1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "X86InstrInfo.h"
14 #include "X86.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrFoldTables.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCExpr.h"
40 #include "llvm/MC/MCInst.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetOptions.h"
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "x86-instr-info"
50
51 #define GET_INSTRINFO_CTOR_DTOR
52 #include "X86GenInstrInfo.inc"
53
54 static cl::opt<bool>
55 NoFusing("disable-spill-fusing",
56 cl::desc("Disable fusing of spill code into instructions"),
57 cl::Hidden);
58 static cl::opt<bool>
59 PrintFailedFusing("print-failed-fuse-candidates",
60 cl::desc("Print instructions that the allocator wants to"
61 " fuse, but the X86 backend currently can't"),
62 cl::Hidden);
63 static cl::opt<bool>
64 ReMatPICStubLoad("remat-pic-stub-load",
65 cl::desc("Re-materialize load from stub in PIC mode"),
66 cl::init(false), cl::Hidden);
67 static cl::opt<unsigned>
68 PartialRegUpdateClearance("partial-reg-update-clearance",
69 cl::desc("Clearance between two register writes "
70 "for inserting XOR to avoid partial "
71 "register update"),
72 cl::init(64), cl::Hidden);
73 static cl::opt<unsigned>
74 UndefRegClearance("undef-reg-clearance",
75 cl::desc("How many idle instructions we would like before "
76 "certain undef register reads"),
77 cl::init(128), cl::Hidden);
78
79
80 // Pin the vtable to this file.
anchor()81 void X86InstrInfo::anchor() {}
82
X86InstrInfo(X86Subtarget & STI)83 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
84 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
85 : X86::ADJCALLSTACKDOWN32),
86 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
87 : X86::ADJCALLSTACKUP32),
88 X86::CATCHRET,
89 (STI.is64Bit() ? X86::RET64 : X86::RET32)),
90 Subtarget(STI), RI(STI.getTargetTriple()) {
91 }
92
93 bool
isCoalescableExtInstr(const MachineInstr & MI,Register & SrcReg,Register & DstReg,unsigned & SubIdx) const94 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
95 Register &SrcReg, Register &DstReg,
96 unsigned &SubIdx) const {
97 switch (MI.getOpcode()) {
98 default: break;
99 case X86::MOVSX16rr8:
100 case X86::MOVZX16rr8:
101 case X86::MOVSX32rr8:
102 case X86::MOVZX32rr8:
103 case X86::MOVSX64rr8:
104 if (!Subtarget.is64Bit())
105 // It's not always legal to reference the low 8-bit of the larger
106 // register in 32-bit mode.
107 return false;
108 [[fallthrough]];
109 case X86::MOVSX32rr16:
110 case X86::MOVZX32rr16:
111 case X86::MOVSX64rr16:
112 case X86::MOVSX64rr32: {
113 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
114 // Be conservative.
115 return false;
116 SrcReg = MI.getOperand(1).getReg();
117 DstReg = MI.getOperand(0).getReg();
118 switch (MI.getOpcode()) {
119 default: llvm_unreachable("Unreachable!");
120 case X86::MOVSX16rr8:
121 case X86::MOVZX16rr8:
122 case X86::MOVSX32rr8:
123 case X86::MOVZX32rr8:
124 case X86::MOVSX64rr8:
125 SubIdx = X86::sub_8bit;
126 break;
127 case X86::MOVSX32rr16:
128 case X86::MOVZX32rr16:
129 case X86::MOVSX64rr16:
130 SubIdx = X86::sub_16bit;
131 break;
132 case X86::MOVSX64rr32:
133 SubIdx = X86::sub_32bit;
134 break;
135 }
136 return true;
137 }
138 }
139 return false;
140 }
141
isDataInvariant(MachineInstr & MI)142 bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
143 if (MI.mayLoad() || MI.mayStore())
144 return false;
145
146 // Some target-independent operations that trivially lower to data-invariant
147 // instructions.
148 if (MI.isCopyLike() || MI.isInsertSubreg())
149 return true;
150
151 unsigned Opcode = MI.getOpcode();
152 using namespace X86;
153 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
154 // However, they set flags and are perhaps the most surprisingly constant
155 // time operations so we call them out here separately.
156 if (isIMUL(Opcode))
157 return true;
158 // Bit scanning and counting instructions that are somewhat surprisingly
159 // constant time as they scan across bits and do other fairly complex
160 // operations like popcnt, but are believed to be constant time on x86.
161 // However, these set flags.
162 if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) ||
163 isTZCNT(Opcode))
164 return true;
165 // Bit manipulation instructions are effectively combinations of basic
166 // arithmetic ops, and should still execute in constant time. These also
167 // set flags.
168 if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) ||
169 isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) ||
170 isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) ||
171 isTZMSK(Opcode))
172 return true;
173 // Bit extracting and clearing instructions should execute in constant time,
174 // and set flags.
175 if (isBEXTR(Opcode) || isBZHI(Opcode))
176 return true;
177 // Shift and rotate.
178 if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) ||
179 isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode))
180 return true;
181 // Basic arithmetic is constant time on the input but does set flags.
182 if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) ||
183 isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode))
184 return true;
185 // Arithmetic with just 32-bit and 64-bit variants and no immediates.
186 if (isADCX(Opcode) || isADOX(Opcode) || isANDN(Opcode))
187 return true;
188 // Unary arithmetic operations.
189 if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode))
190 return true;
191 // Unlike other arithmetic, NOT doesn't set EFLAGS.
192 if (isNOT(Opcode))
193 return true;
194 // Various move instructions used to zero or sign extend things. Note that we
195 // intentionally don't support the _NOREX variants as we can't handle that
196 // register constraint anyways.
197 if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode))
198 return true;
199 // Arithmetic instructions that are both constant time and don't set flags.
200 if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode))
201 return true;
202 // LEA doesn't actually access memory, and its arithmetic is constant time.
203 if (isLEA(Opcode))
204 return true;
205 // By default, assume that the instruction is not data invariant.
206 return false;
207 }
208
isDataInvariantLoad(MachineInstr & MI)209 bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
210 switch (MI.getOpcode()) {
211 default:
212 // By default, assume that the load will immediately leak.
213 return false;
214
215 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
216 // However, they set flags and are perhaps the most surprisingly constant
217 // time operations so we call them out here separately.
218 case X86::IMUL16rm:
219 case X86::IMUL16rmi8:
220 case X86::IMUL16rmi:
221 case X86::IMUL32rm:
222 case X86::IMUL32rmi8:
223 case X86::IMUL32rmi:
224 case X86::IMUL64rm:
225 case X86::IMUL64rmi32:
226 case X86::IMUL64rmi8:
227
228 // Bit scanning and counting instructions that are somewhat surprisingly
229 // constant time as they scan across bits and do other fairly complex
230 // operations like popcnt, but are believed to be constant time on x86.
231 // However, these set flags.
232 case X86::BSF16rm:
233 case X86::BSF32rm:
234 case X86::BSF64rm:
235 case X86::BSR16rm:
236 case X86::BSR32rm:
237 case X86::BSR64rm:
238 case X86::LZCNT16rm:
239 case X86::LZCNT32rm:
240 case X86::LZCNT64rm:
241 case X86::POPCNT16rm:
242 case X86::POPCNT32rm:
243 case X86::POPCNT64rm:
244 case X86::TZCNT16rm:
245 case X86::TZCNT32rm:
246 case X86::TZCNT64rm:
247
248 // Bit manipulation instructions are effectively combinations of basic
249 // arithmetic ops, and should still execute in constant time. These also
250 // set flags.
251 case X86::BLCFILL32rm:
252 case X86::BLCFILL64rm:
253 case X86::BLCI32rm:
254 case X86::BLCI64rm:
255 case X86::BLCIC32rm:
256 case X86::BLCIC64rm:
257 case X86::BLCMSK32rm:
258 case X86::BLCMSK64rm:
259 case X86::BLCS32rm:
260 case X86::BLCS64rm:
261 case X86::BLSFILL32rm:
262 case X86::BLSFILL64rm:
263 case X86::BLSI32rm:
264 case X86::BLSI64rm:
265 case X86::BLSIC32rm:
266 case X86::BLSIC64rm:
267 case X86::BLSMSK32rm:
268 case X86::BLSMSK64rm:
269 case X86::BLSR32rm:
270 case X86::BLSR64rm:
271 case X86::TZMSK32rm:
272 case X86::TZMSK64rm:
273
274 // Bit extracting and clearing instructions should execute in constant time,
275 // and set flags.
276 case X86::BEXTR32rm:
277 case X86::BEXTR64rm:
278 case X86::BEXTRI32mi:
279 case X86::BEXTRI64mi:
280 case X86::BZHI32rm:
281 case X86::BZHI64rm:
282
283 // Basic arithmetic is constant time on the input but does set flags.
284 case X86::ADC8rm:
285 case X86::ADC16rm:
286 case X86::ADC32rm:
287 case X86::ADC64rm:
288 case X86::ADCX32rm:
289 case X86::ADCX64rm:
290 case X86::ADD8rm:
291 case X86::ADD16rm:
292 case X86::ADD32rm:
293 case X86::ADD64rm:
294 case X86::ADOX32rm:
295 case X86::ADOX64rm:
296 case X86::AND8rm:
297 case X86::AND16rm:
298 case X86::AND32rm:
299 case X86::AND64rm:
300 case X86::ANDN32rm:
301 case X86::ANDN64rm:
302 case X86::OR8rm:
303 case X86::OR16rm:
304 case X86::OR32rm:
305 case X86::OR64rm:
306 case X86::SBB8rm:
307 case X86::SBB16rm:
308 case X86::SBB32rm:
309 case X86::SBB64rm:
310 case X86::SUB8rm:
311 case X86::SUB16rm:
312 case X86::SUB32rm:
313 case X86::SUB64rm:
314 case X86::XOR8rm:
315 case X86::XOR16rm:
316 case X86::XOR32rm:
317 case X86::XOR64rm:
318
319 // Integer multiply w/o affecting flags is still believed to be constant
320 // time on x86. Called out separately as this is among the most surprising
321 // instructions to exhibit that behavior.
322 case X86::MULX32rm:
323 case X86::MULX64rm:
324
325 // Arithmetic instructions that are both constant time and don't set flags.
326 case X86::RORX32mi:
327 case X86::RORX64mi:
328 case X86::SARX32rm:
329 case X86::SARX64rm:
330 case X86::SHLX32rm:
331 case X86::SHLX64rm:
332 case X86::SHRX32rm:
333 case X86::SHRX64rm:
334
335 // Conversions are believed to be constant time and don't set flags.
336 case X86::CVTTSD2SI64rm:
337 case X86::VCVTTSD2SI64rm:
338 case X86::VCVTTSD2SI64Zrm:
339 case X86::CVTTSD2SIrm:
340 case X86::VCVTTSD2SIrm:
341 case X86::VCVTTSD2SIZrm:
342 case X86::CVTTSS2SI64rm:
343 case X86::VCVTTSS2SI64rm:
344 case X86::VCVTTSS2SI64Zrm:
345 case X86::CVTTSS2SIrm:
346 case X86::VCVTTSS2SIrm:
347 case X86::VCVTTSS2SIZrm:
348 case X86::CVTSI2SDrm:
349 case X86::VCVTSI2SDrm:
350 case X86::VCVTSI2SDZrm:
351 case X86::CVTSI2SSrm:
352 case X86::VCVTSI2SSrm:
353 case X86::VCVTSI2SSZrm:
354 case X86::CVTSI642SDrm:
355 case X86::VCVTSI642SDrm:
356 case X86::VCVTSI642SDZrm:
357 case X86::CVTSI642SSrm:
358 case X86::VCVTSI642SSrm:
359 case X86::VCVTSI642SSZrm:
360 case X86::CVTSS2SDrm:
361 case X86::VCVTSS2SDrm:
362 case X86::VCVTSS2SDZrm:
363 case X86::CVTSD2SSrm:
364 case X86::VCVTSD2SSrm:
365 case X86::VCVTSD2SSZrm:
366 // AVX512 added unsigned integer conversions.
367 case X86::VCVTTSD2USI64Zrm:
368 case X86::VCVTTSD2USIZrm:
369 case X86::VCVTTSS2USI64Zrm:
370 case X86::VCVTTSS2USIZrm:
371 case X86::VCVTUSI2SDZrm:
372 case X86::VCVTUSI642SDZrm:
373 case X86::VCVTUSI2SSZrm:
374 case X86::VCVTUSI642SSZrm:
375
376 // Loads to register don't set flags.
377 case X86::MOV8rm:
378 case X86::MOV8rm_NOREX:
379 case X86::MOV16rm:
380 case X86::MOV32rm:
381 case X86::MOV64rm:
382 case X86::MOVSX16rm8:
383 case X86::MOVSX32rm16:
384 case X86::MOVSX32rm8:
385 case X86::MOVSX32rm8_NOREX:
386 case X86::MOVSX64rm16:
387 case X86::MOVSX64rm32:
388 case X86::MOVSX64rm8:
389 case X86::MOVZX16rm8:
390 case X86::MOVZX32rm16:
391 case X86::MOVZX32rm8:
392 case X86::MOVZX32rm8_NOREX:
393 case X86::MOVZX64rm16:
394 case X86::MOVZX64rm8:
395 return true;
396 }
397 }
398
getSPAdjust(const MachineInstr & MI) const399 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
400 const MachineFunction *MF = MI.getParent()->getParent();
401 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
402
403 if (isFrameInstr(MI)) {
404 int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
405 SPAdj -= getFrameAdjustment(MI);
406 if (!isFrameSetup(MI))
407 SPAdj = -SPAdj;
408 return SPAdj;
409 }
410
411 // To know whether a call adjusts the stack, we need information
412 // that is bound to the following ADJCALLSTACKUP pseudo.
413 // Look for the next ADJCALLSTACKUP that follows the call.
414 if (MI.isCall()) {
415 const MachineBasicBlock *MBB = MI.getParent();
416 auto I = ++MachineBasicBlock::const_iterator(MI);
417 for (auto E = MBB->end(); I != E; ++I) {
418 if (I->getOpcode() == getCallFrameDestroyOpcode() ||
419 I->isCall())
420 break;
421 }
422
423 // If we could not find a frame destroy opcode, then it has already
424 // been simplified, so we don't care.
425 if (I->getOpcode() != getCallFrameDestroyOpcode())
426 return 0;
427
428 return -(I->getOperand(1).getImm());
429 }
430
431 // Currently handle only PUSHes we can reasonably expect to see
432 // in call sequences
433 switch (MI.getOpcode()) {
434 default:
435 return 0;
436 case X86::PUSH32i8:
437 case X86::PUSH32r:
438 case X86::PUSH32rmm:
439 case X86::PUSH32rmr:
440 case X86::PUSHi32:
441 return 4;
442 case X86::PUSH64i8:
443 case X86::PUSH64r:
444 case X86::PUSH64rmm:
445 case X86::PUSH64rmr:
446 case X86::PUSH64i32:
447 return 8;
448 }
449 }
450
451 /// Return true and the FrameIndex if the specified
452 /// operand and follow operands form a reference to the stack frame.
isFrameOperand(const MachineInstr & MI,unsigned int Op,int & FrameIndex) const453 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
454 int &FrameIndex) const {
455 if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
456 MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
457 MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
458 MI.getOperand(Op + X86::AddrDisp).isImm() &&
459 MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
460 MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
461 MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
462 FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
463 return true;
464 }
465 return false;
466 }
467
isFrameLoadOpcode(int Opcode,unsigned & MemBytes)468 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
469 switch (Opcode) {
470 default:
471 return false;
472 case X86::MOV8rm:
473 case X86::KMOVBkm:
474 MemBytes = 1;
475 return true;
476 case X86::MOV16rm:
477 case X86::KMOVWkm:
478 case X86::VMOVSHZrm:
479 case X86::VMOVSHZrm_alt:
480 MemBytes = 2;
481 return true;
482 case X86::MOV32rm:
483 case X86::MOVSSrm:
484 case X86::MOVSSrm_alt:
485 case X86::VMOVSSrm:
486 case X86::VMOVSSrm_alt:
487 case X86::VMOVSSZrm:
488 case X86::VMOVSSZrm_alt:
489 case X86::KMOVDkm:
490 MemBytes = 4;
491 return true;
492 case X86::MOV64rm:
493 case X86::LD_Fp64m:
494 case X86::MOVSDrm:
495 case X86::MOVSDrm_alt:
496 case X86::VMOVSDrm:
497 case X86::VMOVSDrm_alt:
498 case X86::VMOVSDZrm:
499 case X86::VMOVSDZrm_alt:
500 case X86::MMX_MOVD64rm:
501 case X86::MMX_MOVQ64rm:
502 case X86::KMOVQkm:
503 MemBytes = 8;
504 return true;
505 case X86::MOVAPSrm:
506 case X86::MOVUPSrm:
507 case X86::MOVAPDrm:
508 case X86::MOVUPDrm:
509 case X86::MOVDQArm:
510 case X86::MOVDQUrm:
511 case X86::VMOVAPSrm:
512 case X86::VMOVUPSrm:
513 case X86::VMOVAPDrm:
514 case X86::VMOVUPDrm:
515 case X86::VMOVDQArm:
516 case X86::VMOVDQUrm:
517 case X86::VMOVAPSZ128rm:
518 case X86::VMOVUPSZ128rm:
519 case X86::VMOVAPSZ128rm_NOVLX:
520 case X86::VMOVUPSZ128rm_NOVLX:
521 case X86::VMOVAPDZ128rm:
522 case X86::VMOVUPDZ128rm:
523 case X86::VMOVDQU8Z128rm:
524 case X86::VMOVDQU16Z128rm:
525 case X86::VMOVDQA32Z128rm:
526 case X86::VMOVDQU32Z128rm:
527 case X86::VMOVDQA64Z128rm:
528 case X86::VMOVDQU64Z128rm:
529 MemBytes = 16;
530 return true;
531 case X86::VMOVAPSYrm:
532 case X86::VMOVUPSYrm:
533 case X86::VMOVAPDYrm:
534 case X86::VMOVUPDYrm:
535 case X86::VMOVDQAYrm:
536 case X86::VMOVDQUYrm:
537 case X86::VMOVAPSZ256rm:
538 case X86::VMOVUPSZ256rm:
539 case X86::VMOVAPSZ256rm_NOVLX:
540 case X86::VMOVUPSZ256rm_NOVLX:
541 case X86::VMOVAPDZ256rm:
542 case X86::VMOVUPDZ256rm:
543 case X86::VMOVDQU8Z256rm:
544 case X86::VMOVDQU16Z256rm:
545 case X86::VMOVDQA32Z256rm:
546 case X86::VMOVDQU32Z256rm:
547 case X86::VMOVDQA64Z256rm:
548 case X86::VMOVDQU64Z256rm:
549 MemBytes = 32;
550 return true;
551 case X86::VMOVAPSZrm:
552 case X86::VMOVUPSZrm:
553 case X86::VMOVAPDZrm:
554 case X86::VMOVUPDZrm:
555 case X86::VMOVDQU8Zrm:
556 case X86::VMOVDQU16Zrm:
557 case X86::VMOVDQA32Zrm:
558 case X86::VMOVDQU32Zrm:
559 case X86::VMOVDQA64Zrm:
560 case X86::VMOVDQU64Zrm:
561 MemBytes = 64;
562 return true;
563 }
564 }
565
isFrameStoreOpcode(int Opcode,unsigned & MemBytes)566 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
567 switch (Opcode) {
568 default:
569 return false;
570 case X86::MOV8mr:
571 case X86::KMOVBmk:
572 MemBytes = 1;
573 return true;
574 case X86::MOV16mr:
575 case X86::KMOVWmk:
576 case X86::VMOVSHZmr:
577 MemBytes = 2;
578 return true;
579 case X86::MOV32mr:
580 case X86::MOVSSmr:
581 case X86::VMOVSSmr:
582 case X86::VMOVSSZmr:
583 case X86::KMOVDmk:
584 MemBytes = 4;
585 return true;
586 case X86::MOV64mr:
587 case X86::ST_FpP64m:
588 case X86::MOVSDmr:
589 case X86::VMOVSDmr:
590 case X86::VMOVSDZmr:
591 case X86::MMX_MOVD64mr:
592 case X86::MMX_MOVQ64mr:
593 case X86::MMX_MOVNTQmr:
594 case X86::KMOVQmk:
595 MemBytes = 8;
596 return true;
597 case X86::MOVAPSmr:
598 case X86::MOVUPSmr:
599 case X86::MOVAPDmr:
600 case X86::MOVUPDmr:
601 case X86::MOVDQAmr:
602 case X86::MOVDQUmr:
603 case X86::VMOVAPSmr:
604 case X86::VMOVUPSmr:
605 case X86::VMOVAPDmr:
606 case X86::VMOVUPDmr:
607 case X86::VMOVDQAmr:
608 case X86::VMOVDQUmr:
609 case X86::VMOVUPSZ128mr:
610 case X86::VMOVAPSZ128mr:
611 case X86::VMOVUPSZ128mr_NOVLX:
612 case X86::VMOVAPSZ128mr_NOVLX:
613 case X86::VMOVUPDZ128mr:
614 case X86::VMOVAPDZ128mr:
615 case X86::VMOVDQA32Z128mr:
616 case X86::VMOVDQU32Z128mr:
617 case X86::VMOVDQA64Z128mr:
618 case X86::VMOVDQU64Z128mr:
619 case X86::VMOVDQU8Z128mr:
620 case X86::VMOVDQU16Z128mr:
621 MemBytes = 16;
622 return true;
623 case X86::VMOVUPSYmr:
624 case X86::VMOVAPSYmr:
625 case X86::VMOVUPDYmr:
626 case X86::VMOVAPDYmr:
627 case X86::VMOVDQUYmr:
628 case X86::VMOVDQAYmr:
629 case X86::VMOVUPSZ256mr:
630 case X86::VMOVAPSZ256mr:
631 case X86::VMOVUPSZ256mr_NOVLX:
632 case X86::VMOVAPSZ256mr_NOVLX:
633 case X86::VMOVUPDZ256mr:
634 case X86::VMOVAPDZ256mr:
635 case X86::VMOVDQU8Z256mr:
636 case X86::VMOVDQU16Z256mr:
637 case X86::VMOVDQA32Z256mr:
638 case X86::VMOVDQU32Z256mr:
639 case X86::VMOVDQA64Z256mr:
640 case X86::VMOVDQU64Z256mr:
641 MemBytes = 32;
642 return true;
643 case X86::VMOVUPSZmr:
644 case X86::VMOVAPSZmr:
645 case X86::VMOVUPDZmr:
646 case X86::VMOVAPDZmr:
647 case X86::VMOVDQU8Zmr:
648 case X86::VMOVDQU16Zmr:
649 case X86::VMOVDQA32Zmr:
650 case X86::VMOVDQU32Zmr:
651 case X86::VMOVDQA64Zmr:
652 case X86::VMOVDQU64Zmr:
653 MemBytes = 64;
654 return true;
655 }
656 return false;
657 }
658
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const659 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
660 int &FrameIndex) const {
661 unsigned Dummy;
662 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
663 }
664
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes) const665 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
666 int &FrameIndex,
667 unsigned &MemBytes) const {
668 if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
669 if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
670 return MI.getOperand(0).getReg();
671 return 0;
672 }
673
isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const674 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
675 int &FrameIndex) const {
676 unsigned Dummy;
677 if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
678 unsigned Reg;
679 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
680 return Reg;
681 // Check for post-frame index elimination operations
682 SmallVector<const MachineMemOperand *, 1> Accesses;
683 if (hasLoadFromStackSlot(MI, Accesses)) {
684 FrameIndex =
685 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
686 ->getFrameIndex();
687 return MI.getOperand(0).getReg();
688 }
689 }
690 return 0;
691 }
692
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const693 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
694 int &FrameIndex) const {
695 unsigned Dummy;
696 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
697 }
698
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes) const699 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
700 int &FrameIndex,
701 unsigned &MemBytes) const {
702 if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
703 if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
704 isFrameOperand(MI, 0, FrameIndex))
705 return MI.getOperand(X86::AddrNumOperands).getReg();
706 return 0;
707 }
708
isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const709 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
710 int &FrameIndex) const {
711 unsigned Dummy;
712 if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
713 unsigned Reg;
714 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
715 return Reg;
716 // Check for post-frame index elimination operations
717 SmallVector<const MachineMemOperand *, 1> Accesses;
718 if (hasStoreToStackSlot(MI, Accesses)) {
719 FrameIndex =
720 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
721 ->getFrameIndex();
722 return MI.getOperand(X86::AddrNumOperands).getReg();
723 }
724 }
725 return 0;
726 }
727
728 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
regIsPICBase(Register BaseReg,const MachineRegisterInfo & MRI)729 static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
730 // Don't waste compile time scanning use-def chains of physregs.
731 if (!BaseReg.isVirtual())
732 return false;
733 bool isPICBase = false;
734 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
735 E = MRI.def_instr_end(); I != E; ++I) {
736 MachineInstr *DefMI = &*I;
737 if (DefMI->getOpcode() != X86::MOVPC32r)
738 return false;
739 assert(!isPICBase && "More than one PIC base?");
740 isPICBase = true;
741 }
742 return isPICBase;
743 }
744
isReallyTriviallyReMaterializable(const MachineInstr & MI) const745 bool X86InstrInfo::isReallyTriviallyReMaterializable(
746 const MachineInstr &MI) const {
747 switch (MI.getOpcode()) {
748 default:
749 // This function should only be called for opcodes with the ReMaterializable
750 // flag set.
751 llvm_unreachable("Unknown rematerializable operation!");
752 break;
753
754 case X86::LOAD_STACK_GUARD:
755 case X86::AVX1_SETALLONES:
756 case X86::AVX2_SETALLONES:
757 case X86::AVX512_128_SET0:
758 case X86::AVX512_256_SET0:
759 case X86::AVX512_512_SET0:
760 case X86::AVX512_512_SETALLONES:
761 case X86::AVX512_FsFLD0SD:
762 case X86::AVX512_FsFLD0SH:
763 case X86::AVX512_FsFLD0SS:
764 case X86::AVX512_FsFLD0F128:
765 case X86::AVX_SET0:
766 case X86::FsFLD0SD:
767 case X86::FsFLD0SS:
768 case X86::FsFLD0SH:
769 case X86::FsFLD0F128:
770 case X86::KSET0D:
771 case X86::KSET0Q:
772 case X86::KSET0W:
773 case X86::KSET1D:
774 case X86::KSET1Q:
775 case X86::KSET1W:
776 case X86::MMX_SET0:
777 case X86::MOV32ImmSExti8:
778 case X86::MOV32r0:
779 case X86::MOV32r1:
780 case X86::MOV32r_1:
781 case X86::MOV32ri64:
782 case X86::MOV64ImmSExti8:
783 case X86::V_SET0:
784 case X86::V_SETALLONES:
785 case X86::MOV16ri:
786 case X86::MOV32ri:
787 case X86::MOV64ri:
788 case X86::MOV64ri32:
789 case X86::MOV8ri:
790 case X86::PTILEZEROV:
791 return true;
792
793 case X86::MOV8rm:
794 case X86::MOV8rm_NOREX:
795 case X86::MOV16rm:
796 case X86::MOV32rm:
797 case X86::MOV64rm:
798 case X86::MOVSSrm:
799 case X86::MOVSSrm_alt:
800 case X86::MOVSDrm:
801 case X86::MOVSDrm_alt:
802 case X86::MOVAPSrm:
803 case X86::MOVUPSrm:
804 case X86::MOVAPDrm:
805 case X86::MOVUPDrm:
806 case X86::MOVDQArm:
807 case X86::MOVDQUrm:
808 case X86::VMOVSSrm:
809 case X86::VMOVSSrm_alt:
810 case X86::VMOVSDrm:
811 case X86::VMOVSDrm_alt:
812 case X86::VMOVAPSrm:
813 case X86::VMOVUPSrm:
814 case X86::VMOVAPDrm:
815 case X86::VMOVUPDrm:
816 case X86::VMOVDQArm:
817 case X86::VMOVDQUrm:
818 case X86::VMOVAPSYrm:
819 case X86::VMOVUPSYrm:
820 case X86::VMOVAPDYrm:
821 case X86::VMOVUPDYrm:
822 case X86::VMOVDQAYrm:
823 case X86::VMOVDQUYrm:
824 case X86::MMX_MOVD64rm:
825 case X86::MMX_MOVQ64rm:
826 // AVX-512
827 case X86::VMOVSSZrm:
828 case X86::VMOVSSZrm_alt:
829 case X86::VMOVSDZrm:
830 case X86::VMOVSDZrm_alt:
831 case X86::VMOVSHZrm:
832 case X86::VMOVSHZrm_alt:
833 case X86::VMOVAPDZ128rm:
834 case X86::VMOVAPDZ256rm:
835 case X86::VMOVAPDZrm:
836 case X86::VMOVAPSZ128rm:
837 case X86::VMOVAPSZ256rm:
838 case X86::VMOVAPSZ128rm_NOVLX:
839 case X86::VMOVAPSZ256rm_NOVLX:
840 case X86::VMOVAPSZrm:
841 case X86::VMOVDQA32Z128rm:
842 case X86::VMOVDQA32Z256rm:
843 case X86::VMOVDQA32Zrm:
844 case X86::VMOVDQA64Z128rm:
845 case X86::VMOVDQA64Z256rm:
846 case X86::VMOVDQA64Zrm:
847 case X86::VMOVDQU16Z128rm:
848 case X86::VMOVDQU16Z256rm:
849 case X86::VMOVDQU16Zrm:
850 case X86::VMOVDQU32Z128rm:
851 case X86::VMOVDQU32Z256rm:
852 case X86::VMOVDQU32Zrm:
853 case X86::VMOVDQU64Z128rm:
854 case X86::VMOVDQU64Z256rm:
855 case X86::VMOVDQU64Zrm:
856 case X86::VMOVDQU8Z128rm:
857 case X86::VMOVDQU8Z256rm:
858 case X86::VMOVDQU8Zrm:
859 case X86::VMOVUPDZ128rm:
860 case X86::VMOVUPDZ256rm:
861 case X86::VMOVUPDZrm:
862 case X86::VMOVUPSZ128rm:
863 case X86::VMOVUPSZ256rm:
864 case X86::VMOVUPSZ128rm_NOVLX:
865 case X86::VMOVUPSZ256rm_NOVLX:
866 case X86::VMOVUPSZrm: {
867 // Loads from constant pools are trivially rematerializable.
868 if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
869 MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
870 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
871 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
872 MI.isDereferenceableInvariantLoad()) {
873 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
874 if (BaseReg == 0 || BaseReg == X86::RIP)
875 return true;
876 // Allow re-materialization of PIC load.
877 if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
878 return false;
879 const MachineFunction &MF = *MI.getParent()->getParent();
880 const MachineRegisterInfo &MRI = MF.getRegInfo();
881 return regIsPICBase(BaseReg, MRI);
882 }
883 return false;
884 }
885
886 case X86::LEA32r:
887 case X86::LEA64r: {
888 if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
889 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
890 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
891 !MI.getOperand(1 + X86::AddrDisp).isReg()) {
892 // lea fi#, lea GV, etc. are all rematerializable.
893 if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
894 return true;
895 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
896 if (BaseReg == 0)
897 return true;
898 // Allow re-materialization of lea PICBase + x.
899 const MachineFunction &MF = *MI.getParent()->getParent();
900 const MachineRegisterInfo &MRI = MF.getRegInfo();
901 return regIsPICBase(BaseReg, MRI);
902 }
903 return false;
904 }
905 }
906 }
907
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,Register DestReg,unsigned SubIdx,const MachineInstr & Orig,const TargetRegisterInfo & TRI) const908 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
909 MachineBasicBlock::iterator I,
910 Register DestReg, unsigned SubIdx,
911 const MachineInstr &Orig,
912 const TargetRegisterInfo &TRI) const {
913 bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
914 if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
915 MachineBasicBlock::LQR_Dead) {
916 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
917 // effects.
918 int Value;
919 switch (Orig.getOpcode()) {
920 case X86::MOV32r0: Value = 0; break;
921 case X86::MOV32r1: Value = 1; break;
922 case X86::MOV32r_1: Value = -1; break;
923 default:
924 llvm_unreachable("Unexpected instruction!");
925 }
926
927 const DebugLoc &DL = Orig.getDebugLoc();
928 BuildMI(MBB, I, DL, get(X86::MOV32ri))
929 .add(Orig.getOperand(0))
930 .addImm(Value);
931 } else {
932 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
933 MBB.insert(I, MI);
934 }
935
936 MachineInstr &NewMI = *std::prev(I);
937 NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
938 }
939
940 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
hasLiveCondCodeDef(MachineInstr & MI) const941 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
942 for (const MachineOperand &MO : MI.operands()) {
943 if (MO.isReg() && MO.isDef() &&
944 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
945 return true;
946 }
947 }
948 return false;
949 }
950
951 /// Check whether the shift count for a machine operand is non-zero.
getTruncatedShiftCount(const MachineInstr & MI,unsigned ShiftAmtOperandIdx)952 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
953 unsigned ShiftAmtOperandIdx) {
954 // The shift count is six bits with the REX.W prefix and five bits without.
955 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
956 unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
957 return Imm & ShiftCountMask;
958 }
959
960 /// Check whether the given shift count is appropriate
961 /// can be represented by a LEA instruction.
isTruncatedShiftCountForLEA(unsigned ShAmt)962 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
963 // Left shift instructions can be transformed into load-effective-address
964 // instructions if we can encode them appropriately.
965 // A LEA instruction utilizes a SIB byte to encode its scale factor.
966 // The SIB.scale field is two bits wide which means that we can encode any
967 // shift amount less than 4.
968 return ShAmt < 4 && ShAmt > 0;
969 }
970
findRedundantFlagInstr(MachineInstr & CmpInstr,MachineInstr & CmpValDefInstr,const MachineRegisterInfo * MRI,MachineInstr ** AndInstr,const TargetRegisterInfo * TRI,bool & NoSignFlag,bool & ClearsOverflowFlag)971 static bool findRedundantFlagInstr(MachineInstr &CmpInstr,
972 MachineInstr &CmpValDefInstr,
973 const MachineRegisterInfo *MRI,
974 MachineInstr **AndInstr,
975 const TargetRegisterInfo *TRI,
976 bool &NoSignFlag, bool &ClearsOverflowFlag) {
977 if (CmpValDefInstr.getOpcode() != X86::SUBREG_TO_REG)
978 return false;
979
980 if (CmpInstr.getOpcode() != X86::TEST64rr)
981 return false;
982
983 // CmpInstr is a TEST64rr instruction, and `X86InstrInfo::analyzeCompare`
984 // guarantees that it's analyzable only if two registers are identical.
985 assert(
986 (CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) &&
987 "CmpInstr is an analyzable TEST64rr, and `X86InstrInfo::analyzeCompare` "
988 "requires two reg operands are the same.");
989
990 // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that
991 // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case
992 // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is
993 // redundant.
994 assert(
995 (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) &&
996 "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG.");
997
998 // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is typically
999 // 0.
1000 if (CmpValDefInstr.getOperand(1).getImm() != 0)
1001 return false;
1002
1003 // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically
1004 // sub_32bit or sub_xmm.
1005 if (CmpValDefInstr.getOperand(3).getImm() != X86::sub_32bit)
1006 return false;
1007
1008 MachineInstr *VregDefInstr =
1009 MRI->getVRegDef(CmpValDefInstr.getOperand(2).getReg());
1010
1011 assert(VregDefInstr && "Must have a definition (SSA)");
1012
1013 // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB
1014 // to simplify the subsequent analysis.
1015 //
1016 // FIXME: If `VregDefInstr->getParent()` is the only predecessor of
1017 // `CmpValDefInstr.getParent()`, this could be handled.
1018 if (VregDefInstr->getParent() != CmpValDefInstr.getParent())
1019 return false;
1020
1021 if (X86::isAND(VregDefInstr->getOpcode())) {
1022 // Get a sequence of instructions like
1023 // %reg = and* ... // Set EFLAGS
1024 // ... // EFLAGS not changed
1025 // %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit
1026 // test64rr %extended_reg, %extended_reg, implicit-def $eflags
1027 //
1028 // If subsequent readers use a subset of bits that don't change
1029 // after `and*` instructions, it's likely that the test64rr could
1030 // be optimized away.
1031 for (const MachineInstr &Instr :
1032 make_range(std::next(MachineBasicBlock::iterator(VregDefInstr)),
1033 MachineBasicBlock::iterator(CmpValDefInstr))) {
1034 // There are instructions between 'VregDefInstr' and
1035 // 'CmpValDefInstr' that modifies EFLAGS.
1036 if (Instr.modifiesRegister(X86::EFLAGS, TRI))
1037 return false;
1038 }
1039
1040 *AndInstr = VregDefInstr;
1041
1042 // AND instruction will essentially update SF and clear OF, so
1043 // NoSignFlag should be false in the sense that SF is modified by `AND`.
1044 //
1045 // However, the implementation artifically sets `NoSignFlag` to true
1046 // to poison the SF bit; that is to say, if SF is looked at later, the
1047 // optimization (to erase TEST64rr) will be disabled.
1048 //
1049 // The reason to poison SF bit is that SF bit value could be different
1050 // in the `AND` and `TEST` operation; signed bit is not known for `AND`,
1051 // and is known to be 0 as a result of `TEST64rr`.
1052 //
1053 // FIXME: As opposed to poisoning the SF bit directly, consider peeking into
1054 // the AND instruction and using the static information to guide peephole
1055 // optimization if possible. For example, it's possible to fold a
1056 // conditional move into a copy if the relevant EFLAG bits could be deduced
1057 // from an immediate operand of and operation.
1058 //
1059 NoSignFlag = true;
1060 // ClearsOverflowFlag is true for AND operation (no surprise).
1061 ClearsOverflowFlag = true;
1062 return true;
1063 }
1064 return false;
1065 }
1066
classifyLEAReg(MachineInstr & MI,const MachineOperand & Src,unsigned Opc,bool AllowSP,Register & NewSrc,bool & isKill,MachineOperand & ImplicitOp,LiveVariables * LV,LiveIntervals * LIS) const1067 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
1068 unsigned Opc, bool AllowSP, Register &NewSrc,
1069 bool &isKill, MachineOperand &ImplicitOp,
1070 LiveVariables *LV, LiveIntervals *LIS) const {
1071 MachineFunction &MF = *MI.getParent()->getParent();
1072 const TargetRegisterClass *RC;
1073 if (AllowSP) {
1074 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1075 } else {
1076 RC = Opc != X86::LEA32r ?
1077 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1078 }
1079 Register SrcReg = Src.getReg();
1080 isKill = MI.killsRegister(SrcReg);
1081
1082 // For both LEA64 and LEA32 the register already has essentially the right
1083 // type (32-bit or 64-bit) we may just need to forbid SP.
1084 if (Opc != X86::LEA64_32r) {
1085 NewSrc = SrcReg;
1086 assert(!Src.isUndef() && "Undef op doesn't need optimization");
1087
1088 if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1089 return false;
1090
1091 return true;
1092 }
1093
1094 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1095 // another we need to add 64-bit registers to the final MI.
1096 if (SrcReg.isPhysical()) {
1097 ImplicitOp = Src;
1098 ImplicitOp.setImplicit();
1099
1100 NewSrc = getX86SubSuperRegister(SrcReg, 64);
1101 assert(!Src.isUndef() && "Undef op doesn't need optimization");
1102 } else {
1103 // Virtual register of the wrong class, we have to create a temporary 64-bit
1104 // vreg to feed into the LEA.
1105 NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1106 MachineInstr *Copy =
1107 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1108 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1109 .addReg(SrcReg, getKillRegState(isKill));
1110
1111 // Which is obviously going to be dead after we're done with it.
1112 isKill = true;
1113
1114 if (LV)
1115 LV->replaceKillInstruction(SrcReg, MI, *Copy);
1116
1117 if (LIS) {
1118 SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy);
1119 SlotIndex Idx = LIS->getInstructionIndex(MI);
1120 LiveInterval &LI = LIS->getInterval(SrcReg);
1121 LiveRange::Segment *S = LI.getSegmentContaining(Idx);
1122 if (S->end.getBaseIndex() == Idx)
1123 S->end = CopyIdx.getRegSlot();
1124 }
1125 }
1126
1127 // We've set all the parameters without issue.
1128 return true;
1129 }
1130
convertToThreeAddressWithLEA(unsigned MIOpc,MachineInstr & MI,LiveVariables * LV,LiveIntervals * LIS,bool Is8BitOp) const1131 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1132 MachineInstr &MI,
1133 LiveVariables *LV,
1134 LiveIntervals *LIS,
1135 bool Is8BitOp) const {
1136 // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1137 MachineBasicBlock &MBB = *MI.getParent();
1138 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
1139 assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
1140 *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
1141 "Unexpected type for LEA transform");
1142
1143 // TODO: For a 32-bit target, we need to adjust the LEA variables with
1144 // something like this:
1145 // Opcode = X86::LEA32r;
1146 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1147 // OutRegLEA =
1148 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1149 // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1150 if (!Subtarget.is64Bit())
1151 return nullptr;
1152
1153 unsigned Opcode = X86::LEA64_32r;
1154 Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1155 Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1156 Register InRegLEA2;
1157
1158 // Build and insert into an implicit UNDEF value. This is OK because
1159 // we will be shifting and then extracting the lower 8/16-bits.
1160 // This has the potential to cause partial register stall. e.g.
1161 // movw (%rbp,%rcx,2), %dx
1162 // leal -65(%rdx), %esi
1163 // But testing has shown this *does* help performance in 64-bit mode (at
1164 // least on modern x86 machines).
1165 MachineBasicBlock::iterator MBBI = MI.getIterator();
1166 Register Dest = MI.getOperand(0).getReg();
1167 Register Src = MI.getOperand(1).getReg();
1168 Register Src2;
1169 bool IsDead = MI.getOperand(0).isDead();
1170 bool IsKill = MI.getOperand(1).isKill();
1171 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
1172 assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
1173 MachineInstr *ImpDef =
1174 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
1175 MachineInstr *InsMI =
1176 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1177 .addReg(InRegLEA, RegState::Define, SubReg)
1178 .addReg(Src, getKillRegState(IsKill));
1179 MachineInstr *ImpDef2 = nullptr;
1180 MachineInstr *InsMI2 = nullptr;
1181
1182 MachineInstrBuilder MIB =
1183 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
1184 switch (MIOpc) {
1185 default: llvm_unreachable("Unreachable!");
1186 case X86::SHL8ri:
1187 case X86::SHL16ri: {
1188 unsigned ShAmt = MI.getOperand(2).getImm();
1189 MIB.addReg(0)
1190 .addImm(1LL << ShAmt)
1191 .addReg(InRegLEA, RegState::Kill)
1192 .addImm(0)
1193 .addReg(0);
1194 break;
1195 }
1196 case X86::INC8r:
1197 case X86::INC16r:
1198 addRegOffset(MIB, InRegLEA, true, 1);
1199 break;
1200 case X86::DEC8r:
1201 case X86::DEC16r:
1202 addRegOffset(MIB, InRegLEA, true, -1);
1203 break;
1204 case X86::ADD8ri:
1205 case X86::ADD8ri_DB:
1206 case X86::ADD16ri:
1207 case X86::ADD16ri8:
1208 case X86::ADD16ri_DB:
1209 case X86::ADD16ri8_DB:
1210 addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
1211 break;
1212 case X86::ADD8rr:
1213 case X86::ADD8rr_DB:
1214 case X86::ADD16rr:
1215 case X86::ADD16rr_DB: {
1216 Src2 = MI.getOperand(2).getReg();
1217 bool IsKill2 = MI.getOperand(2).isKill();
1218 assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
1219 if (Src == Src2) {
1220 // ADD8rr/ADD16rr killed %reg1028, %reg1028
1221 // just a single insert_subreg.
1222 addRegReg(MIB, InRegLEA, true, InRegLEA, false);
1223 } else {
1224 if (Subtarget.is64Bit())
1225 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1226 else
1227 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1228 // Build and insert into an implicit UNDEF value. This is OK because
1229 // we will be shifting and then extracting the lower 8/16-bits.
1230 ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF),
1231 InRegLEA2);
1232 InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
1233 .addReg(InRegLEA2, RegState::Define, SubReg)
1234 .addReg(Src2, getKillRegState(IsKill2));
1235 addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
1236 }
1237 if (LV && IsKill2 && InsMI2)
1238 LV->replaceKillInstruction(Src2, MI, *InsMI2);
1239 break;
1240 }
1241 }
1242
1243 MachineInstr *NewMI = MIB;
1244 MachineInstr *ExtMI =
1245 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1246 .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
1247 .addReg(OutRegLEA, RegState::Kill, SubReg);
1248
1249 if (LV) {
1250 // Update live variables.
1251 LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
1252 if (InRegLEA2)
1253 LV->getVarInfo(InRegLEA2).Kills.push_back(NewMI);
1254 LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
1255 if (IsKill)
1256 LV->replaceKillInstruction(Src, MI, *InsMI);
1257 if (IsDead)
1258 LV->replaceKillInstruction(Dest, MI, *ExtMI);
1259 }
1260
1261 if (LIS) {
1262 LIS->InsertMachineInstrInMaps(*ImpDef);
1263 SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI);
1264 if (ImpDef2)
1265 LIS->InsertMachineInstrInMaps(*ImpDef2);
1266 SlotIndex Ins2Idx;
1267 if (InsMI2)
1268 Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2);
1269 SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1270 SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI);
1271 LIS->getInterval(InRegLEA);
1272 LIS->getInterval(OutRegLEA);
1273 if (InRegLEA2)
1274 LIS->getInterval(InRegLEA2);
1275
1276 // Move the use of Src up to InsMI.
1277 LiveInterval &SrcLI = LIS->getInterval(Src);
1278 LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx);
1279 if (SrcSeg->end == NewIdx.getRegSlot())
1280 SrcSeg->end = InsIdx.getRegSlot();
1281
1282 if (InsMI2) {
1283 // Move the use of Src2 up to InsMI2.
