1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/CharInfo.h"
20 #include "clang/Basic/SourceManager.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/Designator.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/SemaInternal.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/PointerIntPair.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace clang;
33 
34 //===----------------------------------------------------------------------===//
35 // Sema Initialization Checking
36 //===----------------------------------------------------------------------===//
37 
38 /// Check whether T is compatible with a wide character type (wchar_t,
39 /// char16_t or char32_t).
IsWideCharCompatible(QualType T,ASTContext & Context)40 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
41   if (Context.typesAreCompatible(Context.getWideCharType(), T))
42     return true;
43   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
44     return Context.typesAreCompatible(Context.Char16Ty, T) ||
45            Context.typesAreCompatible(Context.Char32Ty, T);
46   }
47   return false;
48 }
49 
50 enum StringInitFailureKind {
51   SIF_None,
52   SIF_NarrowStringIntoWideChar,
53   SIF_WideStringIntoChar,
54   SIF_IncompatWideStringIntoWideChar,
55   SIF_UTF8StringIntoPlainChar,
56   SIF_PlainStringIntoUTF8Char,
57   SIF_Other
58 };
59 
60 /// Check whether the array of type AT can be initialized by the Init
61 /// expression by means of string initialization. Returns SIF_None if so,
62 /// otherwise returns a StringInitFailureKind that describes why the
63 /// initialization would not work.
IsStringInit(Expr * Init,const ArrayType * AT,ASTContext & Context)64 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
65                                           ASTContext &Context) {
66   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
67     return SIF_Other;
68 
69   // See if this is a string literal or @encode.
70   Init = Init->IgnoreParens();
71 
72   // Handle @encode, which is a narrow string.
73   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
74     return SIF_None;
75 
76   // Otherwise we can only handle string literals.
77   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
78   if (!SL)
79     return SIF_Other;
80 
81   const QualType ElemTy =
82       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
83 
84   switch (SL->getKind()) {
85   case StringLiteral::UTF8:
86     // char8_t array can be initialized with a UTF-8 string.
87     if (ElemTy->isChar8Type())
88       return SIF_None;
89     LLVM_FALLTHROUGH;
90   case StringLiteral::Ascii:
91     // char array can be initialized with a narrow string.
92     // Only allow char x[] = "foo";  not char x[] = L"foo";
93     if (ElemTy->isCharType())
94       return (SL->getKind() == StringLiteral::UTF8 &&
95               Context.getLangOpts().Char8)
96                  ? SIF_UTF8StringIntoPlainChar
97                  : SIF_None;
98     if (ElemTy->isChar8Type())
99       return SIF_PlainStringIntoUTF8Char;
100     if (IsWideCharCompatible(ElemTy, Context))
101       return SIF_NarrowStringIntoWideChar;
102     return SIF_Other;
103   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
104   // "An array with element type compatible with a qualified or unqualified
105   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
106   // string literal with the corresponding encoding prefix (L, u, or U,
107   // respectively), optionally enclosed in braces.
108   case StringLiteral::UTF16:
109     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
110       return SIF_None;
111     if (ElemTy->isCharType() || ElemTy->isChar8Type())
112       return SIF_WideStringIntoChar;
113     if (IsWideCharCompatible(ElemTy, Context))
114       return SIF_IncompatWideStringIntoWideChar;
115     return SIF_Other;
116   case StringLiteral::UTF32:
117     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
118       return SIF_None;
119     if (ElemTy->isCharType() || ElemTy->isChar8Type())
120       return SIF_WideStringIntoChar;
121     if (IsWideCharCompatible(ElemTy, Context))
122       return SIF_IncompatWideStringIntoWideChar;
123     return SIF_Other;
124   case StringLiteral::Wide:
125     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
126       return SIF_None;
127     if (ElemTy->isCharType() || ElemTy->isChar8Type())
128       return SIF_WideStringIntoChar;
129     if (IsWideCharCompatible(ElemTy, Context))
130       return SIF_IncompatWideStringIntoWideChar;
131     return SIF_Other;
132   }
133 
134   llvm_unreachable("missed a StringLiteral kind?");
135 }
136 
IsStringInit(Expr * init,QualType declType,ASTContext & Context)137 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
138                                           ASTContext &Context) {
139   const ArrayType *arrayType = Context.getAsArrayType(declType);
140   if (!arrayType)
141     return SIF_Other;
142   return IsStringInit(init, arrayType, Context);
143 }
144 
IsStringInit(Expr * Init,const ArrayType * AT)145 bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) {
146   return ::IsStringInit(Init, AT, Context) == SIF_None;
147 }
148 
149 /// Update the type of a string literal, including any surrounding parentheses,
150 /// to match the type of the object which it is initializing.
updateStringLiteralType(Expr * E,QualType Ty)151 static void updateStringLiteralType(Expr *E, QualType Ty) {
152   while (true) {
153     E->setType(Ty);
154     E->setValueKind(VK_RValue);
155     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
156       break;
157     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
158       E = PE->getSubExpr();
159     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
160       assert(UO->getOpcode() == UO_Extension);
161       E = UO->getSubExpr();
162     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
163       E = GSE->getResultExpr();
164     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
165       E = CE->getChosenSubExpr();
166     } else {
167       llvm_unreachable("unexpected expr in string literal init");
168     }
169   }
170 }
171 
172 /// Fix a compound literal initializing an array so it's correctly marked
173 /// as an rvalue.
updateGNUCompoundLiteralRValue(Expr * E)174 static void updateGNUCompoundLiteralRValue(Expr *E) {
175   while (true) {
176     E->setValueKind(VK_RValue);
177     if (isa<CompoundLiteralExpr>(E)) {
178       break;
179     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
180       E = PE->getSubExpr();
181     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
182       assert(UO->getOpcode() == UO_Extension);
183       E = UO->getSubExpr();
184     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
185       E = GSE->getResultExpr();
186     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
187       E = CE->getChosenSubExpr();
188     } else {
189       llvm_unreachable("unexpected expr in array compound literal init");
190     }
191   }
192 }
193 
CheckStringInit(Expr * Str,QualType & DeclT,const ArrayType * AT,Sema & S)194 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
195                             Sema &S) {
196   // Get the length of the string as parsed.
197   auto *ConstantArrayTy =
198       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
199   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
200 
201   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
202     // C99 6.7.8p14. We have an array of character type with unknown size
203     // being initialized to a string literal.
204     llvm::APInt ConstVal(32, StrLength);
205     // Return a new array type (C99 6.7.8p22).
206     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
207                                            ConstVal, nullptr,
208                                            ArrayType::Normal, 0);
209     updateStringLiteralType(Str, DeclT);
210     return;
211   }
212 
213   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
214 
215   // We have an array of character type with known size.  However,
216   // the size may be smaller or larger than the string we are initializing.
217   // FIXME: Avoid truncation for 64-bit length strings.
218   if (S.getLangOpts().CPlusPlus) {
219     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
220       // For Pascal strings it's OK to strip off the terminating null character,
221       // so the example below is valid:
222       //
223       // unsigned char a[2] = "\pa";
224       if (SL->isPascal())
225         StrLength--;
226     }
227 
228     // [dcl.init.string]p2
229     if (StrLength > CAT->getSize().getZExtValue())
230       S.Diag(Str->getBeginLoc(),
231              diag::err_initializer_string_for_char_array_too_long)
232           << Str->getSourceRange();
233   } else {
234     // C99 6.7.8p14.
235     if (StrLength-1 > CAT->getSize().getZExtValue())
236       S.Diag(Str->getBeginLoc(),
237              diag::ext_initializer_string_for_char_array_too_long)
238           << Str->getSourceRange();
239   }
240 
241   // Set the type to the actual size that we are initializing.  If we have
242   // something like:
243   //   char x[1] = "foo";
244   // then this will set the string literal's type to char[1].
245   updateStringLiteralType(Str, DeclT);
246 }
247 
248 //===----------------------------------------------------------------------===//
249 // Semantic checking for initializer lists.
250 //===----------------------------------------------------------------------===//
251 
252 namespace {
253 
254 /// Semantic checking for initializer lists.
255 ///
256 /// The InitListChecker class contains a set of routines that each
257 /// handle the initialization of a certain kind of entity, e.g.,
258 /// arrays, vectors, struct/union types, scalars, etc. The
259 /// InitListChecker itself performs a recursive walk of the subobject
260 /// structure of the type to be initialized, while stepping through
261 /// the initializer list one element at a time. The IList and Index
262 /// parameters to each of the Check* routines contain the active
263 /// (syntactic) initializer list and the index into that initializer
264 /// list that represents the current initializer. Each routine is
265 /// responsible for moving that Index forward as it consumes elements.
266 ///
267 /// Each Check* routine also has a StructuredList/StructuredIndex
268 /// arguments, which contains the current "structured" (semantic)
269 /// initializer list and the index into that initializer list where we
270 /// are copying initializers as we map them over to the semantic
271 /// list. Once we have completed our recursive walk of the subobject
272 /// structure, we will have constructed a full semantic initializer
273 /// list.
274 ///
275 /// C99 designators cause changes in the initializer list traversal,
276 /// because they make the initialization "jump" into a specific
277 /// subobject and then continue the initialization from that
278 /// point. CheckDesignatedInitializer() recursively steps into the
279 /// designated subobject and manages backing out the recursion to
280 /// initialize the subobjects after the one designated.
281 ///
282 /// If an initializer list contains any designators, we build a placeholder
283 /// structured list even in 'verify only' mode, so that we can track which
284 /// elements need 'empty' initializtion.
285 class InitListChecker {
286   Sema &SemaRef;
287   bool hadError = false;
288   bool VerifyOnly; // No diagnostics.
289   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
290   bool InOverloadResolution;
291   InitListExpr *FullyStructuredList = nullptr;
292   NoInitExpr *DummyExpr = nullptr;
293 
getDummyInit()294   NoInitExpr *getDummyInit() {
295     if (!DummyExpr)
296       DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
297     return DummyExpr;
298   }
299 
300   void CheckImplicitInitList(const InitializedEntity &Entity,
301                              InitListExpr *ParentIList, QualType T,
302                              unsigned &Index, InitListExpr *StructuredList,
303                              unsigned &StructuredIndex);
304   void CheckExplicitInitList(const InitializedEntity &Entity,
305                              InitListExpr *IList, QualType &T,
306                              InitListExpr *StructuredList,
307                              bool TopLevelObject = false);
308   void CheckListElementTypes(const InitializedEntity &Entity,
309                              InitListExpr *IList, QualType &DeclType,
310                              bool SubobjectIsDesignatorContext,
311                              unsigned &Index,
312                              InitListExpr *StructuredList,
313                              unsigned &StructuredIndex,
314                              bool TopLevelObject = false);
315   void CheckSubElementType(const InitializedEntity &Entity,
316                            InitListExpr *IList, QualType ElemType,
317                            unsigned &Index,
318                            InitListExpr *StructuredList,
319                            unsigned &StructuredIndex,
320                            bool DirectlyDesignated = false);
321   void CheckComplexType(const InitializedEntity &Entity,
322                         InitListExpr *IList, QualType DeclType,
323                         unsigned &Index,
324                         InitListExpr *StructuredList,
325                         unsigned &StructuredIndex);
326   void CheckScalarType(const InitializedEntity &Entity,
327                        InitListExpr *IList, QualType DeclType,
328                        unsigned &Index,
329                        InitListExpr *StructuredList,
330                        unsigned &StructuredIndex);
331   void CheckReferenceType(const InitializedEntity &Entity,
332                           InitListExpr *IList, QualType DeclType,
333                           unsigned &Index,
334                           InitListExpr *StructuredList,
335                           unsigned &StructuredIndex);
336   void CheckVectorType(const InitializedEntity &Entity,
337                        InitListExpr *IList, QualType DeclType, unsigned &Index,
338                        InitListExpr *StructuredList,
339                        unsigned &StructuredIndex);
340   void CheckStructUnionTypes(const InitializedEntity &Entity,
341                              InitListExpr *IList, QualType DeclType,
342                              CXXRecordDecl::base_class_range Bases,
343                              RecordDecl::field_iterator Field,
344                              bool SubobjectIsDesignatorContext, unsigned &Index,
345                              InitListExpr *StructuredList,
346                              unsigned &StructuredIndex,
347                              bool TopLevelObject = false);
348   void CheckArrayType(const InitializedEntity &Entity,
349                       InitListExpr *IList, QualType &DeclType,
350                       llvm::APSInt elementIndex,
351                       bool SubobjectIsDesignatorContext, unsigned &Index,
352                       InitListExpr *StructuredList,
353                       unsigned &StructuredIndex);
354   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
355                                   InitListExpr *IList, DesignatedInitExpr *DIE,
356                                   unsigned DesigIdx,
357                                   QualType &CurrentObjectType,
358                                   RecordDecl::field_iterator *NextField,
359                                   llvm::APSInt *NextElementIndex,
360                                   unsigned &Index,
361                                   InitListExpr *StructuredList,
362                                   unsigned &StructuredIndex,
363                                   bool FinishSubobjectInit,
364                                   bool TopLevelObject);
365   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
366                                            QualType CurrentObjectType,
367                                            InitListExpr *StructuredList,
368                                            unsigned StructuredIndex,
369                                            SourceRange InitRange,
370                                            bool IsFullyOverwritten = false);
371   void UpdateStructuredListElement(InitListExpr *StructuredList,
372                                    unsigned &StructuredIndex,
373                                    Expr *expr);
374   InitListExpr *createInitListExpr(QualType CurrentObjectType,
375                                    SourceRange InitRange,
376                                    unsigned ExpectedNumInits);
377   int numArrayElements(QualType DeclType);
378   int numStructUnionElements(QualType DeclType);
379 
380   ExprResult PerformEmptyInit(SourceLocation Loc,
381                               const InitializedEntity &Entity);
382 
383   /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
diagnoseInitOverride(Expr * OldInit,SourceRange NewInitRange,bool FullyOverwritten=true)384   void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
385                             bool FullyOverwritten = true) {
386     // Overriding an initializer via a designator is valid with C99 designated
387     // initializers, but ill-formed with C++20 designated initializers.
388     unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
389                           ? diag::ext_initializer_overrides
390                           : diag::warn_initializer_overrides;
391 
392     if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
393       // In overload resolution, we have to strictly enforce the rules, and so
394       // don't allow any overriding of prior initializers. This matters for a
395       // case such as:
396       //
397       //   union U { int a, b; };
398       //   struct S { int a, b; };
399       //   void f(U), f(S);
400       //
401       // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
402       // consistency, we disallow all overriding of prior initializers in
403       // overload resolution, not only overriding of union members.
404       hadError = true;
405     } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
406       // If we'll be keeping around the old initializer but overwriting part of
407       // the object it initialized, and that object is not trivially
408       // destructible, this can leak. Don't allow that, not even as an
409       // extension.
410       //
411       // FIXME: It might be reasonable to allow this in cases where the part of
412       // the initializer that we're overriding has trivial destruction.
413       DiagID = diag::err_initializer_overrides_destructed;
414     } else if (!OldInit->getSourceRange().isValid()) {
415       // We need to check on source range validity because the previous
416       // initializer does not have to be an explicit initializer. e.g.,
417       //
418       // struct P { int a, b; };
419       // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
420       //
421       // There is an overwrite taking place because the first braced initializer
422       // list "{ .a = 2 }" already provides value for .p.b (which is zero).
423       //
424       // Such overwrites are harmless, so we don't diagnose them. (Note that in
425       // C++, this cannot be reached unless we've already seen and diagnosed a
426       // different conformance issue, such as a mixture of designated and
427       // non-designated initializers or a multi-level designator.)
