1 //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declarations of classes that represent "derived
10 // types".  These are things like "arrays of x" or "structure of x, y, z" or
11 // "function returning x taking (y,z) as parameters", etc...
12 //
13 // The implementations of these classes live in the Type.cpp file.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_IR_DERIVEDTYPES_H
18 #define LLVM_IR_DERIVEDTYPES_H
19 
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Type.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/TypeSize.h"
27 #include <cassert>
28 #include <cstdint>
29 
30 namespace llvm {
31 
32 class Value;
33 class APInt;
34 class LLVMContext;
35 
36 /// Class to represent integer types. Note that this class is also used to
37 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
38 /// Int64Ty.
39 /// Integer representation type
40 class IntegerType : public Type {
41   friend class LLVMContextImpl;
42 
43 protected:
IntegerType(LLVMContext & C,unsigned NumBits)44   explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
45     setSubclassData(NumBits);
46   }
47 
48 public:
49   /// This enum is just used to hold constants we need for IntegerType.
50   enum {
51     MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
52     MAX_INT_BITS = (1<<23)   ///< Maximum number of bits that can be specified
53       ///< Note that bit width is stored in the Type classes SubclassData field
54       ///< which has 24 bits. SelectionDAG type legalization can require a
55       ///< power of 2 IntegerType, so limit to the largest representable power
56       ///< of 2, 8388608.
57   };
58 
59   /// This static method is the primary way of constructing an IntegerType.
60   /// If an IntegerType with the same NumBits value was previously instantiated,
61   /// that instance will be returned. Otherwise a new one will be created. Only
62   /// one instance with a given NumBits value is ever created.
63   /// Get or create an IntegerType instance.
64   static IntegerType *get(LLVMContext &C, unsigned NumBits);
65 
66   /// Returns type twice as wide the input type.
getExtendedType()67   IntegerType *getExtendedType() const {
68     return Type::getIntNTy(getContext(), 2 * getScalarSizeInBits());
69   }
70 
71   /// Get the number of bits in this IntegerType
getBitWidth()72   unsigned getBitWidth() const { return getSubclassData(); }
73 
74   /// Return a bitmask with ones set for all of the bits that can be set by an
75   /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
getBitMask()76   uint64_t getBitMask() const {
77     return ~uint64_t(0UL) >> (64-getBitWidth());
78   }
79 
80   /// Return a uint64_t with just the most significant bit set (the sign bit, if
81   /// the value is treated as a signed number).
getSignBit()82   uint64_t getSignBit() const {
83     return 1ULL << (getBitWidth()-1);
84   }
85 
86   /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
87   /// @returns a bit mask with ones set for all the bits of this type.
88   /// Get a bit mask for this type.
89   APInt getMask() const;
90 
91   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)92   static bool classof(const Type *T) {
93     return T->getTypeID() == IntegerTyID;
94   }
95 };
96 
getIntegerBitWidth()97 unsigned Type::getIntegerBitWidth() const {
98   return cast<IntegerType>(this)->getBitWidth();
99 }
100 
101 /// Class to represent function types
102 ///
103 class FunctionType : public Type {
104   FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
105 
106 public:
107   FunctionType(const FunctionType &) = delete;
108   FunctionType &operator=(const FunctionType &) = delete;
109 
110   /// This static method is the primary way of constructing a FunctionType.
111   static FunctionType *get(Type *Result,
112                            ArrayRef<Type*> Params, bool isVarArg);
113 
114   /// Create a FunctionType taking no parameters.
115   static FunctionType *get(Type *Result, bool isVarArg);
116 
117   /// Return true if the specified type is valid as a return type.
118   static bool isValidReturnType(Type *RetTy);
119 
120   /// Return true if the specified type is valid as an argument type.
121   static bool isValidArgumentType(Type *ArgTy);
122 
isVarArg()123   bool isVarArg() const { return getSubclassData()!=0; }
getReturnType()124   Type *getReturnType() const { return ContainedTys[0]; }
125 
126   using param_iterator = Type::subtype_iterator;
127 
param_begin()128   param_iterator param_begin() const { return ContainedTys + 1; }
param_end()129   param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
params()130   ArrayRef<Type *> params() const {
131     return ArrayRef(param_begin(), param_end());
132   }
133 
134   /// Parameter type accessors.
getParamType(unsigned i)135   Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
136 
137   /// Return the number of fixed parameters this function type requires.