1284 LiveInterval &Src2LI = LIS->getInterval(Src2);
1285 LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx);
1286 if (Src2Seg->end == NewIdx.getRegSlot())
1287 Src2Seg->end = Ins2Idx.getRegSlot();
1288 }
1289
1290 // Move the definition of Dest down to ExtMI.
1291 LiveInterval &DestLI = LIS->getInterval(Dest);
1292 LiveRange::Segment *DestSeg =
1293 DestLI.getSegmentContaining(NewIdx.getRegSlot());
1294 assert(DestSeg->start == NewIdx.getRegSlot() &&
1295 DestSeg->valno->def == NewIdx.getRegSlot());
1296 DestSeg->start = ExtIdx.getRegSlot();
1297 DestSeg->valno->def = ExtIdx.getRegSlot();
1298 }
1299
1300 return ExtMI;
1301 }
1302
1303 /// This method must be implemented by targets that
1304 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1305 /// may be able to convert a two-address instruction into a true
1306 /// three-address instruction on demand. This allows the X86 target (for
1307 /// example) to convert ADD and SHL instructions into LEA instructions if they
1308 /// would require register copies due to two-addressness.
1309 ///
1310 /// This method returns a null pointer if the transformation cannot be
1311 /// performed, otherwise it returns the new instruction.
1312 ///
convertToThreeAddress(MachineInstr & MI,LiveVariables * LV,LiveIntervals * LIS) const1313 MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI,
1314 LiveVariables *LV,
1315 LiveIntervals *LIS) const {
1316 // The following opcodes also sets the condition code register(s). Only
1317 // convert them to equivalent lea if the condition code register def's
1318 // are dead!
1319 if (hasLiveCondCodeDef(MI))
1320 return nullptr;
1321
1322 MachineFunction &MF = *MI.getParent()->getParent();
1323 // All instructions input are two-addr instructions. Get the known operands.
1324 const MachineOperand &Dest = MI.getOperand(0);
1325 const MachineOperand &Src = MI.getOperand(1);
1326
1327 // Ideally, operations with undef should be folded before we get here, but we
1328 // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1329 // Without this, we have to forward undef state to new register operands to
1330 // avoid machine verifier errors.
1331 if (Src.isUndef())
1332 return nullptr;
1333 if (MI.getNumOperands() > 2)
1334 if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
1335 return nullptr;
1336
1337 MachineInstr *NewMI = nullptr;
1338 Register SrcReg, SrcReg2;
1339 bool Is64Bit = Subtarget.is64Bit();
1340
1341 bool Is8BitOp = false;
1342 unsigned NumRegOperands = 2;
1343 unsigned MIOpc = MI.getOpcode();
1344 switch (MIOpc) {
1345 default: llvm_unreachable("Unreachable!");
1346 case X86::SHL64ri: {
1347 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1348 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1349 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1350
1351 // LEA can't handle RSP.
1352 if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
1353 Src.getReg(), &X86::GR64_NOSPRegClass))
1354 return nullptr;
1355
1356 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
1357 .add(Dest)
1358 .addReg(0)
1359 .addImm(1LL << ShAmt)
1360 .add(Src)
1361 .addImm(0)
1362 .addReg(0);
1363 break;
1364 }
1365 case X86::SHL32ri: {
1366 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1367 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1368 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1369
1370 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1371
1372 // LEA can't handle ESP.
1373 bool isKill;
1374 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1375 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1376 ImplicitOp, LV, LIS))
1377 return nullptr;
1378
1379 MachineInstrBuilder MIB =
1380 BuildMI(MF, MI.getDebugLoc(), get(Opc))
1381 .add(Dest)
1382 .addReg(0)
1383 .addImm(1LL << ShAmt)
1384 .addReg(SrcReg, getKillRegState(isKill))
1385 .addImm(0)
1386 .addReg(0);
1387 if (ImplicitOp.getReg() != 0)
1388 MIB.add(ImplicitOp);
1389 NewMI = MIB;
1390
1391 // Add kills if classifyLEAReg created a new register.
1392 if (LV && SrcReg != Src.getReg())
1393 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1394 break;
1395 }
1396 case X86::SHL8ri:
1397 Is8BitOp = true;
1398 [[fallthrough]];
1399 case X86::SHL16ri: {
1400 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1401 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1402 if (!isTruncatedShiftCountForLEA(ShAmt))
1403 return nullptr;
1404 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1405 }
1406 case X86::INC64r:
1407 case X86::INC32r: {
1408 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
1409 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
1410 (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1411 bool isKill;
1412 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1413 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1414 ImplicitOp, LV, LIS))
1415 return nullptr;
1416
1417 MachineInstrBuilder MIB =
1418 BuildMI(MF, MI.getDebugLoc(), get(Opc))
1419 .add(Dest)
1420 .addReg(SrcReg, getKillRegState(isKill));
1421 if (ImplicitOp.getReg() != 0)
1422 MIB.add(ImplicitOp);
1423
1424 NewMI = addOffset(MIB, 1);
1425
1426 // Add kills if classifyLEAReg created a new register.
1427 if (LV && SrcReg != Src.getReg())
1428 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1429 break;
1430 }
1431 case X86::DEC64r:
1432 case X86::DEC32r: {
1433 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1434 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1435 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1436
1437 bool isKill;
1438 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1439 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1440 ImplicitOp, LV, LIS))
1441 return nullptr;
1442
1443 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1444 .add(Dest)
1445 .addReg(SrcReg, getKillRegState(isKill));
1446 if (ImplicitOp.getReg() != 0)
1447 MIB.add(ImplicitOp);
1448
1449 NewMI = addOffset(MIB, -1);
1450
1451 // Add kills if classifyLEAReg created a new register.
1452 if (LV && SrcReg != Src.getReg())
1453 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1454 break;
1455 }
1456 case X86::DEC8r:
1457 case X86::INC8r:
1458 Is8BitOp = true;
1459 [[fallthrough]];
1460 case X86::DEC16r:
1461 case X86::INC16r:
1462 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1463 case X86::ADD64rr:
1464 case X86::ADD64rr_DB:
1465 case X86::ADD32rr:
1466 case X86::ADD32rr_DB: {
1467 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1468 unsigned Opc;
1469 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1470 Opc = X86::LEA64r;
1471 else
1472 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1473
1474 const MachineOperand &Src2 = MI.getOperand(2);
1475 bool isKill2;
1476 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1477 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2,
1478 ImplicitOp2, LV, LIS))
1479 return nullptr;
1480
1481 bool isKill;
1482 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1483 if (Src.getReg() == Src2.getReg()) {
1484 // Don't call classify LEAReg a second time on the same register, in case
1485 // the first call inserted a COPY from Src2 and marked it as killed.
1486 isKill = isKill2;
1487 SrcReg = SrcReg2;
1488 } else {
1489 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1490 ImplicitOp, LV, LIS))
1491 return nullptr;
1492 }
1493
1494 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1495 if (ImplicitOp.getReg() != 0)
1496 MIB.add(ImplicitOp);
1497 if (ImplicitOp2.getReg() != 0)
1498 MIB.add(ImplicitOp2);
1499
1500 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1501
1502 // Add kills if classifyLEAReg created a new register.
1503 if (LV) {
1504 if (SrcReg2 != Src2.getReg())
1505 LV->getVarInfo(SrcReg2).Kills.push_back(NewMI);
1506 if (SrcReg != SrcReg2 && SrcReg != Src.getReg())
1507 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1508 }
1509 NumRegOperands = 3;
1510 break;
1511 }
1512 case X86::ADD8rr:
1513 case X86::ADD8rr_DB:
1514 Is8BitOp = true;
1515 [[fallthrough]];
1516 case X86::ADD16rr:
1517 case X86::ADD16rr_DB:
1518 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1519 case X86::ADD64ri32:
1520 case X86::ADD64ri8:
1521 case X86::ADD64ri32_DB:
1522 case X86::ADD64ri8_DB:
1523 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1524 NewMI = addOffset(
1525 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1526 MI.getOperand(2));
1527 break;
1528 case X86::ADD32ri:
1529 case X86::ADD32ri8:
1530 case X86::ADD32ri_DB:
1531 case X86::ADD32ri8_DB: {
1532 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1533 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1534
1535 bool isKill;
1536 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1537 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1538 ImplicitOp, LV, LIS))
1539 return nullptr;
1540
1541 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1542 .add(Dest)
1543 .addReg(SrcReg, getKillRegState(isKill));
1544 if (ImplicitOp.getReg() != 0)
1545 MIB.add(ImplicitOp);
1546
1547 NewMI = addOffset(MIB, MI.getOperand(2));
1548
1549 // Add kills if classifyLEAReg created a new register.
1550 if (LV && SrcReg != Src.getReg())
1551 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1552 break;
1553 }
1554 case X86::ADD8ri:
1555 case X86::ADD8ri_DB:
1556 Is8BitOp = true;
1557 [[fallthrough]];
1558 case X86::ADD16ri:
1559 case X86::ADD16ri8:
1560 case X86::ADD16ri_DB:
1561 case X86::ADD16ri8_DB:
1562 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1563 case X86::SUB8ri:
1564 case X86::SUB16ri8:
1565 case X86::SUB16ri:
1566 /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1567 return nullptr;
1568 case X86::SUB32ri8:
1569 case X86::SUB32ri: {
1570 if (!MI.getOperand(2).isImm())
1571 return nullptr;
1572 int64_t Imm = MI.getOperand(2).getImm();
1573 if (!isInt<32>(-Imm))
1574 return nullptr;
1575
1576 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1577 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1578
1579 bool isKill;
1580 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1581 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1582 ImplicitOp, LV, LIS))
1583 return nullptr;
1584
1585 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1586 .add(Dest)
1587 .addReg(SrcReg, getKillRegState(isKill));
1588 if (ImplicitOp.getReg() != 0)
1589 MIB.add(ImplicitOp);
1590
1591 NewMI = addOffset(MIB, -Imm);
1592
1593 // Add kills if classifyLEAReg created a new register.
1594 if (LV && SrcReg != Src.getReg())
1595 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1596 break;
1597 }
1598
1599 case X86::SUB64ri8:
1600 case X86::SUB64ri32: {
1601 if (!MI.getOperand(2).isImm())
1602 return nullptr;
1603 int64_t Imm = MI.getOperand(2).getImm();
1604 if (!isInt<32>(-Imm))
1605 return nullptr;
1606
1607 assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1608
1609 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1610 get(X86::LEA64r)).add(Dest).add(Src);
1611 NewMI = addOffset(MIB, -Imm);
1612 break;
1613 }
1614
1615 case X86::VMOVDQU8Z128rmk:
1616 case X86::VMOVDQU8Z256rmk:
1617 case X86::VMOVDQU8Zrmk:
1618 case X86::VMOVDQU16Z128rmk:
1619 case X86::VMOVDQU16Z256rmk:
1620 case X86::VMOVDQU16Zrmk:
1621 case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1622 case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1623 case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk:
1624 case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1625 case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1626 case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk:
1627 case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk:
1628 case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk:
1629 case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk:
1630 case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk:
1631 case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk:
1632 case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk:
1633 case X86::VBROADCASTSDZ256rmk:
1634 case X86::VBROADCASTSDZrmk:
1635 case X86::VBROADCASTSSZ128rmk:
1636 case X86::VBROADCASTSSZ256rmk:
1637 case X86::VBROADCASTSSZrmk:
1638 case X86::VPBROADCASTDZ128rmk:
1639 case X86::VPBROADCASTDZ256rmk:
1640 case X86::VPBROADCASTDZrmk:
1641 case X86::VPBROADCASTQZ128rmk:
1642 case X86::VPBROADCASTQZ256rmk:
1643 case X86::VPBROADCASTQZrmk: {
1644 unsigned Opc;
1645 switch (MIOpc) {
1646 default: llvm_unreachable("Unreachable!");
1647 case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break;
1648 case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break;
1649 case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break;
1650 case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
1651 case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
1652 case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break;
1653 case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1654 case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1655 case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
1656 case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1657 case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1658 case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
1659 case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
1660 case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
1661 case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
1662 case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
1663 case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
1664 case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
1665 case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1666 case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1667 case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
1668 case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1669 case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1670 case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
1671 case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
1672 case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
1673 case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
1674 case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
1675 case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
1676 case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
1677 case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break;
1678 case X86::VBROADCASTSDZrmk: Opc = X86::VBLENDMPDZrmbk; break;
1679 case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break;
1680 case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break;
1681 case X86::VBROADCASTSSZrmk: Opc = X86::VBLENDMPSZrmbk; break;
1682 case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break;
1683 case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break;
1684 case X86::VPBROADCASTDZrmk: Opc = X86::VPBLENDMDZrmbk; break;
1685 case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break;
1686 case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break;
1687 case X86::VPBROADCASTQZrmk: Opc = X86::VPBLENDMQZrmbk; break;
1688 }
1689
1690 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1691 .add(Dest)
1692 .add(MI.getOperand(2))
1693 .add(Src)
1694 .add(MI.getOperand(3))
1695 .add(MI.getOperand(4))
1696 .add(MI.getOperand(5))
1697 .add(MI.getOperand(6))
1698 .add(MI.getOperand(7));
1699 NumRegOperands = 4;
1700 break;
1701 }
1702
1703 case X86::VMOVDQU8Z128rrk:
1704 case X86::VMOVDQU8Z256rrk:
1705 case X86::VMOVDQU8Zrrk:
1706 case X86::VMOVDQU16Z128rrk:
1707 case X86::VMOVDQU16Z256rrk:
1708 case X86::VMOVDQU16Zrrk:
1709 case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1710 case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1711 case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk:
1712 case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1713 case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1714 case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk:
1715 case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk:
1716 case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk:
1717 case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk:
1718 case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk:
1719 case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk:
1720 case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: {
1721 unsigned Opc;
1722 switch (MIOpc) {
1723 default: llvm_unreachable("Unreachable!");
1724 case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break;
1725 case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break;
1726 case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break;
1727 case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1728 case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1729 case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break;
1730 case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1731 case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1732 case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
1733 case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1734 case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1735 case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
1736 case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
1737 case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
1738 case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
1739 case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
1740 case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
1741 case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
1742 case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1743 case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1744 case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
1745 case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1746 case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1747 case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
1748 case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
1749 case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
1750 case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
1751 case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
1752 case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
1753 case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
1754 }
1755
1756 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1757 .add(Dest)
1758 .add(MI.getOperand(2))
1759 .add(Src)
1760 .add(MI.getOperand(3));
1761 NumRegOperands = 4;
1762 break;
1763 }
1764 }
1765
1766 if (!NewMI) return nullptr;
1767
1768 if (LV) { // Update live variables
1769 for (unsigned I = 0; I < NumRegOperands; ++I) {
1770 MachineOperand &Op = MI.getOperand(I);
1771 if (Op.isReg() && (Op.isDead() || Op.isKill()))
1772 LV->replaceKillInstruction(Op.getReg(), MI, *NewMI);
1773 }
1774 }
1775
1776 MachineBasicBlock &MBB = *MI.getParent();
1777 MBB.insert(MI.getIterator(), NewMI); // Insert the new inst
1778
1779 if (LIS) {
1780 LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1781 if (SrcReg)
1782 LIS->getInterval(SrcReg);
1783 if (SrcReg2)
1784 LIS->getInterval(SrcReg2);
1785 }
1786
1787 return NewMI;
1788 }
1789
1790 /// This determines which of three possible cases of a three source commute
1791 /// the source indexes correspond to taking into account any mask operands.
1792 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1793 /// possible.
1794 /// Case 0 - Possible to commute the first and second operands.
1795 /// Case 1 - Possible to commute the first and third operands.
1796 /// Case 2 - Possible to commute the second and third operands.
getThreeSrcCommuteCase(uint64_t TSFlags,unsigned SrcOpIdx1,unsigned SrcOpIdx2)1797 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1798 unsigned SrcOpIdx2) {
1799 // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1800 if (SrcOpIdx1 > SrcOpIdx2)
1801 std::swap(SrcOpIdx1, SrcOpIdx2);
1802
1803 unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1804 if (X86II::isKMasked(TSFlags)) {
1805 Op2++;
1806 Op3++;
1807 }
1808
1809 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1810 return 0;
1811 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1812 return 1;
1813 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1814 return 2;
1815 llvm_unreachable("Unknown three src commute case.");
1816 }
1817
getFMA3OpcodeToCommuteOperands(const MachineInstr & MI,unsigned SrcOpIdx1,unsigned SrcOpIdx2,const X86InstrFMA3Group & FMA3Group) const1818 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1819 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1820 const X86InstrFMA3Group &FMA3Group) const {
1821
1822 unsigned Opc = MI.getOpcode();
1823
1824 // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1825 // analysis. The commute optimization is legal only if all users of FMA*_Int
1826 // use only the lowest element of the FMA*_Int instruction. Such analysis are
1827 // not implemented yet. So, just return 0 in that case.
1828 // When such analysis are available this place will be the right place for
1829 // calling it.
1830 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
1831 "Intrinsic instructions can't commute operand 1");
1832
1833 // Determine which case this commute is or if it can't be done.
1834 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1835 SrcOpIdx2);
1836 assert(Case < 3 && "Unexpected case number!");
1837
1838 // Define the FMA forms mapping array that helps to map input FMA form
1839 // to output FMA form to preserve the operation semantics after
1840 // commuting the operands.
1841 const unsigned Form132Index = 0;
1842 const unsigned Form213Index = 1;
1843 const unsigned Form231Index = 2;
1844 static const unsigned FormMapping[][3] = {
1845 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1846 // FMA132 A, C, b; ==> FMA231 C, A, b;
1847 // FMA213 B, A, c; ==> FMA213 A, B, c;
1848 // FMA231 C, A, b; ==> FMA132 A, C, b;
1849 { Form231Index, Form213Index, Form132Index },
1850 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1851 // FMA132 A, c, B; ==> FMA132 B, c, A;
1852 // FMA213 B, a, C; ==> FMA231 C, a, B;
1853 // FMA231 C, a, B; ==> FMA213 B, a, C;
1854 { Form132Index, Form231Index, Form213Index },
1855 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1856 // FMA132 a, C, B; ==> FMA213 a, B, C;
1857 // FMA213 b, A, C; ==> FMA132 b, C, A;
1858 // FMA231 c, A, B; ==> FMA231 c, B, A;
1859 { Form213Index, Form132Index, Form231Index }
1860 };
1861
1862 unsigned FMAForms[3];
1863 FMAForms[0] = FMA3Group.get132Opcode();
1864 FMAForms[1] = FMA3Group.get213Opcode();
1865 FMAForms[2] = FMA3Group.get231Opcode();
1866
1867 // Everything is ready, just adjust the FMA opcode and return it.
1868 for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++)
1869 if (Opc == FMAForms[FormIndex])
1870 return FMAForms[FormMapping[Case][FormIndex]];
1871
1872 llvm_unreachable("Illegal FMA3 format");
1873 }
1874
commuteVPTERNLOG(MachineInstr & MI,unsigned SrcOpIdx1,unsigned SrcOpIdx2)1875 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1876 unsigned SrcOpIdx2) {
1877 // Determine which case this commute is or if it can't be done.
1878 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1879 SrcOpIdx2);
1880 assert(Case < 3 && "Unexpected case value!");
1881
1882 // For each case we need to swap two pairs of bits in the final immediate.
1883 static const uint8_t SwapMasks[3][4] = {
1884 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1885 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1886 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1887 };
1888
1889 uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1890 // Clear out the bits we are swapping.
1891 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1892 SwapMasks[Case][2] | SwapMasks[Case][3]);
1893 // If the immediate had a bit of the pair set, then set the opposite bit.
1894 if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1895 if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1896 if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1897 if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1898 MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1899 }
1900
1901 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1902 // commuted.
isCommutableVPERMV3Instruction(unsigned Opcode)1903 static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1904 #define VPERM_CASES(Suffix) \
1905 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
1906 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
1907 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
1908 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
1909 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
1910 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
1911 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
1912 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
1913 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
1914 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
1915 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
1916 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
1917
1918 #define VPERM_CASES_BROADCAST(Suffix) \
1919 VPERM_CASES(Suffix) \
1920 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
1921 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
1922 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
1923 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1924 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1925 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
1926
1927 switch (Opcode) {
1928 default: return false;
1929 VPERM_CASES(B)
1930 VPERM_CASES_BROADCAST(D)
1931 VPERM_CASES_BROADCAST(PD)
1932 VPERM_CASES_BROADCAST(PS)
1933 VPERM_CASES_BROADCAST(Q)
1934 VPERM_CASES(W)
1935 return true;
1936 }
1937 #undef VPERM_CASES_BROADCAST
1938 #undef VPERM_CASES
1939 }
1940
1941 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1942 // from the I opcode to the T opcode and vice versa.
getCommutedVPERMV3Opcode(unsigned Opcode)1943 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1944 #define VPERM_CASES(Orig, New) \
1945 case X86::Orig##128rr: return X86::New##128rr; \
1946 case X86::Orig##128rrkz: return X86::New##128rrkz; \
1947 case X86::Orig##128rm: return X86::New##128rm; \
1948 case X86::Orig##128rmkz: return X86::New##128rmkz; \
1949 case X86::Orig##256rr: return X86::New##256rr; \
1950 case X86::Orig##256rrkz: return X86::New##256rrkz; \
1951 case X86::Orig##256rm: return X86::New##256rm; \
1952 case X86::Orig##256rmkz: return X86::New##256rmkz; \
1953 case X86::Orig##rr: return X86::New##rr; \
1954 case X86::Orig##rrkz: return X86::New##rrkz; \
1955 case X86::Orig##rm: return X86::New##rm; \
1956 case X86::Orig##rmkz: return X86::New##rmkz;
1957
1958 #define VPERM_CASES_BROADCAST(Orig, New) \
1959 VPERM_CASES(Orig, New) \
1960 case X86::Orig##128rmb: return X86::New##128rmb; \
1961 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1962 case X86::Orig##256rmb: return X86::New##256rmb; \
1963 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1964 case X86::Orig##rmb: return X86::New##rmb; \
1965 case X86::Orig##rmbkz: return X86::New##rmbkz;
1966
1967 switch (Opcode) {
1968 VPERM_CASES(VPERMI2B, VPERMT2B)
1969 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
1970 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1971 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1972 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
1973 VPERM_CASES(VPERMI2W, VPERMT2W)
1974 VPERM_CASES(VPERMT2B, VPERMI2B)
1975 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
1976 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
1977 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
1978 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
1979 VPERM_CASES(VPERMT2W, VPERMI2W)
1980 }
1981
1982 llvm_unreachable("Unreachable!");
1983 #undef VPERM_CASES_BROADCAST
1984 #undef VPERM_CASES
1985 }
1986
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const1987 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1988 unsigned OpIdx1,
1989 unsigned OpIdx2) const {
1990 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
1991 if (NewMI)
1992 return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
1993 return MI;
1994 };
1995
1996 switch (MI.getOpcode()) {
1997 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1998 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1999 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
2000 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2001 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2002 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
2003 unsigned Opc;
2004 unsigned Size;
2005 switch (MI.getOpcode()) {
2006 default: llvm_unreachable("Unreachable!");
2007 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2008 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2009 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2010 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
2011 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2012 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
2013 }
2014 unsigned Amt = MI.getOperand(3).getImm();
2015 auto &WorkingMI = cloneIfNew(MI);
2016 WorkingMI.setDesc(get(Opc));
2017 WorkingMI.getOperand(3).setImm(Size - Amt);
2018 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2019 OpIdx1, OpIdx2);
2020 }
2021 case X86::PFSUBrr:
2022 case X86::PFSUBRrr: {
2023 // PFSUB x, y: x = x - y
2024 // PFSUBR x, y: x = y - x
2025 unsigned Opc =
2026 (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
2027 auto &WorkingMI = cloneIfNew(MI);
2028 WorkingMI.setDesc(get(Opc));
2029 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2030 OpIdx1, OpIdx2);
2031 }
2032 case X86::BLENDPDrri:
2033 case X86::BLENDPSrri:
2034 case X86::VBLENDPDrri:
2035 case X86::VBLENDPSrri:
2036 // If we're optimizing for size, try to use MOVSD/MOVSS.
2037 if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
2038 unsigned Mask, Opc;
2039 switch (MI.getOpcode()) {
2040 default: llvm_unreachable("Unreachable!");
2041 case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break;
2042 case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break;
2043 case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
2044 case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
2045 }
2046 if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
2047 auto &WorkingMI = cloneIfNew(MI);
2048 WorkingMI.setDesc(get(Opc));
2049 WorkingMI.removeOperand(3);
2050 return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
2051 /*NewMI=*/false,
2052 OpIdx1, OpIdx2);
2053 }
2054 }
2055 [[fallthrough]];
2056 case X86::PBLENDWrri:
2057 case X86::VBLENDPDYrri:
2058 case X86::VBLENDPSYrri:
2059 case X86::VPBLENDDrri:
2060 case X86::VPBLENDWrri:
2061 case X86::VPBLENDDYrri:
2062 case X86::VPBLENDWYrri:{
2063 int8_t Mask;
2064 switch (MI.getOpcode()) {
2065 default: llvm_unreachable("Unreachable!");
2066 case X86::BLENDPDrri: Mask = (int8_t)0x03; break;
2067 case X86::BLENDPSrri: Mask = (int8_t)0x0F; break;
2068 case X86::PBLENDWrri: Mask = (int8_t)0xFF; break;
2069 case X86::VBLENDPDrri: Mask = (int8_t)0x03; break;
2070 case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break;
2071 case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break;
2072 case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break;
2073 case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break;
2074 case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break;
2075 case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break;
2076 case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break;
2077 }
2078 // Only the least significant bits of Imm are used.
2079 // Using int8_t to ensure it will be sign extended to the int64_t that
2080 // setImm takes in order to match isel behavior.
2081 int8_t Imm = MI.getOperand(3).getImm() & Mask;
2082 auto &WorkingMI = cloneIfNew(MI);
2083 WorkingMI.getOperand(3).setImm(Mask ^ Imm);
2084 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2085 OpIdx1, OpIdx2);
2086 }
2087 case X86::INSERTPSrr:
2088 case X86::VINSERTPSrr:
2089 case X86::VINSERTPSZrr: {
2090 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2091 unsigned ZMask = Imm & 15;
2092 unsigned DstIdx = (Imm >> 4) & 3;
2093 unsigned SrcIdx = (Imm >> 6) & 3;
2094
2095 // We can commute insertps if we zero 2 of the elements, the insertion is
2096 // "inline" and we don't override the insertion with a zero.
2097 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
2098 llvm::popcount(ZMask) == 2) {
2099 unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
2100 assert(AltIdx < 4 && "Illegal insertion index");
2101 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
2102 auto &WorkingMI = cloneIfNew(MI);
2103 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
2104 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2105 OpIdx1, OpIdx2);
2106 }
2107 return nullptr;
2108 }
2109 case X86::MOVSDrr:
2110 case X86::MOVSSrr:
2111 case X86::VMOVSDrr:
2112 case X86::VMOVSSrr:{
2113 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
2114 if (Subtarget.hasSSE41()) {
2115 unsigned Mask, Opc;
2116 switch (MI.getOpcode()) {
2117 default: llvm_unreachable("Unreachable!");
2118 case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break;
2119 case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break;
2120 case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
2121 case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
2122 }
2123
2124 auto &WorkingMI = cloneIfNew(MI);
2125 WorkingMI.setDesc(get(Opc));
2126 WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
2127 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2128 OpIdx1, OpIdx2);
2129 }
2130
2131 // Convert to SHUFPD.
2132 assert(MI.getOpcode() == X86::MOVSDrr &&
2133 "Can only commute MOVSDrr without SSE4.1");
2134
2135 auto &WorkingMI = cloneIfNew(MI);
2136 WorkingMI.setDesc(get(X86::SHUFPDrri));
2137 WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
2138 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2139 OpIdx1, OpIdx2);
2140 }
2141 case X86::SHUFPDrri: {
2142 // Commute to MOVSD.
2143 assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
2144 auto &WorkingMI = cloneIfNew(MI);
2145 WorkingMI.setDesc(get(X86::MOVSDrr));
2146 WorkingMI.removeOperand(3);
2147 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2148 OpIdx1, OpIdx2);
2149 }
2150 case X86::PCLMULQDQrr:
2151 case X86::VPCLMULQDQrr:
2152 case X86::VPCLMULQDQYrr:
2153 case X86::VPCLMULQDQZrr:
2154 case X86::VPCLMULQDQZ128rr:
2155 case X86::VPCLMULQDQZ256rr: {
2156 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2157 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2158 unsigned Imm = MI.getOperand(3).getImm();
2159 unsigned Src1Hi = Imm & 0x01;
2160 unsigned Src2Hi = Imm & 0x10;
2161 auto &WorkingMI = cloneIfNew(MI);
2162 WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2163 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2164 OpIdx1, OpIdx2);
2165 }
2166 case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri:
2167 case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri:
2168 case X86::VPCMPBZrri: case X86::VPCMPUBZrri:
2169 case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri:
2170 case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri:
2171 case X86::VPCMPDZrri: case X86::VPCMPUDZrri:
2172 case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri:
2173 case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri:
2174 case X86::VPCMPQZrri: case X86::VPCMPUQZrri:
2175 case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri:
2176 case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri:
2177 case X86::VPCMPWZrri: case X86::VPCMPUWZrri:
2178 case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
2179 case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
2180 case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik:
2181 case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
2182 case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
2183 case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik:
2184 case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
2185 case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
2186 case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik:
2187 case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
2188 case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
2189 case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: {
2190 // Flip comparison mode immediate (if necessary).
2191 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
2192 Imm = X86::getSwappedVPCMPImm(Imm);
2193 auto &WorkingMI = cloneIfNew(MI);
2194 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
2195 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2196 OpIdx1, OpIdx2);
2197 }
2198 case X86::VPCOMBri: case X86::VPCOMUBri:
2199 case X86::VPCOMDri: case X86::VPCOMUDri:
2200 case X86::VPCOMQri: case X86::VPCOMUQri:
2201 case X86::VPCOMWri: case X86::VPCOMUWri: {
2202 // Flip comparison mode immediate (if necessary).
2203 unsigned Imm = MI.getOperand(3).getImm() & 0x7;
2204 Imm = X86::getSwappedVPCOMImm(Imm);
2205 auto &WorkingMI = cloneIfNew(MI);
2206 WorkingMI.getOperand(3).setImm(Imm);
2207 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2208 OpIdx1, OpIdx2);
2209 }
2210 case X86::VCMPSDZrr:
2211 case X86::VCMPSSZrr:
2212 case X86::VCMPPDZrri:
2213 case X86::VCMPPSZrri:
2214 case X86::VCMPSHZrr:
2215 case X86::VCMPPHZrri:
2216 case X86::VCMPPHZ128rri:
2217 case X86::VCMPPHZ256rri:
2218 case X86::VCMPPDZ128rri:
2219 case X86::VCMPPSZ128rri:
2220 case X86::VCMPPDZ256rri:
2221 case X86::VCMPPSZ256rri:
2222 case X86::VCMPPDZrrik:
2223 case X86::VCMPPSZrrik:
2224 case X86::VCMPPDZ128rrik:
2225 case X86::VCMPPSZ128rrik:
2226 case X86::VCMPPDZ256rrik:
2227 case X86::VCMPPSZ256rrik: {
2228 unsigned Imm =
2229 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
2230 Imm = X86::getSwappedVCMPImm(Imm);
2231 auto &WorkingMI = cloneIfNew(MI);
2232 WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
2233 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2234 OpIdx1, OpIdx2);
2235 }
2236 case X86::VPERM2F128rr:
2237 case X86::VPERM2I128rr: {
2238 // Flip permute source immediate.
2239 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2240 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2241 int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
2242 auto &WorkingMI = cloneIfNew(MI);
2243 WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
2244 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2245 OpIdx1, OpIdx2);
2246 }
2247 case X86::MOVHLPSrr:
2248 case X86::UNPCKHPDrr:
2249 case X86::VMOVHLPSrr:
2250 case X86::VUNPCKHPDrr:
2251 case X86::VMOVHLPSZrr:
2252 case X86::VUNPCKHPDZ128rr: {
2253 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
2254
2255 unsigned Opc = MI.getOpcode();
2256 switch (Opc) {
2257 default: llvm_unreachable("Unreachable!");
2258 case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break;
2259 case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break;
2260 case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break;
2261 case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break;
2262 case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break;
2263 case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break;
2264 }
2265 auto &WorkingMI = cloneIfNew(MI);
2266 WorkingMI.setDesc(get(Opc));
2267 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2268 OpIdx1, OpIdx2);
2269 }
2270 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: {
2271 auto &WorkingMI = cloneIfNew(MI);
2272 unsigned OpNo = MI.getDesc().getNumOperands() - 1;
2273 X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
2274 WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
2275 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2276 OpIdx1, OpIdx2);
2277 }
2278 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
2279 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
2280 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
2281 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
2282 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
2283 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
2284 case X86::VPTERNLOGDZrrik:
2285 case X86::VPTERNLOGDZ128rrik:
2286 case X86::VPTERNLOGDZ256rrik:
2287 case X86::VPTERNLOGQZrrik:
2288 case X86::VPTERNLOGQZ128rrik:
2289 case X86::VPTERNLOGQZ256rrik:
2290 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
2291 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2292 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2293 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
2294 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2295 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2296 case X86::VPTERNLOGDZ128rmbi:
2297 case X86::VPTERNLOGDZ256rmbi:
2298 case X86::VPTERNLOGDZrmbi:
2299 case X86::VPTERNLOGQZ128rmbi:
2300 case X86::VPTERNLOGQZ256rmbi:
2301 case X86::VPTERNLOGQZrmbi:
2302 case X86::VPTERNLOGDZ128rmbikz:
2303 case X86::VPTERNLOGDZ256rmbikz:
2304 case X86::VPTERNLOGDZrmbikz:
2305 case X86::VPTERNLOGQZ128rmbikz:
2306 case X86::VPTERNLOGQZ256rmbikz:
2307 case X86::VPTERNLOGQZrmbikz: {
2308 auto &WorkingMI = cloneIfNew(MI);
2309 commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
2310 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2311 OpIdx1, OpIdx2);
2312 }
2313 default: {
2314 if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
2315 unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
2316 auto &WorkingMI = cloneIfNew(MI);
2317 WorkingMI.setDesc(get(Opc));
2318 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2319 OpIdx1, OpIdx2);
2320 }
2321
2322 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2323 MI.getDesc().TSFlags);
2324 if (FMA3Group) {
2325 unsigned Opc =
2326 getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
2327 auto &WorkingMI = cloneIfNew(MI);
2328 WorkingMI.setDesc(get(Opc));
2329 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2330 OpIdx1, OpIdx2);
2331 }
2332
2333 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2334 }
2335 }
2336 }
2337
2338 bool
findThreeSrcCommutedOpIndices(const MachineInstr & MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2,bool IsIntrinsic) const2339 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
2340 unsigned &SrcOpIdx1,
2341 unsigned &SrcOpIdx2,
2342 bool IsIntrinsic) const {
2343 uint64_t TSFlags = MI.getDesc().TSFlags;
2344
2345 unsigned FirstCommutableVecOp = 1;
2346 unsigned LastCommutableVecOp = 3;
2347 unsigned KMaskOp = -1U;
2348 if (X86II::isKMasked(TSFlags)) {
2349 // For k-zero-masked operations it is Ok to commute the first vector
2350 // operand. Unless this is an intrinsic instruction.
2351 // For regular k-masked operations a conservative choice is done as the
2352 // elements of the first vector operand, for which the corresponding bit
2353 // in the k-mask operand is set to 0, are copied to the result of the
2354 // instruction.
2355 // TODO/FIXME: The commute still may be legal if it is known that the
2356 // k-mask operand is set to either all ones or all zeroes.
2357 // It is also Ok to commute the 1st operand if all users of MI use only
2358 // the elements enabled by the k-mask operand. For example,
2359 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2360 // : v1[i];
2361 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2362 // // Ok, to commute v1 in FMADD213PSZrk.
2363
2364 // The k-mask operand has index = 2 for masked and zero-masked operations.
2365 KMaskOp = 2;
2366
2367 // The operand with index = 1 is used as a source for those elements for
2368 // which the corresponding bit in the k-mask is set to 0.
2369 if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
2370 FirstCommutableVecOp = 3;
2371
2372 LastCommutableVecOp++;
2373 } else if (IsIntrinsic) {
2374 // Commuting the first operand of an intrinsic instruction isn't possible
2375 // unless we can prove that only the lowest element of the result is used.
2376 FirstCommutableVecOp = 2;
2377 }
2378
2379 if (isMem(MI, LastCommutableVecOp))
2380 LastCommutableVecOp--;
2381
2382 // Only the first RegOpsNum operands are commutable.
2383 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2384 // that the operand is not specified/fixed.
2385 if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2386 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
2387 SrcOpIdx1 == KMaskOp))
2388 return false;
2389 if (SrcOpIdx2 != CommuteAnyOperandIndex &&
2390 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
2391 SrcOpIdx2 == KMaskOp))
2392 return false;
2393
2394 // Look for two different register operands assumed to be commutable
2395 // regardless of the FMA opcode. The FMA opcode is adjusted later.
2396 if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2397 SrcOpIdx2 == CommuteAnyOperandIndex) {
2398 unsigned CommutableOpIdx2 = SrcOpIdx2;
2399
2400 // At least one of operands to be commuted is not specified and
2401 // this method is free to choose appropriate commutable operands.
2402 if (SrcOpIdx1 == SrcOpIdx2)
2403 // Both of operands are not fixed. By default set one of commutable
2404 // operands to the last register operand of the instruction.
2405 CommutableOpIdx2 = LastCommutableVecOp;
2406 else if (SrcOpIdx2 == CommuteAnyOperandIndex)
2407 // Only one of operands is not fixed.
2408 CommutableOpIdx2 = SrcOpIdx1;
2409
2410 // CommutableOpIdx2 is well defined now. Let's choose another commutable
2411 // operand and assign its index to CommutableOpIdx1.
2412 Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
2413
2414 unsigned CommutableOpIdx1;
2415 for (CommutableOpIdx1 = LastCommutableVecOp;
2416 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
2417 // Just ignore and skip the k-mask operand.
2418 if (CommutableOpIdx1 == KMaskOp)
2419 continue;
2420
2421 // The commuted operands must have different registers.
2422 // Otherwise, the commute transformation does not change anything and
2423 // is useless then.
2424 if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
2425 break;
2426 }
2427
2428 // No appropriate commutable operands were found.
2429 if (CommutableOpIdx1 < FirstCommutableVecOp)
2430 return false;
2431
2432 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2433 // to return those values.
2434 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2435 CommutableOpIdx1, CommutableOpIdx2))
2436 return false;
2437 }
2438
2439 return true;
2440 }
2441
findCommutedOpIndices(const MachineInstr & MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const2442 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
2443 unsigned &SrcOpIdx1,
2444 unsigned &SrcOpIdx2) const {
2445 const MCInstrDesc &Desc = MI.getDesc();
2446 if (!Desc.isCommutable())
2447 return false;
2448
2449 switch (MI.getOpcode()) {
2450 case X86::CMPSDrr:
2451 case X86::CMPSSrr:
2452 case X86::CMPPDrri:
2453 case X86::CMPPSrri:
2454 case X86::VCMPSDrr:
2455 case X86::VCMPSSrr:
2456 case X86::VCMPPDrri:
2457 case X86::VCMPPSrri:
2458 case X86::VCMPPDYrri:
2459 case X86::VCMPPSYrri:
2460 case X86::VCMPSDZrr:
2461 case X86::VCMPSSZrr:
2462 case X86::VCMPPDZrri:
2463 case X86::VCMPPSZrri:
2464 case X86::VCMPSHZrr:
2465 case X86::VCMPPHZrri:
2466 case X86::VCMPPHZ128rri:
2467 case X86::VCMPPHZ256rri:
2468 case X86::VCMPPDZ128rri:
2469 case X86::VCMPPSZ128rri:
2470 case X86::VCMPPDZ256rri:
2471 case X86::VCMPPSZ256rri:
2472 case X86::VCMPPDZrrik:
2473 case X86::VCMPPSZrrik:
2474 case X86::VCMPPDZ128rrik:
2475 case X86::VCMPPSZ128rrik:
2476 case X86::VCMPPDZ256rrik:
2477 case X86::VCMPPSZ256rrik: {
2478 unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2479
2480 // Float comparison can be safely commuted for
2481 // Ordered/Unordered/Equal/NotEqual tests
2482 unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2483 switch (Imm) {
2484 default:
2485 // EVEX versions can be commuted.
2486 if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2487 break;
2488 return false;
2489 case 0x00: // EQUAL
2490 case 0x03: // UNORDERED
2491 case 0x04: // NOT EQUAL
2492 case 0x07: // ORDERED
2493 break;
2494 }
2495
2496 // The indices of the commutable operands are 1 and 2 (or 2 and 3
2497 // when masked).
2498 // Assign them to the returned operand indices here.
2499 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2500 2 + OpOffset);
2501 }
2502 case X86::MOVSSrr:
2503 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2504 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2505 // AVX implies sse4.1.
2506 if (Subtarget.hasSSE41())
2507 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2508 return false;
2509 case X86::SHUFPDrri:
2510 // We can commute this to MOVSD.
2511 if (MI.getOperand(3).getImm() == 0x02)
2512 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2513 return false;
2514 case X86::MOVHLPSrr:
2515 case X86::UNPCKHPDrr:
2516 case X86::VMOVHLPSrr:
2517 case X86::VUNPCKHPDrr:
2518 case X86::VMOVHLPSZrr:
2519 case X86::VUNPCKHPDZ128rr:
2520 if (Subtarget.hasSSE2())
2521 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2522 return false;
2523 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
2524 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
2525 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
2526 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
2527 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
2528 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
2529 case X86::VPTERNLOGDZrrik:
2530 case X86::VPTERNLOGDZ128rrik:
2531 case X86::VPTERNLOGDZ256rrik:
2532 case X86::VPTERNLOGQZrrik:
2533 case X86::VPTERNLOGQZ128rrik:
2534 case X86::VPTERNLOGQZ256rrik:
2535 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
2536 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2537 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2538 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
2539 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2540 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2541 case X86::VPTERNLOGDZ128rmbi:
2542 case X86::VPTERNLOGDZ256rmbi:
2543 case X86::VPTERNLOGDZrmbi:
2544 case X86::VPTERNLOGQZ128rmbi:
2545 case X86::VPTERNLOGQZ256rmbi:
2546 case X86::VPTERNLOGQZrmbi:
2547 case X86::VPTERNLOGDZ128rmbikz:
2548 case X86::VPTERNLOGDZ256rmbikz:
2549 case X86::VPTERNLOGDZrmbikz:
2550 case X86::VPTERNLOGQZ128rmbikz:
2551 case X86::VPTERNLOGQZ256rmbikz:
2552 case X86::VPTERNLOGQZrmbikz:
2553 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2554 case X86::VPDPWSSDYrr:
2555 case X86::VPDPWSSDrr:
2556 case X86::VPDPWSSDSYrr:
2557 case X86::VPDPWSSDSrr:
2558 case X86::VPDPBSSDSrr:
2559 case X86::VPDPBSSDSYrr:
2560 case X86::VPDPBSSDrr:
2561 case X86::VPDPBSSDYrr:
2562 case X86::VPDPBUUDSrr:
2563 case X86::VPDPBUUDSYrr:
2564 case X86::VPDPBUUDrr:
2565 case X86::VPDPBUUDYrr:
2566 case X86::VPDPWSSDZ128r:
2567 case X86::VPDPWSSDZ128rk:
2568 case X86::VPDPWSSDZ128rkz:
2569 case X86::VPDPWSSDZ256r:
2570 case X86::VPDPWSSDZ256rk:
2571 case X86::VPDPWSSDZ256rkz:
2572 case X86::VPDPWSSDZr:
2573 case X86::VPDPWSSDZrk:
2574 case X86::VPDPWSSDZrkz:
2575 case X86::VPDPWSSDSZ128r:
2576 case X86::VPDPWSSDSZ128rk:
2577 case X86::VPDPWSSDSZ128rkz:
2578 case X86::VPDPWSSDSZ256r:
2579 case X86::VPDPWSSDSZ256rk:
2580 case X86::VPDPWSSDSZ256rkz:
2581 case X86::VPDPWSSDSZr:
2582 case X86::VPDPWSSDSZrk:
2583 case X86::VPDPWSSDSZrkz:
2584 case X86::VPMADD52HUQrr:
2585 case X86::VPMADD52HUQYrr:
2586 case X86::VPMADD52HUQZ128r:
2587 case X86::VPMADD52HUQZ128rk:
2588 case X86::VPMADD52HUQZ128rkz:
2589 case X86::VPMADD52HUQZ256r:
2590 case X86::VPMADD52HUQZ256rk:
2591 case X86::VPMADD52HUQZ256rkz:
2592 case X86::VPMADD52HUQZr:
2593 case X86::VPMADD52HUQZrk:
2594 case X86::VPMADD52HUQZrkz:
2595 case X86::VPMADD52LUQrr:
2596 case X86::VPMADD52LUQYrr:
2597 case X86::VPMADD52LUQZ128r:
2598 case X86::VPMADD52LUQZ128rk:
2599 case X86::VPMADD52LUQZ128rkz:
2600 case X86::VPMADD52LUQZ256r:
2601 case X86::VPMADD52LUQZ256rk:
2602 case X86::VPMADD52LUQZ256rkz:
2603 case X86::VPMADD52LUQZr:
2604 case X86::VPMADD52LUQZrk:
2605 case X86::VPMADD52LUQZrkz:
2606 case X86::VFMADDCPHZr:
2607 case X86::VFMADDCPHZrk:
2608 case X86::VFMADDCPHZrkz:
2609 case X86::VFMADDCPHZ128r:
2610 case X86::VFMADDCPHZ128rk:
2611 case X86::VFMADDCPHZ128rkz:
2612 case X86::VFMADDCPHZ256r:
2613 case X86::VFMADDCPHZ256rk:
2614 case X86::VFMADDCPHZ256rkz:
2615 case X86::VFMADDCSHZr:
2616 case X86::VFMADDCSHZrk:
2617 case X86::VFMADDCSHZrkz: {
2618 unsigned CommutableOpIdx1 = 2;
2619 unsigned CommutableOpIdx2 = 3;
2620 if (X86II::isKMasked(Desc.TSFlags)) {
2621 // Skip the mask register.
