1 //===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===/
7 //
8 // This file implements C++ template instantiation for declarations.
9 //
10 //===----------------------------------------------------------------------===/
11
12 #include "TreeTransform.h"
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTMutationListener.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/DeclVisitor.h"
18 #include "clang/AST/DependentDiagnostic.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/PrettyDeclStackTrace.h"
22 #include "clang/AST/TypeLoc.h"
23 #include "clang/Basic/SourceManager.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Sema/Initialization.h"
26 #include "clang/Sema/Lookup.h"
27 #include "clang/Sema/ScopeInfo.h"
28 #include "clang/Sema/SemaInternal.h"
29 #include "clang/Sema/Template.h"
30 #include "clang/Sema/TemplateInstCallback.h"
31 #include "llvm/Support/TimeProfiler.h"
32 #include <optional>
33
34 using namespace clang;
35
isDeclWithinFunction(const Decl * D)36 static bool isDeclWithinFunction(const Decl *D) {
37 const DeclContext *DC = D->getDeclContext();
38 if (DC->isFunctionOrMethod())
39 return true;
40
41 if (DC->isRecord())
42 return cast<CXXRecordDecl>(DC)->isLocalClass();
43
44 return false;
45 }
46
47 template<typename DeclT>
SubstQualifier(Sema & SemaRef,const DeclT * OldDecl,DeclT * NewDecl,const MultiLevelTemplateArgumentList & TemplateArgs)48 static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl,
49 const MultiLevelTemplateArgumentList &TemplateArgs) {
50 if (!OldDecl->getQualifierLoc())
51 return false;
52
53 assert((NewDecl->getFriendObjectKind() ||
54 !OldDecl->getLexicalDeclContext()->isDependentContext()) &&
55 "non-friend with qualified name defined in dependent context");
56 Sema::ContextRAII SavedContext(
57 SemaRef,
58 const_cast<DeclContext *>(NewDecl->getFriendObjectKind()
59 ? NewDecl->getLexicalDeclContext()
60 : OldDecl->getLexicalDeclContext()));
61
62 NestedNameSpecifierLoc NewQualifierLoc
63 = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(),
64 TemplateArgs);
65
66 if (!NewQualifierLoc)
67 return true;
68
69 NewDecl->setQualifierInfo(NewQualifierLoc);
70 return false;
71 }
72
SubstQualifier(const DeclaratorDecl * OldDecl,DeclaratorDecl * NewDecl)73 bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl,
74 DeclaratorDecl *NewDecl) {
75 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
76 }
77
SubstQualifier(const TagDecl * OldDecl,TagDecl * NewDecl)78 bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl,
79 TagDecl *NewDecl) {
80 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
81 }
82
83 // Include attribute instantiation code.
84 #include "clang/Sema/AttrTemplateInstantiate.inc"
85
instantiateDependentAlignedAttr(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,const AlignedAttr * Aligned,Decl * New,bool IsPackExpansion)86 static void instantiateDependentAlignedAttr(
87 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
88 const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) {
89 if (Aligned->isAlignmentExpr()) {
90 // The alignment expression is a constant expression.
91 EnterExpressionEvaluationContext Unevaluated(
92 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
93 ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs);
94 if (!Result.isInvalid())
95 S.AddAlignedAttr(New, *Aligned, Result.getAs<Expr>(), IsPackExpansion);
96 } else {
97 TypeSourceInfo *Result = S.SubstType(Aligned->getAlignmentType(),
98 TemplateArgs, Aligned->getLocation(),
99 DeclarationName());
100 if (Result)
101 S.AddAlignedAttr(New, *Aligned, Result, IsPackExpansion);
102 }
103 }
104
instantiateDependentAlignedAttr(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,const AlignedAttr * Aligned,Decl * New)105 static void instantiateDependentAlignedAttr(
106 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
107 const AlignedAttr *Aligned, Decl *New) {
108 if (!Aligned->isPackExpansion()) {
109 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
110 return;
111 }
112
113 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
114 if (Aligned->isAlignmentExpr())
115 S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(),
116 Unexpanded);
117 else
118 S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(),
119 Unexpanded);
120 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
121
122 // Determine whether we can expand this attribute pack yet.
123 bool Expand = true, RetainExpansion = false;
124 std::optional<unsigned> NumExpansions;
125 // FIXME: Use the actual location of the ellipsis.
126 SourceLocation EllipsisLoc = Aligned->getLocation();
127 if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(),
128 Unexpanded, TemplateArgs, Expand,
129 RetainExpansion, NumExpansions))
130 return;
131
132 if (!Expand) {
133 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1);
134 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true);
135 } else {
136 for (unsigned I = 0; I != *NumExpansions; ++I) {
137 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I);
138 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
139 }
140 }
141 }
142
instantiateDependentAssumeAlignedAttr(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,const AssumeAlignedAttr * Aligned,Decl * New)143 static void instantiateDependentAssumeAlignedAttr(
144 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
145 const AssumeAlignedAttr *Aligned, Decl *New) {
146 // The alignment expression is a constant expression.
147 EnterExpressionEvaluationContext Unevaluated(
148 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
149
150 Expr *E, *OE = nullptr;
151 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs);
152 if (Result.isInvalid())
153 return;
154 E = Result.getAs<Expr>();
155
156 if (Aligned->getOffset()) {
157 Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs);
158 if (Result.isInvalid())
159 return;
160 OE = Result.getAs<Expr>();
161 }
162
163 S.AddAssumeAlignedAttr(New, *Aligned, E, OE);
164 }
165
instantiateDependentAlignValueAttr(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,const AlignValueAttr * Aligned,Decl * New)166 static void instantiateDependentAlignValueAttr(
167 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
168 const AlignValueAttr *Aligned, Decl *New) {
169 // The alignment expression is a constant expression.
170 EnterExpressionEvaluationContext Unevaluated(
171 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
172 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs);
173 if (!Result.isInvalid())
174 S.AddAlignValueAttr(New, *Aligned, Result.getAs<Expr>());
175 }
176
instantiateDependentAllocAlignAttr(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,const AllocAlignAttr * Align,Decl * New)177 static void instantiateDependentAllocAlignAttr(
178 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
179 const AllocAlignAttr *Align, Decl *New) {
180 Expr *Param = IntegerLiteral::Create(
181 S.getASTContext(),
182 llvm::APInt(64, Align->getParamIndex().getSourceIndex()),
183 S.getASTContext().UnsignedLongLongTy, Align->getLocation());
184 S.AddAllocAlignAttr(New, *Align, Param);
185 }
186
instantiateDependentAnnotationAttr(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,const AnnotateAttr * Attr,Decl * New)187 static void instantiateDependentAnnotationAttr(
188 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
189 const AnnotateAttr *Attr, Decl *New) {
190 EnterExpressionEvaluationContext Unevaluated(
191 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
192
193 // If the attribute has delayed arguments it will have to instantiate those
194 // and handle them as new arguments for the attribute.
195 bool HasDelayedArgs = Attr->delayedArgs_size();
196
197 ArrayRef<Expr *> ArgsToInstantiate =
198 HasDelayedArgs
199 ? ArrayRef<Expr *>{Attr->delayedArgs_begin(), Attr->delayedArgs_end()}
200 : ArrayRef<Expr *>{Attr->args_begin(), Attr->args_end()};
201
202 SmallVector<Expr *, 4> Args;
203 if (S.SubstExprs(ArgsToInstantiate,
204 /*IsCall=*/false, TemplateArgs, Args))
205 return;
206
207 StringRef Str = Attr->getAnnotation();
208 if (HasDelayedArgs) {
209 if (Args.size() < 1) {
210 S.Diag(Attr->getLoc(), diag::err_attribute_too_few_arguments)
211 << Attr << 1;
212 return;
213 }
214
215 if (!S.checkStringLiteralArgumentAttr(*Attr, Args[0], Str))
216 return;
217
218 llvm::SmallVector<Expr *, 4> ActualArgs;
219 ActualArgs.insert(ActualArgs.begin(), Args.begin() + 1, Args.end());
220 std::swap(Args, ActualArgs);
221 }
222 S.AddAnnotationAttr(New, *Attr, Str, Args);
223 }
224
instantiateDependentFunctionAttrCondition(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,const Attr * A,Expr * OldCond,const Decl * Tmpl,FunctionDecl * New)225 static Expr *instantiateDependentFunctionAttrCondition(
226 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
227 const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) {
228 Expr *Cond = nullptr;
229 {
230 Sema::ContextRAII SwitchContext(S, New);
231 EnterExpressionEvaluationContext Unevaluated(
232 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
233 ExprResult Result = S.SubstExpr(OldCond, TemplateArgs);
234 if (Result.isInvalid())
235 return nullptr;
236 Cond = Result.getAs<Expr>();
237 }
238 if (!Cond->isTypeDependent()) {
239 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
240 if (Converted.isInvalid())
241 return nullptr;
242 Cond = Converted.get();
243 }
244
245 SmallVector<PartialDiagnosticAt, 8> Diags;
246 if (OldCond->isValueDependent() && !Cond->isValueDependent() &&
247 !Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) {
248 S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A;
249 for (const auto &P : Diags)
250 S.Diag(P.first, P.second);
251 return nullptr;
252 }
253 return Cond;
254 }
255
instantiateDependentEnableIfAttr(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,const EnableIfAttr * EIA,const Decl * Tmpl,FunctionDecl * New)256 static void instantiateDependentEnableIfAttr(
257 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
258 const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) {
259 Expr *Cond = instantiateDependentFunctionAttrCondition(
260 S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New);
261
262 if (Cond)
263 New->addAttr(new (S.getASTContext()) EnableIfAttr(S.getASTContext(), *EIA,
264 Cond, EIA->getMessage()));
265 }
266
instantiateDependentDiagnoseIfAttr(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,const DiagnoseIfAttr * DIA,const Decl * Tmpl,FunctionDecl * New)267 static void instantiateDependentDiagnoseIfAttr(
268 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
269 const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) {
270 Expr *Cond = instantiateDependentFunctionAttrCondition(
271 S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New);
272
273 if (Cond)
274 New->addAttr(new (S.getASTContext()) DiagnoseIfAttr(
275 S.getASTContext(), *DIA, Cond, DIA->getMessage(),
276 DIA->getDiagnosticType(), DIA->getArgDependent(), New));
277 }
278
279 // Constructs and adds to New a new instance of CUDALaunchBoundsAttr using
280 // template A as the base and arguments from TemplateArgs.
instantiateDependentCUDALaunchBoundsAttr(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,const CUDALaunchBoundsAttr & Attr,Decl * New)281 static void instantiateDependentCUDALaunchBoundsAttr(
282 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
283 const CUDALaunchBoundsAttr &Attr, Decl *New) {
284 // The alignment expression is a constant expression.
285 EnterExpressionEvaluationContext Unevaluated(
286 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
287
288 ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs);
289 if (Result.isInvalid())
290 return;
291 Expr *MaxThreads = Result.getAs<Expr>();
292
293 Expr *MinBlocks = nullptr;
294 if (Attr.getMinBlocks()) {
295 Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs);
296 if (Result.isInvalid())
297 return;
298 MinBlocks = Result.getAs<Expr>();
299 }
300
301 S.AddLaunchBoundsAttr(New, Attr, MaxThreads, MinBlocks);
302 }
303
304 static void
instantiateDependentModeAttr(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,const ModeAttr & Attr,Decl * New)305 instantiateDependentModeAttr(Sema &S,
306 const MultiLevelTemplateArgumentList &TemplateArgs,
307 const ModeAttr &Attr, Decl *New) {
308 S.AddModeAttr(New, Attr, Attr.getMode(),
309 /*InInstantiation=*/true);
310 }
311
312 /// Instantiation of 'declare simd' attribute and its arguments.
instantiateOMPDeclareSimdDeclAttr(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,const OMPDeclareSimdDeclAttr & Attr,Decl * New)313 static void instantiateOMPDeclareSimdDeclAttr(
314 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
315 const OMPDeclareSimdDeclAttr &Attr, Decl *New) {
316 // Allow 'this' in clauses with varlists.
317 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New))
318 New = FTD->getTemplatedDecl();
319 auto *FD = cast<FunctionDecl>(New);
320 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext());
321 SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps;
322 SmallVector<unsigned, 4> LinModifiers;
323
324 auto SubstExpr = [&](Expr *E) -> ExprResult {
325 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
326 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
327 Sema::ContextRAII SavedContext(S, FD);
328 LocalInstantiationScope Local(S);
329 if (FD->getNumParams() > PVD->getFunctionScopeIndex())
330 Local.InstantiatedLocal(
331 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex()));
332 return S.SubstExpr(E, TemplateArgs);
333 }
334 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(),
335 FD->isCXXInstanceMember());
336 return S.SubstExpr(E, TemplateArgs);
337 };
338
339 // Substitute a single OpenMP clause, which is a potentially-evaluated
340 // full-expression.
341 auto Subst = [&](Expr *E) -> ExprResult {
342 EnterExpressionEvaluationContext Evaluated(
343 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
344 ExprResult Res = SubstExpr(E);
345 if (Res.isInvalid())
346 return Res;
347 return S.ActOnFinishFullExpr(Res.get(), false);
348 };
349
350 ExprResult Simdlen;
351 if (auto *E = Attr.getSimdlen())
352 Simdlen = Subst(E);
353
354 if (Attr.uniforms_size() > 0) {
355 for(auto *E : Attr.uniforms()) {
356 ExprResult Inst = Subst(E);
357 if (Inst.isInvalid())
358 continue;
359 Uniforms.push_back(Inst.get());
360 }
361 }
362
363 auto AI = Attr.alignments_begin();
364 for (auto *E : Attr.aligneds()) {
365 ExprResult Inst = Subst(E);
366 if (Inst.isInvalid())
367 continue;
368 Aligneds.push_back(Inst.get());
369 Inst = ExprEmpty();
370 if (*AI)
371 Inst = S.SubstExpr(*AI, TemplateArgs);
372 Alignments.push_back(Inst.get());
373 ++AI;
374 }
375
376 auto SI = Attr.steps_begin();
377 for (auto *E : Attr.linears()) {
378 ExprResult Inst = Subst(E);
379 if (Inst.isInvalid())
380 continue;
381 Linears.push_back(Inst.get());
382 Inst = ExprEmpty();
383 if (*SI)
384 Inst = S.SubstExpr(*SI, TemplateArgs);
385 Steps.push_back(Inst.get());
386 ++SI;
387 }
388 LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end());
389 (void)S.ActOnOpenMPDeclareSimdDirective(
390 S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(),
391 Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps,
392 Attr.getRange());
393 }
394
395 /// Instantiation of 'declare variant' attribute and its arguments.
instantiateOMPDeclareVariantAttr(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,const OMPDeclareVariantAttr & Attr,Decl * New)396 static void instantiateOMPDeclareVariantAttr(
397 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
398 const OMPDeclareVariantAttr &Attr, Decl *New) {
399 // Allow 'this' in clauses with varlists.
400 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New))
401 New = FTD->getTemplatedDecl();
402 auto *FD = cast<FunctionDecl>(New);
403 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext());
404
405 auto &&SubstExpr = [FD, ThisContext, &S, &TemplateArgs](Expr *E) {
406 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
407 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
408 Sema::ContextRAII SavedContext(S, FD);
409 LocalInstantiationScope Local(S);
410 if (FD->getNumParams() > PVD->getFunctionScopeIndex())
411 Local.InstantiatedLocal(
412 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex()));
413 return S.SubstExpr(E, TemplateArgs);
414 }
415 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(),
416 FD->isCXXInstanceMember());
417 return S.SubstExpr(E, TemplateArgs);
418 };
419
420 // Substitute a single OpenMP clause, which is a potentially-evaluated
421 // full-expression.
422 auto &&Subst = [&SubstExpr, &S](Expr *E) {
423 EnterExpressionEvaluationContext Evaluated(
424 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
425 ExprResult Res = SubstExpr(E);
426 if (Res.isInvalid())
427 return Res;
428 return S.ActOnFinishFullExpr(Res.get(), false);
429 };
430
431 ExprResult VariantFuncRef;
432 if (Expr *E = Attr.getVariantFuncRef()) {
433 // Do not mark function as is used to prevent its emission if this is the
434 // only place where it is used.
435 EnterExpressionEvaluationContext Unevaluated(
436 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
437 VariantFuncRef = Subst(E);
438 }
439
440 // Copy the template version of the OMPTraitInfo and run substitute on all
441 // score and condition expressiosn.
442 OMPTraitInfo &TI = S.getASTContext().getNewOMPTraitInfo();
443 TI = *Attr.getTraitInfos();
444
445 // Try to substitute template parameters in score and condition expressions.
446 auto SubstScoreOrConditionExpr = [&S, Subst](Expr *&E, bool) {
447 if (E) {
448 EnterExpressionEvaluationContext Unevaluated(
449 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
450 ExprResult ER = Subst(E);
451 if (ER.isUsable())
452 E = ER.get();
453 else
454 return true;
455 }
456 return false;
457 };
458 if (TI.anyScoreOrCondition(SubstScoreOrConditionExpr))
459 return;
460
461 Expr *E = VariantFuncRef.get();
462
463 // Check function/variant ref for `omp declare variant` but not for `omp
464 // begin declare variant` (which use implicit attributes).
465 std::optional<std::pair<FunctionDecl *, Expr *>> DeclVarData =
466 S.checkOpenMPDeclareVariantFunction(S.ConvertDeclToDeclGroup(New), E, TI,
467 Attr.appendArgs_size(),
468 Attr.getRange());
469
470 if (!DeclVarData)
471 return;
472
473 E = DeclVarData->second;
474 FD = DeclVarData->first;
475
476 if (auto *VariantDRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
477 if (auto *VariantFD = dyn_cast<FunctionDecl>(VariantDRE->getDecl())) {
478 if (auto *VariantFTD = VariantFD->getDescribedFunctionTemplate()) {
479 if (!VariantFTD->isThisDeclarationADefinition())
480 return;
481 Sema::TentativeAnalysisScope Trap(S);
482 const TemplateArgumentList *TAL = TemplateArgumentList::CreateCopy(
483 S.Context, TemplateArgs.getInnermost());
484
485 auto *SubstFD = S.InstantiateFunctionDeclaration(VariantFTD, TAL,
486 New->getLocation());
487 if (!SubstFD)
488 return;
489 QualType NewType = S.Context.mergeFunctionTypes(
490 SubstFD->getType(), FD->getType(),
491 /* OfBlockPointer */ false,
492 /* Unqualified */ false, /* AllowCXX */ true);
493 if (NewType.isNull())
494 return;
495 S.InstantiateFunctionDefinition(
496 New->getLocation(), SubstFD, /* Recursive */ true,
497 /* DefinitionRequired */ false, /* AtEndOfTU */ false);
498 SubstFD->setInstantiationIsPending(!SubstFD->isDefined());
499 E = DeclRefExpr::Create(S.Context, NestedNameSpecifierLoc(),
500 SourceLocation(), SubstFD,
501 /* RefersToEnclosingVariableOrCapture */ false,
502 /* NameLoc */ SubstFD->getLocation(),
503 SubstFD->getType(), ExprValueKind::VK_PRValue);
504 }
505 }
506 }
507
508 SmallVector<Expr *, 8> NothingExprs;
509 SmallVector<Expr *, 8> NeedDevicePtrExprs;
510 SmallVector<OMPInteropInfo, 4> AppendArgs;
511
512 for (Expr *E : Attr.adjustArgsNothing()) {
513 ExprResult ER = Subst(E);
514 if (ER.isInvalid())
515 continue;
516 NothingExprs.push_back(ER.get());
517 }
518 for (Expr *E : Attr.adjustArgsNeedDevicePtr()) {
519 ExprResult ER = Subst(E);
520 if (ER.isInvalid())
521 continue;
522 NeedDevicePtrExprs.push_back(ER.get());
523 }
524 for (OMPInteropInfo &II : Attr.appendArgs()) {
525 // When prefer_type is implemented for append_args handle them here too.
526 AppendArgs.emplace_back(II.IsTarget, II.IsTargetSync);
527 }
528
529 S.ActOnOpenMPDeclareVariantDirective(
530 FD, E, TI, NothingExprs, NeedDevicePtrExprs, AppendArgs, SourceLocation(),
531 SourceLocation(), Attr.getRange());
532 }
533
instantiateDependentAMDGPUFlatWorkGroupSizeAttr(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,const AMDGPUFlatWorkGroupSizeAttr & Attr,Decl * New)534 static void instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
535 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
536 const AMDGPUFlatWorkGroupSizeAttr &Attr, Decl *New) {
537 // Both min and max expression are constant expressions.
538 EnterExpressionEvaluationContext Unevaluated(
539 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
540
541 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs);
542 if (Result.isInvalid())
543 return;
544 Expr *MinExpr = Result.getAs<Expr>();
545
546 Result = S.SubstExpr(Attr.getMax(), TemplateArgs);
547 if (Result.isInvalid())
548 return;
549 Expr *MaxExpr = Result.getAs<Expr>();
550
551 S.addAMDGPUFlatWorkGroupSizeAttr(New, Attr, MinExpr, MaxExpr);
552 }
553
554 static ExplicitSpecifier
instantiateExplicitSpecifier(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,ExplicitSpecifier ES,FunctionDecl * New)555 instantiateExplicitSpecifier(Sema &S,
556 const MultiLevelTemplateArgumentList &TemplateArgs,
557 ExplicitSpecifier ES, FunctionDecl *New) {
558 if (!ES.getExpr())
559 return ES;
560 Expr *OldCond = ES.getExpr();
561 Expr *Cond = nullptr;
562 {
563 EnterExpressionEvaluationContext Unevaluated(
564 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
565 ExprResult SubstResult = S.SubstExpr(OldCond, TemplateArgs);
566 if (SubstResult.isInvalid()) {
567 return ExplicitSpecifier::Invalid();
568 }
569 Cond = SubstResult.get();
570 }
571 ExplicitSpecifier Result(Cond, ES.getKind());
572 if (!Cond->isTypeDependent())
573 S.tryResolveExplicitSpecifier(Result);
574 return Result;
575 }
576
instantiateDependentAMDGPUWavesPerEUAttr(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,const AMDGPUWavesPerEUAttr & Attr,Decl * New)577 static void instantiateDependentAMDGPUWavesPerEUAttr(
578 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
579 const AMDGPUWavesPerEUAttr &Attr, Decl *New) {
580 // Both min and max expression are constant expressions.
581 EnterExpressionEvaluationContext Unevaluated(
582 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
583
584 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs);
585 if (Result.isInvalid())
586 return;
587 Expr *MinExpr = Result.getAs<Expr>();
588
589 Expr *MaxExpr = nullptr;
590 if (auto Max = Attr.getMax()) {
591 Result = S.SubstExpr(Max, TemplateArgs);
592 if (Result.isInvalid())
593 return;
594 MaxExpr = Result.getAs<Expr>();
595 }
596
597 S.addAMDGPUWavesPerEUAttr(New, Attr, MinExpr, MaxExpr);
598 }
599
600 // This doesn't take any template parameters, but we have a custom action that
601 // needs to happen when the kernel itself is instantiated. We need to run the
602 // ItaniumMangler to mark the names required to name this kernel.
instantiateDependentSYCLKernelAttr(Sema & S,const MultiLevelTemplateArgumentList & TemplateArgs,const SYCLKernelAttr & Attr,Decl * New)603 static void instantiateDependentSYCLKernelAttr(
604 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
605 const SYCLKernelAttr &Attr, Decl *New) {
606 New->addAttr(Attr.clone(S.getASTContext()));
607 }
608
609 /// Determine whether the attribute A might be relevant to the declaration D.
610 /// If not, we can skip instantiating it. The attribute may or may not have
611 /// been instantiated yet.
isRelevantAttr(Sema & S,const Decl * D,const Attr * A)612 static bool isRelevantAttr(Sema &S, const Decl *D, const Attr *A) {
613 // 'preferred_name' is only relevant to the matching specialization of the
614 // template.
615 if (const auto *PNA = dyn_cast<PreferredNameAttr>(A)) {
616 QualType T = PNA->getTypedefType();
617 const auto *RD = cast<CXXRecordDecl>(D);
618 if (!T->isDependentType() && !RD->isDependentContext() &&
619 !declaresSameEntity(T->getAsCXXRecordDecl(), RD))
620 return false;
621 for (const auto *ExistingPNA : D->specific_attrs<PreferredNameAttr>())
622 if (S.Context.hasSameType(ExistingPNA->getTypedefType(),
623 PNA->getTypedefType()))
624 return false;
625 return true;
626 }
627
628 if (const auto *BA = dyn_cast<BuiltinAttr>(A)) {
629 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
630 switch (BA->getID()) {
631 case Builtin::BIforward:
632 // Do not treat 'std::forward' as a builtin if it takes an rvalue reference
633 // type and returns an lvalue reference type. The library implementation
634 // will produce an error in this case; don't get in its way.
635 if (FD && FD->getNumParams() >= 1 &&
636 FD->getParamDecl(0)->getType()->isRValueReferenceType() &&
637 FD->getReturnType()->isLValueReferenceType()) {
638 return false;
639 }
640 [[fallthrough]];
641 case Builtin::BImove:
642 case Builtin::BImove_if_noexcept:
643 // HACK: Super-old versions of libc++ (3.1 and earlier) provide
644 // std::forward and std::move overloads that sometimes return by value
645 // instead of by reference when building in C++98 mode. Don't treat such
646 // cases as builtins.
647 if (FD && !FD->getReturnType()->isReferenceType())
648 return false;
649 break;
650 }
651 }
652
653 return true;
654 }
655
InstantiateAttrsForDecl(const MultiLevelTemplateArgumentList & TemplateArgs,const Decl * Tmpl,Decl * New,LateInstantiatedAttrVec * LateAttrs,LocalInstantiationScope * OuterMostScope)656 void Sema::InstantiateAttrsForDecl(
657 const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl,
658 Decl *New, LateInstantiatedAttrVec *LateAttrs,
659 LocalInstantiationScope *OuterMostScope) {
660 if (NamedDecl *ND = dyn_cast<NamedDecl>(New)) {
661 // FIXME: This function is called multiple times for the same template
662 // specialization. We should only instantiate attributes that were added
663 // since the previous instantiation.
664 for (const auto *TmplAttr : Tmpl->attrs()) {
665 if (!isRelevantAttr(*this, New, TmplAttr))
666 continue;
667
668 // FIXME: If any of the special case versions from InstantiateAttrs become
669 // applicable to template declaration, we'll need to add them here.
670 CXXThisScopeRAII ThisScope(
671 *this, dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()),
672 Qualifiers(), ND->isCXXInstanceMember());
673
674 Attr *NewAttr = sema::instantiateTemplateAttributeForDecl(
675 TmplAttr, Context, *this, TemplateArgs);
676 if (NewAttr && isRelevantAttr(*this, New, NewAttr))
677 New->addAttr(NewAttr);
678 }
679 }
680 }
681
682 static Sema::RetainOwnershipKind
attrToRetainOwnershipKind(const Attr * A)683 attrToRetainOwnershipKind(const Attr *A) {
684 switch (A->getKind()) {
685 case clang::attr::CFConsumed:
686 return Sema::RetainOwnershipKind::CF;
687 case clang::attr::OSConsumed:
688 return Sema::RetainOwnershipKind::OS;
689 case clang::attr::NSConsumed:
690 return Sema::RetainOwnershipKind::NS;
691 default:
692 llvm_unreachable("Wrong argument supplied");
693 }
694 }
695
InstantiateAttrs(const MultiLevelTemplateArgumentList & TemplateArgs,const Decl * Tmpl,Decl * New,LateInstantiatedAttrVec * LateAttrs,LocalInstantiationScope * OuterMostScope)696 void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
697 const Decl *Tmpl, Decl *New,
698 LateInstantiatedAttrVec *LateAttrs,
699 LocalInstantiationScope *OuterMostScope) {
700 for (const auto *TmplAttr : Tmpl->attrs()) {
701 if (!isRelevantAttr(*this, New, TmplAttr))
702 continue;
703
704 // FIXME: This should be generalized to more than just the AlignedAttr.
705 const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr);
706 if (Aligned && Aligned->isAlignmentDependent()) {
707 instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New);
708 continue;
709 }
710
711 if (const auto *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr)) {
712 instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New);
713 continue;
714 }
715
716 if (const auto *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr)) {
717 instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New);
718 continue;
719 }
720
721 if (const auto *AllocAlign = dyn_cast<AllocAlignAttr>(TmplAttr)) {
722 instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New);
723 continue;
724 }
725
726 if (const auto *Annotate = dyn_cast<AnnotateAttr>(TmplAttr)) {
727 instantiateDependentAnnotationAttr(*this, TemplateArgs, Annotate, New);
728 continue;
729 }
730
731 if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) {
732 instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl,
733 cast<FunctionDecl>(New));
734 continue;
735 }
736
737 if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) {
738 instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl,
739 cast<FunctionDecl>(New));
740 continue;
741 }
742
743 if (const auto *CUDALaunchBounds =
744 dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) {
745 instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs,
746 *CUDALaunchBounds, New);
747 continue;
748 }
749
750 if (const auto *Mode = dyn_cast<ModeAttr>(TmplAttr)) {
751 instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New);
752 continue;
753 }
754
755 if (const auto *OMPAttr = dyn_cast<OMPDeclareSimdDeclAttr>(TmplAttr)) {
756 instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New);
757 continue;
758 }
759
760 if (const auto *OMPAttr = dyn_cast<OMPDeclareVariantAttr>(TmplAttr)) {
761 instantiateOMPDeclareVariantAttr(*this, TemplateArgs, *OMPAttr, New);
762 continue;
763 }
764
765 if (const auto *AMDGPUFlatWorkGroupSize =
766 dyn_cast<AMDGPUFlatWorkGroupSizeAttr>(TmplAttr)) {
767 instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
768 *this, TemplateArgs, *AMDGPUFlatWorkGroupSize, New);
769 }
770
771 if (const auto *AMDGPUFlatWorkGroupSize =
772 dyn_cast<AMDGPUWavesPerEUAttr>(TmplAttr)) {
773 instantiateDependentAMDGPUWavesPerEUAttr(*this, TemplateArgs,
774 *AMDGPUFlatWorkGroupSize, New);
775 }
776
777 // Existing DLL attribute on the instantiation takes precedence.
778 if (TmplAttr->getKind() == attr::DLLExport ||
779 TmplAttr->getKind() == attr::DLLImport) {
780 if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) {
781 continue;
782 }
783 }
784
785 if (const auto *ABIAttr = dyn_cast<ParameterABIAttr>(TmplAttr)) {
786 AddParameterABIAttr(New, *ABIAttr, ABIAttr->getABI());
787 continue;
788 }
789
790 if (isa<NSConsumedAttr>(TmplAttr) || isa<OSConsumedAttr>(TmplAttr) ||
791 isa<CFConsumedAttr>(TmplAttr)) {
792 AddXConsumedAttr(New, *TmplAttr, attrToRetainOwnershipKind(TmplAttr),
793 /*template instantiation=*/true);
794 continue;
795 }
796
797 if (auto *A = dyn_cast<PointerAttr>(TmplAttr)) {
798 if (!New->hasAttr<PointerAttr>())
799 New->addAttr(A->clone(Context));
800 continue;
801 }
802
803 if (auto *A = dyn_cast<OwnerAttr>(TmplAttr)) {
804 if (!New->hasAttr<OwnerAttr>())
805 New->addAttr(A->clone(Context));
806 continue;
807 }
808
809 if (auto *A = dyn_cast<SYCLKernelAttr>(TmplAttr)) {
810 instantiateDependentSYCLKernelAttr(*this, TemplateArgs, *A, New);
811 continue;
812 }
813
814 assert(!TmplAttr->isPackExpansion());
815 if (TmplAttr->isLateParsed() && LateAttrs) {
816 // Late parsed attributes must be instantiated and attached after the
817 // enclosing class has been instantiated. See Sema::InstantiateClass.
818 LocalInstantiationScope *Saved = nullptr;
819 if (CurrentInstantiationScope)
820 Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope);
821 LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New));
822 } else {
823 // Allow 'this' within late-parsed attributes.