138   /// This does not consider varargs.
getNumParams()139   unsigned getNumParams() const { return NumContainedTys - 1; }
140 
141   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)142   static bool classof(const Type *T) {
143     return T->getTypeID() == FunctionTyID;
144   }
145 };
146 static_assert(alignof(FunctionType) >= alignof(Type *),
147               "Alignment sufficient for objects appended to FunctionType");
148 
isFunctionVarArg()149 bool Type::isFunctionVarArg() const {
150   return cast<FunctionType>(this)->isVarArg();
151 }
152 
getFunctionParamType(unsigned i)153 Type *Type::getFunctionParamType(unsigned i) const {
154   return cast<FunctionType>(this)->getParamType(i);
155 }
156 
getFunctionNumParams()157 unsigned Type::getFunctionNumParams() const {
158   return cast<FunctionType>(this)->getNumParams();
159 }
160 
161 /// A handy container for a FunctionType+Callee-pointer pair, which can be
162 /// passed around as a single entity. This assists in replacing the use of
163 /// PointerType::getElementType() to access the function's type, since that's
164 /// slated for removal as part of the [opaque pointer types] project.
165 class FunctionCallee {
166 public:
167   // Allow implicit conversion from types which have a getFunctionType member
168   // (e.g. Function and InlineAsm).
169   template <typename T, typename U = decltype(&T::getFunctionType)>
FunctionCallee(T * Fn)170   FunctionCallee(T *Fn)
171       : FnTy(Fn ? Fn->getFunctionType() : nullptr), Callee(Fn) {}
172 
FunctionCallee(FunctionType * FnTy,Value * Callee)173   FunctionCallee(FunctionType *FnTy, Value *Callee)
174       : FnTy(FnTy), Callee(Callee) {
175     assert((FnTy == nullptr) == (Callee == nullptr));
176   }
177 
FunctionCallee(std::nullptr_t)178   FunctionCallee(std::nullptr_t) {}
179 
180   FunctionCallee() = default;
181 
getFunctionType()182   FunctionType *getFunctionType() { return FnTy; }
183 
getCallee()184   Value *getCallee() { return Callee; }
185 
186   explicit operator bool() { return Callee; }
187 
188 private:
189   FunctionType *FnTy = nullptr;
190   Value *Callee = nullptr;
191 };
192 
193 /// Class to represent struct types. There are two different kinds of struct
194 /// types: Literal structs and Identified structs.
195 ///
196 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
197 /// always have a body when created.  You can get one of these by using one of
198 /// the StructType::get() forms.
199 ///
200 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
201 /// uniqued.  The names for identified structs are managed at the LLVMContext
202 /// level, so there can only be a single identified struct with a given name in
203 /// a particular LLVMContext.  Identified structs may also optionally be opaque
204 /// (have no body specified).  You get one of these by using one of the
205 /// StructType::create() forms.
206 ///
207 /// Independent of what kind of struct you have, the body of a struct type are
208 /// laid out in memory consecutively with the elements directly one after the
209 /// other (if the struct is packed) or (if not packed) with padding between the
210 /// elements as defined by DataLayout (which is required to match what the code
211 /// generator for a target expects).
212 ///
213 class StructType : public Type {
StructType(LLVMContext & C)214   StructType(LLVMContext &C) : Type(C, StructTyID) {}
215 
216   enum {
217     /// This is the contents of the SubClassData field.
218     SCDB_HasBody = 1,
219     SCDB_Packed = 2,
220     SCDB_IsLiteral = 4,
221     SCDB_IsSized = 8
222   };
223 
224   /// For a named struct that actually has a name, this is a pointer to the
225   /// symbol table entry (maintained by LLVMContext) for the struct.
226   /// This is null if the type is an literal struct or if it is a identified
227   /// type that has an empty name.
228   void *SymbolTableEntry = nullptr;
229 
230 public:
231   StructType(const StructType &) = delete;
232   StructType &operator=(const StructType &) = delete;
233 
234   /// This creates an identified struct.