2622 ++CommutableOpIdx1;
2623 ++CommutableOpIdx2;
2624 }
2625 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2626 CommutableOpIdx1, CommutableOpIdx2))
2627 return false;
2628 if (!MI.getOperand(SrcOpIdx1).isReg() ||
2629 !MI.getOperand(SrcOpIdx2).isReg())
2630 // No idea.
2631 return false;
2632 return true;
2633 }
2634
2635 default:
2636 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2637 MI.getDesc().TSFlags);
2638 if (FMA3Group)
2639 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2640 FMA3Group->isIntrinsic());
2641
2642 // Handled masked instructions since we need to skip over the mask input
2643 // and the preserved input.
2644 if (X86II::isKMasked(Desc.TSFlags)) {
2645 // First assume that the first input is the mask operand and skip past it.
2646 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2647 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2648 // Check if the first input is tied. If there isn't one then we only
2649 // need to skip the mask operand which we did above.
2650 if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2651 MCOI::TIED_TO) != -1)) {
2652 // If this is zero masking instruction with a tied operand, we need to
2653 // move the first index back to the first input since this must
2654 // be a 3 input instruction and we want the first two non-mask inputs.
2655 // Otherwise this is a 2 input instruction with a preserved input and
2656 // mask, so we need to move the indices to skip one more input.
2657 if (X86II::isKMergeMasked(Desc.TSFlags)) {
2658 ++CommutableOpIdx1;
2659 ++CommutableOpIdx2;
2660 } else {
2661 --CommutableOpIdx1;
2662 }
2663 }
2664
2665 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2666 CommutableOpIdx1, CommutableOpIdx2))
2667 return false;
2668
2669 if (!MI.getOperand(SrcOpIdx1).isReg() ||
2670 !MI.getOperand(SrcOpIdx2).isReg())
2671 // No idea.
2672 return false;
2673 return true;
2674 }
2675
2676 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2677 }
2678 return false;
2679 }
2680
isConvertibleLEA(MachineInstr * MI)2681 static bool isConvertibleLEA(MachineInstr *MI) {
2682 unsigned Opcode = MI->getOpcode();
2683 if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
2684 Opcode != X86::LEA64_32r)
2685 return false;
2686
2687 const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
2688 const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
2689 const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
2690
2691 if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
2692 Scale.getImm() > 1)
2693 return false;
2694
2695 return true;
2696 }
2697
hasCommutePreference(MachineInstr & MI,bool & Commute) const2698 bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const {
2699 // Currently we're interested in following sequence only.
2700 // r3 = lea r1, r2
2701 // r5 = add r3, r4
2702 // Both r3 and r4 are killed in add, we hope the add instruction has the
2703 // operand order
2704 // r5 = add r4, r3
2705 // So later in X86FixupLEAs the lea instruction can be rewritten as add.
2706 unsigned Opcode = MI.getOpcode();
2707 if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
2708 return false;
2709
2710 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2711 Register Reg1 = MI.getOperand(1).getReg();
2712 Register Reg2 = MI.getOperand(2).getReg();
2713
2714 // Check if Reg1 comes from LEA in the same MBB.
2715 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
2716 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2717 Commute = true;
2718 return true;
2719 }
2720 }
2721
2722 // Check if Reg2 comes from LEA in the same MBB.
2723 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
2724 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2725 Commute = false;
2726 return true;
2727 }
2728 }
2729
2730 return false;
2731 }
2732
getCondSrcNoFromDesc(const MCInstrDesc & MCID)2733 int X86::getCondSrcNoFromDesc(const MCInstrDesc &MCID) {
2734 unsigned Opcode = MCID.getOpcode();
2735 if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isCMOVCC(Opcode)))
2736 return -1;
2737 // Assume that condition code is always the last use operand.
2738 unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs();
2739 return NumUses - 1;
2740 }
2741
getCondFromMI(const MachineInstr & MI)2742 X86::CondCode X86::getCondFromMI(const MachineInstr &MI) {
2743 const MCInstrDesc &MCID = MI.getDesc();
2744 int CondNo = getCondSrcNoFromDesc(MCID);
2745 if (CondNo < 0)
2746 return X86::COND_INVALID;
2747 CondNo += MCID.getNumDefs();
2748 return static_cast<X86::CondCode>(MI.getOperand(CondNo).getImm());
2749 }
2750
getCondFromBranch(const MachineInstr & MI)2751 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
2752 return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2753 : X86::COND_INVALID;
2754 }
2755
getCondFromSETCC(const MachineInstr & MI)2756 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
2757 return X86::isSETCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2758 : X86::COND_INVALID;
2759 }
2760
getCondFromCMov(const MachineInstr & MI)2761 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2762 return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2763 : X86::COND_INVALID;
2764 }
2765
2766 /// Return the inverse of the specified condition,
2767 /// e.g. turning COND_E to COND_NE.
GetOppositeBranchCondition(X86::CondCode CC)2768 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2769 switch (CC) {
2770 default: llvm_unreachable("Illegal condition code!");
2771 case X86::COND_E: return X86::COND_NE;
2772 case X86::COND_NE: return X86::COND_E;
2773 case X86::COND_L: return X86::COND_GE;
2774 case X86::COND_LE: return X86::COND_G;
2775 case X86::COND_G: return X86::COND_LE;
2776 case X86::COND_GE: return X86::COND_L;
2777 case X86::COND_B: return X86::COND_AE;
2778 case X86::COND_BE: return X86::COND_A;
2779 case X86::COND_A: return X86::COND_BE;
2780 case X86::COND_AE: return X86::COND_B;
2781 case X86::COND_S: return X86::COND_NS;
2782 case X86::COND_NS: return X86::COND_S;
2783 case X86::COND_P: return X86::COND_NP;
2784 case X86::COND_NP: return X86::COND_P;
2785 case X86::COND_O: return X86::COND_NO;
2786 case X86::COND_NO: return X86::COND_O;
2787 case X86::COND_NE_OR_P: return X86::COND_E_AND_NP;
2788 case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2789 }
2790 }
2791
2792 /// Assuming the flags are set by MI(a,b), return the condition code if we
2793 /// modify the instructions such that flags are set by MI(b,a).
getSwappedCondition(X86::CondCode CC)2794 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2795 switch (CC) {
2796 default: return X86::COND_INVALID;
2797 case X86::COND_E: return X86::COND_E;
2798 case X86::COND_NE: return X86::COND_NE;
2799 case X86::COND_L: return X86::COND_G;
2800 case X86::COND_LE: return X86::COND_GE;
2801 case X86::COND_G: return X86::COND_L;
2802 case X86::COND_GE: return X86::COND_LE;
2803 case X86::COND_B: return X86::COND_A;
2804 case X86::COND_BE: return X86::COND_AE;
2805 case X86::COND_A: return X86::COND_B;
2806 case X86::COND_AE: return X86::COND_BE;
2807 }
2808 }
2809
2810 std::pair<X86::CondCode, bool>
getX86ConditionCode(CmpInst::Predicate Predicate)2811 X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2812 X86::CondCode CC = X86::COND_INVALID;
2813 bool NeedSwap = false;
2814 switch (Predicate) {
2815 default: break;
2816 // Floating-point Predicates
2817 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
2818 case CmpInst::FCMP_OLT: NeedSwap = true; [[fallthrough]];
2819 case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
2820 case CmpInst::FCMP_OLE: NeedSwap = true; [[fallthrough]];
2821 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
2822 case CmpInst::FCMP_UGT: NeedSwap = true; [[fallthrough]];
2823 case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
2824 case CmpInst::FCMP_UGE: NeedSwap = true; [[fallthrough]];
2825 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
2826 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
2827 case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
2828 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
2829 case CmpInst::FCMP_OEQ: [[fallthrough]];
2830 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2831
2832 // Integer Predicates
2833 case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
2834 case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
2835 case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
2836 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
2837 case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
2838 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
2839 case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
2840 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
2841 case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
2842 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
2843 }
2844
2845 return std::make_pair(CC, NeedSwap);
2846 }
2847
2848 /// Return a cmov opcode for the given register size in bytes, and operand type.
getCMovOpcode(unsigned RegBytes,bool HasMemoryOperand)2849 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2850 switch(RegBytes) {
2851 default: llvm_unreachable("Illegal register size!");
2852 case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2853 case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2854 case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
2855 }
2856 }
2857
2858 /// Get the VPCMP immediate for the given condition.
getVPCMPImmForCond(ISD::CondCode CC)2859 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2860 switch (CC) {
2861 default: llvm_unreachable("Unexpected SETCC condition");
2862 case ISD::SETNE: return 4;
2863 case ISD::SETEQ: return 0;
2864 case ISD::SETULT:
2865 case ISD::SETLT: return 1;
2866 case ISD::SETUGT:
2867 case ISD::SETGT: return 6;
2868 case ISD::SETUGE:
2869 case ISD::SETGE: return 5;
2870 case ISD::SETULE:
2871 case ISD::SETLE: return 2;
2872 }
2873 }
2874
2875 /// Get the VPCMP immediate if the operands are swapped.
getSwappedVPCMPImm(unsigned Imm)2876 unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2877 switch (Imm) {
2878 default: llvm_unreachable("Unreachable!");
2879 case 0x01: Imm = 0x06; break; // LT -> NLE
2880 case 0x02: Imm = 0x05; break; // LE -> NLT
2881 case 0x05: Imm = 0x02; break; // NLT -> LE
2882 case 0x06: Imm = 0x01; break; // NLE -> LT
2883 case 0x00: // EQ
2884 case 0x03: // FALSE
2885 case 0x04: // NE
2886 case 0x07: // TRUE
2887 break;
2888 }
2889
2890 return Imm;
2891 }
2892
2893 /// Get the VPCOM immediate if the operands are swapped.
getSwappedVPCOMImm(unsigned Imm)2894 unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2895 switch (Imm) {
2896 default: llvm_unreachable("Unreachable!");
2897 case 0x00: Imm = 0x02; break; // LT -> GT
2898 case 0x01: Imm = 0x03; break; // LE -> GE
2899 case 0x02: Imm = 0x00; break; // GT -> LT
2900 case 0x03: Imm = 0x01; break; // GE -> LE
2901 case 0x04: // EQ
2902 case 0x05: // NE
2903 case 0x06: // FALSE
2904 case 0x07: // TRUE
2905 break;
2906 }
2907
2908 return Imm;
2909 }
2910
2911 /// Get the VCMP immediate if the operands are swapped.
getSwappedVCMPImm(unsigned Imm)2912 unsigned X86::getSwappedVCMPImm(unsigned Imm) {
2913 // Only need the lower 2 bits to distinquish.
2914 switch (Imm & 0x3) {
2915 default: llvm_unreachable("Unreachable!");
2916 case 0x00: case 0x03:
2917 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
2918 break;
2919 case 0x01: case 0x02:
2920 // Need to toggle bits 3:0. Bit 4 stays the same.
2921 Imm ^= 0xf;
2922 break;
2923 }
2924
2925 return Imm;
2926 }
2927
2928 /// Return true if the Reg is X87 register.
isX87Reg(unsigned Reg)2929 static bool isX87Reg(unsigned Reg) {
2930 return (Reg == X86::FPCW || Reg == X86::FPSW ||
2931 (Reg >= X86::ST0 && Reg <= X86::ST7));
2932 }
2933
2934 /// check if the instruction is X87 instruction
isX87Instruction(MachineInstr & MI)2935 bool X86::isX87Instruction(MachineInstr &MI) {
2936 for (const MachineOperand &MO : MI.operands()) {
2937 if (!MO.isReg())
2938 continue;
2939 if (isX87Reg(MO.getReg()))
2940 return true;
2941 }
2942 return false;
2943 }
2944
isUnconditionalTailCall(const MachineInstr & MI) const2945 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2946 switch (MI.getOpcode()) {
2947 case X86::TCRETURNdi:
2948 case X86::TCRETURNri:
2949 case X86::TCRETURNmi:
2950 case X86::TCRETURNdi64:
2951 case X86::TCRETURNri64:
2952 case X86::TCRETURNmi64:
2953 return true;
2954 default:
2955 return false;
2956 }
2957 }
2958
canMakeTailCallConditional(SmallVectorImpl<MachineOperand> & BranchCond,const MachineInstr & TailCall) const2959 bool X86InstrInfo::canMakeTailCallConditional(
2960 SmallVectorImpl<MachineOperand> &BranchCond,
2961 const MachineInstr &TailCall) const {
2962
2963 const MachineFunction *MF = TailCall.getMF();
2964
2965 if (MF->getTarget().getCodeModel() == CodeModel::Kernel) {
2966 // Kernel patches thunk calls in runtime, these should never be conditional.
2967 const MachineOperand &Target = TailCall.getOperand(0);
2968 if (Target.isSymbol()) {
2969 StringRef Symbol(Target.getSymbolName());
2970 // this is currently only relevant to r11/kernel indirect thunk.
2971 if (Symbol.equals("__x86_indirect_thunk_r11"))
2972 return false;
2973 }
2974 }
2975
2976 if (TailCall.getOpcode() != X86::TCRETURNdi &&
2977 TailCall.getOpcode() != X86::TCRETURNdi64) {
2978 // Only direct calls can be done with a conditional branch.
2979 return false;
2980 }
2981
2982 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2983 // Conditional tail calls confuse the Win64 unwinder.
2984 return false;
2985 }
2986
2987 assert(BranchCond.size() == 1);
2988 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2989 // Can't make a conditional tail call with this condition.
2990 return false;
2991 }
2992
2993 const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2994 if (X86FI->getTCReturnAddrDelta() != 0 ||
2995 TailCall.getOperand(1).getImm() != 0) {
2996 // A conditional tail call cannot do any stack adjustment.
2997 return false;
2998 }
2999
3000 return true;
3001 }
3002
replaceBranchWithTailCall(MachineBasicBlock & MBB,SmallVectorImpl<MachineOperand> & BranchCond,const MachineInstr & TailCall) const3003 void X86InstrInfo::replaceBranchWithTailCall(
3004 MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
3005 const MachineInstr &TailCall) const {
3006 assert(canMakeTailCallConditional(BranchCond, TailCall));
3007
3008 MachineBasicBlock::iterator I = MBB.end();
3009 while (I != MBB.begin()) {
3010 --I;
3011 if (I->isDebugInstr())
3012 continue;
3013 if (!I->isBranch())
3014 assert(0 && "Can't find the branch to replace!");
3015
3016 X86::CondCode CC = X86::getCondFromBranch(*I);
3017 assert(BranchCond.size() == 1);
3018 if (CC != BranchCond[0].getImm())
3019 continue;
3020
3021 break;
3022 }
3023
3024 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
3025 : X86::TCRETURNdi64cc;
3026
3027 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
3028 MIB->addOperand(TailCall.getOperand(0)); // Destination.
3029 MIB.addImm(0); // Stack offset (not used).
3030 MIB->addOperand(BranchCond[0]); // Condition.
3031 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
3032
3033 // Add implicit uses and defs of all live regs potentially clobbered by the
3034 // call. This way they still appear live across the call.
3035 LivePhysRegs LiveRegs(getRegisterInfo());
3036 LiveRegs.addLiveOuts(MBB);
3037 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
3038 LiveRegs.stepForward(*MIB, Clobbers);
3039 for (const auto &C : Clobbers) {
3040 MIB.addReg(C.first, RegState::Implicit);
3041 MIB.addReg(C.first, RegState::Implicit | RegState::Define);
3042 }
3043
3044 I->eraseFromParent();
3045 }
3046
3047 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
3048 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
3049 // fallthrough MBB cannot be identified.
getFallThroughMBB(MachineBasicBlock * MBB,MachineBasicBlock * TBB)3050 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
3051 MachineBasicBlock *TBB) {
3052 // Look for non-EHPad successors other than TBB. If we find exactly one, it
3053 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
3054 // and fallthrough MBB. If we find more than one, we cannot identify the
3055 // fallthrough MBB and should return nullptr.
3056 MachineBasicBlock *FallthroughBB = nullptr;
3057 for (MachineBasicBlock *Succ : MBB->successors()) {
3058 if (Succ->isEHPad() || (Succ == TBB && FallthroughBB))
3059 continue;
3060 // Return a nullptr if we found more than one fallthrough successor.
3061 if (FallthroughBB && FallthroughBB != TBB)
3062 return nullptr;
3063 FallthroughBB = Succ;
3064 }
3065 return FallthroughBB;
3066 }
3067
AnalyzeBranchImpl(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,SmallVectorImpl<MachineInstr * > & CondBranches,bool AllowModify) const3068 bool X86InstrInfo::AnalyzeBranchImpl(
3069 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
3070 SmallVectorImpl<MachineOperand> &Cond,
3071 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
3072
3073 // Start from the bottom of the block and work up, examining the
3074 // terminator instructions.
3075 MachineBasicBlock::iterator I = MBB.end();
3076 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3077 while (I != MBB.begin()) {
3078 --I;
3079 if (I->isDebugInstr())
3080 continue;
3081
3082 // Working from the bottom, when we see a non-terminator instruction, we're
3083 // done.
3084 if (!isUnpredicatedTerminator(*I))
3085 break;
3086
3087 // A terminator that isn't a branch can't easily be handled by this
3088 // analysis.
3089 if (!I->isBranch())
3090 return true;
3091
3092 // Handle unconditional branches.
3093 if (I->getOpcode() == X86::JMP_1) {
3094 UnCondBrIter = I;
3095
3096 if (!AllowModify) {
3097 TBB = I->getOperand(0).getMBB();
3098 continue;
3099 }
3100
3101 // If the block has any instructions after a JMP, delete them.
3102 MBB.erase(std::next(I), MBB.end());
3103
3104 Cond.clear();
3105 FBB = nullptr;
3106
3107 // Delete the JMP if it's equivalent to a fall-through.
3108 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3109 TBB = nullptr;
3110 I->eraseFromParent();
3111 I = MBB.end();
3112 UnCondBrIter = MBB.end();
3113 continue;
3114 }
3115
3116 // TBB is used to indicate the unconditional destination.
3117 TBB = I->getOperand(0).getMBB();
3118 continue;
3119 }
3120
3121 // Handle conditional branches.
3122 X86::CondCode BranchCode = X86::getCondFromBranch(*I);
3123 if (BranchCode == X86::COND_INVALID)
3124 return true; // Can't handle indirect branch.
3125
3126 // In practice we should never have an undef eflags operand, if we do
3127 // abort here as we are not prepared to preserve the flag.
3128 if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
3129 return true;
3130
3131 // Working from the bottom, handle the first conditional branch.
3132 if (Cond.empty()) {
3133 FBB = TBB;
3134 TBB = I->getOperand(0).getMBB();
3135 Cond.push_back(MachineOperand::CreateImm(BranchCode));
3136 CondBranches.push_back(&*I);
3137 continue;
3138 }
3139
3140 // Handle subsequent conditional branches. Only handle the case where all
3141 // conditional branches branch to the same destination and their condition
3142 // opcodes fit one of the special multi-branch idioms.
3143 assert(Cond.size() == 1);
3144 assert(TBB);
3145
3146 // If the conditions are the same, we can leave them alone.
3147 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3148 auto NewTBB = I->getOperand(0).getMBB();
3149 if (OldBranchCode == BranchCode && TBB == NewTBB)
3150 continue;
3151
3152 // If they differ, see if they fit one of the known patterns. Theoretically,
3153 // we could handle more patterns here, but we shouldn't expect to see them
3154 // if instruction selection has done a reasonable job.
3155 if (TBB == NewTBB &&
3156 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
3157 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
3158 BranchCode = X86::COND_NE_OR_P;
3159 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
3160 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
3161 if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
3162 return true;
3163
3164 // X86::COND_E_AND_NP usually has two different branch destinations.
3165 //
3166 // JP B1
3167 // JE B2
3168 // JMP B1
3169 // B1:
3170 // B2:
3171 //
3172 // Here this condition branches to B2 only if NP && E. It has another
3173 // equivalent form:
3174 //
3175 // JNE B1
3176 // JNP B2
3177 // JMP B1
3178 // B1:
3179 // B2:
3180 //
3181 // Similarly it branches to B2 only if E && NP. That is why this condition
3182 // is named with COND_E_AND_NP.
3183 BranchCode = X86::COND_E_AND_NP;
3184 } else
3185 return true;
3186
3187 // Update the MachineOperand.
3188 Cond[0].setImm(BranchCode);
3189 CondBranches.push_back(&*I);
3190 }
3191
3192 return false;
3193 }
3194
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const3195 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
3196 MachineBasicBlock *&TBB,
3197 MachineBasicBlock *&FBB,
3198 SmallVectorImpl<MachineOperand> &Cond,
3199 bool AllowModify) const {
3200 SmallVector<MachineInstr *, 4> CondBranches;
3201 return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
3202 }
3203
analyzeBranchPredicate(MachineBasicBlock & MBB,MachineBranchPredicate & MBP,bool AllowModify) const3204 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
3205 MachineBranchPredicate &MBP,
3206 bool AllowModify) const {
3207 using namespace std::placeholders;
3208
3209 SmallVector<MachineOperand, 4> Cond;
3210 SmallVector<MachineInstr *, 4> CondBranches;
3211 if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
3212 AllowModify))
3213 return true;
3214
3215 if (Cond.size() != 1)
3216 return true;
3217
3218 assert(MBP.TrueDest && "expected!");
3219
3220 if (!MBP.FalseDest)
3221 MBP.FalseDest = MBB.getNextNode();
3222
3223 const TargetRegisterInfo *TRI = &getRegisterInfo();
3224
3225 MachineInstr *ConditionDef = nullptr;
3226 bool SingleUseCondition = true;
3227
3228 for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) {
3229 if (MI.modifiesRegister(X86::EFLAGS, TRI)) {
3230 ConditionDef = &MI;
3231 break;
3232 }
3233
3234 if (MI.readsRegister(X86::EFLAGS, TRI))
3235 SingleUseCondition = false;
3236 }
3237
3238 if (!ConditionDef)
3239 return true;
3240
3241 if (SingleUseCondition) {
3242 for (auto *Succ : MBB.successors())
3243 if (Succ->isLiveIn(X86::EFLAGS))
3244 SingleUseCondition = false;
3245 }
3246
3247 MBP.ConditionDef = ConditionDef;
3248 MBP.SingleUseCondition = SingleUseCondition;
3249
3250 // Currently we only recognize the simple pattern:
3251 //
3252 // test %reg, %reg
3253 // je %label
3254 //
3255 const unsigned TestOpcode =
3256 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
3257
3258 if (ConditionDef->getOpcode() == TestOpcode &&
3259 ConditionDef->getNumOperands() == 3 &&
3260 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
3261 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
3262 MBP.LHS = ConditionDef->getOperand(0);
3263 MBP.RHS = MachineOperand::CreateImm(0);
3264 MBP.Predicate = Cond[0].getImm() == X86::COND_NE
3265 ? MachineBranchPredicate::PRED_NE
3266 : MachineBranchPredicate::PRED_EQ;
3267 return false;
3268 }
3269
3270 return true;
3271 }
3272
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const3273 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
3274 int *BytesRemoved) const {
3275 assert(!BytesRemoved && "code size not handled");
3276
3277 MachineBasicBlock::iterator I = MBB.end();
3278 unsigned Count = 0;
3279
3280 while (I != MBB.begin()) {
3281 --I;
3282 if (I->isDebugInstr())
3283 continue;
3284 if (I->getOpcode() != X86::JMP_1 &&
3285 X86::getCondFromBranch(*I) == X86::COND_INVALID)
3286 break;
3287 // Remove the branch.
3288 I->eraseFromParent();
3289 I = MBB.end();
3290 ++Count;
3291 }
3292
3293 return Count;
3294 }
3295
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const3296 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
3297 MachineBasicBlock *TBB,
3298 MachineBasicBlock *FBB,
3299 ArrayRef<MachineOperand> Cond,
3300 const DebugLoc &DL,
3301 int *BytesAdded) const {
3302 // Shouldn't be a fall through.
3303 assert(TBB && "insertBranch must not be told to insert a fallthrough");
3304 assert((Cond.size() == 1 || Cond.size() == 0) &&
3305 "X86 branch conditions have one component!");
3306 assert(!BytesAdded && "code size not handled");
3307
3308 if (Cond.empty()) {
3309 // Unconditional branch?
3310 assert(!FBB && "Unconditional branch with multiple successors!");
3311 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
3312 return 1;
3313 }
3314
3315 // If FBB is null, it is implied to be a fall-through block.
3316 bool FallThru = FBB == nullptr;
3317
3318 // Conditional branch.
3319 unsigned Count = 0;
3320 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3321 switch (CC) {
3322 case X86::COND_NE_OR_P:
3323 // Synthesize NE_OR_P with two branches.
3324 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
3325 ++Count;
3326 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
3327 ++Count;
3328 break;
3329 case X86::COND_E_AND_NP:
3330 // Use the next block of MBB as FBB if it is null.
3331 if (FBB == nullptr) {
3332 FBB = getFallThroughMBB(&MBB, TBB);
3333 assert(FBB && "MBB cannot be the last block in function when the false "
3334 "body is a fall-through.");
3335 }
3336 // Synthesize COND_E_AND_NP with two branches.
3337 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
3338 ++Count;
3339 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
3340 ++Count;
3341 break;
3342 default: {
3343 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
3344 ++Count;
3345 }
3346 }
3347 if (!FallThru) {
3348 // Two-way Conditional branch. Insert the second branch.
3349 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
3350 ++Count;
3351 }
3352 return Count;
3353 }
3354
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,Register DstReg,Register TrueReg,Register FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const3355 bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
3356 ArrayRef<MachineOperand> Cond,
3357 Register DstReg, Register TrueReg,
3358 Register FalseReg, int &CondCycles,
3359 int &TrueCycles, int &FalseCycles) const {
3360 // Not all subtargets have cmov instructions.
3361 if (!Subtarget.canUseCMOV())
3362 return false;
3363 if (Cond.size() != 1)
3364 return false;
3365 // We cannot do the composite conditions, at least not in SSA form.
3366 if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
3367 return false;
3368
3369 // Check register classes.
3370 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3371 const TargetRegisterClass *RC =
3372 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
3373 if (!RC)
3374 return false;
3375
3376 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3377 if (X86::GR16RegClass.hasSubClassEq(RC) ||
3378 X86::GR32RegClass.hasSubClassEq(RC) ||
3379 X86::GR64RegClass.hasSubClassEq(RC)) {
3380 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3381 // Bridge. Probably Ivy Bridge as well.
3382 CondCycles = 2;
3383 TrueCycles = 2;
3384 FalseCycles = 2;
3385 return true;
3386 }
3387
3388 // Can't do vectors.
3389 return false;
3390 }
3391
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,Register DstReg,ArrayRef<MachineOperand> Cond,Register TrueReg,Register FalseReg) const3392 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
3393 MachineBasicBlock::iterator I,
3394 const DebugLoc &DL, Register DstReg,
3395 ArrayRef<MachineOperand> Cond, Register TrueReg,
3396 Register FalseReg) const {
3397 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3398 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
3399 const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
3400 assert(Cond.size() == 1 && "Invalid Cond array");
3401 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
3402 false /*HasMemoryOperand*/);
3403 BuildMI(MBB, I, DL, get(Opc), DstReg)
3404 .addReg(FalseReg)
3405 .addReg(TrueReg)
3406 .addImm(Cond[0].getImm());
3407 }
3408
3409 /// Test if the given register is a physical h register.
isHReg(unsigned Reg)3410 static bool isHReg(unsigned Reg) {
3411 return X86::GR8_ABCD_HRegClass.contains(Reg);
3412 }
3413
3414 // Try and copy between VR128/VR64 and GR64 registers.
CopyToFromAsymmetricReg(unsigned DestReg,unsigned SrcReg,const X86Subtarget & Subtarget)3415 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
3416 const X86Subtarget &Subtarget) {
3417 bool HasAVX = Subtarget.hasAVX();
3418 bool HasAVX512 = Subtarget.hasAVX512();
3419
3420 // SrcReg(MaskReg) -> DestReg(GR64)
3421 // SrcReg(MaskReg) -> DestReg(GR32)
3422
3423 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3424 if (X86::VK16RegClass.contains(SrcReg)) {
3425 if (X86::GR64RegClass.contains(DestReg)) {
3426 assert(Subtarget.hasBWI());
3427 return X86::KMOVQrk;
3428 }
3429 if (X86::GR32RegClass.contains(DestReg))
3430 return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
3431 }
3432
3433 // SrcReg(GR64) -> DestReg(MaskReg)
3434 // SrcReg(GR32) -> DestReg(MaskReg)
3435
3436 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3437 if (X86::VK16RegClass.contains(DestReg)) {
3438 if (X86::GR64RegClass.contains(SrcReg)) {
3439 assert(Subtarget.hasBWI());
3440 return X86::KMOVQkr;
3441 }
3442 if (X86::GR32RegClass.contains(SrcReg))
3443 return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
3444 }
3445
3446
3447 // SrcReg(VR128) -> DestReg(GR64)
3448 // SrcReg(VR64) -> DestReg(GR64)
3449 // SrcReg(GR64) -> DestReg(VR128)
3450 // SrcReg(GR64) -> DestReg(VR64)
3451
3452 if (X86::GR64RegClass.contains(DestReg)) {
3453 if (X86::VR128XRegClass.contains(SrcReg))
3454 // Copy from a VR128 register to a GR64 register.
3455 return HasAVX512 ? X86::VMOVPQIto64Zrr :
3456 HasAVX ? X86::VMOVPQIto64rr :
3457 X86::MOVPQIto64rr;
3458 if (X86::VR64RegClass.contains(SrcReg))
3459 // Copy from a VR64 register to a GR64 register.
3460 return X86::MMX_MOVD64from64rr;
3461 } else if (X86::GR64RegClass.contains(SrcReg)) {
3462 // Copy from a GR64 register to a VR128 register.
3463 if (X86::VR128XRegClass.contains(DestReg))
3464 return HasAVX512 ? X86::VMOV64toPQIZrr :
3465 HasAVX ? X86::VMOV64toPQIrr :
3466 X86::MOV64toPQIrr;
3467 // Copy from a GR64 register to a VR64 register.
3468 if (X86::VR64RegClass.contains(DestReg))
3469 return X86::MMX_MOVD64to64rr;
3470 }
3471
3472 // SrcReg(VR128) -> DestReg(GR32)
3473 // SrcReg(GR32) -> DestReg(VR128)
3474
3475 if (X86::GR32RegClass.contains(DestReg) &&
3476 X86::VR128XRegClass.contains(SrcReg))
3477 // Copy from a VR128 register to a GR32 register.
3478 return HasAVX512 ? X86::VMOVPDI2DIZrr :
3479 HasAVX ? X86::VMOVPDI2DIrr :
3480 X86::MOVPDI2DIrr;
3481
3482 if (X86::VR128XRegClass.contains(DestReg) &&
3483 X86::GR32RegClass.contains(SrcReg))
3484 // Copy from a VR128 register to a VR128 register.
3485 return HasAVX512 ? X86::VMOVDI2PDIZrr :
3486 HasAVX ? X86::VMOVDI2PDIrr :
3487 X86::MOVDI2PDIrr;
3488 return 0;
3489 }
3490
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc) const3491 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3492 MachineBasicBlock::iterator MI,
3493 const DebugLoc &DL, MCRegister DestReg,
3494 MCRegister SrcReg, bool KillSrc) const {
3495 // First deal with the normal symmetric copies.
3496 bool HasAVX = Subtarget.hasAVX();
3497 bool HasVLX = Subtarget.hasVLX();
3498 unsigned Opc = 0;
3499 if (X86::GR64RegClass.contains(DestReg, SrcReg))
3500 Opc = X86::MOV64rr;
3501 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3502 Opc = X86::MOV32rr;
3503 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3504 Opc = X86::MOV16rr;
3505 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3506 // Copying to or from a physical H register on x86-64 requires a NOREX
3507 // move. Otherwise use a normal move.
3508 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3509 Subtarget.is64Bit()) {
3510 Opc = X86::MOV8rr_NOREX;
3511 // Both operands must be encodable without an REX prefix.
3512 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3513 "8-bit H register can not be copied outside GR8_NOREX");
3514 } else
3515 Opc = X86::MOV8rr;
3516 }
3517 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3518 Opc = X86::MMX_MOVQ64rr;
3519 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
3520 if (HasVLX)
3521 Opc = X86::VMOVAPSZ128rr;
3522 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3523 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3524 else {
3525 // If this an extended register and we don't have VLX we need to use a
3526 // 512-bit move.
3527 Opc = X86::VMOVAPSZrr;
3528 const TargetRegisterInfo *TRI = &getRegisterInfo();
3529 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
3530 &X86::VR512RegClass);
3531 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
3532 &X86::VR512RegClass);
3533 }
3534 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
3535 if (HasVLX)
3536 Opc = X86::VMOVAPSZ256rr;
3537 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3538 Opc = X86::VMOVAPSYrr;
3539 else {
3540 // If this an extended register and we don't have VLX we need to use a
3541 // 512-bit move.
3542 Opc = X86::VMOVAPSZrr;
3543 const TargetRegisterInfo *TRI = &getRegisterInfo();
3544 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
3545 &X86::VR512RegClass);
3546 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
3547 &X86::VR512RegClass);
3548 }
3549 } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
3550 Opc = X86::VMOVAPSZrr;
3551 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3552 else if (X86::VK16RegClass.contains(DestReg, SrcReg))
3553 Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
3554 if (!Opc)
3555 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3556
3557 if (Opc) {
3558 BuildMI(MBB, MI, DL, get(Opc), DestReg)
3559 .addReg(SrcReg, getKillRegState(KillSrc));
3560 return;
3561 }
3562
3563 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
3564 // FIXME: We use a fatal error here because historically LLVM has tried
3565 // lower some of these physreg copies and we want to ensure we get
3566 // reasonable bug reports if someone encounters a case no other testing
3567 // found. This path should be removed after the LLVM 7 release.
3568 report_fatal_error("Unable to copy EFLAGS physical register!");
3569 }
3570
3571 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
3572 << RI.getName(DestReg) << '\n');
3573 report_fatal_error("Cannot emit physreg copy instruction");
3574 }
3575
3576 std::optional<DestSourcePair>
isCopyInstrImpl(const MachineInstr & MI) const3577 X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
3578 if (MI.isMoveReg())
3579 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
3580 return std::nullopt;
3581 }
3582
getLoadStoreOpcodeForFP16(bool Load,const X86Subtarget & STI)3583 static unsigned getLoadStoreOpcodeForFP16(bool Load, const X86Subtarget &STI) {
3584 if (STI.hasFP16())
3585 return Load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
3586 if (Load)
3587 return STI.hasAVX512() ? X86::VMOVSSZrm
3588 : STI.hasAVX() ? X86::VMOVSSrm
3589 : X86::MOVSSrm;
3590 else
3591 return STI.hasAVX512() ? X86::VMOVSSZmr
3592 : STI.hasAVX() ? X86::VMOVSSmr
3593 : X86::MOVSSmr;
3594 }
3595
getLoadStoreRegOpcode(Register Reg,const TargetRegisterClass * RC,bool IsStackAligned,const X86Subtarget & STI,bool Load)3596 static unsigned getLoadStoreRegOpcode(Register Reg,
3597 const TargetRegisterClass *RC,
3598 bool IsStackAligned,
3599 const X86Subtarget &STI, bool Load) {
3600 bool HasAVX = STI.hasAVX();
3601 bool HasAVX512 = STI.hasAVX512();
3602 bool HasVLX = STI.hasVLX();
3603
3604 switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
3605 default:
3606 llvm_unreachable("Unknown spill size");
3607 case 1:
3608 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3609 if (STI.is64Bit())
3610 // Copying to or from a physical H register on x86-64 requires a NOREX
3611 // move. Otherwise use a normal move.
3612 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3613 return Load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3614 return Load ? X86::MOV8rm : X86::MOV8mr;
3615 case 2:
3616 if (X86::VK16RegClass.hasSubClassEq(RC))
3617 return Load ? X86::KMOVWkm : X86::KMOVWmk;
3618 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3619 return Load ? X86::MOV16rm : X86::MOV16mr;
3620 case 4:
3621 if (X86::GR32RegClass.hasSubClassEq(RC))
3622 return Load ? X86::MOV32rm : X86::MOV32mr;
3623 if (X86::FR32XRegClass.hasSubClassEq(RC))
3624 return Load ?
3625 (HasAVX512 ? X86::VMOVSSZrm_alt :
3626 HasAVX ? X86::VMOVSSrm_alt :
3627 X86::MOVSSrm_alt) :
3628 (HasAVX512 ? X86::VMOVSSZmr :
3629 HasAVX ? X86::VMOVSSmr :
3630 X86::MOVSSmr);
3631 if (X86::RFP32RegClass.hasSubClassEq(RC))
3632 return Load ? X86::LD_Fp32m : X86::ST_Fp32m;
3633 if (X86::VK32RegClass.hasSubClassEq(RC)) {
3634 assert(STI.hasBWI() && "KMOVD requires BWI");
3635 return Load ? X86::KMOVDkm : X86::KMOVDmk;
3636 }
3637 // All of these mask pair classes have the same spill size, the same kind
3638 // of kmov instructions can be used with all of them.
3639 if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
3640 X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
3641 X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
3642 X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
3643 X86::VK16PAIRRegClass.hasSubClassEq(RC))
3644 return Load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
3645 if (X86::FR16RegClass.hasSubClassEq(RC) ||
3646 X86::FR16XRegClass.hasSubClassEq(RC))
3647 return getLoadStoreOpcodeForFP16(Load, STI);
3648 llvm_unreachable("Unknown 4-byte regclass");
3649 case 8:
3650 if (X86::GR64RegClass.hasSubClassEq(RC))
3651 return Load ? X86::MOV64rm : X86::MOV64mr;
3652 if (X86::FR64XRegClass.hasSubClassEq(RC))
3653 return Load ?
3654 (HasAVX512 ? X86::VMOVSDZrm_alt :
3655 HasAVX ? X86::VMOVSDrm_alt :
3656 X86::MOVSDrm_alt) :
3657 (HasAVX512 ? X86::VMOVSDZmr :
3658 HasAVX ? X86::VMOVSDmr :
3659 X86::MOVSDmr);
3660 if (X86::VR64RegClass.hasSubClassEq(RC))
3661 return Load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3662 if (X86::RFP64RegClass.hasSubClassEq(RC))
3663 return Load ? X86::LD_Fp64m : X86::ST_Fp64m;
3664 if (X86::VK64RegClass.hasSubClassEq(RC)) {
3665 assert(STI.hasBWI() && "KMOVQ requires BWI");
3666 return Load ? X86::KMOVQkm : X86::KMOVQmk;
3667 }
3668 llvm_unreachable("Unknown 8-byte regclass");
3669 case 10:
3670 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3671 return Load ? X86::LD_Fp80m : X86::ST_FpP80m;
3672 case 16: {
3673 if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3674 // If stack is realigned we can use aligned stores.
3675 if (IsStackAligned)
3676 return Load ?
3677 (HasVLX ? X86::VMOVAPSZ128rm :
3678 HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3679 HasAVX ? X86::VMOVAPSrm :
3680 X86::MOVAPSrm):
3681 (HasVLX ? X86::VMOVAPSZ128mr :
3682 HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3683 HasAVX ? X86::VMOVAPSmr :
3684 X86::MOVAPSmr);
3685 else
3686 return Load ?
3687 (HasVLX ? X86::VMOVUPSZ128rm :
3688 HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3689 HasAVX ? X86::VMOVUPSrm :
3690 X86::MOVUPSrm):
3691 (HasVLX ? X86::VMOVUPSZ128mr :
3692 HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3693 HasAVX ? X86::VMOVUPSmr :
3694 X86::MOVUPSmr);
3695 }
3696 llvm_unreachable("Unknown 16-byte regclass");
3697 }
3698 case 32:
3699 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3700 // If stack is realigned we can use aligned stores.
3701 if (IsStackAligned)
3702 return Load ?
3703 (HasVLX ? X86::VMOVAPSZ256rm :
3704 HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3705 X86::VMOVAPSYrm) :
3706 (HasVLX ? X86::VMOVAPSZ256mr :
3707 HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3708 X86::VMOVAPSYmr);
3709 else
3710 return Load ?
3711 (HasVLX ? X86::VMOVUPSZ256rm :
3712 HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3713 X86::VMOVUPSYrm) :
3714 (HasVLX ? X86::VMOVUPSZ256mr :
3715 HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3716 X86::VMOVUPSYmr);
3717 case 64:
3718 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3719 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
3720 if (IsStackAligned)
3721 return Load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3722 else
3723 return Load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3724 case 1024:
3725 assert(X86::TILERegClass.hasSubClassEq(RC) && "Unknown 1024-byte regclass");
3726 assert(STI.hasAMXTILE() && "Using 8*1024-bit register requires AMX-TILE");
3727 return Load ? X86::TILELOADD : X86::TILESTORED;
3728 }
3729 }
3730
3731 std::optional<ExtAddrMode>
getAddrModeFromMemoryOp(const MachineInstr & MemI,const TargetRegisterInfo * TRI) const3732 X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
3733 const TargetRegisterInfo *TRI) const {
3734 const MCInstrDesc &Desc = MemI.getDesc();
3735 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3736 if (MemRefBegin < 0)
3737 return std::nullopt;
3738
3739 MemRefBegin += X86II::getOperandBias(Desc);
3740
3741 auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
3742 if (!BaseOp.isReg()) // Can be an MO_FrameIndex
3743 return std::nullopt;
3744
3745 const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
3746 // Displacement can be symbolic
3747 if (!DispMO.isImm())
3748 return std::nullopt;
3749
3750 ExtAddrMode AM;
3751 AM.BaseReg = BaseOp.getReg();
3752 AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
3753 AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
3754 AM.Displacement = DispMO.getImm();
3755 return AM;
3756 }
3757
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo) const3758 bool X86InstrInfo::verifyInstruction(const MachineInstr &MI,
3759 StringRef &ErrInfo) const {
3760 std::optional<ExtAddrMode> AMOrNone = getAddrModeFromMemoryOp(MI, nullptr);
3761 if (!AMOrNone)
3762 return true;
3763
3764 ExtAddrMode AM = *AMOrNone;
3765
3766 if (AM.ScaledReg != X86::NoRegister) {
3767 switch (AM.Scale) {
3768 case 1:
3769 case 2:
3770 case 4:
3771 case 8:
3772 break;
3773 default:
3774 ErrInfo = "Scale factor in address must be 1, 2, 4 or 8";
3775 return false;
3776 }
3777 }
3778 if (!isInt<32>(AM.Displacement)) {
3779 ErrInfo = "Displacement in address must fit into 32-bit signed "
3780 "integer";
3781 return false;
3782 }
3783
3784 return true;
3785 }
3786
getConstValDefinedInReg(const MachineInstr & MI,const Register Reg,int64_t & ImmVal) const3787 bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
3788 const Register Reg,
3789 int64_t &ImmVal) const {
3790 if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri)
3791 return false;
3792 // Mov Src can be a global address.
3793 if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg)
3794 return false;
3795 ImmVal = MI.getOperand(1).getImm();
3796 return true;
3797 }
3798
preservesZeroValueInReg(const MachineInstr * MI,const Register NullValueReg,const TargetRegisterInfo * TRI) const3799 bool X86InstrInfo::preservesZeroValueInReg(
3800 const MachineInstr *MI, const Register NullValueReg,
3801 const TargetRegisterInfo *TRI) const {
3802 if (!MI->modifiesRegister(NullValueReg, TRI))
3803 return true;
3804 switch (MI->getOpcode()) {
3805 // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
3806 // X.
3807 case X86::SHR64ri:
3808 case X86::SHR32ri:
3809 case X86::SHL64ri:
3810 case X86::SHL32ri:
3811 assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
3812 "expected for shift opcode!");
3813 return MI->getOperand(0).getReg() == NullValueReg &&
3814 MI->getOperand(1).getReg() == NullValueReg;
3815 // Zero extend of a sub-reg of NullValueReg into itself does not change the
3816 // null value.
3817 case X86::MOV32rr:
3818 return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
3819 return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
3820 });
3821 default:
3822 return false;
3823 }
3824 llvm_unreachable("Should be handled above!");
3825 }
3826
getMemOperandsWithOffsetWidth(const MachineInstr & MemOp,SmallVectorImpl<const MachineOperand * > & BaseOps,int64_t & Offset,bool & OffsetIsScalable,unsigned & Width,const TargetRegisterInfo * TRI) const3827 bool X86InstrInfo::getMemOperandsWithOffsetWidth(
3828 const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
3829 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
3830 const TargetRegisterInfo *TRI) const {
3831 const MCInstrDesc &Desc = MemOp.getDesc();
3832 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3833 if (MemRefBegin < 0)
3834 return false;
3835
3836 MemRefBegin += X86II::getOperandBias(Desc);
3837
3838 const MachineOperand *BaseOp =
3839 &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3840 if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3841 return false;
3842
3843 if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3844 return false;
3845
3846 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3847 X86::NoRegister)
3848 return false;
3849
3850 const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3851
3852 // Displacement can be symbolic
3853 if (!DispMO.isImm())
3854 return false;
3855
3856 Offset = DispMO.getImm();
3857
3858 if (!BaseOp->isReg())
3859 return false;
3860
3861 OffsetIsScalable = false;
3862 // FIXME: Relying on memoperands() may not be right thing to do here. Check
3863 // with X86 maintainers, and fix it accordingly. For now, it is ok, since
3864 // there is no use of `Width` for X86 back-end at the moment.