824 auto *ND = cast<NamedDecl>(New);
825 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext());
826 CXXThisScopeRAII ThisScope(*this, ThisContext, Qualifiers(),
827 ND->isCXXInstanceMember());
828
829 Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context,
830 *this, TemplateArgs);
831 if (NewAttr && isRelevantAttr(*this, New, TmplAttr))
832 New->addAttr(NewAttr);
833 }
834 }
835 }
836
837 /// In the MS ABI, we need to instantiate default arguments of dllexported
838 /// default constructors along with the constructor definition. This allows IR
839 /// gen to emit a constructor closure which calls the default constructor with
840 /// its default arguments.
InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl * Ctor)841 void Sema::InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor) {
842 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&
843 Ctor->isDefaultConstructor());
844 unsigned NumParams = Ctor->getNumParams();
845 if (NumParams == 0)
846 return;
847 DLLExportAttr *Attr = Ctor->getAttr<DLLExportAttr>();
848 if (!Attr)
849 return;
850 for (unsigned I = 0; I != NumParams; ++I) {
851 (void)CheckCXXDefaultArgExpr(Attr->getLocation(), Ctor,
852 Ctor->getParamDecl(I));
853 CleanupVarDeclMarking();
854 }
855 }
856
857 /// Get the previous declaration of a declaration for the purposes of template
858 /// instantiation. If this finds a previous declaration, then the previous
859 /// declaration of the instantiation of D should be an instantiation of the
860 /// result of this function.
861 template<typename DeclT>
getPreviousDeclForInstantiation(DeclT * D)862 static DeclT *getPreviousDeclForInstantiation(DeclT *D) {
863 DeclT *Result = D->getPreviousDecl();
864
865 // If the declaration is within a class, and the previous declaration was
866 // merged from a different definition of that class, then we don't have a
867 // previous declaration for the purpose of template instantiation.
868 if (Result && isa<CXXRecordDecl>(D->getDeclContext()) &&
869 D->getLexicalDeclContext() != Result->getLexicalDeclContext())
870 return nullptr;
871
872 return Result;
873 }
874
875 Decl *
VisitTranslationUnitDecl(TranslationUnitDecl * D)876 TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
877 llvm_unreachable("Translation units cannot be instantiated");
878 }
879
VisitHLSLBufferDecl(HLSLBufferDecl * Decl)880 Decl *TemplateDeclInstantiator::VisitHLSLBufferDecl(HLSLBufferDecl *Decl) {
881 llvm_unreachable("HLSL buffer declarations cannot be instantiated");
882 }
883
884 Decl *
VisitPragmaCommentDecl(PragmaCommentDecl * D)885 TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) {
886 llvm_unreachable("pragma comment cannot be instantiated");
887 }
888
VisitPragmaDetectMismatchDecl(PragmaDetectMismatchDecl * D)889 Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl(
890 PragmaDetectMismatchDecl *D) {
891 llvm_unreachable("pragma comment cannot be instantiated");
892 }
893
894 Decl *
VisitExternCContextDecl(ExternCContextDecl * D)895 TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) {
896 llvm_unreachable("extern \"C\" context cannot be instantiated");
897 }
898
VisitMSGuidDecl(MSGuidDecl * D)899 Decl *TemplateDeclInstantiator::VisitMSGuidDecl(MSGuidDecl *D) {
900 llvm_unreachable("GUID declaration cannot be instantiated");
901 }
902
VisitUnnamedGlobalConstantDecl(UnnamedGlobalConstantDecl * D)903 Decl *TemplateDeclInstantiator::VisitUnnamedGlobalConstantDecl(
904 UnnamedGlobalConstantDecl *D) {
905 llvm_unreachable("UnnamedGlobalConstantDecl cannot be instantiated");
906 }
907
VisitTemplateParamObjectDecl(TemplateParamObjectDecl * D)908 Decl *TemplateDeclInstantiator::VisitTemplateParamObjectDecl(
909 TemplateParamObjectDecl *D) {
910 llvm_unreachable("template parameter objects cannot be instantiated");
911 }
912
913 Decl *
VisitLabelDecl(LabelDecl * D)914 TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) {
915 LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(),
916 D->getIdentifier());
917 Owner->addDecl(Inst);
918 return Inst;
919 }
920
921 Decl *
VisitNamespaceDecl(NamespaceDecl * D)922 TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) {
923 llvm_unreachable("Namespaces cannot be instantiated");
924 }
925
926 Decl *
VisitNamespaceAliasDecl(NamespaceAliasDecl * D)927 TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
928 NamespaceAliasDecl *Inst
929 = NamespaceAliasDecl::Create(SemaRef.Context, Owner,
930 D->getNamespaceLoc(),
931 D->getAliasLoc(),
932 D->getIdentifier(),
933 D->getQualifierLoc(),
934 D->getTargetNameLoc(),
935 D->getNamespace());
936 Owner->addDecl(Inst);
937 return Inst;
938 }
939
InstantiateTypedefNameDecl(TypedefNameDecl * D,bool IsTypeAlias)940 Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D,
941 bool IsTypeAlias) {
942 bool Invalid = false;
943 TypeSourceInfo *DI = D->getTypeSourceInfo();
944 if (DI->getType()->isInstantiationDependentType() ||
945 DI->getType()->isVariablyModifiedType()) {
946 DI = SemaRef.SubstType(DI, TemplateArgs,
947 D->getLocation(), D->getDeclName());
948 if (!DI) {
949 Invalid = true;
950 DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy);
951 }
952 } else {
953 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
954 }
955
956 // HACK: 2012-10-23 g++ has a bug where it gets the value kind of ?: wrong.
957 // libstdc++ relies upon this bug in its implementation of common_type. If we
958 // happen to be processing that implementation, fake up the g++ ?:
959 // semantics. See LWG issue 2141 for more information on the bug. The bugs
960 // are fixed in g++ and libstdc++ 4.9.0 (2014-04-22).
961 const DecltypeType *DT = DI->getType()->getAs<DecltypeType>();
962 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext());
963 if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) &&
964 DT->isReferenceType() &&
965 RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() &&
966 RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") &&
967 D->getIdentifier() && D->getIdentifier()->isStr("type") &&
968 SemaRef.getSourceManager().isInSystemHeader(D->getBeginLoc()))
969 // Fold it to the (non-reference) type which g++ would have produced.
970 DI = SemaRef.Context.getTrivialTypeSourceInfo(
971 DI->getType().getNonReferenceType());
972
973 // Create the new typedef
974 TypedefNameDecl *Typedef;
975 if (IsTypeAlias)
976 Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
977 D->getLocation(), D->getIdentifier(), DI);
978 else
979 Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
980 D->getLocation(), D->getIdentifier(), DI);
981 if (Invalid)
982 Typedef->setInvalidDecl();
983
984 // If the old typedef was the name for linkage purposes of an anonymous
985 // tag decl, re-establish that relationship for the new typedef.
986 if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) {
987 TagDecl *oldTag = oldTagType->getDecl();
988 if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) {
989 TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl();
990 assert(!newTag->hasNameForLinkage());
991 newTag->setTypedefNameForAnonDecl(Typedef);
992 }
993 }
994
995 if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) {
996 NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev,
997 TemplateArgs);
998 if (!InstPrev)
999 return nullptr;
1000
1001 TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev);
1002
1003 // If the typedef types are not identical, reject them.
1004 SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef);
1005
1006 Typedef->setPreviousDecl(InstPrevTypedef);
1007 }
1008
1009 SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef);
1010
1011 if (D->getUnderlyingType()->getAs<DependentNameType>())
1012 SemaRef.inferGslPointerAttribute(Typedef);
1013
1014 Typedef->setAccess(D->getAccess());
1015 Typedef->setReferenced(D->isReferenced());
1016
1017 return Typedef;
1018 }
1019
VisitTypedefDecl(TypedefDecl * D)1020 Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) {
1021 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false);
1022 if (Typedef)
1023 Owner->addDecl(Typedef);
1024 return Typedef;
1025 }
1026
VisitTypeAliasDecl(TypeAliasDecl * D)1027 Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) {
1028 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true);
1029 if (Typedef)
1030 Owner->addDecl(Typedef);
1031 return Typedef;
1032 }
1033
1034 Decl *
VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl * D)1035 TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) {
1036 // Create a local instantiation scope for this type alias template, which
1037 // will contain the instantiations of the template parameters.
1038 LocalInstantiationScope Scope(SemaRef);
1039
1040 TemplateParameterList *TempParams = D->getTemplateParameters();
1041 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1042 if (!InstParams)
1043 return nullptr;
1044
1045 TypeAliasDecl *Pattern = D->getTemplatedDecl();
1046
1047 TypeAliasTemplateDecl *PrevAliasTemplate = nullptr;
1048 if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) {
1049 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
1050 if (!Found.empty()) {
1051 PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front());
1052 }
1053 }
1054
1055 TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>(
1056 InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true));
1057 if (!AliasInst)
1058 return nullptr;
1059
1060 TypeAliasTemplateDecl *Inst
1061 = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(),
1062 D->getDeclName(), InstParams, AliasInst);
1063 AliasInst->setDescribedAliasTemplate(Inst);
1064 if (PrevAliasTemplate)
1065 Inst->setPreviousDecl(PrevAliasTemplate);
1066
1067 Inst->setAccess(D->getAccess());
1068
1069 if (!PrevAliasTemplate)
1070 Inst->setInstantiatedFromMemberTemplate(D);
1071
1072 Owner->addDecl(Inst);
1073
1074 return Inst;
1075 }
1076
VisitBindingDecl(BindingDecl * D)1077 Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) {
1078 auto *NewBD = BindingDecl::Create(SemaRef.Context, Owner, D->getLocation(),
1079 D->getIdentifier());
1080 NewBD->setReferenced(D->isReferenced());
1081 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewBD);
1082 return NewBD;
1083 }
1084
VisitDecompositionDecl(DecompositionDecl * D)1085 Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) {
1086 // Transform the bindings first.
1087 SmallVector<BindingDecl*, 16> NewBindings;
1088 for (auto *OldBD : D->bindings())
1089 NewBindings.push_back(cast<BindingDecl>(VisitBindingDecl(OldBD)));
1090 ArrayRef<BindingDecl*> NewBindingArray = NewBindings;
1091
1092 auto *NewDD = cast_or_null<DecompositionDecl>(
1093 VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray));
1094
1095 if (!NewDD || NewDD->isInvalidDecl())
1096 for (auto *NewBD : NewBindings)
1097 NewBD->setInvalidDecl();
1098
1099 return NewDD;
1100 }
1101
VisitVarDecl(VarDecl * D)1102 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) {
1103 return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false);
1104 }
1105
VisitVarDecl(VarDecl * D,bool InstantiatingVarTemplate,ArrayRef<BindingDecl * > * Bindings)1106 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D,
1107 bool InstantiatingVarTemplate,
1108 ArrayRef<BindingDecl*> *Bindings) {
1109
1110 // Do substitution on the type of the declaration
1111 TypeSourceInfo *DI = SemaRef.SubstType(
1112 D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(),
1113 D->getDeclName(), /*AllowDeducedTST*/true);
1114 if (!DI)
1115 return nullptr;
1116
1117 if (DI->getType()->isFunctionType()) {
1118 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
1119 << D->isStaticDataMember() << DI->getType();
1120 return nullptr;
1121 }
1122
1123 DeclContext *DC = Owner;
1124 if (D->isLocalExternDecl())
1125 SemaRef.adjustContextForLocalExternDecl(DC);
1126
1127 // Build the instantiated declaration.
1128 VarDecl *Var;
1129 if (Bindings)
1130 Var = DecompositionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(),
1131 D->getLocation(), DI->getType(), DI,
1132 D->getStorageClass(), *Bindings);
1133 else
1134 Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(),
1135 D->getLocation(), D->getIdentifier(), DI->getType(),
1136 DI, D->getStorageClass());
1137
1138 // In ARC, infer 'retaining' for variables of retainable type.
1139 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1140 SemaRef.inferObjCARCLifetime(Var))
1141 Var->setInvalidDecl();
1142
1143 if (SemaRef.getLangOpts().OpenCL)
1144 SemaRef.deduceOpenCLAddressSpace(Var);
1145
1146 // Substitute the nested name specifier, if any.
1147 if (SubstQualifier(D, Var))
1148 return nullptr;
1149
1150 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner,
1151 StartingScope, InstantiatingVarTemplate);
1152 if (D->isNRVOVariable() && !Var->isInvalidDecl()) {
1153 QualType RT;
1154 if (auto *F = dyn_cast<FunctionDecl>(DC))
1155 RT = F->getReturnType();
1156 else if (isa<BlockDecl>(DC))
1157 RT = cast<FunctionType>(SemaRef.getCurBlock()->FunctionType)
1158 ->getReturnType();
1159 else
1160 llvm_unreachable("Unknown context type");
1161
1162 // This is the last chance we have of checking copy elision eligibility
1163 // for functions in dependent contexts. The sema actions for building
1164 // the return statement during template instantiation will have no effect
1165 // regarding copy elision, since NRVO propagation runs on the scope exit
1166 // actions, and these are not run on instantiation.
1167 // This might run through some VarDecls which were returned from non-taken
1168 // 'if constexpr' branches, and these will end up being constructed on the
1169 // return slot even if they will never be returned, as a sort of accidental
1170 // 'optimization'. Notably, functions with 'auto' return types won't have it
1171 // deduced by this point. Coupled with the limitation described
1172 // previously, this makes it very hard to support copy elision for these.
1173 Sema::NamedReturnInfo Info = SemaRef.getNamedReturnInfo(Var);
1174 bool NRVO = SemaRef.getCopyElisionCandidate(Info, RT) != nullptr;
1175 Var->setNRVOVariable(NRVO);
1176 }
1177
1178 Var->setImplicit(D->isImplicit());
1179
1180 if (Var->isStaticLocal())
1181 SemaRef.CheckStaticLocalForDllExport(Var);
1182
1183 if (Var->getTLSKind())
1184 SemaRef.CheckThreadLocalForLargeAlignment(Var);
1185
1186 return Var;
1187 }
1188
VisitAccessSpecDecl(AccessSpecDecl * D)1189 Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) {
1190 AccessSpecDecl* AD
1191 = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner,
1192 D->getAccessSpecifierLoc(), D->getColonLoc());
1193 Owner->addHiddenDecl(AD);
1194 return AD;
1195 }
1196
VisitFieldDecl(FieldDecl * D)1197 Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) {
1198 bool Invalid = false;
1199 TypeSourceInfo *DI = D->getTypeSourceInfo();
1200 if (DI->getType()->isInstantiationDependentType() ||
1201 DI->getType()->isVariablyModifiedType()) {
1202 DI = SemaRef.SubstType(DI, TemplateArgs,
1203 D->getLocation(), D->getDeclName());
1204 if (!DI) {
1205 DI = D->getTypeSourceInfo();
1206 Invalid = true;
1207 } else if (DI->getType()->isFunctionType()) {
1208 // C++ [temp.arg.type]p3:
1209 // If a declaration acquires a function type through a type
1210 // dependent on a template-parameter and this causes a
1211 // declaration that does not use the syntactic form of a
1212 // function declarator to have function type, the program is
1213 // ill-formed.
1214 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
1215 << DI->getType();
1216 Invalid = true;
1217 }
1218 } else {
1219 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
1220 }
1221
1222 Expr *BitWidth = D->getBitWidth();
1223 if (Invalid)
1224 BitWidth = nullptr;
1225 else if (BitWidth) {
1226 // The bit-width expression is a constant expression.
1227 EnterExpressionEvaluationContext Unevaluated(
1228 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1229
1230 ExprResult InstantiatedBitWidth
1231 = SemaRef.SubstExpr(BitWidth, TemplateArgs);
1232 if (InstantiatedBitWidth.isInvalid()) {
1233 Invalid = true;
1234 BitWidth = nullptr;
1235 } else
1236 BitWidth = InstantiatedBitWidth.getAs<Expr>();
1237 }
1238
1239 FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(),
1240 DI->getType(), DI,
1241 cast<RecordDecl>(Owner),
1242 D->getLocation(),
1243 D->isMutable(),
1244 BitWidth,
1245 D->getInClassInitStyle(),
1246 D->getInnerLocStart(),
1247 D->getAccess(),
1248 nullptr);
1249 if (!Field) {
1250 cast<Decl>(Owner)->setInvalidDecl();
1251 return nullptr;
1252 }
1253
1254 SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope);
1255
1256 if (Field->hasAttrs())
1257 SemaRef.CheckAlignasUnderalignment(Field);
1258
1259 if (Invalid)
1260 Field->setInvalidDecl();
1261
1262 if (!Field->getDeclName()) {
1263 // Keep track of where this decl came from.
1264 SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D);
1265 }
1266 if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) {
1267 if (Parent->isAnonymousStructOrUnion() &&
1268 Parent->getRedeclContext()->isFunctionOrMethod())
1269 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field);
1270 }
1271
1272 Field->setImplicit(D->isImplicit());
1273 Field->setAccess(D->getAccess());
1274 Owner->addDecl(Field);
1275
1276 return Field;
1277 }
1278
VisitMSPropertyDecl(MSPropertyDecl * D)1279 Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) {
1280 bool Invalid = false;
1281 TypeSourceInfo *DI = D->getTypeSourceInfo();
1282
1283 if (DI->getType()->isVariablyModifiedType()) {
1284 SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified)
1285 << D;
1286 Invalid = true;
1287 } else if (DI->getType()->isInstantiationDependentType()) {
1288 DI = SemaRef.SubstType(DI, TemplateArgs,
1289 D->getLocation(), D->getDeclName());
1290 if (!DI) {
1291 DI = D->getTypeSourceInfo();
1292 Invalid = true;
1293 } else if (DI->getType()->isFunctionType()) {
1294 // C++ [temp.arg.type]p3:
1295 // If a declaration acquires a function type through a type
1296 // dependent on a template-parameter and this causes a
1297 // declaration that does not use the syntactic form of a
1298 // function declarator to have function type, the program is
1299 // ill-formed.
1300 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
1301 << DI->getType();
1302 Invalid = true;
1303 }
1304 } else {
1305 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
1306 }
1307
1308 MSPropertyDecl *Property = MSPropertyDecl::Create(
1309 SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(),
1310 DI, D->getBeginLoc(), D->getGetterId(), D->getSetterId());
1311
1312 SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs,
1313 StartingScope);
1314
1315 if (Invalid)
1316 Property->setInvalidDecl();
1317
1318 Property->setAccess(D->getAccess());
1319 Owner->addDecl(Property);
1320
1321 return Property;
1322 }
1323
VisitIndirectFieldDecl(IndirectFieldDecl * D)1324 Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) {
1325 NamedDecl **NamedChain =
1326 new (SemaRef.Context)NamedDecl*[D->getChainingSize()];
1327
1328 int i = 0;
1329 for (auto *PI : D->chain()) {
1330 NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI,
1331 TemplateArgs);
1332 if (!Next)
1333 return nullptr;
1334
1335 NamedChain[i++] = Next;
1336 }
1337
1338 QualType T = cast<FieldDecl>(NamedChain[i-1])->getType();
1339 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
1340 SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T,
1341 {NamedChain, D->getChainingSize()});
1342
1343 for (const auto *Attr : D->attrs())
1344 IndirectField->addAttr(Attr->clone(SemaRef.Context));
1345
1346 IndirectField->setImplicit(D->isImplicit());
1347 IndirectField->setAccess(D->getAccess());
1348 Owner->addDecl(IndirectField);
1349 return IndirectField;
1350 }
1351
VisitFriendDecl(FriendDecl * D)1352 Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) {
1353 // Handle friend type expressions by simply substituting template
1354 // parameters into the pattern type and checking the result.
1355 if (TypeSourceInfo *Ty = D->getFriendType()) {
1356 TypeSourceInfo *InstTy;
1357 // If this is an unsupported friend, don't bother substituting template
1358 // arguments into it. The actual type referred to won't be used by any
1359 // parts of Clang, and may not be valid for instantiating. Just use the
1360 // same info for the instantiated friend.
1361 if (D->isUnsupportedFriend()) {
1362 InstTy = Ty;
1363 } else {
1364 InstTy = SemaRef.SubstType(Ty, TemplateArgs,
1365 D->getLocation(), DeclarationName());
1366 }
1367 if (!InstTy)
1368 return nullptr;
1369
1370 FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getBeginLoc(),
1371 D->getFriendLoc(), InstTy);
1372 if (!FD)
1373 return nullptr;
1374
1375 FD->setAccess(AS_public);
1376 FD->setUnsupportedFriend(D->isUnsupportedFriend());
1377 Owner->addDecl(FD);
1378 return FD;
1379 }
1380
1381 NamedDecl *ND = D->getFriendDecl();
1382 assert(ND && "friend decl must be a decl or a type!");
1383
1384 // All of the Visit implementations for the various potential friend
1385 // declarations have to be carefully written to work for friend
1386 // objects, with the most important detail being that the target
1387 // decl should almost certainly not be placed in Owner.
1388 Decl *NewND = Visit(ND);
1389 if (!NewND) return nullptr;
1390
1391 FriendDecl *FD =
1392 FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(),
1393 cast<NamedDecl>(NewND), D->getFriendLoc());
1394 FD->setAccess(AS_public);
1395 FD->setUnsupportedFriend(D->isUnsupportedFriend());
1396 Owner->addDecl(FD);
1397 return FD;
1398 }
1399
VisitStaticAssertDecl(StaticAssertDecl * D)1400 Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) {
1401 Expr *AssertExpr = D->getAssertExpr();
1402
1403 // The expression in a static assertion is a constant expression.
1404 EnterExpressionEvaluationContext Unevaluated(
1405 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1406
1407 ExprResult InstantiatedAssertExpr
1408 = SemaRef.SubstExpr(AssertExpr, TemplateArgs);
1409 if (InstantiatedAssertExpr.isInvalid())
1410 return nullptr;
1411
1412 return SemaRef.BuildStaticAssertDeclaration(D->getLocation(),
1413 InstantiatedAssertExpr.get(),
1414 D->getMessage(),
1415 D->getRParenLoc(),
1416 D->isFailed());
1417 }
1418
VisitEnumDecl(EnumDecl * D)1419 Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) {
1420 EnumDecl *PrevDecl = nullptr;
1421 if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
1422 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
1423 PatternPrev,
1424 TemplateArgs);
1425 if (!Prev) return nullptr;
1426 PrevDecl = cast<EnumDecl>(Prev);
1427 }
1428
1429 EnumDecl *Enum =
1430 EnumDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
1431 D->getLocation(), D->getIdentifier(), PrevDecl,
1432 D->isScoped(), D->isScopedUsingClassTag(), D->isFixed());
1433 if (D->isFixed()) {
1434 if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) {
1435 // If we have type source information for the underlying type, it means it
1436 // has been explicitly set by the user. Perform substitution on it before
1437 // moving on.
1438 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
1439 TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc,
1440 DeclarationName());
1441 if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI))
1442 Enum->setIntegerType(SemaRef.Context.IntTy);
1443 else
1444 Enum->setIntegerTypeSourceInfo(NewTI);
1445 } else {
1446 assert(!D->getIntegerType()->isDependentType()
1447 && "Dependent type without type source info");
1448 Enum->setIntegerType(D->getIntegerType());
1449 }
1450 }
1451
1452 SemaRef.InstantiateAttrs(TemplateArgs, D, Enum);
1453
1454 Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation);
1455 Enum->setAccess(D->getAccess());
1456 // Forward the mangling number from the template to the instantiated decl.
1457 SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D));
1458 // See if the old tag was defined along with a declarator.
1459 // If it did, mark the new tag as being associated with that declarator.
1460 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D))
1461 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD);
1462 // See if the old tag was defined along with a typedef.
1463 // If it did, mark the new tag as being associated with that typedef.
1464 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D))
1465 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND);
1466 if (SubstQualifier(D, Enum)) return nullptr;
1467 Owner->addDecl(Enum);
1468
1469 EnumDecl *Def = D->getDefinition();
1470 if (Def && Def != D) {
1471 // If this is an out-of-line definition of an enum member template, check
1472 // that the underlying types match in the instantiation of both
1473 // declarations.
1474 if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) {
1475 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
1476 QualType DefnUnderlying =
1477 SemaRef.SubstType(TI->getType(), TemplateArgs,
1478 UnderlyingLoc, DeclarationName());
1479 SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(),
1480 DefnUnderlying, /*IsFixed=*/true, Enum);
1481 }
1482 }
1483
1484 // C++11 [temp.inst]p1: The implicit instantiation of a class template
1485 // specialization causes the implicit instantiation of the declarations, but
1486 // not the definitions of scoped member enumerations.
1487 //
1488 // DR1484 clarifies that enumeration definitions inside of a template
1489 // declaration aren't considered entities that can be separately instantiated
1490 // from the rest of the entity they are declared inside of.
1491 if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) {
1492 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum);
1493 InstantiateEnumDefinition(Enum, Def);
1494 }
1495
1496 return Enum;
1497 }
1498
InstantiateEnumDefinition(EnumDecl * Enum,EnumDecl * Pattern)1499 void TemplateDeclInstantiator::InstantiateEnumDefinition(
1500 EnumDecl *Enum, EnumDecl *Pattern) {
1501 Enum->startDefinition();
1502
1503 // Update the location to refer to the definition.
1504 Enum->setLocation(Pattern->getLocation());
1505
1506 SmallVector<Decl*, 4> Enumerators;
1507
1508 EnumConstantDecl *LastEnumConst = nullptr;
1509 for (auto *EC : Pattern->enumerators()) {
1510 // The specified value for the enumerator.
1511 ExprResult Value((Expr *)nullptr);
1512 if (Expr *UninstValue = EC->getInitExpr()) {
1513 // The enumerator's value expression is a constant expression.
1514 EnterExpressionEvaluationContext Unevaluated(
1515 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1516
1517 Value = SemaRef.SubstExpr(UninstValue, TemplateArgs);
1518 }
1519
1520 // Drop the initial value and continue.
1521 bool isInvalid = false;
1522 if (Value.isInvalid()) {
1523 Value = nullptr;
1524 isInvalid = true;
1525 }
1526
1527 EnumConstantDecl *EnumConst
1528 = SemaRef.CheckEnumConstant(Enum, LastEnumConst,
1529 EC->getLocation(), EC->getIdentifier(),
1530 Value.get());
1531
1532 if (isInvalid) {
1533 if (EnumConst)
1534 EnumConst->setInvalidDecl();
1535 Enum->setInvalidDecl();
1536 }
1537
1538 if (EnumConst) {
1539 SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst);
1540
1541 EnumConst->setAccess(Enum->getAccess());
1542 Enum->addDecl(EnumConst);
1543 Enumerators.push_back(EnumConst);
1544 LastEnumConst = EnumConst;
1545
1546 if (Pattern->getDeclContext()->isFunctionOrMethod() &&
1547 !Enum->isScoped()) {
1548 // If the enumeration is within a function or method, record the enum
1549 // constant as a local.
1550 SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst);
1551 }
1552 }
1553 }
1554
1555 SemaRef.ActOnEnumBody(Enum->getLocation(), Enum->getBraceRange(), Enum,
1556 Enumerators, nullptr, ParsedAttributesView());
1557 }
1558
VisitEnumConstantDecl(EnumConstantDecl * D)1559 Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) {
1560 llvm_unreachable("EnumConstantDecls can only occur within EnumDecls.");
1561 }
1562
1563 Decl *
VisitBuiltinTemplateDecl(BuiltinTemplateDecl * D)1564 TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) {
1565 llvm_unreachable("BuiltinTemplateDecls cannot be instantiated.");
1566 }
1567
VisitClassTemplateDecl(ClassTemplateDecl * D)1568 Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) {
1569 bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
1570
1571 // Create a local instantiation scope for this class template, which
1572 // will contain the instantiations of the template parameters.
1573 LocalInstantiationScope Scope(SemaRef);
1574 TemplateParameterList *TempParams = D->getTemplateParameters();
1575 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1576 if (!InstParams)
1577 return nullptr;
1578
1579 CXXRecordDecl *Pattern = D->getTemplatedDecl();
1580
1581 // Instantiate the qualifier. We have to do this first in case
1582 // we're a friend declaration, because if we are then we need to put
1583 // the new declaration in the appropriate context.
1584 NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc();
1585 if (QualifierLoc) {
1586 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
1587 TemplateArgs);
1588 if (!QualifierLoc)
1589 return nullptr;
1590 }
1591
1592 CXXRecordDecl *PrevDecl = nullptr;
1593 ClassTemplateDecl *PrevClassTemplate = nullptr;
1594
1595 if (!isFriend && getPreviousDeclForInstantiation(Pattern)) {
1596 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
1597 if (!Found.empty()) {
1598 PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front());
1599 if (PrevClassTemplate)
1600 PrevDecl = PrevClassTemplate->getTemplatedDecl();
1601 }
1602 }
1603
1604 // If this isn't a friend, then it's a member template, in which
1605 // case we just want to build the instantiation in the
1606 // specialization. If it is a friend, we want to build it in
1607 // the appropriate context.
1608 DeclContext *DC = Owner;
1609 if (isFriend) {
1610 if (QualifierLoc) {
1611 CXXScopeSpec SS;
1612 SS.Adopt(QualifierLoc);
1613 DC = SemaRef.computeDeclContext(SS);
1614 if (!DC) return nullptr;
1615 } else {
1616 DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(),
1617 Pattern->getDeclContext(),
1618 TemplateArgs);
1619 }
1620
1621 // Look for a previous declaration of the template in the owning
1622 // context.
1623 LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(),
1624 Sema::LookupOrdinaryName,
1625 SemaRef.forRedeclarationInCurContext());
1626 SemaRef.LookupQualifiedName(R, DC);
1627
1628 if (R.isSingleResult()) {
1629 PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>();
1630 if (PrevClassTemplate)
1631 PrevDecl = PrevClassTemplate->getTemplatedDecl();
1632 }
1633
1634 if (!PrevClassTemplate && QualifierLoc) {
1635 SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope)
1636 << D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC
1637 << QualifierLoc.getSourceRange();
1638 return nullptr;
1639 }
1640
1641 if (PrevClassTemplate) {
1642 const ClassTemplateDecl *MostRecentPrevCT =
1643 PrevClassTemplate->getMostRecentDecl();
1644 TemplateParameterList *PrevParams =
1645 MostRecentPrevCT->getTemplateParameters();
1646
1647 // Make sure the parameter lists match.
1648 if (!SemaRef.TemplateParameterListsAreEqual(
1649 D->getTemplatedDecl(), InstParams,
1650 MostRecentPrevCT->getTemplatedDecl(), PrevParams, true,
1651 Sema::TPL_TemplateMatch))
1652 return nullptr;
1653
1654 // Do some additional validation, then merge default arguments
1655 // from the existing declarations.
1656 if (SemaRef.CheckTemplateParameterList(InstParams, PrevParams,
1657 Sema::TPC_ClassTemplate))
1658 return nullptr;
1659 }
1660 }
1661
1662 CXXRecordDecl *RecordInst = CXXRecordDecl::Create(
1663 SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getBeginLoc(),
1664 Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl,
1665 /*DelayTypeCreation=*/true);
1666
1667 if (QualifierLoc)
1668 RecordInst->setQualifierInfo(QualifierLoc);
1669
1670 SemaRef.InstantiateAttrsForDecl(TemplateArgs, Pattern, RecordInst, LateAttrs,
1671 StartingScope);
1672
1673 ClassTemplateDecl *Inst
1674 = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(),
1675 D->getIdentifier(), InstParams, RecordInst);
1676 assert(!(isFriend && Owner->isDependentContext()));
1677 Inst->setPreviousDecl(PrevClassTemplate);
1678
1679 RecordInst->setDescribedClassTemplate(Inst);
1680
1681 if (isFriend) {
1682 if (PrevClassTemplate)
1683 Inst->setAccess(PrevClassTemplate->getAccess());
1684 else
1685 Inst->setAccess(D->getAccess());
1686
1687 Inst->setObjectOfFriendDecl();
1688 // TODO: do we want to track the instantiation progeny of this
1689 // friend target decl?
1690 } else {
1691 Inst->setAccess(D->getAccess());
1692 if (!PrevClassTemplate)
1693 Inst->setInstantiatedFromMemberTemplate(D);
1694 }
1695
1696 // Trigger creation of the type for the instantiation.