235   static StructType *create(LLVMContext &Context, StringRef Name);
236   static StructType *create(LLVMContext &Context);
237 
238   static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
239                             bool isPacked = false);
240   static StructType *create(ArrayRef<Type *> Elements);
241   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
242                             StringRef Name, bool isPacked = false);
243   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
244   template <class... Tys>
245   static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *>
create(StringRef Name,Type * elt1,Tys * ...elts)246   create(StringRef Name, Type *elt1, Tys *... elts) {
247     assert(elt1 && "Cannot create a struct type with no elements with this");
248     return create(ArrayRef<Type *>({elt1, elts...}), Name);
249   }
250 
251   /// This static method is the primary way to create a literal StructType.
252   static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
253                          bool isPacked = false);
254 
255   /// Create an empty structure type.
256   static StructType *get(LLVMContext &Context, bool isPacked = false);
257 
258   /// This static method is a convenience method for creating structure types by
259   /// specifying the elements as arguments. Note that this method always returns
260   /// a non-packed struct, and requires at least one element type.
261   template <class... Tys>
262   static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *>
get(Type * elt1,Tys * ...elts)263   get(Type *elt1, Tys *... elts) {
264     assert(elt1 && "Cannot create a struct type with no elements with this");
265     LLVMContext &Ctx = elt1->getContext();
266     return StructType::get(Ctx, ArrayRef<Type *>({elt1, elts...}));
267   }
268 
269   /// Return the type with the specified name, or null if there is none by that
270   /// name.
271   static StructType *getTypeByName(LLVMContext &C, StringRef Name);
272 
isPacked()273   bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
274 
275   /// Return true if this type is uniqued by structural equivalence, false if it
276   /// is a struct definition.
isLiteral()277   bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
278 
279   /// Return true if this is a type with an identity that has no body specified
280   /// yet. These prints as 'opaque' in .ll files.
isOpaque()281   bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
282 
283   /// isSized - Return true if this is a sized type.
284   bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
285 
286   /// Returns true if this struct contains a scalable vector.
287   bool containsScalableVectorType() const;
288 
289   /// Return true if this is a named struct that has a non-empty name.
hasName()290   bool hasName() const { return SymbolTableEntry != nullptr; }
291 
292   /// Return the name for this struct type if it has an identity.
293   /// This may return an empty string for an unnamed struct type.  Do not call
294   /// this on an literal type.
295   StringRef getName() const;
296 
297   /// Change the name of this type to the specified name, or to a name with a
298   /// suffix if there is a collision. Do not call this on an literal type.
299   void setName(StringRef Name);
300 
301   /// Specify a body for an opaque identified type.
302   void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
303 
304   template <typename... Tys>
305   std::enable_if_t<are_base_of<Type, Tys...>::value, void>
setBody(Type * elt1,Tys * ...elts)306   setBody(Type *elt1, Tys *... elts) {
307     assert(elt1 && "Cannot create a struct type with no elements with this");
308     setBody(ArrayRef<Type *>({elt1, elts...}));
309   }
310 
311   /// Return true if the specified type is valid as a element type.
312   static bool isValidElementType(Type *ElemTy);
313 
314   // Iterator access to the elements.
315   using element_iterator = Type::subtype_iterator;
316 
element_begin()317   element_iterator element_begin() const { return ContainedTys; }
element_end()318   element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
elements()319   ArrayRef<Type *> elements() const {
320     return ArrayRef(element_begin(), element_end());
321   }
322 
323   /// Return true if this is layout identical to the specified struct.
324   bool isLayoutIdentical(StructType *Other) const;
325 
326   /// Random access to the elements
getNumElements()327   unsigned getNumElements() const { return NumContainedTys; }
getElementType(unsigned N)328   Type *getElementType(unsigned N) const {
329     assert(N < NumContainedTys && "Element number out of range!");
330     return ContainedTys[N];
331   }
332   /// Given an index value into the type, return the type of the element.