3865 Width =
3866 !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
3867 BaseOps.push_back(BaseOp);
3868 return true;
3869 }
3870
getStoreRegOpcode(Register SrcReg,const TargetRegisterClass * RC,bool IsStackAligned,const X86Subtarget & STI)3871 static unsigned getStoreRegOpcode(Register SrcReg,
3872 const TargetRegisterClass *RC,
3873 bool IsStackAligned,
3874 const X86Subtarget &STI) {
3875 return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
3876 }
3877
getLoadRegOpcode(Register DestReg,const TargetRegisterClass * RC,bool IsStackAligned,const X86Subtarget & STI)3878 static unsigned getLoadRegOpcode(Register DestReg,
3879 const TargetRegisterClass *RC,
3880 bool IsStackAligned, const X86Subtarget &STI) {
3881 return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
3882 }
3883
isAMXOpcode(unsigned Opc)3884 static bool isAMXOpcode(unsigned Opc) {
3885 switch (Opc) {
3886 default:
3887 return false;
3888 case X86::TILELOADD:
3889 case X86::TILESTORED:
3890 return true;
3891 }
3892 }
3893
loadStoreTileReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned Opc,Register Reg,int FrameIdx,bool isKill) const3894 void X86InstrInfo::loadStoreTileReg(MachineBasicBlock &MBB,
3895 MachineBasicBlock::iterator MI,
3896 unsigned Opc, Register Reg, int FrameIdx,
3897 bool isKill) const {
3898 switch (Opc) {
3899 default:
3900 llvm_unreachable("Unexpected special opcode!");
3901 case X86::TILESTORED: {
3902 // tilestored %tmm, (%sp, %idx)
3903 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3904 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3905 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3906 MachineInstr *NewMI =
3907 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3908 .addReg(Reg, getKillRegState(isKill));
3909 MachineOperand &MO = NewMI->getOperand(X86::AddrIndexReg);
3910 MO.setReg(VirtReg);
3911 MO.setIsKill(true);
3912 break;
3913 }
3914 case X86::TILELOADD: {
3915 // tileloadd (%sp, %idx), %tmm
3916 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3917 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3918 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3919 MachineInstr *NewMI = addFrameReference(
3920 BuildMI(MBB, MI, DebugLoc(), get(Opc), Reg), FrameIdx);
3921 MachineOperand &MO = NewMI->getOperand(1 + X86::AddrIndexReg);
3922 MO.setReg(VirtReg);
3923 MO.setIsKill(true);
3924 break;
3925 }
3926 }
3927 }
3928
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg) const3929 void X86InstrInfo::storeRegToStackSlot(
3930 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg,
3931 bool isKill, int FrameIdx, const TargetRegisterClass *RC,
3932 const TargetRegisterInfo *TRI, Register VReg) const {
3933 const MachineFunction &MF = *MBB.getParent();
3934 const MachineFrameInfo &MFI = MF.getFrameInfo();
3935 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3936 "Stack slot too small for store");
3937
3938 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3939 bool isAligned =
3940 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3941 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3942
3943 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3944 if (isAMXOpcode(Opc))
3945 loadStoreTileReg(MBB, MI, Opc, SrcReg, FrameIdx, isKill);
3946 else
3947 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3948 .addReg(SrcReg, getKillRegState(isKill));
3949 }
3950
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register DestReg,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg) const3951 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3952 MachineBasicBlock::iterator MI,
3953 Register DestReg, int FrameIdx,
3954 const TargetRegisterClass *RC,
3955 const TargetRegisterInfo *TRI,
3956 Register VReg) const {
3957 const MachineFunction &MF = *MBB.getParent();
3958 const MachineFrameInfo &MFI = MF.getFrameInfo();
3959 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3960 "Load size exceeds stack slot");
3961 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3962 bool isAligned =
3963 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3964 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3965
3966 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3967 if (isAMXOpcode(Opc))
3968 loadStoreTileReg(MBB, MI, Opc, DestReg, FrameIdx);
3969 else
3970 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3971 FrameIdx);
3972 }
3973
analyzeCompare(const MachineInstr & MI,Register & SrcReg,Register & SrcReg2,int64_t & CmpMask,int64_t & CmpValue) const3974 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
3975 Register &SrcReg2, int64_t &CmpMask,
3976 int64_t &CmpValue) const {
3977 switch (MI.getOpcode()) {
3978 default: break;
3979 case X86::CMP64ri32:
3980 case X86::CMP64ri8:
3981 case X86::CMP32ri:
3982 case X86::CMP32ri8:
3983 case X86::CMP16ri:
3984 case X86::CMP16ri8:
3985 case X86::CMP8ri:
3986 SrcReg = MI.getOperand(0).getReg();
3987 SrcReg2 = 0;
3988 if (MI.getOperand(1).isImm()) {
3989 CmpMask = ~0;
3990 CmpValue = MI.getOperand(1).getImm();
3991 } else {
3992 CmpMask = CmpValue = 0;
3993 }
3994 return true;
3995 // A SUB can be used to perform comparison.
3996 case X86::SUB64rm:
3997 case X86::SUB32rm:
3998 case X86::SUB16rm:
3999 case X86::SUB8rm:
4000 SrcReg = MI.getOperand(1).getReg();
4001 SrcReg2 = 0;
4002 CmpMask = 0;
4003 CmpValue = 0;
4004 return true;
4005 case X86::SUB64rr:
4006 case X86::SUB32rr:
4007 case X86::SUB16rr:
4008 case X86::SUB8rr:
4009 SrcReg = MI.getOperand(1).getReg();
4010 SrcReg2 = MI.getOperand(2).getReg();
4011 CmpMask = 0;
4012 CmpValue = 0;
4013 return true;
4014 case X86::SUB64ri32:
4015 case X86::SUB64ri8:
4016 case X86::SUB32ri:
4017 case X86::SUB32ri8:
4018 case X86::SUB16ri:
4019 case X86::SUB16ri8:
4020 case X86::SUB8ri:
4021 SrcReg = MI.getOperand(1).getReg();
4022 SrcReg2 = 0;
4023 if (MI.getOperand(2).isImm()) {
4024 CmpMask = ~0;
4025 CmpValue = MI.getOperand(2).getImm();
4026 } else {
4027 CmpMask = CmpValue = 0;
4028 }
4029 return true;
4030 case X86::CMP64rr:
4031 case X86::CMP32rr:
4032 case X86::CMP16rr:
4033 case X86::CMP8rr:
4034 SrcReg = MI.getOperand(0).getReg();
4035 SrcReg2 = MI.getOperand(1).getReg();
4036 CmpMask = 0;
4037 CmpValue = 0;
4038 return true;
4039 case X86::TEST8rr:
4040 case X86::TEST16rr:
4041 case X86::TEST32rr:
4042 case X86::TEST64rr:
4043 SrcReg = MI.getOperand(0).getReg();
4044 if (MI.getOperand(1).getReg() != SrcReg)
4045 return false;
4046 // Compare against zero.
4047 SrcReg2 = 0;
4048 CmpMask = ~0;
4049 CmpValue = 0;
4050 return true;
4051 }
4052 return false;
4053 }
4054
isRedundantFlagInstr(const MachineInstr & FlagI,Register SrcReg,Register SrcReg2,int64_t ImmMask,int64_t ImmValue,const MachineInstr & OI,bool * IsSwapped,int64_t * ImmDelta) const4055 bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI,
4056 Register SrcReg, Register SrcReg2,
4057 int64_t ImmMask, int64_t ImmValue,
4058 const MachineInstr &OI, bool *IsSwapped,
4059 int64_t *ImmDelta) const {
4060 switch (OI.getOpcode()) {
4061 case X86::CMP64rr:
4062 case X86::CMP32rr:
4063 case X86::CMP16rr:
4064 case X86::CMP8rr:
4065 case X86::SUB64rr:
4066 case X86::SUB32rr:
4067 case X86::SUB16rr:
4068 case X86::SUB8rr: {
4069 Register OISrcReg;
4070 Register OISrcReg2;
4071 int64_t OIMask;
4072 int64_t OIValue;
4073 if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) ||
4074 OIMask != ImmMask || OIValue != ImmValue)
4075 return false;
4076 if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
4077 *IsSwapped = false;
4078 return true;
4079 }
4080 if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
4081 *IsSwapped = true;
4082 return true;
4083 }
4084 return false;
4085 }
4086 case X86::CMP64ri32:
4087 case X86::CMP64ri8:
4088 case X86::CMP32ri:
4089 case X86::CMP32ri8:
4090 case X86::CMP16ri:
4091 case X86::CMP16ri8:
4092 case X86::CMP8ri:
4093 case X86::SUB64ri32:
4094 case X86::SUB64ri8:
4095 case X86::SUB32ri:
4096 case X86::SUB32ri8:
4097 case X86::SUB16ri:
4098 case X86::SUB16ri8:
4099 case X86::SUB8ri:
4100 case X86::TEST64rr:
4101 case X86::TEST32rr:
4102 case X86::TEST16rr:
4103 case X86::TEST8rr: {
4104 if (ImmMask != 0) {
4105 Register OISrcReg;
4106 Register OISrcReg2;
4107 int64_t OIMask;
4108 int64_t OIValue;
4109 if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) &&
4110 SrcReg == OISrcReg && ImmMask == OIMask) {
4111 if (OIValue == ImmValue) {
4112 *ImmDelta = 0;
4113 return true;
4114 } else if (static_cast<uint64_t>(ImmValue) ==
4115 static_cast<uint64_t>(OIValue) - 1) {
4116 *ImmDelta = -1;
4117 return true;
4118 } else if (static_cast<uint64_t>(ImmValue) ==
4119 static_cast<uint64_t>(OIValue) + 1) {
4120 *ImmDelta = 1;
4121 return true;
4122 } else {
4123 return false;
4124 }
4125 }
4126 }
4127 return FlagI.isIdenticalTo(OI);
4128 }
4129 default:
4130 return false;
4131 }
4132 }
4133
4134 /// Check whether the definition can be converted
4135 /// to remove a comparison against zero.
isDefConvertible(const MachineInstr & MI,bool & NoSignFlag,bool & ClearsOverflowFlag)4136 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
4137 bool &ClearsOverflowFlag) {
4138 NoSignFlag = false;
4139 ClearsOverflowFlag = false;
4140
4141 // "ELF Handling for Thread-Local Storage" specifies that x86-64 GOTTPOFF, and
4142 // i386 GOTNTPOFF/INDNTPOFF relocations can convert an ADD to a LEA during
4143 // Initial Exec to Local Exec relaxation. In these cases, we must not depend
4144 // on the EFLAGS modification of ADD actually happening in the final binary.
4145 if (MI.getOpcode() == X86::ADD64rm || MI.getOpcode() == X86::ADD32rm) {
4146 unsigned Flags = MI.getOperand(5).getTargetFlags();
4147 if (Flags == X86II::MO_GOTTPOFF || Flags == X86II::MO_INDNTPOFF ||
4148 Flags == X86II::MO_GOTNTPOFF)
4149 return false;
4150 }
4151
4152 switch (MI.getOpcode()) {
4153 default: return false;
4154
4155 // The shift instructions only modify ZF if their shift count is non-zero.
4156 // N.B.: The processor truncates the shift count depending on the encoding.
4157 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
4158 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
4159 return getTruncatedShiftCount(MI, 2) != 0;
4160
4161 // Some left shift instructions can be turned into LEA instructions but only
4162 // if their flags aren't used. Avoid transforming such instructions.
4163 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
4164 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4165 if (isTruncatedShiftCountForLEA(ShAmt)) return false;
4166 return ShAmt != 0;
4167 }
4168
4169 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
4170 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
4171 return getTruncatedShiftCount(MI, 3) != 0;
4172
4173 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
4174 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
4175 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
4176 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
4177 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
4178 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
4179 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
4180 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
4181 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
4182 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
4183 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
4184 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
4185 case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
4186 case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8:
4187 case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr:
4188 case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm:
4189 case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm:
4190 case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
4191 case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8:
4192 case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr:
4193 case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm:
4194 case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm:
4195 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
4196 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
4197 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
4198 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
4199 case X86::LZCNT16rr: case X86::LZCNT16rm:
4200 case X86::LZCNT32rr: case X86::LZCNT32rm:
4201 case X86::LZCNT64rr: case X86::LZCNT64rm:
4202 case X86::POPCNT16rr:case X86::POPCNT16rm:
4203 case X86::POPCNT32rr:case X86::POPCNT32rm:
4204 case X86::POPCNT64rr:case X86::POPCNT64rm:
4205 case X86::TZCNT16rr: case X86::TZCNT16rm:
4206 case X86::TZCNT32rr: case X86::TZCNT32rm:
4207 case X86::TZCNT64rr: case X86::TZCNT64rm:
4208 return true;
4209 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
4210 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
4211 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
4212 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
4213 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
4214 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
4215 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
4216 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
4217 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
4218 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
4219 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
4220 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
4221 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
4222 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
4223 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
4224 case X86::ANDN32rr: case X86::ANDN32rm:
4225 case X86::ANDN64rr: case X86::ANDN64rm:
4226 case X86::BLSI32rr: case X86::BLSI32rm:
4227 case X86::BLSI64rr: case X86::BLSI64rm:
4228 case X86::BLSMSK32rr: case X86::BLSMSK32rm:
4229 case X86::BLSMSK64rr: case X86::BLSMSK64rm:
4230 case X86::BLSR32rr: case X86::BLSR32rm:
4231 case X86::BLSR64rr: case X86::BLSR64rm:
4232 case X86::BLCFILL32rr: case X86::BLCFILL32rm:
4233 case X86::BLCFILL64rr: case X86::BLCFILL64rm:
4234 case X86::BLCI32rr: case X86::BLCI32rm:
4235 case X86::BLCI64rr: case X86::BLCI64rm:
4236 case X86::BLCIC32rr: case X86::BLCIC32rm:
4237 case X86::BLCIC64rr: case X86::BLCIC64rm:
4238 case X86::BLCMSK32rr: case X86::BLCMSK32rm:
4239 case X86::BLCMSK64rr: case X86::BLCMSK64rm:
4240 case X86::BLCS32rr: case X86::BLCS32rm:
4241 case X86::BLCS64rr: case X86::BLCS64rm:
4242 case X86::BLSFILL32rr: case X86::BLSFILL32rm:
4243 case X86::BLSFILL64rr: case X86::BLSFILL64rm:
4244 case X86::BLSIC32rr: case X86::BLSIC32rm:
4245 case X86::BLSIC64rr: case X86::BLSIC64rm:
4246 case X86::BZHI32rr: case X86::BZHI32rm:
4247 case X86::BZHI64rr: case X86::BZHI64rm:
4248 case X86::T1MSKC32rr: case X86::T1MSKC32rm:
4249 case X86::T1MSKC64rr: case X86::T1MSKC64rm:
4250 case X86::TZMSK32rr: case X86::TZMSK32rm:
4251 case X86::TZMSK64rr: case X86::TZMSK64rm:
4252 // These instructions clear the overflow flag just like TEST.
4253 // FIXME: These are not the only instructions in this switch that clear the
4254 // overflow flag.
4255 ClearsOverflowFlag = true;
4256 return true;
4257 case X86::BEXTR32rr: case X86::BEXTR64rr:
4258 case X86::BEXTR32rm: case X86::BEXTR64rm:
4259 case X86::BEXTRI32ri: case X86::BEXTRI32mi:
4260 case X86::BEXTRI64ri: case X86::BEXTRI64mi:
4261 // BEXTR doesn't update the sign flag so we can't use it. It does clear
4262 // the overflow flag, but that's not useful without the sign flag.
4263 NoSignFlag = true;
4264 return true;
4265 }
4266 }
4267
4268 /// Check whether the use can be converted to remove a comparison against zero.
isUseDefConvertible(const MachineInstr & MI)4269 static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
4270 switch (MI.getOpcode()) {
4271 default: return X86::COND_INVALID;
4272 case X86::NEG8r:
4273 case X86::NEG16r:
4274 case X86::NEG32r:
4275 case X86::NEG64r:
4276 return X86::COND_AE;
4277 case X86::LZCNT16rr:
4278 case X86::LZCNT32rr:
4279 case X86::LZCNT64rr:
4280 return X86::COND_B;
4281 case X86::POPCNT16rr:
4282 case X86::POPCNT32rr:
4283 case X86::POPCNT64rr:
4284 return X86::COND_E;
4285 case X86::TZCNT16rr:
4286 case X86::TZCNT32rr:
4287 case X86::TZCNT64rr:
4288 return X86::COND_B;
4289 case X86::BSF16rr:
4290 case X86::BSF32rr:
4291 case X86::BSF64rr:
4292 case X86::BSR16rr:
4293 case X86::BSR32rr:
4294 case X86::BSR64rr:
4295 return X86::COND_E;
4296 case X86::BLSI32rr:
4297 case X86::BLSI64rr:
4298 return X86::COND_AE;
4299 case X86::BLSR32rr:
4300 case X86::BLSR64rr:
4301 case X86::BLSMSK32rr:
4302 case X86::BLSMSK64rr:
4303 return X86::COND_B;
4304 // TODO: TBM instructions.
4305 }
4306 }
4307
4308 /// Check if there exists an earlier instruction that
4309 /// operates on the same source operands and sets flags in the same way as
4310 /// Compare; remove Compare if possible.
optimizeCompareInstr(MachineInstr & CmpInstr,Register SrcReg,Register SrcReg2,int64_t CmpMask,int64_t CmpValue,const MachineRegisterInfo * MRI) const4311 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
4312 Register SrcReg2, int64_t CmpMask,
4313 int64_t CmpValue,
4314 const MachineRegisterInfo *MRI) const {
4315 // Check whether we can replace SUB with CMP.
4316 switch (CmpInstr.getOpcode()) {
4317 default: break;
4318 case X86::SUB64ri32:
4319 case X86::SUB64ri8:
4320 case X86::SUB32ri:
4321 case X86::SUB32ri8:
4322 case X86::SUB16ri:
4323 case X86::SUB16ri8:
4324 case X86::SUB8ri:
4325 case X86::SUB64rm:
4326 case X86::SUB32rm:
4327 case X86::SUB16rm:
4328 case X86::SUB8rm:
4329 case X86::SUB64rr:
4330 case X86::SUB32rr:
4331 case X86::SUB16rr:
4332 case X86::SUB8rr: {
4333 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
4334 return false;
4335 // There is no use of the destination register, we can replace SUB with CMP.
4336 unsigned NewOpcode = 0;
4337 switch (CmpInstr.getOpcode()) {
4338 default: llvm_unreachable("Unreachable!");
4339 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
4340 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
4341 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
4342 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
4343 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
4344 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
4345 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
4346 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
4347 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
4348 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
4349 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
4350 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
4351 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
4352 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
4353 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
4354 }
4355 CmpInstr.setDesc(get(NewOpcode));
4356 CmpInstr.removeOperand(0);
4357 // Mutating this instruction invalidates any debug data associated with it.
4358 CmpInstr.dropDebugNumber();
4359 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4360 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
4361 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
4362 return false;
4363 }
4364 }
4365
4366 // The following code tries to remove the comparison by re-using EFLAGS
4367 // from earlier instructions.
4368
4369 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
4370
4371 // Transformation currently requires SSA values.
4372 if (SrcReg2.isPhysical())
4373 return false;
4374 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
4375 assert(SrcRegDef && "Must have a definition (SSA)");
4376
4377 MachineInstr *MI = nullptr;
4378 MachineInstr *Sub = nullptr;
4379 MachineInstr *Movr0Inst = nullptr;
4380 bool NoSignFlag = false;
4381 bool ClearsOverflowFlag = false;
4382 bool ShouldUpdateCC = false;
4383 bool IsSwapped = false;
4384 X86::CondCode NewCC = X86::COND_INVALID;
4385 int64_t ImmDelta = 0;
4386
4387 // Search backward from CmpInstr for the next instruction defining EFLAGS.
4388 const TargetRegisterInfo *TRI = &getRegisterInfo();
4389 MachineBasicBlock &CmpMBB = *CmpInstr.getParent();
4390 MachineBasicBlock::reverse_iterator From =
4391 std::next(MachineBasicBlock::reverse_iterator(CmpInstr));
4392 for (MachineBasicBlock *MBB = &CmpMBB;;) {
4393 for (MachineInstr &Inst : make_range(From, MBB->rend())) {
4394 // Try to use EFLAGS from the instruction defining %SrcReg. Example:
4395 // %eax = addl ...
4396 // ... // EFLAGS not changed
4397 // testl %eax, %eax // <-- can be removed
4398 if (&Inst == SrcRegDef) {
4399 if (IsCmpZero &&
4400 isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) {
4401 MI = &Inst;
4402 break;
4403 }
4404
4405 // Look back for the following pattern, in which case the test64rr
4406 // instruction could be erased.
4407 //
4408 // Example:
4409 // %reg = and32ri %in_reg, 5
4410 // ... // EFLAGS not changed.
4411 // %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index
4412 // test64rr %src_reg, %src_reg, implicit-def $eflags
4413 MachineInstr *AndInstr = nullptr;
4414 if (IsCmpZero &&
4415 findRedundantFlagInstr(CmpInstr, Inst, MRI, &AndInstr, TRI,
4416 NoSignFlag, ClearsOverflowFlag)) {
4417 assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode()));
4418 MI = AndInstr;
4419 break;
4420 }
4421 // Cannot find other candidates before definition of SrcReg.
4422 return false;
4423 }
4424
4425 if (Inst.modifiesRegister(X86::EFLAGS, TRI)) {
4426 // Try to use EFLAGS produced by an instruction reading %SrcReg.
4427 // Example:
4428 // %eax = ...
4429 // ...
4430 // popcntl %eax
4431 // ... // EFLAGS not changed
4432 // testl %eax, %eax // <-- can be removed
4433 if (IsCmpZero) {
4434 NewCC = isUseDefConvertible(Inst);
4435 if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() &&
4436 Inst.getOperand(1).getReg() == SrcReg) {
4437 ShouldUpdateCC = true;
4438 MI = &Inst;
4439 break;
4440 }
4441 }
4442
4443 // Try to use EFLAGS from an instruction with similar flag results.
4444 // Example:
4445 // sub x, y or cmp x, y
4446 // ... // EFLAGS not changed
4447 // cmp x, y // <-- can be removed
4448 if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue,
4449 Inst, &IsSwapped, &ImmDelta)) {
4450 Sub = &Inst;
4451 break;
4452 }
4453
4454 // MOV32r0 is implemented with xor which clobbers condition code. It is
4455 // safe to move up, if the definition to EFLAGS is dead and earlier
4456 // instructions do not read or write EFLAGS.
4457 if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 &&
4458 Inst.registerDefIsDead(X86::EFLAGS, TRI)) {
4459 Movr0Inst = &Inst;
4460 continue;
4461 }
4462
4463 // Cannot do anything for any other EFLAG changes.
4464 return false;
4465 }
4466 }
4467
4468 if (MI || Sub)
4469 break;
4470
4471 // Reached begin of basic block. Continue in predecessor if there is
4472 // exactly one.
4473 if (MBB->pred_size() != 1)
4474 return false;
4475 MBB = *MBB->pred_begin();
4476 From = MBB->rbegin();
4477 }
4478
4479 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
4480 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
4481 // If we are done with the basic block, we need to check whether EFLAGS is
4482 // live-out.
4483 bool FlagsMayLiveOut = true;
4484 SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
4485 MachineBasicBlock::iterator AfterCmpInstr =
4486 std::next(MachineBasicBlock::iterator(CmpInstr));
4487 for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) {
4488 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
4489 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
4490 // We should check the usage if this instruction uses and updates EFLAGS.
4491 if (!UseEFLAGS && ModifyEFLAGS) {
4492 // It is safe to remove CmpInstr if EFLAGS is updated again.
4493 FlagsMayLiveOut = false;
4494 break;
4495 }
4496 if (!UseEFLAGS && !ModifyEFLAGS)
4497 continue;
4498
4499 // EFLAGS is used by this instruction.
4500 X86::CondCode OldCC = X86::getCondFromMI(Instr);
4501 if ((MI || IsSwapped || ImmDelta != 0) && OldCC == X86::COND_INVALID)
4502 return false;
4503
4504 X86::CondCode ReplacementCC = X86::COND_INVALID;
4505 if (MI) {
4506 switch (OldCC) {
4507 default: break;
4508 case X86::COND_A: case X86::COND_AE:
4509 case X86::COND_B: case X86::COND_BE:
4510 // CF is used, we can't perform this optimization.
4511 return false;
4512 case X86::COND_G: case X86::COND_GE:
4513 case X86::COND_L: case X86::COND_LE:
4514 // If SF is used, but the instruction doesn't update the SF, then we
4515 // can't do the optimization.
4516 if (NoSignFlag)
4517 return false;
4518 [[fallthrough]];
4519 case X86::COND_O: case X86::COND_NO:
4520 // If OF is used, the instruction needs to clear it like CmpZero does.
4521 if (!ClearsOverflowFlag)
4522 return false;
4523 break;
4524 case X86::COND_S: case X86::COND_NS:
4525 // If SF is used, but the instruction doesn't update the SF, then we
4526 // can't do the optimization.
4527 if (NoSignFlag)
4528 return false;
4529 break;
4530 }
4531
4532 // If we're updating the condition code check if we have to reverse the
4533 // condition.
4534 if (ShouldUpdateCC)
4535 switch (OldCC) {
4536 default:
4537 return false;
4538 case X86::COND_E:
4539 ReplacementCC = NewCC;
4540 break;
4541 case X86::COND_NE:
4542 ReplacementCC = GetOppositeBranchCondition(NewCC);
4543 break;
4544 }
4545 } else if (IsSwapped) {
4546 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
4547 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
4548 // We swap the condition code and synthesize the new opcode.
4549 ReplacementCC = getSwappedCondition(OldCC);
4550 if (ReplacementCC == X86::COND_INVALID)
4551 return false;
4552 ShouldUpdateCC = true;
4553 } else if (ImmDelta != 0) {
4554 unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg));
4555 // Shift amount for min/max constants to adjust for 8/16/32 instruction
4556 // sizes.
4557 switch (OldCC) {
4558 case X86::COND_L: // x <s (C + 1) --> x <=s C
4559 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
4560 return false;
4561 ReplacementCC = X86::COND_LE;
4562 break;
4563 case X86::COND_B: // x <u (C + 1) --> x <=u C
4564 if (ImmDelta != 1 || CmpValue == 0)
4565 return false;
4566 ReplacementCC = X86::COND_BE;
4567 break;
4568 case X86::COND_GE: // x >=s (C + 1) --> x >s C
4569 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
4570 return false;
4571 ReplacementCC = X86::COND_G;
4572 break;
4573 case X86::COND_AE: // x >=u (C + 1) --> x >u C
4574 if (ImmDelta != 1 || CmpValue == 0)
4575 return false;
4576 ReplacementCC = X86::COND_A;
4577 break;
4578 case X86::COND_G: // x >s (C - 1) --> x >=s C
4579 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
4580 return false;
4581 ReplacementCC = X86::COND_GE;
4582 break;
4583 case X86::COND_A: // x >u (C - 1) --> x >=u C
4584 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
4585 return false;
4586 ReplacementCC = X86::COND_AE;
4587 break;
4588 case X86::COND_LE: // x <=s (C - 1) --> x <s C
4589 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
4590 return false;
4591 ReplacementCC = X86::COND_L;
4592 break;
4593 case X86::COND_BE: // x <=u (C - 1) --> x <u C
4594 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
4595 return false;
4596 ReplacementCC = X86::COND_B;
4597 break;
4598 default:
4599 return false;
4600 }
4601 ShouldUpdateCC = true;
4602 }
4603
4604 if (ShouldUpdateCC && ReplacementCC != OldCC) {
4605 // Push the MachineInstr to OpsToUpdate.
4606 // If it is safe to remove CmpInstr, the condition code of these
4607 // instructions will be modified.
4608 OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC));
4609 }
4610 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
4611 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
4612 FlagsMayLiveOut = false;
4613 break;
4614 }
4615 }
4616
4617 // If we have to update users but EFLAGS is live-out abort, since we cannot
4618 // easily find all of the users.
4619 if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) {
4620 for (MachineBasicBlock *Successor : CmpMBB.successors())
4621 if (Successor->isLiveIn(X86::EFLAGS))
4622 return false;
4623 }
4624
4625 // The instruction to be updated is either Sub or MI.
4626 assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set");
4627 Sub = MI != nullptr ? MI : Sub;
4628 MachineBasicBlock *SubBB = Sub->getParent();
4629 // Move Movr0Inst to the appropriate place before Sub.
4630 if (Movr0Inst) {
4631 // Only move within the same block so we don't accidentally move to a
4632 // block with higher execution frequency.
4633 if (&CmpMBB != SubBB)
4634 return false;
4635 // Look backwards until we find a def that doesn't use the current EFLAGS.
4636 MachineBasicBlock::reverse_iterator InsertI = Sub,
4637 InsertE = Sub->getParent()->rend();
4638 for (; InsertI != InsertE; ++InsertI) {
4639 MachineInstr *Instr = &*InsertI;
4640 if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
4641 Instr->modifiesRegister(X86::EFLAGS, TRI)) {
4642 Movr0Inst->getParent()->remove(Movr0Inst);
4643 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
4644 Movr0Inst);
4645 break;
4646 }
4647 }
4648 if (InsertI == InsertE)
4649 return false;
4650 }
4651
4652 // Make sure Sub instruction defines EFLAGS and mark the def live.
4653 MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
4654 assert(FlagDef && "Unable to locate a def EFLAGS operand");
4655 FlagDef->setIsDead(false);
4656
4657 CmpInstr.eraseFromParent();
4658
4659 // Modify the condition code of instructions in OpsToUpdate.
4660 for (auto &Op : OpsToUpdate) {
4661 Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
4662 .setImm(Op.second);
4663 }
4664 // Add EFLAGS to block live-ins between CmpBB and block of flags producer.
4665 for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB;
4666 MBB = *MBB->pred_begin()) {
4667 assert(MBB->pred_size() == 1 && "Expected exactly one predecessor");
4668 if (!MBB->isLiveIn(X86::EFLAGS))
4669 MBB->addLiveIn(X86::EFLAGS);
4670 }
4671 return true;
4672 }
4673
4674 /// Try to remove the load by folding it to a register
4675 /// operand at the use. We fold the load instructions if load defines a virtual
4676 /// register, the virtual register is used once in the same BB, and the
4677 /// instructions in-between do not load or store, and have no side effects.
optimizeLoadInstr(MachineInstr & MI,const MachineRegisterInfo * MRI,Register & FoldAsLoadDefReg,MachineInstr * & DefMI) const4678 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
4679 const MachineRegisterInfo *MRI,
4680 Register &FoldAsLoadDefReg,
4681 MachineInstr *&DefMI) const {
4682 // Check whether we can move DefMI here.
4683 DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
4684 assert(DefMI);
4685 bool SawStore = false;
4686 if (!DefMI->isSafeToMove(nullptr, SawStore))
4687 return nullptr;
4688
4689 // Collect information about virtual register operands of MI.
4690 SmallVector<unsigned, 1> SrcOperandIds;
4691 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4692 MachineOperand &MO = MI.getOperand(i);
4693 if (!MO.isReg())
4694 continue;
4695 Register Reg = MO.getReg();
4696 if (Reg != FoldAsLoadDefReg)
4697 continue;
4698 // Do not fold if we have a subreg use or a def.
4699 if (MO.getSubReg() || MO.isDef())
4700 return nullptr;
4701 SrcOperandIds.push_back(i);
4702 }
4703 if (SrcOperandIds.empty())
4704 return nullptr;
4705
4706 // Check whether we can fold the def into SrcOperandId.
4707 if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
4708 FoldAsLoadDefReg = 0;
4709 return FoldMI;
4710 }
4711
4712 return nullptr;
4713 }
4714
4715 /// Expand a single-def pseudo instruction to a two-addr
4716 /// instruction with two undef reads of the register being defined.
4717 /// This is used for mapping:
4718 /// %xmm4 = V_SET0
4719 /// to:
4720 /// %xmm4 = PXORrr undef %xmm4, undef %xmm4
4721 ///
Expand2AddrUndef(MachineInstrBuilder & MIB,const MCInstrDesc & Desc)4722 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
4723 const MCInstrDesc &Desc) {
4724 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4725 Register Reg = MIB.getReg(0);
4726 MIB->setDesc(Desc);
4727
4728 // MachineInstr::addOperand() will insert explicit operands before any
4729 // implicit operands.
4730 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4731 // But we don't trust that.
4732 assert(MIB.getReg(1) == Reg &&
4733 MIB.getReg(2) == Reg && "Misplaced operand");
4734 return true;
4735 }
4736
4737 /// Expand a single-def pseudo instruction to a two-addr
4738 /// instruction with two %k0 reads.
4739 /// This is used for mapping:
4740 /// %k4 = K_SET1
4741 /// to:
4742 /// %k4 = KXNORrr %k0, %k0
Expand2AddrKreg(MachineInstrBuilder & MIB,const MCInstrDesc & Desc,Register Reg)4743 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
4744 Register Reg) {
4745 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4746 MIB->setDesc(Desc);
4747 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4748 return true;
4749 }
4750
expandMOV32r1(MachineInstrBuilder & MIB,const TargetInstrInfo & TII,bool MinusOne)4751 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
4752 bool MinusOne) {
4753 MachineBasicBlock &MBB = *MIB->getParent();
4754 const DebugLoc &DL = MIB->getDebugLoc();
4755 Register Reg = MIB.getReg(0);
4756
4757 // Insert the XOR.
4758 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
4759 .addReg(Reg, RegState::Undef)
4760 .addReg(Reg, RegState::Undef);
4761
4762 // Turn the pseudo into an INC or DEC.
4763 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
4764 MIB.addReg(Reg);
4765
4766 return true;
4767 }
4768
ExpandMOVImmSExti8(MachineInstrBuilder & MIB,const TargetInstrInfo & TII,const X86Subtarget & Subtarget)4769 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
4770 const TargetInstrInfo &TII,
4771 const X86Subtarget &Subtarget) {
4772 MachineBasicBlock &MBB = *MIB->getParent();
4773 const DebugLoc &DL = MIB->getDebugLoc();
4774 int64_t Imm = MIB->getOperand(1).getImm();
4775 assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
4776 MachineBasicBlock::iterator I = MIB.getInstr();
4777
4778 int StackAdjustment;
4779
4780 if (Subtarget.is64Bit()) {
4781 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
4782 MIB->getOpcode() == X86::MOV32ImmSExti8);
4783
4784 // Can't use push/pop lowering if the function might write to the red zone.
4785 X86MachineFunctionInfo *X86FI =
4786 MBB.getParent()->getInfo<X86MachineFunctionInfo>();
4787 if (X86FI->getUsesRedZone()) {
4788 MIB->setDesc(TII.get(MIB->getOpcode() ==
4789 X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
4790 return true;
4791 }
4792
4793 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
4794 // widen the register if necessary.
4795 StackAdjustment = 8;
4796 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
4797 MIB->setDesc(TII.get(X86::POP64r));
4798 MIB->getOperand(0)
4799 .setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
4800 } else {
4801 assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
4802 StackAdjustment = 4;
4803 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
4804 MIB->setDesc(TII.get(X86::POP32r));
4805 }
4806 MIB->removeOperand(1);
4807 MIB->addImplicitDefUseOperands(*MBB.getParent());
4808
4809 // Build CFI if necessary.
4810 MachineFunction &MF = *MBB.getParent();
4811 const X86FrameLowering *TFL = Subtarget.getFrameLowering();
4812 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
4813 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
4814 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
4815 if (EmitCFI) {
4816 TFL->BuildCFI(MBB, I, DL,
4817 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
4818 TFL->BuildCFI(MBB, std::next(I), DL,
4819 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
4820 }
4821
4822 return true;
4823 }
4824
4825 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4826 // code sequence is needed for other targets.
expandLoadStackGuard(MachineInstrBuilder & MIB,const TargetInstrInfo & TII)4827 static void expandLoadStackGuard(MachineInstrBuilder &MIB,
4828 const TargetInstrInfo &TII) {
4829 MachineBasicBlock &MBB = *MIB->getParent();
4830 const DebugLoc &DL = MIB->getDebugLoc();
4831 Register Reg = MIB.getReg(0);
4832 const GlobalValue *GV =
4833 cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4834 auto Flags = MachineMemOperand::MOLoad |
4835 MachineMemOperand::MODereferenceable |
4836 MachineMemOperand::MOInvariant;
4837 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4838 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
4839 MachineBasicBlock::iterator I = MIB.getInstr();
4840
4841 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4842 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
4843 .addMemOperand(MMO);
4844 MIB->setDebugLoc(DL);
4845 MIB->setDesc(TII.get(X86::MOV64rm));
4846 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4847 }
4848
expandXorFP(MachineInstrBuilder & MIB,const TargetInstrInfo & TII)4849 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
4850 MachineBasicBlock &MBB = *MIB->getParent();
4851 MachineFunction &MF = *MBB.getParent();
4852 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
4853 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4854 unsigned XorOp =
4855 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
4856 MIB->setDesc(TII.get(XorOp));
4857 MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
4858 return true;
4859 }
4860
4861 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4862 // but not VLX. If it uses an extended register we need to use an instruction
4863 // that loads the lower 128/256-bit, but is available with only AVX512F.
expandNOVLXLoad(MachineInstrBuilder & MIB,const TargetRegisterInfo * TRI,const MCInstrDesc & LoadDesc,const MCInstrDesc & BroadcastDesc,unsigned SubIdx)4864 static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
4865 const TargetRegisterInfo *TRI,
4866 const MCInstrDesc &LoadDesc,
4867 const MCInstrDesc &BroadcastDesc,
4868 unsigned SubIdx) {
4869 Register DestReg = MIB.getReg(0);
4870 // Check if DestReg is XMM16-31 or YMM16-31.
4871 if (TRI->getEncodingValue(DestReg) < 16) {
4872 // We can use a normal VEX encoded load.
4873 MIB->setDesc(LoadDesc);
4874 } else {
4875 // Use a 128/256-bit VBROADCAST instruction.
4876 MIB->setDesc(BroadcastDesc);
4877 // Change the destination to a 512-bit register.
4878 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
4879 MIB->getOperand(0).setReg(DestReg);
4880 }
4881 return true;
4882 }
4883
4884 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4885 // but not VLX. If it uses an extended register we need to use an instruction
4886 // that stores the lower 128/256-bit, but is available with only AVX512F.
expandNOVLXStore(MachineInstrBuilder & MIB,const TargetRegisterInfo * TRI,const MCInstrDesc & StoreDesc,const MCInstrDesc & ExtractDesc,unsigned SubIdx)4887 static bool expandNOVLXStore(MachineInstrBuilder &MIB,
4888 const TargetRegisterInfo *TRI,
4889 const MCInstrDesc &StoreDesc,
4890 const MCInstrDesc &ExtractDesc,
4891 unsigned SubIdx) {
4892 Register SrcReg = MIB.getReg(X86::AddrNumOperands);
4893 // Check if DestReg is XMM16-31 or YMM16-31.
4894 if (TRI->getEncodingValue(SrcReg) < 16) {
4895 // We can use a normal VEX encoded store.
4896 MIB->setDesc(StoreDesc);
4897 } else {
4898 // Use a VEXTRACTF instruction.
4899 MIB->setDesc(ExtractDesc);
4900 // Change the destination to a 512-bit register.
4901 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
4902 MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
4903 MIB.addImm(0x0); // Append immediate to extract from the lower bits.
4904 }
4905
4906 return true;
4907 }
4908
expandSHXDROT(MachineInstrBuilder & MIB,const MCInstrDesc & Desc)4909 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
4910 MIB->setDesc(Desc);
4911 int64_t ShiftAmt = MIB->getOperand(2).getImm();
4912 // Temporarily remove the immediate so we can add another source register.
4913 MIB->removeOperand(2);
4914 // Add the register. Don't copy the kill flag if there is one.
4915 MIB.addReg(MIB.getReg(1),
4916 getUndefRegState(MIB->getOperand(1).isUndef()));
4917 // Add back the immediate.
4918 MIB.addImm(ShiftAmt);
4919 return true;
4920 }
4921
expandPostRAPseudo(MachineInstr & MI) const4922 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
4923 bool HasAVX = Subtarget.hasAVX();
4924 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4925 switch (MI.getOpcode()) {
4926 case X86::MOV32r0:
4927 return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4928 case X86::MOV32r1:
4929 return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
4930 case X86::MOV32r_1:
4931 return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
4932 case X86::MOV32ImmSExti8:
4933 case X86::MOV64ImmSExti8:
4934 return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4935 case X86::SETB_C32r:
4936 return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4937 case X86::SETB_C64r:
4938 return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4939 case X86::MMX_SET0:
4940 return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr));
4941 case X86::V_SET0:
4942 case X86::FsFLD0SS:
4943 case X86::FsFLD0SD:
4944 case X86::FsFLD0SH:
4945 case X86::FsFLD0F128:
4946 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4947 case X86::AVX_SET0: {
4948 assert(HasAVX && "AVX not supported");
4949 const TargetRegisterInfo *TRI = &getRegisterInfo();
4950 Register SrcReg = MIB.getReg(0);
4951 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4952 MIB->getOperand(0).setReg(XReg);
4953 Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4954 MIB.addReg(SrcReg, RegState::ImplicitDefine);
4955 return true;
4956 }
4957 case X86::AVX512_128_SET0:
4958 case X86::AVX512_FsFLD0SH:
4959 case X86::AVX512_FsFLD0SS:
4960 case X86::AVX512_FsFLD0SD:
4961 case X86::AVX512_FsFLD0F128: {
4962 bool HasVLX = Subtarget.hasVLX();
4963 Register SrcReg = MIB.getReg(0);
4964 const TargetRegisterInfo *TRI = &getRegisterInfo();
4965 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4966 return Expand2AddrUndef(MIB,
4967 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4968 // Extended register without VLX. Use a larger XOR.
4969 SrcReg =
4970 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4971 MIB->getOperand(0).setReg(SrcReg);
4972 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4973 }
4974 case X86::AVX512_256_SET0:
4975 case X86::AVX512_512_SET0: {
4976 bool HasVLX = Subtarget.hasVLX();
4977 Register SrcReg = MIB.getReg(0);
4978 const TargetRegisterInfo *TRI = &getRegisterInfo();
4979 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4980 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4981 MIB->getOperand(0).setReg(XReg);
4982 Expand2AddrUndef(MIB,
4983 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4984 MIB.addReg(SrcReg, RegState::ImplicitDefine);
4985 return true;
4986 }
4987 if (MI.getOpcode() == X86::AVX512_256_SET0) {
4988 // No VLX so we must reference a zmm.
4989 unsigned ZReg =
4990 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4991 MIB->getOperand(0).setReg(ZReg);
4992 }
4993 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4994 }
4995 case X86::V_SETALLONES:
4996 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4997 case X86::AVX2_SETALLONES:
4998 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4999 case X86::AVX1_SETALLONES: {
5000 Register Reg = MIB.getReg(0);
5001 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
5002 MIB->setDesc(get(X86::VCMPPSYrri));
5003 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
5004 return true;
5005 }
5006 case X86::AVX512_512_SETALLONES: {
5007 Register Reg = MIB.getReg(0);
5008 MIB->setDesc(get(X86::VPTERNLOGDZrri));
5009 // VPTERNLOGD needs 3 register inputs and an immediate.
5010 // 0xff will return 1s for any input.
5011 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
5012 .addReg(Reg, RegState::Undef).addImm(0xff);
5013 return true;
5014 }
5015 case X86::AVX512_512_SEXT_MASK_32:
5016 case X86::AVX512_512_SEXT_MASK_64: {
5017 Register Reg = MIB.getReg(0);
5018 Register MaskReg = MIB.getReg(1);
5019 unsigned MaskState = getRegState(MIB->getOperand(1));
5020 unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
5021 X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
5022 MI.removeOperand(1);
5023 MIB->setDesc(get(Opc));
5024 // VPTERNLOG needs 3 register inputs and an immediate.
5025 // 0xff will return 1s for any input.
5026 MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
5027 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
5028 return true;
5029 }
5030 case X86::VMOVAPSZ128rm_NOVLX:
5031 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
5032 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
5033 case X86::VMOVUPSZ128rm_NOVLX:
5034 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
5035 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
5036 case X86::VMOVAPSZ256rm_NOVLX:
5037 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
5038 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
5039 case X86::VMOVUPSZ256rm_NOVLX:
5040 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
5041 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
5042 case X86::VMOVAPSZ128mr_NOVLX:
5043 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
5044 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
5045 case X86::VMOVUPSZ128mr_NOVLX:
5046 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
5047 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
5048 case X86::VMOVAPSZ256mr_NOVLX:
5049 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
5050 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
5051 case X86::VMOVUPSZ256mr_NOVLX:
5052 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
5053 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
5054 case X86::MOV32ri64: {
5055 Register Reg = MIB.getReg(0);
5056 Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
5057 MI.setDesc(get(X86::MOV32ri));
5058 MIB->getOperand(0).setReg(Reg32);
5059 MIB.addReg(Reg, RegState::ImplicitDefine);
5060 return true;
5061 }
5062
5063 // KNL does not recognize dependency-breaking idioms for mask registers,
5064 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
5065 // Using %k0 as the undef input register is a performance heuristic based
5066 // on the assumption that %k0 is used less frequently than the other mask
5067 // registers, since it is not usable as a write mask.
5068 // FIXME: A more advanced approach would be to choose the best input mask
5069 // register based on context.