1697 SemaRef.Context.getInjectedClassNameType(RecordInst,
1698 Inst->getInjectedClassNameSpecialization());
1699
1700 // Finish handling of friends.
1701 if (isFriend) {
1702 DC->makeDeclVisibleInContext(Inst);
1703 Inst->setLexicalDeclContext(Owner);
1704 RecordInst->setLexicalDeclContext(Owner);
1705 return Inst;
1706 }
1707
1708 if (D->isOutOfLine()) {
1709 Inst->setLexicalDeclContext(D->getLexicalDeclContext());
1710 RecordInst->setLexicalDeclContext(D->getLexicalDeclContext());
1711 }
1712
1713 Owner->addDecl(Inst);
1714
1715 if (!PrevClassTemplate) {
1716 // Queue up any out-of-line partial specializations of this member
1717 // class template; the client will force their instantiation once
1718 // the enclosing class has been instantiated.
1719 SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs;
1720 D->getPartialSpecializations(PartialSpecs);
1721 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
1722 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
1723 OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I]));
1724 }
1725
1726 return Inst;
1727 }
1728
1729 Decl *
VisitClassTemplatePartialSpecializationDecl(ClassTemplatePartialSpecializationDecl * D)1730 TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl(
1731 ClassTemplatePartialSpecializationDecl *D) {
1732 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
1733
1734 // Lookup the already-instantiated declaration in the instantiation
1735 // of the class template and return that.
1736 DeclContext::lookup_result Found
1737 = Owner->lookup(ClassTemplate->getDeclName());
1738 if (Found.empty())
1739 return nullptr;
1740
1741 ClassTemplateDecl *InstClassTemplate
1742 = dyn_cast<ClassTemplateDecl>(Found.front());
1743 if (!InstClassTemplate)
1744 return nullptr;
1745
1746 if (ClassTemplatePartialSpecializationDecl *Result
1747 = InstClassTemplate->findPartialSpecInstantiatedFromMember(D))
1748 return Result;
1749
1750 return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D);
1751 }
1752
VisitVarTemplateDecl(VarTemplateDecl * D)1753 Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) {
1754 assert(D->getTemplatedDecl()->isStaticDataMember() &&
1755 "Only static data member templates are allowed.");
1756
1757 // Create a local instantiation scope for this variable template, which
1758 // will contain the instantiations of the template parameters.
1759 LocalInstantiationScope Scope(SemaRef);
1760 TemplateParameterList *TempParams = D->getTemplateParameters();
1761 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1762 if (!InstParams)
1763 return nullptr;
1764
1765 VarDecl *Pattern = D->getTemplatedDecl();
1766 VarTemplateDecl *PrevVarTemplate = nullptr;
1767
1768 if (getPreviousDeclForInstantiation(Pattern)) {
1769 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
1770 if (!Found.empty())
1771 PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front());
1772 }
1773
1774 VarDecl *VarInst =
1775 cast_or_null<VarDecl>(VisitVarDecl(Pattern,
1776 /*InstantiatingVarTemplate=*/true));
1777 if (!VarInst) return nullptr;
1778
1779 DeclContext *DC = Owner;
1780
1781 VarTemplateDecl *Inst = VarTemplateDecl::Create(
1782 SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams,
1783 VarInst);
1784 VarInst->setDescribedVarTemplate(Inst);
1785 Inst->setPreviousDecl(PrevVarTemplate);
1786
1787 Inst->setAccess(D->getAccess());
1788 if (!PrevVarTemplate)
1789 Inst->setInstantiatedFromMemberTemplate(D);
1790
1791 if (D->isOutOfLine()) {
1792 Inst->setLexicalDeclContext(D->getLexicalDeclContext());
1793 VarInst->setLexicalDeclContext(D->getLexicalDeclContext());
1794 }
1795
1796 Owner->addDecl(Inst);
1797
1798 if (!PrevVarTemplate) {
1799 // Queue up any out-of-line partial specializations of this member
1800 // variable template; the client will force their instantiation once
1801 // the enclosing class has been instantiated.
1802 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
1803 D->getPartialSpecializations(PartialSpecs);
1804 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
1805 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
1806 OutOfLineVarPartialSpecs.push_back(
1807 std::make_pair(Inst, PartialSpecs[I]));
1808 }
1809
1810 return Inst;
1811 }
1812
VisitVarTemplatePartialSpecializationDecl(VarTemplatePartialSpecializationDecl * D)1813 Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl(
1814 VarTemplatePartialSpecializationDecl *D) {
1815 assert(D->isStaticDataMember() &&
1816 "Only static data member templates are allowed.");
1817
1818 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
1819
1820 // Lookup the already-instantiated declaration and return that.
1821 DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName());
1822 assert(!Found.empty() && "Instantiation found nothing?");
1823
1824 VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front());
1825 assert(InstVarTemplate && "Instantiation did not find a variable template?");
1826
1827 if (VarTemplatePartialSpecializationDecl *Result =
1828 InstVarTemplate->findPartialSpecInstantiatedFromMember(D))
1829 return Result;
1830
1831 return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D);
1832 }
1833
1834 Decl *
VisitFunctionTemplateDecl(FunctionTemplateDecl * D)1835 TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
1836 // Create a local instantiation scope for this function template, which
1837 // will contain the instantiations of the template parameters and then get
1838 // merged with the local instantiation scope for the function template
1839 // itself.
1840 LocalInstantiationScope Scope(SemaRef);
1841 Sema::ConstraintEvalRAII<TemplateDeclInstantiator> RAII(*this);
1842
1843 TemplateParameterList *TempParams = D->getTemplateParameters();
1844 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1845 if (!InstParams)
1846 return nullptr;
1847
1848 FunctionDecl *Instantiated = nullptr;
1849 if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl()))
1850 Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod,
1851 InstParams));
1852 else
1853 Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl(
1854 D->getTemplatedDecl(),
1855 InstParams));
1856
1857 if (!Instantiated)
1858 return nullptr;
1859
1860 // Link the instantiated function template declaration to the function
1861 // template from which it was instantiated.
1862 FunctionTemplateDecl *InstTemplate
1863 = Instantiated->getDescribedFunctionTemplate();
1864 InstTemplate->setAccess(D->getAccess());
1865 assert(InstTemplate &&
1866 "VisitFunctionDecl/CXXMethodDecl didn't create a template!");
1867
1868 bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None);
1869
1870 // Link the instantiation back to the pattern *unless* this is a
1871 // non-definition friend declaration.
1872 if (!InstTemplate->getInstantiatedFromMemberTemplate() &&
1873 !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition()))
1874 InstTemplate->setInstantiatedFromMemberTemplate(D);
1875
1876 // Make declarations visible in the appropriate context.
1877 if (!isFriend) {
1878 Owner->addDecl(InstTemplate);
1879 } else if (InstTemplate->getDeclContext()->isRecord() &&
1880 !getPreviousDeclForInstantiation(D)) {
1881 SemaRef.CheckFriendAccess(InstTemplate);
1882 }
1883
1884 return InstTemplate;
1885 }
1886
VisitCXXRecordDecl(CXXRecordDecl * D)1887 Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) {
1888 CXXRecordDecl *PrevDecl = nullptr;
1889 if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
1890 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
1891 PatternPrev,
1892 TemplateArgs);
1893 if (!Prev) return nullptr;
1894 PrevDecl = cast<CXXRecordDecl>(Prev);
1895 }
1896
1897 CXXRecordDecl *Record = nullptr;
1898 bool IsInjectedClassName = D->isInjectedClassName();
1899 if (D->isLambda())
1900 Record = CXXRecordDecl::CreateLambda(
1901 SemaRef.Context, Owner, D->getLambdaTypeInfo(), D->getLocation(),
1902 D->getLambdaDependencyKind(), D->isGenericLambda(),
1903 D->getLambdaCaptureDefault());
1904 else
1905 Record = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner,
1906 D->getBeginLoc(), D->getLocation(),
1907 D->getIdentifier(), PrevDecl,
1908 /*DelayTypeCreation=*/IsInjectedClassName);
1909 // Link the type of the injected-class-name to that of the outer class.
1910 if (IsInjectedClassName)
1911 (void)SemaRef.Context.getTypeDeclType(Record, cast<CXXRecordDecl>(Owner));
1912
1913 // Substitute the nested name specifier, if any.
1914 if (SubstQualifier(D, Record))
1915 return nullptr;
1916
1917 SemaRef.InstantiateAttrsForDecl(TemplateArgs, D, Record, LateAttrs,
1918 StartingScope);
1919
1920 Record->setImplicit(D->isImplicit());
1921 // FIXME: Check against AS_none is an ugly hack to work around the issue that
1922 // the tag decls introduced by friend class declarations don't have an access
1923 // specifier. Remove once this area of the code gets sorted out.
1924 if (D->getAccess() != AS_none)
1925 Record->setAccess(D->getAccess());
1926 if (!IsInjectedClassName)
1927 Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
1928
1929 // If the original function was part of a friend declaration,
1930 // inherit its namespace state.
1931 if (D->getFriendObjectKind())
1932 Record->setObjectOfFriendDecl();
1933
1934 // Make sure that anonymous structs and unions are recorded.
1935 if (D->isAnonymousStructOrUnion())
1936 Record->setAnonymousStructOrUnion(true);
1937
1938 if (D->isLocalClass())
1939 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record);
1940
1941 // Forward the mangling number from the template to the instantiated decl.
1942 SemaRef.Context.setManglingNumber(Record,
1943 SemaRef.Context.getManglingNumber(D));
1944
1945 // See if the old tag was defined along with a declarator.
1946 // If it did, mark the new tag as being associated with that declarator.
1947 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D))
1948 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD);
1949
1950 // See if the old tag was defined along with a typedef.
1951 // If it did, mark the new tag as being associated with that typedef.
1952 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D))
1953 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND);
1954
1955 Owner->addDecl(Record);
1956
1957 // DR1484 clarifies that the members of a local class are instantiated as part
1958 // of the instantiation of their enclosing entity.
1959 if (D->isCompleteDefinition() && D->isLocalClass()) {
1960 Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef);
1961
1962 SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs,
1963 TSK_ImplicitInstantiation,
1964 /*Complain=*/true);
1965
1966 // For nested local classes, we will instantiate the members when we
1967 // reach the end of the outermost (non-nested) local class.
1968 if (!D->isCXXClassMember())
1969 SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs,
1970 TSK_ImplicitInstantiation);
1971
1972 // This class may have local implicit instantiations that need to be
1973 // performed within this scope.
1974 LocalInstantiations.perform();
1975 }
1976
1977 SemaRef.DiagnoseUnusedNestedTypedefs(Record);
1978
1979 if (IsInjectedClassName)
1980 assert(Record->isInjectedClassName() && "Broken injected-class-name");
1981
1982 return Record;
1983 }
1984
1985 /// Adjust the given function type for an instantiation of the
1986 /// given declaration, to cope with modifications to the function's type that
1987 /// aren't reflected in the type-source information.
1988 ///
1989 /// \param D The declaration we're instantiating.
1990 /// \param TInfo The already-instantiated type.
adjustFunctionTypeForInstantiation(ASTContext & Context,FunctionDecl * D,TypeSourceInfo * TInfo)1991 static QualType adjustFunctionTypeForInstantiation(ASTContext &Context,
1992 FunctionDecl *D,
1993 TypeSourceInfo *TInfo) {
1994 const FunctionProtoType *OrigFunc
1995 = D->getType()->castAs<FunctionProtoType>();
1996 const FunctionProtoType *NewFunc
1997 = TInfo->getType()->castAs<FunctionProtoType>();
1998 if (OrigFunc->getExtInfo() == NewFunc->getExtInfo())
1999 return TInfo->getType();
2000
2001 FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo();
2002 NewEPI.ExtInfo = OrigFunc->getExtInfo();
2003 return Context.getFunctionType(NewFunc->getReturnType(),
2004 NewFunc->getParamTypes(), NewEPI);
2005 }
2006
2007 /// Normal class members are of more specific types and therefore
2008 /// don't make it here. This function serves three purposes:
2009 /// 1) instantiating function templates
2010 /// 2) substituting friend and local function declarations
2011 /// 3) substituting deduction guide declarations for nested class templates
VisitFunctionDecl(FunctionDecl * D,TemplateParameterList * TemplateParams,RewriteKind FunctionRewriteKind)2012 Decl *TemplateDeclInstantiator::VisitFunctionDecl(
2013 FunctionDecl *D, TemplateParameterList *TemplateParams,
2014 RewriteKind FunctionRewriteKind) {
2015 // Check whether there is already a function template specialization for
2016 // this declaration.
2017 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
2018 if (FunctionTemplate && !TemplateParams) {
2019 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2020
2021 void *InsertPos = nullptr;
2022 FunctionDecl *SpecFunc
2023 = FunctionTemplate->findSpecialization(Innermost, InsertPos);
2024
2025 // If we already have a function template specialization, return it.
2026 if (SpecFunc)
2027 return SpecFunc;
2028 }
2029
2030 bool isFriend;
2031 if (FunctionTemplate)
2032 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
2033 else
2034 isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
2035
2036 bool MergeWithParentScope = (TemplateParams != nullptr) ||
2037 Owner->isFunctionOrMethod() ||
2038 !(isa<Decl>(Owner) &&
2039 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
2040 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
2041
2042 ExplicitSpecifier InstantiatedExplicitSpecifier;
2043 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) {
2044 InstantiatedExplicitSpecifier = instantiateExplicitSpecifier(
2045 SemaRef, TemplateArgs, DGuide->getExplicitSpecifier(), DGuide);
2046 if (InstantiatedExplicitSpecifier.isInvalid())
2047 return nullptr;
2048 }
2049
2050 SmallVector<ParmVarDecl *, 4> Params;
2051 TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
2052 if (!TInfo)
2053 return nullptr;
2054 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
2055
2056 if (TemplateParams && TemplateParams->size()) {
2057 auto *LastParam =
2058 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back());
2059 if (LastParam && LastParam->isImplicit() &&
2060 LastParam->hasTypeConstraint()) {
2061 // In abbreviated templates, the type-constraints of invented template
2062 // type parameters are instantiated with the function type, invalidating
2063 // the TemplateParameterList which relied on the template type parameter
2064 // not having a type constraint. Recreate the TemplateParameterList with
2065 // the updated parameter list.
2066 TemplateParams = TemplateParameterList::Create(
2067 SemaRef.Context, TemplateParams->getTemplateLoc(),
2068 TemplateParams->getLAngleLoc(), TemplateParams->asArray(),
2069 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause());
2070 }
2071 }
2072
2073 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
2074 if (QualifierLoc) {
2075 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2076 TemplateArgs);
2077 if (!QualifierLoc)
2078 return nullptr;
2079 }
2080
2081 Expr *TrailingRequiresClause = D->getTrailingRequiresClause();
2082
2083 // If we're instantiating a local function declaration, put the result
2084 // in the enclosing namespace; otherwise we need to find the instantiated
2085 // context.
2086 DeclContext *DC;
2087 if (D->isLocalExternDecl()) {
2088 DC = Owner;
2089 SemaRef.adjustContextForLocalExternDecl(DC);
2090 } else if (isFriend && QualifierLoc) {
2091 CXXScopeSpec SS;
2092 SS.Adopt(QualifierLoc);
2093 DC = SemaRef.computeDeclContext(SS);
2094 if (!DC) return nullptr;
2095 } else {
2096 DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(),
2097 TemplateArgs);
2098 }
2099
2100 DeclarationNameInfo NameInfo
2101 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
2102
2103 if (FunctionRewriteKind != RewriteKind::None)
2104 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo);
2105
2106 FunctionDecl *Function;
2107 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) {
2108 Function = CXXDeductionGuideDecl::Create(
2109 SemaRef.Context, DC, D->getInnerLocStart(),
2110 InstantiatedExplicitSpecifier, NameInfo, T, TInfo,
2111 D->getSourceRange().getEnd());
2112 if (DGuide->isCopyDeductionCandidate())
2113 cast<CXXDeductionGuideDecl>(Function)->setIsCopyDeductionCandidate();
2114 Function->setAccess(D->getAccess());
2115 } else {
2116 Function = FunctionDecl::Create(
2117 SemaRef.Context, DC, D->getInnerLocStart(), NameInfo, T, TInfo,
2118 D->getCanonicalDecl()->getStorageClass(), D->UsesFPIntrin(),
2119 D->isInlineSpecified(), D->hasWrittenPrototype(), D->getConstexprKind(),
2120 TrailingRequiresClause);
2121 Function->setFriendConstraintRefersToEnclosingTemplate(
2122 D->FriendConstraintRefersToEnclosingTemplate());
2123 Function->setRangeEnd(D->getSourceRange().getEnd());
2124 }
2125
2126 if (D->isInlined())
2127 Function->setImplicitlyInline();
2128
2129 if (QualifierLoc)
2130 Function->setQualifierInfo(QualifierLoc);
2131
2132 if (D->isLocalExternDecl())
2133 Function->setLocalExternDecl();
2134
2135 DeclContext *LexicalDC = Owner;
2136 if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) {
2137 assert(D->getDeclContext()->isFileContext());
2138 LexicalDC = D->getDeclContext();
2139 }
2140 else if (D->isLocalExternDecl()) {
2141 LexicalDC = SemaRef.CurContext;
2142 }
2143
2144 Function->setLexicalDeclContext(LexicalDC);
2145
2146 // Attach the parameters
2147 for (unsigned P = 0; P < Params.size(); ++P)
2148 if (Params[P])
2149 Params[P]->setOwningFunction(Function);
2150 Function->setParams(Params);
2151
2152 if (TrailingRequiresClause)
2153 Function->setTrailingRequiresClause(TrailingRequiresClause);
2154
2155 if (TemplateParams) {
2156 // Our resulting instantiation is actually a function template, since we
2157 // are substituting only the outer template parameters. For example, given
2158 //
2159 // template<typename T>
2160 // struct X {
2161 // template<typename U> friend void f(T, U);
2162 // };
2163 //
2164 // X<int> x;
2165 //
2166 // We are instantiating the friend function template "f" within X<int>,
2167 // which means substituting int for T, but leaving "f" as a friend function
2168 // template.
2169 // Build the function template itself.
2170 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC,
2171 Function->getLocation(),
2172 Function->getDeclName(),
2173 TemplateParams, Function);
2174 Function->setDescribedFunctionTemplate(FunctionTemplate);
2175
2176 FunctionTemplate->setLexicalDeclContext(LexicalDC);
2177
2178 if (isFriend && D->isThisDeclarationADefinition()) {
2179 FunctionTemplate->setInstantiatedFromMemberTemplate(
2180 D->getDescribedFunctionTemplate());
2181 }
2182 } else if (FunctionTemplate) {
2183 // Record this function template specialization.
2184 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2185 Function->setFunctionTemplateSpecialization(FunctionTemplate,
2186 TemplateArgumentList::CreateCopy(SemaRef.Context,
2187 Innermost),
2188 /*InsertPos=*/nullptr);
2189 } else if (isFriend && D->isThisDeclarationADefinition()) {
2190 // Do not connect the friend to the template unless it's actually a
2191 // definition. We don't want non-template functions to be marked as being
2192 // template instantiations.
2193 Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
2194 } else if (!isFriend) {
2195 // If this is not a function template, and this is not a friend (that is,
2196 // this is a locally declared function), save the instantiation relationship
2197 // for the purposes of constraint instantiation.
2198 Function->setInstantiatedFromDecl(D);
2199 }
2200
2201 if (isFriend) {
2202 Function->setObjectOfFriendDecl();
2203 if (FunctionTemplateDecl *FT = Function->getDescribedFunctionTemplate())
2204 FT->setObjectOfFriendDecl();
2205 }
2206
2207 if (InitFunctionInstantiation(Function, D))
2208 Function->setInvalidDecl();
2209
2210 bool IsExplicitSpecialization = false;
2211
2212 LookupResult Previous(
2213 SemaRef, Function->getDeclName(), SourceLocation(),
2214 D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
2215 : Sema::LookupOrdinaryName,
2216 D->isLocalExternDecl() ? Sema::ForExternalRedeclaration
2217 : SemaRef.forRedeclarationInCurContext());
2218
2219 if (DependentFunctionTemplateSpecializationInfo *Info
2220 = D->getDependentSpecializationInfo()) {
2221 assert(isFriend && "non-friend has dependent specialization info?");
2222
2223 // Instantiate the explicit template arguments.
2224 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
2225 Info->getRAngleLoc());
2226 if (SemaRef.SubstTemplateArguments(Info->arguments(), TemplateArgs,
2227 ExplicitArgs))
2228 return nullptr;
2229
2230 // Map the candidate templates to their instantiations.
2231 for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) {
2232 Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(),
2233 Info->getTemplate(I),
2234 TemplateArgs);
2235 if (!Temp) return nullptr;
2236
2237 Previous.addDecl(cast<FunctionTemplateDecl>(Temp));
2238 }
2239
2240 if (SemaRef.CheckFunctionTemplateSpecialization(Function,
2241 &ExplicitArgs,
2242 Previous))
2243 Function->setInvalidDecl();
2244
2245 IsExplicitSpecialization = true;
2246 } else if (const ASTTemplateArgumentListInfo *Info =
2247 D->getTemplateSpecializationArgsAsWritten()) {
2248 // The name of this function was written as a template-id.
2249 SemaRef.LookupQualifiedName(Previous, DC);
2250
2251 // Instantiate the explicit template arguments.
2252 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
2253 Info->getRAngleLoc());
2254 if (SemaRef.SubstTemplateArguments(Info->arguments(), TemplateArgs,
2255 ExplicitArgs))
2256 return nullptr;
2257
2258 if (SemaRef.CheckFunctionTemplateSpecialization(Function,
2259 &ExplicitArgs,
2260 Previous))
2261 Function->setInvalidDecl();
2262
2263 IsExplicitSpecialization = true;
2264 } else if (TemplateParams || !FunctionTemplate) {
2265 // Look only into the namespace where the friend would be declared to
2266 // find a previous declaration. This is the innermost enclosing namespace,
2267 // as described in ActOnFriendFunctionDecl.
2268 SemaRef.LookupQualifiedName(Previous, DC->getRedeclContext());
2269
2270 // In C++, the previous declaration we find might be a tag type
2271 // (class or enum). In this case, the new declaration will hide the
2272 // tag type. Note that this does not apply if we're declaring a
2273 // typedef (C++ [dcl.typedef]p4).
2274 if (Previous.isSingleTagDecl())
2275 Previous.clear();
2276
2277 // Filter out previous declarations that don't match the scope. The only
2278 // effect this has is to remove declarations found in inline namespaces
2279 // for friend declarations with unqualified names.
2280 if (isFriend && !QualifierLoc && !FunctionTemplate) {
2281 SemaRef.FilterLookupForScope(Previous, DC, /*Scope=*/ nullptr,
2282 /*ConsiderLinkage=*/ true,
2283 QualifierLoc.hasQualifier());
2284 }
2285 }
2286
2287 // Per [temp.inst], default arguments in function declarations at local scope
2288 // are instantiated along with the enclosing declaration. For example:
2289 //
2290 // template<typename T>
2291 // void ft() {
2292 // void f(int = []{ return T::value; }());
2293 // }
2294 // template void ft<int>(); // error: type 'int' cannot be used prior
2295 // to '::' because it has no members
2296 //
2297 // The error is issued during instantiation of ft<int>() because substitution
2298 // into the default argument fails; the default argument is instantiated even
2299 // though it is never used.
2300 if (Function->isLocalExternDecl()) {
2301 for (ParmVarDecl *PVD : Function->parameters()) {
2302 if (!PVD->hasDefaultArg())
2303 continue;
2304 if (SemaRef.SubstDefaultArgument(D->getInnerLocStart(), PVD, TemplateArgs)) {
2305 // If substitution fails, the default argument is set to a
2306 // RecoveryExpr that wraps the uninstantiated default argument so
2307 // that downstream diagnostics are omitted.
2308 Expr *UninstExpr = PVD->getUninstantiatedDefaultArg();
2309 ExprResult ErrorResult = SemaRef.CreateRecoveryExpr(
2310 UninstExpr->getBeginLoc(), UninstExpr->getEndLoc(),
2311 { UninstExpr }, UninstExpr->getType());
2312 if (ErrorResult.isUsable())
2313 PVD->setDefaultArg(ErrorResult.get());
2314 }
2315 }
2316 }
2317
2318 SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous,
2319 IsExplicitSpecialization,
2320 Function->isThisDeclarationADefinition());
2321
2322 // Check the template parameter list against the previous declaration. The
2323 // goal here is to pick up default arguments added since the friend was
2324 // declared; we know the template parameter lists match, since otherwise
2325 // we would not have picked this template as the previous declaration.
2326 if (isFriend && TemplateParams && FunctionTemplate->getPreviousDecl()) {
2327 SemaRef.CheckTemplateParameterList(
2328 TemplateParams,
2329 FunctionTemplate->getPreviousDecl()->getTemplateParameters(),
2330 Function->isThisDeclarationADefinition()
2331 ? Sema::TPC_FriendFunctionTemplateDefinition
2332 : Sema::TPC_FriendFunctionTemplate);
2333 }
2334
2335 // If we're introducing a friend definition after the first use, trigger
2336 // instantiation.
2337 // FIXME: If this is a friend function template definition, we should check
2338 // to see if any specializations have been used.
2339 if (isFriend && D->isThisDeclarationADefinition() && Function->isUsed(false)) {
2340 if (MemberSpecializationInfo *MSInfo =
2341 Function->getMemberSpecializationInfo()) {
2342 if (MSInfo->getPointOfInstantiation().isInvalid()) {
2343 SourceLocation Loc = D->getLocation(); // FIXME
2344 MSInfo->setPointOfInstantiation(Loc);
2345 SemaRef.PendingLocalImplicitInstantiations.push_back(
2346 std::make_pair(Function, Loc));
2347 }
2348 }
2349 }
2350
2351 if (D->isExplicitlyDefaulted()) {
2352 if (SubstDefaultedFunction(Function, D))
2353 return nullptr;
2354 }
2355 if (D->isDeleted())
2356 SemaRef.SetDeclDeleted(Function, D->getLocation());
2357
2358 NamedDecl *PrincipalDecl =
2359 (TemplateParams ? cast<NamedDecl>(FunctionTemplate) : Function);
2360
2361 // If this declaration lives in a different context from its lexical context,
2362 // add it to the corresponding lookup table.
2363 if (isFriend ||
2364 (Function->isLocalExternDecl() && !Function->getPreviousDecl()))
2365 DC->makeDeclVisibleInContext(PrincipalDecl);
2366
2367 if (Function->isOverloadedOperator() && !DC->isRecord() &&
2368 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
2369 PrincipalDecl->setNonMemberOperator();
2370
2371 return Function;
2372 }
2373
VisitCXXMethodDecl(CXXMethodDecl * D,TemplateParameterList * TemplateParams,std::optional<const ASTTemplateArgumentListInfo * > ClassScopeSpecializationArgs,RewriteKind FunctionRewriteKind)2374 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(
2375 CXXMethodDecl *D, TemplateParameterList *TemplateParams,
2376 std::optional<const ASTTemplateArgumentListInfo *>
2377 ClassScopeSpecializationArgs,
2378 RewriteKind FunctionRewriteKind) {
2379 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
2380 if (FunctionTemplate && !TemplateParams) {
2381 // We are creating a function template specialization from a function
2382 // template. Check whether there is already a function template
2383 // specialization for this particular set of template arguments.
2384 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2385
2386 void *InsertPos = nullptr;
2387 FunctionDecl *SpecFunc
2388 = FunctionTemplate->findSpecialization(Innermost, InsertPos);
2389
2390 // If we already have a function template specialization, return it.
2391 if (SpecFunc)
2392 return SpecFunc;
2393 }
2394
2395 bool isFriend;
2396 if (FunctionTemplate)
2397 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
2398 else
2399 isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
2400
2401 bool MergeWithParentScope = (TemplateParams != nullptr) ||
2402 !(isa<Decl>(Owner) &&
2403 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
2404 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
2405
2406 // Instantiate enclosing template arguments for friends.
2407 SmallVector<TemplateParameterList *, 4> TempParamLists;
2408 unsigned NumTempParamLists = 0;
2409 if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) {
2410 TempParamLists.resize(NumTempParamLists);
2411 for (unsigned I = 0; I != NumTempParamLists; ++I) {
2412 TemplateParameterList *TempParams = D->getTemplateParameterList(I);
2413 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
2414 if (!InstParams)
2415 return nullptr;
2416 TempParamLists[I] = InstParams;
2417 }
2418 }
2419
2420 ExplicitSpecifier InstantiatedExplicitSpecifier =
2421 instantiateExplicitSpecifier(SemaRef, TemplateArgs,
2422 ExplicitSpecifier::getFromDecl(D), D);
2423 if (InstantiatedExplicitSpecifier.isInvalid())
2424 return nullptr;
2425
2426 // Implicit destructors/constructors created for local classes in
2427 // DeclareImplicit* (see SemaDeclCXX.cpp) might not have an associated TSI.
2428 // Unfortunately there isn't enough context in those functions to
2429 // conditionally populate the TSI without breaking non-template related use
2430 // cases. Populate TSIs prior to calling SubstFunctionType to make sure we get
2431 // a proper transformation.
2432 if (cast<CXXRecordDecl>(D->getParent())->isLambda() &&
2433 !D->getTypeSourceInfo() &&
2434 isa<CXXConstructorDecl, CXXDestructorDecl>(D)) {
2435 TypeSourceInfo *TSI =
2436 SemaRef.Context.getTrivialTypeSourceInfo(D->getType());
2437 D->setTypeSourceInfo(TSI);
2438 }
2439
2440 SmallVector<ParmVarDecl *, 4> Params;
2441 TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
2442 if (!TInfo)
2443 return nullptr;
2444 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
2445
2446 if (TemplateParams && TemplateParams->size()) {
2447 auto *LastParam =
2448 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back());
2449 if (LastParam && LastParam->isImplicit() &&
2450 LastParam->hasTypeConstraint()) {
2451 // In abbreviated templates, the type-constraints of invented template
2452 // type parameters are instantiated with the function type, invalidating
2453 // the TemplateParameterList which relied on the template type parameter
2454 // not having a type constraint. Recreate the TemplateParameterList with
2455 // the updated parameter list.
2456 TemplateParams = TemplateParameterList::Create(
2457 SemaRef.Context, TemplateParams->getTemplateLoc(),
2458 TemplateParams->getLAngleLoc(), TemplateParams->asArray(),
2459 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause());
2460 }
2461 }
2462
2463 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
2464 if (QualifierLoc) {
2465 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2466 TemplateArgs);
2467 if (!QualifierLoc)
2468 return nullptr;
2469 }
2470
2471 DeclContext *DC = Owner;
2472 if (isFriend) {
2473 if (QualifierLoc) {
2474 CXXScopeSpec SS;
2475 SS.Adopt(QualifierLoc);
2476 DC = SemaRef.computeDeclContext(SS);
2477
2478 if (DC && SemaRef.RequireCompleteDeclContext(SS, DC))
2479 return nullptr;
2480 } else {
2481 DC = SemaRef.FindInstantiatedContext(D->getLocation(),
2482 D->getDeclContext(),
2483 TemplateArgs);
2484 }
2485 if (!DC) return nullptr;
2486 }
2487
2488 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
2489 Expr *TrailingRequiresClause = D->getTrailingRequiresClause();
2490
2491 DeclarationNameInfo NameInfo
2492 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
2493
2494 if (FunctionRewriteKind != RewriteKind::None)
2495 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo);
2496
2497 // Build the instantiated method declaration.