333   Type *getTypeAtIndex(const Value *V) const;
getTypeAtIndex(unsigned N)334   Type *getTypeAtIndex(unsigned N) const { return getElementType(N); }
335   bool indexValid(const Value *V) const;
indexValid(unsigned Idx)336   bool indexValid(unsigned Idx) const { return Idx < getNumElements(); }
337 
338   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)339   static bool classof(const Type *T) {
340     return T->getTypeID() == StructTyID;
341   }
342 };
343 
getStructName()344 StringRef Type::getStructName() const {
345   return cast<StructType>(this)->getName();
346 }
347 
getStructNumElements()348 unsigned Type::getStructNumElements() const {
349   return cast<StructType>(this)->getNumElements();
350 }
351 
getStructElementType(unsigned N)352 Type *Type::getStructElementType(unsigned N) const {
353   return cast<StructType>(this)->getElementType(N);
354 }
355 
356 /// Class to represent array types.
357 class ArrayType : public Type {
358   /// The element type of the array.
359   Type *ContainedType;
360   /// Number of elements in the array.
361   uint64_t NumElements;
362 
363   ArrayType(Type *ElType, uint64_t NumEl);
364 
365 public:
366   ArrayType(const ArrayType &) = delete;
367   ArrayType &operator=(const ArrayType &) = delete;
368 
getNumElements()369   uint64_t getNumElements() const { return NumElements; }
getElementType()370   Type *getElementType() const { return ContainedType; }
371 
372   /// This static method is the primary way to construct an ArrayType
373   static ArrayType *get(Type *ElementType, uint64_t NumElements);
374 
375   /// Return true if the specified type is valid as a element type.
376   static bool isValidElementType(Type *ElemTy);
377 
378   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)379   static bool classof(const Type *T) {
380     return T->getTypeID() == ArrayTyID;
381   }
382 };
383 
getArrayNumElements()384 uint64_t Type::getArrayNumElements() const {
385   return cast<ArrayType>(this)->getNumElements();
386 }
387 
388 /// Base class of all SIMD vector types
389 class VectorType : public Type {
390   /// A fully specified VectorType is of the form <vscale x n x Ty>. 'n' is the
391   /// minimum number of elements of type Ty contained within the vector, and
392   /// 'vscale x' indicates that the total element count is an integer multiple
393   /// of 'n', where the multiple is either guaranteed to be one, or is
394   /// statically unknown at compile time.
395   ///
396   /// If the multiple is known to be 1, then the extra term is discarded in
397   /// textual IR:
398   ///
399   /// <4 x i32>          - a vector containing 4 i32s
400   /// <vscale x 4 x i32> - a vector containing an unknown integer multiple
401   ///                      of 4 i32s
402 
403   /// The element type of the vector.
404   Type *ContainedType;
405 
406 protected:
407   /// The element quantity of this vector. The meaning of this value depends
408   /// on the type of vector:
409   /// - For FixedVectorType = <ElementQuantity x ty>, there are
410   ///   exactly ElementQuantity elements in this vector.
411   /// - For ScalableVectorType = <vscale x ElementQuantity x ty>,
412   ///   there are vscale * ElementQuantity elements in this vector, where
413   ///   vscale is a runtime-constant integer greater than 0.
414   const unsigned ElementQuantity;
415 
416   VectorType(Type *ElType, unsigned EQ, Type::TypeID TID);
417 
418 public:
419   VectorType(const VectorType &) = delete;
420   VectorType &operator=(const VectorType &) = delete;
421 
getElementType()422   Type *getElementType() const { return ContainedType; }
423 
424   /// This static method is the primary way to construct an VectorType.
425   static VectorType *get(Type *ElementType, ElementCount EC);
426 
get(Type * ElementType,unsigned NumElements,bool Scalable)427   static VectorType *get(Type *ElementType, unsigned NumElements,
428                          bool Scalable) {
429     return VectorType::get(ElementType,
430                            ElementCount::get(NumElements, Scalable));
431   }
432 
get(Type * ElementType,const VectorType * Other)433   static VectorType *get(Type *ElementType, const VectorType *Other) {
434     return VectorType::get(ElementType, Other->getElementCount());
435   }
436 
437   /// This static method gets a VectorType with the same number of elements as
438   /// the input type, and the element type is an integer type of the same width
439   /// as the input element type.
getInteger(VectorType * VTy)440   static VectorType *getInteger(VectorType *VTy) {
441     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
442     assert(EltBits && "Element size must be of a non-zero size");
443     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
444     return VectorType::get(EltTy, VTy->getElementCount());
445   }
446 
447   /// This static method is like getInteger except that the element types are
448   /// twice as wide as the elements in the input type.