428       return;
429     }
430 
431     if (!VerifyOnly) {
432       SemaRef.Diag(NewInitRange.getBegin(), DiagID)
433           << NewInitRange << FullyOverwritten << OldInit->getType();
434       SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
435           << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
436           << OldInit->getSourceRange();
437     }
438   }
439 
440   // Explanation on the "FillWithNoInit" mode:
441   //
442   // Assume we have the following definitions (Case#1):
443   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
444   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
445   //
446   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
447   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
448   //
449   // But if we have (Case#2):
450   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
451   //
452   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
453   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
454   //
455   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
456   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
457   // initializers but with special "NoInitExpr" place holders, which tells the
458   // CodeGen not to generate any initializers for these parts.
459   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
460                               const InitializedEntity &ParentEntity,
461                               InitListExpr *ILE, bool &RequiresSecondPass,
462                               bool FillWithNoInit);
463   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
464                                const InitializedEntity &ParentEntity,
465                                InitListExpr *ILE, bool &RequiresSecondPass,
466                                bool FillWithNoInit = false);
467   void FillInEmptyInitializations(const InitializedEntity &Entity,
468                                   InitListExpr *ILE, bool &RequiresSecondPass,
469                                   InitListExpr *OuterILE, unsigned OuterIndex,
470                                   bool FillWithNoInit = false);
471   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
472                               Expr *InitExpr, FieldDecl *Field,
473                               bool TopLevelObject);
474   void CheckEmptyInitializable(const InitializedEntity &Entity,
475                                SourceLocation Loc);
476 
477 public:
478   InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
479                   QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
480                   bool InOverloadResolution = false);
HadError()481   bool HadError() { return hadError; }
482 
483   // Retrieves the fully-structured initializer list used for
484   // semantic analysis and code generation.
getFullyStructuredList() const485   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
486 };
487 
488 } // end anonymous namespace
489 
PerformEmptyInit(SourceLocation Loc,const InitializedEntity & Entity)490 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
491                                              const InitializedEntity &Entity) {
492   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
493                                                             true);
494   MultiExprArg SubInit;
495   Expr *InitExpr;
496   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
497 
498   // C++ [dcl.init.aggr]p7:
499   //   If there are fewer initializer-clauses in the list than there are
500   //   members in the aggregate, then each member not explicitly initialized
501   //   ...
502   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
503       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
504   if (EmptyInitList) {
505     // C++1y / DR1070:
506     //   shall be initialized [...] from an empty initializer list.
507     //
508     // We apply the resolution of this DR to C++11 but not C++98, since C++98
509     // does not have useful semantics for initialization from an init list.
510     // We treat this as copy-initialization, because aggregate initialization
511     // always performs copy-initialization on its elements.
512     //
513     // Only do this if we're initializing a class type, to avoid filling in
514     // the initializer list where possible.
515     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
516                    InitListExpr(SemaRef.Context, Loc, None, Loc);
517     InitExpr->setType(SemaRef.Context.VoidTy);
518     SubInit = InitExpr;
519     Kind = InitializationKind::CreateCopy(Loc, Loc);
520   } else {
521     // C++03:
522     //   shall be value-initialized.
523   }
524 
525   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
526   // libstdc++4.6 marks the vector default constructor as explicit in
527   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
528   // stlport does so too. Look for std::__debug for libstdc++, and for
529   // std:: for stlport.  This is effectively a compiler-side implementation of
530   // LWG2193.
531   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
532           InitializationSequence::FK_ExplicitConstructor) {
533     OverloadCandidateSet::iterator Best;
534     OverloadingResult O =
535         InitSeq.getFailedCandidateSet()
536             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
537     (void)O;
538     assert(O == OR_Success && "Inconsistent overload resolution");
539     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
540     CXXRecordDecl *R = CtorDecl->getParent();
541 
542     if (CtorDecl->getMinRequiredArguments() == 0 &&
543         CtorDecl->isExplicit() && R->getDeclName() &&
544         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
545       bool IsInStd = false;
546       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
547            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
548         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
549           IsInStd = true;
550       }
551 
552       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
553               .Cases("basic_string", "deque", "forward_list", true)
554               .Cases("list", "map", "multimap", "multiset", true)
555               .Cases("priority_queue", "queue", "set", "stack", true)
556               .Cases("unordered_map", "unordered_set", "vector", true)
557               .Default(false)) {
558         InitSeq.InitializeFrom(
559             SemaRef, Entity,
560             InitializationKind::CreateValue(Loc, Loc, Loc, true),
561             MultiExprArg(), /*TopLevelOfInitList=*/false,
562             TreatUnavailableAsInvalid);
563         // Emit a warning for this.  System header warnings aren't shown
564         // by default, but people working on system headers should see it.
565         if (!VerifyOnly) {
566           SemaRef.Diag(CtorDecl->getLocation(),
567                        diag::warn_invalid_initializer_from_system_header);
568           if (Entity.getKind() == InitializedEntity::EK_Member)
569             SemaRef.Diag(Entity.getDecl()->getLocation(),
570                          diag::note_used_in_initialization_here);
571           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
572             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
573         }
574       }
575     }
576   }
577   if (!InitSeq) {
578     if (!VerifyOnly) {
579       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
580       if (Entity.getKind() == InitializedEntity::EK_Member)
581         SemaRef.Diag(Entity.getDecl()->getLocation(),
582                      diag::note_in_omitted_aggregate_initializer)
583           << /*field*/1 << Entity.getDecl();
584       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
585         bool IsTrailingArrayNewMember =
586             Entity.getParent() &&
587             Entity.getParent()->isVariableLengthArrayNew();
588         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
589           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
590           << Entity.getElementIndex();
591       }
592     }
593     hadError = true;
594     return ExprError();
595   }
596 
597   return VerifyOnly ? ExprResult()
598                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
599 }
600 
CheckEmptyInitializable(const InitializedEntity & Entity,SourceLocation Loc)601 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
602                                               SourceLocation Loc) {
603   // If we're building a fully-structured list, we'll check this at the end
604   // once we know which elements are actually initialized. Otherwise, we know
605   // that there are no designators so we can just check now.
606   if (FullyStructuredList)
607     return;
608   PerformEmptyInit(Loc, Entity);
609 }
610 
FillInEmptyInitForBase(unsigned Init,const CXXBaseSpecifier & Base,const InitializedEntity & ParentEntity,InitListExpr * ILE,bool & RequiresSecondPass,bool FillWithNoInit)611 void InitListChecker::FillInEmptyInitForBase(
612     unsigned Init, const CXXBaseSpecifier &Base,
613     const InitializedEntity &ParentEntity, InitListExpr *ILE,
614     bool &RequiresSecondPass, bool FillWithNoInit) {
615   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
616       SemaRef.Context, &Base, false, &ParentEntity);
617 
618   if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
619     ExprResult BaseInit = FillWithNoInit
620                               ? new (SemaRef.Context) NoInitExpr(Base.getType())
621                               : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
622     if (BaseInit.isInvalid()) {
623       hadError = true;
624       return;
625     }
626 
627     if (!VerifyOnly) {
628       assert(Init < ILE->getNumInits() && "should have been expanded");
629       ILE->setInit(Init, BaseInit.getAs<Expr>());
630     }
631   } else if (InitListExpr *InnerILE =
632                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
633     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
634                                ILE, Init, FillWithNoInit);
635   } else if (DesignatedInitUpdateExpr *InnerDIUE =
636                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
637     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
638                                RequiresSecondPass, ILE, Init,
639                                /*FillWithNoInit =*/true);
640   }
641 }
642 
FillInEmptyInitForField(unsigned Init,FieldDecl * Field,const InitializedEntity & ParentEntity,InitListExpr * ILE,bool & RequiresSecondPass,bool FillWithNoInit)643 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
644                                         const InitializedEntity &ParentEntity,
645                                               InitListExpr *ILE,
646                                               bool &RequiresSecondPass,
647                                               bool FillWithNoInit) {
648   SourceLocation Loc = ILE->getEndLoc();
649   unsigned NumInits = ILE->getNumInits();
650   InitializedEntity MemberEntity
651     = InitializedEntity::InitializeMember(Field, &ParentEntity);
652 
653   if (Init >= NumInits || !ILE->getInit(Init)) {
654     if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
655       if (!RType->getDecl()->isUnion())
656         assert((Init < NumInits || VerifyOnly) &&
657                "This ILE should have been expanded");
658 
659     if (FillWithNoInit) {
660       assert(!VerifyOnly && "should not fill with no-init in verify-only mode");
661       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
662       if (Init < NumInits)
663         ILE->setInit(Init, Filler);
664       else
665         ILE->updateInit(SemaRef.Context, Init, Filler);
666       return;
667     }
668     // C++1y [dcl.init.aggr]p7:
669     //   If there are fewer initializer-clauses in the list than there are
670     //   members in the aggregate, then each member not explicitly initialized
671     //   shall be initialized from its brace-or-equal-initializer [...]
672     if (Field->hasInClassInitializer()) {
673       if (VerifyOnly)
674         return;
675 
676       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
677       if (DIE.isInvalid()) {
678         hadError = true;
679         return;
680       }
681       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
682       if (Init < NumInits)
683         ILE->setInit(Init, DIE.get());
684       else {
685         ILE->updateInit(SemaRef.Context, Init, DIE.get());
686         RequiresSecondPass = true;
687       }
688       return;
689     }
690 
691     if (Field->getType()->isReferenceType()) {
692       if (!VerifyOnly) {
693         // C++ [dcl.init.aggr]p9:
694         //   If an incomplete or empty initializer-list leaves a
695         //   member of reference type uninitialized, the program is
696         //   ill-formed.
697         SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
698           << Field->getType()
699           << ILE->getSyntacticForm()->getSourceRange();
700         SemaRef.Diag(Field->getLocation(),
701                      diag::note_uninit_reference_member);
702       }
703       hadError = true;
704       return;
705     }
706 
707     ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
708     if (MemberInit.isInvalid()) {
709       hadError = true;
710       return;
711     }
712 
713     if (hadError || VerifyOnly) {
714       // Do nothing
715     } else if (Init < NumInits) {
716       ILE->setInit(Init, MemberInit.getAs<Expr>());
717     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
718       // Empty initialization requires a constructor call, so
719       // extend the initializer list to include the constructor
720       // call and make a note that we'll need to take another pass
721       // through the initializer list.
722       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
723       RequiresSecondPass = true;
724     }
725   } else if (InitListExpr *InnerILE
726                = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
727     FillInEmptyInitializations(MemberEntity, InnerILE,
728                                RequiresSecondPass, ILE, Init, FillWithNoInit);
729   } else if (DesignatedInitUpdateExpr *InnerDIUE =
730                  dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
731     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
732                                RequiresSecondPass, ILE, Init,
733                                /*FillWithNoInit =*/true);
734   }
735 }
736 
737 /// Recursively replaces NULL values within the given initializer list
738 /// with expressions that perform value-initialization of the
739 /// appropriate type, and finish off the InitListExpr formation.
740 void
FillInEmptyInitializations(const InitializedEntity & Entity,InitListExpr * ILE,bool & RequiresSecondPass,InitListExpr * OuterILE,unsigned OuterIndex,bool FillWithNoInit)741 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
742                                             InitListExpr *ILE,
743                                             bool &RequiresSecondPass,
744                                             InitListExpr *OuterILE,
745                                             unsigned OuterIndex,
746                                             bool FillWithNoInit) {
747   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
748          "Should not have void type");
749 
750   // We don't need to do any checks when just filling NoInitExprs; that can't
751   // fail.
752   if (FillWithNoInit && VerifyOnly)
753     return;
754 
755   // If this is a nested initializer list, we might have changed its contents
756   // (and therefore some of its properties, such as instantiation-dependence)
757   // while filling it in. Inform the outer initializer list so that its state
758   // can be updated to match.
759   // FIXME: We should fully build the inner initializers before constructing
760   // the outer InitListExpr instead of mutating AST nodes after they have
761   // been used as subexpressions of other nodes.
762   struct UpdateOuterILEWithUpdatedInit {
763     InitListExpr *Outer;
764     unsigned OuterIndex;
765     ~UpdateOuterILEWithUpdatedInit() {
766       if (Outer)
767         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
768     }
769   } UpdateOuterRAII = {OuterILE, OuterIndex};
770 
771   // A transparent ILE is not performing aggregate initialization and should
772   // not be filled in.
773   if (ILE->isTransparent())
774     return;
775 
776   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
777     const RecordDecl *RDecl = RType->getDecl();
778     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
779       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
780                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
781     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
782              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
783       for (auto *Field : RDecl->fields()) {
784         if (Field->hasInClassInitializer()) {
785           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
786                                   FillWithNoInit);
787           break;
788         }
789       }
790     } else {
791       // The fields beyond ILE->getNumInits() are default initialized, so in
792       // order to leave them uninitialized, the ILE is expanded and the extra
793       // fields are then filled with NoInitExpr.
794       unsigned NumElems = numStructUnionElements(ILE->getType());
795       if (RDecl->hasFlexibleArrayMember())
796         ++NumElems;
797       if (!VerifyOnly && ILE->getNumInits() < NumElems)
798         ILE->resizeInits(SemaRef.Context, NumElems);
799 
800       unsigned Init = 0;
801 
802       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
803         for (auto &Base : CXXRD->bases()) {
804           if (hadError)
805             return;
806 
807           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
808                                  FillWithNoInit);
809           ++Init;
810         }
811       }
812 
813       for (auto *Field : RDecl->fields()) {
814         if (Field->isUnnamedBitfield())
815           continue;
816 
817         if (hadError)
818           return;
819 
820         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
821                                 FillWithNoInit);
822         if (hadError)
823           return;
824 
825         ++Init;
826 
827         // Only look at the first initialization of a union.
828         if (RDecl->isUnion())
829           break;
830       }
831     }
832 
833     return;
834   }
835 
836   QualType ElementType;
837 
838   InitializedEntity ElementEntity = Entity;
839   unsigned NumInits = ILE->getNumInits();
840   unsigned NumElements = NumInits;
841   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
842     ElementType = AType->getElementType();
843     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
844       NumElements = CAType->getSize().getZExtValue();
845     // For an array new with an unknown bound, ask for one additional element
846     // in order to populate the array filler.
847     if (Entity.isVariableLengthArrayNew())
848       ++NumElements;
849     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
850                                                          0, Entity);
851   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
852     ElementType = VType->getElementType();
853     NumElements = VType->getNumElements();
854     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
855                                                          0, Entity);
856   } else
857     ElementType = ILE->getType();
858 
859   bool SkipEmptyInitChecks = false;
860   for (unsigned Init = 0; Init != NumElements; ++Init) {
861     if (hadError)
862       return;
863 
864     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
865         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
866       ElementEntity.setElementIndex(Init);
867 
868     if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
869       return;
870 
871     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
872     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
873       ILE->setInit(Init, ILE->getArrayFiller());
874     else if (!InitExpr && !ILE->hasArrayFiller()) {
875       // In VerifyOnly mode, there's no point performing empty initialization
876       // more than once.
877       if (SkipEmptyInitChecks)
878         continue;
879 
880       Expr *Filler = nullptr;
881 
882       if (FillWithNoInit)
883         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
884       else {
885         ExprResult ElementInit =
886             PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
887         if (ElementInit.isInvalid()) {
888           hadError = true;
889           return;
890         }
891 
892         Filler = ElementInit.getAs<Expr>();
893       }
894 
895       if (hadError) {
896         // Do nothing
897       } else if (VerifyOnly) {
898         SkipEmptyInitChecks = true;
899       } else if (Init < NumInits) {
900         // For arrays, just set the expression used for value-initialization
901         // of the "holes" in the array.