2498 CXXMethodDecl *Method = nullptr;
2499
2500 SourceLocation StartLoc = D->getInnerLocStart();
2501 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
2502 Method = CXXConstructorDecl::Create(
2503 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
2504 InstantiatedExplicitSpecifier, Constructor->UsesFPIntrin(),
2505 Constructor->isInlineSpecified(), false,
2506 Constructor->getConstexprKind(), InheritedConstructor(),
2507 TrailingRequiresClause);
2508 Method->setRangeEnd(Constructor->getEndLoc());
2509 if (Constructor->isDefaultConstructor() ||
2510 Constructor->isCopyOrMoveConstructor())
2511 Method->setIneligibleOrNotSelected(true);
2512 } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
2513 Method = CXXDestructorDecl::Create(
2514 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
2515 Destructor->UsesFPIntrin(), Destructor->isInlineSpecified(), false,
2516 Destructor->getConstexprKind(), TrailingRequiresClause);
2517 Method->setIneligibleOrNotSelected(true);
2518 Method->setRangeEnd(Destructor->getEndLoc());
2519 Method->setDeclName(SemaRef.Context.DeclarationNames.getCXXDestructorName(
2520 SemaRef.Context.getCanonicalType(
2521 SemaRef.Context.getTypeDeclType(Record))));
2522 } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
2523 Method = CXXConversionDecl::Create(
2524 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
2525 Conversion->UsesFPIntrin(), Conversion->isInlineSpecified(),
2526 InstantiatedExplicitSpecifier, Conversion->getConstexprKind(),
2527 Conversion->getEndLoc(), TrailingRequiresClause);
2528 } else {
2529 StorageClass SC = D->isStatic() ? SC_Static : SC_None;
2530 Method = CXXMethodDecl::Create(
2531 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, SC,
2532 D->UsesFPIntrin(), D->isInlineSpecified(), D->getConstexprKind(),
2533 D->getEndLoc(), TrailingRequiresClause);
2534 if (D->isMoveAssignmentOperator() || D->isCopyAssignmentOperator())
2535 Method->setIneligibleOrNotSelected(true);
2536 }
2537
2538 if (D->isInlined())
2539 Method->setImplicitlyInline();
2540
2541 if (QualifierLoc)
2542 Method->setQualifierInfo(QualifierLoc);
2543
2544 if (TemplateParams) {
2545 // Our resulting instantiation is actually a function template, since we
2546 // are substituting only the outer template parameters. For example, given
2547 //
2548 // template<typename T>
2549 // struct X {
2550 // template<typename U> void f(T, U);
2551 // };
2552 //
2553 // X<int> x;
2554 //
2555 // We are instantiating the member template "f" within X<int>, which means
2556 // substituting int for T, but leaving "f" as a member function template.
2557 // Build the function template itself.
2558 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record,
2559 Method->getLocation(),
2560 Method->getDeclName(),
2561 TemplateParams, Method);
2562 if (isFriend) {
2563 FunctionTemplate->setLexicalDeclContext(Owner);
2564 FunctionTemplate->setObjectOfFriendDecl();
2565 } else if (D->isOutOfLine())
2566 FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext());
2567 Method->setDescribedFunctionTemplate(FunctionTemplate);
2568 } else if (FunctionTemplate) {
2569 // Record this function template specialization.
2570 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2571 Method->setFunctionTemplateSpecialization(FunctionTemplate,
2572 TemplateArgumentList::CreateCopy(SemaRef.Context,
2573 Innermost),
2574 /*InsertPos=*/nullptr);
2575 } else if (!isFriend) {
2576 // Record that this is an instantiation of a member function.
2577 Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
2578 }
2579
2580 // If we are instantiating a member function defined
2581 // out-of-line, the instantiation will have the same lexical
2582 // context (which will be a namespace scope) as the template.
2583 if (isFriend) {
2584 if (NumTempParamLists)
2585 Method->setTemplateParameterListsInfo(
2586 SemaRef.Context,
2587 llvm::ArrayRef(TempParamLists.data(), NumTempParamLists));
2588
2589 Method->setLexicalDeclContext(Owner);
2590 Method->setObjectOfFriendDecl();
2591 } else if (D->isOutOfLine())
2592 Method->setLexicalDeclContext(D->getLexicalDeclContext());
2593
2594 // Attach the parameters
2595 for (unsigned P = 0; P < Params.size(); ++P)
2596 Params[P]->setOwningFunction(Method);
2597 Method->setParams(Params);
2598
2599 if (InitMethodInstantiation(Method, D))
2600 Method->setInvalidDecl();
2601
2602 LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName,
2603 Sema::ForExternalRedeclaration);
2604
2605 bool IsExplicitSpecialization = false;
2606
2607 // If the name of this function was written as a template-id, instantiate
2608 // the explicit template arguments.
2609 if (DependentFunctionTemplateSpecializationInfo *Info
2610 = D->getDependentSpecializationInfo()) {
2611 assert(isFriend && "non-friend has dependent specialization info?");
2612
2613 // Instantiate the explicit template arguments.
2614 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
2615 Info->getRAngleLoc());
2616 if (SemaRef.SubstTemplateArguments(Info->arguments(), TemplateArgs,
2617 ExplicitArgs))
2618 return nullptr;
2619
2620 // Map the candidate templates to their instantiations.
2621 for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) {
2622 Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(),
2623 Info->getTemplate(I),
2624 TemplateArgs);
2625 if (!Temp) return nullptr;
2626
2627 Previous.addDecl(cast<FunctionTemplateDecl>(Temp));
2628 }
2629
2630 if (SemaRef.CheckFunctionTemplateSpecialization(Method,
2631 &ExplicitArgs,
2632 Previous))
2633 Method->setInvalidDecl();
2634
2635 IsExplicitSpecialization = true;
2636 } else if (const ASTTemplateArgumentListInfo *Info =
2637 ClassScopeSpecializationArgs.value_or(
2638 D->getTemplateSpecializationArgsAsWritten())) {
2639 SemaRef.LookupQualifiedName(Previous, DC);
2640
2641 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
2642 Info->getRAngleLoc());
2643 if (SemaRef.SubstTemplateArguments(Info->arguments(), TemplateArgs,
2644 ExplicitArgs))
2645 return nullptr;
2646
2647 if (SemaRef.CheckFunctionTemplateSpecialization(Method,
2648 &ExplicitArgs,
2649 Previous))
2650 Method->setInvalidDecl();
2651
2652 IsExplicitSpecialization = true;
2653 } else if (ClassScopeSpecializationArgs) {
2654 // Class-scope explicit specialization written without explicit template
2655 // arguments.
2656 SemaRef.LookupQualifiedName(Previous, DC);
2657 if (SemaRef.CheckFunctionTemplateSpecialization(Method, nullptr, Previous))
2658 Method->setInvalidDecl();
2659
2660 IsExplicitSpecialization = true;
2661 } else if (!FunctionTemplate || TemplateParams || isFriend) {
2662 SemaRef.LookupQualifiedName(Previous, Record);
2663
2664 // In C++, the previous declaration we find might be a tag type
2665 // (class or enum). In this case, the new declaration will hide the
2666 // tag type. Note that this does not apply if we're declaring a
2667 // typedef (C++ [dcl.typedef]p4).
2668 if (Previous.isSingleTagDecl())
2669 Previous.clear();
2670 }
2671
2672 // Per [temp.inst], default arguments in member functions of local classes
2673 // are instantiated along with the member function declaration. For example:
2674 //
2675 // template<typename T>
2676 // void ft() {
2677 // struct lc {
2678 // int operator()(int p = []{ return T::value; }());
2679 // };
2680 // }
2681 // template void ft<int>(); // error: type 'int' cannot be used prior
2682 // to '::'because it has no members
2683 //
2684 // The error is issued during instantiation of ft<int>()::lc::operator()
2685 // because substitution into the default argument fails; the default argument
2686 // is instantiated even though it is never used.
2687 if (D->isInLocalScopeForInstantiation()) {
2688 for (unsigned P = 0; P < Params.size(); ++P) {
2689 if (!Params[P]->hasDefaultArg())
2690 continue;
2691 if (SemaRef.SubstDefaultArgument(StartLoc, Params[P], TemplateArgs)) {
2692 // If substitution fails, the default argument is set to a
2693 // RecoveryExpr that wraps the uninstantiated default argument so
2694 // that downstream diagnostics are omitted.
2695 Expr *UninstExpr = Params[P]->getUninstantiatedDefaultArg();
2696 ExprResult ErrorResult = SemaRef.CreateRecoveryExpr(
2697 UninstExpr->getBeginLoc(), UninstExpr->getEndLoc(),
2698 { UninstExpr }, UninstExpr->getType());
2699 if (ErrorResult.isUsable())
2700 Params[P]->setDefaultArg(ErrorResult.get());
2701 }
2702 }
2703 }
2704
2705 SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous,
2706 IsExplicitSpecialization,
2707 Method->isThisDeclarationADefinition());
2708
2709 if (D->isPure())
2710 SemaRef.CheckPureMethod(Method, SourceRange());
2711
2712 // Propagate access. For a non-friend declaration, the access is
2713 // whatever we're propagating from. For a friend, it should be the
2714 // previous declaration we just found.
2715 if (isFriend && Method->getPreviousDecl())
2716 Method->setAccess(Method->getPreviousDecl()->getAccess());
2717 else
2718 Method->setAccess(D->getAccess());
2719 if (FunctionTemplate)
2720 FunctionTemplate->setAccess(Method->getAccess());
2721
2722 SemaRef.CheckOverrideControl(Method);
2723
2724 // If a function is defined as defaulted or deleted, mark it as such now.
2725 if (D->isExplicitlyDefaulted()) {
2726 if (SubstDefaultedFunction(Method, D))
2727 return nullptr;
2728 }
2729 if (D->isDeletedAsWritten())
2730 SemaRef.SetDeclDeleted(Method, Method->getLocation());
2731
2732 // If this is an explicit specialization, mark the implicitly-instantiated
2733 // template specialization as being an explicit specialization too.
2734 // FIXME: Is this necessary?
2735 if (IsExplicitSpecialization && !isFriend)
2736 SemaRef.CompleteMemberSpecialization(Method, Previous);
2737
2738 // If there's a function template, let our caller handle it.
2739 if (FunctionTemplate) {
2740 // do nothing
2741
2742 // Don't hide a (potentially) valid declaration with an invalid one.
2743 } else if (Method->isInvalidDecl() && !Previous.empty()) {
2744 // do nothing
2745
2746 // Otherwise, check access to friends and make them visible.
2747 } else if (isFriend) {
2748 // We only need to re-check access for methods which we didn't
2749 // manage to match during parsing.
2750 if (!D->getPreviousDecl())
2751 SemaRef.CheckFriendAccess(Method);
2752
2753 Record->makeDeclVisibleInContext(Method);
2754
2755 // Otherwise, add the declaration. We don't need to do this for
2756 // class-scope specializations because we'll have matched them with
2757 // the appropriate template.
2758 } else {
2759 Owner->addDecl(Method);
2760 }
2761
2762 // PR17480: Honor the used attribute to instantiate member function
2763 // definitions
2764 if (Method->hasAttr<UsedAttr>()) {
2765 if (const auto *A = dyn_cast<CXXRecordDecl>(Owner)) {
2766 SourceLocation Loc;
2767 if (const MemberSpecializationInfo *MSInfo =
2768 A->getMemberSpecializationInfo())
2769 Loc = MSInfo->getPointOfInstantiation();
2770 else if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(A))
2771 Loc = Spec->getPointOfInstantiation();
2772 SemaRef.MarkFunctionReferenced(Loc, Method);
2773 }
2774 }
2775
2776 return Method;
2777 }
2778
VisitCXXConstructorDecl(CXXConstructorDecl * D)2779 Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
2780 return VisitCXXMethodDecl(D);
2781 }
2782
VisitCXXDestructorDecl(CXXDestructorDecl * D)2783 Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
2784 return VisitCXXMethodDecl(D);
2785 }
2786
VisitCXXConversionDecl(CXXConversionDecl * D)2787 Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) {
2788 return VisitCXXMethodDecl(D);
2789 }
2790
VisitParmVarDecl(ParmVarDecl * D)2791 Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) {
2792 return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0,
2793 std::nullopt,
2794 /*ExpectParameterPack=*/false);
2795 }
2796
VisitTemplateTypeParmDecl(TemplateTypeParmDecl * D)2797 Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl(
2798 TemplateTypeParmDecl *D) {
2799 assert(D->getTypeForDecl()->isTemplateTypeParmType());
2800
2801 std::optional<unsigned> NumExpanded;
2802
2803 if (const TypeConstraint *TC = D->getTypeConstraint()) {
2804 if (D->isPackExpansion() && !D->isExpandedParameterPack()) {
2805 assert(TC->getTemplateArgsAsWritten() &&
2806 "type parameter can only be an expansion when explicit arguments "
2807 "are specified");
2808 // The template type parameter pack's type is a pack expansion of types.
2809 // Determine whether we need to expand this parameter pack into separate
2810 // types.
2811 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2812 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2813 SemaRef.collectUnexpandedParameterPacks(ArgLoc, Unexpanded);
2814
2815 // Determine whether the set of unexpanded parameter packs can and should
2816 // be expanded.
2817 bool Expand = true;
2818 bool RetainExpansion = false;
2819 if (SemaRef.CheckParameterPacksForExpansion(
2820 cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint())
2821 ->getEllipsisLoc(),
2822 SourceRange(TC->getConceptNameLoc(),
2823 TC->hasExplicitTemplateArgs() ?
2824 TC->getTemplateArgsAsWritten()->getRAngleLoc() :
2825 TC->getConceptNameInfo().getEndLoc()),
2826 Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpanded))
2827 return nullptr;
2828 }
2829 }
2830
2831 TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create(
2832 SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(),
2833 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getIndex(),
2834 D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack(),
2835 D->hasTypeConstraint(), NumExpanded);
2836
2837 Inst->setAccess(AS_public);
2838 Inst->setImplicit(D->isImplicit());
2839 if (auto *TC = D->getTypeConstraint()) {
2840 if (!D->isImplicit()) {
2841 // Invented template parameter type constraints will be instantiated
2842 // with the corresponding auto-typed parameter as it might reference
2843 // other parameters.
2844 if (SemaRef.SubstTypeConstraint(Inst, TC, TemplateArgs,
2845 EvaluateConstraints))
2846 return nullptr;
2847 }
2848 }
2849 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
2850 TypeSourceInfo *InstantiatedDefaultArg =
2851 SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs,
2852 D->getDefaultArgumentLoc(), D->getDeclName());
2853 if (InstantiatedDefaultArg)
2854 Inst->setDefaultArgument(InstantiatedDefaultArg);
2855 }
2856
2857 // Introduce this template parameter's instantiation into the instantiation
2858 // scope.
2859 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst);
2860
2861 return Inst;
2862 }
2863
VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl * D)2864 Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl(
2865 NonTypeTemplateParmDecl *D) {
2866 // Substitute into the type of the non-type template parameter.
2867 TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc();
2868 SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten;
2869 SmallVector<QualType, 4> ExpandedParameterPackTypes;
2870 bool IsExpandedParameterPack = false;
2871 TypeSourceInfo *DI;
2872 QualType T;
2873 bool Invalid = false;
2874
2875 if (D->isExpandedParameterPack()) {
2876 // The non-type template parameter pack is an already-expanded pack
2877 // expansion of types. Substitute into each of the expanded types.
2878 ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes());
2879 ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes());
2880 for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) {
2881 TypeSourceInfo *NewDI =
2882 SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs,
2883 D->getLocation(), D->getDeclName());
2884 if (!NewDI)
2885 return nullptr;
2886
2887 QualType NewT =
2888 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation());
2889 if (NewT.isNull())
2890 return nullptr;
2891
2892 ExpandedParameterPackTypesAsWritten.push_back(NewDI);
2893 ExpandedParameterPackTypes.push_back(NewT);
2894 }
2895
2896 IsExpandedParameterPack = true;
2897 DI = D->getTypeSourceInfo();
2898 T = DI->getType();
2899 } else if (D->isPackExpansion()) {
2900 // The non-type template parameter pack's type is a pack expansion of types.
2901 // Determine whether we need to expand this parameter pack into separate
2902 // types.
2903 PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>();
2904 TypeLoc Pattern = Expansion.getPatternLoc();
2905 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2906 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
2907
2908 // Determine whether the set of unexpanded parameter packs can and should
2909 // be expanded.
2910 bool Expand = true;
2911 bool RetainExpansion = false;
2912 std::optional<unsigned> OrigNumExpansions =
2913 Expansion.getTypePtr()->getNumExpansions();
2914 std::optional<unsigned> NumExpansions = OrigNumExpansions;
2915 if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(),
2916 Pattern.getSourceRange(),
2917 Unexpanded,
2918 TemplateArgs,
2919 Expand, RetainExpansion,
2920 NumExpansions))
2921 return nullptr;
2922
2923 if (Expand) {
2924 for (unsigned I = 0; I != *NumExpansions; ++I) {
2925 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
2926 TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs,
2927 D->getLocation(),
2928 D->getDeclName());
2929 if (!NewDI)
2930 return nullptr;
2931
2932 QualType NewT =
2933 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation());
2934 if (NewT.isNull())
2935 return nullptr;
2936
2937 ExpandedParameterPackTypesAsWritten.push_back(NewDI);
2938 ExpandedParameterPackTypes.push_back(NewT);
2939 }
2940
2941 // Note that we have an expanded parameter pack. The "type" of this
2942 // expanded parameter pack is the original expansion type, but callers
2943 // will end up using the expanded parameter pack types for type-checking.
2944 IsExpandedParameterPack = true;
2945 DI = D->getTypeSourceInfo();
2946 T = DI->getType();
2947 } else {
2948 // We cannot fully expand the pack expansion now, so substitute into the
2949 // pattern and create a new pack expansion type.
2950 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
2951 TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs,
2952 D->getLocation(),
2953 D->getDeclName());
2954 if (!NewPattern)
2955 return nullptr;
2956
2957 SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation());
2958 DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(),
2959 NumExpansions);
2960 if (!DI)
2961 return nullptr;
2962
2963 T = DI->getType();
2964 }
2965 } else {
2966 // Simple case: substitution into a parameter that is not a parameter pack.
2967 DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
2968 D->getLocation(), D->getDeclName());
2969 if (!DI)
2970 return nullptr;
2971
2972 // Check that this type is acceptable for a non-type template parameter.
2973 T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation());
2974 if (T.isNull()) {
2975 T = SemaRef.Context.IntTy;
2976 Invalid = true;
2977 }
2978 }
2979
2980 NonTypeTemplateParmDecl *Param;
2981 if (IsExpandedParameterPack)
2982 Param = NonTypeTemplateParmDecl::Create(
2983 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
2984 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
2985 D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes,
2986 ExpandedParameterPackTypesAsWritten);
2987 else
2988 Param = NonTypeTemplateParmDecl::Create(
2989 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
2990 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
2991 D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI);
2992
2993 if (AutoTypeLoc AutoLoc = DI->getTypeLoc().getContainedAutoTypeLoc())
2994 if (AutoLoc.isConstrained())
2995 if (SemaRef.AttachTypeConstraint(
2996 AutoLoc, Param,
2997 IsExpandedParameterPack
2998 ? DI->getTypeLoc().getAs<PackExpansionTypeLoc>()
2999 .getEllipsisLoc()
3000 : SourceLocation()))
3001 Invalid = true;
3002
3003 Param->setAccess(AS_public);
3004 Param->setImplicit(D->isImplicit());
3005 if (Invalid)
3006 Param->setInvalidDecl();
3007
3008 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
3009 EnterExpressionEvaluationContext ConstantEvaluated(
3010 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3011 ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs);
3012 if (!Value.isInvalid())
3013 Param->setDefaultArgument(Value.get());
3014 }
3015
3016 // Introduce this template parameter's instantiation into the instantiation
3017 // scope.
3018 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
3019 return Param;
3020 }
3021
collectUnexpandedParameterPacks(Sema & S,TemplateParameterList * Params,SmallVectorImpl<UnexpandedParameterPack> & Unexpanded)3022 static void collectUnexpandedParameterPacks(
3023 Sema &S,
3024 TemplateParameterList *Params,
3025 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
3026 for (const auto &P : *Params) {
3027 if (P->isTemplateParameterPack())
3028 continue;
3029 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P))
3030 S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(),
3031 Unexpanded);
3032 if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P))
3033 collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(),
3034 Unexpanded);
3035 }
3036 }
3037
3038 Decl *
VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl * D)3039 TemplateDeclInstantiator::VisitTemplateTemplateParmDecl(
3040 TemplateTemplateParmDecl *D) {
3041 // Instantiate the template parameter list of the template template parameter.
3042 TemplateParameterList *TempParams = D->getTemplateParameters();
3043 TemplateParameterList *InstParams;
3044 SmallVector<TemplateParameterList*, 8> ExpandedParams;
3045
3046 bool IsExpandedParameterPack = false;
3047
3048 if (D->isExpandedParameterPack()) {
3049 // The template template parameter pack is an already-expanded pack
3050 // expansion of template parameters. Substitute into each of the expanded
3051 // parameters.
3052 ExpandedParams.reserve(D->getNumExpansionTemplateParameters());
3053 for (unsigned I = 0, N = D->getNumExpansionTemplateParameters();
3054 I != N; ++I) {
3055 LocalInstantiationScope Scope(SemaRef);
3056 TemplateParameterList *Expansion =
3057 SubstTemplateParams(D->getExpansionTemplateParameters(I));
3058 if (!Expansion)
3059 return nullptr;
3060 ExpandedParams.push_back(Expansion);
3061 }
3062
3063 IsExpandedParameterPack = true;
3064 InstParams = TempParams;
3065 } else if (D->isPackExpansion()) {
3066 // The template template parameter pack expands to a pack of template
3067 // template parameters. Determine whether we need to expand this parameter
3068 // pack into separate parameters.
3069 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3070 collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(),
3071 Unexpanded);
3072
3073 // Determine whether the set of unexpanded parameter packs can and should
3074 // be expanded.
3075 bool Expand = true;
3076 bool RetainExpansion = false;
3077 std::optional<unsigned> NumExpansions;
3078 if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(),
3079 TempParams->getSourceRange(),
3080 Unexpanded,
3081 TemplateArgs,
3082 Expand, RetainExpansion,
3083 NumExpansions))
3084 return nullptr;
3085
3086 if (Expand) {
3087 for (unsigned I = 0; I != *NumExpansions; ++I) {
3088 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
3089 LocalInstantiationScope Scope(SemaRef);
3090 TemplateParameterList *Expansion = SubstTemplateParams(TempParams);
3091 if (!Expansion)
3092 return nullptr;
3093 ExpandedParams.push_back(Expansion);
3094 }
3095
3096 // Note that we have an expanded parameter pack. The "type" of this
3097 // expanded parameter pack is the original expansion type, but callers
3098 // will end up using the expanded parameter pack types for type-checking.
3099 IsExpandedParameterPack = true;
3100 InstParams = TempParams;
3101 } else {
3102 // We cannot fully expand the pack expansion now, so just substitute
3103 // into the pattern.
3104 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
3105
3106 LocalInstantiationScope Scope(SemaRef);
3107 InstParams = SubstTemplateParams(TempParams);
3108 if (!InstParams)
3109 return nullptr;
3110 }
3111 } else {
3112 // Perform the actual substitution of template parameters within a new,
3113 // local instantiation scope.
3114 LocalInstantiationScope Scope(SemaRef);
3115 InstParams = SubstTemplateParams(TempParams);
3116 if (!InstParams)
3117 return nullptr;
3118 }
3119
3120 // Build the template template parameter.
3121 TemplateTemplateParmDecl *Param;
3122 if (IsExpandedParameterPack)
3123 Param = TemplateTemplateParmDecl::Create(
3124 SemaRef.Context, Owner, D->getLocation(),
3125 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3126 D->getPosition(), D->getIdentifier(), InstParams, ExpandedParams);
3127 else
3128 Param = TemplateTemplateParmDecl::Create(
3129 SemaRef.Context, Owner, D->getLocation(),
3130 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3131 D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams);
3132 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
3133 NestedNameSpecifierLoc QualifierLoc =
3134 D->getDefaultArgument().getTemplateQualifierLoc();
3135 QualifierLoc =
3136 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs);
3137 TemplateName TName = SemaRef.SubstTemplateName(
3138 QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(),
3139 D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs);
3140 if (!TName.isNull())
3141 Param->setDefaultArgument(
3142 SemaRef.Context,
3143 TemplateArgumentLoc(SemaRef.Context, TemplateArgument(TName),
3144 D->getDefaultArgument().getTemplateQualifierLoc(),
3145 D->getDefaultArgument().getTemplateNameLoc()));
3146 }
3147 Param->setAccess(AS_public);
3148 Param->setImplicit(D->isImplicit());
3149
3150 // Introduce this template parameter's instantiation into the instantiation
3151 // scope.
3152 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
3153
3154 return Param;
3155 }
3156
VisitUsingDirectiveDecl(UsingDirectiveDecl * D)3157 Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
3158 // Using directives are never dependent (and never contain any types or
3159 // expressions), so they require no explicit instantiation work.
3160
3161 UsingDirectiveDecl *Inst
3162 = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(),
3163 D->getNamespaceKeyLocation(),
3164 D->getQualifierLoc(),
3165 D->getIdentLocation(),
3166 D->getNominatedNamespace(),
3167 D->getCommonAncestor());
3168
3169 // Add the using directive to its declaration context
3170 // only if this is not a function or method.
3171 if (!Owner->isFunctionOrMethod())
3172 Owner->addDecl(Inst);
3173
3174 return Inst;
3175 }
3176
VisitBaseUsingDecls(BaseUsingDecl * D,BaseUsingDecl * Inst,LookupResult * Lookup)3177 Decl *TemplateDeclInstantiator::VisitBaseUsingDecls(BaseUsingDecl *D,
3178 BaseUsingDecl *Inst,
3179 LookupResult *Lookup) {
3180
3181 bool isFunctionScope = Owner->isFunctionOrMethod();
3182
3183 for (auto *Shadow : D->shadows()) {
3184 // FIXME: UsingShadowDecl doesn't preserve its immediate target, so
3185 // reconstruct it in the case where it matters. Hm, can we extract it from
3186 // the DeclSpec when parsing and save it in the UsingDecl itself?
3187 NamedDecl *OldTarget = Shadow->getTargetDecl();
3188 if (auto *CUSD = dyn_cast<ConstructorUsingShadowDecl>(Shadow))
3189 if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl())
3190 OldTarget = BaseShadow;
3191
3192 NamedDecl *InstTarget = nullptr;
3193 if (auto *EmptyD =
3194 dyn_cast<UnresolvedUsingIfExistsDecl>(Shadow->getTargetDecl())) {
3195 InstTarget = UnresolvedUsingIfExistsDecl::Create(
3196 SemaRef.Context, Owner, EmptyD->getLocation(), EmptyD->getDeclName());
3197 } else {
3198 InstTarget = cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl(
3199 Shadow->getLocation(), OldTarget, TemplateArgs));
3200 }
3201 if (!InstTarget)
3202 return nullptr;
3203
3204 UsingShadowDecl *PrevDecl = nullptr;
3205 if (Lookup &&
3206 SemaRef.CheckUsingShadowDecl(Inst, InstTarget, *Lookup, PrevDecl))
3207 continue;
3208
3209 if (UsingShadowDecl *OldPrev = getPreviousDeclForInstantiation(Shadow))
3210 PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl(
3211 Shadow->getLocation(), OldPrev, TemplateArgs));
3212
3213 UsingShadowDecl *InstShadow = SemaRef.BuildUsingShadowDecl(
3214 /*Scope*/ nullptr, Inst, InstTarget, PrevDecl);
3215 SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow);
3216
3217 if (isFunctionScope)
3218 SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow);
3219 }
3220
3221 return Inst;
3222 }
3223
VisitUsingDecl(UsingDecl * D)3224 Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) {
3225
3226 // The nested name specifier may be dependent, for example
3227 // template <typename T> struct t {
3228 // struct s1 { T f1(); };
3229 // struct s2 : s1 { using s1::f1; };
3230 // };
3231 // template struct t<int>;
3232 // Here, in using s1::f1, s1 refers to t<T>::s1;
3233 // we need to substitute for t<int>::s1.
3234 NestedNameSpecifierLoc QualifierLoc
3235 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(),
3236 TemplateArgs);
3237 if (!QualifierLoc)
3238 return nullptr;
3239
3240 // For an inheriting constructor declaration, the name of the using
3241 // declaration is the name of a constructor in this class, not in the
3242 // base class.
3243 DeclarationNameInfo NameInfo = D->getNameInfo();
3244 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName)
3245 if (auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.CurContext))
3246 NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName(
3247 SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD))));
3248
3249 // We only need to do redeclaration lookups if we're in a class scope (in
3250 // fact, it's not really even possible in non-class scopes).
3251 bool CheckRedeclaration = Owner->isRecord();
3252 LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName,
3253 Sema::ForVisibleRedeclaration);
3254
3255 UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner,
3256 D->getUsingLoc(),
3257 QualifierLoc,
3258 NameInfo,
3259 D->hasTypename());
3260
3261 CXXScopeSpec SS;
3262 SS.Adopt(QualifierLoc);
3263 if (CheckRedeclaration) {
3264 Prev.setHideTags(false);
3265 SemaRef.LookupQualifiedName(Prev, Owner);
3266
3267 // Check for invalid redeclarations.
3268 if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(),
3269 D->hasTypename(), SS,
3270 D->getLocation(), Prev))
3271 NewUD->setInvalidDecl();
3272 }
3273
3274 if (!NewUD->isInvalidDecl() &&
3275 SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), D->hasTypename(), SS,
3276 NameInfo, D->getLocation(), nullptr, D))
3277 NewUD->setInvalidDecl();
3278
3279 SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D);
3280 NewUD->setAccess(D->getAccess());
3281 Owner->addDecl(NewUD);
3282
3283 // Don't process the shadow decls for an invalid decl.
3284 if (NewUD->isInvalidDecl())
3285 return NewUD;
3286
3287 // If the using scope was dependent, or we had dependent bases, we need to
3288 // recheck the inheritance
3289 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName)
3290 SemaRef.CheckInheritingConstructorUsingDecl(NewUD);
3291
3292 return VisitBaseUsingDecls(D, NewUD, CheckRedeclaration ? &Prev : nullptr);
3293 }
3294
VisitUsingEnumDecl(UsingEnumDecl * D)3295 Decl *TemplateDeclInstantiator::VisitUsingEnumDecl(UsingEnumDecl *D) {
3296 // Cannot be a dependent type, but still could be an instantiation
3297 EnumDecl *EnumD = cast_or_null<EnumDecl>(SemaRef.FindInstantiatedDecl(
3298 D->getLocation(), D->getEnumDecl(), TemplateArgs));
3299
3300 if (SemaRef.RequireCompleteEnumDecl(EnumD, EnumD->getLocation()))
3301 return nullptr;
3302
3303 TypeSourceInfo *TSI = SemaRef.SubstType(D->getEnumType(), TemplateArgs,
3304 D->getLocation(), D->getDeclName());
3305 UsingEnumDecl *NewUD =
3306 UsingEnumDecl::Create(SemaRef.Context, Owner, D->getUsingLoc(),
3307 D->getEnumLoc(), D->getLocation(), TSI);
3308
3309 SemaRef.Context.setInstantiatedFromUsingEnumDecl(NewUD, D);
3310 NewUD->setAccess(D->getAccess());
3311 Owner->addDecl(NewUD);
3312
3313 // Don't process the shadow decls for an invalid decl.
3314 if (NewUD->isInvalidDecl())
3315 return NewUD;
3316
3317 // We don't have to recheck for duplication of the UsingEnumDecl itself, as it
3318 // cannot be dependent, and will therefore have been checked during template
3319 // definition.
3320
3321 return VisitBaseUsingDecls(D, NewUD, nullptr);
3322 }
3323
VisitUsingShadowDecl(UsingShadowDecl * D)3324 Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) {
3325 // Ignore these; we handle them in bulk when processing the UsingDecl.
3326 return nullptr;
3327 }
3328
VisitConstructorUsingShadowDecl(ConstructorUsingShadowDecl * D)3329 Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl(
3330 ConstructorUsingShadowDecl *D) {
3331 // Ignore these; we handle them in bulk when processing the UsingDecl.
3332 return nullptr;
3333 }
3334
3335 template <typename T>
instantiateUnresolvedUsingDecl(T * D,bool InstantiatingPackElement)3336 Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl(
3337 T *D, bool InstantiatingPackElement) {
3338 // If this is a pack expansion, expand it now.