getExtendedElementVectorType(VectorType * VTy)449   static VectorType *getExtendedElementVectorType(VectorType *VTy) {
450     assert(VTy->isIntOrIntVectorTy() && "VTy expected to be a vector of ints.");
451     auto *EltTy = cast<IntegerType>(VTy->getElementType());
452     return VectorType::get(EltTy->getExtendedType(), VTy->getElementCount());
453   }
454 
455   // This static method gets a VectorType with the same number of elements as
456   // the input type, and the element type is an integer or float type which
457   // is half as wide as the elements in the input type.
getTruncatedElementVectorType(VectorType * VTy)458   static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
459     Type *EltTy;
460     if (VTy->getElementType()->isFloatingPointTy()) {
461       switch(VTy->getElementType()->getTypeID()) {
462       case DoubleTyID:
463         EltTy = Type::getFloatTy(VTy->getContext());
464         break;
465       case FloatTyID:
466         EltTy = Type::getHalfTy(VTy->getContext());
467         break;
468       default:
469         llvm_unreachable("Cannot create narrower fp vector element type");
470       }
471     } else {
472       unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
473       assert((EltBits & 1) == 0 &&
474              "Cannot truncate vector element with odd bit-width");
475       EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
476     }
477     return VectorType::get(EltTy, VTy->getElementCount());
478   }
479 
480   // This static method returns a VectorType with a smaller number of elements
481   // of a larger type than the input element type. For example, a <16 x i8>
482   // subdivided twice would return <4 x i32>
getSubdividedVectorType(VectorType * VTy,int NumSubdivs)483   static VectorType *getSubdividedVectorType(VectorType *VTy, int NumSubdivs) {
484     for (int i = 0; i < NumSubdivs; ++i) {
485       VTy = VectorType::getDoubleElementsVectorType(VTy);
486       VTy = VectorType::getTruncatedElementVectorType(VTy);
487     }
488     return VTy;
489   }
490 
491   /// This static method returns a VectorType with half as many elements as the
492   /// input type and the same element type.
getHalfElementsVectorType(VectorType * VTy)493   static VectorType *getHalfElementsVectorType(VectorType *VTy) {
494     auto EltCnt = VTy->getElementCount();
495     assert(EltCnt.isKnownEven() &&
496            "Cannot halve vector with odd number of elements.");
497     return VectorType::get(VTy->getElementType(),
498                            EltCnt.divideCoefficientBy(2));
499   }
500 
501   /// This static method returns a VectorType with twice as many elements as the
502   /// input type and the same element type.
getDoubleElementsVectorType(VectorType * VTy)503   static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
504     auto EltCnt = VTy->getElementCount();
505     assert((EltCnt.getKnownMinValue() * 2ull) <= UINT_MAX &&
506            "Too many elements in vector");
507     return VectorType::get(VTy->getElementType(), EltCnt * 2);
508   }
509 
510   /// Return true if the specified type is valid as a element type.
511   static bool isValidElementType(Type *ElemTy);
512 
513   /// Return an ElementCount instance to represent the (possibly scalable)
514   /// number of elements in the vector.