5070 case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
5071 case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
5072 case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
5073 case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
5074 case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
5075 case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
5076 case TargetOpcode::LOAD_STACK_GUARD:
5077 expandLoadStackGuard(MIB, *this);
5078 return true;
5079 case X86::XOR64_FP:
5080 case X86::XOR32_FP:
5081 return expandXorFP(MIB, *this);
5082 case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
5083 case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
5084 case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
5085 case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
5086 case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break;
5087 case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break;
5088 case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break;
5089 case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break;
5090 case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break;
5091 case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break;
5092 case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break;
5093 case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
5094 case X86::ADD16ri8_DB: MIB->setDesc(get(X86::OR16ri8)); break;
5095 case X86::ADD32ri8_DB: MIB->setDesc(get(X86::OR32ri8)); break;
5096 case X86::ADD64ri8_DB: MIB->setDesc(get(X86::OR64ri8)); break;
5097 }
5098 return false;
5099 }
5100
5101 /// Return true for all instructions that only update
5102 /// the first 32 or 64-bits of the destination register and leave the rest
5103 /// unmodified. This can be used to avoid folding loads if the instructions
5104 /// only update part of the destination register, and the non-updated part is
5105 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
5106 /// instructions breaks the partial register dependency and it can improve
5107 /// performance. e.g.:
5108 ///
5109 /// movss (%rdi), %xmm0
5110 /// cvtss2sd %xmm0, %xmm0
5111 ///
5112 /// Instead of
5113 /// cvtss2sd (%rdi), %xmm0
5114 ///
5115 /// FIXME: This should be turned into a TSFlags.
5116 ///
hasPartialRegUpdate(unsigned Opcode,const X86Subtarget & Subtarget,bool ForLoadFold=false)5117 static bool hasPartialRegUpdate(unsigned Opcode,
5118 const X86Subtarget &Subtarget,
5119 bool ForLoadFold = false) {
5120 switch (Opcode) {
5121 case X86::CVTSI2SSrr:
5122 case X86::CVTSI2SSrm:
5123 case X86::CVTSI642SSrr:
5124 case X86::CVTSI642SSrm:
5125 case X86::CVTSI2SDrr:
5126 case X86::CVTSI2SDrm:
5127 case X86::CVTSI642SDrr:
5128 case X86::CVTSI642SDrm:
5129 // Load folding won't effect the undef register update since the input is
5130 // a GPR.
5131 return !ForLoadFold;
5132 case X86::CVTSD2SSrr:
5133 case X86::CVTSD2SSrm:
5134 case X86::CVTSS2SDrr:
5135 case X86::CVTSS2SDrm:
5136 case X86::MOVHPDrm:
5137 case X86::MOVHPSrm:
5138 case X86::MOVLPDrm:
5139 case X86::MOVLPSrm:
5140 case X86::RCPSSr:
5141 case X86::RCPSSm:
5142 case X86::RCPSSr_Int:
5143 case X86::RCPSSm_Int:
5144 case X86::ROUNDSDr:
5145 case X86::ROUNDSDm:
5146 case X86::ROUNDSSr:
5147 case X86::ROUNDSSm:
5148 case X86::RSQRTSSr:
5149 case X86::RSQRTSSm:
5150 case X86::RSQRTSSr_Int:
5151 case X86::RSQRTSSm_Int:
5152 case X86::SQRTSSr:
5153 case X86::SQRTSSm:
5154 case X86::SQRTSSr_Int:
5155 case X86::SQRTSSm_Int:
5156 case X86::SQRTSDr:
5157 case X86::SQRTSDm:
5158 case X86::SQRTSDr_Int:
5159 case X86::SQRTSDm_Int:
5160 return true;
5161 case X86::VFCMULCPHZ128rm:
5162 case X86::VFCMULCPHZ128rmb:
5163 case X86::VFCMULCPHZ128rmbkz:
5164 case X86::VFCMULCPHZ128rmkz:
5165 case X86::VFCMULCPHZ128rr:
5166 case X86::VFCMULCPHZ128rrkz:
5167 case X86::VFCMULCPHZ256rm:
5168 case X86::VFCMULCPHZ256rmb:
5169 case X86::VFCMULCPHZ256rmbkz:
5170 case X86::VFCMULCPHZ256rmkz:
5171 case X86::VFCMULCPHZ256rr:
5172 case X86::VFCMULCPHZ256rrkz:
5173 case X86::VFCMULCPHZrm:
5174 case X86::VFCMULCPHZrmb:
5175 case X86::VFCMULCPHZrmbkz:
5176 case X86::VFCMULCPHZrmkz:
5177 case X86::VFCMULCPHZrr:
5178 case X86::VFCMULCPHZrrb:
5179 case X86::VFCMULCPHZrrbkz:
5180 case X86::VFCMULCPHZrrkz:
5181 case X86::VFMULCPHZ128rm:
5182 case X86::VFMULCPHZ128rmb:
5183 case X86::VFMULCPHZ128rmbkz:
5184 case X86::VFMULCPHZ128rmkz:
5185 case X86::VFMULCPHZ128rr:
5186 case X86::VFMULCPHZ128rrkz:
5187 case X86::VFMULCPHZ256rm:
5188 case X86::VFMULCPHZ256rmb:
5189 case X86::VFMULCPHZ256rmbkz:
5190 case X86::VFMULCPHZ256rmkz:
5191 case X86::VFMULCPHZ256rr:
5192 case X86::VFMULCPHZ256rrkz:
5193 case X86::VFMULCPHZrm:
5194 case X86::VFMULCPHZrmb:
5195 case X86::VFMULCPHZrmbkz:
5196 case X86::VFMULCPHZrmkz:
5197 case X86::VFMULCPHZrr:
5198 case X86::VFMULCPHZrrb:
5199 case X86::VFMULCPHZrrbkz:
5200 case X86::VFMULCPHZrrkz:
5201 case X86::VFCMULCSHZrm:
5202 case X86::VFCMULCSHZrmkz:
5203 case X86::VFCMULCSHZrr:
5204 case X86::VFCMULCSHZrrb:
5205 case X86::VFCMULCSHZrrbkz:
5206 case X86::VFCMULCSHZrrkz:
5207 case X86::VFMULCSHZrm:
5208 case X86::VFMULCSHZrmkz:
5209 case X86::VFMULCSHZrr:
5210 case X86::VFMULCSHZrrb:
5211 case X86::VFMULCSHZrrbkz:
5212 case X86::VFMULCSHZrrkz:
5213 return Subtarget.hasMULCFalseDeps();
5214 case X86::VPERMDYrm:
5215 case X86::VPERMDYrr:
5216 case X86::VPERMQYmi:
5217 case X86::VPERMQYri:
5218 case X86::VPERMPSYrm:
5219 case X86::VPERMPSYrr:
5220 case X86::VPERMPDYmi:
5221 case X86::VPERMPDYri:
5222 case X86::VPERMDZ256rm:
5223 case X86::VPERMDZ256rmb:
5224 case X86::VPERMDZ256rmbkz:
5225 case X86::VPERMDZ256rmkz:
5226 case X86::VPERMDZ256rr:
5227 case X86::VPERMDZ256rrkz:
5228 case X86::VPERMDZrm:
5229 case X86::VPERMDZrmb:
5230 case X86::VPERMDZrmbkz:
5231 case X86::VPERMDZrmkz:
5232 case X86::VPERMDZrr:
5233 case X86::VPERMDZrrkz:
5234 case X86::VPERMQZ256mbi:
5235 case X86::VPERMQZ256mbikz:
5236 case X86::VPERMQZ256mi:
5237 case X86::VPERMQZ256mikz:
5238 case X86::VPERMQZ256ri:
5239 case X86::VPERMQZ256rikz:
5240 case X86::VPERMQZ256rm:
5241 case X86::VPERMQZ256rmb:
5242 case X86::VPERMQZ256rmbkz:
5243 case X86::VPERMQZ256rmkz:
5244 case X86::VPERMQZ256rr:
5245 case X86::VPERMQZ256rrkz:
5246 case X86::VPERMQZmbi:
5247 case X86::VPERMQZmbikz:
5248 case X86::VPERMQZmi:
5249 case X86::VPERMQZmikz:
5250 case X86::VPERMQZri:
5251 case X86::VPERMQZrikz:
5252 case X86::VPERMQZrm:
5253 case X86::VPERMQZrmb:
5254 case X86::VPERMQZrmbkz:
5255 case X86::VPERMQZrmkz:
5256 case X86::VPERMQZrr:
5257 case X86::VPERMQZrrkz:
5258 case X86::VPERMPSZ256rm:
5259 case X86::VPERMPSZ256rmb:
5260 case X86::VPERMPSZ256rmbkz:
5261 case X86::VPERMPSZ256rmkz:
5262 case X86::VPERMPSZ256rr:
5263 case X86::VPERMPSZ256rrkz:
5264 case X86::VPERMPSZrm:
5265 case X86::VPERMPSZrmb:
5266 case X86::VPERMPSZrmbkz:
5267 case X86::VPERMPSZrmkz:
5268 case X86::VPERMPSZrr:
5269 case X86::VPERMPSZrrkz:
5270 case X86::VPERMPDZ256mbi:
5271 case X86::VPERMPDZ256mbikz:
5272 case X86::VPERMPDZ256mi:
5273 case X86::VPERMPDZ256mikz:
5274 case X86::VPERMPDZ256ri:
5275 case X86::VPERMPDZ256rikz:
5276 case X86::VPERMPDZ256rm:
5277 case X86::VPERMPDZ256rmb:
5278 case X86::VPERMPDZ256rmbkz:
5279 case X86::VPERMPDZ256rmkz:
5280 case X86::VPERMPDZ256rr:
5281 case X86::VPERMPDZ256rrkz:
5282 case X86::VPERMPDZmbi:
5283 case X86::VPERMPDZmbikz:
5284 case X86::VPERMPDZmi:
5285 case X86::VPERMPDZmikz:
5286 case X86::VPERMPDZri:
5287 case X86::VPERMPDZrikz:
5288 case X86::VPERMPDZrm:
5289 case X86::VPERMPDZrmb:
5290 case X86::VPERMPDZrmbkz:
5291 case X86::VPERMPDZrmkz:
5292 case X86::VPERMPDZrr:
5293 case X86::VPERMPDZrrkz:
5294 return Subtarget.hasPERMFalseDeps();
5295 case X86::VRANGEPDZ128rmbi:
5296 case X86::VRANGEPDZ128rmbikz:
5297 case X86::VRANGEPDZ128rmi:
5298 case X86::VRANGEPDZ128rmikz:
5299 case X86::VRANGEPDZ128rri:
5300 case X86::VRANGEPDZ128rrikz:
5301 case X86::VRANGEPDZ256rmbi:
5302 case X86::VRANGEPDZ256rmbikz:
5303 case X86::VRANGEPDZ256rmi:
5304 case X86::VRANGEPDZ256rmikz:
5305 case X86::VRANGEPDZ256rri:
5306 case X86::VRANGEPDZ256rrikz:
5307 case X86::VRANGEPDZrmbi:
5308 case X86::VRANGEPDZrmbikz:
5309 case X86::VRANGEPDZrmi:
5310 case X86::VRANGEPDZrmikz:
5311 case X86::VRANGEPDZrri:
5312 case X86::VRANGEPDZrrib:
5313 case X86::VRANGEPDZrribkz:
5314 case X86::VRANGEPDZrrikz:
5315 case X86::VRANGEPSZ128rmbi:
5316 case X86::VRANGEPSZ128rmbikz:
5317 case X86::VRANGEPSZ128rmi:
5318 case X86::VRANGEPSZ128rmikz:
5319 case X86::VRANGEPSZ128rri:
5320 case X86::VRANGEPSZ128rrikz:
5321 case X86::VRANGEPSZ256rmbi:
5322 case X86::VRANGEPSZ256rmbikz:
5323 case X86::VRANGEPSZ256rmi:
5324 case X86::VRANGEPSZ256rmikz:
5325 case X86::VRANGEPSZ256rri:
5326 case X86::VRANGEPSZ256rrikz:
5327 case X86::VRANGEPSZrmbi:
5328 case X86::VRANGEPSZrmbikz:
5329 case X86::VRANGEPSZrmi:
5330 case X86::VRANGEPSZrmikz:
5331 case X86::VRANGEPSZrri:
5332 case X86::VRANGEPSZrrib:
5333 case X86::VRANGEPSZrribkz:
5334 case X86::VRANGEPSZrrikz:
5335 case X86::VRANGESDZrmi:
5336 case X86::VRANGESDZrmikz:
5337 case X86::VRANGESDZrri:
5338 case X86::VRANGESDZrrib:
5339 case X86::VRANGESDZrribkz:
5340 case X86::VRANGESDZrrikz:
5341 case X86::VRANGESSZrmi:
5342 case X86::VRANGESSZrmikz:
5343 case X86::VRANGESSZrri:
5344 case X86::VRANGESSZrrib:
5345 case X86::VRANGESSZrribkz:
5346 case X86::VRANGESSZrrikz:
5347 return Subtarget.hasRANGEFalseDeps();
5348 case X86::VGETMANTSSZrmi:
5349 case X86::VGETMANTSSZrmikz:
5350 case X86::VGETMANTSSZrri:
5351 case X86::VGETMANTSSZrrib:
5352 case X86::VGETMANTSSZrribkz:
5353 case X86::VGETMANTSSZrrikz:
5354 case X86::VGETMANTSDZrmi:
5355 case X86::VGETMANTSDZrmikz:
5356 case X86::VGETMANTSDZrri:
5357 case X86::VGETMANTSDZrrib:
5358 case X86::VGETMANTSDZrribkz:
5359 case X86::VGETMANTSDZrrikz:
5360 case X86::VGETMANTSHZrmi:
5361 case X86::VGETMANTSHZrmikz:
5362 case X86::VGETMANTSHZrri:
5363 case X86::VGETMANTSHZrrib:
5364 case X86::VGETMANTSHZrribkz:
5365 case X86::VGETMANTSHZrrikz:
5366 case X86::VGETMANTPSZ128rmbi:
5367 case X86::VGETMANTPSZ128rmbikz:
5368 case X86::VGETMANTPSZ128rmi:
5369 case X86::VGETMANTPSZ128rmikz:
5370 case X86::VGETMANTPSZ256rmbi:
5371 case X86::VGETMANTPSZ256rmbikz:
5372 case X86::VGETMANTPSZ256rmi:
5373 case X86::VGETMANTPSZ256rmikz:
5374 case X86::VGETMANTPSZrmbi:
5375 case X86::VGETMANTPSZrmbikz:
5376 case X86::VGETMANTPSZrmi:
5377 case X86::VGETMANTPSZrmikz:
5378 case X86::VGETMANTPDZ128rmbi:
5379 case X86::VGETMANTPDZ128rmbikz:
5380 case X86::VGETMANTPDZ128rmi:
5381 case X86::VGETMANTPDZ128rmikz:
5382 case X86::VGETMANTPDZ256rmbi:
5383 case X86::VGETMANTPDZ256rmbikz:
5384 case X86::VGETMANTPDZ256rmi:
5385 case X86::VGETMANTPDZ256rmikz:
5386 case X86::VGETMANTPDZrmbi:
5387 case X86::VGETMANTPDZrmbikz:
5388 case X86::VGETMANTPDZrmi:
5389 case X86::VGETMANTPDZrmikz:
5390 return Subtarget.hasGETMANTFalseDeps();
5391 case X86::VPMULLQZ128rm:
5392 case X86::VPMULLQZ128rmb:
5393 case X86::VPMULLQZ128rmbkz:
5394 case X86::VPMULLQZ128rmkz:
5395 case X86::VPMULLQZ128rr:
5396 case X86::VPMULLQZ128rrkz:
5397 case X86::VPMULLQZ256rm:
5398 case X86::VPMULLQZ256rmb:
5399 case X86::VPMULLQZ256rmbkz:
5400 case X86::VPMULLQZ256rmkz:
5401 case X86::VPMULLQZ256rr:
5402 case X86::VPMULLQZ256rrkz:
5403 case X86::VPMULLQZrm:
5404 case X86::VPMULLQZrmb:
5405 case X86::VPMULLQZrmbkz:
5406 case X86::VPMULLQZrmkz:
5407 case X86::VPMULLQZrr:
5408 case X86::VPMULLQZrrkz:
5409 return Subtarget.hasMULLQFalseDeps();
5410 // GPR
5411 case X86::POPCNT32rm:
5412 case X86::POPCNT32rr:
5413 case X86::POPCNT64rm:
5414 case X86::POPCNT64rr:
5415 return Subtarget.hasPOPCNTFalseDeps();
5416 case X86::LZCNT32rm:
5417 case X86::LZCNT32rr:
5418 case X86::LZCNT64rm:
5419 case X86::LZCNT64rr:
5420 case X86::TZCNT32rm:
5421 case X86::TZCNT32rr:
5422 case X86::TZCNT64rm:
5423 case X86::TZCNT64rr:
5424 return Subtarget.hasLZCNTFalseDeps();
5425 }
5426
5427 return false;
5428 }
5429
5430 /// Inform the BreakFalseDeps pass how many idle
5431 /// instructions we would like before a partial register update.
getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5432 unsigned X86InstrInfo::getPartialRegUpdateClearance(
5433 const MachineInstr &MI, unsigned OpNum,
5434 const TargetRegisterInfo *TRI) const {
5435 if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
5436 return 0;
5437
5438 // If MI is marked as reading Reg, the partial register update is wanted.
5439 const MachineOperand &MO = MI.getOperand(0);
5440 Register Reg = MO.getReg();
5441 if (Reg.isVirtual()) {
5442 if (MO.readsReg() || MI.readsVirtualRegister(Reg))
5443 return 0;
5444 } else {
5445 if (MI.readsRegister(Reg, TRI))
5446 return 0;
5447 }
5448
5449 // If any instructions in the clearance range are reading Reg, insert a
5450 // dependency breaking instruction, which is inexpensive and is likely to
5451 // be hidden in other instruction's cycles.
5452 return PartialRegUpdateClearance;
5453 }
5454
5455 // Return true for any instruction the copies the high bits of the first source
5456 // operand into the unused high bits of the destination operand.
5457 // Also returns true for instructions that have two inputs where one may
5458 // be undef and we want it to use the same register as the other input.
hasUndefRegUpdate(unsigned Opcode,unsigned OpNum,bool ForLoadFold=false)5459 static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
5460 bool ForLoadFold = false) {
5461 // Set the OpNum parameter to the first source operand.
5462 switch (Opcode) {
5463 case X86::MMX_PUNPCKHBWrr:
5464 case X86::MMX_PUNPCKHWDrr:
5465 case X86::MMX_PUNPCKHDQrr:
5466 case X86::MMX_PUNPCKLBWrr:
5467 case X86::MMX_PUNPCKLWDrr:
5468 case X86::MMX_PUNPCKLDQrr:
5469 case X86::MOVHLPSrr:
5470 case X86::PACKSSWBrr:
5471 case X86::PACKUSWBrr:
5472 case X86::PACKSSDWrr:
5473 case X86::PACKUSDWrr:
5474 case X86::PUNPCKHBWrr:
5475 case X86::PUNPCKLBWrr:
5476 case X86::PUNPCKHWDrr:
5477 case X86::PUNPCKLWDrr:
5478 case X86::PUNPCKHDQrr:
5479 case X86::PUNPCKLDQrr:
5480 case X86::PUNPCKHQDQrr:
5481 case X86::PUNPCKLQDQrr:
5482 case X86::SHUFPDrri:
5483 case X86::SHUFPSrri:
5484 // These instructions are sometimes used with an undef first or second
5485 // source. Return true here so BreakFalseDeps will assign this source to the
5486 // same register as the first source to avoid a false dependency.
5487 // Operand 1 of these instructions is tied so they're separate from their
5488 // VEX counterparts.
5489 return OpNum == 2 && !ForLoadFold;
5490
5491 case X86::VMOVLHPSrr:
5492 case X86::VMOVLHPSZrr:
5493 case X86::VPACKSSWBrr:
5494 case X86::VPACKUSWBrr:
5495 case X86::VPACKSSDWrr:
5496 case X86::VPACKUSDWrr:
5497 case X86::VPACKSSWBZ128rr:
5498 case X86::VPACKUSWBZ128rr:
5499 case X86::VPACKSSDWZ128rr:
5500 case X86::VPACKUSDWZ128rr:
5501 case X86::VPERM2F128rr:
5502 case X86::VPERM2I128rr:
5503 case X86::VSHUFF32X4Z256rri:
5504 case X86::VSHUFF32X4Zrri:
5505 case X86::VSHUFF64X2Z256rri:
5506 case X86::VSHUFF64X2Zrri:
5507 case X86::VSHUFI32X4Z256rri:
5508 case X86::VSHUFI32X4Zrri:
5509 case X86::VSHUFI64X2Z256rri:
5510 case X86::VSHUFI64X2Zrri:
5511 case X86::VPUNPCKHBWrr:
5512 case X86::VPUNPCKLBWrr:
5513 case X86::VPUNPCKHBWYrr:
5514 case X86::VPUNPCKLBWYrr:
5515 case X86::VPUNPCKHBWZ128rr:
5516 case X86::VPUNPCKLBWZ128rr:
5517 case X86::VPUNPCKHBWZ256rr:
5518 case X86::VPUNPCKLBWZ256rr:
5519 case X86::VPUNPCKHBWZrr:
5520 case X86::VPUNPCKLBWZrr:
5521 case X86::VPUNPCKHWDrr:
5522 case X86::VPUNPCKLWDrr:
5523 case X86::VPUNPCKHWDYrr:
5524 case X86::VPUNPCKLWDYrr:
5525 case X86::VPUNPCKHWDZ128rr:
5526 case X86::VPUNPCKLWDZ128rr:
5527 case X86::VPUNPCKHWDZ256rr:
5528 case X86::VPUNPCKLWDZ256rr:
5529 case X86::VPUNPCKHWDZrr:
5530 case X86::VPUNPCKLWDZrr:
5531 case X86::VPUNPCKHDQrr:
5532 case X86::VPUNPCKLDQrr:
5533 case X86::VPUNPCKHDQYrr:
5534 case X86::VPUNPCKLDQYrr:
5535 case X86::VPUNPCKHDQZ128rr:
5536 case X86::VPUNPCKLDQZ128rr:
5537 case X86::VPUNPCKHDQZ256rr:
5538 case X86::VPUNPCKLDQZ256rr:
5539 case X86::VPUNPCKHDQZrr:
5540 case X86::VPUNPCKLDQZrr:
5541 case X86::VPUNPCKHQDQrr:
5542 case X86::VPUNPCKLQDQrr:
5543 case X86::VPUNPCKHQDQYrr:
5544 case X86::VPUNPCKLQDQYrr:
5545 case X86::VPUNPCKHQDQZ128rr:
5546 case X86::VPUNPCKLQDQZ128rr:
5547 case X86::VPUNPCKHQDQZ256rr:
5548 case X86::VPUNPCKLQDQZ256rr:
5549 case X86::VPUNPCKHQDQZrr:
5550 case X86::VPUNPCKLQDQZrr:
5551 // These instructions are sometimes used with an undef first or second
5552 // source. Return true here so BreakFalseDeps will assign this source to the
5553 // same register as the first source to avoid a false dependency.
5554 return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
5555
5556 case X86::VCVTSI2SSrr:
5557 case X86::VCVTSI2SSrm:
5558 case X86::VCVTSI2SSrr_Int:
5559 case X86::VCVTSI2SSrm_Int:
5560 case X86::VCVTSI642SSrr:
5561 case X86::VCVTSI642SSrm:
5562 case X86::VCVTSI642SSrr_Int:
5563 case X86::VCVTSI642SSrm_Int:
5564 case X86::VCVTSI2SDrr:
5565 case X86::VCVTSI2SDrm:
5566 case X86::VCVTSI2SDrr_Int:
5567 case X86::VCVTSI2SDrm_Int:
5568 case X86::VCVTSI642SDrr:
5569 case X86::VCVTSI642SDrm:
5570 case X86::VCVTSI642SDrr_Int:
5571 case X86::VCVTSI642SDrm_Int:
5572 // AVX-512
5573 case X86::VCVTSI2SSZrr:
5574 case X86::VCVTSI2SSZrm:
5575 case X86::VCVTSI2SSZrr_Int:
5576 case X86::VCVTSI2SSZrrb_Int:
5577 case X86::VCVTSI2SSZrm_Int:
5578 case X86::VCVTSI642SSZrr:
5579 case X86::VCVTSI642SSZrm:
5580 case X86::VCVTSI642SSZrr_Int:
5581 case X86::VCVTSI642SSZrrb_Int:
5582 case X86::VCVTSI642SSZrm_Int:
5583 case X86::VCVTSI2SDZrr:
5584 case X86::VCVTSI2SDZrm:
5585 case X86::VCVTSI2SDZrr_Int:
5586 case X86::VCVTSI2SDZrm_Int:
5587 case X86::VCVTSI642SDZrr:
5588 case X86::VCVTSI642SDZrm:
5589 case X86::VCVTSI642SDZrr_Int:
5590 case X86::VCVTSI642SDZrrb_Int:
5591 case X86::VCVTSI642SDZrm_Int:
5592 case X86::VCVTUSI2SSZrr:
5593 case X86::VCVTUSI2SSZrm:
5594 case X86::VCVTUSI2SSZrr_Int:
5595 case X86::VCVTUSI2SSZrrb_Int:
5596 case X86::VCVTUSI2SSZrm_Int:
5597 case X86::VCVTUSI642SSZrr:
5598 case X86::VCVTUSI642SSZrm:
5599 case X86::VCVTUSI642SSZrr_Int:
5600 case X86::VCVTUSI642SSZrrb_Int:
5601 case X86::VCVTUSI642SSZrm_Int:
5602 case X86::VCVTUSI2SDZrr:
5603 case X86::VCVTUSI2SDZrm:
5604 case X86::VCVTUSI2SDZrr_Int:
5605 case X86::VCVTUSI2SDZrm_Int:
5606 case X86::VCVTUSI642SDZrr:
5607 case X86::VCVTUSI642SDZrm:
5608 case X86::VCVTUSI642SDZrr_Int:
5609 case X86::VCVTUSI642SDZrrb_Int:
5610 case X86::VCVTUSI642SDZrm_Int:
5611 case X86::VCVTSI2SHZrr:
5612 case X86::VCVTSI2SHZrm:
5613 case X86::VCVTSI2SHZrr_Int:
5614 case X86::VCVTSI2SHZrrb_Int:
5615 case X86::VCVTSI2SHZrm_Int:
5616 case X86::VCVTSI642SHZrr:
5617 case X86::VCVTSI642SHZrm:
5618 case X86::VCVTSI642SHZrr_Int:
5619 case X86::VCVTSI642SHZrrb_Int:
5620 case X86::VCVTSI642SHZrm_Int:
5621 case X86::VCVTUSI2SHZrr:
5622 case X86::VCVTUSI2SHZrm:
5623 case X86::VCVTUSI2SHZrr_Int:
5624 case X86::VCVTUSI2SHZrrb_Int:
5625 case X86::VCVTUSI2SHZrm_Int:
5626 case X86::VCVTUSI642SHZrr:
5627 case X86::VCVTUSI642SHZrm:
5628 case X86::VCVTUSI642SHZrr_Int:
5629 case X86::VCVTUSI642SHZrrb_Int:
5630 case X86::VCVTUSI642SHZrm_Int:
5631 // Load folding won't effect the undef register update since the input is
5632 // a GPR.
5633 return OpNum == 1 && !ForLoadFold;
5634 case X86::VCVTSD2SSrr:
5635 case X86::VCVTSD2SSrm:
5636 case X86::VCVTSD2SSrr_Int:
5637 case X86::VCVTSD2SSrm_Int:
5638 case X86::VCVTSS2SDrr:
5639 case X86::VCVTSS2SDrm:
5640 case X86::VCVTSS2SDrr_Int:
5641 case X86::VCVTSS2SDrm_Int:
5642 case X86::VRCPSSr:
5643 case X86::VRCPSSr_Int:
5644 case X86::VRCPSSm:
5645 case X86::VRCPSSm_Int:
5646 case X86::VROUNDSDr:
5647 case X86::VROUNDSDm:
5648 case X86::VROUNDSDr_Int:
5649 case X86::VROUNDSDm_Int:
5650 case X86::VROUNDSSr:
5651 case X86::VROUNDSSm:
5652 case X86::VROUNDSSr_Int:
5653 case X86::VROUNDSSm_Int:
5654 case X86::VRSQRTSSr:
5655 case X86::VRSQRTSSr_Int:
5656 case X86::VRSQRTSSm:
5657 case X86::VRSQRTSSm_Int:
5658 case X86::VSQRTSSr:
5659 case X86::VSQRTSSr_Int:
5660 case X86::VSQRTSSm:
5661 case X86::VSQRTSSm_Int:
5662 case X86::VSQRTSDr:
5663 case X86::VSQRTSDr_Int:
5664 case X86::VSQRTSDm:
5665 case X86::VSQRTSDm_Int:
5666 // AVX-512
5667 case X86::VCVTSD2SSZrr:
5668 case X86::VCVTSD2SSZrr_Int:
5669 case X86::VCVTSD2SSZrrb_Int:
5670 case X86::VCVTSD2SSZrm:
5671 case X86::VCVTSD2SSZrm_Int:
5672 case X86::VCVTSS2SDZrr:
5673 case X86::VCVTSS2SDZrr_Int:
5674 case X86::VCVTSS2SDZrrb_Int:
5675 case X86::VCVTSS2SDZrm:
5676 case X86::VCVTSS2SDZrm_Int:
5677 case X86::VGETEXPSDZr:
5678 case X86::VGETEXPSDZrb:
5679 case X86::VGETEXPSDZm:
5680 case X86::VGETEXPSSZr:
5681 case X86::VGETEXPSSZrb:
5682 case X86::VGETEXPSSZm:
5683 case X86::VGETMANTSDZrri:
5684 case X86::VGETMANTSDZrrib:
5685 case X86::VGETMANTSDZrmi:
5686 case X86::VGETMANTSSZrri:
5687 case X86::VGETMANTSSZrrib:
5688 case X86::VGETMANTSSZrmi:
5689 case X86::VRNDSCALESDZr:
5690 case X86::VRNDSCALESDZr_Int:
5691 case X86::VRNDSCALESDZrb_Int:
5692 case X86::VRNDSCALESDZm:
5693 case X86::VRNDSCALESDZm_Int:
5694 case X86::VRNDSCALESSZr:
5695 case X86::VRNDSCALESSZr_Int:
5696 case X86::VRNDSCALESSZrb_Int:
5697 case X86::VRNDSCALESSZm:
5698 case X86::VRNDSCALESSZm_Int:
5699 case X86::VRCP14SDZrr:
5700 case X86::VRCP14SDZrm:
5701 case X86::VRCP14SSZrr:
5702 case X86::VRCP14SSZrm:
5703 case X86::VRCPSHZrr:
5704 case X86::VRCPSHZrm:
5705 case X86::VRSQRTSHZrr:
5706 case X86::VRSQRTSHZrm:
5707 case X86::VREDUCESHZrmi:
5708 case X86::VREDUCESHZrri:
5709 case X86::VREDUCESHZrrib:
5710 case X86::VGETEXPSHZr:
5711 case X86::VGETEXPSHZrb:
5712 case X86::VGETEXPSHZm:
5713 case X86::VGETMANTSHZrri:
5714 case X86::VGETMANTSHZrrib:
5715 case X86::VGETMANTSHZrmi:
5716 case X86::VRNDSCALESHZr:
5717 case X86::VRNDSCALESHZr_Int:
5718 case X86::VRNDSCALESHZrb_Int:
5719 case X86::VRNDSCALESHZm:
5720 case X86::VRNDSCALESHZm_Int:
5721 case X86::VSQRTSHZr:
5722 case X86::VSQRTSHZr_Int:
5723 case X86::VSQRTSHZrb_Int:
5724 case X86::VSQRTSHZm:
5725 case X86::VSQRTSHZm_Int:
5726 case X86::VRCP28SDZr:
5727 case X86::VRCP28SDZrb:
5728 case X86::VRCP28SDZm:
5729 case X86::VRCP28SSZr:
5730 case X86::VRCP28SSZrb:
5731 case X86::VRCP28SSZm:
5732 case X86::VREDUCESSZrmi:
5733 case X86::VREDUCESSZrri:
5734 case X86::VREDUCESSZrrib:
5735 case X86::VRSQRT14SDZrr:
5736 case X86::VRSQRT14SDZrm:
5737 case X86::VRSQRT14SSZrr:
5738 case X86::VRSQRT14SSZrm:
5739 case X86::VRSQRT28SDZr:
5740 case X86::VRSQRT28SDZrb:
5741 case X86::VRSQRT28SDZm:
5742 case X86::VRSQRT28SSZr:
5743 case X86::VRSQRT28SSZrb:
5744 case X86::VRSQRT28SSZm:
5745 case X86::VSQRTSSZr:
5746 case X86::VSQRTSSZr_Int:
5747 case X86::VSQRTSSZrb_Int:
5748 case X86::VSQRTSSZm:
5749 case X86::VSQRTSSZm_Int:
5750 case X86::VSQRTSDZr:
5751 case X86::VSQRTSDZr_Int:
5752 case X86::VSQRTSDZrb_Int:
5753 case X86::VSQRTSDZm:
5754 case X86::VSQRTSDZm_Int:
5755 case X86::VCVTSD2SHZrr:
5756 case X86::VCVTSD2SHZrr_Int:
5757 case X86::VCVTSD2SHZrrb_Int:
5758 case X86::VCVTSD2SHZrm:
5759 case X86::VCVTSD2SHZrm_Int:
5760 case X86::VCVTSS2SHZrr:
5761 case X86::VCVTSS2SHZrr_Int:
5762 case X86::VCVTSS2SHZrrb_Int:
5763 case X86::VCVTSS2SHZrm:
5764 case X86::VCVTSS2SHZrm_Int:
5765 case X86::VCVTSH2SDZrr:
5766 case X86::VCVTSH2SDZrr_Int:
5767 case X86::VCVTSH2SDZrrb_Int:
5768 case X86::VCVTSH2SDZrm:
5769 case X86::VCVTSH2SDZrm_Int:
5770 case X86::VCVTSH2SSZrr:
5771 case X86::VCVTSH2SSZrr_Int:
5772 case X86::VCVTSH2SSZrrb_Int:
5773 case X86::VCVTSH2SSZrm:
5774 case X86::VCVTSH2SSZrm_Int:
5775 return OpNum == 1;
5776 case X86::VMOVSSZrrk:
5777 case X86::VMOVSDZrrk:
5778 return OpNum == 3 && !ForLoadFold;
5779 case X86::VMOVSSZrrkz:
5780 case X86::VMOVSDZrrkz:
5781 return OpNum == 2 && !ForLoadFold;
5782 }
5783
5784 return false;
5785 }
5786
5787 /// Inform the BreakFalseDeps pass how many idle instructions we would like
5788 /// before certain undef register reads.
5789 ///
5790 /// This catches the VCVTSI2SD family of instructions:
5791 ///
5792 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
5793 ///
5794 /// We should to be careful *not* to catch VXOR idioms which are presumably
5795 /// handled specially in the pipeline:
5796 ///
5797 /// vxorps undef %xmm1, undef %xmm1, %xmm1
5798 ///
5799 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
5800 /// high bits that are passed-through are not live.
5801 unsigned
getUndefRegClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5802 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
5803 const TargetRegisterInfo *TRI) const {
5804 const MachineOperand &MO = MI.getOperand(OpNum);
5805 if (MO.getReg().isPhysical() && hasUndefRegUpdate(MI.getOpcode(), OpNum))
5806 return UndefRegClearance;
5807
5808 return 0;
5809 }
5810
breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5811 void X86InstrInfo::breakPartialRegDependency(
5812 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5813 Register Reg = MI.getOperand(OpNum).getReg();
5814 // If MI kills this register, the false dependence is already broken.
5815 if (MI.killsRegister(Reg, TRI))
5816 return;
5817
5818 if (X86::VR128RegClass.contains(Reg)) {
5819 // These instructions are all floating point domain, so xorps is the best
5820 // choice.
5821 unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
5822 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
5823 .addReg(Reg, RegState::Undef)
5824 .addReg(Reg, RegState::Undef);
5825 MI.addRegisterKilled(Reg, TRI, true);
5826 } else if (X86::VR256RegClass.contains(Reg)) {
5827 // Use vxorps to clear the full ymm register.
5828 // It wants to read and write the xmm sub-register.
5829 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5830 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
5831 .addReg(XReg, RegState::Undef)
5832 .addReg(XReg, RegState::Undef)
5833 .addReg(Reg, RegState::ImplicitDefine);
5834 MI.addRegisterKilled(Reg, TRI, true);
5835 } else if (X86::VR128XRegClass.contains(Reg)) {
5836 // Only handle VLX targets.
5837 if (!Subtarget.hasVLX())
5838 return;
5839 // Since vxorps requires AVX512DQ, vpxord should be the best choice.
5840 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), Reg)
5841 .addReg(Reg, RegState::Undef)
5842 .addReg(Reg, RegState::Undef);
5843 MI.addRegisterKilled(Reg, TRI, true);
5844 } else if (X86::VR256XRegClass.contains(Reg) ||
5845 X86::VR512RegClass.contains(Reg)) {
5846 // Only handle VLX targets.
5847 if (!Subtarget.hasVLX())
5848 return;
5849 // Use vpxord to clear the full ymm/zmm register.
5850 // It wants to read and write the xmm sub-register.
5851 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5852 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), XReg)
5853 .addReg(XReg, RegState::Undef)
5854 .addReg(XReg, RegState::Undef)
5855 .addReg(Reg, RegState::ImplicitDefine);
5856 MI.addRegisterKilled(Reg, TRI, true);
5857 } else if (X86::GR64RegClass.contains(Reg)) {
5858 // Using XOR32rr because it has shorter encoding and zeros up the upper bits
5859 // as well.
5860 Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
5861 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
5862 .addReg(XReg, RegState::Undef)
5863 .addReg(XReg, RegState::Undef)
5864 .addReg(Reg, RegState::ImplicitDefine);
5865 MI.addRegisterKilled(Reg, TRI, true);
5866 } else if (X86::GR32RegClass.contains(Reg)) {
5867 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
5868 .addReg(Reg, RegState::Undef)
5869 .addReg(Reg, RegState::Undef);
5870 MI.addRegisterKilled(Reg, TRI, true);
5871 }
5872 }
5873
addOperands(MachineInstrBuilder & MIB,ArrayRef<MachineOperand> MOs,int PtrOffset=0)5874 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
5875 int PtrOffset = 0) {
5876 unsigned NumAddrOps = MOs.size();
5877
5878 if (NumAddrOps < 4) {
5879 // FrameIndex only - add an immediate offset (whether its zero or not).
5880 for (unsigned i = 0; i != NumAddrOps; ++i)
5881 MIB.add(MOs[i]);
5882 addOffset(MIB, PtrOffset);
5883 } else {
5884 // General Memory Addressing - we need to add any offset to an existing
5885 // offset.
5886 assert(MOs.size() == 5 && "Unexpected memory operand list length");
5887 for (unsigned i = 0; i != NumAddrOps; ++i) {
5888 const MachineOperand &MO = MOs[i];
5889 if (i == 3 && PtrOffset != 0) {
5890 MIB.addDisp(MO, PtrOffset);
5891 } else {
5892 MIB.add(MO);
5893 }
5894 }
5895 }
5896 }
5897
updateOperandRegConstraints(MachineFunction & MF,MachineInstr & NewMI,const TargetInstrInfo & TII)5898 static void updateOperandRegConstraints(MachineFunction &MF,
5899 MachineInstr &NewMI,
5900 const TargetInstrInfo &TII) {
5901 MachineRegisterInfo &MRI = MF.getRegInfo();
5902 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
5903
5904 for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
5905 MachineOperand &MO = NewMI.getOperand(Idx);
5906 // We only need to update constraints on virtual register operands.
5907 if (!MO.isReg())
5908 continue;
5909 Register Reg = MO.getReg();
5910 if (!Reg.isVirtual())
5911 continue;
5912
5913 auto *NewRC = MRI.constrainRegClass(
5914 Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
5915 if (!NewRC) {
5916 LLVM_DEBUG(
5917 dbgs() << "WARNING: Unable to update register constraint for operand "
5918 << Idx << " of instruction:\n";
5919 NewMI.dump(); dbgs() << "\n");
5920 }
5921 }
5922 }
5923
FuseTwoAddrInst(MachineFunction & MF,unsigned Opcode,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,MachineInstr & MI,const TargetInstrInfo & TII)5924 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
5925 ArrayRef<MachineOperand> MOs,
5926 MachineBasicBlock::iterator InsertPt,
5927 MachineInstr &MI,
5928 const TargetInstrInfo &TII) {
5929 // Create the base instruction with the memory operand as the first part.
5930 // Omit the implicit operands, something BuildMI can't do.
5931 MachineInstr *NewMI =
5932 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5933 MachineInstrBuilder MIB(MF, NewMI);
5934 addOperands(MIB, MOs);
5935
5936 // Loop over the rest of the ri operands, converting them over.
5937 unsigned NumOps = MI.getDesc().getNumOperands() - 2;
5938 for (unsigned i = 0; i != NumOps; ++i) {
5939 MachineOperand &MO = MI.getOperand(i + 2);
5940 MIB.add(MO);
5941 }
5942 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2))
5943 MIB.add(MO);
5944
5945 updateOperandRegConstraints(MF, *NewMI, TII);
5946
5947 MachineBasicBlock *MBB = InsertPt->getParent();
5948 MBB->insert(InsertPt, NewMI);
5949
5950 return MIB;
5951 }
5952
FuseInst(MachineFunction & MF,unsigned Opcode,unsigned OpNo,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,MachineInstr & MI,const TargetInstrInfo & TII,int PtrOffset=0)5953 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
5954 unsigned OpNo, ArrayRef<MachineOperand> MOs,
5955 MachineBasicBlock::iterator InsertPt,
5956 MachineInstr &MI, const TargetInstrInfo &TII,
5957 int PtrOffset = 0) {
5958 // Omit the implicit operands, something BuildMI can't do.
5959 MachineInstr *NewMI =
5960 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5961 MachineInstrBuilder MIB(MF, NewMI);
5962
5963 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5964 MachineOperand &MO = MI.getOperand(i);
5965 if (i == OpNo) {
5966 assert(MO.isReg() && "Expected to fold into reg operand!");
5967 addOperands(MIB, MOs, PtrOffset);
5968 } else {
5969 MIB.add(MO);
5970 }
5971 }
5972
5973 updateOperandRegConstraints(MF, *NewMI, TII);
5974
5975 // Copy the NoFPExcept flag from the instruction we're fusing.
5976 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
5977 NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
5978
5979 MachineBasicBlock *MBB = InsertPt->getParent();
5980 MBB->insert(InsertPt, NewMI);
5981
5982 return MIB;
5983 }
5984
MakeM0Inst(const TargetInstrInfo & TII,unsigned Opcode,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,MachineInstr & MI)5985 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
5986 ArrayRef<MachineOperand> MOs,
5987 MachineBasicBlock::iterator InsertPt,
5988 MachineInstr &MI) {
5989 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
5990 MI.getDebugLoc(), TII.get(Opcode));
5991 addOperands(MIB, MOs);
5992 return MIB.addImm(0);
5993 }
5994
foldMemoryOperandCustom(MachineFunction & MF,MachineInstr & MI,unsigned OpNum,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,unsigned Size,Align Alignment) const5995 MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
5996 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
5997 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
5998 unsigned Size, Align Alignment) const {
5999 switch (MI.getOpcode()) {
6000 case X86::INSERTPSrr:
6001 case X86::VINSERTPSrr:
6002 case X86::VINSERTPSZrr:
6003 // Attempt to convert the load of inserted vector into a fold load
6004 // of a single float.
6005 if (OpNum == 2) {
6006 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
6007 unsigned ZMask = Imm & 15;
6008 unsigned DstIdx = (Imm >> 4) & 3;
6009 unsigned SrcIdx = (Imm >> 6) & 3;
6010
6011 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6012 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
6013 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
6014 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) {
6015 int PtrOffset = SrcIdx * 4;
6016 unsigned NewImm = (DstIdx << 4) | ZMask;
6017 unsigned NewOpCode =
6018 (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
6019 (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm :
6020 X86::INSERTPSrm;
6021 MachineInstr *NewMI =
6022 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
6023 NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
6024 return NewMI;
6025 }
6026 }
6027 break;
6028 case X86::MOVHLPSrr:
6029 case X86::VMOVHLPSrr:
6030 case X86::VMOVHLPSZrr:
6031 // Move the upper 64-bits of the second operand to the lower 64-bits.
6032 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
6033 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
6034 if (OpNum == 2) {
6035 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6036 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
6037 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
6038 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
6039 unsigned NewOpCode =
6040 (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
6041 (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm :
6042 X86::MOVLPSrm;
6043 MachineInstr *NewMI =
6044 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
6045 return NewMI;
6046 }
6047 }
6048 break;
6049 case X86::UNPCKLPDrr:
6050 // If we won't be able to fold this to the memory form of UNPCKL, use
6051 // MOVHPD instead. Done as custom because we can't have this in the load
6052 // table twice.
6053 if (OpNum == 2) {
6054 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6055 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
6056 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
6057 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
6058 MachineInstr *NewMI =
6059 FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
6060 return NewMI;
6061 }
6062 }
6063 break;
6064 }
6065
6066 return nullptr;
6067 }
6068
shouldPreventUndefRegUpdateMemFold(MachineFunction & MF,MachineInstr & MI)6069 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
6070 MachineInstr &MI) {
6071 if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) ||
6072 !MI.getOperand(1).isReg())
6073 return false;
6074
6075 // The are two cases we need to handle depending on where in the pipeline
6076 // the folding attempt is being made.
6077 // -Register has the undef flag set.
6078 // -Register is produced by the IMPLICIT_DEF instruction.