3339 if (D->isPackExpansion() && !InstantiatingPackElement) {
3340 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3341 SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded);
3342 SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded);
3343
3344 // Determine whether the set of unexpanded parameter packs can and should
3345 // be expanded.
3346 bool Expand = true;
3347 bool RetainExpansion = false;
3348 std::optional<unsigned> NumExpansions;
3349 if (SemaRef.CheckParameterPacksForExpansion(
3350 D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, TemplateArgs,
3351 Expand, RetainExpansion, NumExpansions))
3352 return nullptr;
3353
3354 // This declaration cannot appear within a function template signature,
3355 // so we can't have a partial argument list for a parameter pack.
3356 assert(!RetainExpansion &&
3357 "should never need to retain an expansion for UsingPackDecl");
3358
3359 if (!Expand) {
3360 // We cannot fully expand the pack expansion now, so substitute into the
3361 // pattern and create a new pack expansion.
3362 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
3363 return instantiateUnresolvedUsingDecl(D, true);
3364 }
3365
3366 // Within a function, we don't have any normal way to check for conflicts
3367 // between shadow declarations from different using declarations in the
3368 // same pack expansion, but this is always ill-formed because all expansions
3369 // must produce (conflicting) enumerators.
3370 //
3371 // Sadly we can't just reject this in the template definition because it
3372 // could be valid if the pack is empty or has exactly one expansion.
3373 if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) {
3374 SemaRef.Diag(D->getEllipsisLoc(),
3375 diag::err_using_decl_redeclaration_expansion);
3376 return nullptr;
3377 }
3378
3379 // Instantiate the slices of this pack and build a UsingPackDecl.
3380 SmallVector<NamedDecl*, 8> Expansions;
3381 for (unsigned I = 0; I != *NumExpansions; ++I) {
3382 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
3383 Decl *Slice = instantiateUnresolvedUsingDecl(D, true);
3384 if (!Slice)
3385 return nullptr;
3386 // Note that we can still get unresolved using declarations here, if we
3387 // had arguments for all packs but the pattern also contained other
3388 // template arguments (this only happens during partial substitution, eg
3389 // into the body of a generic lambda in a function template).
3390 Expansions.push_back(cast<NamedDecl>(Slice));
3391 }
3392
3393 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions);
3394 if (isDeclWithinFunction(D))
3395 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD);
3396 return NewD;
3397 }
3398
3399 UnresolvedUsingTypenameDecl *TD = dyn_cast<UnresolvedUsingTypenameDecl>(D);
3400 SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation();
3401
3402 NestedNameSpecifierLoc QualifierLoc
3403 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(),
3404 TemplateArgs);
3405 if (!QualifierLoc)
3406 return nullptr;
3407
3408 CXXScopeSpec SS;
3409 SS.Adopt(QualifierLoc);
3410
3411 DeclarationNameInfo NameInfo
3412 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
3413
3414 // Produce a pack expansion only if we're not instantiating a particular
3415 // slice of a pack expansion.
3416 bool InstantiatingSlice = D->getEllipsisLoc().isValid() &&
3417 SemaRef.ArgumentPackSubstitutionIndex != -1;
3418 SourceLocation EllipsisLoc =
3419 InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc();
3420
3421 bool IsUsingIfExists = D->template hasAttr<UsingIfExistsAttr>();
3422 NamedDecl *UD = SemaRef.BuildUsingDeclaration(
3423 /*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(),
3424 /*HasTypename*/ TD, TypenameLoc, SS, NameInfo, EllipsisLoc,
3425 ParsedAttributesView(),
3426 /*IsInstantiation*/ true, IsUsingIfExists);
3427 if (UD) {
3428 SemaRef.InstantiateAttrs(TemplateArgs, D, UD);
3429 SemaRef.Context.setInstantiatedFromUsingDecl(UD, D);
3430 }
3431
3432 return UD;
3433 }
3434
VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl * D)3435 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl(
3436 UnresolvedUsingTypenameDecl *D) {
3437 return instantiateUnresolvedUsingDecl(D);
3438 }
3439
VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl * D)3440 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl(
3441 UnresolvedUsingValueDecl *D) {
3442 return instantiateUnresolvedUsingDecl(D);
3443 }
3444
VisitUnresolvedUsingIfExistsDecl(UnresolvedUsingIfExistsDecl * D)3445 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingIfExistsDecl(
3446 UnresolvedUsingIfExistsDecl *D) {
3447 llvm_unreachable("referring to unresolved decl out of UsingShadowDecl");
3448 }
3449
VisitUsingPackDecl(UsingPackDecl * D)3450 Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) {
3451 SmallVector<NamedDecl*, 8> Expansions;
3452 for (auto *UD : D->expansions()) {
3453 if (NamedDecl *NewUD =
3454 SemaRef.FindInstantiatedDecl(D->getLocation(), UD, TemplateArgs))
3455 Expansions.push_back(NewUD);
3456 else
3457 return nullptr;
3458 }
3459
3460 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions);
3461 if (isDeclWithinFunction(D))
3462 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD);
3463 return NewD;
3464 }
3465
VisitClassScopeFunctionSpecializationDecl(ClassScopeFunctionSpecializationDecl * Decl)3466 Decl *TemplateDeclInstantiator::VisitClassScopeFunctionSpecializationDecl(
3467 ClassScopeFunctionSpecializationDecl *Decl) {
3468 CXXMethodDecl *OldFD = Decl->getSpecialization();
3469 return cast_or_null<CXXMethodDecl>(
3470 VisitCXXMethodDecl(OldFD, nullptr, Decl->getTemplateArgsAsWritten()));
3471 }
3472
VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl * D)3473 Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl(
3474 OMPThreadPrivateDecl *D) {
3475 SmallVector<Expr *, 5> Vars;
3476 for (auto *I : D->varlists()) {
3477 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get();
3478 assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr");
3479 Vars.push_back(Var);
3480 }
3481
3482 OMPThreadPrivateDecl *TD =
3483 SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars);
3484
3485 TD->setAccess(AS_public);
3486 Owner->addDecl(TD);
3487
3488 return TD;
3489 }
3490
VisitOMPAllocateDecl(OMPAllocateDecl * D)3491 Decl *TemplateDeclInstantiator::VisitOMPAllocateDecl(OMPAllocateDecl *D) {
3492 SmallVector<Expr *, 5> Vars;
3493 for (auto *I : D->varlists()) {
3494 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get();
3495 assert(isa<DeclRefExpr>(Var) && "allocate arg is not a DeclRefExpr");
3496 Vars.push_back(Var);
3497 }
3498 SmallVector<OMPClause *, 4> Clauses;
3499 // Copy map clauses from the original mapper.
3500 for (OMPClause *C : D->clauselists()) {
3501 OMPClause *IC = nullptr;
3502 if (auto *AC = dyn_cast<OMPAllocatorClause>(C)) {
3503 ExprResult NewE = SemaRef.SubstExpr(AC->getAllocator(), TemplateArgs);
3504 if (!NewE.isUsable())
3505 continue;
3506 IC = SemaRef.ActOnOpenMPAllocatorClause(
3507 NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc());
3508 } else if (auto *AC = dyn_cast<OMPAlignClause>(C)) {
3509 ExprResult NewE = SemaRef.SubstExpr(AC->getAlignment(), TemplateArgs);
3510 if (!NewE.isUsable())
3511 continue;
3512 IC = SemaRef.ActOnOpenMPAlignClause(NewE.get(), AC->getBeginLoc(),
3513 AC->getLParenLoc(), AC->getEndLoc());
3514 // If align clause value ends up being invalid, this can end up null.
3515 if (!IC)
3516 continue;
3517 }
3518 Clauses.push_back(IC);
3519 }
3520
3521 Sema::DeclGroupPtrTy Res = SemaRef.ActOnOpenMPAllocateDirective(
3522 D->getLocation(), Vars, Clauses, Owner);
3523 if (Res.get().isNull())
3524 return nullptr;
3525 return Res.get().getSingleDecl();
3526 }
3527
VisitOMPRequiresDecl(OMPRequiresDecl * D)3528 Decl *TemplateDeclInstantiator::VisitOMPRequiresDecl(OMPRequiresDecl *D) {
3529 llvm_unreachable(
3530 "Requires directive cannot be instantiated within a dependent context");
3531 }
3532
VisitOMPDeclareReductionDecl(OMPDeclareReductionDecl * D)3533 Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl(
3534 OMPDeclareReductionDecl *D) {
3535 // Instantiate type and check if it is allowed.
3536 const bool RequiresInstantiation =
3537 D->getType()->isDependentType() ||
3538 D->getType()->isInstantiationDependentType() ||
3539 D->getType()->containsUnexpandedParameterPack();
3540 QualType SubstReductionType;
3541 if (RequiresInstantiation) {
3542 SubstReductionType = SemaRef.ActOnOpenMPDeclareReductionType(
3543 D->getLocation(),
3544 ParsedType::make(SemaRef.SubstType(
3545 D->getType(), TemplateArgs, D->getLocation(), DeclarationName())));
3546 } else {
3547 SubstReductionType = D->getType();
3548 }
3549 if (SubstReductionType.isNull())
3550 return nullptr;
3551 Expr *Combiner = D->getCombiner();
3552 Expr *Init = D->getInitializer();
3553 bool IsCorrect = true;
3554 // Create instantiated copy.
3555 std::pair<QualType, SourceLocation> ReductionTypes[] = {
3556 std::make_pair(SubstReductionType, D->getLocation())};
3557 auto *PrevDeclInScope = D->getPrevDeclInScope();
3558 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) {
3559 PrevDeclInScope = cast<OMPDeclareReductionDecl>(
3560 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope)
3561 ->get<Decl *>());
3562 }
3563 auto DRD = SemaRef.ActOnOpenMPDeclareReductionDirectiveStart(
3564 /*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(),
3565 PrevDeclInScope);
3566 auto *NewDRD = cast<OMPDeclareReductionDecl>(DRD.get().getSingleDecl());
3567 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD);
3568 Expr *SubstCombiner = nullptr;
3569 Expr *SubstInitializer = nullptr;
3570 // Combiners instantiation sequence.
3571 if (Combiner) {
3572 SemaRef.ActOnOpenMPDeclareReductionCombinerStart(
3573 /*S=*/nullptr, NewDRD);
3574 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3575 cast<DeclRefExpr>(D->getCombinerIn())->getDecl(),
3576 cast<DeclRefExpr>(NewDRD->getCombinerIn())->getDecl());
3577 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3578 cast<DeclRefExpr>(D->getCombinerOut())->getDecl(),
3579 cast<DeclRefExpr>(NewDRD->getCombinerOut())->getDecl());
3580 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
3581 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(),
3582 ThisContext);
3583 SubstCombiner = SemaRef.SubstExpr(Combiner, TemplateArgs).get();
3584 SemaRef.ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, SubstCombiner);
3585 }
3586 // Initializers instantiation sequence.
3587 if (Init) {
3588 VarDecl *OmpPrivParm = SemaRef.ActOnOpenMPDeclareReductionInitializerStart(
3589 /*S=*/nullptr, NewDRD);
3590 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3591 cast<DeclRefExpr>(D->getInitOrig())->getDecl(),
3592 cast<DeclRefExpr>(NewDRD->getInitOrig())->getDecl());
3593 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3594 cast<DeclRefExpr>(D->getInitPriv())->getDecl(),
3595 cast<DeclRefExpr>(NewDRD->getInitPriv())->getDecl());
3596 if (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit) {
3597 SubstInitializer = SemaRef.SubstExpr(Init, TemplateArgs).get();
3598 } else {
3599 auto *OldPrivParm =
3600 cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl());
3601 IsCorrect = IsCorrect && OldPrivParm->hasInit();
3602 if (IsCorrect)
3603 SemaRef.InstantiateVariableInitializer(OmpPrivParm, OldPrivParm,
3604 TemplateArgs);
3605 }
3606 SemaRef.ActOnOpenMPDeclareReductionInitializerEnd(NewDRD, SubstInitializer,
3607 OmpPrivParm);
3608 }
3609 IsCorrect = IsCorrect && SubstCombiner &&
3610 (!Init ||
3611 (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit &&
3612 SubstInitializer) ||
3613 (D->getInitializerKind() != OMPDeclareReductionDecl::CallInit &&
3614 !SubstInitializer));
3615
3616 (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd(
3617 /*S=*/nullptr, DRD, IsCorrect && !D->isInvalidDecl());
3618
3619 return NewDRD;
3620 }
3621
3622 Decl *
VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl * D)3623 TemplateDeclInstantiator::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) {
3624 // Instantiate type and check if it is allowed.
3625 const bool RequiresInstantiation =
3626 D->getType()->isDependentType() ||
3627 D->getType()->isInstantiationDependentType() ||
3628 D->getType()->containsUnexpandedParameterPack();
3629 QualType SubstMapperTy;
3630 DeclarationName VN = D->getVarName();
3631 if (RequiresInstantiation) {
3632 SubstMapperTy = SemaRef.ActOnOpenMPDeclareMapperType(
3633 D->getLocation(),
3634 ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs,
3635 D->getLocation(), VN)));
3636 } else {
3637 SubstMapperTy = D->getType();
3638 }
3639 if (SubstMapperTy.isNull())
3640 return nullptr;
3641 // Create an instantiated copy of mapper.
3642 auto *PrevDeclInScope = D->getPrevDeclInScope();
3643 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) {
3644 PrevDeclInScope = cast<OMPDeclareMapperDecl>(
3645 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope)
3646 ->get<Decl *>());
3647 }
3648 bool IsCorrect = true;
3649 SmallVector<OMPClause *, 6> Clauses;
3650 // Instantiate the mapper variable.
3651 DeclarationNameInfo DirName;
3652 SemaRef.StartOpenMPDSABlock(llvm::omp::OMPD_declare_mapper, DirName,
3653 /*S=*/nullptr,
3654 (*D->clauselist_begin())->getBeginLoc());
3655 ExprResult MapperVarRef = SemaRef.ActOnOpenMPDeclareMapperDirectiveVarDecl(
3656 /*S=*/nullptr, SubstMapperTy, D->getLocation(), VN);
3657 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3658 cast<DeclRefExpr>(D->getMapperVarRef())->getDecl(),
3659 cast<DeclRefExpr>(MapperVarRef.get())->getDecl());
3660 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
3661 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(),
3662 ThisContext);
3663 // Instantiate map clauses.
3664 for (OMPClause *C : D->clauselists()) {
3665 auto *OldC = cast<OMPMapClause>(C);
3666 SmallVector<Expr *, 4> NewVars;
3667 for (Expr *OE : OldC->varlists()) {
3668 Expr *NE = SemaRef.SubstExpr(OE, TemplateArgs).get();
3669 if (!NE) {
3670 IsCorrect = false;
3671 break;
3672 }
3673 NewVars.push_back(NE);
3674 }
3675 if (!IsCorrect)
3676 break;
3677 NestedNameSpecifierLoc NewQualifierLoc =
3678 SemaRef.SubstNestedNameSpecifierLoc(OldC->getMapperQualifierLoc(),
3679 TemplateArgs);
3680 CXXScopeSpec SS;
3681 SS.Adopt(NewQualifierLoc);
3682 DeclarationNameInfo NewNameInfo =
3683 SemaRef.SubstDeclarationNameInfo(OldC->getMapperIdInfo(), TemplateArgs);
3684 OMPVarListLocTy Locs(OldC->getBeginLoc(), OldC->getLParenLoc(),
3685 OldC->getEndLoc());
3686 OMPClause *NewC = SemaRef.ActOnOpenMPMapClause(
3687 OldC->getIteratorModifier(), OldC->getMapTypeModifiers(),
3688 OldC->getMapTypeModifiersLoc(), SS, NewNameInfo, OldC->getMapType(),
3689 OldC->isImplicitMapType(), OldC->getMapLoc(), OldC->getColonLoc(),
3690 NewVars, Locs);
3691 Clauses.push_back(NewC);
3692 }
3693 SemaRef.EndOpenMPDSABlock(nullptr);
3694 if (!IsCorrect)
3695 return nullptr;
3696 Sema::DeclGroupPtrTy DG = SemaRef.ActOnOpenMPDeclareMapperDirective(
3697 /*S=*/nullptr, Owner, D->getDeclName(), SubstMapperTy, D->getLocation(),
3698 VN, D->getAccess(), MapperVarRef.get(), Clauses, PrevDeclInScope);
3699 Decl *NewDMD = DG.get().getSingleDecl();
3700 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDMD);
3701 return NewDMD;
3702 }
3703
VisitOMPCapturedExprDecl(OMPCapturedExprDecl *)3704 Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl(
3705 OMPCapturedExprDecl * /*D*/) {
3706 llvm_unreachable("Should not be met in templates");
3707 }
3708
VisitFunctionDecl(FunctionDecl * D)3709 Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) {
3710 return VisitFunctionDecl(D, nullptr);
3711 }
3712
3713 Decl *
VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl * D)3714 TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) {
3715 Decl *Inst = VisitFunctionDecl(D, nullptr);
3716 if (Inst && !D->getDescribedFunctionTemplate())
3717 Owner->addDecl(Inst);
3718 return Inst;
3719 }
3720
VisitCXXMethodDecl(CXXMethodDecl * D)3721 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) {
3722 return VisitCXXMethodDecl(D, nullptr);
3723 }
3724
VisitRecordDecl(RecordDecl * D)3725 Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) {
3726 llvm_unreachable("There are only CXXRecordDecls in C++");
3727 }
3728
3729 Decl *
VisitClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl * D)3730 TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl(
3731 ClassTemplateSpecializationDecl *D) {
3732 // As a MS extension, we permit class-scope explicit specialization
3733 // of member class templates.
3734 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
3735 assert(ClassTemplate->getDeclContext()->isRecord() &&
3736 D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
3737 "can only instantiate an explicit specialization "
3738 "for a member class template");
3739
3740 // Lookup the already-instantiated declaration in the instantiation
3741 // of the class template.
3742 ClassTemplateDecl *InstClassTemplate =
3743 cast_or_null<ClassTemplateDecl>(SemaRef.FindInstantiatedDecl(
3744 D->getLocation(), ClassTemplate, TemplateArgs));
3745 if (!InstClassTemplate)
3746 return nullptr;
3747
3748 // Substitute into the template arguments of the class template explicit
3749 // specialization.
3750 TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc().
3751 castAs<TemplateSpecializationTypeLoc>();
3752 TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(),
3753 Loc.getRAngleLoc());
3754 SmallVector<TemplateArgumentLoc, 4> ArgLocs;
3755 for (unsigned I = 0; I != Loc.getNumArgs(); ++I)
3756 ArgLocs.push_back(Loc.getArgLoc(I));
3757 if (SemaRef.SubstTemplateArguments(ArgLocs, TemplateArgs, InstTemplateArgs))
3758 return nullptr;
3759
3760 // Check that the template argument list is well-formed for this
3761 // class template.
3762 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
3763 if (SemaRef.CheckTemplateArgumentList(InstClassTemplate, D->getLocation(),
3764 InstTemplateArgs, false,
3765 SugaredConverted, CanonicalConverted,
3766 /*UpdateArgsWithConversions=*/true))
3767 return nullptr;
3768
3769 // Figure out where to insert this class template explicit specialization
3770 // in the member template's set of class template explicit specializations.
3771 void *InsertPos = nullptr;
3772 ClassTemplateSpecializationDecl *PrevDecl =
3773 InstClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
3774
3775 // Check whether we've already seen a conflicting instantiation of this
3776 // declaration (for instance, if there was a prior implicit instantiation).
3777 bool Ignored;
3778 if (PrevDecl &&
3779 SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(),
3780 D->getSpecializationKind(),
3781 PrevDecl,
3782 PrevDecl->getSpecializationKind(),
3783 PrevDecl->getPointOfInstantiation(),
3784 Ignored))
3785 return nullptr;
3786
3787 // If PrevDecl was a definition and D is also a definition, diagnose.
3788 // This happens in cases like:
3789 //
3790 // template<typename T, typename U>
3791 // struct Outer {
3792 // template<typename X> struct Inner;
3793 // template<> struct Inner<T> {};
3794 // template<> struct Inner<U> {};
3795 // };
3796 //
3797 // Outer<int, int> outer; // error: the explicit specializations of Inner
3798 // // have the same signature.
3799 if (PrevDecl && PrevDecl->getDefinition() &&
3800 D->isThisDeclarationADefinition()) {
3801 SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl;
3802 SemaRef.Diag(PrevDecl->getDefinition()->getLocation(),
3803 diag::note_previous_definition);
3804 return nullptr;
3805 }
3806
3807 // Create the class template partial specialization declaration.
3808 ClassTemplateSpecializationDecl *InstD =
3809 ClassTemplateSpecializationDecl::Create(
3810 SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(),
3811 D->getLocation(), InstClassTemplate, CanonicalConverted, PrevDecl);
3812
3813 // Add this partial specialization to the set of class template partial
3814 // specializations.
3815 if (!PrevDecl)
3816 InstClassTemplate->AddSpecialization(InstD, InsertPos);
3817
3818 // Substitute the nested name specifier, if any.
3819 if (SubstQualifier(D, InstD))
3820 return nullptr;
3821
3822 // Build the canonical type that describes the converted template
3823 // arguments of the class template explicit specialization.
3824 QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
3825 TemplateName(InstClassTemplate), CanonicalConverted,
3826 SemaRef.Context.getRecordType(InstD));
3827
3828 // Build the fully-sugared type for this class template
3829 // specialization as the user wrote in the specialization
3830 // itself. This means that we'll pretty-print the type retrieved
3831 // from the specialization's declaration the way that the user
3832 // actually wrote the specialization, rather than formatting the
3833 // name based on the "canonical" representation used to store the
3834 // template arguments in the specialization.
3835 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
3836 TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs,
3837 CanonType);
3838
3839 InstD->setAccess(D->getAccess());
3840 InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
3841 InstD->setSpecializationKind(D->getSpecializationKind());
3842 InstD->setTypeAsWritten(WrittenTy);
3843 InstD->setExternLoc(D->getExternLoc());
3844 InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc());
3845
3846 Owner->addDecl(InstD);
3847
3848 // Instantiate the members of the class-scope explicit specialization eagerly.
3849 // We don't have support for lazy instantiation of an explicit specialization
3850 // yet, and MSVC eagerly instantiates in this case.
3851 // FIXME: This is wrong in standard C++.
3852 if (D->isThisDeclarationADefinition() &&
3853 SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs,
3854 TSK_ImplicitInstantiation,
3855 /*Complain=*/true))
3856 return nullptr;
3857
3858 return InstD;
3859 }
3860
VisitVarTemplateSpecializationDecl(VarTemplateSpecializationDecl * D)3861 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
3862 VarTemplateSpecializationDecl *D) {
3863
3864 TemplateArgumentListInfo VarTemplateArgsInfo;
3865 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
3866 assert(VarTemplate &&
3867 "A template specialization without specialized template?");
3868
3869 VarTemplateDecl *InstVarTemplate =
3870 cast_or_null<VarTemplateDecl>(SemaRef.FindInstantiatedDecl(
3871 D->getLocation(), VarTemplate, TemplateArgs));
3872 if (!InstVarTemplate)
3873 return nullptr;
3874
3875 // Substitute the current template arguments.
3876 if (const ASTTemplateArgumentListInfo *TemplateArgsInfo =
3877 D->getTemplateArgsInfo()) {
3878 VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo->getLAngleLoc());
3879 VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo->getRAngleLoc());
3880
3881 if (SemaRef.SubstTemplateArguments(TemplateArgsInfo->arguments(),
3882 TemplateArgs, VarTemplateArgsInfo))
3883 return nullptr;
3884 }
3885
3886 // Check that the template argument list is well-formed for this template.
3887 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
3888 if (SemaRef.CheckTemplateArgumentList(InstVarTemplate, D->getLocation(),
3889 VarTemplateArgsInfo, false,
3890 SugaredConverted, CanonicalConverted,
3891 /*UpdateArgsWithConversions=*/true))
3892 return nullptr;
3893
3894 // Check whether we've already seen a declaration of this specialization.
3895 void *InsertPos = nullptr;
3896 VarTemplateSpecializationDecl *PrevDecl =
3897 InstVarTemplate->findSpecialization(CanonicalConverted, InsertPos);
3898
3899 // Check whether we've already seen a conflicting instantiation of this
3900 // declaration (for instance, if there was a prior implicit instantiation).
3901 bool Ignored;
3902 if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl(
3903 D->getLocation(), D->getSpecializationKind(), PrevDecl,
3904 PrevDecl->getSpecializationKind(),
3905 PrevDecl->getPointOfInstantiation(), Ignored))
3906 return nullptr;
3907
3908 return VisitVarTemplateSpecializationDecl(
3909 InstVarTemplate, D, VarTemplateArgsInfo, CanonicalConverted, PrevDecl);
3910 }
3911
VisitVarTemplateSpecializationDecl(VarTemplateDecl * VarTemplate,VarDecl * D,const TemplateArgumentListInfo & TemplateArgsInfo,ArrayRef<TemplateArgument> Converted,VarTemplateSpecializationDecl * PrevDecl)3912 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
3913 VarTemplateDecl *VarTemplate, VarDecl *D,
3914 const TemplateArgumentListInfo &TemplateArgsInfo,
3915 ArrayRef<TemplateArgument> Converted,
3916 VarTemplateSpecializationDecl *PrevDecl) {
3917
3918 // Do substitution on the type of the declaration
3919 TypeSourceInfo *DI =
3920 SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
3921 D->getTypeSpecStartLoc(), D->getDeclName());
3922 if (!DI)
3923 return nullptr;
3924
3925 if (DI->getType()->isFunctionType()) {
3926 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
3927 << D->isStaticDataMember() << DI->getType();
3928 return nullptr;
3929 }
3930
3931 // Build the instantiated declaration
3932 VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create(
3933 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
3934 VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted);
3935 Var->setTemplateArgsInfo(TemplateArgsInfo);
3936 if (!PrevDecl) {
3937 void *InsertPos = nullptr;
3938 VarTemplate->findSpecialization(Converted, InsertPos);
3939 VarTemplate->AddSpecialization(Var, InsertPos);
3940 }
3941
3942 if (SemaRef.getLangOpts().OpenCL)
3943 SemaRef.deduceOpenCLAddressSpace(Var);
3944
3945 // Substitute the nested name specifier, if any.
3946 if (SubstQualifier(D, Var))
3947 return nullptr;
3948
3949 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner,
3950 StartingScope, false, PrevDecl);
3951
3952 return Var;
3953 }
3954
VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl * D)3955 Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) {
3956 llvm_unreachable("@defs is not supported in Objective-C++");
3957 }
3958
VisitFriendTemplateDecl(FriendTemplateDecl * D)3959 Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) {
3960 // FIXME: We need to be able to instantiate FriendTemplateDecls.
3961 unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID(
3962 DiagnosticsEngine::Error,
3963 "cannot instantiate %0 yet");
3964 SemaRef.Diag(D->getLocation(), DiagID)
3965 << D->getDeclKindName();
3966
3967 return nullptr;
3968 }
3969
VisitConceptDecl(ConceptDecl * D)3970 Decl *TemplateDeclInstantiator::VisitConceptDecl(ConceptDecl *D) {
3971 llvm_unreachable("Concept definitions cannot reside inside a template");
3972 }
3973
VisitImplicitConceptSpecializationDecl(ImplicitConceptSpecializationDecl * D)3974 Decl *TemplateDeclInstantiator::VisitImplicitConceptSpecializationDecl(
3975 ImplicitConceptSpecializationDecl *D) {
3976 llvm_unreachable("Concept specializations cannot reside inside a template");
3977 }
3978
3979 Decl *
VisitRequiresExprBodyDecl(RequiresExprBodyDecl * D)3980 TemplateDeclInstantiator::VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D) {
3981 return RequiresExprBodyDecl::Create(SemaRef.Context, D->getDeclContext(),
3982 D->getBeginLoc());
3983 }
3984
VisitDecl(Decl * D)3985 Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) {
3986 llvm_unreachable("Unexpected decl");
3987 }
3988
SubstDecl(Decl * D,DeclContext * Owner,const MultiLevelTemplateArgumentList & TemplateArgs)3989 Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner,
3990 const MultiLevelTemplateArgumentList &TemplateArgs) {
3991 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
3992 if (D->isInvalidDecl())
3993 return nullptr;
3994
3995 Decl *SubstD;
3996 runWithSufficientStackSpace(D->getLocation(), [&] {
3997 SubstD = Instantiator.Visit(D);
3998 });
3999 return SubstD;
4000 }
4001
adjustForRewrite(RewriteKind RK,FunctionDecl * Orig,QualType & T,TypeSourceInfo * & TInfo,DeclarationNameInfo & NameInfo)4002 void TemplateDeclInstantiator::adjustForRewrite(RewriteKind RK,
4003 FunctionDecl *Orig, QualType &T,
4004 TypeSourceInfo *&TInfo,
4005 DeclarationNameInfo &NameInfo) {
4006 assert(RK == RewriteKind::RewriteSpaceshipAsEqualEqual);
4007
4008 // C++2a [class.compare.default]p3:
4009 // the return type is replaced with bool
4010 auto *FPT = T->castAs<FunctionProtoType>();
4011 T = SemaRef.Context.getFunctionType(
4012 SemaRef.Context.BoolTy, FPT->getParamTypes(), FPT->getExtProtoInfo());
4013
4014 // Update the return type in the source info too. The most straightforward
4015 // way is to create new TypeSourceInfo for the new type. Use the location of
4016 // the '= default' as the location of the new type.
4017 //
4018 // FIXME: Set the correct return type when we initially transform the type,
4019 // rather than delaying it to now.
4020 TypeSourceInfo *NewTInfo =
4021 SemaRef.Context.getTrivialTypeSourceInfo(T, Orig->getEndLoc());
4022 auto OldLoc = TInfo->getTypeLoc().getAsAdjusted<FunctionProtoTypeLoc>();
4023 assert(OldLoc && "type of function is not a function type?");
4024 auto NewLoc = NewTInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>();
4025 for (unsigned I = 0, N = OldLoc.getNumParams(); I != N; ++I)
4026 NewLoc.setParam(I, OldLoc.getParam(I));
4027 TInfo = NewTInfo;
4028
4029 // and the declarator-id is replaced with operator==
4030 NameInfo.setName(
4031 SemaRef.Context.DeclarationNames.getCXXOperatorName(OO_EqualEqual));
4032 }
4033
SubstSpaceshipAsEqualEqual(CXXRecordDecl * RD,FunctionDecl * Spaceship)4034 FunctionDecl *Sema::SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
4035 FunctionDecl *Spaceship) {
4036 if (Spaceship->isInvalidDecl())
4037 return nullptr;
4038
4039 // C++2a [class.compare.default]p3:
4040 // an == operator function is declared implicitly [...] with the same
4041 // access and function-definition and in the same class scope as the
4042 // three-way comparison operator function
4043 MultiLevelTemplateArgumentList NoTemplateArgs;
4044 NoTemplateArgs.setKind(TemplateSubstitutionKind::Rewrite);
4045 NoTemplateArgs.addOuterRetainedLevels(RD->getTemplateDepth());
4046 TemplateDeclInstantiator Instantiator(*this, RD, NoTemplateArgs);
4047 Decl *R;
4048 if (auto *MD = dyn_cast<CXXMethodDecl>(Spaceship)) {
4049 R = Instantiator.VisitCXXMethodDecl(
4050 MD, nullptr, std::nullopt,
4051 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual);
4052 } else {
4053 assert(Spaceship->getFriendObjectKind() &&
4054 "defaulted spaceship is neither a member nor a friend");
4055
4056 R = Instantiator.VisitFunctionDecl(
4057 Spaceship, nullptr,
4058 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual);
4059 if (!R)
4060 return nullptr;
4061
4062 FriendDecl *FD =
4063 FriendDecl::Create(Context, RD, Spaceship->getLocation(),
4064 cast<NamedDecl>(R), Spaceship->getBeginLoc());
4065 FD->setAccess(AS_public);
4066 RD->addDecl(FD);
4067 }
4068 return cast_or_null<FunctionDecl>(R);
4069 }
4070
4071 /// Instantiates a nested template parameter list in the current
4072 /// instantiation context.