515   inline ElementCount getElementCount() const;
516 
517   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)518   static bool classof(const Type *T) {
519     return T->getTypeID() == FixedVectorTyID ||
520            T->getTypeID() == ScalableVectorTyID;
521   }
522 };
523 
524 /// Class to represent fixed width SIMD vectors
525 class FixedVectorType : public VectorType {
526 protected:
FixedVectorType(Type * ElTy,unsigned NumElts)527   FixedVectorType(Type *ElTy, unsigned NumElts)
528       : VectorType(ElTy, NumElts, FixedVectorTyID) {}
529 
530 public:
531   static FixedVectorType *get(Type *ElementType, unsigned NumElts);
532 
get(Type * ElementType,const FixedVectorType * FVTy)533   static FixedVectorType *get(Type *ElementType, const FixedVectorType *FVTy) {
534     return get(ElementType, FVTy->getNumElements());
535   }
536 
getInteger(FixedVectorType * VTy)537   static FixedVectorType *getInteger(FixedVectorType *VTy) {
538     return cast<FixedVectorType>(VectorType::getInteger(VTy));
539   }
540 
getExtendedElementVectorType(FixedVectorType * VTy)541   static FixedVectorType *getExtendedElementVectorType(FixedVectorType *VTy) {
542     return cast<FixedVectorType>(VectorType::getExtendedElementVectorType(VTy));
543   }
544 
getTruncatedElementVectorType(FixedVectorType * VTy)545   static FixedVectorType *getTruncatedElementVectorType(FixedVectorType *VTy) {
546     return cast<FixedVectorType>(
547         VectorType::getTruncatedElementVectorType(VTy));
548   }
549 
getSubdividedVectorType(FixedVectorType * VTy,int NumSubdivs)550   static FixedVectorType *getSubdividedVectorType(FixedVectorType *VTy,
551                                                   int NumSubdivs) {
552     return cast<FixedVectorType>(
553         VectorType::getSubdividedVectorType(VTy, NumSubdivs));
554   }
555 
getHalfElementsVectorType(FixedVectorType * VTy)556   static FixedVectorType *getHalfElementsVectorType(FixedVectorType *VTy) {
557     return cast<FixedVectorType>(VectorType::getHalfElementsVectorType(VTy));
558   }
559 
getDoubleElementsVectorType(FixedVectorType * VTy)560   static FixedVectorType *getDoubleElementsVectorType(FixedVectorType *VTy) {
561     return cast<FixedVectorType>(VectorType::getDoubleElementsVectorType(VTy));
562   }
563 
classof(const Type * T)564   static bool classof(const Type *T) {
565     return T->getTypeID() == FixedVectorTyID;
566   }
567 
getNumElements()568   unsigned getNumElements() const { return ElementQuantity; }
569 };
570 
571 /// Class to represent scalable SIMD vectors
572 class ScalableVectorType : public VectorType {
573 protected:
ScalableVectorType(Type * ElTy,unsigned MinNumElts)574   ScalableVectorType(Type *ElTy, unsigned MinNumElts)
575       : VectorType(ElTy, MinNumElts, ScalableVectorTyID) {}
576 
577 public:
578   static ScalableVectorType *get(Type *ElementType, unsigned MinNumElts);
579 
get(Type * ElementType,const ScalableVectorType * SVTy)580   static ScalableVectorType *get(Type *ElementType,
581                                  const ScalableVectorType *SVTy) {
582     return get(ElementType, SVTy->getMinNumElements());
583   }
584 
getInteger(ScalableVectorType * VTy)585   static ScalableVectorType *getInteger(ScalableVectorType *VTy) {
586     return cast<ScalableVectorType>(VectorType::getInteger(VTy));
587   }
588 
589   static ScalableVectorType *
getExtendedElementVectorType(ScalableVectorType * VTy)590   getExtendedElementVectorType(ScalableVectorType *VTy) {
591     return cast<ScalableVectorType>(
592         VectorType::getExtendedElementVectorType(VTy));
593   }
594 
595   static ScalableVectorType *
getTruncatedElementVectorType(ScalableVectorType * VTy)596   getTruncatedElementVectorType(ScalableVectorType *VTy) {
597     return cast<ScalableVectorType>(
598         VectorType::getTruncatedElementVectorType(VTy));
599   }
600 
getSubdividedVectorType(ScalableVectorType * VTy,int NumSubdivs)601   static ScalableVectorType *getSubdividedVectorType(ScalableVectorType *VTy,
602                                                      int NumSubdivs) {
603     return cast<ScalableVectorType>(
604         VectorType::getSubdividedVectorType(VTy, NumSubdivs));
605   }
606 
607   static ScalableVectorType *
getHalfElementsVectorType(ScalableVectorType * VTy)608   getHalfElementsVectorType(ScalableVectorType *VTy) {
609     return cast<ScalableVectorType>(VectorType::getHalfElementsVectorType(VTy));
610   }
611 
612   static ScalableVectorType *
getDoubleElementsVectorType(ScalableVectorType * VTy)613   getDoubleElementsVectorType(ScalableVectorType *VTy) {
614     return cast<ScalableVectorType>(
615         VectorType::getDoubleElementsVectorType(VTy));
616   }
617 
618   /// Get the minimum number of elements in this vector. The actual number of
619   /// elements in the vector is an integer multiple of this value.
getMinNumElements()620   uint64_t getMinNumElements() const { return ElementQuantity; }
621 
classof(const Type * T)622   static bool classof(const Type *T) {
623     return T->getTypeID() == ScalableVectorTyID;
624   }
625 };
626 
getElementCount()627 inline ElementCount VectorType::getElementCount() const {
628   return ElementCount::get(ElementQuantity, isa<ScalableVectorType>(this));
629 }
630 
631 /// Class to represent pointers.