902         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
903           ILE->setArrayFiller(Filler);
904         else
905           ILE->setInit(Init, Filler);
906       } else {
907         // For arrays, just set the expression used for value-initialization
908         // of the rest of elements and exit.
909         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
910           ILE->setArrayFiller(Filler);
911           return;
912         }
913 
914         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
915           // Empty initialization requires a constructor call, so
916           // extend the initializer list to include the constructor
917           // call and make a note that we'll need to take another pass
918           // through the initializer list.
919           ILE->updateInit(SemaRef.Context, Init, Filler);
920           RequiresSecondPass = true;
921         }
922       }
923     } else if (InitListExpr *InnerILE
924                  = dyn_cast_or_null<InitListExpr>(InitExpr)) {
925       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
926                                  ILE, Init, FillWithNoInit);
927     } else if (DesignatedInitUpdateExpr *InnerDIUE =
928                    dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
929       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
930                                  RequiresSecondPass, ILE, Init,
931                                  /*FillWithNoInit =*/true);
932     }
933   }
934 }
935 
hasAnyDesignatedInits(const InitListExpr * IL)936 static bool hasAnyDesignatedInits(const InitListExpr *IL) {
937   for (const Stmt *Init : *IL)
938     if (Init && isa<DesignatedInitExpr>(Init))
939       return true;
940   return false;
941 }
942 
InitListChecker(Sema & S,const InitializedEntity & Entity,InitListExpr * IL,QualType & T,bool VerifyOnly,bool TreatUnavailableAsInvalid,bool InOverloadResolution)943 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
944                                  InitListExpr *IL, QualType &T, bool VerifyOnly,
945                                  bool TreatUnavailableAsInvalid,
946                                  bool InOverloadResolution)
947     : SemaRef(S), VerifyOnly(VerifyOnly),
948       TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
949       InOverloadResolution(InOverloadResolution) {
950   if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
951     FullyStructuredList =
952         createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
953 
954     // FIXME: Check that IL isn't already the semantic form of some other
955     // InitListExpr. If it is, we'd create a broken AST.
956     if (!VerifyOnly)
957       FullyStructuredList->setSyntacticForm(IL);
958   }
959 
960   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
961                         /*TopLevelObject=*/true);
962 
963   if (!hadError && FullyStructuredList) {
964     bool RequiresSecondPass = false;
965     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
966                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
967     if (RequiresSecondPass && !hadError)
968       FillInEmptyInitializations(Entity, FullyStructuredList,
969                                  RequiresSecondPass, nullptr, 0);
970   }
971   if (hadError && FullyStructuredList)
972     FullyStructuredList->markError();
973 }
974 
numArrayElements(QualType DeclType)975 int InitListChecker::numArrayElements(QualType DeclType) {
976   // FIXME: use a proper constant
977   int maxElements = 0x7FFFFFFF;
978   if (const ConstantArrayType *CAT =
979         SemaRef.Context.getAsConstantArrayType(DeclType)) {
980     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
981   }
982   return maxElements;
983 }
984 
numStructUnionElements(QualType DeclType)985 int InitListChecker::numStructUnionElements(QualType DeclType) {
986   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
987   int InitializableMembers = 0;
988   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
989     InitializableMembers += CXXRD->getNumBases();
990   for (const auto *Field : structDecl->fields())
991     if (!Field->isUnnamedBitfield())
992       ++InitializableMembers;
993 
994   if (structDecl->isUnion())
995     return std::min(InitializableMembers, 1);
996   return InitializableMembers - structDecl->hasFlexibleArrayMember();
997 }
998 
999 /// Determine whether Entity is an entity for which it is idiomatic to elide
1000 /// the braces in aggregate initialization.
isIdiomaticBraceElisionEntity(const InitializedEntity & Entity)1001 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
1002   // Recursive initialization of the one and only field within an aggregate
1003   // class is considered idiomatic. This case arises in particular for
1004   // initialization of std::array, where the C++ standard suggests the idiom of
1005   //
1006   //   std::array<T, N> arr = {1, 2, 3};
1007   //
1008   // (where std::array is an aggregate struct containing a single array field.
1009 
1010   if (!Entity.getParent())
1011     return false;
1012 
1013   // Allows elide brace initialization for aggregates with empty base.
1014   if (Entity.getKind() == InitializedEntity::EK_Base) {
1015     auto *ParentRD =
1016         Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1017     CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD);
1018     return CXXRD->getNumBases() == 1 && CXXRD->field_empty();
1019   }
1020 
1021   // Allow brace elision if the only subobject is a field.
1022   if (Entity.getKind() == InitializedEntity::EK_Member) {
1023     auto *ParentRD =
1024         Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1025     if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) {
1026       if (CXXRD->getNumBases()) {
1027         return false;
1028       }
1029     }
1030     auto FieldIt = ParentRD->field_begin();
1031     assert(FieldIt != ParentRD->field_end() &&
1032            "no fields but have initializer for member?");
1033     return ++FieldIt == ParentRD->field_end();
1034   }
1035 
1036   return false;
1037 }
1038 
1039 /// Check whether the range of the initializer \p ParentIList from element
1040 /// \p Index onwards can be used to initialize an object of type \p T. Update
1041 /// \p Index to indicate how many elements of the list were consumed.
1042 ///
1043 /// This also fills in \p StructuredList, from element \p StructuredIndex
1044 /// onwards, with the fully-braced, desugared form of the initialization.
CheckImplicitInitList(const InitializedEntity & Entity,InitListExpr * ParentIList,QualType T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1045 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1046                                             InitListExpr *ParentIList,
1047                                             QualType T, unsigned &Index,
1048                                             InitListExpr *StructuredList,
1049                                             unsigned &StructuredIndex) {
1050   int maxElements = 0;
1051 
1052   if (T->isArrayType())
1053     maxElements = numArrayElements(T);
1054   else if (T->isRecordType())
1055     maxElements = numStructUnionElements(T);
1056   else if (T->isVectorType())
1057     maxElements = T->castAs<VectorType>()->getNumElements();
1058   else
1059     llvm_unreachable("CheckImplicitInitList(): Illegal type");
1060 
1061   if (maxElements == 0) {
1062     if (!VerifyOnly)
1063       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1064                    diag::err_implicit_empty_initializer);
1065     ++Index;
1066     hadError = true;
1067     return;
1068   }
1069 
1070   // Build a structured initializer list corresponding to this subobject.
1071   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1072       ParentIList, Index, T, StructuredList, StructuredIndex,
1073       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1074                   ParentIList->getSourceRange().getEnd()));
1075   unsigned StructuredSubobjectInitIndex = 0;
1076 
1077   // Check the element types and build the structural subobject.
1078   unsigned StartIndex = Index;
1079   CheckListElementTypes(Entity, ParentIList, T,
1080                         /*SubobjectIsDesignatorContext=*/false, Index,
1081                         StructuredSubobjectInitList,
1082                         StructuredSubobjectInitIndex);
1083 
1084   if (StructuredSubobjectInitList) {
1085     StructuredSubobjectInitList->setType(T);
1086 
1087     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1088     // Update the structured sub-object initializer so that it's ending
1089     // range corresponds with the end of the last initializer it used.
1090     if (EndIndex < ParentIList->getNumInits() &&
1091         ParentIList->getInit(EndIndex)) {
1092       SourceLocation EndLoc
1093         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1094       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1095     }
1096 
1097     // Complain about missing braces.
1098     if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1099         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1100         !isIdiomaticBraceElisionEntity(Entity)) {
1101       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1102                    diag::warn_missing_braces)
1103           << StructuredSubobjectInitList->getSourceRange()
1104           << FixItHint::CreateInsertion(
1105                  StructuredSubobjectInitList->getBeginLoc(), "{")
1106           << FixItHint::CreateInsertion(
1107                  SemaRef.getLocForEndOfToken(
1108                      StructuredSubobjectInitList->getEndLoc()),
1109                  "}");
1110     }
1111 
1112     // Warn if this type won't be an aggregate in future versions of C++.
1113     auto *CXXRD = T->getAsCXXRecordDecl();
1114     if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1115       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1116                    diag::warn_cxx20_compat_aggregate_init_with_ctors)
1117           << StructuredSubobjectInitList->getSourceRange() << T;
1118     }
1119   }
1120 }
1121 
1122 /// Warn that \p Entity was of scalar type and was initialized by a
1123 /// single-element braced initializer list.
warnBracedScalarInit(Sema & S,const InitializedEntity & Entity,SourceRange Braces)1124 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1125                                  SourceRange Braces) {
1126   // Don't warn during template instantiation. If the initialization was
1127   // non-dependent, we warned during the initial parse; otherwise, the
1128   // type might not be scalar in some uses of the template.
1129   if (S.inTemplateInstantiation())
1130     return;
1131 
1132   unsigned DiagID = 0;
1133 
1134   switch (Entity.getKind()) {
1135   case InitializedEntity::EK_VectorElement:
1136   case InitializedEntity::EK_ComplexElement:
1137   case InitializedEntity::EK_ArrayElement:
1138   case InitializedEntity::EK_Parameter:
1139   case InitializedEntity::EK_Parameter_CF_Audited:
1140   case InitializedEntity::EK_TemplateParameter:
1141   case InitializedEntity::EK_Result:
1142     // Extra braces here are suspicious.
1143     DiagID = diag::warn_braces_around_init;
1144     break;
1145 
1146   case InitializedEntity::EK_Member:
1147     // Warn on aggregate initialization but not on ctor init list or
1148     // default member initializer.
1149     if (Entity.getParent())
1150       DiagID = diag::warn_braces_around_init;
1151     break;
1152 
1153   case InitializedEntity::EK_Variable:
1154   case InitializedEntity::EK_LambdaCapture:
1155     // No warning, might be direct-list-initialization.
1156     // FIXME: Should we warn for copy-list-initialization in these cases?
1157     break;
1158 
1159   case InitializedEntity::EK_New:
1160   case InitializedEntity::EK_Temporary:
1161   case InitializedEntity::EK_CompoundLiteralInit:
1162     // No warning, braces are part of the syntax of the underlying construct.
1163     break;
1164 
1165   case InitializedEntity::EK_RelatedResult:
1166     // No warning, we already warned when initializing the result.
1167     break;
1168 
1169   case InitializedEntity::EK_Exception:
1170   case InitializedEntity::EK_Base:
1171   case InitializedEntity::EK_Delegating:
1172   case InitializedEntity::EK_BlockElement:
1173   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1174   case InitializedEntity::EK_Binding:
1175   case InitializedEntity::EK_StmtExprResult:
1176     llvm_unreachable("unexpected braced scalar init");
1177   }
1178 
1179   if (DiagID) {
1180     S.Diag(Braces.getBegin(), DiagID)
1181         << Entity.getType()->isSizelessBuiltinType() << Braces
1182         << FixItHint::CreateRemoval(Braces.getBegin())
1183         << FixItHint::CreateRemoval(Braces.getEnd());
1184   }
1185 }
1186 
1187 /// Check whether the initializer \p IList (that was written with explicit
1188 /// braces) can be used to initialize an object of type \p T.
1189 ///
1190 /// This also fills in \p StructuredList with the fully-braced, desugared
1191 /// form of the initialization.
CheckExplicitInitList(const InitializedEntity & Entity,InitListExpr * IList,QualType & T,InitListExpr * StructuredList,bool TopLevelObject)1192 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1193                                             InitListExpr *IList, QualType &T,
1194                                             InitListExpr *StructuredList,
1195                                             bool TopLevelObject) {
1196   unsigned Index = 0, StructuredIndex = 0;
1197   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1198                         Index, StructuredList, StructuredIndex, TopLevelObject);
1199   if (StructuredList) {
1200     QualType ExprTy = T;
1201     if (!ExprTy->isArrayType())
1202       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1203     if (!VerifyOnly)
1204       IList->setType(ExprTy);
1205     StructuredList->setType(ExprTy);
1206   }
1207   if (hadError)
1208     return;
1209 
1210   // Don't complain for incomplete types, since we'll get an error elsewhere.
1211   if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1212     // We have leftover initializers
1213     bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1214           (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1215     hadError = ExtraInitsIsError;
1216     if (VerifyOnly) {
1217       return;
1218     } else if (StructuredIndex == 1 &&
1219                IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1220                    SIF_None) {
1221       unsigned DK =
1222           ExtraInitsIsError
1223               ? diag::err_excess_initializers_in_char_array_initializer
1224               : diag::ext_excess_initializers_in_char_array_initializer;
1225       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1226           << IList->getInit(Index)->getSourceRange();
1227     } else if (T->isSizelessBuiltinType()) {
1228       unsigned DK = ExtraInitsIsError
1229                         ? diag::err_excess_initializers_for_sizeless_type
1230                         : diag::ext_excess_initializers_for_sizeless_type;
1231       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1232           << T << IList->getInit(Index)->getSourceRange();
1233     } else {
1234       int initKind = T->isArrayType() ? 0 :
1235                      T->isVectorType() ? 1 :
1236                      T->isScalarType() ? 2 :
1237                      T->isUnionType() ? 3 :
1238                      4;
1239 
1240       unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1241                                       : diag::ext_excess_initializers;
1242       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1243           << initKind << IList->getInit(Index)->getSourceRange();
1244     }
1245   }
1246 
1247   if (!VerifyOnly) {
1248     if (T->isScalarType() && IList->getNumInits() == 1 &&
1249         !isa<InitListExpr>(IList->getInit(0)))
1250       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1251 
1252     // Warn if this is a class type that won't be an aggregate in future
1253     // versions of C++.
1254     auto *CXXRD = T->getAsCXXRecordDecl();
1255     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1256       // Don't warn if there's an equivalent default constructor that would be
1257       // used instead.
1258       bool HasEquivCtor = false;
1259       if (IList->getNumInits() == 0) {
1260         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1261         HasEquivCtor = CD && !CD->isDeleted();
1262       }
1263 
1264       if (!HasEquivCtor) {
1265         SemaRef.Diag(IList->getBeginLoc(),
1266                      diag::warn_cxx20_compat_aggregate_init_with_ctors)
1267             << IList->getSourceRange() << T;
1268       }
1269     }
1270   }
1271 }
1272 
CheckListElementTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)1273 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1274                                             InitListExpr *IList,
1275                                             QualType &DeclType,
1276                                             bool SubobjectIsDesignatorContext,
1277                                             unsigned &Index,
1278                                             InitListExpr *StructuredList,
1279                                             unsigned &StructuredIndex,
1280                                             bool TopLevelObject) {
1281   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1282     // Explicitly braced initializer for complex type can be real+imaginary
1283     // parts.
1284     CheckComplexType(Entity, IList, DeclType, Index,
1285                      StructuredList, StructuredIndex);
1286   } else if (DeclType->isScalarType()) {
1287     CheckScalarType(Entity, IList, DeclType, Index,
1288                     StructuredList, StructuredIndex);
1289   } else if (DeclType->isVectorType()) {
1290     CheckVectorType(Entity, IList, DeclType, Index,
1291                     StructuredList, StructuredIndex);
1292   } else if (DeclType->isRecordType()) {
1293     assert(DeclType->isAggregateType() &&
1294            "non-aggregate records should be handed in CheckSubElementType");
1295     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
1296     auto Bases =
1297         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1298                                         CXXRecordDecl::base_class_iterator());
1299     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1300       Bases = CXXRD->bases();
1301     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1302                           SubobjectIsDesignatorContext, Index, StructuredList,
1303                           StructuredIndex, TopLevelObject);
1304   } else if (DeclType->isArrayType()) {
1305     llvm::APSInt Zero(
1306                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1307                     false);
1308     CheckArrayType(Entity, IList, DeclType, Zero,
1309                    SubobjectIsDesignatorContext, Index,
1310                    StructuredList, StructuredIndex);
1311   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1312     // This type is invalid, issue a diagnostic.