4073 ///
4074 /// \param L The parameter list to instantiate
4075 ///
4076 /// \returns NULL if there was an error
4077 TemplateParameterList *
SubstTemplateParams(TemplateParameterList * L)4078 TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) {
4079 // Get errors for all the parameters before bailing out.
4080 bool Invalid = false;
4081
4082 unsigned N = L->size();
4083 typedef SmallVector<NamedDecl *, 8> ParamVector;
4084 ParamVector Params;
4085 Params.reserve(N);
4086 for (auto &P : *L) {
4087 NamedDecl *D = cast_or_null<NamedDecl>(Visit(P));
4088 Params.push_back(D);
4089 Invalid = Invalid || !D || D->isInvalidDecl();
4090 }
4091
4092 // Clean up if we had an error.
4093 if (Invalid)
4094 return nullptr;
4095
4096 Expr *InstRequiresClause = L->getRequiresClause();
4097
4098 TemplateParameterList *InstL
4099 = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(),
4100 L->getLAngleLoc(), Params,
4101 L->getRAngleLoc(), InstRequiresClause);
4102 return InstL;
4103 }
4104
4105 TemplateParameterList *
SubstTemplateParams(TemplateParameterList * Params,DeclContext * Owner,const MultiLevelTemplateArgumentList & TemplateArgs,bool EvaluateConstraints)4106 Sema::SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
4107 const MultiLevelTemplateArgumentList &TemplateArgs,
4108 bool EvaluateConstraints) {
4109 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
4110 Instantiator.setEvaluateConstraints(EvaluateConstraints);
4111 return Instantiator.SubstTemplateParams(Params);
4112 }
4113
4114 /// Instantiate the declaration of a class template partial
4115 /// specialization.
4116 ///
4117 /// \param ClassTemplate the (instantiated) class template that is partially
4118 // specialized by the instantiation of \p PartialSpec.
4119 ///
4120 /// \param PartialSpec the (uninstantiated) class template partial
4121 /// specialization that we are instantiating.
4122 ///
4123 /// \returns The instantiated partial specialization, if successful; otherwise,
4124 /// NULL to indicate an error.
4125 ClassTemplatePartialSpecializationDecl *
InstantiateClassTemplatePartialSpecialization(ClassTemplateDecl * ClassTemplate,ClassTemplatePartialSpecializationDecl * PartialSpec)4126 TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization(
4127 ClassTemplateDecl *ClassTemplate,
4128 ClassTemplatePartialSpecializationDecl *PartialSpec) {
4129 // Create a local instantiation scope for this class template partial
4130 // specialization, which will contain the instantiations of the template
4131 // parameters.
4132 LocalInstantiationScope Scope(SemaRef);
4133
4134 // Substitute into the template parameters of the class template partial
4135 // specialization.
4136 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
4137 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
4138 if (!InstParams)
4139 return nullptr;
4140
4141 // Substitute into the template arguments of the class template partial
4142 // specialization.
4143 const ASTTemplateArgumentListInfo *TemplArgInfo
4144 = PartialSpec->getTemplateArgsAsWritten();
4145 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
4146 TemplArgInfo->RAngleLoc);
4147 if (SemaRef.SubstTemplateArguments(TemplArgInfo->arguments(), TemplateArgs,
4148 InstTemplateArgs))
4149 return nullptr;
4150
4151 // Check that the template argument list is well-formed for this
4152 // class template.
4153 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4154 if (SemaRef.CheckTemplateArgumentList(
4155 ClassTemplate, PartialSpec->getLocation(), InstTemplateArgs,
4156 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted))
4157 return nullptr;
4158
4159 // Check these arguments are valid for a template partial specialization.
4160 if (SemaRef.CheckTemplatePartialSpecializationArgs(
4161 PartialSpec->getLocation(), ClassTemplate, InstTemplateArgs.size(),
4162 CanonicalConverted))
4163 return nullptr;
4164
4165 // Figure out where to insert this class template partial specialization
4166 // in the member template's set of class template partial specializations.
4167 void *InsertPos = nullptr;
4168 ClassTemplateSpecializationDecl *PrevDecl =
4169 ClassTemplate->findPartialSpecialization(CanonicalConverted, InstParams,
4170 InsertPos);
4171
4172 // Build the canonical type that describes the converted template
4173 // arguments of the class template partial specialization.
4174 QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
4175 TemplateName(ClassTemplate), CanonicalConverted);
4176
4177 // Build the fully-sugared type for this class template
4178 // specialization as the user wrote in the specialization
4179 // itself. This means that we'll pretty-print the type retrieved
4180 // from the specialization's declaration the way that the user
4181 // actually wrote the specialization, rather than formatting the
4182 // name based on the "canonical" representation used to store the
4183 // template arguments in the specialization.
4184 TypeSourceInfo *WrittenTy
4185 = SemaRef.Context.getTemplateSpecializationTypeInfo(
4186 TemplateName(ClassTemplate),
4187 PartialSpec->getLocation(),
4188 InstTemplateArgs,
4189 CanonType);
4190
4191 if (PrevDecl) {
4192 // We've already seen a partial specialization with the same template
4193 // parameters and template arguments. This can happen, for example, when
4194 // substituting the outer template arguments ends up causing two
4195 // class template partial specializations of a member class template
4196 // to have identical forms, e.g.,
4197 //
4198 // template<typename T, typename U>
4199 // struct Outer {
4200 // template<typename X, typename Y> struct Inner;
4201 // template<typename Y> struct Inner<T, Y>;
4202 // template<typename Y> struct Inner<U, Y>;
4203 // };
4204 //
4205 // Outer<int, int> outer; // error: the partial specializations of Inner
4206 // // have the same signature.
4207 SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared)
4208 << WrittenTy->getType();
4209 SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here)
4210 << SemaRef.Context.getTypeDeclType(PrevDecl);
4211 return nullptr;
4212 }
4213
4214
4215 // Create the class template partial specialization declaration.
4216 ClassTemplatePartialSpecializationDecl *InstPartialSpec =
4217 ClassTemplatePartialSpecializationDecl::Create(
4218 SemaRef.Context, PartialSpec->getTagKind(), Owner,
4219 PartialSpec->getBeginLoc(), PartialSpec->getLocation(), InstParams,
4220 ClassTemplate, CanonicalConverted, InstTemplateArgs, CanonType,
4221 nullptr);
4222 // Substitute the nested name specifier, if any.
4223 if (SubstQualifier(PartialSpec, InstPartialSpec))
4224 return nullptr;
4225
4226 InstPartialSpec->setInstantiatedFromMember(PartialSpec);
4227 InstPartialSpec->setTypeAsWritten(WrittenTy);
4228
4229 // Check the completed partial specialization.
4230 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec);
4231
4232 // Add this partial specialization to the set of class template partial
4233 // specializations.
4234 ClassTemplate->AddPartialSpecialization(InstPartialSpec,
4235 /*InsertPos=*/nullptr);
4236 return InstPartialSpec;
4237 }
4238
4239 /// Instantiate the declaration of a variable template partial
4240 /// specialization.
4241 ///
4242 /// \param VarTemplate the (instantiated) variable template that is partially
4243 /// specialized by the instantiation of \p PartialSpec.
4244 ///
4245 /// \param PartialSpec the (uninstantiated) variable template partial
4246 /// specialization that we are instantiating.
4247 ///
4248 /// \returns The instantiated partial specialization, if successful; otherwise,
4249 /// NULL to indicate an error.
4250 VarTemplatePartialSpecializationDecl *
InstantiateVarTemplatePartialSpecialization(VarTemplateDecl * VarTemplate,VarTemplatePartialSpecializationDecl * PartialSpec)4251 TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization(
4252 VarTemplateDecl *VarTemplate,
4253 VarTemplatePartialSpecializationDecl *PartialSpec) {
4254 // Create a local instantiation scope for this variable template partial
4255 // specialization, which will contain the instantiations of the template
4256 // parameters.
4257 LocalInstantiationScope Scope(SemaRef);
4258
4259 // Substitute into the template parameters of the variable template partial
4260 // specialization.
4261 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
4262 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
4263 if (!InstParams)
4264 return nullptr;
4265
4266 // Substitute into the template arguments of the variable template partial
4267 // specialization.
4268 const ASTTemplateArgumentListInfo *TemplArgInfo
4269 = PartialSpec->getTemplateArgsAsWritten();
4270 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
4271 TemplArgInfo->RAngleLoc);
4272 if (SemaRef.SubstTemplateArguments(TemplArgInfo->arguments(), TemplateArgs,
4273 InstTemplateArgs))
4274 return nullptr;
4275
4276 // Check that the template argument list is well-formed for this
4277 // class template.
4278 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4279 if (SemaRef.CheckTemplateArgumentList(
4280 VarTemplate, PartialSpec->getLocation(), InstTemplateArgs,
4281 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted))
4282 return nullptr;
4283
4284 // Check these arguments are valid for a template partial specialization.
4285 if (SemaRef.CheckTemplatePartialSpecializationArgs(
4286 PartialSpec->getLocation(), VarTemplate, InstTemplateArgs.size(),
4287 CanonicalConverted))
4288 return nullptr;
4289
4290 // Figure out where to insert this variable template partial specialization
4291 // in the member template's set of variable template partial specializations.
4292 void *InsertPos = nullptr;
4293 VarTemplateSpecializationDecl *PrevDecl =
4294 VarTemplate->findPartialSpecialization(CanonicalConverted, InstParams,
4295 InsertPos);
4296
4297 // Build the canonical type that describes the converted template
4298 // arguments of the variable template partial specialization.
4299 QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
4300 TemplateName(VarTemplate), CanonicalConverted);
4301
4302 // Build the fully-sugared type for this variable template
4303 // specialization as the user wrote in the specialization
4304 // itself. This means that we'll pretty-print the type retrieved
4305 // from the specialization's declaration the way that the user
4306 // actually wrote the specialization, rather than formatting the
4307 // name based on the "canonical" representation used to store the
4308 // template arguments in the specialization.
4309 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
4310 TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs,
4311 CanonType);
4312
4313 if (PrevDecl) {
4314 // We've already seen a partial specialization with the same template
4315 // parameters and template arguments. This can happen, for example, when
4316 // substituting the outer template arguments ends up causing two
4317 // variable template partial specializations of a member variable template
4318 // to have identical forms, e.g.,
4319 //
4320 // template<typename T, typename U>
4321 // struct Outer {
4322 // template<typename X, typename Y> pair<X,Y> p;
4323 // template<typename Y> pair<T, Y> p;
4324 // template<typename Y> pair<U, Y> p;
4325 // };
4326 //
4327 // Outer<int, int> outer; // error: the partial specializations of Inner
4328 // // have the same signature.
4329 SemaRef.Diag(PartialSpec->getLocation(),
4330 diag::err_var_partial_spec_redeclared)
4331 << WrittenTy->getType();
4332 SemaRef.Diag(PrevDecl->getLocation(),
4333 diag::note_var_prev_partial_spec_here);
4334 return nullptr;
4335 }
4336
4337 // Do substitution on the type of the declaration
4338 TypeSourceInfo *DI = SemaRef.SubstType(
4339 PartialSpec->getTypeSourceInfo(), TemplateArgs,
4340 PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName());
4341 if (!DI)
4342 return nullptr;
4343
4344 if (DI->getType()->isFunctionType()) {
4345 SemaRef.Diag(PartialSpec->getLocation(),
4346 diag::err_variable_instantiates_to_function)
4347 << PartialSpec->isStaticDataMember() << DI->getType();
4348 return nullptr;
4349 }
4350
4351 // Create the variable template partial specialization declaration.
4352 VarTemplatePartialSpecializationDecl *InstPartialSpec =
4353 VarTemplatePartialSpecializationDecl::Create(
4354 SemaRef.Context, Owner, PartialSpec->getInnerLocStart(),
4355 PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(),
4356 DI, PartialSpec->getStorageClass(), CanonicalConverted,
4357 InstTemplateArgs);
4358
4359 // Substitute the nested name specifier, if any.
4360 if (SubstQualifier(PartialSpec, InstPartialSpec))
4361 return nullptr;
4362
4363 InstPartialSpec->setInstantiatedFromMember(PartialSpec);
4364 InstPartialSpec->setTypeAsWritten(WrittenTy);
4365
4366 // Check the completed partial specialization.
4367 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec);
4368
4369 // Add this partial specialization to the set of variable template partial
4370 // specializations. The instantiation of the initializer is not necessary.
4371 VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr);
4372
4373 SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs,
4374 LateAttrs, Owner, StartingScope);
4375
4376 return InstPartialSpec;
4377 }
4378
4379 TypeSourceInfo*
SubstFunctionType(FunctionDecl * D,SmallVectorImpl<ParmVarDecl * > & Params)4380 TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D,
4381 SmallVectorImpl<ParmVarDecl *> &Params) {
4382 TypeSourceInfo *OldTInfo = D->getTypeSourceInfo();
4383 assert(OldTInfo && "substituting function without type source info");
4384 assert(Params.empty() && "parameter vector is non-empty at start");
4385
4386 CXXRecordDecl *ThisContext = nullptr;
4387 Qualifiers ThisTypeQuals;
4388 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4389 ThisContext = cast<CXXRecordDecl>(Owner);
4390 ThisTypeQuals = Method->getMethodQualifiers();
4391 }
4392
4393 TypeSourceInfo *NewTInfo = SemaRef.SubstFunctionDeclType(
4394 OldTInfo, TemplateArgs, D->getTypeSpecStartLoc(), D->getDeclName(),
4395 ThisContext, ThisTypeQuals, EvaluateConstraints);
4396 if (!NewTInfo)
4397 return nullptr;
4398
4399 TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens();
4400 if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) {
4401 if (NewTInfo != OldTInfo) {
4402 // Get parameters from the new type info.
4403 TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens();
4404 FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>();
4405 unsigned NewIdx = 0;
4406 for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams();
4407 OldIdx != NumOldParams; ++OldIdx) {
4408 ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx);
4409 if (!OldParam)
4410 return nullptr;
4411
4412 LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope;
4413
4414 std::optional<unsigned> NumArgumentsInExpansion;
4415 if (OldParam->isParameterPack())
4416 NumArgumentsInExpansion =
4417 SemaRef.getNumArgumentsInExpansion(OldParam->getType(),
4418 TemplateArgs);
4419 if (!NumArgumentsInExpansion) {
4420 // Simple case: normal parameter, or a parameter pack that's
4421 // instantiated to a (still-dependent) parameter pack.
4422 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
4423 Params.push_back(NewParam);
4424 Scope->InstantiatedLocal(OldParam, NewParam);
4425 } else {
4426 // Parameter pack expansion: make the instantiation an argument pack.
4427 Scope->MakeInstantiatedLocalArgPack(OldParam);
4428 for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) {
4429 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
4430 Params.push_back(NewParam);
4431 Scope->InstantiatedLocalPackArg(OldParam, NewParam);
4432 }
4433 }
4434 }
4435 } else {
4436 // The function type itself was not dependent and therefore no
4437 // substitution occurred. However, we still need to instantiate
4438 // the function parameters themselves.
4439 const FunctionProtoType *OldProto =
4440 cast<FunctionProtoType>(OldProtoLoc.getType());
4441 for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end;
4442 ++i) {
4443 ParmVarDecl *OldParam = OldProtoLoc.getParam(i);
4444 if (!OldParam) {
4445 Params.push_back(SemaRef.BuildParmVarDeclForTypedef(
4446 D, D->getLocation(), OldProto->getParamType(i)));
4447 continue;
4448 }
4449
4450 ParmVarDecl *Parm =
4451 cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam));
4452 if (!Parm)
4453 return nullptr;
4454 Params.push_back(Parm);
4455 }
4456 }
4457 } else {
4458 // If the type of this function, after ignoring parentheses, is not
4459 // *directly* a function type, then we're instantiating a function that
4460 // was declared via a typedef or with attributes, e.g.,
4461 //
4462 // typedef int functype(int, int);
4463 // functype func;
4464 // int __cdecl meth(int, int);
4465 //
4466 // In this case, we'll just go instantiate the ParmVarDecls that we
4467 // synthesized in the method declaration.
4468 SmallVector<QualType, 4> ParamTypes;
4469 Sema::ExtParameterInfoBuilder ExtParamInfos;
4470 if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr,
4471 TemplateArgs, ParamTypes, &Params,
4472 ExtParamInfos))
4473 return nullptr;
4474 }
4475
4476 return NewTInfo;
4477 }
4478
4479 /// Introduce the instantiated function parameters into the local
4480 /// instantiation scope, and set the parameter names to those used
4481 /// in the template.
addInstantiatedParametersToScope(FunctionDecl * Function,const FunctionDecl * PatternDecl,LocalInstantiationScope & Scope,const MultiLevelTemplateArgumentList & TemplateArgs)4482 bool Sema::addInstantiatedParametersToScope(
4483 FunctionDecl *Function, const FunctionDecl *PatternDecl,
4484 LocalInstantiationScope &Scope,
4485 const MultiLevelTemplateArgumentList &TemplateArgs) {
4486 unsigned FParamIdx = 0;
4487 for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) {
4488 const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I);
4489 if (!PatternParam->isParameterPack()) {
4490 // Simple case: not a parameter pack.
4491 assert(FParamIdx < Function->getNumParams());
4492 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx);
4493 FunctionParam->setDeclName(PatternParam->getDeclName());
4494 // If the parameter's type is not dependent, update it to match the type
4495 // in the pattern. They can differ in top-level cv-qualifiers, and we want
4496 // the pattern's type here. If the type is dependent, they can't differ,
4497 // per core issue 1668. Substitute into the type from the pattern, in case
4498 // it's instantiation-dependent.
4499 // FIXME: Updating the type to work around this is at best fragile.
4500 if (!PatternDecl->getType()->isDependentType()) {
4501 QualType T = SubstType(PatternParam->getType(), TemplateArgs,
4502 FunctionParam->getLocation(),
4503 FunctionParam->getDeclName());
4504 if (T.isNull())
4505 return true;
4506 FunctionParam->setType(T);
4507 }
4508
4509 Scope.InstantiatedLocal(PatternParam, FunctionParam);
4510 ++FParamIdx;
4511 continue;
4512 }
4513
4514 // Expand the parameter pack.
4515 Scope.MakeInstantiatedLocalArgPack(PatternParam);
4516 std::optional<unsigned> NumArgumentsInExpansion =
4517 getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs);
4518 if (NumArgumentsInExpansion) {
4519 QualType PatternType =
4520 PatternParam->getType()->castAs<PackExpansionType>()->getPattern();
4521 for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) {
4522 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx);
4523 FunctionParam->setDeclName(PatternParam->getDeclName());
4524 if (!PatternDecl->getType()->isDependentType()) {
4525 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, Arg);
4526 QualType T =
4527 SubstType(PatternType, TemplateArgs, FunctionParam->getLocation(),
4528 FunctionParam->getDeclName());
4529 if (T.isNull())
4530 return true;
4531 FunctionParam->setType(T);
4532 }
4533
4534 Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam);
4535 ++FParamIdx;
4536 }
4537 }
4538 }
4539
4540 return false;
4541 }
4542
InstantiateDefaultArgument(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param)4543 bool Sema::InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
4544 ParmVarDecl *Param) {
4545 assert(Param->hasUninstantiatedDefaultArg());
4546
4547 // Instantiate the expression.
4548 //
4549 // FIXME: Pass in a correct Pattern argument, otherwise
4550 // getTemplateInstantiationArgs uses the lexical context of FD, e.g.
4551 //
4552 // template<typename T>
4553 // struct A {
4554 // static int FooImpl();
4555 //
4556 // template<typename Tp>
4557 // // bug: default argument A<T>::FooImpl() is evaluated with 2-level
4558 // // template argument list [[T], [Tp]], should be [[Tp]].
4559 // friend A<Tp> Foo(int a);
4560 // };
4561 //
4562 // template<typename T>
4563 // A<T> Foo(int a = A<T>::FooImpl());
4564 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(
4565 FD, /*Final=*/false, nullptr, /*RelativeToPrimary=*/true);
4566
4567 if (SubstDefaultArgument(CallLoc, Param, TemplateArgs, /*ForCallExpr*/ true))
4568 return true;
4569
4570 if (ASTMutationListener *L = getASTMutationListener())
4571 L->DefaultArgumentInstantiated(Param);
4572
4573 return false;
4574 }
4575
InstantiateExceptionSpec(SourceLocation PointOfInstantiation,FunctionDecl * Decl)4576 void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
4577 FunctionDecl *Decl) {
4578 const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>();
4579 if (Proto->getExceptionSpecType() != EST_Uninstantiated)
4580 return;
4581
4582 InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl,
4583 InstantiatingTemplate::ExceptionSpecification());
4584 if (Inst.isInvalid()) {
4585 // We hit the instantiation depth limit. Clear the exception specification
4586 // so that our callers don't have to cope with EST_Uninstantiated.
4587 UpdateExceptionSpec(Decl, EST_None);
4588 return;
4589 }
4590 if (Inst.isAlreadyInstantiating()) {
4591 // This exception specification indirectly depends on itself. Reject.
4592 // FIXME: Corresponding rule in the standard?
4593 Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl;
4594 UpdateExceptionSpec(Decl, EST_None);
4595 return;
4596 }
4597
4598 // Enter the scope of this instantiation. We don't use
4599 // PushDeclContext because we don't have a scope.
4600 Sema::ContextRAII savedContext(*this, Decl);
4601 LocalInstantiationScope Scope(*this);
4602
4603 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(
4604 Decl, /*Final=*/false, nullptr, /*RelativeToPrimary*/ true);
4605
4606 // FIXME: We can't use getTemplateInstantiationPattern(false) in general
4607 // here, because for a non-defining friend declaration in a class template,
4608 // we don't store enough information to map back to the friend declaration in
4609 // the template.
4610 FunctionDecl *Template = Proto->getExceptionSpecTemplate();
4611 if (addInstantiatedParametersToScope(Decl, Template, Scope, TemplateArgs)) {
4612 UpdateExceptionSpec(Decl, EST_None);
4613 return;
4614 }
4615
4616 SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(),
4617 TemplateArgs);
4618 }
4619
4620 /// Initializes the common fields of an instantiation function
4621 /// declaration (New) from the corresponding fields of its template (Tmpl).
4622 ///
4623 /// \returns true if there was an error
4624 bool
InitFunctionInstantiation(FunctionDecl * New,FunctionDecl * Tmpl)4625 TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New,
4626 FunctionDecl *Tmpl) {
4627 New->setImplicit(Tmpl->isImplicit());
4628
4629 // Forward the mangling number from the template to the instantiated decl.
4630 SemaRef.Context.setManglingNumber(New,
4631 SemaRef.Context.getManglingNumber(Tmpl));
4632
4633 // If we are performing substituting explicitly-specified template arguments
4634 // or deduced template arguments into a function template and we reach this
4635 // point, we are now past the point where SFINAE applies and have committed
4636 // to keeping the new function template specialization. We therefore
4637 // convert the active template instantiation for the function template
4638 // into a template instantiation for this specific function template
4639 // specialization, which is not a SFINAE context, so that we diagnose any
4640 // further errors in the declaration itself.
4641 //
4642 // FIXME: This is a hack.
4643 typedef Sema::CodeSynthesisContext ActiveInstType;
4644 ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back();
4645 if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution ||
4646 ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) {
4647 if (FunctionTemplateDecl *FunTmpl
4648 = dyn_cast<FunctionTemplateDecl>(ActiveInst.Entity)) {
4649 assert(FunTmpl->getTemplatedDecl() == Tmpl &&
4650 "Deduction from the wrong function template?");
4651 (void) FunTmpl;
4652 SemaRef.InstantiatingSpecializations.erase(
4653 {ActiveInst.Entity->getCanonicalDecl(), ActiveInst.Kind});
4654 atTemplateEnd(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst);
4655 ActiveInst.Kind = ActiveInstType::TemplateInstantiation;
4656 ActiveInst.Entity = New;
4657 atTemplateBegin(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst);
4658 }
4659 }
4660
4661 const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>();
4662 assert(Proto && "Function template without prototype?");
4663
4664 if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) {
4665 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4666
4667 // DR1330: In C++11, defer instantiation of a non-trivial
4668 // exception specification.
4669 // DR1484: Local classes and their members are instantiated along with the
4670 // containing function.
4671 if (SemaRef.getLangOpts().CPlusPlus11 &&
4672 EPI.ExceptionSpec.Type != EST_None &&
4673 EPI.ExceptionSpec.Type != EST_DynamicNone &&
4674 EPI.ExceptionSpec.Type != EST_BasicNoexcept &&
4675 !Tmpl->isInLocalScopeForInstantiation()) {
4676 FunctionDecl *ExceptionSpecTemplate = Tmpl;
4677 if (EPI.ExceptionSpec.Type == EST_Uninstantiated)
4678 ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate;
4679 ExceptionSpecificationType NewEST = EST_Uninstantiated;
4680 if (EPI.ExceptionSpec.Type == EST_Unevaluated)
4681 NewEST = EST_Unevaluated;
4682
4683 // Mark the function has having an uninstantiated exception specification.
4684 const FunctionProtoType *NewProto
4685 = New->getType()->getAs<FunctionProtoType>();
4686 assert(NewProto && "Template instantiation without function prototype?");
4687 EPI = NewProto->getExtProtoInfo();
4688 EPI.ExceptionSpec.Type = NewEST;
4689 EPI.ExceptionSpec.SourceDecl = New;
4690 EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate;
4691 New->setType(SemaRef.Context.getFunctionType(
4692 NewProto->getReturnType(), NewProto->getParamTypes(), EPI));
4693 } else {
4694 Sema::ContextRAII SwitchContext(SemaRef, New);
4695 SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs);
4696 }
4697 }
4698
4699 // Get the definition. Leaves the variable unchanged if undefined.
4700 const FunctionDecl *Definition = Tmpl;
4701 Tmpl->isDefined(Definition);
4702
4703 SemaRef.InstantiateAttrs(TemplateArgs, Definition, New,
4704 LateAttrs, StartingScope);
4705
4706 return false;
4707 }
4708
4709 /// Initializes common fields of an instantiated method
4710 /// declaration (New) from the corresponding fields of its template
4711 /// (Tmpl).
4712 ///
4713 /// \returns true if there was an error
4714 bool
InitMethodInstantiation(CXXMethodDecl * New,CXXMethodDecl * Tmpl)4715 TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New,
4716 CXXMethodDecl *Tmpl) {
4717 if (InitFunctionInstantiation(New, Tmpl))
4718 return true;
4719
4720 if (isa<CXXDestructorDecl>(New) && SemaRef.getLangOpts().CPlusPlus11)
4721 SemaRef.AdjustDestructorExceptionSpec(cast<CXXDestructorDecl>(New));
4722
4723 New->setAccess(Tmpl->getAccess());
4724 if (Tmpl->isVirtualAsWritten())
4725 New->setVirtualAsWritten(true);
4726
4727 // FIXME: New needs a pointer to Tmpl
4728 return false;
4729 }
4730
SubstDefaultedFunction(FunctionDecl * New,FunctionDecl * Tmpl)4731 bool TemplateDeclInstantiator::SubstDefaultedFunction(FunctionDecl *New,
4732 FunctionDecl *Tmpl) {
4733 // Transfer across any unqualified lookups.
4734 if (auto *DFI = Tmpl->getDefaultedFunctionInfo()) {
4735 SmallVector<DeclAccessPair, 32> Lookups;
4736 Lookups.reserve(DFI->getUnqualifiedLookups().size());
4737 bool AnyChanged = false;
4738 for (DeclAccessPair DA : DFI->getUnqualifiedLookups()) {
4739 NamedDecl *D = SemaRef.FindInstantiatedDecl(New->getLocation(),
4740 DA.getDecl(), TemplateArgs);
4741 if (!D)
4742 return true;
4743 AnyChanged |= (D != DA.getDecl());
4744 Lookups.push_back(DeclAccessPair::make(D, DA.getAccess()));
4745 }
4746
4747 // It's unlikely that substitution will change any declarations. Don't
4748 // store an unnecessary copy in that case.
4749 New->setDefaultedFunctionInfo(
4750 AnyChanged ? FunctionDecl::DefaultedFunctionInfo::Create(
4751 SemaRef.Context, Lookups)
4752 : DFI);
4753 }
4754
4755 SemaRef.SetDeclDefaulted(New, Tmpl->getLocation());
4756 return false;
4757 }
4758
4759 /// Instantiate (or find existing instantiation of) a function template with a
4760 /// given set of template arguments.
4761 ///
4762 /// Usually this should not be used, and template argument deduction should be
4763 /// used in its place.
4764 FunctionDecl *
InstantiateFunctionDeclaration(FunctionTemplateDecl * FTD,const TemplateArgumentList * Args,SourceLocation Loc)4765 Sema::InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
4766 const TemplateArgumentList *Args,
4767 SourceLocation Loc) {
4768 FunctionDecl *FD = FTD->getTemplatedDecl();
4769
4770 sema::TemplateDeductionInfo Info(Loc);
4771 InstantiatingTemplate Inst(
4772 *this, Loc, FTD, Args->asArray(),
4773 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
4774 if (Inst.isInvalid())
4775 return nullptr;
4776
4777 ContextRAII SavedContext(*this, FD);
4778 MultiLevelTemplateArgumentList MArgs(FTD, Args->asArray(),
4779 /*Final=*/false);
4780
4781 return cast_or_null<FunctionDecl>(SubstDecl(FD, FD->getParent(), MArgs));
4782 }
4783
4784 /// Instantiate the definition of the given function from its
4785 /// template.
4786 ///
4787 /// \param PointOfInstantiation the point at which the instantiation was
4788 /// required. Note that this is not precisely a "point of instantiation"
4789 /// for the function, but it's close.
4790 ///
4791 /// \param Function the already-instantiated declaration of a
4792 /// function template specialization or member function of a class template
4793 /// specialization.
4794 ///
4795 /// \param Recursive if true, recursively instantiates any functions that
4796 /// are required by this instantiation.
4797 ///
4798 /// \param DefinitionRequired if true, then we are performing an explicit
4799 /// instantiation where the body of the function is required. Complain if
4800 /// there is no such body.
InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,FunctionDecl * Function,bool Recursive,bool DefinitionRequired,bool AtEndOfTU)4801 void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
4802 FunctionDecl *Function,
4803 bool Recursive,
4804 bool DefinitionRequired,
4805 bool AtEndOfTU) {
4806 if (Function->isInvalidDecl() || isa<CXXDeductionGuideDecl>(Function))
4807 return;
4808
4809 // Never instantiate an explicit specialization except if it is a class scope
4810 // explicit specialization.
4811 TemplateSpecializationKind TSK =
4812 Function->getTemplateSpecializationKindForInstantiation();
4813 if (TSK == TSK_ExplicitSpecialization)
4814 return;
4815
4816 // Never implicitly instantiate a builtin; we don't actually need a function
4817 // body.
4818 if (Function->getBuiltinID() && TSK == TSK_ImplicitInstantiation &&
4819 !DefinitionRequired)
4820 return;
4821
4822 // Don't instantiate a definition if we already have one.
4823 const FunctionDecl *ExistingDefn = nullptr;
4824 if (Function->isDefined(ExistingDefn,
4825 /*CheckForPendingFriendDefinition=*/true)) {
4826 if (ExistingDefn->isThisDeclarationADefinition())
4827 return;
4828
4829 // If we're asked to instantiate a function whose body comes from an
4830 // instantiated friend declaration, attach the instantiated body to the
4831 // corresponding declaration of the function.
4832 assert(ExistingDefn->isThisDeclarationInstantiatedFromAFriendDefinition());
4833 Function = const_cast<FunctionDecl*>(ExistingDefn);
4834 }
4835
4836 // Find the function body that we'll be substituting.
4837 const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern();
4838 assert(PatternDecl && "instantiating a non-template");
4839
4840 const FunctionDecl *PatternDef = PatternDecl->getDefinition();
4841 Stmt *Pattern = nullptr;
4842 if (PatternDef) {
4843 Pattern = PatternDef->getBody(PatternDef);
4844 PatternDecl = PatternDef;
4845 if (PatternDef->willHaveBody())
4846 PatternDef = nullptr;
4847 }
4848
4849 // FIXME: We need to track the instantiation stack in order to know which
4850 // definitions should be visible within this instantiation.