632 class PointerType : public Type {
633   explicit PointerType(Type *ElType, unsigned AddrSpace);
634   explicit PointerType(LLVMContext &C, unsigned AddrSpace);
635 
636   Type *PointeeTy;
637 
638 public:
639   PointerType(const PointerType &) = delete;
640   PointerType &operator=(const PointerType &) = delete;
641 
642   /// This constructs a pointer to an object of the specified type in a numbered
643   /// address space.
644   static PointerType *get(Type *ElementType, unsigned AddressSpace);
645   /// This constructs an opaque pointer to an object in a numbered address
646   /// space.
647   static PointerType *get(LLVMContext &C, unsigned AddressSpace);
648 
649   /// This constructs a pointer to an object of the specified type in the
650   /// default address space (address space zero).
getUnqual(Type * ElementType)651   static PointerType *getUnqual(Type *ElementType) {
652     return PointerType::get(ElementType, 0);
653   }
654 
655   /// This constructs an opaque pointer to an object in the
656   /// default address space (address space zero).
getUnqual(LLVMContext & C)657   static PointerType *getUnqual(LLVMContext &C) {
658     return PointerType::get(C, 0);
659   }
660 
661   /// This constructs a pointer type with the same pointee type as input
662   /// PointerType (or opaque pointer if the input PointerType is opaque) and the
663   /// given address space. This is only useful during the opaque pointer
664   /// transition.
665   /// TODO: remove after opaque pointer transition is complete.
getWithSamePointeeType(PointerType * PT,unsigned AddressSpace)666   static PointerType *getWithSamePointeeType(PointerType *PT,
667                                              unsigned AddressSpace) {
668     if (PT->isOpaque())
669       return get(PT->getContext(), AddressSpace);
670     return get(PT->PointeeTy, AddressSpace);
671   }
672 
isOpaque()673   bool isOpaque() const { return !PointeeTy; }
674 
675   /// Return true if the specified type is valid as a element type.
676   static bool isValidElementType(Type *ElemTy);
677 
678   /// Return true if we can load or store from a pointer to this type.
679   static bool isLoadableOrStorableType(Type *ElemTy);
680 
681   /// Return the address space of the Pointer type.
getAddressSpace()682   inline unsigned getAddressSpace() const { return getSubclassData(); }
683 
684   /// Return true if either this is an opaque pointer type or if this pointee
685   /// type matches Ty. Primarily used for checking if an instruction's pointer
686   /// operands are valid types. Will be useless after non-opaque pointers are
687   /// removed.
isOpaqueOrPointeeTypeMatches(Type * Ty)688   bool isOpaqueOrPointeeTypeMatches(Type *Ty) {
689     return isOpaque() || PointeeTy == Ty;
690   }
691 
692   /// Return true if both pointer types have the same element type. Two opaque
693   /// pointers are considered to have the same element type, while an opaque
694   /// and a non-opaque pointer have different element types.
695   /// TODO: Remove after opaque pointer transition is complete.