6079
6080 if (MI.getOperand(1).isUndef())
6081 return true;
6082
6083 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6084 MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
6085 return VRegDef && VRegDef->isImplicitDef();
6086 }
6087
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,unsigned OpNum,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,unsigned Size,Align Alignment,bool AllowCommute) const6088 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
6089 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
6090 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
6091 unsigned Size, Align Alignment, bool AllowCommute) const {
6092 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
6093 bool isTwoAddrFold = false;
6094
6095 // For CPUs that favor the register form of a call or push,
6096 // do not fold loads into calls or pushes, unless optimizing for size
6097 // aggressively.
6098 if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
6099 (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
6100 MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
6101 MI.getOpcode() == X86::PUSH64r))
6102 return nullptr;
6103
6104 // Avoid partial and undef register update stalls unless optimizing for size.
6105 if (!MF.getFunction().hasOptSize() &&
6106 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6107 shouldPreventUndefRegUpdateMemFold(MF, MI)))
6108 return nullptr;
6109
6110 unsigned NumOps = MI.getDesc().getNumOperands();
6111 bool isTwoAddr =
6112 NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
6113
6114 // FIXME: AsmPrinter doesn't know how to handle
6115 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
6116 if (MI.getOpcode() == X86::ADD32ri &&
6117 MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
6118 return nullptr;
6119
6120 // GOTTPOFF relocation loads can only be folded into add instructions.
6121 // FIXME: Need to exclude other relocations that only support specific
6122 // instructions.
6123 if (MOs.size() == X86::AddrNumOperands &&
6124 MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
6125 MI.getOpcode() != X86::ADD64rr)
6126 return nullptr;
6127
6128 // Don't fold loads into indirect calls that need a KCFI check as we'll
6129 // have to unfold these in X86KCFIPass anyway.
6130 if (MI.isCall() && MI.getCFIType())
6131 return nullptr;
6132
6133 MachineInstr *NewMI = nullptr;
6134
6135 // Attempt to fold any custom cases we have.
6136 if (MachineInstr *CustomMI = foldMemoryOperandCustom(
6137 MF, MI, OpNum, MOs, InsertPt, Size, Alignment))
6138 return CustomMI;
6139
6140 const X86MemoryFoldTableEntry *I = nullptr;
6141
6142 // Folding a memory location into the two-address part of a two-address
6143 // instruction is different than folding it other places. It requires
6144 // replacing the *two* registers with the memory location.
6145 if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
6146 MI.getOperand(1).isReg() &&
6147 MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
6148 I = lookupTwoAddrFoldTable(MI.getOpcode());
6149 isTwoAddrFold = true;
6150 } else {
6151 if (OpNum == 0) {
6152 if (MI.getOpcode() == X86::MOV32r0) {
6153 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
6154 if (NewMI)
6155 return NewMI;
6156 }
6157 }
6158
6159 I = lookupFoldTable(MI.getOpcode(), OpNum);
6160 }
6161
6162 if (I != nullptr) {
6163 unsigned Opcode = I->DstOp;
6164 bool FoldedLoad =
6165 isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0;
6166 bool FoldedStore =
6167 isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE);
6168 MaybeAlign MinAlign =
6169 decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT);
6170 if (MinAlign && Alignment < *MinAlign)
6171 return nullptr;
6172 bool NarrowToMOV32rm = false;
6173 if (Size) {
6174 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6175 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
6176 &RI, MF);
6177 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
6178 // Check if it's safe to fold the load. If the size of the object is
6179 // narrower than the load width, then it's not.
6180 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
6181 if (FoldedLoad && Size < RCSize) {
6182 // If this is a 64-bit load, but the spill slot is 32, then we can do
6183 // a 32-bit load which is implicitly zero-extended. This likely is
6184 // due to live interval analysis remat'ing a load from stack slot.
6185 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
6186 return nullptr;
6187 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
6188 return nullptr;
6189 Opcode = X86::MOV32rm;
6190 NarrowToMOV32rm = true;
6191 }
6192 // For stores, make sure the size of the object is equal to the size of
6193 // the store. If the object is larger, the extra bits would be garbage. If
6194 // the object is smaller we might overwrite another object or fault.
6195 if (FoldedStore && Size != RCSize)
6196 return nullptr;
6197 }
6198
6199 if (isTwoAddrFold)
6200 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
6201 else
6202 NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
6203
6204 if (NarrowToMOV32rm) {
6205 // If this is the special case where we use a MOV32rm to load a 32-bit
6206 // value and zero-extend the top bits. Change the destination register
6207 // to a 32-bit one.
6208 Register DstReg = NewMI->getOperand(0).getReg();
6209 if (DstReg.isPhysical())
6210 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
6211 else
6212 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
6213 }
6214 return NewMI;
6215 }
6216
6217 // If the instruction and target operand are commutable, commute the
6218 // instruction and try again.
6219 if (AllowCommute) {
6220 unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
6221 if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
6222 bool HasDef = MI.getDesc().getNumDefs();
6223 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
6224 Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
6225 Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
6226 bool Tied1 =
6227 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
6228 bool Tied2 =
6229 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
6230
6231 // If either of the commutable operands are tied to the destination
6232 // then we can not commute + fold.
6233 if ((HasDef && Reg0 == Reg1 && Tied1) ||
6234 (HasDef && Reg0 == Reg2 && Tied2))
6235 return nullptr;
6236
6237 MachineInstr *CommutedMI =
6238 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
6239 if (!CommutedMI) {
6240 // Unable to commute.
6241 return nullptr;
6242 }
6243 if (CommutedMI != &MI) {
6244 // New instruction. We can't fold from this.
6245 CommutedMI->eraseFromParent();
6246 return nullptr;
6247 }
6248
6249 // Attempt to fold with the commuted version of the instruction.
6250 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
6251 Alignment, /*AllowCommute=*/false);
6252 if (NewMI)
6253 return NewMI;
6254
6255 // Folding failed again - undo the commute before returning.
6256 MachineInstr *UncommutedMI =
6257 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
6258 if (!UncommutedMI) {
6259 // Unable to commute.
6260 return nullptr;
6261 }
6262 if (UncommutedMI != &MI) {
6263 // New instruction. It doesn't need to be kept.
6264 UncommutedMI->eraseFromParent();
6265 return nullptr;
6266 }
6267
6268 // Return here to prevent duplicate fuse failure report.
6269 return nullptr;
6270 }
6271 }
6272
6273 // No fusion
6274 if (PrintFailedFusing && !MI.isCopy())
6275 dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
6276 return nullptr;
6277 }
6278
6279 MachineInstr *
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,int FrameIndex,LiveIntervals * LIS,VirtRegMap * VRM) const6280 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
6281 ArrayRef<unsigned> Ops,
6282 MachineBasicBlock::iterator InsertPt,
6283 int FrameIndex, LiveIntervals *LIS,
6284 VirtRegMap *VRM) const {
6285 // Check switch flag
6286 if (NoFusing)
6287 return nullptr;
6288
6289 // Avoid partial and undef register update stalls unless optimizing for size.
6290 if (!MF.getFunction().hasOptSize() &&
6291 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6292 shouldPreventUndefRegUpdateMemFold(MF, MI)))
6293 return nullptr;
6294
6295 // Don't fold subreg spills, or reloads that use a high subreg.
6296 for (auto Op : Ops) {
6297 MachineOperand &MO = MI.getOperand(Op);
6298 auto SubReg = MO.getSubReg();
6299 if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
6300 return nullptr;
6301 }
6302
6303 const MachineFrameInfo &MFI = MF.getFrameInfo();
6304 unsigned Size = MFI.getObjectSize(FrameIndex);
6305 Align Alignment = MFI.getObjectAlign(FrameIndex);
6306 // If the function stack isn't realigned we don't want to fold instructions
6307 // that need increased alignment.
6308 if (!RI.hasStackRealignment(MF))
6309 Alignment =
6310 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
6311 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
6312 unsigned NewOpc = 0;
6313 unsigned RCSize = 0;
6314 switch (MI.getOpcode()) {
6315 default: return nullptr;
6316 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
6317 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
6318 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
6319 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
6320 }
6321 // Check if it's safe to fold the load. If the size of the object is
6322 // narrower than the load width, then it's not.
6323 if (Size < RCSize)
6324 return nullptr;
6325 // Change to CMPXXri r, 0 first.
6326 MI.setDesc(get(NewOpc));
6327 MI.getOperand(1).ChangeToImmediate(0);
6328 } else if (Ops.size() != 1)
6329 return nullptr;
6330
6331 return foldMemoryOperandImpl(MF, MI, Ops[0],
6332 MachineOperand::CreateFI(FrameIndex), InsertPt,
6333 Size, Alignment, /*AllowCommute=*/true);
6334 }
6335
6336 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
6337 /// because the latter uses contents that wouldn't be defined in the folded
6338 /// version. For instance, this transformation isn't legal:
6339 /// movss (%rdi), %xmm0
6340 /// addps %xmm0, %xmm0
6341 /// ->
6342 /// addps (%rdi), %xmm0
6343 ///
6344 /// But this one is:
6345 /// movss (%rdi), %xmm0
6346 /// addss %xmm0, %xmm0
6347 /// ->
6348 /// addss (%rdi), %xmm0
6349 ///
isNonFoldablePartialRegisterLoad(const MachineInstr & LoadMI,const MachineInstr & UserMI,const MachineFunction & MF)6350 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
6351 const MachineInstr &UserMI,
6352 const MachineFunction &MF) {
6353 unsigned Opc = LoadMI.getOpcode();
6354 unsigned UserOpc = UserMI.getOpcode();
6355 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6356 const TargetRegisterClass *RC =
6357 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
6358 unsigned RegSize = TRI.getRegSizeInBits(*RC);
6359
6360 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
6361 Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
6362 Opc == X86::VMOVSSZrm_alt) &&
6363 RegSize > 32) {
6364 // These instructions only load 32 bits, we can't fold them if the
6365 // destination register is wider than 32 bits (4 bytes), and its user
6366 // instruction isn't scalar (SS).
6367 switch (UserOpc) {
6368 case X86::CVTSS2SDrr_Int:
6369 case X86::VCVTSS2SDrr_Int:
6370 case X86::VCVTSS2SDZrr_Int:
6371 case X86::VCVTSS2SDZrr_Intk:
6372 case X86::VCVTSS2SDZrr_Intkz:
6373 case X86::CVTSS2SIrr_Int: case X86::CVTSS2SI64rr_Int:
6374 case X86::VCVTSS2SIrr_Int: case X86::VCVTSS2SI64rr_Int:
6375 case X86::VCVTSS2SIZrr_Int: case X86::VCVTSS2SI64Zrr_Int:
6376 case X86::CVTTSS2SIrr_Int: case X86::CVTTSS2SI64rr_Int:
6377 case X86::VCVTTSS2SIrr_Int: case X86::VCVTTSS2SI64rr_Int:
6378 case X86::VCVTTSS2SIZrr_Int: case X86::VCVTTSS2SI64Zrr_Int:
6379 case X86::VCVTSS2USIZrr_Int: case X86::VCVTSS2USI64Zrr_Int:
6380 case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int:
6381 case X86::RCPSSr_Int: case X86::VRCPSSr_Int:
6382 case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int:
6383 case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int:
6384 case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int:
6385 case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int:
6386 case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
6387 case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
6388 case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
6389 case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
6390 case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
6391 case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
6392 case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int:
6393 case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
6394 case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
6395 case X86::VCMPSSZrr_Intk:
6396 case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
6397 case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
6398 case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
6399 case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
6400 case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz:
6401 case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
6402 case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int:
6403 case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int:
6404 case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int:
6405 case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int:
6406 case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int:
6407 case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int:
6408 case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int:
6409 case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int:
6410 case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
6411 case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
6412 case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
6413 case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
6414 case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
6415 case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
6416 case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
6417 case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
6418 case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
6419 case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
6420 case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
6421 case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
6422 case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
6423 case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
6424 case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
6425 case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
6426 case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
6427 case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
6428 case X86::VFIXUPIMMSSZrri:
6429 case X86::VFIXUPIMMSSZrrik:
6430 case X86::VFIXUPIMMSSZrrikz:
6431 case X86::VFPCLASSSSZrr:
6432 case X86::VFPCLASSSSZrrk:
6433 case X86::VGETEXPSSZr:
6434 case X86::VGETEXPSSZrk:
6435 case X86::VGETEXPSSZrkz:
6436 case X86::VGETMANTSSZrri:
6437 case X86::VGETMANTSSZrrik:
6438 case X86::VGETMANTSSZrrikz:
6439 case X86::VRANGESSZrri:
6440 case X86::VRANGESSZrrik:
6441 case X86::VRANGESSZrrikz:
6442 case X86::VRCP14SSZrr:
6443 case X86::VRCP14SSZrrk:
6444 case X86::VRCP14SSZrrkz:
6445 case X86::VRCP28SSZr:
6446 case X86::VRCP28SSZrk:
6447 case X86::VRCP28SSZrkz:
6448 case X86::VREDUCESSZrri:
6449 case X86::VREDUCESSZrrik:
6450 case X86::VREDUCESSZrrikz:
6451 case X86::VRNDSCALESSZr_Int:
6452 case X86::VRNDSCALESSZr_Intk:
6453 case X86::VRNDSCALESSZr_Intkz:
6454 case X86::VRSQRT14SSZrr:
6455 case X86::VRSQRT14SSZrrk:
6456 case X86::VRSQRT14SSZrrkz:
6457 case X86::VRSQRT28SSZr:
6458 case X86::VRSQRT28SSZrk:
6459 case X86::VRSQRT28SSZrkz:
6460 case X86::VSCALEFSSZrr:
6461 case X86::VSCALEFSSZrrk:
6462 case X86::VSCALEFSSZrrkz:
6463 return false;
6464 default:
6465 return true;
6466 }
6467 }
6468
6469 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
6470 Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
6471 Opc == X86::VMOVSDZrm_alt) &&
6472 RegSize > 64) {
6473 // These instructions only load 64 bits, we can't fold them if the
6474 // destination register is wider than 64 bits (8 bytes), and its user
6475 // instruction isn't scalar (SD).
6476 switch (UserOpc) {
6477 case X86::CVTSD2SSrr_Int:
6478 case X86::VCVTSD2SSrr_Int:
6479 case X86::VCVTSD2SSZrr_Int:
6480 case X86::VCVTSD2SSZrr_Intk:
6481 case X86::VCVTSD2SSZrr_Intkz:
6482 case X86::CVTSD2SIrr_Int: case X86::CVTSD2SI64rr_Int:
6483 case X86::VCVTSD2SIrr_Int: case X86::VCVTSD2SI64rr_Int:
6484 case X86::VCVTSD2SIZrr_Int: case X86::VCVTSD2SI64Zrr_Int:
6485 case X86::CVTTSD2SIrr_Int: case X86::CVTTSD2SI64rr_Int:
6486 case X86::VCVTTSD2SIrr_Int: case X86::VCVTTSD2SI64rr_Int:
6487 case X86::VCVTTSD2SIZrr_Int: case X86::VCVTTSD2SI64Zrr_Int:
6488 case X86::VCVTSD2USIZrr_Int: case X86::VCVTSD2USI64Zrr_Int:
6489 case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int:
6490 case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int:
6491 case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int:
6492 case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int:
6493 case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
6494 case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
6495 case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
6496 case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
6497 case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
6498 case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
6499 case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int:
6500 case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
6501 case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
6502 case X86::VCMPSDZrr_Intk:
6503 case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
6504 case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
6505 case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
6506 case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
6507 case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz:
6508 case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
6509 case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int:
6510 case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int:
6511 case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int:
6512 case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int:
6513 case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int:
6514 case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int:
6515 case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int:
6516 case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int:
6517 case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
6518 case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
6519 case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
6520 case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
6521 case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
6522 case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
6523 case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
6524 case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
6525 case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
6526 case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
6527 case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
6528 case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
6529 case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
6530 case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
6531 case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
6532 case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
6533 case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
6534 case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
6535 case X86::VFIXUPIMMSDZrri:
6536 case X86::VFIXUPIMMSDZrrik:
6537 case X86::VFIXUPIMMSDZrrikz:
6538 case X86::VFPCLASSSDZrr:
6539 case X86::VFPCLASSSDZrrk:
6540 case X86::VGETEXPSDZr:
6541 case X86::VGETEXPSDZrk:
6542 case X86::VGETEXPSDZrkz:
6543 case X86::VGETMANTSDZrri:
6544 case X86::VGETMANTSDZrrik:
6545 case X86::VGETMANTSDZrrikz:
6546 case X86::VRANGESDZrri:
6547 case X86::VRANGESDZrrik:
6548 case X86::VRANGESDZrrikz:
6549 case X86::VRCP14SDZrr:
6550 case X86::VRCP14SDZrrk:
6551 case X86::VRCP14SDZrrkz:
6552 case X86::VRCP28SDZr:
6553 case X86::VRCP28SDZrk:
6554 case X86::VRCP28SDZrkz:
6555 case X86::VREDUCESDZrri:
6556 case X86::VREDUCESDZrrik:
6557 case X86::VREDUCESDZrrikz:
6558 case X86::VRNDSCALESDZr_Int:
6559 case X86::VRNDSCALESDZr_Intk:
6560 case X86::VRNDSCALESDZr_Intkz:
6561 case X86::VRSQRT14SDZrr:
6562 case X86::VRSQRT14SDZrrk:
6563 case X86::VRSQRT14SDZrrkz:
6564 case X86::VRSQRT28SDZr:
6565 case X86::VRSQRT28SDZrk:
6566 case X86::VRSQRT28SDZrkz:
6567 case X86::VSCALEFSDZrr:
6568 case X86::VSCALEFSDZrrk:
6569 case X86::VSCALEFSDZrrkz:
6570 return false;
6571 default:
6572 return true;
6573 }
6574 }
6575
6576 if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) {
6577 // These instructions only load 16 bits, we can't fold them if the
6578 // destination register is wider than 16 bits (2 bytes), and its user
6579 // instruction isn't scalar (SH).
6580 switch (UserOpc) {
6581 case X86::VADDSHZrr_Int:
6582 case X86::VCMPSHZrr_Int:
6583 case X86::VDIVSHZrr_Int:
6584 case X86::VMAXSHZrr_Int:
6585 case X86::VMINSHZrr_Int:
6586 case X86::VMULSHZrr_Int:
6587 case X86::VSUBSHZrr_Int:
6588 case X86::VADDSHZrr_Intk: case X86::VADDSHZrr_Intkz:
6589 case X86::VCMPSHZrr_Intk:
6590 case X86::VDIVSHZrr_Intk: case X86::VDIVSHZrr_Intkz:
6591 case X86::VMAXSHZrr_Intk: case X86::VMAXSHZrr_Intkz:
6592 case X86::VMINSHZrr_Intk: case X86::VMINSHZrr_Intkz:
6593 case X86::VMULSHZrr_Intk: case X86::VMULSHZrr_Intkz:
6594 case X86::VSUBSHZrr_Intk: case X86::VSUBSHZrr_Intkz:
6595 case X86::VFMADD132SHZr_Int: case X86::VFNMADD132SHZr_Int:
6596 case X86::VFMADD213SHZr_Int: case X86::VFNMADD213SHZr_Int:
6597 case X86::VFMADD231SHZr_Int: case X86::VFNMADD231SHZr_Int:
6598 case X86::VFMSUB132SHZr_Int: case X86::VFNMSUB132SHZr_Int:
6599 case X86::VFMSUB213SHZr_Int: case X86::VFNMSUB213SHZr_Int:
6600 case X86::VFMSUB231SHZr_Int: case X86::VFNMSUB231SHZr_Int:
6601 case X86::VFMADD132SHZr_Intk: case X86::VFNMADD132SHZr_Intk:
6602 case X86::VFMADD213SHZr_Intk: case X86::VFNMADD213SHZr_Intk:
6603 case X86::VFMADD231SHZr_Intk: case X86::VFNMADD231SHZr_Intk:
6604 case X86::VFMSUB132SHZr_Intk: case X86::VFNMSUB132SHZr_Intk:
6605 case X86::VFMSUB213SHZr_Intk: case X86::VFNMSUB213SHZr_Intk:
6606 case X86::VFMSUB231SHZr_Intk: case X86::VFNMSUB231SHZr_Intk:
6607 case X86::VFMADD132SHZr_Intkz: case X86::VFNMADD132SHZr_Intkz:
6608 case X86::VFMADD213SHZr_Intkz: case X86::VFNMADD213SHZr_Intkz:
6609 case X86::VFMADD231SHZr_Intkz: case X86::VFNMADD231SHZr_Intkz:
6610 case X86::VFMSUB132SHZr_Intkz: case X86::VFNMSUB132SHZr_Intkz:
6611 case X86::VFMSUB213SHZr_Intkz: case X86::VFNMSUB213SHZr_Intkz:
6612 case X86::VFMSUB231SHZr_Intkz: case X86::VFNMSUB231SHZr_Intkz:
6613 return false;
6614 default:
6615 return true;
6616 }
6617 }
6618
6619 return false;
6620 }
6621
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,MachineInstr & LoadMI,LiveIntervals * LIS) const6622 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
6623 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
6624 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
6625 LiveIntervals *LIS) const {
6626
6627 // TODO: Support the case where LoadMI loads a wide register, but MI
6628 // only uses a subreg.
6629 for (auto Op : Ops) {
6630 if (MI.getOperand(Op).getSubReg())
6631 return nullptr;
6632 }
6633
6634 // If loading from a FrameIndex, fold directly from the FrameIndex.
6635 unsigned NumOps = LoadMI.getDesc().getNumOperands();
6636 int FrameIndex;
6637 if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
6638 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6639 return nullptr;
6640 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
6641 }
6642
6643 // Check switch flag
6644 if (NoFusing) return nullptr;
6645
6646 // Avoid partial and undef register update stalls unless optimizing for size.
6647 if (!MF.getFunction().hasOptSize() &&
6648 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6649 shouldPreventUndefRegUpdateMemFold(MF, MI)))
6650 return nullptr;
6651
6652 // Determine the alignment of the load.
6653 Align Alignment;
6654 if (LoadMI.hasOneMemOperand())
6655 Alignment = (*LoadMI.memoperands_begin())->getAlign();
6656 else
6657 switch (LoadMI.getOpcode()) {
6658 case X86::AVX512_512_SET0:
6659 case X86::AVX512_512_SETALLONES:
6660 Alignment = Align(64);
6661 break;
6662 case X86::AVX2_SETALLONES:
6663 case X86::AVX1_SETALLONES:
6664 case X86::AVX_SET0:
6665 case X86::AVX512_256_SET0:
6666 Alignment = Align(32);
6667 break;
6668 case X86::V_SET0:
6669 case X86::V_SETALLONES:
6670 case X86::AVX512_128_SET0:
6671 case X86::FsFLD0F128:
6672 case X86::AVX512_FsFLD0F128:
6673 Alignment = Align(16);
6674 break;
6675 case X86::MMX_SET0:
6676 case X86::FsFLD0SD:
6677 case X86::AVX512_FsFLD0SD:
6678 Alignment = Align(8);
6679 break;
6680 case X86::FsFLD0SS:
6681 case X86::AVX512_FsFLD0SS:
6682 Alignment = Align(4);
6683 break;
6684 case X86::FsFLD0SH:
6685 case X86::AVX512_FsFLD0SH:
6686 Alignment = Align(2);
6687 break;
6688 default:
6689 return nullptr;
6690 }
6691 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
6692 unsigned NewOpc = 0;
6693 switch (MI.getOpcode()) {
6694 default: return nullptr;
6695 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
6696 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
6697 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
6698 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
6699 }
6700 // Change to CMPXXri r, 0 first.
6701 MI.setDesc(get(NewOpc));
6702 MI.getOperand(1).ChangeToImmediate(0);
6703 } else if (Ops.size() != 1)
6704 return nullptr;
6705
6706 // Make sure the subregisters match.
6707 // Otherwise we risk changing the size of the load.
6708 if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
6709 return nullptr;
6710
6711 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
6712 switch (LoadMI.getOpcode()) {
6713 case X86::MMX_SET0:
6714 case X86::V_SET0:
6715 case X86::V_SETALLONES:
6716 case X86::AVX2_SETALLONES:
6717 case X86::AVX1_SETALLONES:
6718 case X86::AVX_SET0:
6719 case X86::AVX512_128_SET0:
6720 case X86::AVX512_256_SET0:
6721 case X86::AVX512_512_SET0:
6722 case X86::AVX512_512_SETALLONES:
6723 case X86::FsFLD0SH:
6724 case X86::AVX512_FsFLD0SH:
6725 case X86::FsFLD0SD:
6726 case X86::AVX512_FsFLD0SD:
6727 case X86::FsFLD0SS:
6728 case X86::AVX512_FsFLD0SS:
6729 case X86::FsFLD0F128:
6730 case X86::AVX512_FsFLD0F128: {
6731 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
6732 // Create a constant-pool entry and operands to load from it.
6733
6734 // Medium and large mode can't fold loads this way.
6735 if (MF.getTarget().getCodeModel() != CodeModel::Small &&
6736 MF.getTarget().getCodeModel() != CodeModel::Kernel)
6737 return nullptr;
6738
6739 // x86-32 PIC requires a PIC base register for constant pools.
6740 unsigned PICBase = 0;
6741 // Since we're using Small or Kernel code model, we can always use
6742 // RIP-relative addressing for a smaller encoding.
6743 if (Subtarget.is64Bit()) {
6744 PICBase = X86::RIP;
6745 } else if (MF.getTarget().isPositionIndependent()) {
6746 // FIXME: PICBase = getGlobalBaseReg(&MF);
6747 // This doesn't work for several reasons.
6748 // 1. GlobalBaseReg may have been spilled.
6749 // 2. It may not be live at MI.
6750 return nullptr;
6751 }
6752
6753 // Create a constant-pool entry.
6754 MachineConstantPool &MCP = *MF.getConstantPool();
6755 Type *Ty;
6756 unsigned Opc = LoadMI.getOpcode();
6757 if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
6758 Ty = Type::getFloatTy(MF.getFunction().getContext());
6759 else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
6760 Ty = Type::getDoubleTy(MF.getFunction().getContext());
6761 else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
6762 Ty = Type::getFP128Ty(MF.getFunction().getContext());
6763 else if (Opc == X86::FsFLD0SH || Opc == X86::AVX512_FsFLD0SH)
6764 Ty = Type::getHalfTy(MF.getFunction().getContext());
6765 else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
6766 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6767 16);
6768 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
6769 Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
6770 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6771 8);
6772 else if (Opc == X86::MMX_SET0)
6773 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6774 2);
6775 else
6776 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6777 4);
6778
6779 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
6780 Opc == X86::AVX512_512_SETALLONES ||
6781 Opc == X86::AVX1_SETALLONES);
6782 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
6783 Constant::getNullValue(Ty);
6784 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
6785
6786 // Create operands to load from the constant pool entry.
6787 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
6788 MOs.push_back(MachineOperand::CreateImm(1));
6789 MOs.push_back(MachineOperand::CreateReg(0, false));
6790 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
6791 MOs.push_back(MachineOperand::CreateReg(0, false));
6792 break;
6793 }
6794 default: {
6795 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6796 return nullptr;
6797
6798 // Folding a normal load. Just copy the load's address operands.
6799 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
6800 LoadMI.operands_begin() + NumOps);
6801 break;
6802 }
6803 }
6804 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
6805 /*Size=*/0, Alignment, /*AllowCommute=*/true);
6806 }
6807
6808 static SmallVector<MachineMemOperand *, 2>
extractLoadMMOs(ArrayRef<MachineMemOperand * > MMOs,MachineFunction & MF)6809 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6810 SmallVector<MachineMemOperand *, 2> LoadMMOs;
6811
6812 for (MachineMemOperand *MMO : MMOs) {
6813 if (!MMO->isLoad())
6814 continue;
6815
6816 if (!MMO->isStore()) {
6817 // Reuse the MMO.
6818 LoadMMOs.push_back(MMO);
6819 } else {
6820 // Clone the MMO and unset the store flag.
6821 LoadMMOs.push_back(MF.getMachineMemOperand(
6822 MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
6823 }
6824 }
6825
6826 return LoadMMOs;
6827 }
6828
6829 static SmallVector<MachineMemOperand *, 2>
extractStoreMMOs(ArrayRef<MachineMemOperand * > MMOs,MachineFunction & MF)6830 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6831 SmallVector<MachineMemOperand *, 2> StoreMMOs;
6832
6833 for (MachineMemOperand *MMO : MMOs) {
6834 if (!MMO->isStore())
6835 continue;
6836
6837 if (!MMO->isLoad()) {
6838 // Reuse the MMO.
6839 StoreMMOs.push_back(MMO);
6840 } else {
6841 // Clone the MMO and unset the load flag.
6842 StoreMMOs.push_back(MF.getMachineMemOperand(
6843 MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
6844 }
6845 }
6846
6847 return StoreMMOs;
6848 }
6849
getBroadcastOpcode(const X86MemoryFoldTableEntry * I,const TargetRegisterClass * RC,const X86Subtarget & STI)6850 static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
6851 const TargetRegisterClass *RC,
6852 const X86Subtarget &STI) {
6853 assert(STI.hasAVX512() && "Expected at least AVX512!");
6854 unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
6855 assert((SpillSize == 64 || STI.hasVLX()) &&
6856 "Can't broadcast less than 64 bytes without AVX512VL!");
6857
6858 switch (I->Flags & TB_BCAST_MASK) {
6859 default: llvm_unreachable("Unexpected broadcast type!");
6860 case TB_BCAST_D:
6861 switch (SpillSize) {
6862 default: llvm_unreachable("Unknown spill size");
6863 case 16: return X86::VPBROADCASTDZ128rm;
6864 case 32: return X86::VPBROADCASTDZ256rm;
6865 case 64: return X86::VPBROADCASTDZrm;
6866 }
6867 break;
6868 case TB_BCAST_Q:
6869 switch (SpillSize) {
6870 default: llvm_unreachable("Unknown spill size");
6871 case 16: return X86::VPBROADCASTQZ128rm;
6872 case 32: return X86::VPBROADCASTQZ256rm;
6873 case 64: return X86::VPBROADCASTQZrm;
6874 }
6875 break;
6876 case TB_BCAST_SS:
6877 switch (SpillSize) {
6878 default: llvm_unreachable("Unknown spill size");
6879 case 16: return X86::VBROADCASTSSZ128rm;
6880 case 32: return X86::VBROADCASTSSZ256rm;
6881 case 64: return X86::VBROADCASTSSZrm;
6882 }
6883 break;
6884 case TB_BCAST_SD:
6885 switch (SpillSize) {
6886 default: llvm_unreachable("Unknown spill size");
6887 case 16: return X86::VMOVDDUPZ128rm;
6888 case 32: return X86::VBROADCASTSDZ256rm;
6889 case 64: return X86::VBROADCASTSDZrm;
6890 }
6891 break;
6892 }
6893 }
6894
unfoldMemoryOperand(MachineFunction & MF,MachineInstr & MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs) const6895 bool X86InstrInfo::unfoldMemoryOperand(
6896 MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
6897 bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
6898 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
6899 if (I == nullptr)
6900 return false;
6901 unsigned Opc = I->DstOp;
6902 unsigned Index = I->Flags & TB_INDEX_MASK;
6903 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6904 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6905 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
6906 if (UnfoldLoad && !FoldedLoad)
6907 return false;
6908 UnfoldLoad &= FoldedLoad;
6909 if (UnfoldStore && !FoldedStore)
6910 return false;
6911 UnfoldStore &= FoldedStore;
6912
6913 const MCInstrDesc &MCID = get(Opc);
6914
6915 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
6916 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6917 // TODO: Check if 32-byte or greater accesses are slow too?
6918 if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
6919 Subtarget.isUnalignedMem16Slow())
6920 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
6921 // conservatively assume the address is unaligned. That's bad for
6922 // performance.
6923 return false;
6924 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
6925 SmallVector<MachineOperand,2> BeforeOps;
6926 SmallVector<MachineOperand,2> AfterOps;
6927 SmallVector<MachineOperand,4> ImpOps;
6928 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
6929 MachineOperand &Op = MI.getOperand(i);
6930 if (i >= Index && i < Index + X86::AddrNumOperands)
6931 AddrOps.push_back(Op);
6932 else if (Op.isReg() && Op.isImplicit())
6933 ImpOps.push_back(Op);
6934 else if (i < Index)
6935 BeforeOps.push_back(Op);
6936 else if (i > Index)
6937 AfterOps.push_back(Op);
6938 }
6939
6940 // Emit the load or broadcast instruction.
6941 if (UnfoldLoad) {
6942 auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
6943
6944 unsigned Opc;
6945 if (FoldedBCast) {
6946 Opc = getBroadcastOpcode(I, RC, Subtarget);
6947 } else {
6948 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6949 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6950 Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
6951 }
6952
6953 DebugLoc DL;
6954 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
6955 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6956 MIB.add(AddrOps[i]);
6957 MIB.setMemRefs(MMOs);
6958 NewMIs.push_back(MIB);
6959
6960 if (UnfoldStore) {
6961 // Address operands cannot be marked isKill.
6962 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
6963 MachineOperand &MO = NewMIs[0]->getOperand(i);
6964 if (MO.isReg())
6965 MO.setIsKill(false);
6966 }
6967 }
6968 }
6969
6970 // Emit the data processing instruction.
6971 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
6972 MachineInstrBuilder MIB(MF, DataMI);
6973
6974 if (FoldedStore)
6975 MIB.addReg(Reg, RegState::Define);
6976 for (MachineOperand &BeforeOp : BeforeOps)
6977 MIB.add(BeforeOp);
6978 if (FoldedLoad)
6979 MIB.addReg(Reg);
6980 for (MachineOperand &AfterOp : AfterOps)
6981 MIB.add(AfterOp);
6982 for (MachineOperand &ImpOp : ImpOps) {
6983 MIB.addReg(ImpOp.getReg(),
6984 getDefRegState(ImpOp.isDef()) |
6985 RegState::Implicit |
6986 getKillRegState(ImpOp.isKill()) |
6987 getDeadRegState(ImpOp.isDead()) |
6988 getUndefRegState(ImpOp.isUndef()));
6989 }
6990 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6991 switch (DataMI->getOpcode()) {
6992 default: break;
6993 case X86::CMP64ri32:
6994 case X86::CMP64ri8:
6995 case X86::CMP32ri:
6996 case X86::CMP32ri8:
6997 case X86::CMP16ri:
6998 case X86::CMP16ri8:
6999 case X86::CMP8ri: {
7000 MachineOperand &MO0 = DataMI->getOperand(0);
7001 MachineOperand &MO1 = DataMI->getOperand(1);
7002 if (MO1.isImm() && MO1.getImm() == 0) {
7003 unsigned NewOpc;
7004 switch (DataMI->getOpcode()) {
7005 default: llvm_unreachable("Unreachable!");
7006 case X86::CMP64ri8:
7007 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
7008 case X86::CMP32ri8:
7009 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
7010 case X86::CMP16ri8:
7011 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
7012 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
7013 }
7014 DataMI->setDesc(get(NewOpc));
7015 MO1.ChangeToRegister(MO0.getReg(), false);
7016 }
7017 }
7018 }
7019 NewMIs.push_back(DataMI);
7020
7021 // Emit the store instruction.
7022 if (UnfoldStore) {
7023 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
7024 auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
7025 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
7026 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
7027 unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
7028 DebugLoc DL;
7029 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
7030 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
7031 MIB.add(AddrOps[i]);
7032 MIB.addReg(Reg, RegState::Kill);
7033 MIB.setMemRefs(MMOs);
7034 NewMIs.push_back(MIB);
7035 }
7036
7037 return true;
7038 }
7039
7040 bool
unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes) const7041 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
7042 SmallVectorImpl<SDNode*> &NewNodes) const {
7043 if (!N->isMachineOpcode())
7044 return false;
7045
7046 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
7047 if (I == nullptr)
7048 return false;
7049 unsigned Opc = I->DstOp;
7050 unsigned Index = I->Flags & TB_INDEX_MASK;
7051 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
7052 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
7053 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
7054 const MCInstrDesc &MCID = get(Opc);
7055 MachineFunction &MF = DAG.getMachineFunction();
7056 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7057 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
7058 unsigned NumDefs = MCID.NumDefs;
7059 std::vector<SDValue> AddrOps;
7060 std::vector<SDValue> BeforeOps;
7061 std::vector<SDValue> AfterOps;
7062 SDLoc dl(N);
7063 unsigned NumOps = N->getNumOperands();
7064 for (unsigned i = 0; i != NumOps-1; ++i) {
7065 SDValue Op = N->getOperand(i);
7066 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
7067 AddrOps.push_back(Op);
7068 else if (i < Index-NumDefs)
7069 BeforeOps.push_back(Op);
7070 else if (i > Index-NumDefs)
7071 AfterOps.push_back(Op);
7072 }
7073 SDValue Chain = N->getOperand(NumOps-1);
7074 AddrOps.push_back(Chain);
7075
7076 // Emit the load instruction.
7077 SDNode *Load = nullptr;
7078 if (FoldedLoad) {
7079 EVT VT = *TRI.legalclasstypes_begin(*RC);
7080 auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
7081 if (MMOs.empty() && RC == &X86::VR128RegClass &&
7082 Subtarget.isUnalignedMem16Slow())
7083 // Do not introduce a slow unaligned load.
7084 return false;
7085 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
7086 // memory access is slow above.
7087
7088 unsigned Opc;
7089 if (FoldedBCast) {
7090 Opc = getBroadcastOpcode(I, RC, Subtarget);
7091 } else {
7092 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
7093 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
7094 Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
7095 }
7096
7097 Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
7098 NewNodes.push_back(Load);
7099
7100 // Preserve memory reference information.
7101 DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
7102 }
7103
7104 // Emit the data processing instruction.
7105 std::vector<EVT> VTs;
7106 const TargetRegisterClass *DstRC = nullptr;
7107 if (MCID.getNumDefs() > 0) {
7108 DstRC = getRegClass(MCID, 0, &RI, MF);
7109 VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
7110 }
7111 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
7112 EVT VT = N->getValueType(i);
7113 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
7114 VTs.push_back(VT);
7115 }
7116 if (Load)
7117 BeforeOps.push_back(SDValue(Load, 0));
7118 llvm::append_range(BeforeOps, AfterOps);
7119 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
7120 switch (Opc) {
7121 default: break;
7122 case X86::CMP64ri32:
7123 case X86::CMP64ri8:
7124 case X86::CMP32ri:
7125 case X86::CMP32ri8:
7126 case X86::CMP16ri:
7127 case X86::CMP16ri8:
7128 case X86::CMP8ri:
7129 if (isNullConstant(BeforeOps[1])) {
7130 switch (Opc) {
7131 default: llvm_unreachable("Unreachable!");
7132 case X86::CMP64ri8:
7133 case X86::CMP64ri32: Opc = X86::TEST64rr; break;
7134 case X86::CMP32ri8:
7135 case X86::CMP32ri: Opc = X86::TEST32rr; break;
7136 case X86::CMP16ri8:
7137 case X86::CMP16ri: Opc = X86::TEST16rr; break;
7138 case X86::CMP8ri: Opc = X86::TEST8rr; break;
7139 }
7140 BeforeOps[1] = BeforeOps[0];
7141 }
7142 }
7143 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
7144 NewNodes.push_back(NewNode);
7145
7146 // Emit the store instruction.
7147 if (FoldedStore) {
7148 AddrOps.pop_back();
7149 AddrOps.push_back(SDValue(NewNode, 0));
7150 AddrOps.push_back(Chain);
7151 auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
7152 if (MMOs.empty() && RC == &X86::VR128RegClass &&
7153 Subtarget.isUnalignedMem16Slow())
7154 // Do not introduce a slow unaligned store.
7155 return false;
7156 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
7157 // memory access is slow above.
7158 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
7159 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
7160 SDNode *Store =
7161 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
7162 dl, MVT::Other, AddrOps);
7163 NewNodes.push_back(Store);
7164
7165 // Preserve memory reference information.
7166 DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
7167 }
7168
7169 return true;
7170 }
7171
getOpcodeAfterMemoryUnfold(unsigned Opc,bool UnfoldLoad,bool UnfoldStore,unsigned * LoadRegIndex) const7172 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
7173 bool UnfoldLoad, bool UnfoldStore,
7174 unsigned *LoadRegIndex) const {
7175 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
7176 if (I == nullptr)
7177 return 0;
7178 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
7179 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
7180 if (UnfoldLoad && !FoldedLoad)
7181 return 0;
7182 if (UnfoldStore && !FoldedStore)
7183 return 0;
7184 if (LoadRegIndex)
7185 *LoadRegIndex = I->Flags & TB_INDEX_MASK;
7186 return I->DstOp;
7187 }
7188
7189 bool
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2) const7190 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
7191 int64_t &Offset1, int64_t &Offset2) const {
7192 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
7193 return false;
7194 unsigned Opc1 = Load1->getMachineOpcode();
7195 unsigned Opc2 = Load2->getMachineOpcode();
7196 switch (Opc1) {
7197 default: return false;
7198 case X86::MOV8rm:
7199 case X86::MOV16rm:
7200 case X86::MOV32rm:
7201 case X86::MOV64rm:
7202 case X86::LD_Fp32m:
7203 case X86::LD_Fp64m:
7204 case X86::LD_Fp80m:
7205 case X86::MOVSSrm:
7206 case X86::MOVSSrm_alt:
7207 case X86::MOVSDrm:
7208 case X86::MOVSDrm_alt:
7209 case X86::MMX_MOVD64rm:
7210 case X86::MMX_MOVQ64rm:
7211 case X86::MOVAPSrm:
7212 case X86::MOVUPSrm:
7213 case X86::MOVAPDrm:
7214 case X86::MOVUPDrm:
7215 case X86::MOVDQArm:
7216 case X86::MOVDQUrm:
7217 // AVX load instructions
7218 case X86::VMOVSSrm:
7219 case X86::VMOVSSrm_alt:
7220 case X86::VMOVSDrm:
7221 case X86::VMOVSDrm_alt:
7222 case X86::VMOVAPSrm:
7223 case X86::VMOVUPSrm:
7224 case X86::VMOVAPDrm:
7225 case X86::VMOVUPDrm:
7226 case X86::VMOVDQArm:
7227 case X86::VMOVDQUrm:
7228 case X86::VMOVAPSYrm:
7229 case X86::VMOVUPSYrm:
7230 case X86::VMOVAPDYrm:
7231 case X86::VMOVUPDYrm:
7232 case X86::VMOVDQAYrm:
7233 case X86::VMOVDQUYrm:
7234 // AVX512 load instructions
7235 case X86::VMOVSSZrm:
7236 case X86::VMOVSSZrm_alt:
7237 case X86::VMOVSDZrm:
7238 case X86::VMOVSDZrm_alt:
7239 case X86::VMOVAPSZ128rm:
7240 case X86::VMOVUPSZ128rm:
7241 case X86::VMOVAPSZ128rm_NOVLX:
7242 case X86::VMOVUPSZ128rm_NOVLX:
7243 case X86::VMOVAPDZ128rm:
7244 case X86::VMOVUPDZ128rm:
7245 case X86::VMOVDQU8Z128rm:
7246 case X86::VMOVDQU16Z128rm:
7247 case X86::VMOVDQA32Z128rm:
7248 case X86::VMOVDQU32Z128rm:
7249 case X86::VMOVDQA64Z128rm:
7250 case X86::VMOVDQU64Z128rm:
7251 case X86::VMOVAPSZ256rm:
7252 case X86::VMOVUPSZ256rm:
7253 case X86::VMOVAPSZ256rm_NOVLX:
7254 case X86::VMOVUPSZ256rm_NOVLX:
7255 case X86::VMOVAPDZ256rm:
7256 case X86::VMOVUPDZ256rm:
7257 case X86::VMOVDQU8Z256rm:
7258 case X86::VMOVDQU16Z256rm:
7259 case X86::VMOVDQA32Z256rm:
7260 case X86::VMOVDQU32Z256rm:
7261 case X86::VMOVDQA64Z256rm:
7262 case X86::VMOVDQU64Z256rm:
7263 case X86::VMOVAPSZrm:
7264 case X86::VMOVUPSZrm:
7265 case X86::VMOVAPDZrm:
7266 case X86::VMOVUPDZrm:
7267 case X86::VMOVDQU8Zrm:
7268 case X86::VMOVDQU16Zrm:
7269 case X86::VMOVDQA32Zrm:
7270 case X86::VMOVDQU32Zrm:
7271 case X86::VMOVDQA64Zrm:
7272 case X86::VMOVDQU64Zrm:
7273 case X86::KMOVBkm:
7274 case X86::KMOVWkm:
7275 case X86::KMOVDkm:
7276 case X86::KMOVQkm:
7277 break;
7278 }
7279 switch (Opc2) {
7280 default: return false;
7281 case X86::MOV8rm:
7282 case X86::MOV16rm:
7283 case X86::MOV32rm:
7284 case X86::MOV64rm:
7285 case X86::LD_Fp32m:
7286 case X86::LD_Fp64m:
7287 case X86::LD_Fp80m:
7288 case X86::MOVSSrm:
7289 case X86::MOVSSrm_alt:
7290 case X86::MOVSDrm:
7291 case X86::MOVSDrm_alt:
7292 case X86::MMX_MOVD64rm:
7293 case X86::MMX_MOVQ64rm:
7294 case X86::MOVAPSrm:
7295 case X86::MOVUPSrm:
7296 case X86::MOVAPDrm:
7297 case X86::MOVUPDrm:
7298 case X86::MOVDQArm:
7299 case X86::MOVDQUrm:
7300 // AVX load instructions
7301 case X86::VMOVSSrm:
7302 case X86::VMOVSSrm_alt:
7303 case X86::VMOVSDrm:
7304 case X86::VMOVSDrm_alt:
7305 case X86::VMOVAPSrm:
7306 case X86::VMOVUPSrm:
7307 case X86::VMOVAPDrm:
7308 case X86::VMOVUPDrm:
7309 case X86::VMOVDQArm:
7310 case X86::VMOVDQUrm:
7311 case X86::VMOVAPSYrm:
7312 case X86::VMOVUPSYrm:
7313 case X86::VMOVAPDYrm:
7314 case X86::VMOVUPDYrm:
7315 case X86::VMOVDQAYrm:
7316 case X86::VMOVDQUYrm:
7317 // AVX512 load instructions
7318 case X86::VMOVSSZrm:
7319 case X86::VMOVSSZrm_alt:
7320 case X86::VMOVSDZrm:
7321 case X86::VMOVSDZrm_alt:
7322 case X86::VMOVAPSZ128rm:
7323 case X86::VMOVUPSZ128rm:
7324 case X86::VMOVAPSZ128rm_NOVLX:
7325 case X86::VMOVUPSZ128rm_NOVLX:
7326 case X86::VMOVAPDZ128rm:
7327 case X86::VMOVUPDZ128rm:
7328 case X86::VMOVDQU8Z128rm:
7329 case X86::VMOVDQU16Z128rm:
7330 case X86::VMOVDQA32Z128rm:
7331 case X86::VMOVDQU32Z128rm:
7332 case X86::VMOVDQA64Z128rm:
7333 case X86::VMOVDQU64Z128rm:
7334 case X86::VMOVAPSZ256rm:
7335 case X86::VMOVUPSZ256rm:
7336 case X86::VMOVAPSZ256rm_NOVLX:
7337 case X86::VMOVUPSZ256rm_NOVLX:
7338 case X86::VMOVAPDZ256rm:
7339 case X86::VMOVUPDZ256rm:
7340 case X86::VMOVDQU8Z256rm:
7341 case X86::VMOVDQU16Z256rm:
7342 case X86::VMOVDQA32Z256rm:
7343 case X86::VMOVDQU32Z256rm:
7344 case X86::VMOVDQA64Z256rm:
7345 case X86::VMOVDQU64Z256rm:
7346 case X86::VMOVAPSZrm:
7347 case X86::VMOVUPSZrm:
7348 case X86::VMOVAPDZrm:
7349 case X86::VMOVUPDZrm:
7350 case X86::VMOVDQU8Zrm:
7351 case X86::VMOVDQU16Zrm:
7352 case X86::VMOVDQA32Zrm:
7353 case X86::VMOVDQU32Zrm:
7354 case X86::VMOVDQA64Zrm:
7355 case X86::VMOVDQU64Zrm:
7356 case X86::KMOVBkm:
7357 case X86::KMOVWkm:
7358 case X86::KMOVDkm:
7359 case X86::KMOVQkm:
7360 break;
7361 }
7362
7363 // Lambda to check if both the loads have the same value for an operand index.