4851 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function,
4852 Function->getInstantiatedFromMemberFunction(),
4853 PatternDecl, PatternDef, TSK,
4854 /*Complain*/DefinitionRequired)) {
4855 if (DefinitionRequired)
4856 Function->setInvalidDecl();
4857 else if (TSK == TSK_ExplicitInstantiationDefinition ||
4858 (Function->isConstexpr() && !Recursive)) {
4859 // Try again at the end of the translation unit (at which point a
4860 // definition will be required).
4861 assert(!Recursive);
4862 Function->setInstantiationIsPending(true);
4863 PendingInstantiations.push_back(
4864 std::make_pair(Function, PointOfInstantiation));
4865 } else if (TSK == TSK_ImplicitInstantiation) {
4866 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() &&
4867 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) {
4868 Diag(PointOfInstantiation, diag::warn_func_template_missing)
4869 << Function;
4870 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl);
4871 if (getLangOpts().CPlusPlus11)
4872 Diag(PointOfInstantiation, diag::note_inst_declaration_hint)
4873 << Function;
4874 }
4875 }
4876
4877 return;
4878 }
4879
4880 // Postpone late parsed template instantiations.
4881 if (PatternDecl->isLateTemplateParsed() &&
4882 !LateTemplateParser) {
4883 Function->setInstantiationIsPending(true);
4884 LateParsedInstantiations.push_back(
4885 std::make_pair(Function, PointOfInstantiation));
4886 return;
4887 }
4888
4889 llvm::TimeTraceScope TimeScope("InstantiateFunction", [&]() {
4890 std::string Name;
4891 llvm::raw_string_ostream OS(Name);
4892 Function->getNameForDiagnostic(OS, getPrintingPolicy(),
4893 /*Qualified=*/true);
4894 return Name;
4895 });
4896
4897 // If we're performing recursive template instantiation, create our own
4898 // queue of pending implicit instantiations that we will instantiate later,
4899 // while we're still within our own instantiation context.
4900 // This has to happen before LateTemplateParser below is called, so that
4901 // it marks vtables used in late parsed templates as used.
4902 GlobalEagerInstantiationScope GlobalInstantiations(*this,
4903 /*Enabled=*/Recursive);
4904 LocalEagerInstantiationScope LocalInstantiations(*this);
4905
4906 // Call the LateTemplateParser callback if there is a need to late parse
4907 // a templated function definition.
4908 if (!Pattern && PatternDecl->isLateTemplateParsed() &&
4909 LateTemplateParser) {
4910 // FIXME: Optimize to allow individual templates to be deserialized.
4911 if (PatternDecl->isFromASTFile())
4912 ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap);
4913
4914 auto LPTIter = LateParsedTemplateMap.find(PatternDecl);
4915 assert(LPTIter != LateParsedTemplateMap.end() &&
4916 "missing LateParsedTemplate");
4917 LateTemplateParser(OpaqueParser, *LPTIter->second);
4918 Pattern = PatternDecl->getBody(PatternDecl);
4919 }
4920
4921 // Note, we should never try to instantiate a deleted function template.
4922 assert((Pattern || PatternDecl->isDefaulted() ||
4923 PatternDecl->hasSkippedBody()) &&
4924 "unexpected kind of function template definition");
4925
4926 // C++1y [temp.explicit]p10:
4927 // Except for inline functions, declarations with types deduced from their
4928 // initializer or return value, and class template specializations, other
4929 // explicit instantiation declarations have the effect of suppressing the
4930 // implicit instantiation of the entity to which they refer.
4931 if (TSK == TSK_ExplicitInstantiationDeclaration &&
4932 !PatternDecl->isInlined() &&
4933 !PatternDecl->getReturnType()->getContainedAutoType())
4934 return;
4935
4936 if (PatternDecl->isInlined()) {
4937 // Function, and all later redeclarations of it (from imported modules,
4938 // for instance), are now implicitly inline.
4939 for (auto *D = Function->getMostRecentDecl(); /**/;
4940 D = D->getPreviousDecl()) {
4941 D->setImplicitlyInline();
4942 if (D == Function)
4943 break;
4944 }
4945 }
4946
4947 InstantiatingTemplate Inst(*this, PointOfInstantiation, Function);
4948 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
4949 return;
4950 PrettyDeclStackTraceEntry CrashInfo(Context, Function, SourceLocation(),
4951 "instantiating function definition");
4952
4953 // The instantiation is visible here, even if it was first declared in an
4954 // unimported module.
4955 Function->setVisibleDespiteOwningModule();
4956
4957 // Copy the inner loc start from the pattern.
4958 Function->setInnerLocStart(PatternDecl->getInnerLocStart());
4959
4960 EnterExpressionEvaluationContext EvalContext(
4961 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
4962
4963 // Introduce a new scope where local variable instantiations will be
4964 // recorded, unless we're actually a member function within a local
4965 // class, in which case we need to merge our results with the parent
4966 // scope (of the enclosing function). The exception is instantiating
4967 // a function template specialization, since the template to be
4968 // instantiated already has references to locals properly substituted.
4969 bool MergeWithParentScope = false;
4970 if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext()))
4971 MergeWithParentScope =
4972 Rec->isLocalClass() && !Function->isFunctionTemplateSpecialization();
4973
4974 LocalInstantiationScope Scope(*this, MergeWithParentScope);
4975 auto RebuildTypeSourceInfoForDefaultSpecialMembers = [&]() {
4976 // Special members might get their TypeSourceInfo set up w.r.t the
4977 // PatternDecl context, in which case parameters could still be pointing
4978 // back to the original class, make sure arguments are bound to the
4979 // instantiated record instead.
4980 assert(PatternDecl->isDefaulted() &&
4981 "Special member needs to be defaulted");
4982 auto PatternSM = getDefaultedFunctionKind(PatternDecl).asSpecialMember();
4983 if (!(PatternSM == Sema::CXXCopyConstructor ||
4984 PatternSM == Sema::CXXCopyAssignment ||
4985 PatternSM == Sema::CXXMoveConstructor ||
4986 PatternSM == Sema::CXXMoveAssignment))
4987 return;
4988
4989 auto *NewRec = dyn_cast<CXXRecordDecl>(Function->getDeclContext());
4990 const auto *PatternRec =
4991 dyn_cast<CXXRecordDecl>(PatternDecl->getDeclContext());
4992 if (!NewRec || !PatternRec)
4993 return;
4994 if (!PatternRec->isLambda())
4995 return;
4996
4997 struct SpecialMemberTypeInfoRebuilder
4998 : TreeTransform<SpecialMemberTypeInfoRebuilder> {
4999 using Base = TreeTransform<SpecialMemberTypeInfoRebuilder>;
5000 const CXXRecordDecl *OldDecl;
5001 CXXRecordDecl *NewDecl;
5002
5003 SpecialMemberTypeInfoRebuilder(Sema &SemaRef, const CXXRecordDecl *O,
5004 CXXRecordDecl *N)
5005 : TreeTransform(SemaRef), OldDecl(O), NewDecl(N) {}
5006
5007 bool TransformExceptionSpec(SourceLocation Loc,
5008 FunctionProtoType::ExceptionSpecInfo &ESI,
5009 SmallVectorImpl<QualType> &Exceptions,
5010 bool &Changed) {
5011 return false;
5012 }
5013
5014 QualType TransformRecordType(TypeLocBuilder &TLB, RecordTypeLoc TL) {
5015 const RecordType *T = TL.getTypePtr();
5016 RecordDecl *Record = cast_or_null<RecordDecl>(
5017 getDerived().TransformDecl(TL.getNameLoc(), T->getDecl()));
5018 if (Record != OldDecl)
5019 return Base::TransformRecordType(TLB, TL);
5020
5021 QualType Result = getDerived().RebuildRecordType(NewDecl);
5022 if (Result.isNull())
5023 return QualType();
5024
5025 RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
5026 NewTL.setNameLoc(TL.getNameLoc());
5027 return Result;
5028 }
5029 } IR{*this, PatternRec, NewRec};
5030
5031 TypeSourceInfo *NewSI = IR.TransformType(Function->getTypeSourceInfo());
5032 Function->setType(NewSI->getType());
5033 Function->setTypeSourceInfo(NewSI);
5034
5035 ParmVarDecl *Parm = Function->getParamDecl(0);
5036 TypeSourceInfo *NewParmSI = IR.TransformType(Parm->getTypeSourceInfo());
5037 Parm->setType(NewParmSI->getType());
5038 Parm->setTypeSourceInfo(NewParmSI);
5039 };
5040
5041 if (PatternDecl->isDefaulted()) {
5042 RebuildTypeSourceInfoForDefaultSpecialMembers();
5043 SetDeclDefaulted(Function, PatternDecl->getLocation());
5044 } else {
5045 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(
5046 Function, /*Final=*/false, nullptr, false, PatternDecl);
5047
5048 // Substitute into the qualifier; we can get a substitution failure here
5049 // through evil use of alias templates.
5050 // FIXME: Is CurContext correct for this? Should we go to the (instantiation
5051 // of the) lexical context of the pattern?
5052 SubstQualifier(*this, PatternDecl, Function, TemplateArgs);
5053
5054 ActOnStartOfFunctionDef(nullptr, Function);
5055
5056 // Enter the scope of this instantiation. We don't use
5057 // PushDeclContext because we don't have a scope.
5058 Sema::ContextRAII savedContext(*this, Function);
5059
5060 if (addInstantiatedParametersToScope(Function, PatternDecl, Scope,
5061 TemplateArgs))
5062 return;
5063
5064 StmtResult Body;
5065 if (PatternDecl->hasSkippedBody()) {
5066 ActOnSkippedFunctionBody(Function);
5067 Body = nullptr;
5068 } else {
5069 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Function)) {
5070 // If this is a constructor, instantiate the member initializers.
5071 InstantiateMemInitializers(Ctor, cast<CXXConstructorDecl>(PatternDecl),
5072 TemplateArgs);
5073
5074 // If this is an MS ABI dllexport default constructor, instantiate any
5075 // default arguments.
5076 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5077 Ctor->isDefaultConstructor()) {
5078 InstantiateDefaultCtorDefaultArgs(Ctor);
5079 }
5080 }
5081
5082 // Instantiate the function body.
5083 Body = SubstStmt(Pattern, TemplateArgs);
5084
5085 if (Body.isInvalid())
5086 Function->setInvalidDecl();
5087 }
5088 // FIXME: finishing the function body while in an expression evaluation
5089 // context seems wrong. Investigate more.
5090 ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true);
5091
5092 PerformDependentDiagnostics(PatternDecl, TemplateArgs);
5093
5094 if (auto *Listener = getASTMutationListener())
5095 Listener->FunctionDefinitionInstantiated(Function);
5096
5097 savedContext.pop();
5098 }
5099
5100 DeclGroupRef DG(Function);
5101 Consumer.HandleTopLevelDecl(DG);
5102
5103 // This class may have local implicit instantiations that need to be
5104 // instantiation within this scope.
5105 LocalInstantiations.perform();
5106 Scope.Exit();
5107 GlobalInstantiations.perform();
5108 }
5109
BuildVarTemplateInstantiation(VarTemplateDecl * VarTemplate,VarDecl * FromVar,const TemplateArgumentList & TemplateArgList,const TemplateArgumentListInfo & TemplateArgsInfo,SmallVectorImpl<TemplateArgument> & Converted,SourceLocation PointOfInstantiation,LateInstantiatedAttrVec * LateAttrs,LocalInstantiationScope * StartingScope)5110 VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation(
5111 VarTemplateDecl *VarTemplate, VarDecl *FromVar,
5112 const TemplateArgumentList &TemplateArgList,
5113 const TemplateArgumentListInfo &TemplateArgsInfo,
5114 SmallVectorImpl<TemplateArgument> &Converted,
5115 SourceLocation PointOfInstantiation, LateInstantiatedAttrVec *LateAttrs,
5116 LocalInstantiationScope *StartingScope) {
5117 if (FromVar->isInvalidDecl())
5118 return nullptr;
5119
5120 InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar);
5121 if (Inst.isInvalid())
5122 return nullptr;
5123
5124 // Instantiate the first declaration of the variable template: for a partial
5125 // specialization of a static data member template, the first declaration may
5126 // or may not be the declaration in the class; if it's in the class, we want
5127 // to instantiate a member in the class (a declaration), and if it's outside,
5128 // we want to instantiate a definition.
5129 //
5130 // If we're instantiating an explicitly-specialized member template or member
5131 // partial specialization, don't do this. The member specialization completely
5132 // replaces the original declaration in this case.
5133 bool IsMemberSpec = false;
5134 MultiLevelTemplateArgumentList MultiLevelList;
5135 if (auto *PartialSpec =
5136 dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar)) {
5137 IsMemberSpec = PartialSpec->isMemberSpecialization();
5138 MultiLevelList.addOuterTemplateArguments(
5139 PartialSpec, TemplateArgList.asArray(), /*Final=*/false);
5140 } else {
5141 assert(VarTemplate == FromVar->getDescribedVarTemplate());
5142 IsMemberSpec = VarTemplate->isMemberSpecialization();
5143 MultiLevelList.addOuterTemplateArguments(
5144 VarTemplate, TemplateArgList.asArray(), /*Final=*/false);
5145 }
5146 if (!IsMemberSpec)
5147 FromVar = FromVar->getFirstDecl();
5148
5149 TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(),
5150 MultiLevelList);
5151
5152 // TODO: Set LateAttrs and StartingScope ...
5153
5154 return cast_or_null<VarTemplateSpecializationDecl>(
5155 Instantiator.VisitVarTemplateSpecializationDecl(
5156 VarTemplate, FromVar, TemplateArgsInfo, Converted));
5157 }
5158
5159 /// Instantiates a variable template specialization by completing it
5160 /// with appropriate type information and initializer.
CompleteVarTemplateSpecializationDecl(VarTemplateSpecializationDecl * VarSpec,VarDecl * PatternDecl,const MultiLevelTemplateArgumentList & TemplateArgs)5161 VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl(
5162 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
5163 const MultiLevelTemplateArgumentList &TemplateArgs) {
5164 assert(PatternDecl->isThisDeclarationADefinition() &&
5165 "don't have a definition to instantiate from");
5166
5167 // Do substitution on the type of the declaration
5168 TypeSourceInfo *DI =
5169 SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs,
5170 PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName());
5171 if (!DI)
5172 return nullptr;
5173
5174 // Update the type of this variable template specialization.
5175 VarSpec->setType(DI->getType());
5176
5177 // Convert the declaration into a definition now.
5178 VarSpec->setCompleteDefinition();
5179
5180 // Instantiate the initializer.
5181 InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs);
5182
5183 if (getLangOpts().OpenCL)
5184 deduceOpenCLAddressSpace(VarSpec);
5185
5186 return VarSpec;
5187 }
5188
5189 /// BuildVariableInstantiation - Used after a new variable has been created.
5190 /// Sets basic variable data and decides whether to postpone the
5191 /// variable instantiation.
BuildVariableInstantiation(VarDecl * NewVar,VarDecl * OldVar,const MultiLevelTemplateArgumentList & TemplateArgs,LateInstantiatedAttrVec * LateAttrs,DeclContext * Owner,LocalInstantiationScope * StartingScope,bool InstantiatingVarTemplate,VarTemplateSpecializationDecl * PrevDeclForVarTemplateSpecialization)5192 void Sema::BuildVariableInstantiation(
5193 VarDecl *NewVar, VarDecl *OldVar,
5194 const MultiLevelTemplateArgumentList &TemplateArgs,
5195 LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner,
5196 LocalInstantiationScope *StartingScope,
5197 bool InstantiatingVarTemplate,
5198 VarTemplateSpecializationDecl *PrevDeclForVarTemplateSpecialization) {
5199 // Instantiating a partial specialization to produce a partial
5200 // specialization.
5201 bool InstantiatingVarTemplatePartialSpec =
5202 isa<VarTemplatePartialSpecializationDecl>(OldVar) &&
5203 isa<VarTemplatePartialSpecializationDecl>(NewVar);
5204 // Instantiating from a variable template (or partial specialization) to
5205 // produce a variable template specialization.
5206 bool InstantiatingSpecFromTemplate =
5207 isa<VarTemplateSpecializationDecl>(NewVar) &&
5208 (OldVar->getDescribedVarTemplate() ||
5209 isa<VarTemplatePartialSpecializationDecl>(OldVar));
5210
5211 // If we are instantiating a local extern declaration, the
5212 // instantiation belongs lexically to the containing function.
5213 // If we are instantiating a static data member defined
5214 // out-of-line, the instantiation will have the same lexical
5215 // context (which will be a namespace scope) as the template.
5216 if (OldVar->isLocalExternDecl()) {
5217 NewVar->setLocalExternDecl();
5218 NewVar->setLexicalDeclContext(Owner);
5219 } else if (OldVar->isOutOfLine())
5220 NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext());
5221 NewVar->setTSCSpec(OldVar->getTSCSpec());
5222 NewVar->setInitStyle(OldVar->getInitStyle());
5223 NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl());
5224 NewVar->setObjCForDecl(OldVar->isObjCForDecl());
5225 NewVar->setConstexpr(OldVar->isConstexpr());
5226 NewVar->setInitCapture(OldVar->isInitCapture());
5227 NewVar->setPreviousDeclInSameBlockScope(
5228 OldVar->isPreviousDeclInSameBlockScope());
5229 NewVar->setAccess(OldVar->getAccess());
5230
5231 if (!OldVar->isStaticDataMember()) {
5232 if (OldVar->isUsed(false))
5233 NewVar->setIsUsed();
5234 NewVar->setReferenced(OldVar->isReferenced());
5235 }
5236
5237 InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope);
5238
5239 LookupResult Previous(
5240 *this, NewVar->getDeclName(), NewVar->getLocation(),
5241 NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
5242 : Sema::LookupOrdinaryName,
5243 NewVar->isLocalExternDecl() ? Sema::ForExternalRedeclaration
5244 : forRedeclarationInCurContext());
5245
5246 if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() &&
5247 (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() ||
5248 OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) {
5249 // We have a previous declaration. Use that one, so we merge with the
5250 // right type.
5251 if (NamedDecl *NewPrev = FindInstantiatedDecl(
5252 NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs))
5253 Previous.addDecl(NewPrev);
5254 } else if (!isa<VarTemplateSpecializationDecl>(NewVar) &&
5255 OldVar->hasLinkage()) {
5256 LookupQualifiedName(Previous, NewVar->getDeclContext(), false);
5257 } else if (PrevDeclForVarTemplateSpecialization) {
5258 Previous.addDecl(PrevDeclForVarTemplateSpecialization);
5259 }
5260 CheckVariableDeclaration(NewVar, Previous);
5261
5262 if (!InstantiatingVarTemplate) {
5263 NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar);
5264 if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl())
5265 NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar);
5266 }
5267
5268 if (!OldVar->isOutOfLine()) {
5269 if (NewVar->getDeclContext()->isFunctionOrMethod())
5270 CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar);
5271 }
5272
5273 // Link instantiations of static data members back to the template from
5274 // which they were instantiated.
5275 //
5276 // Don't do this when instantiating a template (we link the template itself
5277 // back in that case) nor when instantiating a static data member template
5278 // (that's not a member specialization).
5279 if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate &&
5280 !InstantiatingSpecFromTemplate)
5281 NewVar->setInstantiationOfStaticDataMember(OldVar,
5282 TSK_ImplicitInstantiation);
5283
5284 // If the pattern is an (in-class) explicit specialization, then the result
5285 // is also an explicit specialization.
5286 if (VarTemplateSpecializationDecl *OldVTSD =
5287 dyn_cast<VarTemplateSpecializationDecl>(OldVar)) {
5288 if (OldVTSD->getSpecializationKind() == TSK_ExplicitSpecialization &&
5289 !isa<VarTemplatePartialSpecializationDecl>(OldVTSD))
5290 cast<VarTemplateSpecializationDecl>(NewVar)->setSpecializationKind(
5291 TSK_ExplicitSpecialization);
5292 }
5293
5294 // Forward the mangling number from the template to the instantiated decl.
5295 Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar));
5296 Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar));
5297
5298 // Figure out whether to eagerly instantiate the initializer.
5299 if (InstantiatingVarTemplate || InstantiatingVarTemplatePartialSpec) {
5300 // We're producing a template. Don't instantiate the initializer yet.
5301 } else if (NewVar->getType()->isUndeducedType()) {
5302 // We need the type to complete the declaration of the variable.
5303 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs);
5304 } else if (InstantiatingSpecFromTemplate ||
5305 (OldVar->isInline() && OldVar->isThisDeclarationADefinition() &&
5306 !NewVar->isThisDeclarationADefinition())) {
5307 // Delay instantiation of the initializer for variable template
5308 // specializations or inline static data members until a definition of the
5309 // variable is needed.
5310 } else {
5311 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs);
5312 }
5313
5314 // Diagnose unused local variables with dependent types, where the diagnostic
5315 // will have been deferred.
5316 if (!NewVar->isInvalidDecl() &&
5317 NewVar->getDeclContext()->isFunctionOrMethod() &&
5318 OldVar->getType()->isDependentType())
5319 DiagnoseUnusedDecl(NewVar);
5320 }
5321
5322 /// Instantiate the initializer of a variable.
InstantiateVariableInitializer(VarDecl * Var,VarDecl * OldVar,const MultiLevelTemplateArgumentList & TemplateArgs)5323 void Sema::InstantiateVariableInitializer(
5324 VarDecl *Var, VarDecl *OldVar,
5325 const MultiLevelTemplateArgumentList &TemplateArgs) {
5326 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
5327 L->VariableDefinitionInstantiated(Var);
5328
5329 // We propagate the 'inline' flag with the initializer, because it
5330 // would otherwise imply that the variable is a definition for a
5331 // non-static data member.
5332 if (OldVar->isInlineSpecified())
5333 Var->setInlineSpecified();
5334 else if (OldVar->isInline())
5335 Var->setImplicitlyInline();
5336
5337 if (OldVar->getInit()) {
5338 EnterExpressionEvaluationContext Evaluated(
5339 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var);
5340
5341 // Instantiate the initializer.
5342 ExprResult Init;
5343
5344 {
5345 ContextRAII SwitchContext(*this, Var->getDeclContext());
5346 Init = SubstInitializer(OldVar->getInit(), TemplateArgs,
5347 OldVar->getInitStyle() == VarDecl::CallInit);
5348 }
5349
5350 if (!Init.isInvalid()) {
5351 Expr *InitExpr = Init.get();
5352
5353 if (Var->hasAttr<DLLImportAttr>() &&
5354 (!InitExpr ||
5355 !InitExpr->isConstantInitializer(getASTContext(), false))) {
5356 // Do not dynamically initialize dllimport variables.
5357 } else if (InitExpr) {
5358 bool DirectInit = OldVar->isDirectInit();
5359 AddInitializerToDecl(Var, InitExpr, DirectInit);
5360 } else
5361 ActOnUninitializedDecl(Var);
5362 } else {
5363 // FIXME: Not too happy about invalidating the declaration
5364 // because of a bogus initializer.
5365 Var->setInvalidDecl();
5366 }
5367 } else {
5368 // `inline` variables are a definition and declaration all in one; we won't
5369 // pick up an initializer from anywhere else.
5370 if (Var->isStaticDataMember() && !Var->isInline()) {
5371 if (!Var->isOutOfLine())
5372 return;
5373
5374 // If the declaration inside the class had an initializer, don't add
5375 // another one to the out-of-line definition.
5376 if (OldVar->getFirstDecl()->hasInit())
5377 return;
5378 }
5379
5380 // We'll add an initializer to a for-range declaration later.
5381 if (Var->isCXXForRangeDecl() || Var->isObjCForDecl())
5382 return;
5383
5384 ActOnUninitializedDecl(Var);
5385 }
5386
5387 if (getLangOpts().CUDA)
5388 checkAllowedCUDAInitializer(Var);
5389 }
5390
5391 /// Instantiate the definition of the given variable from its
5392 /// template.
5393 ///
5394 /// \param PointOfInstantiation the point at which the instantiation was
5395 /// required. Note that this is not precisely a "point of instantiation"
5396 /// for the variable, but it's close.
5397 ///
5398 /// \param Var the already-instantiated declaration of a templated variable.
5399 ///
5400 /// \param Recursive if true, recursively instantiates any functions that
5401 /// are required by this instantiation.
5402 ///
5403 /// \param DefinitionRequired if true, then we are performing an explicit
5404 /// instantiation where a definition of the variable is required. Complain
5405 /// if there is no such definition.
InstantiateVariableDefinition(SourceLocation PointOfInstantiation,VarDecl * Var,bool Recursive,bool DefinitionRequired,bool AtEndOfTU)5406 void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
5407 VarDecl *Var, bool Recursive,
5408 bool DefinitionRequired, bool AtEndOfTU) {
5409 if (Var->isInvalidDecl())
5410 return;
5411
5412 // Never instantiate an explicitly-specialized entity.
5413 TemplateSpecializationKind TSK =
5414 Var->getTemplateSpecializationKindForInstantiation();
5415 if (TSK == TSK_ExplicitSpecialization)
5416 return;
5417
5418 // Find the pattern and the arguments to substitute into it.
5419 VarDecl *PatternDecl = Var->getTemplateInstantiationPattern();
5420 assert(PatternDecl && "no pattern for templated variable");
5421 MultiLevelTemplateArgumentList TemplateArgs =
5422 getTemplateInstantiationArgs(Var);
5423
5424 VarTemplateSpecializationDecl *VarSpec =
5425 dyn_cast<VarTemplateSpecializationDecl>(Var);
5426 if (VarSpec) {
5427 // If this is a static data member template, there might be an
5428 // uninstantiated initializer on the declaration. If so, instantiate
5429 // it now.
5430 //
5431 // FIXME: This largely duplicates what we would do below. The difference
5432 // is that along this path we may instantiate an initializer from an
5433 // in-class declaration of the template and instantiate the definition
5434 // from a separate out-of-class definition.
5435 if (PatternDecl->isStaticDataMember() &&
5436 (PatternDecl = PatternDecl->getFirstDecl())->hasInit() &&
5437 !Var->hasInit()) {
5438 // FIXME: Factor out the duplicated instantiation context setup/tear down
5439 // code here.
5440 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
5441 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
5442 return;
5443 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
5444 "instantiating variable initializer");
5445
5446 // The instantiation is visible here, even if it was first declared in an
5447 // unimported module.
5448 Var->setVisibleDespiteOwningModule();
5449
5450 // If we're performing recursive template instantiation, create our own
5451 // queue of pending implicit instantiations that we will instantiate
5452 // later, while we're still within our own instantiation context.
5453 GlobalEagerInstantiationScope GlobalInstantiations(*this,
5454 /*Enabled=*/Recursive);
5455 LocalInstantiationScope Local(*this);
5456 LocalEagerInstantiationScope LocalInstantiations(*this);
5457
5458 // Enter the scope of this instantiation. We don't use
5459 // PushDeclContext because we don't have a scope.
5460 ContextRAII PreviousContext(*this, Var->getDeclContext());
5461 InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs);
5462 PreviousContext.pop();
5463
5464 // This variable may have local implicit instantiations that need to be
5465 // instantiated within this scope.
5466 LocalInstantiations.perform();
5467 Local.Exit();
5468 GlobalInstantiations.perform();
5469 }
5470 } else {
5471 assert(Var->isStaticDataMember() && PatternDecl->isStaticDataMember() &&
5472 "not a static data member?");
5473 }
5474
5475 VarDecl *Def = PatternDecl->getDefinition(getASTContext());
5476
5477 // If we don't have a definition of the variable template, we won't perform
5478 // any instantiation. Rather, we rely on the user to instantiate this
5479 // definition (or provide a specialization for it) in another translation
5480 // unit.
5481 if (!Def && !DefinitionRequired) {
5482 if (TSK == TSK_ExplicitInstantiationDefinition) {
5483 PendingInstantiations.push_back(
5484 std::make_pair(Var, PointOfInstantiation));
5485 } else if (TSK == TSK_ImplicitInstantiation) {
5486 // Warn about missing definition at the end of translation unit.
5487 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() &&
5488 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) {
5489 Diag(PointOfInstantiation, diag::warn_var_template_missing)
5490 << Var;
5491 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl);
5492 if (getLangOpts().CPlusPlus11)
5493 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var;
5494 }
5495 return;
5496 }
5497 }
5498
5499 // FIXME: We need to track the instantiation stack in order to know which
5500 // definitions should be visible within this instantiation.
5501 // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember().
5502 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var,
5503 /*InstantiatedFromMember*/false,
5504 PatternDecl, Def, TSK,
5505 /*Complain*/DefinitionRequired))
5506 return;
5507
5508 // C++11 [temp.explicit]p10:
5509 // Except for inline functions, const variables of literal types, variables
5510 // of reference types, [...] explicit instantiation declarations
5511 // have the effect of suppressing the implicit instantiation of the entity
5512 // to which they refer.
5513 //
5514 // FIXME: That's not exactly the same as "might be usable in constant
5515 // expressions", which only allows constexpr variables and const integral
5516 // types, not arbitrary const literal types.
5517 if (TSK == TSK_ExplicitInstantiationDeclaration &&
5518 !Var->mightBeUsableInConstantExpressions(getASTContext()))
5519 return;
5520
5521 // Make sure to pass the instantiated variable to the consumer at the end.
5522 struct PassToConsumerRAII {
5523 ASTConsumer &Consumer;
5524 VarDecl *Var;
5525
5526 PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var)
5527 : Consumer(Consumer), Var(Var) { }
5528
5529 ~PassToConsumerRAII() {
5530 Consumer.HandleCXXStaticMemberVarInstantiation(Var);
5531 }
5532 } PassToConsumerRAII(Consumer, Var);
5533
5534 // If we already have a definition, we're done.
5535 if (VarDecl *Def = Var->getDefinition()) {
5536 // We may be explicitly instantiating something we've already implicitly
5537 // instantiated.
5538 Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(),
5539 PointOfInstantiation);
5540 return;
5541 }
5542
5543 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
5544 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
5545 return;
5546 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
5547 "instantiating variable definition");
5548
5549 // If we're performing recursive template instantiation, create our own
5550 // queue of pending implicit instantiations that we will instantiate later,
5551 // while we're still within our own instantiation context.
5552 GlobalEagerInstantiationScope GlobalInstantiations(*this,
5553 /*Enabled=*/Recursive);
5554
5555 // Enter the scope of this instantiation. We don't use
5556 // PushDeclContext because we don't have a scope.
5557 ContextRAII PreviousContext(*this, Var->getDeclContext());
5558 LocalInstantiationScope Local(*this);
5559
5560 LocalEagerInstantiationScope LocalInstantiations(*this);
5561
5562 VarDecl *OldVar = Var;
5563 if (Def->isStaticDataMember() && !Def->isOutOfLine()) {
5564 // We're instantiating an inline static data member whose definition was
5565 // provided inside the class.
5566 InstantiateVariableInitializer(Var, Def, TemplateArgs);
5567 } else if (!VarSpec) {
5568 Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(),
5569 TemplateArgs));
5570 } else if (Var->isStaticDataMember() &&
5571 Var->getLexicalDeclContext()->isRecord()) {
5572 // We need to instantiate the definition of a static data member template,
5573 // and all we have is the in-class declaration of it. Instantiate a separate
5574 // declaration of the definition.
5575 TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(),
5576 TemplateArgs);
5577
5578 TemplateArgumentListInfo TemplateArgInfo;
5579 if (const ASTTemplateArgumentListInfo *ArgInfo =
5580 VarSpec->getTemplateArgsInfo()) {
5581 TemplateArgInfo.setLAngleLoc(ArgInfo->getLAngleLoc());
5582 TemplateArgInfo.setRAngleLoc(ArgInfo->getRAngleLoc());
5583 for (const TemplateArgumentLoc &Arg : ArgInfo->arguments())
5584 TemplateArgInfo.addArgument(Arg);
5585 }
5586
5587 Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl(
5588 VarSpec->getSpecializedTemplate(), Def, TemplateArgInfo,
5589 VarSpec->getTemplateArgs().asArray(), VarSpec));
5590 if (Var) {
5591 llvm::PointerUnion<VarTemplateDecl *,
5592 VarTemplatePartialSpecializationDecl *> PatternPtr =
5593 VarSpec->getSpecializedTemplateOrPartial();
5594 if (VarTemplatePartialSpecializationDecl *Partial =
5595 PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>())
5596 cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf(
5597 Partial, &VarSpec->getTemplateInstantiationArgs());
5598
5599 // Attach the initializer.