1313     ++Index;
1314     if (!VerifyOnly)
1315       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1316           << DeclType;
1317     hadError = true;
1318   } else if (DeclType->isReferenceType()) {
1319     CheckReferenceType(Entity, IList, DeclType, Index,
1320                        StructuredList, StructuredIndex);
1321   } else if (DeclType->isObjCObjectType()) {
1322     if (!VerifyOnly)
1323       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1324     hadError = true;
1325   } else if (DeclType->isOCLIntelSubgroupAVCType() ||
1326              DeclType->isSizelessBuiltinType()) {
1327     // Checks for scalar type are sufficient for these types too.
1328     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1329                     StructuredIndex);
1330   } else {
1331     if (!VerifyOnly)
1332       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1333           << DeclType;
1334     hadError = true;
1335   }
1336 }
1337 
CheckSubElementType(const InitializedEntity & Entity,InitListExpr * IList,QualType ElemType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool DirectlyDesignated)1338 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1339                                           InitListExpr *IList,
1340                                           QualType ElemType,
1341                                           unsigned &Index,
1342                                           InitListExpr *StructuredList,
1343                                           unsigned &StructuredIndex,
1344                                           bool DirectlyDesignated) {
1345   Expr *expr = IList->getInit(Index);
1346 
1347   if (ElemType->isReferenceType())
1348     return CheckReferenceType(Entity, IList, ElemType, Index,
1349                               StructuredList, StructuredIndex);
1350 
1351   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1352     if (SubInitList->getNumInits() == 1 &&
1353         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1354         SIF_None) {
1355       // FIXME: It would be more faithful and no less correct to include an
1356       // InitListExpr in the semantic form of the initializer list in this case.
1357       expr = SubInitList->getInit(0);
1358     }
1359     // Nested aggregate initialization and C++ initialization are handled later.
1360   } else if (isa<ImplicitValueInitExpr>(expr)) {
1361     // This happens during template instantiation when we see an InitListExpr
1362     // that we've already checked once.
1363     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1364            "found implicit initialization for the wrong type");
1365     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1366     ++Index;
1367     return;
1368   }
1369 
1370   if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1371     // C++ [dcl.init.aggr]p2:
1372     //   Each member is copy-initialized from the corresponding
1373     //   initializer-clause.
1374 
1375     // FIXME: Better EqualLoc?
1376     InitializationKind Kind =
1377         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1378 
1379     // Vector elements can be initialized from other vectors in which case
1380     // we need initialization entity with a type of a vector (and not a vector
1381     // element!) initializing multiple vector elements.
1382     auto TmpEntity =
1383         (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1384             ? InitializedEntity::InitializeTemporary(ElemType)
1385             : Entity;
1386 
1387     InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1388                                /*TopLevelOfInitList*/ true);
1389 
1390     // C++14 [dcl.init.aggr]p13:
1391     //   If the assignment-expression can initialize a member, the member is
1392     //   initialized. Otherwise [...] brace elision is assumed
1393     //
1394     // Brace elision is never performed if the element is not an
1395     // assignment-expression.
1396     if (Seq || isa<InitListExpr>(expr)) {
1397       if (!VerifyOnly) {
1398         ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1399         if (Result.isInvalid())
1400           hadError = true;
1401 
1402         UpdateStructuredListElement(StructuredList, StructuredIndex,
1403                                     Result.getAs<Expr>());
1404       } else if (!Seq) {
1405         hadError = true;
1406       } else if (StructuredList) {
1407         UpdateStructuredListElement(StructuredList, StructuredIndex,
1408                                     getDummyInit());
1409       }
1410       ++Index;
1411       return;
1412     }
1413 
1414     // Fall through for subaggregate initialization
1415   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1416     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1417     return CheckScalarType(Entity, IList, ElemType, Index,
1418                            StructuredList, StructuredIndex);
1419   } else if (const ArrayType *arrayType =
1420                  SemaRef.Context.getAsArrayType(ElemType)) {
1421     // arrayType can be incomplete if we're initializing a flexible
1422     // array member.  There's nothing we can do with the completed
1423     // type here, though.
1424 
1425     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1426       // FIXME: Should we do this checking in verify-only mode?
1427       if (!VerifyOnly)
1428         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1429       if (StructuredList)
1430         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1431       ++Index;
1432       return;
1433     }
1434 
1435     // Fall through for subaggregate initialization.
1436 
1437   } else {
1438     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1439             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1440 
1441     // C99 6.7.8p13:
1442     //
1443     //   The initializer for a structure or union object that has
1444     //   automatic storage duration shall be either an initializer
1445     //   list as described below, or a single expression that has
1446     //   compatible structure or union type. In the latter case, the
1447     //   initial value of the object, including unnamed members, is
1448     //   that of the expression.
1449     ExprResult ExprRes = expr;
1450     if (SemaRef.CheckSingleAssignmentConstraints(
1451             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1452       if (ExprRes.isInvalid())
1453         hadError = true;
1454       else {
1455         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1456         if (ExprRes.isInvalid())
1457           hadError = true;
1458       }
1459       UpdateStructuredListElement(StructuredList, StructuredIndex,
1460                                   ExprRes.getAs<Expr>());
1461       ++Index;
1462       return;
1463     }
1464     ExprRes.get();
1465     // Fall through for subaggregate initialization
1466   }
1467 
1468   // C++ [dcl.init.aggr]p12:
1469   //
1470   //   [...] Otherwise, if the member is itself a non-empty
1471   //   subaggregate, brace elision is assumed and the initializer is
1472   //   considered for the initialization of the first member of
1473   //   the subaggregate.
1474   // OpenCL vector initializer is handled elsewhere.
1475   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1476       ElemType->isAggregateType()) {
1477     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1478                           StructuredIndex);
1479     ++StructuredIndex;
1480 
1481     // In C++20, brace elision is not permitted for a designated initializer.
1482     if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) {
1483       if (InOverloadResolution)
1484         hadError = true;
1485       if (!VerifyOnly) {
1486         SemaRef.Diag(expr->getBeginLoc(),
1487                      diag::ext_designated_init_brace_elision)
1488             << expr->getSourceRange()
1489             << FixItHint::CreateInsertion(expr->getBeginLoc(), "{")
1490             << FixItHint::CreateInsertion(
1491                    SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}");
1492       }
1493     }
1494   } else {
1495     if (!VerifyOnly) {
1496       // We cannot initialize this element, so let PerformCopyInitialization
1497       // produce the appropriate diagnostic. We already checked that this
1498       // initialization will fail.
1499       ExprResult Copy =
1500           SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1501                                             /*TopLevelOfInitList=*/true);
1502       (void)Copy;
1503       assert(Copy.isInvalid() &&
1504              "expected non-aggregate initialization to fail");
1505     }
1506     hadError = true;
1507     ++Index;
1508     ++StructuredIndex;
1509   }
1510 }
1511 
CheckComplexType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1512 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1513                                        InitListExpr *IList, QualType DeclType,
1514                                        unsigned &Index,
1515                                        InitListExpr *StructuredList,
1516                                        unsigned &StructuredIndex) {
1517   assert(Index == 0 && "Index in explicit init list must be zero");
1518 
1519   // As an extension, clang supports complex initializers, which initialize
1520   // a complex number component-wise.  When an explicit initializer list for
1521   // a complex number contains two two initializers, this extension kicks in:
1522   // it exepcts the initializer list to contain two elements convertible to
1523   // the element type of the complex type. The first element initializes
1524   // the real part, and the second element intitializes the imaginary part.
1525 
1526   if (IList->getNumInits() != 2)
1527     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1528                            StructuredIndex);
1529 
1530   // This is an extension in C.  (The builtin _Complex type does not exist
1531   // in the C++ standard.)
1532   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1533     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1534         << IList->getSourceRange();
1535 
1536   // Initialize the complex number.
1537   QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1538   InitializedEntity ElementEntity =
1539     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1540 
1541   for (unsigned i = 0; i < 2; ++i) {
1542     ElementEntity.setElementIndex(Index);
1543     CheckSubElementType(ElementEntity, IList, elementType, Index,
1544                         StructuredList, StructuredIndex);
1545   }
1546 }
1547 
CheckScalarType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1548 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1549                                       InitListExpr *IList, QualType DeclType,
1550                                       unsigned &Index,
1551                                       InitListExpr *StructuredList,
1552                                       unsigned &StructuredIndex) {
1553   if (Index >= IList->getNumInits()) {
1554     if (!VerifyOnly) {
1555       if (DeclType->isSizelessBuiltinType())
1556         SemaRef.Diag(IList->getBeginLoc(),
1557                      SemaRef.getLangOpts().CPlusPlus11
1558                          ? diag::warn_cxx98_compat_empty_sizeless_initializer
1559                          : diag::err_empty_sizeless_initializer)
1560             << DeclType << IList->getSourceRange();
1561       else
1562         SemaRef.Diag(IList->getBeginLoc(),
1563                      SemaRef.getLangOpts().CPlusPlus11
1564                          ? diag::warn_cxx98_compat_empty_scalar_initializer
1565                          : diag::err_empty_scalar_initializer)
1566             << IList->getSourceRange();
1567     }
1568     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1569     ++Index;
1570     ++StructuredIndex;
1571     return;
1572   }
1573 
1574   Expr *expr = IList->getInit(Index);
1575   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1576     // FIXME: This is invalid, and accepting it causes overload resolution
1577     // to pick the wrong overload in some corner cases.
1578     if (!VerifyOnly)
1579       SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
1580           << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
1581 
1582     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1583                     StructuredIndex);
1584     return;
1585   } else if (isa<DesignatedInitExpr>(expr)) {
1586     if (!VerifyOnly)
1587       SemaRef.Diag(expr->getBeginLoc(),
1588                    diag::err_designator_for_scalar_or_sizeless_init)
1589           << DeclType->isSizelessBuiltinType() << DeclType
1590           << expr->getSourceRange();
1591     hadError = true;
1592     ++Index;
1593     ++StructuredIndex;
1594     return;
1595   }
1596 
1597   ExprResult Result;
1598   if (VerifyOnly) {
1599     if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1600       Result = getDummyInit();
1601     else
1602       Result = ExprError();
1603   } else {
1604     Result =
1605         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1606                                           /*TopLevelOfInitList=*/true);
1607   }
1608 
1609   Expr *ResultExpr = nullptr;
1610 
1611   if (Result.isInvalid())
1612     hadError = true; // types weren't compatible.
1613   else {
1614     ResultExpr = Result.getAs<Expr>();
1615 
1616     if (ResultExpr != expr && !VerifyOnly) {
1617       // The type was promoted, update initializer list.
1618       // FIXME: Why are we updating the syntactic init list?
1619       IList->setInit(Index, ResultExpr);
1620     }
1621   }
1622   UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1623   ++Index;
1624 }
1625 
CheckReferenceType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1626 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1627                                          InitListExpr *IList, QualType DeclType,
1628                                          unsigned &Index,
1629                                          InitListExpr *StructuredList,
1630                                          unsigned &StructuredIndex) {
1631   if (Index >= IList->getNumInits()) {
1632     // FIXME: It would be wonderful if we could point at the actual member. In
1633     // general, it would be useful to pass location information down the stack,
1634     // so that we know the location (or decl) of the "current object" being
1635     // initialized.
1636     if (!VerifyOnly)
1637       SemaRef.Diag(IList->getBeginLoc(),
1638                    diag::err_init_reference_member_uninitialized)
1639           << DeclType << IList->getSourceRange();
1640     hadError = true;
1641     ++Index;
1642     ++StructuredIndex;
1643     return;
1644   }
1645 
1646   Expr *expr = IList->getInit(Index);
1647   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1648     if (!VerifyOnly)
1649       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1650           << DeclType << IList->getSourceRange();
1651     hadError = true;
1652     ++Index;
1653     ++StructuredIndex;
1654     return;
1655   }
1656 
1657   ExprResult Result;
1658   if (VerifyOnly) {
1659     if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1660       Result = getDummyInit();
1661     else
1662       Result = ExprError();
1663   } else {
1664     Result =
1665         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1666                                           /*TopLevelOfInitList=*/true);
1667   }
1668 
1669   if (Result.isInvalid())
1670     hadError = true;
1671 
1672   expr = Result.getAs<Expr>();
1673   // FIXME: Why are we updating the syntactic init list?
1674   if (!VerifyOnly && expr)
1675     IList->setInit(Index, expr);
1676 
1677   UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1678   ++Index;
1679 }
1680 
CheckVectorType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1681 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1682                                       InitListExpr *IList, QualType DeclType,
1683                                       unsigned &Index,
1684                                       InitListExpr *StructuredList,
1685                                       unsigned &StructuredIndex) {
1686   const VectorType *VT = DeclType->castAs<VectorType>();
1687   unsigned maxElements = VT->getNumElements();
1688   unsigned numEltsInit = 0;
1689   QualType elementType = VT->getElementType();
1690 
1691   if (Index >= IList->getNumInits()) {
1692     // Make sure the element type can be value-initialized.
1693     CheckEmptyInitializable(
1694         InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1695         IList->getEndLoc());
1696     return;
1697   }
1698 
1699   if (!SemaRef.getLangOpts().OpenCL) {
1700     // If the initializing element is a vector, try to copy-initialize
1701     // instead of breaking it apart (which is doomed to failure anyway).
1702     Expr *Init = IList->getInit(Index);
1703     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1704       ExprResult Result;
1705       if (VerifyOnly) {
1706         if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1707           Result = getDummyInit();
1708         else
1709           Result = ExprError();
1710       } else {
1711         Result =
1712             SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1713                                               /*TopLevelOfInitList=*/true);
1714       }
1715 
1716       Expr *ResultExpr = nullptr;
1717       if (Result.isInvalid())
1718         hadError = true; // types weren't compatible.
1719       else {
1720         ResultExpr = Result.getAs<Expr>();
1721 
1722         if (ResultExpr != Init && !VerifyOnly) {
1723           // The type was promoted, update initializer list.
1724           // FIXME: Why are we updating the syntactic init list?
1725           IList->setInit(Index, ResultExpr);
1726         }
1727       }
1728       UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1729       ++Index;
1730       return;
1731     }
1732 
1733     InitializedEntity ElementEntity =
1734       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1735 
1736     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1737       // Don't attempt to go past the end of the init list
1738       if (Index >= IList->getNumInits()) {
1739         CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1740         break;
1741       }
1742 
1743       ElementEntity.setElementIndex(Index);
1744       CheckSubElementType(ElementEntity, IList, elementType, Index,
1745                           StructuredList, StructuredIndex);
1746     }
1747 
1748     if (VerifyOnly)
1749       return;
1750 
1751     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1752     const VectorType *T = Entity.getType()->castAs<VectorType>();
1753     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1754                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1755       // The ability to use vector initializer lists is a GNU vector extension
1756       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1757       // endian machines it works fine, however on big endian machines it
1758       // exhibits surprising behaviour:
1759       //
1760       //   uint32x2_t x = {42, 64};
1761       //   return vget_lane_u32(x, 0); // Will return 64.
1762       //
1763       // Because of this, explicitly call out that it is non-portable.