hasSameElementTypeAs(PointerType * Other)696   bool hasSameElementTypeAs(PointerType *Other) {
697     return PointeeTy == Other->PointeeTy;
698   }
699 
700   /// Implement support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)701   static bool classof(const Type *T) {
702     return T->getTypeID() == PointerTyID;
703   }
704 };
705 
getExtendedType()706 Type *Type::getExtendedType() const {
707   assert(
708       isIntOrIntVectorTy() &&
709       "Original type expected to be a vector of integers or a scalar integer.");
710   if (auto *VTy = dyn_cast<VectorType>(this))
711     return VectorType::getExtendedElementVectorType(
712         const_cast<VectorType *>(VTy));
713   return cast<IntegerType>(this)->getExtendedType();
714 }
715 
getWithNewType(Type * EltTy)716 Type *Type::getWithNewType(Type *EltTy) const {
717   if (auto *VTy = dyn_cast<VectorType>(this))
718     return VectorType::get(EltTy, VTy->getElementCount());
719   return EltTy;
720 }
721 
getWithNewBitWidth(unsigned NewBitWidth)722 Type *Type::getWithNewBitWidth(unsigned NewBitWidth) const {
723   assert(
724       isIntOrIntVectorTy() &&
725       "Original type expected to be a vector of integers or a scalar integer.");
726   return getWithNewType(getIntNTy(getContext(), NewBitWidth));
727 }
728 
getPointerAddressSpace()729 unsigned Type::getPointerAddressSpace() const {
730   return cast<PointerType>(getScalarType())->getAddressSpace();
731 }
732 
733 /// Class to represent target extensions types, which are generally
734 /// unintrospectable from target-independent optimizations.
735 ///
736 /// Target extension types have a string name, and optionally have type and/or
737 /// integer parameters. The exact meaning of any parameters is dependent on the
738 /// target.
739 class TargetExtType : public Type {
740   TargetExtType(LLVMContext &C, StringRef Name, ArrayRef<Type *> Types,
741                 ArrayRef<unsigned> Ints);
742 
743   // These strings are ultimately owned by the context.
744   StringRef Name;
745   unsigned *IntParams;
746 
747 public:
748   TargetExtType(const TargetExtType &) = delete;
749   TargetExtType &operator=(const TargetExtType &) = delete;
750 
751   /// Return a target extension type having the specified name and optional
752   /// type and integer parameters.
753   static TargetExtType *get(LLVMContext &Context, StringRef Name,
754                             ArrayRef<Type *> Types = std::nullopt,
755                             ArrayRef<unsigned> Ints = std::nullopt);
756 
757   /// Return the name for this target extension type. Two distinct target
758   /// extension types may have the same name if their type or integer parameters
759   /// differ.
getName()760   StringRef getName() const { return Name; }
761 
762   /// Return the type parameters for this particular target extension type. If
763   /// there are no parameters, an empty array is returned.
type_params()764   ArrayRef<Type *> type_params() const {
765     return ArrayRef(type_param_begin(), type_param_end());
766   }
767 
768   using type_param_iterator = Type::subtype_iterator;
type_param_begin()769   type_param_iterator type_param_begin() const { return ContainedTys; }
type_param_end()770   type_param_iterator type_param_end() const {
771     return &ContainedTys[NumContainedTys];
772   }
773 
getTypeParameter(unsigned i)774   Type *getTypeParameter(unsigned i) const { return getContainedType(i); }
getNumTypeParameters()775   unsigned getNumTypeParameters() const { return getNumContainedTypes(); }
776 
777   /// Return the integer parameters for this particular target extension type.
778   /// If there are no parameters, an empty array is returned.
int_params()779   ArrayRef<unsigned> int_params() const {
780     return ArrayRef(IntParams, getNumIntParameters());
781   }
782 
getIntParameter(unsigned i)783   unsigned getIntParameter(unsigned i) const { return IntParams[i]; }
getNumIntParameters()784   unsigned getNumIntParameters() const { return getSubclassData(); }
785 
786   enum Property {
787     /// zeroinitializer is valid for this target extension type.
788     HasZeroInit = 1U << 0,
789     /// This type may be used as the value type of a global variable.
790     CanBeGlobal = 1U << 1,
791   };
792 
793   /// Returns true if the target extension type contains the given property.
794   bool hasProperty(Property Prop) const;
795 
796   /// Returns an underlying layout type for the target extension type. This
797   /// type can be used to query size and alignment information, if it is
798   /// appropriate (although note that the layout type may also be void). It is
799   /// not legal to bitcast between this type and the layout type, however.
800   Type *getLayoutType() const;
801 
802   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)803   static bool classof(const Type *T) { return T->getTypeID() == TargetExtTyID; }
804 };
805 
getTargetExtName()806 StringRef Type::getTargetExtName() const {
807   return cast<TargetExtType>(this)->getName();
808 }
809 
810 } // end namespace llvm
811 
812 #endif // LLVM_IR_DERIVEDTYPES_H
813