5600 InstantiateVariableInitializer(Var, Def, TemplateArgs);
5601 }
5602 } else
5603 // Complete the existing variable's definition with an appropriately
5604 // substituted type and initializer.
5605 Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs);
5606
5607 PreviousContext.pop();
5608
5609 if (Var) {
5610 PassToConsumerRAII.Var = Var;
5611 Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(),
5612 OldVar->getPointOfInstantiation());
5613 }
5614
5615 // This variable may have local implicit instantiations that need to be
5616 // instantiated within this scope.
5617 LocalInstantiations.perform();
5618 Local.Exit();
5619 GlobalInstantiations.perform();
5620 }
5621
5622 void
InstantiateMemInitializers(CXXConstructorDecl * New,const CXXConstructorDecl * Tmpl,const MultiLevelTemplateArgumentList & TemplateArgs)5623 Sema::InstantiateMemInitializers(CXXConstructorDecl *New,
5624 const CXXConstructorDecl *Tmpl,
5625 const MultiLevelTemplateArgumentList &TemplateArgs) {
5626
5627 SmallVector<CXXCtorInitializer*, 4> NewInits;
5628 bool AnyErrors = Tmpl->isInvalidDecl();
5629
5630 // Instantiate all the initializers.
5631 for (const auto *Init : Tmpl->inits()) {
5632 // Only instantiate written initializers, let Sema re-construct implicit
5633 // ones.
5634 if (!Init->isWritten())
5635 continue;
5636
5637 SourceLocation EllipsisLoc;
5638
5639 if (Init->isPackExpansion()) {
5640 // This is a pack expansion. We should expand it now.
5641 TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc();
5642 SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5643 collectUnexpandedParameterPacks(BaseTL, Unexpanded);
5644 collectUnexpandedParameterPacks(Init->getInit(), Unexpanded);
5645 bool ShouldExpand = false;
5646 bool RetainExpansion = false;
5647 std::optional<unsigned> NumExpansions;
5648 if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(),
5649 BaseTL.getSourceRange(),
5650 Unexpanded,
5651 TemplateArgs, ShouldExpand,
5652 RetainExpansion,
5653 NumExpansions)) {
5654 AnyErrors = true;
5655 New->setInvalidDecl();
5656 continue;
5657 }
5658 assert(ShouldExpand && "Partial instantiation of base initializer?");
5659
5660 // Loop over all of the arguments in the argument pack(s),
5661 for (unsigned I = 0; I != *NumExpansions; ++I) {
5662 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I);
5663
5664 // Instantiate the initializer.
5665 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs,
5666 /*CXXDirectInit=*/true);
5667 if (TempInit.isInvalid()) {
5668 AnyErrors = true;
5669 break;
5670 }
5671
5672 // Instantiate the base type.
5673 TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(),
5674 TemplateArgs,
5675 Init->getSourceLocation(),
5676 New->getDeclName());
5677 if (!BaseTInfo) {
5678 AnyErrors = true;
5679 break;
5680 }
5681
5682 // Build the initializer.
5683 MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(),
5684 BaseTInfo, TempInit.get(),
5685 New->getParent(),
5686 SourceLocation());
5687 if (NewInit.isInvalid()) {
5688 AnyErrors = true;
5689 break;
5690 }
5691
5692 NewInits.push_back(NewInit.get());
5693 }
5694
5695 continue;
5696 }
5697
5698 // Instantiate the initializer.
5699 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs,
5700 /*CXXDirectInit=*/true);
5701 if (TempInit.isInvalid()) {
5702 AnyErrors = true;
5703 continue;
5704 }
5705
5706 MemInitResult NewInit;
5707 if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) {
5708 TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(),
5709 TemplateArgs,
5710 Init->getSourceLocation(),
5711 New->getDeclName());
5712 if (!TInfo) {
5713 AnyErrors = true;
5714 New->setInvalidDecl();
5715 continue;
5716 }
5717
5718 if (Init->isBaseInitializer())
5719 NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(),
5720 New->getParent(), EllipsisLoc);
5721 else
5722 NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(),
5723 cast<CXXRecordDecl>(CurContext->getParent()));
5724 } else if (Init->isMemberInitializer()) {
5725 FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl(
5726 Init->getMemberLocation(),
5727 Init->getMember(),
5728 TemplateArgs));
5729 if (!Member) {
5730 AnyErrors = true;
5731 New->setInvalidDecl();
5732 continue;
5733 }
5734
5735 NewInit = BuildMemberInitializer(Member, TempInit.get(),
5736 Init->getSourceLocation());
5737 } else if (Init->isIndirectMemberInitializer()) {
5738 IndirectFieldDecl *IndirectMember =
5739 cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl(
5740 Init->getMemberLocation(),
5741 Init->getIndirectMember(), TemplateArgs));
5742
5743 if (!IndirectMember) {
5744 AnyErrors = true;
5745 New->setInvalidDecl();
5746 continue;
5747 }
5748
5749 NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(),
5750 Init->getSourceLocation());
5751 }
5752
5753 if (NewInit.isInvalid()) {
5754 AnyErrors = true;
5755 New->setInvalidDecl();
5756 } else {
5757 NewInits.push_back(NewInit.get());
5758 }
5759 }
5760
5761 // Assign all the initializers to the new constructor.
5762 ActOnMemInitializers(New,
5763 /*FIXME: ColonLoc */
5764 SourceLocation(),
5765 NewInits,
5766 AnyErrors);
5767 }
5768
5769 // TODO: this could be templated if the various decl types used the
5770 // same method name.
isInstantiationOf(ClassTemplateDecl * Pattern,ClassTemplateDecl * Instance)5771 static bool isInstantiationOf(ClassTemplateDecl *Pattern,
5772 ClassTemplateDecl *Instance) {
5773 Pattern = Pattern->getCanonicalDecl();
5774
5775 do {
5776 Instance = Instance->getCanonicalDecl();
5777 if (Pattern == Instance) return true;
5778 Instance = Instance->getInstantiatedFromMemberTemplate();
5779 } while (Instance);
5780
5781 return false;
5782 }
5783
isInstantiationOf(FunctionTemplateDecl * Pattern,FunctionTemplateDecl * Instance)5784 static bool isInstantiationOf(FunctionTemplateDecl *Pattern,
5785 FunctionTemplateDecl *Instance) {
5786 Pattern = Pattern->getCanonicalDecl();
5787
5788 do {
5789 Instance = Instance->getCanonicalDecl();
5790 if (Pattern == Instance) return true;
5791 Instance = Instance->getInstantiatedFromMemberTemplate();
5792 } while (Instance);
5793
5794 return false;
5795 }
5796
5797 static bool
isInstantiationOf(ClassTemplatePartialSpecializationDecl * Pattern,ClassTemplatePartialSpecializationDecl * Instance)5798 isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern,
5799 ClassTemplatePartialSpecializationDecl *Instance) {
5800 Pattern
5801 = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl());
5802 do {
5803 Instance = cast<ClassTemplatePartialSpecializationDecl>(
5804 Instance->getCanonicalDecl());
5805 if (Pattern == Instance)
5806 return true;
5807 Instance = Instance->getInstantiatedFromMember();
5808 } while (Instance);
5809
5810 return false;
5811 }
5812
isInstantiationOf(CXXRecordDecl * Pattern,CXXRecordDecl * Instance)5813 static bool isInstantiationOf(CXXRecordDecl *Pattern,
5814 CXXRecordDecl *Instance) {
5815 Pattern = Pattern->getCanonicalDecl();
5816
5817 do {
5818 Instance = Instance->getCanonicalDecl();
5819 if (Pattern == Instance) return true;
5820 Instance = Instance->getInstantiatedFromMemberClass();
5821 } while (Instance);
5822
5823 return false;
5824 }
5825
isInstantiationOf(FunctionDecl * Pattern,FunctionDecl * Instance)5826 static bool isInstantiationOf(FunctionDecl *Pattern,
5827 FunctionDecl *Instance) {
5828 Pattern = Pattern->getCanonicalDecl();
5829
5830 do {
5831 Instance = Instance->getCanonicalDecl();
5832 if (Pattern == Instance) return true;
5833 Instance = Instance->getInstantiatedFromMemberFunction();
5834 } while (Instance);
5835
5836 return false;
5837 }
5838
isInstantiationOf(EnumDecl * Pattern,EnumDecl * Instance)5839 static bool isInstantiationOf(EnumDecl *Pattern,
5840 EnumDecl *Instance) {
5841 Pattern = Pattern->getCanonicalDecl();
5842
5843 do {
5844 Instance = Instance->getCanonicalDecl();
5845 if (Pattern == Instance) return true;
5846 Instance = Instance->getInstantiatedFromMemberEnum();
5847 } while (Instance);
5848
5849 return false;
5850 }
5851
isInstantiationOf(UsingShadowDecl * Pattern,UsingShadowDecl * Instance,ASTContext & C)5852 static bool isInstantiationOf(UsingShadowDecl *Pattern,
5853 UsingShadowDecl *Instance,
5854 ASTContext &C) {
5855 return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance),
5856 Pattern);
5857 }
5858
isInstantiationOf(UsingDecl * Pattern,UsingDecl * Instance,ASTContext & C)5859 static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance,
5860 ASTContext &C) {
5861 return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern);
5862 }
5863
5864 template<typename T>
isInstantiationOfUnresolvedUsingDecl(T * Pattern,Decl * Other,ASTContext & Ctx)5865 static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other,
5866 ASTContext &Ctx) {
5867 // An unresolved using declaration can instantiate to an unresolved using
5868 // declaration, or to a using declaration or a using declaration pack.
5869 //
5870 // Multiple declarations can claim to be instantiated from an unresolved
5871 // using declaration if it's a pack expansion. We want the UsingPackDecl
5872 // in that case, not the individual UsingDecls within the pack.
5873 bool OtherIsPackExpansion;
5874 NamedDecl *OtherFrom;
5875 if (auto *OtherUUD = dyn_cast<T>(Other)) {
5876 OtherIsPackExpansion = OtherUUD->isPackExpansion();
5877 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUUD);
5878 } else if (auto *OtherUPD = dyn_cast<UsingPackDecl>(Other)) {
5879 OtherIsPackExpansion = true;
5880 OtherFrom = OtherUPD->getInstantiatedFromUsingDecl();
5881 } else if (auto *OtherUD = dyn_cast<UsingDecl>(Other)) {
5882 OtherIsPackExpansion = false;
5883 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD);
5884 } else {
5885 return false;
5886 }
5887 return Pattern->isPackExpansion() == OtherIsPackExpansion &&
5888 declaresSameEntity(OtherFrom, Pattern);
5889 }
5890
isInstantiationOfStaticDataMember(VarDecl * Pattern,VarDecl * Instance)5891 static bool isInstantiationOfStaticDataMember(VarDecl *Pattern,
5892 VarDecl *Instance) {
5893 assert(Instance->isStaticDataMember());
5894
5895 Pattern = Pattern->getCanonicalDecl();
5896
5897 do {
5898 Instance = Instance->getCanonicalDecl();
5899 if (Pattern == Instance) return true;
5900 Instance = Instance->getInstantiatedFromStaticDataMember();
5901 } while (Instance);
5902
5903 return false;
5904 }
5905
5906 // Other is the prospective instantiation
5907 // D is the prospective pattern
isInstantiationOf(ASTContext & Ctx,NamedDecl * D,Decl * Other)5908 static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) {
5909 if (auto *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(D))
5910 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx);
5911
5912 if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(D))
5913 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx);
5914
5915 if (D->getKind() != Other->getKind())
5916 return false;
5917
5918 if (auto *Record = dyn_cast<CXXRecordDecl>(Other))
5919 return isInstantiationOf(cast<CXXRecordDecl>(D), Record);
5920
5921 if (auto *Function = dyn_cast<FunctionDecl>(Other))
5922 return isInstantiationOf(cast<FunctionDecl>(D), Function);
5923
5924 if (auto *Enum = dyn_cast<EnumDecl>(Other))
5925 return isInstantiationOf(cast<EnumDecl>(D), Enum);
5926
5927 if (auto *Var = dyn_cast<VarDecl>(Other))
5928 if (Var->isStaticDataMember())
5929 return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var);
5930
5931 if (auto *Temp = dyn_cast<ClassTemplateDecl>(Other))
5932 return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp);
5933
5934 if (auto *Temp = dyn_cast<FunctionTemplateDecl>(Other))
5935 return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp);
5936
5937 if (auto *PartialSpec =
5938 dyn_cast<ClassTemplatePartialSpecializationDecl>(Other))
5939 return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D),
5940 PartialSpec);
5941
5942 if (auto *Field = dyn_cast<FieldDecl>(Other)) {
5943 if (!Field->getDeclName()) {
5944 // This is an unnamed field.
5945 return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field),
5946 cast<FieldDecl>(D));
5947 }
5948 }
5949
5950 if (auto *Using = dyn_cast<UsingDecl>(Other))
5951 return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx);
5952
5953 if (auto *Shadow = dyn_cast<UsingShadowDecl>(Other))
5954 return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx);
5955
5956 return D->getDeclName() &&
5957 D->getDeclName() == cast<NamedDecl>(Other)->getDeclName();
5958 }
5959
5960 template<typename ForwardIterator>
findInstantiationOf(ASTContext & Ctx,NamedDecl * D,ForwardIterator first,ForwardIterator last)5961 static NamedDecl *findInstantiationOf(ASTContext &Ctx,
5962 NamedDecl *D,
5963 ForwardIterator first,
5964 ForwardIterator last) {
5965 for (; first != last; ++first)
5966 if (isInstantiationOf(Ctx, D, *first))
5967 return cast<NamedDecl>(*first);
5968
5969 return nullptr;
5970 }
5971
5972 /// Finds the instantiation of the given declaration context
5973 /// within the current instantiation.
5974 ///
5975 /// \returns NULL if there was an error
FindInstantiatedContext(SourceLocation Loc,DeclContext * DC,const MultiLevelTemplateArgumentList & TemplateArgs)5976 DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC,
5977 const MultiLevelTemplateArgumentList &TemplateArgs) {
5978 if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) {
5979 Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, true);
5980 return cast_or_null<DeclContext>(ID);
5981 } else return DC;
5982 }
5983
5984 /// Determine whether the given context is dependent on template parameters at
5985 /// level \p Level or below.
5986 ///
5987 /// Sometimes we only substitute an inner set of template arguments and leave
5988 /// the outer templates alone. In such cases, contexts dependent only on the
5989 /// outer levels are not effectively dependent.
isDependentContextAtLevel(DeclContext * DC,unsigned Level)5990 static bool isDependentContextAtLevel(DeclContext *DC, unsigned Level) {
5991 if (!DC->isDependentContext())
5992 return false;
5993 if (!Level)
5994 return true;
5995 return cast<Decl>(DC)->getTemplateDepth() > Level;
5996 }
5997
5998 /// Find the instantiation of the given declaration within the
5999 /// current instantiation.
6000 ///
6001 /// This routine is intended to be used when \p D is a declaration
6002 /// referenced from within a template, that needs to mapped into the
6003 /// corresponding declaration within an instantiation. For example,
6004 /// given:
6005 ///
6006 /// \code
6007 /// template<typename T>
6008 /// struct X {
6009 /// enum Kind {
6010 /// KnownValue = sizeof(T)
6011 /// };
6012 ///
6013 /// bool getKind() const { return KnownValue; }
6014 /// };
6015 ///
6016 /// template struct X<int>;
6017 /// \endcode
6018 ///
6019 /// In the instantiation of X<int>::getKind(), we need to map the \p
6020 /// EnumConstantDecl for \p KnownValue (which refers to
6021 /// X<T>::<Kind>::KnownValue) to its instantiation (X<int>::<Kind>::KnownValue).
6022 /// \p FindInstantiatedDecl performs this mapping from within the instantiation
6023 /// of X<int>.
FindInstantiatedDecl(SourceLocation Loc,NamedDecl * D,const MultiLevelTemplateArgumentList & TemplateArgs,bool FindingInstantiatedContext)6024 NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
6025 const MultiLevelTemplateArgumentList &TemplateArgs,
6026 bool FindingInstantiatedContext) {
6027 DeclContext *ParentDC = D->getDeclContext();
6028 // Determine whether our parent context depends on any of the template
6029 // arguments we're currently substituting.
6030 bool ParentDependsOnArgs = isDependentContextAtLevel(
6031 ParentDC, TemplateArgs.getNumRetainedOuterLevels());
6032 // FIXME: Parameters of pointer to functions (y below) that are themselves
6033 // parameters (p below) can have their ParentDC set to the translation-unit
6034 // - thus we can not consistently check if the ParentDC of such a parameter
6035 // is Dependent or/and a FunctionOrMethod.
6036 // For e.g. this code, during Template argument deduction tries to
6037 // find an instantiated decl for (T y) when the ParentDC for y is
6038 // the translation unit.
6039 // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {}
6040 // float baz(float(*)()) { return 0.0; }
6041 // Foo(baz);
6042 // The better fix here is perhaps to ensure that a ParmVarDecl, by the time
6043 // it gets here, always has a FunctionOrMethod as its ParentDC??
6044 // For now:
6045 // - as long as we have a ParmVarDecl whose parent is non-dependent and
6046 // whose type is not instantiation dependent, do nothing to the decl
6047 // - otherwise find its instantiated decl.
6048 if (isa<ParmVarDecl>(D) && !ParentDependsOnArgs &&
6049 !cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType())
6050 return D;
6051 if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) ||
6052 isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) ||
6053 (ParentDependsOnArgs && (ParentDC->isFunctionOrMethod() ||
6054 isa<OMPDeclareReductionDecl>(ParentDC) ||
6055 isa<OMPDeclareMapperDecl>(ParentDC))) ||
6056 (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda() &&
6057 cast<CXXRecordDecl>(D)->getTemplateDepth() >
6058 TemplateArgs.getNumRetainedOuterLevels())) {
6059 // D is a local of some kind. Look into the map of local
6060 // declarations to their instantiations.
6061 if (CurrentInstantiationScope) {
6062 if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) {
6063 if (Decl *FD = Found->dyn_cast<Decl *>())
6064 return cast<NamedDecl>(FD);
6065
6066 int PackIdx = ArgumentPackSubstitutionIndex;
6067 assert(PackIdx != -1 &&
6068 "found declaration pack but not pack expanding");
6069 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
6070 return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]);
6071 }
6072 }
6073
6074 // If we're performing a partial substitution during template argument
6075 // deduction, we may not have values for template parameters yet. They
6076 // just map to themselves.
6077 if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
6078 isa<TemplateTemplateParmDecl>(D))
6079 return D;
6080
6081 if (D->isInvalidDecl())
6082 return nullptr;
6083
6084 // Normally this function only searches for already instantiated declaration
6085 // however we have to make an exclusion for local types used before
6086 // definition as in the code:
6087 //
6088 // template<typename T> void f1() {
6089 // void g1(struct x1);
6090 // struct x1 {};
6091 // }
6092 //
6093 // In this case instantiation of the type of 'g1' requires definition of
6094 // 'x1', which is defined later. Error recovery may produce an enum used
6095 // before definition. In these cases we need to instantiate relevant
6096 // declarations here.
6097 bool NeedInstantiate = false;
6098 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D))
6099 NeedInstantiate = RD->isLocalClass();
6100 else if (isa<TypedefNameDecl>(D) &&
6101 isa<CXXDeductionGuideDecl>(D->getDeclContext()))
6102 NeedInstantiate = true;
6103 else
6104 NeedInstantiate = isa<EnumDecl>(D);
6105 if (NeedInstantiate) {
6106 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
6107 CurrentInstantiationScope->InstantiatedLocal(D, Inst);
6108 return cast<TypeDecl>(Inst);
6109 }
6110
6111 // If we didn't find the decl, then we must have a label decl that hasn't
6112 // been found yet. Lazily instantiate it and return it now.
6113 assert(isa<LabelDecl>(D));
6114
6115 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
6116 assert(Inst && "Failed to instantiate label??");
6117
6118 CurrentInstantiationScope->InstantiatedLocal(D, Inst);
6119 return cast<LabelDecl>(Inst);
6120 }
6121
6122 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
6123 if (!Record->isDependentContext())
6124 return D;
6125
6126 // Determine whether this record is the "templated" declaration describing
6127 // a class template or class template partial specialization.
6128 ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate();
6129 if (ClassTemplate)
6130 ClassTemplate = ClassTemplate->getCanonicalDecl();
6131 else if (ClassTemplatePartialSpecializationDecl *PartialSpec
6132 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
6133 ClassTemplate = PartialSpec->getSpecializedTemplate()->getCanonicalDecl();
6134
6135 // Walk the current context to find either the record or an instantiation of
6136 // it.
6137 DeclContext *DC = CurContext;
6138 while (!DC->isFileContext()) {
6139 // If we're performing substitution while we're inside the template
6140 // definition, we'll find our own context. We're done.
6141 if (DC->Equals(Record))
6142 return Record;
6143
6144 if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) {
6145 // Check whether we're in the process of instantiating a class template
6146 // specialization of the template we're mapping.
6147 if (ClassTemplateSpecializationDecl *InstSpec
6148 = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){
6149 ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate();
6150 if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate))
6151 return InstRecord;
6152 }
6153
6154 // Check whether we're in the process of instantiating a member class.
6155 if (isInstantiationOf(Record, InstRecord))
6156 return InstRecord;
6157 }
6158
6159 // Move to the outer template scope.
6160 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) {
6161 if (FD->getFriendObjectKind() &&
6162 FD->getNonTransparentDeclContext()->isFileContext()) {
6163 DC = FD->getLexicalDeclContext();
6164 continue;
6165 }
6166 // An implicit deduction guide acts as if it's within the class template
6167 // specialization described by its name and first N template params.
6168 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FD);
6169 if (Guide && Guide->isImplicit()) {
6170 TemplateDecl *TD = Guide->getDeducedTemplate();
6171 // Convert the arguments to an "as-written" list.
6172 TemplateArgumentListInfo Args(Loc, Loc);
6173 for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front(
6174 TD->getTemplateParameters()->size())) {
6175 ArrayRef<TemplateArgument> Unpacked(Arg);
6176 if (Arg.getKind() == TemplateArgument::Pack)
6177 Unpacked = Arg.pack_elements();
6178 for (TemplateArgument UnpackedArg : Unpacked)
6179 Args.addArgument(
6180 getTrivialTemplateArgumentLoc(UnpackedArg, QualType(), Loc));
6181 }
6182 QualType T = CheckTemplateIdType(TemplateName(TD), Loc, Args);
6183 if (T.isNull())
6184 return nullptr;
6185 auto *SubstRecord = T->getAsCXXRecordDecl();
6186 assert(SubstRecord && "class template id not a class type?");
6187 // Check that this template-id names the primary template and not a
6188 // partial or explicit specialization. (In the latter cases, it's
6189 // meaningless to attempt to find an instantiation of D within the
6190 // specialization.)
6191 // FIXME: The standard doesn't say what should happen here.
6192 if (FindingInstantiatedContext &&
6193 usesPartialOrExplicitSpecialization(
6194 Loc, cast<ClassTemplateSpecializationDecl>(SubstRecord))) {
6195 Diag(Loc, diag::err_specialization_not_primary_template)
6196 << T << (SubstRecord->getTemplateSpecializationKind() ==
6197 TSK_ExplicitSpecialization);
6198 return nullptr;
6199 }
6200 DC = SubstRecord;
6201 continue;
6202 }
6203 }
6204
6205 DC = DC->getParent();
6206 }
6207
6208 // Fall through to deal with other dependent record types (e.g.,
6209 // anonymous unions in class templates).
6210 }
6211
6212 if (!ParentDependsOnArgs)
6213 return D;
6214
6215 ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs);
6216 if (!ParentDC)
6217 return nullptr;
6218
6219 if (ParentDC != D->getDeclContext()) {
6220 // We performed some kind of instantiation in the parent context,
6221 // so now we need to look into the instantiated parent context to
6222 // find the instantiation of the declaration D.
6223
6224 // If our context used to be dependent, we may need to instantiate
6225 // it before performing lookup into that context.
6226 bool IsBeingInstantiated = false;
6227 if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) {
6228 if (!Spec->isDependentContext()) {
6229 QualType T = Context.getTypeDeclType(Spec);
6230 const RecordType *Tag = T->getAs<RecordType>();
6231 assert(Tag && "type of non-dependent record is not a RecordType");
6232 if (Tag->isBeingDefined())
6233 IsBeingInstantiated = true;
6234 if (!Tag->isBeingDefined() &&
6235 RequireCompleteType(Loc, T, diag::err_incomplete_type))
6236 return nullptr;
6237
6238 ParentDC = Tag->getDecl();
6239 }
6240 }
6241
6242 NamedDecl *Result = nullptr;
6243 // FIXME: If the name is a dependent name, this lookup won't necessarily
6244 // find it. Does that ever matter?
6245 if (auto Name = D->getDeclName()) {
6246 DeclarationNameInfo NameInfo(Name, D->getLocation());
6247 DeclarationNameInfo NewNameInfo =
6248 SubstDeclarationNameInfo(NameInfo, TemplateArgs);
6249 Name = NewNameInfo.getName();
6250 if (!Name)
6251 return nullptr;
6252 DeclContext::lookup_result Found = ParentDC->lookup(Name);
6253
6254 Result = findInstantiationOf(Context, D, Found.begin(), Found.end());
6255 } else {
6256 // Since we don't have a name for the entity we're looking for,
6257 // our only option is to walk through all of the declarations to
6258 // find that name. This will occur in a few cases:
6259 //
6260 // - anonymous struct/union within a template
6261 // - unnamed class/struct/union/enum within a template
6262 //
6263 // FIXME: Find a better way to find these instantiations!
6264 Result = findInstantiationOf(Context, D,
6265 ParentDC->decls_begin(),
6266 ParentDC->decls_end());
6267 }
6268
6269 if (!Result) {
6270 if (isa<UsingShadowDecl>(D)) {
6271 // UsingShadowDecls can instantiate to nothing because of using hiding.
6272 } else if (hasUncompilableErrorOccurred()) {
6273 // We've already complained about some ill-formed code, so most likely
6274 // this declaration failed to instantiate. There's no point in
6275 // complaining further, since this is normal in invalid code.
6276 // FIXME: Use more fine-grained 'invalid' tracking for this.
6277 } else if (IsBeingInstantiated) {
6278 // The class in which this member exists is currently being
6279 // instantiated, and we haven't gotten around to instantiating this
6280 // member yet. This can happen when the code uses forward declarations
6281 // of member classes, and introduces ordering dependencies via
6282 // template instantiation.
6283 Diag(Loc, diag::err_member_not_yet_instantiated)
6284 << D->getDeclName()
6285 << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC));
6286 Diag(D->getLocation(), diag::note_non_instantiated_member_here);
6287 } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) {
6288 // This enumeration constant was found when the template was defined,
6289 // but can't be found in the instantiation. This can happen if an
6290 // unscoped enumeration member is explicitly specialized.
6291 EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext());
6292 EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum,
6293 TemplateArgs));
6294 assert(Spec->getTemplateSpecializationKind() ==
6295 TSK_ExplicitSpecialization);
6296 Diag(Loc, diag::err_enumerator_does_not_exist)
6297 << D->getDeclName()
6298 << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext()));
6299 Diag(Spec->getLocation(), diag::note_enum_specialized_here)
6300 << Context.getTypeDeclType(Spec);
6301 } else {
6302 // We should have found something, but didn't.
6303 llvm_unreachable("Unable to find instantiation of declaration!");
6304 }
6305 }
6306
6307 D = Result;
6308 }
6309
6310 return D;
6311 }
6312
6313 /// Performs template instantiation for all implicit template
6314 /// instantiations we have seen until this point.
PerformPendingInstantiations(bool LocalOnly)6315 void Sema::PerformPendingInstantiations(bool LocalOnly) {
6316 std::deque<PendingImplicitInstantiation> delayedPCHInstantiations;
6317 while (!PendingLocalImplicitInstantiations.empty() ||
6318 (!LocalOnly && !PendingInstantiations.empty())) {
6319 PendingImplicitInstantiation Inst;
6320
6321 if (PendingLocalImplicitInstantiations.empty()) {
6322 Inst = PendingInstantiations.front();
6323 PendingInstantiations.pop_front();
6324 } else {
6325 Inst = PendingLocalImplicitInstantiations.front();
6326 PendingLocalImplicitInstantiations.pop_front();
6327 }
6328
6329 // Instantiate function definitions
6330 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) {
6331 bool DefinitionRequired = Function->getTemplateSpecializationKind() ==
6332 TSK_ExplicitInstantiationDefinition;
6333 if (Function->isMultiVersion()) {
6334 getASTContext().forEachMultiversionedFunctionVersion(
6335 Function, [this, Inst, DefinitionRequired](FunctionDecl *CurFD) {
6336 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, CurFD, true,
6337 DefinitionRequired, true);
6338 if (CurFD->isDefined())
6339 CurFD->setInstantiationIsPending(false);
6340 });
6341 } else {
6342 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, Function, true,
6343 DefinitionRequired, true);
6344 if (Function->isDefined())
6345 Function->setInstantiationIsPending(false);
6346 }
6347 // Definition of a PCH-ed template declaration may be available only in the TU.
6348 if (!LocalOnly && LangOpts.PCHInstantiateTemplates &&
6349 TUKind == TU_Prefix && Function->instantiationIsPending())
6350 delayedPCHInstantiations.push_back(Inst);
6351 continue;
6352 }
6353
6354 // Instantiate variable definitions
6355 VarDecl *Var = cast<VarDecl>(Inst.first);
6356
6357 assert((Var->isStaticDataMember() ||
6358 isa<VarTemplateSpecializationDecl>(Var)) &&
6359 "Not a static data member, nor a variable template"
6360 " specialization?");
6361
6362 // Don't try to instantiate declarations if the most recent redeclaration
6363 // is invalid.
6364 if (Var->getMostRecentDecl()->isInvalidDecl())
6365 continue;
6366
6367 // Check if the most recent declaration has changed the specialization kind
6368 // and removed the need for implicit instantiation.
6369 switch (Var->getMostRecentDecl()
6370 ->getTemplateSpecializationKindForInstantiation()) {
6371 case TSK_Undeclared:
6372 llvm_unreachable("Cannot instantitiate an undeclared specialization.");
6373 case TSK_ExplicitInstantiationDeclaration:
6374 case TSK_ExplicitSpecialization:
6375 continue; // No longer need to instantiate this type.
6376 case TSK_ExplicitInstantiationDefinition:
6377 // We only need an instantiation if the pending instantiation *is* the
6378 // explicit instantiation.
6379 if (Var != Var->getMostRecentDecl())
6380 continue;
6381 break;
6382 case TSK_ImplicitInstantiation:
6383 break;
6384 }
6385
6386 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
6387 "instantiating variable definition");
6388 bool DefinitionRequired = Var->getTemplateSpecializationKind() ==
6389 TSK_ExplicitInstantiationDefinition;
6390
6391 // Instantiate static data member definitions or variable template
6392 // specializations.
6393 InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true,
6394 DefinitionRequired, true);
6395 }
6396
6397 if (!LocalOnly && LangOpts.PCHInstantiateTemplates)
6398 PendingInstantiations.swap(delayedPCHInstantiations);
6399 }
6400
PerformDependentDiagnostics(const DeclContext * Pattern,const MultiLevelTemplateArgumentList & TemplateArgs)6401 void Sema::PerformDependentDiagnostics(const DeclContext *Pattern,
6402 const MultiLevelTemplateArgumentList &TemplateArgs) {
6403 for (auto *DD : Pattern->ddiags()) {
6404 switch (DD->getKind()) {
6405 case DependentDiagnostic::Access:
6406 HandleDependentAccessCheck(*DD, TemplateArgs);
6407 break;
6408 }
6409 }
6410 }
6411