1764       //
1765       SemaRef.Diag(IList->getBeginLoc(),
1766                    diag::warn_neon_vector_initializer_non_portable);
1767 
1768       const char *typeCode;
1769       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1770 
1771       if (elementType->isFloatingType())
1772         typeCode = "f";
1773       else if (elementType->isSignedIntegerType())
1774         typeCode = "s";
1775       else if (elementType->isUnsignedIntegerType())
1776         typeCode = "u";
1777       else
1778         llvm_unreachable("Invalid element type!");
1779 
1780       SemaRef.Diag(IList->getBeginLoc(),
1781                    SemaRef.Context.getTypeSize(VT) > 64
1782                        ? diag::note_neon_vector_initializer_non_portable_q
1783                        : diag::note_neon_vector_initializer_non_portable)
1784           << typeCode << typeSize;
1785     }
1786 
1787     return;
1788   }
1789 
1790   InitializedEntity ElementEntity =
1791     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1792 
1793   // OpenCL initializers allows vectors to be constructed from vectors.
1794   for (unsigned i = 0; i < maxElements; ++i) {
1795     // Don't attempt to go past the end of the init list
1796     if (Index >= IList->getNumInits())
1797       break;
1798 
1799     ElementEntity.setElementIndex(Index);
1800 
1801     QualType IType = IList->getInit(Index)->getType();
1802     if (!IType->isVectorType()) {
1803       CheckSubElementType(ElementEntity, IList, elementType, Index,
1804                           StructuredList, StructuredIndex);
1805       ++numEltsInit;
1806     } else {
1807       QualType VecType;
1808       const VectorType *IVT = IType->castAs<VectorType>();
1809       unsigned numIElts = IVT->getNumElements();
1810 
1811       if (IType->isExtVectorType())
1812         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1813       else
1814         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1815                                                 IVT->getVectorKind());
1816       CheckSubElementType(ElementEntity, IList, VecType, Index,
1817                           StructuredList, StructuredIndex);
1818       numEltsInit += numIElts;
1819     }
1820   }
1821 
1822   // OpenCL requires all elements to be initialized.
1823   if (numEltsInit != maxElements) {
1824     if (!VerifyOnly)
1825       SemaRef.Diag(IList->getBeginLoc(),
1826                    diag::err_vector_incorrect_num_initializers)
1827           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1828     hadError = true;
1829   }
1830 }
1831 
1832 /// Check if the type of a class element has an accessible destructor, and marks
1833 /// it referenced. Returns true if we shouldn't form a reference to the
1834 /// destructor.
1835 ///
1836 /// Aggregate initialization requires a class element's destructor be
1837 /// accessible per 11.6.1 [dcl.init.aggr]:
1838 ///
1839 /// The destructor for each element of class type is potentially invoked
1840 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1841 /// occurs.
checkDestructorReference(QualType ElementType,SourceLocation Loc,Sema & SemaRef)1842 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1843                                      Sema &SemaRef) {
1844   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1845   if (!CXXRD)
1846     return false;
1847 
1848   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1849   SemaRef.CheckDestructorAccess(Loc, Destructor,
1850                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1851                                 << ElementType);
1852   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1853   return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1854 }
1855 
CheckArrayType(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,llvm::APSInt elementIndex,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1856 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1857                                      InitListExpr *IList, QualType &DeclType,
1858                                      llvm::APSInt elementIndex,
1859                                      bool SubobjectIsDesignatorContext,
1860                                      unsigned &Index,
1861                                      InitListExpr *StructuredList,
1862                                      unsigned &StructuredIndex) {
1863   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1864 
1865   if (!VerifyOnly) {
1866     if (checkDestructorReference(arrayType->getElementType(),
1867                                  IList->getEndLoc(), SemaRef)) {
1868       hadError = true;
1869       return;
1870     }
1871   }
1872 
1873   // Check for the special-case of initializing an array with a string.
1874   if (Index < IList->getNumInits()) {
1875     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1876         SIF_None) {
1877       // We place the string literal directly into the resulting
1878       // initializer list. This is the only place where the structure
1879       // of the structured initializer list doesn't match exactly,
1880       // because doing so would involve allocating one character
1881       // constant for each string.
1882       // FIXME: Should we do these checks in verify-only mode too?
1883       if (!VerifyOnly)
1884         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1885       if (StructuredList) {
1886         UpdateStructuredListElement(StructuredList, StructuredIndex,
1887                                     IList->getInit(Index));
1888         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1889       }
1890       ++Index;
1891       return;
1892     }
1893   }
1894   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1895     // Check for VLAs; in standard C it would be possible to check this
1896     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1897     // them in all sorts of strange places).
1898     if (!VerifyOnly)
1899       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1900                    diag::err_variable_object_no_init)
1901           << VAT->getSizeExpr()->getSourceRange();
1902     hadError = true;
1903     ++Index;
1904     ++StructuredIndex;
1905     return;
1906   }
1907 
1908   // We might know the maximum number of elements in advance.
1909   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1910                            elementIndex.isUnsigned());
1911   bool maxElementsKnown = false;
1912   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1913     maxElements = CAT->getSize();
1914     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1915     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1916     maxElementsKnown = true;
1917   }
1918 
1919   QualType elementType = arrayType->getElementType();
1920   while (Index < IList->getNumInits()) {
1921     Expr *Init = IList->getInit(Index);
1922     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1923       // If we're not the subobject that matches up with the '{' for
1924       // the designator, we shouldn't be handling the
1925       // designator. Return immediately.
1926       if (!SubobjectIsDesignatorContext)
1927         return;
1928 
1929       // Handle this designated initializer. elementIndex will be
1930       // updated to be the next array element we'll initialize.
1931       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1932                                      DeclType, nullptr, &elementIndex, Index,
1933                                      StructuredList, StructuredIndex, true,
1934                                      false)) {
1935         hadError = true;
1936         continue;
1937       }
1938 
1939       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1940         maxElements = maxElements.extend(elementIndex.getBitWidth());
1941       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1942         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1943       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1944 
1945       // If the array is of incomplete type, keep track of the number of
1946       // elements in the initializer.
1947       if (!maxElementsKnown && elementIndex > maxElements)
1948         maxElements = elementIndex;
1949 
1950       continue;
1951     }
1952 
1953     // If we know the maximum number of elements, and we've already
1954     // hit it, stop consuming elements in the initializer list.
1955     if (maxElementsKnown && elementIndex == maxElements)
1956       break;
1957 
1958     InitializedEntity ElementEntity =
1959       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1960                                            Entity);
1961     // Check this element.
1962     CheckSubElementType(ElementEntity, IList, elementType, Index,
1963                         StructuredList, StructuredIndex);
1964     ++elementIndex;
1965 
1966     // If the array is of incomplete type, keep track of the number of
1967     // elements in the initializer.
1968     if (!maxElementsKnown && elementIndex > maxElements)
1969       maxElements = elementIndex;
1970   }
1971   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1972     // If this is an incomplete array type, the actual type needs to
1973     // be calculated here.
1974     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1975     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1976       // Sizing an array implicitly to zero is not allowed by ISO C,
1977       // but is supported by GNU.
1978       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1979     }
1980 
1981     DeclType = SemaRef.Context.getConstantArrayType(
1982         elementType, maxElements, nullptr, ArrayType::Normal, 0);
1983   }
1984   if (!hadError) {
1985     // If there are any members of the array that get value-initialized, check
1986     // that is possible. That happens if we know the bound and don't have
1987     // enough elements, or if we're performing an array new with an unknown
1988     // bound.
1989     if ((maxElementsKnown && elementIndex < maxElements) ||
1990         Entity.isVariableLengthArrayNew())
1991       CheckEmptyInitializable(
1992           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1993           IList->getEndLoc());
1994   }
1995 }
1996 
CheckFlexibleArrayInit(const InitializedEntity & Entity,Expr * InitExpr,FieldDecl * Field,bool TopLevelObject)1997 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1998                                              Expr *InitExpr,
1999                                              FieldDecl *Field,
2000                                              bool TopLevelObject) {
2001   // Handle GNU flexible array initializers.
2002   unsigned FlexArrayDiag;
2003   if (isa<InitListExpr>(InitExpr) &&
2004       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
2005     // Empty flexible array init always allowed as an extension
2006     FlexArrayDiag = diag::ext_flexible_array_init;
2007   } else if (SemaRef.getLangOpts().CPlusPlus) {
2008     // Disallow flexible array init in C++; it is not required for gcc
2009     // compatibility, and it needs work to IRGen correctly in general.
2010     FlexArrayDiag = diag::err_flexible_array_init;
2011   } else if (!TopLevelObject) {
2012     // Disallow flexible array init on non-top-level object
2013     FlexArrayDiag = diag::err_flexible_array_init;
2014   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
2015     // Disallow flexible array init on anything which is not a variable.
2016     FlexArrayDiag = diag::err_flexible_array_init;
2017   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
2018     // Disallow flexible array init on local variables.
2019     FlexArrayDiag = diag::err_flexible_array_init;
2020   } else {
2021     // Allow other cases.
2022     FlexArrayDiag = diag::ext_flexible_array_init;
2023   }
2024 
2025   if (!VerifyOnly) {
2026     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
2027         << InitExpr->getBeginLoc();
2028     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2029       << Field;
2030   }
2031 
2032   return FlexArrayDiag != diag::ext_flexible_array_init;
2033 }
2034 
CheckStructUnionTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,CXXRecordDecl::base_class_range Bases,RecordDecl::field_iterator Field,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)2035 void InitListChecker::CheckStructUnionTypes(
2036     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
2037     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
2038     bool SubobjectIsDesignatorContext, unsigned &Index,
2039     InitListExpr *StructuredList, unsigned &StructuredIndex,
2040     bool TopLevelObject) {
2041   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
2042 
2043   // If the record is invalid, some of it's members are invalid. To avoid
2044   // confusion, we forgo checking the intializer for the entire record.
2045   if (structDecl->isInvalidDecl()) {
2046     // Assume it was supposed to consume a single initializer.
2047     ++Index;
2048     hadError = true;
2049     return;
2050   }
2051 
2052   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
2053     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2054 
2055     if (!VerifyOnly)
2056       for (FieldDecl *FD : RD->fields()) {
2057         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2058         if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2059           hadError = true;
2060           return;
2061         }
2062       }
2063 
2064     // If there's a default initializer, use it.
2065     if (isa<CXXRecordDecl>(RD) &&
2066         cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2067       if (!StructuredList)
2068         return;
2069       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2070            Field != FieldEnd; ++Field) {
2071         if (Field->hasInClassInitializer()) {
2072           StructuredList->setInitializedFieldInUnion(*Field);
2073           // FIXME: Actually build a CXXDefaultInitExpr?
2074           return;
2075         }
2076       }
2077     }
2078 
2079     // Value-initialize the first member of the union that isn't an unnamed
2080     // bitfield.
2081     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2082          Field != FieldEnd; ++Field) {
2083       if (!Field->isUnnamedBitfield()) {
2084         CheckEmptyInitializable(
2085             InitializedEntity::InitializeMember(*Field, &Entity),
2086             IList->getEndLoc());
2087         if (StructuredList)
2088           StructuredList->setInitializedFieldInUnion(*Field);
2089         break;
2090       }
2091     }
2092     return;
2093   }
2094 
2095   bool InitializedSomething = false;
2096 
2097   // If we have any base classes, they are initialized prior to the fields.
2098   for (auto &Base : Bases) {
2099     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2100 
2101     // Designated inits always initialize fields, so if we see one, all
2102     // remaining base classes have no explicit initializer.
2103     if (Init && isa<DesignatedInitExpr>(Init))
2104       Init = nullptr;
2105 
2106     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2107     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2108         SemaRef.Context, &Base, false, &Entity);
2109     if (Init) {
2110       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2111                           StructuredList, StructuredIndex);
2112       InitializedSomething = true;
2113     } else {
2114       CheckEmptyInitializable(BaseEntity, InitLoc);
2115     }
2116 
2117     if (!VerifyOnly)
2118       if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2119         hadError = true;
2120         return;
2121       }
2122   }
2123 
2124   // If structDecl is a forward declaration, this loop won't do
2125   // anything except look at designated initializers; That's okay,
2126   // because an error should get printed out elsewhere. It might be
2127   // worthwhile to skip over the rest of the initializer, though.
2128   RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2129   RecordDecl::field_iterator FieldEnd = RD->field_end();
2130   bool CheckForMissingFields =
2131     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2132   bool HasDesignatedInit = false;
2133 
2134   while (Index < IList->getNumInits()) {
2135     Expr *Init = IList->getInit(Index);
2136     SourceLocation InitLoc = Init->getBeginLoc();
2137 
2138     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2139       // If we're not the subobject that matches up with the '{' for
2140       // the designator, we shouldn't be handling the
2141       // designator. Return immediately.
2142       if (!SubobjectIsDesignatorContext)
2143         return;
2144 
2145       HasDesignatedInit = true;
2146 
2147       // Handle this designated initializer. Field will be updated to
2148       // the next field that we'll be initializing.
2149       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2150                                      DeclType, &Field, nullptr, Index,
2151                                      StructuredList, StructuredIndex,
2152                                      true, TopLevelObject))
2153         hadError = true;
2154       else if (!VerifyOnly) {
2155         // Find the field named by the designated initializer.
2156         RecordDecl::field_iterator F = RD->field_begin();
2157         while (std::next(F) != Field)
2158           ++F;
2159         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2160         if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2161           hadError = true;
2162           return;
2163         }
2164       }
2165 
2166       InitializedSomething = true;
2167 
2168       // Disable check for missing fields when designators are used.
2169       // This matches gcc behaviour.
2170       CheckForMissingFields = false;
2171       continue;
2172     }
2173 
2174     if (Field == FieldEnd) {
2175       // We've run out of fields. We're done.
2176       break;
2177     }
2178 
2179     // We've already initialized a member of a union. We're done.
2180     if (InitializedSomething && DeclType->isUnionType())
2181       break;
2182 
2183     // If we've hit the flexible array member at the end, we're done.
2184     if (Field->getType()->isIncompleteArrayType())
2185       break;
2186 
2187     if (Field->isUnnamedBitfield()) {
2188       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2189       ++Field;
2190       continue;
2191     }
2192 
2193     // Make sure we can use this declaration.
2194     bool InvalidUse;
2195     if (VerifyOnly)
2196       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2197     else
2198       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2199           *Field, IList->getInit(Index)->getBeginLoc());
2200     if (InvalidUse) {
2201       ++Index;
2202       ++Field;
2203       hadError = true;
2204       continue;
2205     }
2206 
2207     if (!VerifyOnly) {
2208       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2209       if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2210         hadError = true;
2211         return;
2212       }
2213     }
2214 
2215     InitializedEntity MemberEntity =
2216       InitializedEntity::InitializeMember(*Field, &Entity);
2217     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2218                         StructuredList, StructuredIndex);
2219     InitializedSomething = true;
2220 
2221     if (DeclType->isUnionType() && StructuredList) {
2222       // Initialize the first field within the union.
2223       StructuredList->setInitializedFieldInUnion(*Field);
2224     }
2225 
2226     ++Field;
2227   }
2228 
2229   // Emit warnings for missing struct field initializers.
2230   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2231       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2232       !DeclType->isUnionType()) {
2233     // It is possible we have one or more unnamed bitfields remaining.
2234     // Find first (if any) named field and emit warning.
2235     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2236          it != end; ++it) {
2237       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2238         SemaRef.Diag(IList->getSourceRange().getEnd(),
2239                      diag::warn_missing_field_initializers) << *it;
2240         break;
2241       }
2242     }
2243   }
2244 
2245   // Check that any remaining fields can be value-initialized if we're not
2246   // building a structured list. (If we are, we'll check this later.)
