 /// TODO: Remove after opaque pointer transition is complete.
hasSameElementTypeAs(PointerType * Other)696 bool hasSameElementTypeAs(PointerType *Other) {
697 return PointeeTy == Other->PointeeTy;
698 }
699
700 /// Implement support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)701 static bool classof(const Type *T) {
702 return T->getTypeID() == PointerTyID;
703 }
704 };
705
getExtendedType()706 Type *Type::getExtendedType() const {
707 assert(
708 isIntOrIntVectorTy() &&
709 "Original type expected to be a vector of integers or a scalar integer.");
710 if (auto *VTy = dyn_cast<VectorType>(this))
711 return VectorType::getExtendedElementVectorType(
712 const_cast<VectorType *>(VTy));
713 return cast<IntegerType>(this)->getExtendedType();
714 }
715
getWithNewType(Type * EltTy)716 Type *Type::getWithNewType(Type *EltTy) const {
717 if (auto *VTy = dyn_cast<VectorType>(this))
718 return VectorType::get(EltTy, VTy->getElementCount());
719 return EltTy;
720 }
721
getWithNewBitWidth(unsigned NewBitWidth)722 Type *Type::getWithNewBitWidth(unsigned NewBitWidth) const {
723 assert(
724 isIntOrIntVectorTy() &&
725 "Original type expected to be a vector of integers or a scalar integer.");
726 return getWithNewType(getIntNTy(getContext(), NewBitWidth));
727 }
728
getPointerAddressSpace()729 unsigned Type::getPointerAddressSpace() const {
730 return cast<PointerType>(getScalarType())->getAddressSpace();
731 }
732
733 /// Class to represent target extensions types, which are generally
734 /// unintrospectable from target-independent optimizations.
735 ///
736 /// Target extension types have a string name, and optionally have type and/or
737 /// integer parameters. The exact meaning of any parameters is dependent on the
738 /// target.
739 class TargetExtType : public Type {
740 TargetExtType(LLVMContext &C, StringRef Name, ArrayRef<Type *> Types,
741 ArrayRef<unsigned> Ints);
742
743 // These strings are ultimately owned by the context.
744 StringRef Name;
745 unsigned *IntParams;
746
747 public:
748 TargetExtType(const TargetExtType &) = delete;
749 TargetExtType &operator=(const TargetExtType &) = delete;
750
751 /// Return a target extension type having the specified name and optional
752 /// type and integer parameters.
753 static TargetExtType *get(LLVMContext &Context, StringRef Name,
754 ArrayRef<Type *> Types = std::nullopt,
755 ArrayRef<unsigned> Ints = std::nullopt);
756
757 /// Return the name for this target extension type. Two distinct target
758 /// extension types may have the same name if their type or integer parameters
759 /// differ.
getName()760 StringRef getName() const { return Name; }
761
762 /// Return the type parameters for this particular target extension type. If
763 /// there are no parameters, an empty array is returned.
type_params()764 ArrayRef<Type *> type_params() const {
765 return ArrayRef(type_param_begin(), type_param_end());
766 }
767
768 using type_param_iterator = Type::subtype_iterator;
type_param_begin()769 type_param_iterator type_param_begin() const { return ContainedTys; }
type_param_end()770 type_param_iterator type_param_end() const {
771 return &ContainedTys[NumContainedTys];
772 }
773
getTypeParameter(unsigned i)774 Type *getTypeParameter(unsigned i) const { return getContainedType(i); }
getNumTypeParameters()775 unsigned getNumTypeParameters() const { return getNumContainedTypes(); }
776
777 /// Return the integer parameters for this particular target extension type.
778 /// If there are no parameters, an empty array is returned.
int_params()779 ArrayRef<unsigned> int_params() const {
780 return ArrayRef(IntParams, getNumIntParameters());
781 }
782
getIntParameter(unsigned i)783 unsigned getIntParameter(unsigned i) const { return IntParams[i]; }
getNumIntParameters()784 unsigned getNumIntParameters() const { return getSubclassData(); }
785
786 enum Property {
787 /// zeroinitializer is valid for this target extension type.
788 HasZeroInit = 1U << 0,
789 /// This type may be used as the value type of a global variable.
790 CanBeGlobal = 1U << 1,
791 };
792
793 /// Returns true if the target extension type contains the given property.
794 bool hasProperty(Property Prop) const;
795
796 /// Returns an underlying layout type for the target extension type. This
797 /// type can be used to query size and alignment information, if it is
798 /// appropriate (although note that the layout type may also be void). It is
799 /// not legal to bitcast between this type and the layout type, however.
800 Type *getLayoutType() const;
801
802 /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)803 static bool classof(const Type *T) { return T->getTypeID() == TargetExtTyID; }
804 };
805
getTargetExtName()806 StringRef Type::getTargetExtName() const {
807 return cast<TargetExtType>(this)->getName();
808 }
809
810 } // end namespace llvm
811
812 #endif // LLVM_IR_DERIVEDTYPES_H
813