7364 auto HasSameOp = [&](int I) {
7365 return Load1->getOperand(I) == Load2->getOperand(I);
7366 };
7367
7368 // All operands except the displacement should match.
7369 if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
7370 !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
7371 return false;
7372
7373 // Chain Operand must be the same.
7374 if (!HasSameOp(5))
7375 return false;
7376
7377 // Now let's examine if the displacements are constants.
7378 auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
7379 auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
7380 if (!Disp1 || !Disp2)
7381 return false;
7382
7383 Offset1 = Disp1->getSExtValue();
7384 Offset2 = Disp2->getSExtValue();
7385 return true;
7386 }
7387
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads) const7388 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
7389 int64_t Offset1, int64_t Offset2,
7390 unsigned NumLoads) const {
7391 assert(Offset2 > Offset1);
7392 if ((Offset2 - Offset1) / 8 > 64)
7393 return false;
7394
7395 unsigned Opc1 = Load1->getMachineOpcode();
7396 unsigned Opc2 = Load2->getMachineOpcode();
7397 if (Opc1 != Opc2)
7398 return false; // FIXME: overly conservative?
7399
7400 switch (Opc1) {
7401 default: break;
7402 case X86::LD_Fp32m:
7403 case X86::LD_Fp64m:
7404 case X86::LD_Fp80m:
7405 case X86::MMX_MOVD64rm:
7406 case X86::MMX_MOVQ64rm:
7407 return false;
7408 }
7409
7410 EVT VT = Load1->getValueType(0);
7411 switch (VT.getSimpleVT().SimpleTy) {
7412 default:
7413 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
7414 // have 16 of them to play with.
7415 if (Subtarget.is64Bit()) {
7416 if (NumLoads >= 3)
7417 return false;
7418 } else if (NumLoads) {
7419 return false;
7420 }
7421 break;
7422 case MVT::i8:
7423 case MVT::i16:
7424 case MVT::i32:
7425 case MVT::i64:
7426 case MVT::f32:
7427 case MVT::f64:
7428 if (NumLoads)
7429 return false;
7430 break;
7431 }
7432
7433 return true;
7434 }
7435
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const7436 bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
7437 const MachineBasicBlock *MBB,
7438 const MachineFunction &MF) const {
7439
7440 // ENDBR instructions should not be scheduled around.
7441 unsigned Opcode = MI.getOpcode();
7442 if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
7443 Opcode == X86::PLDTILECFGV)
7444 return true;
7445
7446 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
7447 }
7448
7449 bool X86InstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const7450 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
7451 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
7452 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
7453 Cond[0].setImm(GetOppositeBranchCondition(CC));
7454 return false;
7455 }
7456
7457 bool X86InstrInfo::
isSafeToMoveRegClassDefs(const TargetRegisterClass * RC) const7458 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
7459 // FIXME: Return false for x87 stack register classes for now. We can't
7460 // allow any loads of these registers before FpGet_ST0_80.
7461 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
7462 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
7463 RC == &X86::RFP80RegClass);
7464 }
7465
7466 /// Return a virtual register initialized with the
7467 /// the global base register value. Output instructions required to
7468 /// initialize the register in the function entry block, if necessary.
7469 ///
7470 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
7471 ///
getGlobalBaseReg(MachineFunction * MF) const7472 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
7473 assert((!Subtarget.is64Bit() ||
7474 MF->getTarget().getCodeModel() == CodeModel::Medium ||
7475 MF->getTarget().getCodeModel() == CodeModel::Large) &&
7476 "X86-64 PIC uses RIP relative addressing");
7477
7478 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
7479 Register GlobalBaseReg = X86FI->getGlobalBaseReg();
7480 if (GlobalBaseReg != 0)
7481 return GlobalBaseReg;
7482
7483 // Create the register. The code to initialize it is inserted
7484 // later, by the CGBR pass (below).
7485 MachineRegisterInfo &RegInfo = MF->getRegInfo();
7486 GlobalBaseReg = RegInfo.createVirtualRegister(
7487 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
7488 X86FI->setGlobalBaseReg(GlobalBaseReg);
7489 return GlobalBaseReg;
7490 }
7491
7492 // These are the replaceable SSE instructions. Some of these have Int variants
7493 // that we don't include here. We don't want to replace instructions selected
7494 // by intrinsics.
7495 static const uint16_t ReplaceableInstrs[][3] = {
7496 //PackedSingle PackedDouble PackedInt
7497 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
7498 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
7499 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
7500 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
7501 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
7502 { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
7503 { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr },
7504 { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr },
7505 { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm },
7506 { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
7507 { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm },
7508 { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
7509 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
7510 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
7511 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
7512 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
7513 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
7514 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
7515 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
7516 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
7517 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
7518 { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
7519 { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
7520 { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
7521 { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
7522 { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
7523 { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
7524 { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
7525 { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
7526 { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
7527 { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
7528 // AVX 128-bit support
7529 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
7530 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
7531 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
7532 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
7533 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
7534 { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr },
7535 { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr },
7536 { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr },
7537 { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm },
7538 { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
7539 { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm },
7540 { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
7541 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
7542 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
7543 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
7544 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
7545 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
7546 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
7547 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
7548 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
7549 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
7550 { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
7551 { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
7552 { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
7553 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
7554 { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
7555 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
7556 { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
7557 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
7558 { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
7559 { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
7560 // AVX 256-bit support
7561 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
7562 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
7563 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
7564 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
7565 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
7566 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr },
7567 { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm },
7568 { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr },
7569 { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi },
7570 { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri },
7571 // AVX512 support
7572 { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr },
7573 { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
7574 { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
7575 { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr },
7576 { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr },
7577 { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr },
7578 { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm },
7579 { X86::VMOVSDZrm_alt, X86::VMOVSDZrm_alt, X86::VMOVQI2PQIZrm },
7580 { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm },
7581 { X86::VMOVSSZrm_alt, X86::VMOVSSZrm_alt, X86::VMOVDI2PDIZrm },
7582 { X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr },
7583 { X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm },
7584 { X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr },
7585 { X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm },
7586 { X86::VBROADCASTSSZrr, X86::VBROADCASTSSZrr, X86::VPBROADCASTDZrr },
7587 { X86::VBROADCASTSSZrm, X86::VBROADCASTSSZrm, X86::VPBROADCASTDZrm },
7588 { X86::VMOVDDUPZ128rr, X86::VMOVDDUPZ128rr, X86::VPBROADCASTQZ128rr },
7589 { X86::VMOVDDUPZ128rm, X86::VMOVDDUPZ128rm, X86::VPBROADCASTQZ128rm },
7590 { X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr },
7591 { X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm },
7592 { X86::VBROADCASTSDZrr, X86::VBROADCASTSDZrr, X86::VPBROADCASTQZrr },
7593 { X86::VBROADCASTSDZrm, X86::VBROADCASTSDZrm, X86::VPBROADCASTQZrm },
7594 { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr },
7595 { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm },
7596 { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr },
7597 { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm },
7598 { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr },
7599 { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm },
7600 { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr },
7601 { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm },
7602 { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
7603 { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
7604 { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
7605 { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
7606 { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr },
7607 { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr },
7608 { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr },
7609 { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr },
7610 { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr },
7611 { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr },
7612 { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr },
7613 { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr },
7614 { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
7615 { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
7616 { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
7617 { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
7618 { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi },
7619 { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri },
7620 { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi },
7621 { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri },
7622 { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi },
7623 { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri },
7624 { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi },
7625 { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri },
7626 { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm },
7627 { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr },
7628 { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi },
7629 { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri },
7630 { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm },
7631 { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr },
7632 { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm },
7633 { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr },
7634 { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi },
7635 { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri },
7636 { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm },
7637 { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr },
7638 { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm },
7639 { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr },
7640 { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm },
7641 { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr },
7642 { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm },
7643 { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr },
7644 { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm },
7645 { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr },
7646 { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm },
7647 { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr },
7648 { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm },
7649 { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr },
7650 { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm },
7651 { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr },
7652 { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm },
7653 { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr },
7654 { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm },
7655 { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr },
7656 { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm },
7657 { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr },
7658 { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm },
7659 { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr },
7660 { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm },
7661 { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr },
7662 { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr },
7663 { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr },
7664 };
7665
7666 static const uint16_t ReplaceableInstrsAVX2[][3] = {
7667 //PackedSingle PackedDouble PackedInt
7668 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
7669 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
7670 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
7671 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
7672 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
7673 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
7674 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
7675 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
7676 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
7677 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
7678 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
7679 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
7680 { X86::VMOVDDUPrm, X86::VMOVDDUPrm, X86::VPBROADCASTQrm},
7681 { X86::VMOVDDUPrr, X86::VMOVDDUPrr, X86::VPBROADCASTQrr},
7682 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
7683 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
7684 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
7685 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
7686 { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 },
7687 { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri },
7688 { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi },
7689 { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi },
7690 { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri },
7691 { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm },
7692 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr },
7693 { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm },
7694 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr },
7695 { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm },
7696 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr },
7697 { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm },
7698 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr },
7699 };
7700
7701 static const uint16_t ReplaceableInstrsFP[][3] = {
7702 //PackedSingle PackedDouble
7703 { X86::MOVLPSrm, X86::MOVLPDrm, X86::INSTRUCTION_LIST_END },
7704 { X86::MOVHPSrm, X86::MOVHPDrm, X86::INSTRUCTION_LIST_END },
7705 { X86::MOVHPSmr, X86::MOVHPDmr, X86::INSTRUCTION_LIST_END },
7706 { X86::VMOVLPSrm, X86::VMOVLPDrm, X86::INSTRUCTION_LIST_END },
7707 { X86::VMOVHPSrm, X86::VMOVHPDrm, X86::INSTRUCTION_LIST_END },
7708 { X86::VMOVHPSmr, X86::VMOVHPDmr, X86::INSTRUCTION_LIST_END },
7709 { X86::VMOVLPSZ128rm, X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
7710 { X86::VMOVHPSZ128rm, X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
7711 { X86::VMOVHPSZ128mr, X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
7712 };
7713
7714 static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
7715 //PackedSingle PackedDouble PackedInt
7716 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
7717 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
7718 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
7719 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
7720 };
7721
7722 static const uint16_t ReplaceableInstrsAVX512[][4] = {
7723 // Two integer columns for 64-bit and 32-bit elements.
7724 //PackedSingle PackedDouble PackedInt PackedInt
7725 { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr },
7726 { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm },
7727 { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr },
7728 { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr },
7729 { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm },
7730 { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr },
7731 { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm },
7732 { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr },
7733 { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr },
7734 { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm },
7735 { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr },
7736 { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm },
7737 { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr },
7738 { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr },
7739 { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm },
7740 };
7741
7742 static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
7743 // Two integer columns for 64-bit and 32-bit elements.
7744 //PackedSingle PackedDouble PackedInt PackedInt
7745 { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7746 { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7747 { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
7748 { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
7749 { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm },
7750 { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr },
7751 { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
7752 { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
7753 { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7754 { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7755 { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
7756 { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
7757 { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm },
7758 { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr },
7759 { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
7760 { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
7761 { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm },
7762 { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr },
7763 { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm },
7764 { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr },
7765 { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm },
7766 { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr },
7767 { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm },
7768 { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr },
7769 };
7770
7771 static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
7772 // Two integer columns for 64-bit and 32-bit elements.
7773 //PackedSingle PackedDouble
7774 //PackedInt PackedInt
7775 { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk,
7776 X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk },
7777 { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
7778 X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
7779 { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk,
7780 X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk },
7781 { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
7782 X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
7783 { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk,
7784 X86::VPANDQZ128rmk, X86::VPANDDZ128rmk },
7785 { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz,
7786 X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz },
7787 { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk,
7788 X86::VPANDQZ128rrk, X86::VPANDDZ128rrk },
7789 { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz,
7790 X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz },
7791 { X86::VORPSZ128rmk, X86::VORPDZ128rmk,
7792 X86::VPORQZ128rmk, X86::VPORDZ128rmk },
7793 { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz,
7794 X86::VPORQZ128rmkz, X86::VPORDZ128rmkz },
7795 { X86::VORPSZ128rrk, X86::VORPDZ128rrk,
7796 X86::VPORQZ128rrk, X86::VPORDZ128rrk },
7797 { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz,
7798 X86::VPORQZ128rrkz, X86::VPORDZ128rrkz },
7799 { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk,
7800 X86::VPXORQZ128rmk, X86::VPXORDZ128rmk },
7801 { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz,
7802 X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz },
7803 { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk,
7804 X86::VPXORQZ128rrk, X86::VPXORDZ128rrk },
7805 { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz,
7806 X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz },
7807 { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk,
7808 X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk },
7809 { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
7810 X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
7811 { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk,
7812 X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk },
7813 { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
7814 X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
7815 { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk,
7816 X86::VPANDQZ256rmk, X86::VPANDDZ256rmk },
7817 { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz,
7818 X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz },
7819 { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk,
7820 X86::VPANDQZ256rrk, X86::VPANDDZ256rrk },
7821 { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz,
7822 X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz },
7823 { X86::VORPSZ256rmk, X86::VORPDZ256rmk,
7824 X86::VPORQZ256rmk, X86::VPORDZ256rmk },
7825 { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz,
7826 X86::VPORQZ256rmkz, X86::VPORDZ256rmkz },
7827 { X86::VORPSZ256rrk, X86::VORPDZ256rrk,
7828 X86::VPORQZ256rrk, X86::VPORDZ256rrk },
7829 { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz,
7830 X86::VPORQZ256rrkz, X86::VPORDZ256rrkz },
7831 { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk,
7832 X86::VPXORQZ256rmk, X86::VPXORDZ256rmk },
7833 { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz,
7834 X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz },
7835 { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk,
7836 X86::VPXORQZ256rrk, X86::VPXORDZ256rrk },
7837 { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz,
7838 X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz },
7839 { X86::VANDNPSZrmk, X86::VANDNPDZrmk,
7840 X86::VPANDNQZrmk, X86::VPANDNDZrmk },
7841 { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz,
7842 X86::VPANDNQZrmkz, X86::VPANDNDZrmkz },
7843 { X86::VANDNPSZrrk, X86::VANDNPDZrrk,
7844 X86::VPANDNQZrrk, X86::VPANDNDZrrk },
7845 { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz,
7846 X86::VPANDNQZrrkz, X86::VPANDNDZrrkz },
7847 { X86::VANDPSZrmk, X86::VANDPDZrmk,
7848 X86::VPANDQZrmk, X86::VPANDDZrmk },
7849 { X86::VANDPSZrmkz, X86::VANDPDZrmkz,
7850 X86::VPANDQZrmkz, X86::VPANDDZrmkz },
7851 { X86::VANDPSZrrk, X86::VANDPDZrrk,
7852 X86::VPANDQZrrk, X86::VPANDDZrrk },
7853 { X86::VANDPSZrrkz, X86::VANDPDZrrkz,
7854 X86::VPANDQZrrkz, X86::VPANDDZrrkz },
7855 { X86::VORPSZrmk, X86::VORPDZrmk,
7856 X86::VPORQZrmk, X86::VPORDZrmk },
7857 { X86::VORPSZrmkz, X86::VORPDZrmkz,
7858 X86::VPORQZrmkz, X86::VPORDZrmkz },
7859 { X86::VORPSZrrk, X86::VORPDZrrk,
7860 X86::VPORQZrrk, X86::VPORDZrrk },
7861 { X86::VORPSZrrkz, X86::VORPDZrrkz,
7862 X86::VPORQZrrkz, X86::VPORDZrrkz },
7863 { X86::VXORPSZrmk, X86::VXORPDZrmk,
7864 X86::VPXORQZrmk, X86::VPXORDZrmk },
7865 { X86::VXORPSZrmkz, X86::VXORPDZrmkz,
7866 X86::VPXORQZrmkz, X86::VPXORDZrmkz },
7867 { X86::VXORPSZrrk, X86::VXORPDZrrk,
7868 X86::VPXORQZrrk, X86::VPXORDZrrk },
7869 { X86::VXORPSZrrkz, X86::VXORPDZrrkz,
7870 X86::VPXORQZrrkz, X86::VPXORDZrrkz },
7871 // Broadcast loads can be handled the same as masked operations to avoid
7872 // changing element size.
7873 { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb,
7874 X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb },
7875 { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb,
7876 X86::VPANDQZ128rmb, X86::VPANDDZ128rmb },
7877 { X86::VORPSZ128rmb, X86::VORPDZ128rmb,
7878 X86::VPORQZ128rmb, X86::VPORDZ128rmb },
7879 { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb,
7880 X86::VPXORQZ128rmb, X86::VPXORDZ128rmb },
7881 { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb,
7882 X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb },
7883 { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb,
7884 X86::VPANDQZ256rmb, X86::VPANDDZ256rmb },
7885 { X86::VORPSZ256rmb, X86::VORPDZ256rmb,
7886 X86::VPORQZ256rmb, X86::VPORDZ256rmb },
7887 { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb,
7888 X86::VPXORQZ256rmb, X86::VPXORDZ256rmb },
7889 { X86::VANDNPSZrmb, X86::VANDNPDZrmb,
7890 X86::VPANDNQZrmb, X86::VPANDNDZrmb },
7891 { X86::VANDPSZrmb, X86::VANDPDZrmb,
7892 X86::VPANDQZrmb, X86::VPANDDZrmb },
7893 { X86::VANDPSZrmb, X86::VANDPDZrmb,
7894 X86::VPANDQZrmb, X86::VPANDDZrmb },
7895 { X86::VORPSZrmb, X86::VORPDZrmb,
7896 X86::VPORQZrmb, X86::VPORDZrmb },
7897 { X86::VXORPSZrmb, X86::VXORPDZrmb,
7898 X86::VPXORQZrmb, X86::VPXORDZrmb },
7899 { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
7900 X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
7901 { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk,
7902 X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk },
7903 { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk,
7904 X86::VPORQZ128rmbk, X86::VPORDZ128rmbk },
7905 { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk,
7906 X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk },
7907 { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
7908 X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
7909 { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk,
7910 X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk },
7911 { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk,
7912 X86::VPORQZ256rmbk, X86::VPORDZ256rmbk },
7913 { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk,
7914 X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk },
7915 { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk,
7916 X86::VPANDNQZrmbk, X86::VPANDNDZrmbk },
7917 { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
7918 X86::VPANDQZrmbk, X86::VPANDDZrmbk },
7919 { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
7920 X86::VPANDQZrmbk, X86::VPANDDZrmbk },
7921 { X86::VORPSZrmbk, X86::VORPDZrmbk,
7922 X86::VPORQZrmbk, X86::VPORDZrmbk },
7923 { X86::VXORPSZrmbk, X86::VXORPDZrmbk,
7924 X86::VPXORQZrmbk, X86::VPXORDZrmbk },
7925 { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
7926 X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
7927 { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
7928 X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
7929 { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz,
7930 X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz },
7931 { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
7932 X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
7933 { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
7934 X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
7935 { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
7936 X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
7937 { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz,
7938 X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz },
7939 { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
7940 X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
7941 { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz,
7942 X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz },
7943 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
7944 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
7945 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
7946 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
7947 { X86::VORPSZrmbkz, X86::VORPDZrmbkz,
7948 X86::VPORQZrmbkz, X86::VPORDZrmbkz },
7949 { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz,
7950 X86::VPXORQZrmbkz, X86::VPXORDZrmbkz },
7951 };
7952
7953 // NOTE: These should only be used by the custom domain methods.
7954 static const uint16_t ReplaceableBlendInstrs[][3] = {
7955 //PackedSingle PackedDouble PackedInt
7956 { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi },
7957 { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri },
7958 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi },
7959 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri },
7960 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi },
7961 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri },
7962 };
7963 static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
7964 //PackedSingle PackedDouble PackedInt
7965 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi },
7966 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri },
7967 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi },
7968 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri },
7969 };
7970
7971 // Special table for changing EVEX logic instructions to VEX.
7972 // TODO: Should we run EVEX->VEX earlier?
7973 static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
7974 // Two integer columns for 64-bit and 32-bit elements.
7975 //PackedSingle PackedDouble PackedInt PackedInt
7976 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7977 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7978 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
7979 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
7980 { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm },
7981 { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr },
7982 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
7983 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
7984 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7985 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7986 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
7987 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
7988 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm },
7989 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr },
7990 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
7991 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
7992 };
7993
7994 // FIXME: Some shuffle and unpack instructions have equivalents in different
7995 // domains, but they require a bit more work than just switching opcodes.
7996
lookup(unsigned opcode,unsigned domain,ArrayRef<uint16_t[3]> Table)7997 static const uint16_t *lookup(unsigned opcode, unsigned domain,
7998 ArrayRef<uint16_t[3]> Table) {
7999 for (const uint16_t (&Row)[3] : Table)
8000 if (Row[domain-1] == opcode)
8001 return Row;
8002 return nullptr;
8003 }
8004
lookupAVX512(unsigned opcode,unsigned domain,ArrayRef<uint16_t[4]> Table)8005 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
8006 ArrayRef<uint16_t[4]> Table) {
8007 // If this is the integer domain make sure to check both integer columns.
8008 for (const uint16_t (&Row)[4] : Table)
8009 if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
8010 return Row;
8011 return nullptr;
8012 }
8013
8014 // Helper to attempt to widen/narrow blend masks.
AdjustBlendMask(unsigned OldMask,unsigned OldWidth,unsigned NewWidth,unsigned * pNewMask=nullptr)8015 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
8016 unsigned NewWidth, unsigned *pNewMask = nullptr) {
8017 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
8018 "Illegal blend mask scale");
8019 unsigned NewMask = 0;
8020
8021 if ((OldWidth % NewWidth) == 0) {
8022 unsigned Scale = OldWidth / NewWidth;
8023 unsigned SubMask = (1u << Scale) - 1;
8024 for (unsigned i = 0; i != NewWidth; ++i) {
8025 unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
8026 if (Sub == SubMask)
8027 NewMask |= (1u << i);
8028 else if (Sub != 0x0)
8029 return false;
8030 }
8031 } else {
8032 unsigned Scale = NewWidth / OldWidth;
8033 unsigned SubMask = (1u << Scale) - 1;
8034 for (unsigned i = 0; i != OldWidth; ++i) {
8035 if (OldMask & (1 << i)) {
8036 NewMask |= (SubMask << (i * Scale));
8037 }
8038 }
8039 }
8040
8041 if (pNewMask)
8042 *pNewMask = NewMask;
8043 return true;
8044 }
8045
getExecutionDomainCustom(const MachineInstr & MI) const8046 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
8047 unsigned Opcode = MI.getOpcode();
8048 unsigned NumOperands = MI.getDesc().getNumOperands();
8049
8050 auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
8051 uint16_t validDomains = 0;
8052 if (MI.getOperand(NumOperands - 1).isImm()) {
8053 unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
8054 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
8055 validDomains |= 0x2; // PackedSingle
8056 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
8057 validDomains |= 0x4; // PackedDouble
8058 if (!Is256 || Subtarget.hasAVX2())
8059 validDomains |= 0x8; // PackedInt
8060 }
8061 return validDomains;
8062 };
8063
8064 switch (Opcode) {
8065 case X86::BLENDPDrmi:
8066 case X86::BLENDPDrri:
8067 case X86::VBLENDPDrmi:
8068 case X86::VBLENDPDrri:
8069 return GetBlendDomains(2, false);
8070 case X86::VBLENDPDYrmi:
8071 case X86::VBLENDPDYrri:
8072 return GetBlendDomains(4, true);
8073 case X86::BLENDPSrmi:
8074 case X86::BLENDPSrri:
8075 case X86::VBLENDPSrmi:
8076 case X86::VBLENDPSrri:
8077 case X86::VPBLENDDrmi:
8078 case X86::VPBLENDDrri:
8079 return GetBlendDomains(4, false);
8080 case X86::VBLENDPSYrmi:
8081 case X86::VBLENDPSYrri:
8082 case X86::VPBLENDDYrmi:
8083 case X86::VPBLENDDYrri:
8084 return GetBlendDomains(8, true);
8085 case X86::PBLENDWrmi:
8086 case X86::PBLENDWrri:
8087 case X86::VPBLENDWrmi:
8088 case X86::VPBLENDWrri:
8089 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
8090 case X86::VPBLENDWYrmi:
8091 case X86::VPBLENDWYrri:
8092 return GetBlendDomains(8, false);
8093 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
8094 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
8095 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
8096 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
8097 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
8098 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
8099 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
8100 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
8101 case X86::VPORDZ128rr: case X86::VPORDZ128rm:
8102 case X86::VPORDZ256rr: case X86::VPORDZ256rm:
8103 case X86::VPORQZ128rr: case X86::VPORQZ128rm:
8104 case X86::VPORQZ256rr: case X86::VPORQZ256rm:
8105 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
8106 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
8107 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
8108 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm:
8109 // If we don't have DQI see if we can still switch from an EVEX integer
8110 // instruction to a VEX floating point instruction.
8111 if (Subtarget.hasDQI())
8112 return 0;
8113
8114 if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
8115 return 0;
8116 if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
8117 return 0;
8118 // Register forms will have 3 operands. Memory form will have more.
8119 if (NumOperands == 3 &&
8120 RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
8121 return 0;
8122
8123 // All domains are valid.
8124 return 0xe;
8125 case X86::MOVHLPSrr:
8126 // We can swap domains when both inputs are the same register.
8127 // FIXME: This doesn't catch all the cases we would like. If the input
8128 // register isn't KILLed by the instruction, the two address instruction
8129 // pass puts a COPY on one input. The other input uses the original
8130 // register. This prevents the same physical register from being used by
8131 // both inputs.
8132 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
8133 MI.getOperand(0).getSubReg() == 0 &&
8134 MI.getOperand(1).getSubReg() == 0 &&
8135 MI.getOperand(2).getSubReg() == 0)
8136 return 0x6;
8137 return 0;
8138 case X86::SHUFPDrri:
8139 return 0x6;
8140 }
8141 return 0;
8142 }
8143
setExecutionDomainCustom(MachineInstr & MI,unsigned Domain) const8144 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
8145 unsigned Domain) const {
8146 assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
8147 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
8148 assert(dom && "Not an SSE instruction");
8149
8150 unsigned Opcode = MI.getOpcode();
8151 unsigned NumOperands = MI.getDesc().getNumOperands();
8152
8153 auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
8154 if (MI.getOperand(NumOperands - 1).isImm()) {
8155 unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
8156 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
8157 unsigned NewImm = Imm;
8158
8159 const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
8160 if (!table)
8161 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
8162
8163 if (Domain == 1) { // PackedSingle
8164 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
8165 } else if (Domain == 2) { // PackedDouble
8166 AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
8167 } else if (Domain == 3) { // PackedInt
8168 if (Subtarget.hasAVX2()) {
8169 // If we are already VPBLENDW use that, else use VPBLENDD.
8170 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
8171 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
8172 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
8173 }
8174 } else {
8175 assert(!Is256 && "128-bit vector expected");
8176 AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
8177 }
8178 }
8179
8180 assert(table && table[Domain - 1] && "Unknown domain op");
8181 MI.setDesc(get(table[Domain - 1]));
8182 MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
8183 }
8184 return true;
8185 };
8186
8187 switch (Opcode) {
8188 case X86::BLENDPDrmi:
8189 case X86::BLENDPDrri:
8190 case X86::VBLENDPDrmi:
8191 case X86::VBLENDPDrri:
8192 return SetBlendDomain(2, false);
8193 case X86::VBLENDPDYrmi:
8194 case X86::VBLENDPDYrri:
8195 return SetBlendDomain(4, true);
8196 case X86::BLENDPSrmi:
8197 case X86::BLENDPSrri:
8198 case X86::VBLENDPSrmi:
8199 case X86::VBLENDPSrri:
8200 case X86::VPBLENDDrmi:
8201 case X86::VPBLENDDrri:
8202 return SetBlendDomain(4, false);
8203 case X86::VBLENDPSYrmi:
8204 case X86::VBLENDPSYrri:
8205 case X86::VPBLENDDYrmi:
8206 case X86::VPBLENDDYrri:
8207 return SetBlendDomain(8, true);
8208 case X86::PBLENDWrmi:
8209 case X86::PBLENDWrri:
8210 case X86::VPBLENDWrmi:
8211 case X86::VPBLENDWrri:
8212 return SetBlendDomain(8, false);
8213 case X86::VPBLENDWYrmi:
8214 case X86::VPBLENDWYrri:
8215 return SetBlendDomain(16, true);
8216 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
8217 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
8218 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
8219 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
8220 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
8221 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
8222 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
8223 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
8224 case X86::VPORDZ128rr: case X86::VPORDZ128rm:
8225 case X86::VPORDZ256rr: case X86::VPORDZ256rm:
8226 case X86::VPORQZ128rr: case X86::VPORQZ128rm:
8227 case X86::VPORQZ256rr: case X86::VPORQZ256rm:
8228 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
8229 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
8230 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
8231 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: {
8232 // Without DQI, convert EVEX instructions to VEX instructions.
8233 if (Subtarget.hasDQI())
8234 return false;
8235
8236 const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
8237 ReplaceableCustomAVX512LogicInstrs);
8238 assert(table && "Instruction not found in table?");
8239 // Don't change integer Q instructions to D instructions and
8240 // use D intructions if we started with a PS instruction.
8241 if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
8242 Domain = 4;
8243 MI.setDesc(get(table[Domain - 1]));
8244 return true;
8245 }
8246 case X86::UNPCKHPDrr:
8247 case X86::MOVHLPSrr:
8248 // We just need to commute the instruction which will switch the domains.
8249 if (Domain != dom && Domain != 3 &&
8250 MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
8251 MI.getOperand(0).getSubReg() == 0 &&
8252 MI.getOperand(1).getSubReg() == 0 &&
8253 MI.getOperand(2).getSubReg() == 0) {
8254 commuteInstruction(MI, false);
8255 return true;
8256 }
8257 // We must always return true for MOVHLPSrr.
8258 if (Opcode == X86::MOVHLPSrr)
8259 return true;
8260 break;
8261 case X86::SHUFPDrri: {
8262 if (Domain == 1) {
8263 unsigned Imm = MI.getOperand(3).getImm();
8264 unsigned NewImm = 0x44;
8265 if (Imm & 1) NewImm |= 0x0a;
8266 if (Imm & 2) NewImm |= 0xa0;
8267 MI.getOperand(3).setImm(NewImm);
8268 MI.setDesc(get(X86::SHUFPSrri));
8269 }
8270 return true;
8271 }
8272 }
8273 return false;
8274 }
8275
8276 std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr & MI) const8277 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
8278 uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
8279 unsigned opcode = MI.getOpcode();
8280 uint16_t validDomains = 0;
8281 if (domain) {
8282 // Attempt to match for custom instructions.
8283 validDomains = getExecutionDomainCustom(MI);
8284 if (validDomains)
8285 return std::make_pair(domain, validDomains);
8286
8287 if (lookup(opcode, domain, ReplaceableInstrs)) {
8288 validDomains = 0xe;
8289 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
8290 validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
8291 } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
8292 validDomains = 0x6;
8293 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
8294 // Insert/extract instructions should only effect domain if AVX2
8295 // is enabled.
8296 if (!Subtarget.hasAVX2())
8297 return std::make_pair(0, 0);
8298 validDomains = 0xe;
8299 } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
8300 validDomains = 0xe;
8301 } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
8302 ReplaceableInstrsAVX512DQ)) {
8303 validDomains = 0xe;
8304 } else if (Subtarget.hasDQI()) {
8305 if (const uint16_t *table = lookupAVX512(opcode, domain,
8306 ReplaceableInstrsAVX512DQMasked)) {
8307 if (domain == 1 || (domain == 3 && table[3] == opcode))
8308 validDomains = 0xa;
8309 else
8310 validDomains = 0xc;
8311 }
8312 }
8313 }
8314 return std::make_pair(domain, validDomains);
8315 }
8316
setExecutionDomain(MachineInstr & MI,unsigned Domain) const8317 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
8318 assert(Domain>0 && Domain<4 && "Invalid execution domain");
8319 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
8320 assert(dom && "Not an SSE instruction");
8321
8322 // Attempt to match for custom instructions.
8323 if (setExecutionDomainCustom(MI, Domain))
8324 return;
8325
8326 const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
8327 if (!table) { // try the other table
8328 assert((Subtarget.hasAVX2() || Domain < 3) &&
8329 "256-bit vector operations only available in AVX2");
8330 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
8331 }
8332 if (!table) { // try the FP table
8333 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
8334 assert((!table || Domain < 3) &&
8335 "Can only select PackedSingle or PackedDouble");
8336 }
8337 if (!table) { // try the other table
8338 assert(Subtarget.hasAVX2() &&
8339 "256-bit insert/extract only available in AVX2");
8340 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
8341 }
8342 if (!table) { // try the AVX512 table
8343 assert(Subtarget.hasAVX512() && "Requires AVX-512");
8344 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
8345 // Don't change integer Q instructions to D instructions.
8346 if (table && Domain == 3 && table[3] == MI.getOpcode())
8347 Domain = 4;
8348 }
8349 if (!table) { // try the AVX512DQ table
8350 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
8351 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
8352 // Don't change integer Q instructions to D instructions and
8353 // use D instructions if we started with a PS instruction.
8354 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
8355 Domain = 4;
8356 }
8357 if (!table) { // try the AVX512DQMasked table
8358 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
8359 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
8360 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
8361 Domain = 4;
8362 }
8363 assert(table && "Cannot change domain");
8364 MI.setDesc(get(table[Domain - 1]));
8365 }
8366
8367 /// Return the noop instruction to use for a noop.
getNop() const8368 MCInst X86InstrInfo::getNop() const {
8369 MCInst Nop;
8370 Nop.setOpcode(X86::NOOP);
8371 return Nop;
8372 }
8373
isHighLatencyDef(int opc) const8374 bool X86InstrInfo::isHighLatencyDef(int opc) const {
8375 switch (opc) {
8376 default: return false;
8377 case X86::DIVPDrm:
8378 case X86::DIVPDrr:
8379 case X86::DIVPSrm:
8380 case X86::DIVPSrr:
8381 case X86::DIVSDrm:
8382 case X86::DIVSDrm_Int:
8383 case X86::DIVSDrr:
8384 case X86::DIVSDrr_Int:
8385 case X86::DIVSSrm:
8386 case X86::DIVSSrm_Int:
8387 case X86::DIVSSrr:
8388 case X86::DIVSSrr_Int:
8389 case X86::SQRTPDm:
8390 case X86::SQRTPDr:
8391 case X86::SQRTPSm:
8392 case X86::SQRTPSr:
8393 case X86::SQRTSDm:
8394 case X86::SQRTSDm_Int:
8395 case X86::SQRTSDr:
8396 case X86::SQRTSDr_Int:
8397 case X86::SQRTSSm:
8398 case X86::SQRTSSm_Int:
8399 case X86::SQRTSSr:
8400 case X86::SQRTSSr_Int:
8401 // AVX instructions with high latency
8402 case X86::VDIVPDrm:
8403 case X86::VDIVPDrr:
8404 case X86::VDIVPDYrm:
8405 case X86::VDIVPDYrr:
8406 case X86::VDIVPSrm:
8407 case X86::VDIVPSrr:
8408 case X86::VDIVPSYrm:
8409 case X86::VDIVPSYrr:
8410 case X86::VDIVSDrm:
8411 case X86::VDIVSDrm_Int:
8412 case X86::VDIVSDrr:
8413 case X86::VDIVSDrr_Int:
8414 case X86::VDIVSSrm:
8415 case X86::VDIVSSrm_Int:
8416 case X86::VDIVSSrr:
8417 case X86::VDIVSSrr_Int:
8418 case X86::VSQRTPDm:
8419 case X86::VSQRTPDr:
8420 case X86::VSQRTPDYm:
8421 case X86::VSQRTPDYr:
8422 case X86::VSQRTPSm:
8423 case X86::VSQRTPSr:
8424 case X86::VSQRTPSYm:
8425 case X86::VSQRTPSYr:
8426 case X86::VSQRTSDm:
8427 case X86::VSQRTSDm_Int:
8428 case X86::VSQRTSDr:
8429 case X86::VSQRTSDr_Int:
8430 case X86::VSQRTSSm:
8431 case X86::VSQRTSSm_Int:
8432 case X86::VSQRTSSr:
8433 case X86::VSQRTSSr_Int:
8434 // AVX512 instructions with high latency
8435 case X86::VDIVPDZ128rm:
8436 case X86::VDIVPDZ128rmb:
8437 case X86::VDIVPDZ128rmbk:
8438 case X86::VDIVPDZ128rmbkz:
8439 case X86::VDIVPDZ128rmk:
8440 case X86::VDIVPDZ128rmkz:
8441 case X86::VDIVPDZ128rr:
8442 case X86::VDIVPDZ128rrk:
8443 case X86::VDIVPDZ128rrkz:
8444 case X86::VDIVPDZ256rm:
8445 case X86::VDIVPDZ256rmb:
8446 case X86::VDIVPDZ256rmbk:
8447 case X86::VDIVPDZ256rmbkz:
8448 case X86::VDIVPDZ256rmk:
8449 case X86::VDIVPDZ256rmkz:
8450 case X86::VDIVPDZ256rr:
8451 case X86::VDIVPDZ256rrk:
8452 case X86::VDIVPDZ256rrkz:
8453 case X86::VDIVPDZrrb:
8454 case X86::VDIVPDZrrbk:
8455 case X86::VDIVPDZrrbkz:
8456 case X86::VDIVPDZrm:
8457 case X86::VDIVPDZrmb:
8458 case X86::VDIVPDZrmbk:
8459 case X86::VDIVPDZrmbkz:
8460 case X86::VDIVPDZrmk:
8461 case X86::VDIVPDZrmkz:
8462 case X86::VDIVPDZrr:
8463 case X86::VDIVPDZrrk:
8464 case X86::VDIVPDZrrkz:
8465 case X86::VDIVPSZ128rm:
8466 case X86::VDIVPSZ128rmb:
8467 case X86::VDIVPSZ128rmbk:
8468 case X86::VDIVPSZ128rmbkz:
8469 case X86::VDIVPSZ128rmk:
8470 case X86::VDIVPSZ128rmkz:
8471 case X86::VDIVPSZ128rr:
8472 case X86::VDIVPSZ128rrk:
8473 case X86::VDIVPSZ128rrkz:
8474 case X86::VDIVPSZ256rm:
8475 case X86::VDIVPSZ256rmb:
8476 case X86::VDIVPSZ256rmbk:
8477 case X86::VDIVPSZ256rmbkz:
8478 case X86::VDIVPSZ256rmk:
8479 case X86::VDIVPSZ256rmkz:
8480 case X86::VDIVPSZ256rr:
8481 case X86::VDIVPSZ256rrk:
8482 case X86::VDIVPSZ256rrkz:
8483 case X86::VDIVPSZrrb:
8484 case X86::VDIVPSZrrbk:
8485 case X86::VDIVPSZrrbkz:
8486 case X86::VDIVPSZrm:
8487 case X86::VDIVPSZrmb:
8488 case X86::VDIVPSZrmbk:
8489 case X86::VDIVPSZrmbkz:
8490 case X86::VDIVPSZrmk:
8491 case X86::VDIVPSZrmkz:
8492 case X86::VDIVPSZrr:
8493 case X86::VDIVPSZrrk:
8494 case X86::VDIVPSZrrkz:
8495 case X86::VDIVSDZrm:
8496 case X86::VDIVSDZrr:
8497 case X86::VDIVSDZrm_Int:
8498 case X86::VDIVSDZrm_Intk:
8499 case X86::VDIVSDZrm_Intkz:
8500 case X86::VDIVSDZrr_Int:
8501 case X86::VDIVSDZrr_Intk:
8502 case X86::VDIVSDZrr_Intkz:
8503 case X86::VDIVSDZrrb_Int:
8504 case X86::VDIVSDZrrb_Intk:
8505 case X86::VDIVSDZrrb_Intkz:
8506 case X86::VDIVSSZrm:
8507 case X86::VDIVSSZrr:
8508 case X86::VDIVSSZrm_Int:
8509 case X86::VDIVSSZrm_Intk:
8510 case X86::VDIVSSZrm_Intkz:
8511 case X86::VDIVSSZrr_Int:
8512 case X86::VDIVSSZrr_Intk:
8513 case X86::VDIVSSZrr_Intkz:
8514 case X86::VDIVSSZrrb_Int:
8515 case X86::VDIVSSZrrb_Intk:
8516 case X86::VDIVSSZrrb_Intkz:
8517 case X86::VSQRTPDZ128m:
8518 case X86::VSQRTPDZ128mb:
8519 case X86::VSQRTPDZ128mbk:
8520 case X86::VSQRTPDZ128mbkz:
8521 case X86::VSQRTPDZ128mk:
8522 case X86::VSQRTPDZ128mkz:
8523 case X86::VSQRTPDZ128r:
8524 case X86::VSQRTPDZ128rk:
8525 case X86::VSQRTPDZ128rkz:
8526 case X86::VSQRTPDZ256m:
8527 case X86::VSQRTPDZ256mb:
8528 case X86::VSQRTPDZ256mbk:
8529 case X86::VSQRTPDZ256mbkz:
8530 case X86::VSQRTPDZ256mk:
8531 case X86::VSQRTPDZ256mkz:
8532 case X86::VSQRTPDZ256r:
8533 case X86::VSQRTPDZ256rk:
8534 case X86::VSQRTPDZ256rkz:
8535 case X86::VSQRTPDZm:
8536 case X86::VSQRTPDZmb:
8537 case X86::VSQRTPDZmbk:
8538 case X86::VSQRTPDZmbkz:
8539 case X86::VSQRTPDZmk:
8540 case X86::VSQRTPDZmkz:
8541 case X86::VSQRTPDZr:
8542 case X86::VSQRTPDZrb:
8543 case X86::VSQRTPDZrbk:
8544 case X86::VSQRTPDZrbkz:
8545 case X86::VSQRTPDZrk:
8546 case X86::VSQRTPDZrkz:
8547 case X86::VSQRTPSZ128m:
8548 case X86::VSQRTPSZ128mb:
8549 case X86::VSQRTPSZ128mbk:
8550 case X86::VSQRTPSZ128mbkz:
8551 case X86::VSQRTPSZ128mk:
8552 case X86::VSQRTPSZ128mkz:
8553 case X86::VSQRTPSZ128r:
8554 case X86::VSQRTPSZ128rk:
8555 case X86::VSQRTPSZ128rkz:
8556 case X86::VSQRTPSZ256m:
8557 case X86::VSQRTPSZ256mb:
8558 case X86::VSQRTPSZ256mbk:
8559 case X86::VSQRTPSZ256mbkz:
8560 case X86::VSQRTPSZ256mk:
8561 case X86::VSQRTPSZ256mkz:
8562 case X86::VSQRTPSZ256r:
8563 case X86::VSQRTPSZ256rk:
8564 case X86::VSQRTPSZ256rkz:
8565 case X86::VSQRTPSZm:
8566 case X86::VSQRTPSZmb:
8567 case X86::VSQRTPSZmbk:
8568 case X86::VSQRTPSZmbkz:
8569 case X86::VSQRTPSZmk:
8570 case X86::VSQRTPSZmkz:
8571 case X86::VSQRTPSZr:
8572 case X86::VSQRTPSZrb:
8573 case X86::VSQRTPSZrbk:
8574 case X86::VSQRTPSZrbkz:
8575 case X86::VSQRTPSZrk:
8576 case X86::VSQRTPSZrkz:
8577 case X86::VSQRTSDZm:
8578 case X86::VSQRTSDZm_Int:
8579 case X86::VSQRTSDZm_Intk:
8580 case X86::VSQRTSDZm_Intkz:
8581 case X86::VSQRTSDZr:
8582 case X86::VSQRTSDZr_Int:
8583 case X86::VSQRTSDZr_Intk:
8584 case X86::VSQRTSDZr_Intkz:
8585 case X86::VSQRTSDZrb_Int:
8586 case X86::VSQRTSDZrb_Intk:
8587 case X86::VSQRTSDZrb_Intkz:
8588 case X86::VSQRTSSZm:
8589 case X86::VSQRTSSZm_Int:
8590 case X86::VSQRTSSZm_Intk:
8591 case X86::VSQRTSSZm_Intkz:
8592 case X86::VSQRTSSZr:
8593 case X86::VSQRTSSZr_Int:
8594 case X86::VSQRTSSZr_Intk:
8595 case X86::VSQRTSSZr_Intkz:
8596 case X86::VSQRTSSZrb_Int:
8597 case X86::VSQRTSSZrb_Intk:
8598 case X86::VSQRTSSZrb_Intkz:
8599
8600 case X86::VGATHERDPDYrm:
8601 case X86::VGATHERDPDZ128rm:
8602 case X86::VGATHERDPDZ256rm:
8603 case X86::VGATHERDPDZrm:
8604 case X86::VGATHERDPDrm:
8605 case X86::VGATHERDPSYrm:
8606 case X86::VGATHERDPSZ128rm:
8607 case X86::VGATHERDPSZ256rm:
8608 case X86::VGATHERDPSZrm:
8609 case X86::VGATHERDPSrm:
8610 case X86::VGATHERPF0DPDm:
8611 case X86::VGATHERPF0DPSm:
8612 case X86::VGATHERPF0QPDm:
8613 case X86::VGATHERPF0QPSm:
8614 case X86::VGATHERPF1DPDm:
8615 case X86::VGATHERPF1DPSm:
8616 case X86::VGATHERPF1QPDm:
8617 case X86::VGATHERPF1QPSm:
8618 case X86::VGATHERQPDYrm:
8619 case X86::VGATHERQPDZ128rm:
8620 case X86::VGATHERQPDZ256rm:
8621 case X86::VGATHERQPDZrm:
8622 case X86::VGATHERQPDrm:
8623 case X86::VGATHERQPSYrm:
8624 case X86::VGATHERQPSZ128rm:
8625 case X86::VGATHERQPSZ256rm:
8626 case X86::VGATHERQPSZrm:
8627 case X86::VGATHERQPSrm:
8628 case X86::VPGATHERDDYrm:
8629 case X86::VPGATHERDDZ128rm:
8630 case X86::VPGATHERDDZ256rm:
8631 case X86::VPGATHERDDZrm:
8632 case X86::VPGATHERDDrm:
8633 case X86::VPGATHERDQYrm:
8634 case X86::VPGATHERDQZ128rm:
8635 case X86::VPGATHERDQZ256rm:
8636 case X86::VPGATHERDQZrm:
8637 case X86::VPGATHERDQrm:
8638 case X86::VPGATHERQDYrm:
8639 case X86::VPGATHERQDZ128rm:
8640 case X86::VPGATHERQDZ256rm:
8641 case X86::VPGATHERQDZrm:
8642 case X86::VPGATHERQDrm:
8643 case X86::VPGATHERQQYrm:
8644 case X86::VPGATHERQQZ128rm:
8645 case X86::VPGATHERQQZ256rm:
8646 case X86::VPGATHERQQZrm:
8647 case X86::VPGATHERQQrm:
8648 case X86::VSCATTERDPDZ128mr:
8649 case X86::VSCATTERDPDZ256mr:
8650 case X86::VSCATTERDPDZmr:
8651 case X86::VSCATTERDPSZ128mr:
8652 case X86::VSCATTERDPSZ256mr:
8653 case X86::VSCATTERDPSZmr:
8654 case X86::VSCATTERPF0DPDm:
8655 case X86::VSCATTERPF0DPSm:
8656 case X86::VSCATTERPF0QPDm:
8657 case X86::VSCATTERPF0QPSm:
8658 case X86::VSCATTERPF1DPDm:
8659 case X86::VSCATTERPF1DPSm:
8660 case X86::VSCATTERPF1QPDm:
8661 case X86::VSCATTERPF1QPSm:
8662 case X86::VSCATTERQPDZ128mr:
8663 case X86::VSCATTERQPDZ256mr:
8664 case X86::VSCATTERQPDZmr:
8665 case X86::VSCATTERQPSZ128mr:
8666 case X86::VSCATTERQPSZ256mr:
8667 case X86::VSCATTERQPSZmr:
8668 case X86::VPSCATTERDDZ128mr:
8669 case X86::VPSCATTERDDZ256mr:
8670 case X86::VPSCATTERDDZmr:
8671 case X86::VPSCATTERDQZ128mr:
8672 case X86::VPSCATTERDQZ256mr:
8673 case X86::VPSCATTERDQZmr:
8674 case X86::VPSCATTERQDZ128mr:
8675 case X86::VPSCATTERQDZ256mr:
8676 case X86::VPSCATTERQDZmr:
8677 case X86::VPSCATTERQQZ128mr:
8678 case X86::VPSCATTERQQZ256mr:
8679 case X86::VPSCATTERQQZmr:
8680 return true;
8681 }
8682 }
8683
hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const8684 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
8685 const MachineRegisterInfo *MRI,
8686 const MachineInstr &DefMI,
8687 unsigned DefIdx,
8688 const MachineInstr &UseMI,
8689 unsigned UseIdx) const {
8690 return isHighLatencyDef(DefMI.getOpcode());
8691 }
8692
hasReassociableOperands(const MachineInstr & Inst,const MachineBasicBlock * MBB) const8693 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
8694 const MachineBasicBlock *MBB) const {
8695 assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
8696 Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
8697
8698 // Integer binary math/logic instructions have a third source operand:
8699 // the EFLAGS register. That operand must be both defined here and never
8700 // used; ie, it must be dead. If the EFLAGS operand is live, then we can
8701 // not change anything because rearranging the operands could affect other
8702 // instructions that depend on the exact status flags (zero, sign, etc.)