2247   if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
2248       !Field->getType()->isIncompleteArrayType()) {
2249     for (; Field != FieldEnd && !hadError; ++Field) {
2250       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2251         CheckEmptyInitializable(
2252             InitializedEntity::InitializeMember(*Field, &Entity),
2253             IList->getEndLoc());
2254     }
2255   }
2256 
2257   // Check that the types of the remaining fields have accessible destructors.
2258   if (!VerifyOnly) {
2259     // If the initializer expression has a designated initializer, check the
2260     // elements for which a designated initializer is not provided too.
2261     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2262                                                      : Field;
2263     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2264       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2265       if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2266         hadError = true;
2267         return;
2268       }
2269     }
2270   }
2271 
2272   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2273       Index >= IList->getNumInits())
2274     return;
2275 
2276   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2277                              TopLevelObject)) {
2278     hadError = true;
2279     ++Index;
2280     return;
2281   }
2282 
2283   InitializedEntity MemberEntity =
2284     InitializedEntity::InitializeMember(*Field, &Entity);
2285 
2286   if (isa<InitListExpr>(IList->getInit(Index)))
2287     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2288                         StructuredList, StructuredIndex);
2289   else
2290     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2291                           StructuredList, StructuredIndex);
2292 }
2293 
2294 /// Expand a field designator that refers to a member of an
2295 /// anonymous struct or union into a series of field designators that
2296 /// refers to the field within the appropriate subobject.
2297 ///
ExpandAnonymousFieldDesignator(Sema & SemaRef,DesignatedInitExpr * DIE,unsigned DesigIdx,IndirectFieldDecl * IndirectField)2298 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2299                                            DesignatedInitExpr *DIE,
2300                                            unsigned DesigIdx,
2301                                            IndirectFieldDecl *IndirectField) {
2302   typedef DesignatedInitExpr::Designator Designator;
2303 
2304   // Build the replacement designators.
2305   SmallVector<Designator, 4> Replacements;
2306   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2307        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2308     if (PI + 1 == PE)
2309       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2310                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2311                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2312     else
2313       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2314                                         SourceLocation(), SourceLocation()));
2315     assert(isa<FieldDecl>(*PI));
2316     Replacements.back().setField(cast<FieldDecl>(*PI));
2317   }
2318 
2319   // Expand the current designator into the set of replacement
2320   // designators, so we have a full subobject path down to where the
2321   // member of the anonymous struct/union is actually stored.
2322   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2323                         &Replacements[0] + Replacements.size());
2324 }
2325 
CloneDesignatedInitExpr(Sema & SemaRef,DesignatedInitExpr * DIE)2326 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2327                                                    DesignatedInitExpr *DIE) {
2328   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2329   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2330   for (unsigned I = 0; I < NumIndexExprs; ++I)
2331     IndexExprs[I] = DIE->getSubExpr(I + 1);
2332   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2333                                     IndexExprs,
2334                                     DIE->getEqualOrColonLoc(),
2335                                     DIE->usesGNUSyntax(), DIE->getInit());
2336 }
2337 
2338 namespace {
2339 
2340 // Callback to only accept typo corrections that are for field members of
2341 // the given struct or union.
2342 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2343  public:
FieldInitializerValidatorCCC(RecordDecl * RD)2344   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2345       : Record(RD) {}
2346 
ValidateCandidate(const TypoCorrection & candidate)2347   bool ValidateCandidate(const TypoCorrection &candidate) override {
2348     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2349     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2350   }
2351 
clone()2352   std::unique_ptr<CorrectionCandidateCallback> clone() override {
2353     return std::make_unique<FieldInitializerValidatorCCC>(*this);
2354   }
2355 
2356  private:
2357   RecordDecl *Record;
2358 };
2359 
2360 } // end anonymous namespace
2361 
2362 /// Check the well-formedness of a C99 designated initializer.
2363 ///
2364 /// Determines whether the designated initializer @p DIE, which
2365 /// resides at the given @p Index within the initializer list @p
2366 /// IList, is well-formed for a current object of type @p DeclType
2367 /// (C99 6.7.8). The actual subobject that this designator refers to
2368 /// within the current subobject is returned in either
2369 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2370 ///
2371 /// @param IList  The initializer list in which this designated
2372 /// initializer occurs.
2373 ///
2374 /// @param DIE The designated initializer expression.
2375 ///
2376 /// @param DesigIdx  The index of the current designator.
2377 ///
2378 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2379 /// into which the designation in @p DIE should refer.
2380 ///
2381 /// @param NextField  If non-NULL and the first designator in @p DIE is
2382 /// a field, this will be set to the field declaration corresponding
2383 /// to the field named by the designator. On input, this is expected to be
2384 /// the next field that would be initialized in the absence of designation,
2385 /// if the complete object being initialized is a struct.
2386 ///
2387 /// @param NextElementIndex  If non-NULL and the first designator in @p
2388 /// DIE is an array designator or GNU array-range designator, this
2389 /// will be set to the last index initialized by this designator.
2390 ///
2391 /// @param Index  Index into @p IList where the designated initializer
2392 /// @p DIE occurs.
2393 ///
2394 /// @param StructuredList  The initializer list expression that
2395 /// describes all of the subobject initializers in the order they'll
2396 /// actually be initialized.
2397 ///
2398 /// @returns true if there was an error, false otherwise.
2399 bool
CheckDesignatedInitializer(const InitializedEntity & Entity,InitListExpr * IList,DesignatedInitExpr * DIE,unsigned DesigIdx,QualType & CurrentObjectType,RecordDecl::field_iterator * NextField,llvm::APSInt * NextElementIndex,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool FinishSubobjectInit,bool TopLevelObject)2400 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2401                                             InitListExpr *IList,
2402                                             DesignatedInitExpr *DIE,
2403                                             unsigned DesigIdx,
2404                                             QualType &CurrentObjectType,
2405                                           RecordDecl::field_iterator *NextField,
2406                                             llvm::APSInt *NextElementIndex,
2407                                             unsigned &Index,
2408                                             InitListExpr *StructuredList,
2409                                             unsigned &StructuredIndex,
2410                                             bool FinishSubobjectInit,
2411                                             bool TopLevelObject) {
2412   if (DesigIdx == DIE->size()) {
2413     // C++20 designated initialization can result in direct-list-initialization
2414     // of the designated subobject. This is the only way that we can end up
2415     // performing direct initialization as part of aggregate initialization, so
2416     // it needs special handling.
2417     if (DIE->isDirectInit()) {
2418       Expr *Init = DIE->getInit();
2419       assert(isa<InitListExpr>(Init) &&
2420              "designator result in direct non-list initialization?");
2421       InitializationKind Kind = InitializationKind::CreateDirectList(
2422           DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2423       InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2424                                  /*TopLevelOfInitList*/ true);
2425       if (StructuredList) {
2426         ExprResult Result = VerifyOnly
2427                                 ? getDummyInit()
2428                                 : Seq.Perform(SemaRef, Entity, Kind, Init);
2429         UpdateStructuredListElement(StructuredList, StructuredIndex,
2430                                     Result.get());
2431       }
2432       ++Index;
2433       return !Seq;
2434     }
2435 
2436     // Check the actual initialization for the designated object type.
2437     bool prevHadError = hadError;
2438 
2439     // Temporarily remove the designator expression from the
2440     // initializer list that the child calls see, so that we don't try
2441     // to re-process the designator.
2442     unsigned OldIndex = Index;
2443     IList->setInit(OldIndex, DIE->getInit());
2444 
2445     CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList,
2446                         StructuredIndex, /*DirectlyDesignated=*/true);
2447 
2448     // Restore the designated initializer expression in the syntactic
2449     // form of the initializer list.
2450     if (IList->getInit(OldIndex) != DIE->getInit())
2451       DIE->setInit(IList->getInit(OldIndex));
2452     IList->setInit(OldIndex, DIE);
2453 
2454     return hadError && !prevHadError;
2455   }
2456 
2457   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2458   bool IsFirstDesignator = (DesigIdx == 0);
2459   if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
2460     // Determine the structural initializer list that corresponds to the
2461     // current subobject.
2462     if (IsFirstDesignator)
2463       StructuredList = FullyStructuredList;
2464     else {
2465       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2466           StructuredList->getInit(StructuredIndex) : nullptr;
2467       if (!ExistingInit && StructuredList->hasArrayFiller())
2468         ExistingInit = StructuredList->getArrayFiller();
2469 
2470       if (!ExistingInit)
2471         StructuredList = getStructuredSubobjectInit(
2472             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2473             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2474       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2475         StructuredList = Result;
2476       else {
2477         // We are creating an initializer list that initializes the
2478         // subobjects of the current object, but there was already an
2479         // initialization that completely initialized the current
2480         // subobject, e.g., by a compound literal:
2481         //
2482         // struct X { int a, b; };
2483         // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2484         //
2485         // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2486         // designated initializer re-initializes only its current object
2487         // subobject [0].b.
2488         diagnoseInitOverride(ExistingInit,
2489                              SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2490                              /*FullyOverwritten=*/false);
2491 
2492         if (!VerifyOnly) {
2493           if (DesignatedInitUpdateExpr *E =
2494                   dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2495             StructuredList = E->getUpdater();
2496           else {
2497             DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2498                 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2499                                          ExistingInit, DIE->getEndLoc());
2500             StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2501             StructuredList = DIUE->getUpdater();
2502           }
2503         } else {
2504           // We don't need to track the structured representation of a
2505           // designated init update of an already-fully-initialized object in
2506           // verify-only mode. The only reason we would need the structure is
2507           // to determine where the uninitialized "holes" are, and in this
2508           // case, we know there aren't any and we can't introduce any.
2509           StructuredList = nullptr;
2510         }
2511       }
2512     }
2513   }
2514 
2515   if (D->isFieldDesignator()) {
2516     // C99 6.7.8p7:
2517     //
2518     //   If a designator has the form
2519     //
2520     //      . identifier
2521     //
2522     //   then the current object (defined below) shall have
2523     //   structure or union type and the identifier shall be the
2524     //   name of a member of that type.
2525     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2526     if (!RT) {
2527       SourceLocation Loc = D->getDotLoc();
2528       if (Loc.isInvalid())
2529         Loc = D->getFieldLoc();
2530       if (!VerifyOnly)
2531         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2532           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2533       ++Index;
2534       return true;
2535     }
2536 
2537     FieldDecl *KnownField = D->getField();
2538     if (!KnownField) {
2539       IdentifierInfo *FieldName = D->getFieldName();
2540       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2541       for (NamedDecl *ND : Lookup) {
2542         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2543           KnownField = FD;
2544           break;
2545         }
2546         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2547           // In verify mode, don't modify the original.
2548           if (VerifyOnly)
2549             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2550           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2551           D = DIE->getDesignator(DesigIdx);
2552           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2553           break;
2554         }
2555       }
2556       if (!KnownField) {
2557         if (VerifyOnly) {
2558           ++Index;
2559           return true;  // No typo correction when just trying this out.
2560         }
2561 
2562         // Name lookup found something, but it wasn't a field.
2563         if (!Lookup.empty()) {
2564           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2565             << FieldName;
2566           SemaRef.Diag(Lookup.front()->getLocation(),
2567                        diag::note_field_designator_found);
2568           ++Index;
2569           return true;
2570         }
2571 
2572         // Name lookup didn't find anything.
2573         // Determine whether this was a typo for another field name.
2574         FieldInitializerValidatorCCC CCC(RT->getDecl());
2575         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2576                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2577                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2578                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2579           SemaRef.diagnoseTypo(
2580               Corrected,
2581               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2582                 << FieldName << CurrentObjectType);
2583           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2584           hadError = true;
2585         } else {
2586           // Typo correction didn't find anything.
2587           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2588             << FieldName << CurrentObjectType;
2589           ++Index;
2590           return true;
2591         }
2592       }
2593     }
2594 
2595     unsigned NumBases = 0;
2596     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2597       NumBases = CXXRD->getNumBases();
2598 
2599     unsigned FieldIndex = NumBases;
2600 
2601     for (auto *FI : RT->getDecl()->fields()) {
2602       if (FI->isUnnamedBitfield())
2603         continue;
2604       if (declaresSameEntity(KnownField, FI)) {
2605         KnownField = FI;
2606         break;
2607       }
2608       ++FieldIndex;
2609     }
2610 
2611     RecordDecl::field_iterator Field =
2612         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2613 
2614     // All of the fields of a union are located at the same place in
2615     // the initializer list.
2616     if (RT->getDecl()->isUnion()) {
2617       FieldIndex = 0;
2618       if (StructuredList) {
2619         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2620         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2621           assert(StructuredList->getNumInits() == 1
2622                  && "A union should never have more than one initializer!");
2623 
2624           Expr *ExistingInit = StructuredList->getInit(0);
2625           if (ExistingInit) {
2626             // We're about to throw away an initializer, emit warning.
2627             diagnoseInitOverride(
2628                 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2629           }
2630 
2631           // remove existing initializer
2632           StructuredList->resizeInits(SemaRef.Context, 0);
2633           StructuredList->setInitializedFieldInUnion(nullptr);
2634         }
2635 
2636         StructuredList->setInitializedFieldInUnion(*Field);
2637       }
2638     }
2639 
2640     // Make sure we can use this declaration.
2641     bool InvalidUse;
2642     if (VerifyOnly)
2643       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2644     else
2645       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2646     if (InvalidUse) {
2647       ++Index;
2648       return true;
2649     }
2650 
2651     // C++20 [dcl.init.list]p3:
2652     //   The ordered identifiers in the designators of the designated-
2653     //   initializer-list shall form a subsequence of the ordered identifiers
2654     //   in the direct non-static data members of T.
2655     //
2656     // Note that this is not a condition on forming the aggregate
2657     // initialization, only on actually performing initialization,
2658     // so it is not checked in VerifyOnly mode.
2659     //
2660     // FIXME: This is the only reordering diagnostic we produce, and it only
2661     // catches cases where we have a top-level field designator that jumps
2662     // backwards. This is the only such case that is reachable in an
2663     // otherwise-valid C++20 program, so is the only case that's required for
2664     // conformance, but for consistency, we should diagnose all the other
2665     // cases where a designator takes us backwards too.
2666     if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2667         NextField &&
2668         (*NextField == RT->getDecl()->field_end() ||
2669          (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2670       // Find the field that we just initialized.
2671       FieldDecl *PrevField = nullptr;
2672       for (auto FI = RT->getDecl()->field_begin();
2673            FI != RT->getDecl()->field_end(); ++FI) {
2674         if (FI->isUnnamedBitfield())
2675           continue;
2676         if (*NextField != RT->getDecl()->field_end() &&
2677             declaresSameEntity(*FI, **NextField))
2678           break;
2679         PrevField = *FI;
2680       }
2681 
2682       if (PrevField &&
2683           PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2684         SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2685             << KnownField << PrevField << DIE->getSourceRange();
2686 
2687         unsigned OldIndex = NumBases + PrevField->getFieldIndex();
2688         if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2689           if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2690             SemaRef.Diag(PrevInit->getBeginLoc(),
2691                          diag::note_previous_field_init)
2692                 << PrevField << PrevInit->getSourceRange();
2693           }
2694         }
2695       }
2696     }
2697 
2698 
2699     // Update the designator with the field declaration.
2700     if (!VerifyOnly)
2701       D->setField(*Field);
2702 
2703     // Make sure that our non-designated initializer list has space
2704     // for a subobject corresponding to this field.
2705     if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2706       StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2707 
2708     // This designator names a flexible array member.
2709     if (Field->getType()->isIncompleteArrayType()) {
2710       bool Invalid = false;
2711       if ((DesigIdx + 1) != DIE->size()) {
2712         // We can't designate an object within the flexible array
2713         // member (because GCC doesn't allow it).
2714         if (!VerifyOnly) {
2715           DesignatedInitExpr::Designator *NextD
2716             = DIE->getDesignator(DesigIdx + 1);
2717           SemaRef.Diag(NextD->getBeginLoc(),
2718                        diag::err_designator_into_flexible_array_member)
2719               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2720           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2721             << *Field;
2722         }
2723         Invalid = true;
2724       }
2725 
2726       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2727           !isa<StringLiteral>(DIE->getInit())) {
2728         // The initializer is not an initializer list.
2729         if (!VerifyOnly) {
2730           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2731                        diag::err_flexible_array_init_needs_braces)
2732               << DIE->getInit()->getSourceRange();
2733           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2734             << *Field;
2735         }
2736         Invalid = true;
2737       }
2738 
2739       // Check GNU flexible array initializer.
2740       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2741                                              TopLevelObject))
2742         Invalid = true;
2743 
2744       if (Invalid) {
2745         ++Index;
2746         return true;
2747       }
2748 
2749       // Initialize the array.
2750       bool prevHadError = hadError;
2751       unsigned newStructuredIndex = FieldIndex;
2752       unsigned OldIndex = Index;
2753       IList->setInit(Index, DIE->getInit());
2754 
2755       InitializedEntity MemberEntity =
2756         InitializedEntity::InitializeMember(*Field, &Entity);
2757       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2758                           StructuredList, newStructuredIndex);
2759 
2760       IList->setInit(OldIndex, DIE);
2761       if (hadError && !prevHadError) {
2762         ++Field;
2763         ++FieldIndex;
2764         if (NextField)
2765           *NextField = Field;
2766         StructuredIndex = FieldIndex;
2767         return true;
2768       }
2769     } else {
2770       // Recurse to check later designated subobjects.
2771       QualType FieldType = Field->getType();
2772       unsigned newStructuredIndex = FieldIndex;
2773 
2774       InitializedEntity MemberEntity =
2775         InitializedEntity::InitializeMember(*Field, &Entity);
2776       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2777                                      FieldType, nullptr, nullptr, Index,
2778                                      StructuredList, newStructuredIndex,
2779                                      FinishSubobjectInit, false))
2780         return true;
2781     }
2782 
2783     // Find the position of the next field to be initialized in this
2784     // subobject.
2785     ++Field;
2786     ++FieldIndex;
2787 
2788     // If this the first designator, our caller will continue checking
2789     // the rest of this struct/class/union subobject.
2790     if (IsFirstDesignator) {
2791       if (NextField)
2792         *NextField = Field;
2793       StructuredIndex = FieldIndex;
2794       return false;
2795     }
2796 
2797     if (!FinishSubobjectInit)
2798       return false;
2799 
2800     // We've already initialized something in the union; we're done.
2801     if (RT->getDecl()->isUnion())
2802       return hadError;
2803 
2804     // Check the remaining fields within this class/struct/union subobject.
2805     bool prevHadError = hadError;
2806 
2807     auto NoBases =
2808         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2809                                         CXXRecordDecl::base_class_iterator());
2810     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2811                           false, Index, StructuredList, FieldIndex);
2812     return hadError && !prevHadError;
2813   }
2814 
2815   // C99 6.7.8p6:
2816   //
2817   //   If a designator has the form
2818   //
2819   //      [ constant-expression ]
2820   //
2821   //   then the current object (defined below) shall have array
2822   //   type and the expression shall be an integer constant
2823   //   expression. If the array is of unknown size, any
2824   //   nonnegative value is valid.
2825   //
2826   // Additionally, cope with the GNU extension that permits
2827   // designators of the form
2828   //
2829   //      [ constant-expression ... constant-expression ]
2830   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2831   if (!AT) {
2832     if (!VerifyOnly)
2833       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2834         << CurrentObjectType;
2835     ++Index;
2836     return true;
2837   }
2838 
2839   Expr *IndexExpr = nullptr;
2840   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2841   if (D->isArrayDesignator()) {
2842     IndexExpr = DIE->getArrayIndex(*D);
2843     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2844     DesignatedEndIndex = DesignatedStartIndex;
2845   } else {
2846     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2847 
2848     DesignatedStartIndex =
2849       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2850     DesignatedEndIndex =
2851       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2852     IndexExpr = DIE->getArrayRangeEnd(*D);
2853 
2854     // Codegen can't handle evaluating array range designators that have side
2855     // effects, because we replicate the AST value for each initialized element.
2856     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2857     // elements with something that has a side effect, so codegen can emit an
2858     // "error unsupported" error instead of miscompiling the app.
2859     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2860         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2861       FullyStructuredList->sawArrayRangeDesignator();
2862   }
2863 
2864   if (isa<ConstantArrayType>(AT)) {
2865     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2866     DesignatedStartIndex
2867       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2868     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2869     DesignatedEndIndex
2870       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2871     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2872     if (DesignatedEndIndex >= MaxElements) {
2873       if (!VerifyOnly)
2874         SemaRef.Diag(IndexExpr->getBeginLoc(),
2875                      diag::err_array_designator_too_large)
2876             << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2877             << IndexExpr->getSourceRange();
2878       ++Index;
2879       return true;
2880     }
2881   } else {
2882     unsigned DesignatedIndexBitWidth =
2883       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2884     DesignatedStartIndex =
2885       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2886     DesignatedEndIndex =
2887       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2888     DesignatedStartIndex.setIsUnsigned(true);
2889     DesignatedEndIndex.setIsUnsigned(true);
2890   }
2891 
2892   bool IsStringLiteralInitUpdate =
2893       StructuredList && StructuredList->isStringLiteralInit();
2894   if (IsStringLiteralInitUpdate && VerifyOnly) {
2895     // We're just verifying an update to a string literal init. We don't need
2896     // to split the string up into individual characters to do that.
2897     StructuredList = nullptr;
2898   } else if (IsStringLiteralInitUpdate) {
2899     // We're modifying a string literal init; we have to decompose the string
2900     // so we can modify the individual characters.
2901     ASTContext &Context = SemaRef.Context;
2902     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2903 
2904     // Compute the character type
2905     QualType CharTy = AT->getElementType();
2906 
2907     // Compute the type of the integer literals.
2908     QualType PromotedCharTy = CharTy;
2909     if (CharTy->isPromotableIntegerType())
2910       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2911     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2912 
2913     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2914       // Get the length of the string.
2915       uint64_t StrLen = SL->getLength();
2916       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2917         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2918       StructuredList->resizeInits(Context, StrLen);
2919 
2920       // Build a literal for each character in the string, and put them into
2921       // the init list.
2922       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2923         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2924         Expr *Init = new (Context) IntegerLiteral(
2925             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2926         if (CharTy != PromotedCharTy)
2927           Init =
2928               ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init,
2929                                        nullptr, VK_RValue, FPOptionsOverride());
2930         StructuredList->updateInit(Context, i, Init);
2931       }
2932     } else {
2933       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2934       std::string Str;
2935       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2936 
2937       // Get the length of the string.
2938       uint64_t StrLen = Str.size();
2939       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2940         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2941       StructuredList->resizeInits(Context, StrLen);
2942 
2943       // Build a literal for each character in the string, and put them into
2944       // the init list.
2945       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2946         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2947         Expr *Init = new (Context) IntegerLiteral(
2948             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2949         if (CharTy != PromotedCharTy)
2950           Init =
2951               ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init,
2952                                        nullptr, VK_RValue, FPOptionsOverride());
2953         StructuredList->updateInit(Context, i, Init);
2954       }
2955     }
2956   }
2957 
2958   // Make sure that our non-designated initializer list has space
2959   // for a subobject corresponding to this array element.
2960   if (StructuredList &&
2961       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2962     StructuredList->resizeInits(SemaRef.Context,
2963                                 DesignatedEndIndex.getZExtValue() + 1);
2964 
2965   // Repeatedly perform subobject initializations in the range
2966   // [DesignatedStartIndex, DesignatedEndIndex].
2967 
2968   // Move to the next designator
2969   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2970   unsigned OldIndex = Index;
2971 
2972   InitializedEntity ElementEntity =
2973     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2974 
2975   while (DesignatedStartIndex <= DesignatedEndIndex) {
2976     // Recurse to check later designated subobjects.
2977     QualType ElementType = AT->getElementType();
2978     Index = OldIndex;
2979 
2980     ElementEntity.setElementIndex(ElementIndex);
2981     if (CheckDesignatedInitializer(
2982             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2983             nullptr, Index, StructuredList, ElementIndex,
2984             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2985             false))
2986       return true;
2987 
2988     // Move to the next index in the array that we'll be initializing.
2989     ++DesignatedStartIndex;
2990     ElementIndex = DesignatedStartIndex.getZExtValue();
2991   }
2992 
2993   // If this the first designator, our caller will continue checking
2994   // the rest of this array subobject.
2995   if (IsFirstDesignator) {
2996     if (NextElementIndex)
2997       *NextElementIndex = DesignatedStartIndex;
2998     StructuredIndex = ElementIndex;
2999     return false;
3000   }
3001 
3002   if (!FinishSubobjectInit)
3003     return false;
3004 
3005   // Check the remaining elements within this array subobject.
3006   bool prevHadError = hadError;
3007   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
3008                  /*SubobjectIsDesignatorContext=*/false, Index,
3009                  StructuredList, ElementIndex);
3010   return hadError && !prevHadError;
3011 }
3012 
3013 // Get the structured initializer list for a subobject of type
3014 // @p CurrentObjectType.
3015 InitListExpr *
getStructuredSubobjectInit(InitListExpr * IList,unsigned Index,QualType CurrentObjectType,InitListExpr * StructuredList,unsigned StructuredIndex,SourceRange InitRange,bool IsFullyOverwritten)3016 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
3017                                             QualType CurrentObjectType,
3018                                             InitListExpr *StructuredList,
3019                                             unsigned StructuredIndex,
3020                                             SourceRange InitRange,
3021                                             bool IsFullyOverwritten) {
3022   if (!StructuredList)
3023     return nullptr;
3024 
3025   Expr *ExistingInit = nullptr;
3026   if (StructuredIndex < StructuredList->getNumInits())
3027     ExistingInit = StructuredList->getInit(StructuredIndex);
3028 
3029   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
3030     // There might have already been initializers for subobjects of the current
3031     // object, but a subsequent initializer list will overwrite the entirety
3032     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
3033     //
3034     // struct P { char x[6]; };
3035     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
3036     //
3037     // The first designated initializer is ignored, and l.x is just "f".
3038     if (!IsFullyOverwritten)
3039       return Result;
3040 
3041   if (ExistingInit) {
3042     // We are creating an initializer list that initializes the
3043     // subobjects of the current object, but there was already an
3044     // initialization that completely initialized the current
3045     // subobject:
3046     //
3047     // struct X { int a, b; };
3048     // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3049     //
3050     // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3051     // designated initializer overwrites the [0].b initializer
3052     // from the prior initialization.
3053     //
3054     // When the existing initializer is an expression rather than an
3055     // initializer list, we cannot decompose and update it in this way.
3056     // For example:
3057     //
3058     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3059     //
3060     // This case is handled by CheckDesignatedInitializer.
3061     diagnoseInitOverride(ExistingInit, InitRange);
3062   }
3063 
3064   unsigned ExpectedNumInits = 0;
3065   if (Index < IList->getNumInits()) {
3066     if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3067       ExpectedNumInits = Init->getNumInits();
3068     else
3069       ExpectedNumInits = IList->getNumInits() - Index;
3070   }
3071 
3072   InitListExpr *Result =
3073       createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3074 
3075   // Link this new initializer list into the structured initializer
3076   // lists.
3077   StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3078   return Result;
3079 }
3080 
3081 InitListExpr *
createInitListExpr(QualType CurrentObjectType,SourceRange InitRange,unsigned ExpectedNumInits)3082 InitListChecker::createInitListExpr(QualType CurrentObjectType,
3083                                     SourceRange InitRange,
3084                                     unsigned ExpectedNumInits) {
3085   InitListExpr *Result
3086     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
3087                                          InitRange.getBegin(), None,
3088                                          InitRange.getEnd());
3089 
3090   QualType ResultType = CurrentObjectType;
3091   if (!ResultType->isArrayType())
3092     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3093   Result->setType(ResultType);
3094 
3095   // Pre-allocate storage for the structured initializer list.
3096   unsigned NumElements = 0;
3097 
3098   if (const ArrayType *AType
3099       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3100     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3101       NumElements = CAType->getSize().getZExtValue();
3102       // Simple heuristic so that we don't allocate a very large
3103       // initializer with many empty entries at the end.
3104       if (NumElements > ExpectedNumInits)
3105         NumElements = 0;
3106     }
3107   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3108     NumElements = VType->getNumElements();
3109   } else if (CurrentObjectType->isRecordType()) {
3110     NumElements = numStructUnionElements(CurrentObjectType);
3111   }
3112 
3113   Result->reserveInits(SemaRef.Context, NumElements);
3114 
3115   return Result;
3116 }
3117 
3118 /// Update the initializer at index @p StructuredIndex within the
3119 /// structured initializer list to the value @p expr.
UpdateStructuredListElement(InitListExpr * StructuredList,unsigned & StructuredIndex,Expr * expr)3120 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3121                                                   unsigned &StructuredIndex,
3122                                                   Expr *expr) {
3123   // No structured initializer list to update
3124   if (!StructuredList)
3125     return;
3126 
3127   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3128                                                   StructuredIndex, expr)) {
3129     // This initializer overwrites a previous initializer.
3130     // No need to diagnose when `expr` is nullptr because a more relevant
3131     // diagnostic has already been issued and this diagnostic is potentially
3132     // noise.
3133     if (expr)
3134       diagnoseInitOverride(PrevInit, expr->getSourceRange());
3135   }
3136 
3137   ++StructuredIndex;
3138 }
3139 
3140 /// Determine whether we can perform aggregate initialization for the purposes
3141 /// of overload resolution.
CanPerformAggregateInitializationForOverloadResolution(const InitializedEntity & Entity,InitListExpr * From)3142 bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3143     const InitializedEntity &Entity, InitListExpr *From) {
3144   QualType Type = Entity.getType();
3145   InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3146                         /*TreatUnavailableAsInvalid=*/false,
3147                         /*InOverloadResolution=*/true);
3148   return !Check.HadError();
3149 }
3150 
3151 /// Check that the given Index expression is a valid array designator
3152 /// value. This is essentially just a wrapper around
3153 /// VerifyIntegerConstantExpression that also checks for negative values
3154 /// and produces a reasonable diagnostic if there is a
3155 /// failure. Returns the index expression, possibly with an implicit cast
3156 /// added, on success.  If everything went okay, Value will receive the
3157 /// value of the constant expression.
3158 static ExprResult
CheckArrayDesignatorExpr(Sema & S,Expr * Index,llvm::APSInt & Value)3159 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3160   SourceLocation Loc = Index->getBeginLoc();
3161 
3162   // Make sure this is an integer constant expression.
3163   ExprResult Result =
3164       S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold);
3165   if (Result.isInvalid())
3166     return Result;
3167 
3168   if (Value.isSigned() && Value.isNegative())
3169     return S.Diag(Loc, diag::err_array_designator_negative)
3170       << Value.toString(10) << Index->getSourceRange();
3171 
3172   Value.setIsUnsigned(true);
3173   return Result;
3174 }
3175 
ActOnDesignatedInitializer(Designation & Desig,SourceLocation EqualOrColonLoc,bool GNUSyntax,ExprResult Init)3176 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3177                                             SourceLocation EqualOrColonLoc,
3178                                             bool GNUSyntax,
3179                                             ExprResult Init) {
3180   typedef DesignatedInitExpr::Designator ASTDesignator;
3181 
3182   bool Invalid = false;
3183   SmallVector<ASTDesignator, 32> Designators;
3184   SmallVector<Expr *, 32> InitExpressions;
3185 
3186   // Build designators and check array designator expressions.