8703 // that are set by using these particular operands with this operation.
8704 const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
8705 assert((Inst.getNumDefs() == 1 || FlagDef) &&
8706 "Implicit def isn't flags?");
8707 if (FlagDef && !FlagDef->isDead())
8708 return false;
8709
8710 return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
8711 }
8712
8713 // TODO: There are many more machine instruction opcodes to match:
8714 // 1. Other data types (integer, vectors)
8715 // 2. Other math / logic operations (xor, or)
8716 // 3. Other forms of the same operation (intrinsics and other variants)
isAssociativeAndCommutative(const MachineInstr & Inst,bool Invert) const8717 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst,
8718 bool Invert) const {
8719 if (Invert)
8720 return false;
8721 switch (Inst.getOpcode()) {
8722 case X86::ADD8rr:
8723 case X86::ADD16rr:
8724 case X86::ADD32rr:
8725 case X86::ADD64rr:
8726 case X86::AND8rr:
8727 case X86::AND16rr:
8728 case X86::AND32rr:
8729 case X86::AND64rr:
8730 case X86::OR8rr:
8731 case X86::OR16rr:
8732 case X86::OR32rr:
8733 case X86::OR64rr:
8734 case X86::XOR8rr:
8735 case X86::XOR16rr:
8736 case X86::XOR32rr:
8737 case X86::XOR64rr:
8738 case X86::IMUL16rr:
8739 case X86::IMUL32rr:
8740 case X86::IMUL64rr:
8741 case X86::PANDrr:
8742 case X86::PORrr:
8743 case X86::PXORrr:
8744 case X86::ANDPDrr:
8745 case X86::ANDPSrr:
8746 case X86::ORPDrr:
8747 case X86::ORPSrr:
8748 case X86::XORPDrr:
8749 case X86::XORPSrr:
8750 case X86::PADDBrr:
8751 case X86::PADDWrr:
8752 case X86::PADDDrr:
8753 case X86::PADDQrr:
8754 case X86::PMULLWrr:
8755 case X86::PMULLDrr:
8756 case X86::PMAXSBrr:
8757 case X86::PMAXSDrr:
8758 case X86::PMAXSWrr:
8759 case X86::PMAXUBrr:
8760 case X86::PMAXUDrr:
8761 case X86::PMAXUWrr:
8762 case X86::PMINSBrr:
8763 case X86::PMINSDrr:
8764 case X86::PMINSWrr:
8765 case X86::PMINUBrr:
8766 case X86::PMINUDrr:
8767 case X86::PMINUWrr:
8768 case X86::VPANDrr:
8769 case X86::VPANDYrr:
8770 case X86::VPANDDZ128rr:
8771 case X86::VPANDDZ256rr:
8772 case X86::VPANDDZrr:
8773 case X86::VPANDQZ128rr:
8774 case X86::VPANDQZ256rr:
8775 case X86::VPANDQZrr:
8776 case X86::VPORrr:
8777 case X86::VPORYrr:
8778 case X86::VPORDZ128rr:
8779 case X86::VPORDZ256rr:
8780 case X86::VPORDZrr:
8781 case X86::VPORQZ128rr:
8782 case X86::VPORQZ256rr:
8783 case X86::VPORQZrr:
8784 case X86::VPXORrr:
8785 case X86::VPXORYrr:
8786 case X86::VPXORDZ128rr:
8787 case X86::VPXORDZ256rr:
8788 case X86::VPXORDZrr:
8789 case X86::VPXORQZ128rr:
8790 case X86::VPXORQZ256rr:
8791 case X86::VPXORQZrr:
8792 case X86::VANDPDrr:
8793 case X86::VANDPSrr:
8794 case X86::VANDPDYrr:
8795 case X86::VANDPSYrr:
8796 case X86::VANDPDZ128rr:
8797 case X86::VANDPSZ128rr:
8798 case X86::VANDPDZ256rr:
8799 case X86::VANDPSZ256rr:
8800 case X86::VANDPDZrr:
8801 case X86::VANDPSZrr:
8802 case X86::VORPDrr:
8803 case X86::VORPSrr:
8804 case X86::VORPDYrr:
8805 case X86::VORPSYrr:
8806 case X86::VORPDZ128rr:
8807 case X86::VORPSZ128rr:
8808 case X86::VORPDZ256rr:
8809 case X86::VORPSZ256rr:
8810 case X86::VORPDZrr:
8811 case X86::VORPSZrr:
8812 case X86::VXORPDrr:
8813 case X86::VXORPSrr:
8814 case X86::VXORPDYrr:
8815 case X86::VXORPSYrr:
8816 case X86::VXORPDZ128rr:
8817 case X86::VXORPSZ128rr:
8818 case X86::VXORPDZ256rr:
8819 case X86::VXORPSZ256rr:
8820 case X86::VXORPDZrr:
8821 case X86::VXORPSZrr:
8822 case X86::KADDBrr:
8823 case X86::KADDWrr:
8824 case X86::KADDDrr:
8825 case X86::KADDQrr:
8826 case X86::KANDBrr:
8827 case X86::KANDWrr:
8828 case X86::KANDDrr:
8829 case X86::KANDQrr:
8830 case X86::KORBrr:
8831 case X86::KORWrr:
8832 case X86::KORDrr:
8833 case X86::KORQrr:
8834 case X86::KXORBrr:
8835 case X86::KXORWrr:
8836 case X86::KXORDrr:
8837 case X86::KXORQrr:
8838 case X86::VPADDBrr:
8839 case X86::VPADDWrr:
8840 case X86::VPADDDrr:
8841 case X86::VPADDQrr:
8842 case X86::VPADDBYrr:
8843 case X86::VPADDWYrr:
8844 case X86::VPADDDYrr:
8845 case X86::VPADDQYrr:
8846 case X86::VPADDBZ128rr:
8847 case X86::VPADDWZ128rr:
8848 case X86::VPADDDZ128rr:
8849 case X86::VPADDQZ128rr:
8850 case X86::VPADDBZ256rr:
8851 case X86::VPADDWZ256rr:
8852 case X86::VPADDDZ256rr:
8853 case X86::VPADDQZ256rr:
8854 case X86::VPADDBZrr:
8855 case X86::VPADDWZrr:
8856 case X86::VPADDDZrr:
8857 case X86::VPADDQZrr:
8858 case X86::VPMULLWrr:
8859 case X86::VPMULLWYrr:
8860 case X86::VPMULLWZ128rr:
8861 case X86::VPMULLWZ256rr:
8862 case X86::VPMULLWZrr:
8863 case X86::VPMULLDrr:
8864 case X86::VPMULLDYrr:
8865 case X86::VPMULLDZ128rr:
8866 case X86::VPMULLDZ256rr:
8867 case X86::VPMULLDZrr:
8868 case X86::VPMULLQZ128rr:
8869 case X86::VPMULLQZ256rr:
8870 case X86::VPMULLQZrr:
8871 case X86::VPMAXSBrr:
8872 case X86::VPMAXSBYrr:
8873 case X86::VPMAXSBZ128rr:
8874 case X86::VPMAXSBZ256rr:
8875 case X86::VPMAXSBZrr:
8876 case X86::VPMAXSDrr:
8877 case X86::VPMAXSDYrr:
8878 case X86::VPMAXSDZ128rr:
8879 case X86::VPMAXSDZ256rr:
8880 case X86::VPMAXSDZrr:
8881 case X86::VPMAXSQZ128rr:
8882 case X86::VPMAXSQZ256rr:
8883 case X86::VPMAXSQZrr:
8884 case X86::VPMAXSWrr:
8885 case X86::VPMAXSWYrr:
8886 case X86::VPMAXSWZ128rr:
8887 case X86::VPMAXSWZ256rr:
8888 case X86::VPMAXSWZrr:
8889 case X86::VPMAXUBrr:
8890 case X86::VPMAXUBYrr:
8891 case X86::VPMAXUBZ128rr:
8892 case X86::VPMAXUBZ256rr:
8893 case X86::VPMAXUBZrr:
8894 case X86::VPMAXUDrr:
8895 case X86::VPMAXUDYrr:
8896 case X86::VPMAXUDZ128rr:
8897 case X86::VPMAXUDZ256rr:
8898 case X86::VPMAXUDZrr:
8899 case X86::VPMAXUQZ128rr:
8900 case X86::VPMAXUQZ256rr:
8901 case X86::VPMAXUQZrr:
8902 case X86::VPMAXUWrr:
8903 case X86::VPMAXUWYrr:
8904 case X86::VPMAXUWZ128rr:
8905 case X86::VPMAXUWZ256rr:
8906 case X86::VPMAXUWZrr:
8907 case X86::VPMINSBrr:
8908 case X86::VPMINSBYrr:
8909 case X86::VPMINSBZ128rr:
8910 case X86::VPMINSBZ256rr:
8911 case X86::VPMINSBZrr:
8912 case X86::VPMINSDrr:
8913 case X86::VPMINSDYrr:
8914 case X86::VPMINSDZ128rr:
8915 case X86::VPMINSDZ256rr:
8916 case X86::VPMINSDZrr:
8917 case X86::VPMINSQZ128rr:
8918 case X86::VPMINSQZ256rr:
8919 case X86::VPMINSQZrr:
8920 case X86::VPMINSWrr:
8921 case X86::VPMINSWYrr:
8922 case X86::VPMINSWZ128rr:
8923 case X86::VPMINSWZ256rr:
8924 case X86::VPMINSWZrr:
8925 case X86::VPMINUBrr:
8926 case X86::VPMINUBYrr:
8927 case X86::VPMINUBZ128rr:
8928 case X86::VPMINUBZ256rr:
8929 case X86::VPMINUBZrr:
8930 case X86::VPMINUDrr:
8931 case X86::VPMINUDYrr:
8932 case X86::VPMINUDZ128rr:
8933 case X86::VPMINUDZ256rr:
8934 case X86::VPMINUDZrr:
8935 case X86::VPMINUQZ128rr:
8936 case X86::VPMINUQZ256rr:
8937 case X86::VPMINUQZrr:
8938 case X86::VPMINUWrr:
8939 case X86::VPMINUWYrr:
8940 case X86::VPMINUWZ128rr:
8941 case X86::VPMINUWZ256rr:
8942 case X86::VPMINUWZrr:
8943 // Normal min/max instructions are not commutative because of NaN and signed
8944 // zero semantics, but these are. Thus, there's no need to check for global
8945 // relaxed math; the instructions themselves have the properties we need.
8946 case X86::MAXCPDrr:
8947 case X86::MAXCPSrr:
8948 case X86::MAXCSDrr:
8949 case X86::MAXCSSrr:
8950 case X86::MINCPDrr:
8951 case X86::MINCPSrr:
8952 case X86::MINCSDrr:
8953 case X86::MINCSSrr:
8954 case X86::VMAXCPDrr:
8955 case X86::VMAXCPSrr:
8956 case X86::VMAXCPDYrr:
8957 case X86::VMAXCPSYrr:
8958 case X86::VMAXCPDZ128rr:
8959 case X86::VMAXCPSZ128rr:
8960 case X86::VMAXCPDZ256rr:
8961 case X86::VMAXCPSZ256rr:
8962 case X86::VMAXCPDZrr:
8963 case X86::VMAXCPSZrr:
8964 case X86::VMAXCSDrr:
8965 case X86::VMAXCSSrr:
8966 case X86::VMAXCSDZrr:
8967 case X86::VMAXCSSZrr:
8968 case X86::VMINCPDrr:
8969 case X86::VMINCPSrr:
8970 case X86::VMINCPDYrr:
8971 case X86::VMINCPSYrr:
8972 case X86::VMINCPDZ128rr:
8973 case X86::VMINCPSZ128rr:
8974 case X86::VMINCPDZ256rr:
8975 case X86::VMINCPSZ256rr:
8976 case X86::VMINCPDZrr:
8977 case X86::VMINCPSZrr:
8978 case X86::VMINCSDrr:
8979 case X86::VMINCSSrr:
8980 case X86::VMINCSDZrr:
8981 case X86::VMINCSSZrr:
8982 case X86::VMAXCPHZ128rr:
8983 case X86::VMAXCPHZ256rr:
8984 case X86::VMAXCPHZrr:
8985 case X86::VMAXCSHZrr:
8986 case X86::VMINCPHZ128rr:
8987 case X86::VMINCPHZ256rr:
8988 case X86::VMINCPHZrr:
8989 case X86::VMINCSHZrr:
8990 return true;
8991 case X86::ADDPDrr:
8992 case X86::ADDPSrr:
8993 case X86::ADDSDrr:
8994 case X86::ADDSSrr:
8995 case X86::MULPDrr:
8996 case X86::MULPSrr:
8997 case X86::MULSDrr:
8998 case X86::MULSSrr:
8999 case X86::VADDPDrr:
9000 case X86::VADDPSrr:
9001 case X86::VADDPDYrr:
9002 case X86::VADDPSYrr:
9003 case X86::VADDPDZ128rr:
9004 case X86::VADDPSZ128rr:
9005 case X86::VADDPDZ256rr:
9006 case X86::VADDPSZ256rr:
9007 case X86::VADDPDZrr:
9008 case X86::VADDPSZrr:
9009 case X86::VADDSDrr:
9010 case X86::VADDSSrr:
9011 case X86::VADDSDZrr:
9012 case X86::VADDSSZrr:
9013 case X86::VMULPDrr:
9014 case X86::VMULPSrr:
9015 case X86::VMULPDYrr:
9016 case X86::VMULPSYrr:
9017 case X86::VMULPDZ128rr:
9018 case X86::VMULPSZ128rr:
9019 case X86::VMULPDZ256rr:
9020 case X86::VMULPSZ256rr:
9021 case X86::VMULPDZrr:
9022 case X86::VMULPSZrr:
9023 case X86::VMULSDrr:
9024 case X86::VMULSSrr:
9025 case X86::VMULSDZrr:
9026 case X86::VMULSSZrr:
9027 case X86::VADDPHZ128rr:
9028 case X86::VADDPHZ256rr:
9029 case X86::VADDPHZrr:
9030 case X86::VADDSHZrr:
9031 case X86::VMULPHZ128rr:
9032 case X86::VMULPHZ256rr:
9033 case X86::VMULPHZrr:
9034 case X86::VMULSHZrr:
9035 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
9036 Inst.getFlag(MachineInstr::MIFlag::FmNsz);
9037 default:
9038 return false;
9039 }
9040 }
9041
9042 /// If \p DescribedReg overlaps with the MOVrr instruction's destination
9043 /// register then, if possible, describe the value in terms of the source
9044 /// register.
9045 static std::optional<ParamLoadedValue>
describeMOVrrLoadedValue(const MachineInstr & MI,Register DescribedReg,const TargetRegisterInfo * TRI)9046 describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
9047 const TargetRegisterInfo *TRI) {
9048 Register DestReg = MI.getOperand(0).getReg();
9049 Register SrcReg = MI.getOperand(1).getReg();
9050
9051 auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
9052
9053 // If the described register is the destination, just return the source.
9054 if (DestReg == DescribedReg)
9055 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
9056
9057 // If the described register is a sub-register of the destination register,
9058 // then pick out the source register's corresponding sub-register.
9059 if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
9060 Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
9061 return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
9062 }
9063
9064 // The remaining case to consider is when the described register is a
9065 // super-register of the destination register. MOV8rr and MOV16rr does not
9066 // write to any of the other bytes in the register, meaning that we'd have to
9067 // describe the value using a combination of the source register and the
9068 // non-overlapping bits in the described register, which is not currently
9069 // possible.
9070 if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
9071 !TRI->isSuperRegister(DestReg, DescribedReg))
9072 return std::nullopt;
9073
9074 assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
9075 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
9076 }
9077
9078 std::optional<ParamLoadedValue>
describeLoadedValue(const MachineInstr & MI,Register Reg) const9079 X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
9080 const MachineOperand *Op = nullptr;
9081 DIExpression *Expr = nullptr;
9082
9083 const TargetRegisterInfo *TRI = &getRegisterInfo();
9084
9085 switch (MI.getOpcode()) {
9086 case X86::LEA32r:
9087 case X86::LEA64r:
9088 case X86::LEA64_32r: {
9089 // We may need to describe a 64-bit parameter with a 32-bit LEA.
9090 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
9091 return std::nullopt;
9092
9093 // Operand 4 could be global address. For now we do not support
9094 // such situation.
9095 if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
9096 return std::nullopt;
9097
9098 const MachineOperand &Op1 = MI.getOperand(1);
9099 const MachineOperand &Op2 = MI.getOperand(3);
9100 assert(Op2.isReg() &&
9101 (Op2.getReg() == X86::NoRegister || Op2.getReg().isPhysical()));
9102
9103 // Omit situations like:
9104 // %rsi = lea %rsi, 4, ...
9105 if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
9106 Op2.getReg() == MI.getOperand(0).getReg())
9107 return std::nullopt;
9108 else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
9109 TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
9110 (Op2.getReg() != X86::NoRegister &&
9111 TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
9112 return std::nullopt;
9113
9114 int64_t Coef = MI.getOperand(2).getImm();
9115 int64_t Offset = MI.getOperand(4).getImm();
9116 SmallVector<uint64_t, 8> Ops;
9117
9118 if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
9119 Op = &Op1;
9120 } else if (Op1.isFI())
9121 Op = &Op1;
9122
9123 if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
9124 Ops.push_back(dwarf::DW_OP_constu);
9125 Ops.push_back(Coef + 1);
9126 Ops.push_back(dwarf::DW_OP_mul);
9127 } else {
9128 if (Op && Op2.getReg() != X86::NoRegister) {
9129 int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
9130 if (dwarfReg < 0)
9131 return std::nullopt;
9132 else if (dwarfReg < 32) {
9133 Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
9134 Ops.push_back(0);
9135 } else {
9136 Ops.push_back(dwarf::DW_OP_bregx);
9137 Ops.push_back(dwarfReg);
9138 Ops.push_back(0);
9139 }
9140 } else if (!Op) {
9141 assert(Op2.getReg() != X86::NoRegister);
9142 Op = &Op2;
9143 }
9144
9145 if (Coef > 1) {
9146 assert(Op2.getReg() != X86::NoRegister);
9147 Ops.push_back(dwarf::DW_OP_constu);
9148 Ops.push_back(Coef);
9149 Ops.push_back(dwarf::DW_OP_mul);
9150 }
9151
9152 if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
9153 Op2.getReg() != X86::NoRegister) {
9154 Ops.push_back(dwarf::DW_OP_plus);
9155 }
9156 }
9157
9158 DIExpression::appendOffset(Ops, Offset);
9159 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
9160
9161 return ParamLoadedValue(*Op, Expr);;
9162 }
9163 case X86::MOV8ri:
9164 case X86::MOV16ri:
9165 // TODO: Handle MOV8ri and MOV16ri.
9166 return std::nullopt;
9167 case X86::MOV32ri:
9168 case X86::MOV64ri:
9169 case X86::MOV64ri32:
9170 // MOV32ri may be used for producing zero-extended 32-bit immediates in
9171 // 64-bit parameters, so we need to consider super-registers.
9172 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
9173 return std::nullopt;
9174 return ParamLoadedValue(MI.getOperand(1), Expr);
9175 case X86::MOV8rr:
9176 case X86::MOV16rr:
9177 case X86::MOV32rr:
9178 case X86::MOV64rr:
9179 return describeMOVrrLoadedValue(MI, Reg, TRI);
9180 case X86::XOR32rr: {
9181 // 64-bit parameters are zero-materialized using XOR32rr, so also consider
9182 // super-registers.
9183 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
9184 return std::nullopt;
9185 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
9186 return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
9187 return std::nullopt;
9188 }
9189 case X86::MOVSX64rr32: {
9190 // We may need to describe the lower 32 bits of the MOVSX; for example, in
9191 // cases like this:
9192 //
9193 // $ebx = [...]
9194 // $rdi = MOVSX64rr32 $ebx
9195 // $esi = MOV32rr $edi
9196 if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
9197 return std::nullopt;
9198
9199 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
9200
9201 // If the described register is the destination register we need to
9202 // sign-extend the source register from 32 bits. The other case we handle
9203 // is when the described register is the 32-bit sub-register of the
9204 // destination register, in case we just need to return the source
9205 // register.
9206 if (Reg == MI.getOperand(0).getReg())
9207 Expr = DIExpression::appendExt(Expr, 32, 64, true);
9208 else
9209 assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
9210 "Unhandled sub-register case for MOVSX64rr32");
9211
9212 return ParamLoadedValue(MI.getOperand(1), Expr);
9213 }
9214 default:
9215 assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
9216 return TargetInstrInfo::describeLoadedValue(MI, Reg);
9217 }
9218 }
9219
9220 /// This is an architecture-specific helper function of reassociateOps.
9221 /// Set special operand attributes for new instructions after reassociation.
setSpecialOperandAttr(MachineInstr & OldMI1,MachineInstr & OldMI2,MachineInstr & NewMI1,MachineInstr & NewMI2) const9222 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
9223 MachineInstr &OldMI2,
9224 MachineInstr &NewMI1,
9225 MachineInstr &NewMI2) const {
9226 // Propagate FP flags from the original instructions.
9227 // But clear poison-generating flags because those may not be valid now.
9228 // TODO: There should be a helper function for copying only fast-math-flags.
9229 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
9230 NewMI1.setFlags(IntersectedFlags);
9231 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
9232 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
9233 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
9234
9235 NewMI2.setFlags(IntersectedFlags);
9236 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
9237 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
9238 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
9239
9240 // Integer instructions may define an implicit EFLAGS dest register operand.
9241 MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
9242 MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
9243
9244 assert(!OldFlagDef1 == !OldFlagDef2 &&
9245 "Unexpected instruction type for reassociation");
9246
9247 if (!OldFlagDef1 || !OldFlagDef2)
9248 return;
9249
9250 assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
9251 "Must have dead EFLAGS operand in reassociable instruction");
9252
9253 MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
9254 MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
9255
9256 assert(NewFlagDef1 && NewFlagDef2 &&
9257 "Unexpected operand in reassociable instruction");
9258
9259 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
9260 // of this pass or other passes. The EFLAGS operands must be dead in these new
9261 // instructions because the EFLAGS operands in the original instructions must
9262 // be dead in order for reassociation to occur.
9263 NewFlagDef1->setIsDead();
9264 NewFlagDef2->setIsDead();
9265 }
9266
9267 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const9268 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
9269 return std::make_pair(TF, 0u);
9270 }
9271
9272 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const9273 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
9274 using namespace X86II;
9275 static const std::pair<unsigned, const char *> TargetFlags[] = {
9276 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
9277 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
9278 {MO_GOT, "x86-got"},
9279 {MO_GOTOFF, "x86-gotoff"},
9280 {MO_GOTPCREL, "x86-gotpcrel"},
9281 {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"},
9282 {MO_PLT, "x86-plt"},
9283 {MO_TLSGD, "x86-tlsgd"},
9284 {MO_TLSLD, "x86-tlsld"},
9285 {MO_TLSLDM, "x86-tlsldm"},
9286 {MO_GOTTPOFF, "x86-gottpoff"},
9287 {MO_INDNTPOFF, "x86-indntpoff"},
9288 {MO_TPOFF, "x86-tpoff"},
9289 {MO_DTPOFF, "x86-dtpoff"},
9290 {MO_NTPOFF, "x86-ntpoff"},
9291 {MO_GOTNTPOFF, "x86-gotntpoff"},
9292 {MO_DLLIMPORT, "x86-dllimport"},
9293 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
9294 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
9295 {MO_TLVP, "x86-tlvp"},
9296 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
9297 {MO_SECREL, "x86-secrel"},
9298 {MO_COFFSTUB, "x86-coffstub"}};
9299 return ArrayRef(TargetFlags);
9300 }
9301
9302 namespace {
9303 /// Create Global Base Reg pass. This initializes the PIC
9304 /// global base register for x86-32.
9305 struct CGBR : public MachineFunctionPass {
9306 static char ID;
CGBR__anon2b53b08a0611::CGBR9307 CGBR() : MachineFunctionPass(ID) {}
9308
runOnMachineFunction__anon2b53b08a0611::CGBR9309 bool runOnMachineFunction(MachineFunction &MF) override {
9310 const X86TargetMachine *TM =
9311 static_cast<const X86TargetMachine *>(&MF.getTarget());
9312 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
9313
9314 // Don't do anything in the 64-bit small and kernel code models. They use
9315 // RIP-relative addressing for everything.
9316 if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
9317 TM->getCodeModel() == CodeModel::Kernel))
9318 return false;
9319
9320 // Only emit a global base reg in PIC mode.
9321 if (!TM->isPositionIndependent())
9322 return false;
9323
9324 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
9325 Register GlobalBaseReg = X86FI->getGlobalBaseReg();
9326
9327 // If we didn't need a GlobalBaseReg, don't insert code.
9328 if (GlobalBaseReg == 0)
9329 return false;
9330
9331 // Insert the set of GlobalBaseReg into the first MBB of the function
9332 MachineBasicBlock &FirstMBB = MF.front();
9333 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
9334 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
9335 MachineRegisterInfo &RegInfo = MF.getRegInfo();
9336 const X86InstrInfo *TII = STI.getInstrInfo();
9337
9338 Register PC;
9339 if (STI.isPICStyleGOT())
9340 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
9341 else
9342 PC = GlobalBaseReg;
9343
9344 if (STI.is64Bit()) {
9345 if (TM->getCodeModel() == CodeModel::Medium) {
9346 // In the medium code model, use a RIP-relative LEA to materialize the
9347 // GOT.
9348 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
9349 .addReg(X86::RIP)
9350 .addImm(0)
9351 .addReg(0)
9352 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
9353 .addReg(0);
9354 } else if (TM->getCodeModel() == CodeModel::Large) {
9355 // In the large code model, we are aiming for this code, though the
9356 // register allocation may vary:
9357 // leaq .LN$pb(%rip), %rax
9358 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
9359 // addq %rcx, %rax
9360 // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
9361 Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
9362 Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
9363 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
9364 .addReg(X86::RIP)
9365 .addImm(0)
9366 .addReg(0)
9367 .addSym(MF.getPICBaseSymbol())
9368 .addReg(0);
9369 std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
9370 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
9371 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
9372 X86II::MO_PIC_BASE_OFFSET);
9373 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
9374 .addReg(PBReg, RegState::Kill)
9375 .addReg(GOTReg, RegState::Kill);
9376 } else {
9377 llvm_unreachable("unexpected code model");
9378 }
9379 } else {
9380 // Operand of MovePCtoStack is completely ignored by asm printer. It's
9381 // only used in JIT code emission as displacement to pc.
9382 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
9383
9384 // If we're using vanilla 'GOT' PIC style, we should use relative
9385 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
9386 if (STI.isPICStyleGOT()) {
9387 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
9388 // %some_register
9389 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
9390 .addReg(PC)
9391 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
9392 X86II::MO_GOT_ABSOLUTE_ADDRESS);
9393 }
9394 }
9395
9396 return true;
9397 }
9398
getPassName__anon2b53b08a0611::CGBR9399 StringRef getPassName() const override {
9400 return "X86 PIC Global Base Reg Initialization";
9401 }
9402
getAnalysisUsage__anon2b53b08a0611::CGBR9403 void getAnalysisUsage(AnalysisUsage &AU) const override {
9404 AU.setPreservesCFG();
9405 MachineFunctionPass::getAnalysisUsage(AU);
9406 }
9407 };
9408 } // namespace
9409
9410 char CGBR::ID = 0;
9411 FunctionPass*
createX86GlobalBaseRegPass()9412 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
9413
9414 namespace {
9415 struct LDTLSCleanup : public MachineFunctionPass {
9416 static char ID;
LDTLSCleanup__anon2b53b08a0711::LDTLSCleanup9417 LDTLSCleanup() : MachineFunctionPass(ID) {}
9418
runOnMachineFunction__anon2b53b08a0711::LDTLSCleanup9419 bool runOnMachineFunction(MachineFunction &MF) override {
9420 if (skipFunction(MF.getFunction()))
9421 return false;
9422
9423 X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
9424 if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
9425 // No point folding accesses if there isn't at least two.
9426 return false;
9427 }
9428
9429 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
9430 return VisitNode(DT->getRootNode(), 0);
9431 }
9432
9433 // Visit the dominator subtree rooted at Node in pre-order.
9434 // If TLSBaseAddrReg is non-null, then use that to replace any
9435 // TLS_base_addr instructions. Otherwise, create the register
9436 // when the first such instruction is seen, and then use it
9437 // as we encounter more instructions.
VisitNode__anon2b53b08a0711::LDTLSCleanup9438 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
9439 MachineBasicBlock *BB = Node->getBlock();
9440 bool Changed = false;
9441
9442 // Traverse the current block.
9443 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
9444 ++I) {
9445 switch (I->getOpcode()) {
9446 case X86::TLS_base_addr32:
9447 case X86::TLS_base_addr64:
9448 if (TLSBaseAddrReg)
9449 I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
9450 else
9451 I = SetRegister(*I, &TLSBaseAddrReg);
9452 Changed = true;
9453 break;
9454 default:
9455 break;
9456 }
9457 }
9458
9459 // Visit the children of this block in the dominator tree.
9460 for (auto &I : *Node) {
9461 Changed |= VisitNode(I, TLSBaseAddrReg);
9462 }
9463
9464 return Changed;
9465 }
9466
9467 // Replace the TLS_base_addr instruction I with a copy from
9468 // TLSBaseAddrReg, returning the new instruction.
ReplaceTLSBaseAddrCall__anon2b53b08a0711::LDTLSCleanup9469 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
9470 unsigned TLSBaseAddrReg) {
9471 MachineFunction *MF = I.getParent()->getParent();
9472 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
9473 const bool is64Bit = STI.is64Bit();
9474 const X86InstrInfo *TII = STI.getInstrInfo();
9475
9476 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
9477 MachineInstr *Copy =
9478 BuildMI(*I.getParent(), I, I.getDebugLoc(),
9479 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
9480 .addReg(TLSBaseAddrReg);
9481
9482 // Erase the TLS_base_addr instruction.
9483 I.eraseFromParent();
9484
9485 return Copy;
9486 }
9487
9488 // Create a virtual register in *TLSBaseAddrReg, and populate it by
9489 // inserting a copy instruction after I. Returns the new instruction.
SetRegister__anon2b53b08a0711::LDTLSCleanup9490 MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
9491 MachineFunction *MF = I.getParent()->getParent();
9492 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
9493 const bool is64Bit = STI.is64Bit();
9494 const X86InstrInfo *TII = STI.getInstrInfo();
9495
9496 // Create a virtual register for the TLS base address.
9497 MachineRegisterInfo &RegInfo = MF->getRegInfo();
9498 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
9499 ? &X86::GR64RegClass
9500 : &X86::GR32RegClass);
9501
9502 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
9503 MachineInstr *Next = I.getNextNode();
9504 MachineInstr *Copy =
9505 BuildMI(*I.getParent(), Next, I.getDebugLoc(),
9506 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
9507 .addReg(is64Bit ? X86::RAX : X86::EAX);
9508
9509 return Copy;
9510 }
9511
getPassName__anon2b53b08a0711::LDTLSCleanup9512 StringRef getPassName() const override {
9513 return "Local Dynamic TLS Access Clean-up";
9514 }
9515
getAnalysisUsage__anon2b53b08a0711::LDTLSCleanup9516 void getAnalysisUsage(AnalysisUsage &AU) const override {
9517 AU.setPreservesCFG();
9518 AU.addRequired<MachineDominatorTree>();
9519 MachineFunctionPass::getAnalysisUsage(AU);
9520 }
9521 };
9522 }
9523
9524 char LDTLSCleanup::ID = 0;
9525 FunctionPass*
createCleanupLocalDynamicTLSPass()9526 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
9527
9528 /// Constants defining how certain sequences should be outlined.
9529 ///
9530 /// \p MachineOutlinerDefault implies that the function is called with a call
9531 /// instruction, and a return must be emitted for the outlined function frame.
9532 ///
9533 /// That is,
9534 ///
9535 /// I1 OUTLINED_FUNCTION:
9536 /// I2 --> call OUTLINED_FUNCTION I1
9537 /// I3 I2
9538 /// I3
9539 /// ret
9540 ///
9541 /// * Call construction overhead: 1 (call instruction)
9542 /// * Frame construction overhead: 1 (return instruction)
9543 ///
9544 /// \p MachineOutlinerTailCall implies that the function is being tail called.
9545 /// A jump is emitted instead of a call, and the return is already present in
9546 /// the outlined sequence. That is,
9547 ///
9548 /// I1 OUTLINED_FUNCTION:
9549 /// I2 --> jmp OUTLINED_FUNCTION I1
9550 /// ret I2
9551 /// ret
9552 ///
9553 /// * Call construction overhead: 1 (jump instruction)
9554 /// * Frame construction overhead: 0 (don't need to return)
9555 ///
9556 enum MachineOutlinerClass {
9557 MachineOutlinerDefault,
9558 MachineOutlinerTailCall
9559 };
9560
getOutliningCandidateInfo(std::vector<outliner::Candidate> & RepeatedSequenceLocs) const9561 outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
9562 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
9563 unsigned SequenceSize =
9564 std::accumulate(RepeatedSequenceLocs[0].front(),
9565 std::next(RepeatedSequenceLocs[0].back()), 0,
9566 [](unsigned Sum, const MachineInstr &MI) {
9567 // FIXME: x86 doesn't implement getInstSizeInBytes, so
9568 // we can't tell the cost. Just assume each instruction
9569 // is one byte.
9570 if (MI.isDebugInstr() || MI.isKill())
9571 return Sum;
9572 return Sum + 1;
9573 });
9574
9575 // We check to see if CFI Instructions are present, and if they are
9576 // we find the number of CFI Instructions in the candidates.
9577 unsigned CFICount = 0;
9578 for (auto &I : make_range(RepeatedSequenceLocs[0].front(),
9579 std::next(RepeatedSequenceLocs[0].back()))) {
9580 if (I.isCFIInstruction())
9581 CFICount++;
9582 }
9583
9584 // We compare the number of found CFI Instructions to the number of CFI
9585 // instructions in the parent function for each candidate. We must check this
9586 // since if we outline one of the CFI instructions in a function, we have to
9587 // outline them all for correctness. If we do not, the address offsets will be
9588 // incorrect between the two sections of the program.
9589 for (outliner::Candidate &C : RepeatedSequenceLocs) {
9590 std::vector<MCCFIInstruction> CFIInstructions =
9591 C.getMF()->getFrameInstructions();
9592
9593 if (CFICount > 0 && CFICount != CFIInstructions.size())
9594 return outliner::OutlinedFunction();
9595 }
9596
9597 // FIXME: Use real size in bytes for call and ret instructions.
9598 if (RepeatedSequenceLocs[0].back()->isTerminator()) {
9599 for (outliner::Candidate &C : RepeatedSequenceLocs)
9600 C.setCallInfo(MachineOutlinerTailCall, 1);
9601
9602 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
9603 0, // Number of bytes to emit frame.
9604 MachineOutlinerTailCall // Type of frame.
9605 );
9606 }
9607
9608 if (CFICount > 0)
9609 return outliner::OutlinedFunction();
9610
9611 for (outliner::Candidate &C : RepeatedSequenceLocs)
9612 C.setCallInfo(MachineOutlinerDefault, 1);
9613
9614 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
9615 MachineOutlinerDefault);
9616 }
9617
isFunctionSafeToOutlineFrom(MachineFunction & MF,bool OutlineFromLinkOnceODRs) const9618 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
9619 bool OutlineFromLinkOnceODRs) const {
9620 const Function &F = MF.getFunction();
9621
9622 // Does the function use a red zone? If it does, then we can't risk messing
9623 // with the stack.
9624 if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
9625 // It could have a red zone. If it does, then we don't want to touch it.
9626 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
9627 if (!X86FI || X86FI->getUsesRedZone())
9628 return false;
9629 }
9630
9631 // If we *don't* want to outline from things that could potentially be deduped
9632 // then return false.
9633 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
9634 return false;
9635
9636 // This function is viable for outlining, so return true.
9637 return true;
9638 }
9639
9640 outliner::InstrType
getOutliningType(MachineBasicBlock::iterator & MIT,unsigned Flags) const9641 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
9642 MachineInstr &MI = *MIT;
9643 // Don't allow debug values to impact outlining type.
9644 if (MI.isDebugInstr() || MI.isIndirectDebugValue())
9645 return outliner::InstrType::Invisible;
9646
9647 // At this point, KILL instructions don't really tell us much so we can go
9648 // ahead and skip over them.
9649 if (MI.isKill())
9650 return outliner::InstrType::Invisible;
9651
9652 // Is this a tail call? If yes, we can outline as a tail call.
9653 if (isTailCall(MI))
9654 return outliner::InstrType::Legal;
9655
9656 // Is this the terminator of a basic block?
9657 if (MI.isTerminator() || MI.isReturn()) {
9658
9659 // Does its parent have any successors in its MachineFunction?
9660 if (MI.getParent()->succ_empty())
9661 return outliner::InstrType::Legal;
9662
9663 // It does, so we can't tail call it.
9664 return outliner::InstrType::Illegal;
9665 }
9666
9667 // Don't outline anything that modifies or reads from the stack pointer.
9668 //
9669 // FIXME: There are instructions which are being manually built without
9670 // explicit uses/defs so we also have to check the MCInstrDesc. We should be
9671 // able to remove the extra checks once those are fixed up. For example,
9672 // sometimes we might get something like %rax = POP64r 1. This won't be
9673 // caught by modifiesRegister or readsRegister even though the instruction
9674 // really ought to be formed so that modifiesRegister/readsRegister would
9675 // catch it.
9676 if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
9677 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
9678 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
9679 return outliner::InstrType::Illegal;
9680
9681 // Outlined calls change the instruction pointer, so don't read from it.
9682 if (MI.readsRegister(X86::RIP, &RI) ||
9683 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
9684 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
9685 return outliner::InstrType::Illegal;
9686
9687 // Positions can't safely be outlined.
9688 if (MI.isPosition())
9689 return outliner::InstrType::Illegal;
9690
9691 // Make sure none of the operands of this instruction do anything tricky.
9692 for (const MachineOperand &MOP : MI.operands())
9693 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
9694 MOP.isTargetIndex())
9695 return outliner::InstrType::Illegal;
9696
9697 return outliner::InstrType::Legal;
9698 }
9699
buildOutlinedFrame(MachineBasicBlock & MBB,MachineFunction & MF,const outliner::OutlinedFunction & OF) const9700 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
9701 MachineFunction &MF,
9702 const outliner::OutlinedFunction &OF)
9703 const {
9704 // If we're a tail call, we already have a return, so don't do anything.
9705 if (OF.FrameConstructionID == MachineOutlinerTailCall)
9706 return;
9707
9708 // We're a normal call, so our sequence doesn't have a return instruction.
9709 // Add it in.
9710 MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64));
9711 MBB.insert(MBB.end(), retq);
9712 }
9713
9714 MachineBasicBlock::iterator
insertOutlinedCall(Module & M,MachineBasicBlock & MBB,MachineBasicBlock::iterator & It,MachineFunction & MF,outliner::Candidate & C) const9715 X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
9716 MachineBasicBlock::iterator &It,
9717 MachineFunction &MF,
9718 outliner::Candidate &C) const {
9719 // Is it a tail call?
9720 if (C.CallConstructionID == MachineOutlinerTailCall) {
9721 // Yes, just insert a JMP.
9722 It = MBB.insert(It,
9723 BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
9724 .addGlobalAddress(M.getNamedValue(MF.getName())));
9725 } else {
9726 // No, insert a call.
9727 It = MBB.insert(It,
9728 BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
9729 .addGlobalAddress(M.getNamedValue(MF.getName())));
9730 }
9731
9732 return It;
9733 }
9734
9735 #define GET_INSTRINFO_HELPERS
9736 #include "X86GenInstrInfo.inc"
9737