3187   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3188     const Designator &D = Desig.getDesignator(Idx);
3189     switch (D.getKind()) {
3190     case Designator::FieldDesignator:
3191       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
3192                                           D.getFieldLoc()));
3193       break;
3194 
3195     case Designator::ArrayDesignator: {
3196       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3197       llvm::APSInt IndexValue;
3198       if (!Index->isTypeDependent() && !Index->isValueDependent())
3199         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3200       if (!Index)
3201         Invalid = true;
3202       else {
3203         Designators.push_back(ASTDesignator(InitExpressions.size(),
3204                                             D.getLBracketLoc(),
3205                                             D.getRBracketLoc()));
3206         InitExpressions.push_back(Index);
3207       }
3208       break;
3209     }
3210 
3211     case Designator::ArrayRangeDesignator: {
3212       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3213       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3214       llvm::APSInt StartValue;
3215       llvm::APSInt EndValue;
3216       bool StartDependent = StartIndex->isTypeDependent() ||
3217                             StartIndex->isValueDependent();
3218       bool EndDependent = EndIndex->isTypeDependent() ||
3219                           EndIndex->isValueDependent();
3220       if (!StartDependent)
3221         StartIndex =
3222             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3223       if (!EndDependent)
3224         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3225 
3226       if (!StartIndex || !EndIndex)
3227         Invalid = true;
3228       else {
3229         // Make sure we're comparing values with the same bit width.
3230         if (StartDependent || EndDependent) {
3231           // Nothing to compute.
3232         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3233           EndValue = EndValue.extend(StartValue.getBitWidth());
3234         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3235           StartValue = StartValue.extend(EndValue.getBitWidth());
3236 
3237         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3238           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3239             << StartValue.toString(10) << EndValue.toString(10)
3240             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3241           Invalid = true;
3242         } else {
3243           Designators.push_back(ASTDesignator(InitExpressions.size(),
3244                                               D.getLBracketLoc(),
3245                                               D.getEllipsisLoc(),
3246                                               D.getRBracketLoc()));
3247           InitExpressions.push_back(StartIndex);
3248           InitExpressions.push_back(EndIndex);
3249         }
3250       }
3251       break;
3252     }
3253     }
3254   }
3255 
3256   if (Invalid || Init.isInvalid())
3257     return ExprError();
3258 
3259   // Clear out the expressions within the designation.
3260   Desig.ClearExprs(*this);
3261 
3262   return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3263                                     EqualOrColonLoc, GNUSyntax,
3264                                     Init.getAs<Expr>());
3265 }
3266 
3267 //===----------------------------------------------------------------------===//
3268 // Initialization entity
3269 //===----------------------------------------------------------------------===//
3270 
InitializedEntity(ASTContext & Context,unsigned Index,const InitializedEntity & Parent)3271 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3272                                      const InitializedEntity &Parent)
3273   : Parent(&Parent), Index(Index)
3274 {
3275   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3276     Kind = EK_ArrayElement;
3277     Type = AT->getElementType();
3278   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3279     Kind = EK_VectorElement;
3280     Type = VT->getElementType();
3281   } else {
3282     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3283     assert(CT && "Unexpected type");
3284     Kind = EK_ComplexElement;
3285     Type = CT->getElementType();
3286   }
3287 }
3288 
3289 InitializedEntity
InitializeBase(ASTContext & Context,const CXXBaseSpecifier * Base,bool IsInheritedVirtualBase,const InitializedEntity * Parent)3290 InitializedEntity::InitializeBase(ASTContext &Context,
3291                                   const CXXBaseSpecifier *Base,
3292                                   bool IsInheritedVirtualBase,
3293                                   const InitializedEntity *Parent) {
3294   InitializedEntity Result;
3295   Result.Kind = EK_Base;
3296   Result.Parent = Parent;
3297   Result.Base = {Base, IsInheritedVirtualBase};
3298   Result.Type = Base->getType();
3299   return Result;
3300 }
3301 
getName() const3302 DeclarationName InitializedEntity::getName() const {
3303   switch (getKind()) {
3304   case EK_Parameter:
3305   case EK_Parameter_CF_Audited: {
3306     ParmVarDecl *D = Parameter.getPointer();
3307     return (D ? D->getDeclName() : DeclarationName());
3308   }
3309 
3310   case EK_Variable:
3311   case EK_Member:
3312   case EK_Binding:
3313   case EK_TemplateParameter:
3314     return Variable.VariableOrMember->getDeclName();
3315 
3316   case EK_LambdaCapture:
3317     return DeclarationName(Capture.VarID);
3318 
3319   case EK_Result:
3320   case EK_StmtExprResult:
3321   case EK_Exception:
3322   case EK_New:
3323   case EK_Temporary:
3324   case EK_Base:
3325   case EK_Delegating:
3326   case EK_ArrayElement:
3327   case EK_VectorElement:
3328   case EK_ComplexElement:
3329   case EK_BlockElement:
3330   case EK_LambdaToBlockConversionBlockElement:
3331   case EK_CompoundLiteralInit:
3332   case EK_RelatedResult:
3333     return DeclarationName();
3334   }
3335 
3336   llvm_unreachable("Invalid EntityKind!");
3337 }
3338 
getDecl() const3339 ValueDecl *InitializedEntity::getDecl() const {
3340   switch (getKind()) {
3341   case EK_Variable:
3342   case EK_Member:
3343   case EK_Binding:
3344   case EK_TemplateParameter:
3345     return Variable.VariableOrMember;
3346 
3347   case EK_Parameter:
3348   case EK_Parameter_CF_Audited:
3349     return Parameter.getPointer();
3350 
3351   case EK_Result:
3352   case EK_StmtExprResult:
3353   case EK_Exception:
3354   case EK_New:
3355   case EK_Temporary:
3356   case EK_Base:
3357   case EK_Delegating:
3358   case EK_ArrayElement:
3359   case EK_VectorElement:
3360   case EK_ComplexElement:
3361   case EK_BlockElement:
3362   case EK_LambdaToBlockConversionBlockElement:
3363   case EK_LambdaCapture:
3364   case EK_CompoundLiteralInit:
3365   case EK_RelatedResult:
3366     return nullptr;
3367   }
3368 
3369   llvm_unreachable("Invalid EntityKind!");
3370 }
3371 
allowsNRVO() const3372 bool InitializedEntity::allowsNRVO() const {
3373   switch (getKind()) {
3374   case EK_Result:
3375   case EK_Exception:
3376     return LocAndNRVO.NRVO;
3377 
3378   case EK_StmtExprResult:
3379   case EK_Variable:
3380   case EK_Parameter:
3381   case EK_Parameter_CF_Audited:
3382   case EK_TemplateParameter:
3383   case EK_Member:
3384   case EK_Binding:
3385   case EK_New:
3386   case EK_Temporary:
3387   case EK_CompoundLiteralInit:
3388   case EK_Base:
3389   case EK_Delegating:
3390   case EK_ArrayElement:
3391   case EK_VectorElement:
3392   case EK_ComplexElement:
3393   case EK_BlockElement:
3394   case EK_LambdaToBlockConversionBlockElement:
3395   case EK_LambdaCapture:
3396   case EK_RelatedResult:
3397     break;
3398   }
3399 
3400   return false;
3401 }
3402 
dumpImpl(raw_ostream & OS) const3403 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3404   assert(getParent() != this);
3405   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3406   for (unsigned I = 0; I != Depth; ++I)
3407     OS << "`-";
3408 
3409   switch (getKind()) {
3410   case EK_Variable: OS << "Variable"; break;
3411   case EK_Parameter: OS << "Parameter"; break;
3412   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3413     break;
3414   case EK_TemplateParameter: OS << "TemplateParameter"; break;
3415   case EK_Result: OS << "Result"; break;
3416   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3417   case EK_Exception: OS << "Exception"; break;
3418   case EK_Member: OS << "Member"; break;
3419   case EK_Binding: OS << "Binding"; break;
3420   case EK_New: OS << "New"; break;
3421   case EK_Temporary: OS << "Temporary"; break;
3422   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3423   case EK_RelatedResult: OS << "RelatedResult"; break;
3424   case EK_Base: OS << "Base"; break;
3425   case EK_Delegating: OS << "Delegating"; break;
3426   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3427   case EK_VectorElement: OS << "VectorElement " << Index; break;
3428   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3429   case EK_BlockElement: OS << "Block"; break;
3430   case EK_LambdaToBlockConversionBlockElement:
3431     OS << "Block (lambda)";
3432     break;
3433   case EK_LambdaCapture:
3434     OS << "LambdaCapture ";
3435     OS << DeclarationName(Capture.VarID);
3436     break;
3437   }
3438 
3439   if (auto *D = getDecl()) {
3440     OS << " ";
3441     D->printQualifiedName(OS);
3442   }
3443 
3444   OS << " '" << getType().getAsString() << "'\n";
3445 
3446   return Depth + 1;
3447 }
3448 
dump() const3449 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3450   dumpImpl(llvm::errs());
3451 }
3452 
3453 //===----------------------------------------------------------------------===//
3454 // Initialization sequence
3455 //===----------------------------------------------------------------------===//
3456 
Destroy()3457 void InitializationSequence::Step::Destroy() {
3458   switch (Kind) {
3459   case SK_ResolveAddressOfOverloadedFunction:
3460   case SK_CastDerivedToBaseRValue:
3461   case SK_CastDerivedToBaseXValue:
3462   case SK_CastDerivedToBaseLValue:
3463   case SK_BindReference:
3464   case SK_BindReferenceToTemporary:
3465   case SK_FinalCopy:
3466   case SK_ExtraneousCopyToTemporary:
3467   case SK_UserConversion:
3468   case SK_QualificationConversionRValue:
3469   case SK_QualificationConversionXValue:
3470   case SK_QualificationConversionLValue:
3471   case SK_FunctionReferenceConversion:
3472   case SK_AtomicConversion:
3473   case SK_ListInitialization:
3474   case SK_UnwrapInitList:
3475   case SK_RewrapInitList:
3476   case SK_ConstructorInitialization:
3477   case SK_ConstructorInitializationFromList:
3478   case SK_ZeroInitialization:
3479   case SK_CAssignment:
3480   case SK_StringInit:
3481   case SK_ObjCObjectConversion:
3482   case SK_ArrayLoopIndex:
3483   case SK_ArrayLoopInit:
3484   case SK_ArrayInit:
3485   case SK_GNUArrayInit:
3486   case SK_ParenthesizedArrayInit:
3487   case SK_PassByIndirectCopyRestore:
3488   case SK_PassByIndirectRestore:
3489   case SK_ProduceObjCObject:
3490   case SK_StdInitializerList:
3491   case SK_StdInitializerListConstructorCall:
3492   case SK_OCLSamplerInit:
3493   case SK_OCLZeroOpaqueType:
3494     break;
3495 
3496   case SK_ConversionSequence:
3497   case SK_ConversionSequenceNoNarrowing:
3498     delete ICS;
3499   }
3500 }
3501 
isDirectReferenceBinding() const3502 bool InitializationSequence::isDirectReferenceBinding() const {
3503   // There can be some lvalue adjustments after the SK_BindReference step.
3504   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3505     if (I->Kind == SK_BindReference)
3506       return true;
3507     if (I->Kind == SK_BindReferenceToTemporary)
3508       return false;
3509   }
3510   return false;
3511 }
3512 
isAmbiguous() const3513 bool InitializationSequence::isAmbiguous() const {
3514   if (!Failed())
3515     return false;
3516 
3517   switch (getFailureKind()) {
3518   case FK_TooManyInitsForReference:
3519   case FK_ParenthesizedListInitForReference:
3520   case FK_ArrayNeedsInitList:
3521   case FK_ArrayNeedsInitListOrStringLiteral:
3522   case FK_ArrayNeedsInitListOrWideStringLiteral:
3523   case FK_NarrowStringIntoWideCharArray:
3524   case FK_WideStringIntoCharArray:
3525   case FK_IncompatWideStringIntoWideChar:
3526   case FK_PlainStringIntoUTF8Char:
3527   case FK_UTF8StringIntoPlainChar:
3528   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3529   case FK_NonConstLValueReferenceBindingToTemporary:
3530   case FK_NonConstLValueReferenceBindingToBitfield:
3531   case FK_NonConstLValueReferenceBindingToVectorElement:
3532   case FK_NonConstLValueReferenceBindingToMatrixElement:
3533   case FK_NonConstLValueReferenceBindingToUnrelated:
3534   case FK_RValueReferenceBindingToLValue:
3535   case FK_ReferenceAddrspaceMismatchTemporary:
3536   case FK_ReferenceInitDropsQualifiers:
3537   case FK_ReferenceInitFailed:
3538   case FK_ConversionFailed:
3539   case FK_ConversionFromPropertyFailed:
3540   case FK_TooManyInitsForScalar:
3541   case FK_ParenthesizedListInitForScalar:
3542   case FK_ReferenceBindingToInitList:
3543   case FK_InitListBadDestinationType:
3544   case FK_DefaultInitOfConst:
3545   case FK_Incomplete:
3546   case FK_ArrayTypeMismatch:
3547   case FK_NonConstantArrayInit:
3548   case FK_ListInitializationFailed:
3549   case FK_VariableLengthArrayHasInitializer:
3550   case FK_PlaceholderType:
3551   case FK_ExplicitConstructor:
3552   case FK_AddressOfUnaddressableFunction:
3553     return false;
3554 
3555   case FK_ReferenceInitOverloadFailed:
3556   case FK_UserConversionOverloadFailed:
3557   case FK_ConstructorOverloadFailed:
3558   case FK_ListConstructorOverloadFailed:
3559     return FailedOverloadResult == OR_Ambiguous;
3560   }
3561 
3562   llvm_unreachable("Invalid EntityKind!");
3563 }
3564 
isConstructorInitialization() const3565 bool InitializationSequence::isConstructorInitialization() const {
3566   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3567 }
3568 
3569 void
3570 InitializationSequence
AddAddressOverloadResolutionStep(FunctionDecl * Function,DeclAccessPair Found,bool HadMultipleCandidates)3571 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3572                                    DeclAccessPair Found,
3573                                    bool HadMultipleCandidates) {
3574   Step S;
3575   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3576   S.Type = Function->getType();
3577   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3578   S.Function.Function = Function;
3579   S.Function.FoundDecl = Found;
3580   Steps.push_back(S);
3581 }
3582 
AddDerivedToBaseCastStep(QualType BaseType,ExprValueKind VK)3583 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3584                                                       ExprValueKind VK) {
3585   Step S;
3586   switch (VK) {
3587   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3588   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3589   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3590   }
3591   S.Type = BaseType;
3592   Steps.push_back(S);
3593 }
3594 
AddReferenceBindingStep(QualType T,bool BindingTemporary)3595 void InitializationSequence::AddReferenceBindingStep(QualType T,
3596                                                      bool BindingTemporary) {
3597   Step S;
3598   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3599   S.Type = T;
3600   Steps.push_back(S);
3601 }
3602 
AddFinalCopy(QualType T)3603 void InitializationSequence::AddFinalCopy(QualType T) {
3604   Step S;
3605   S.Kind = SK_FinalCopy;
3606   S.Type = T;
3607   Steps.push_back(S);
3608 }
3609 
AddExtraneousCopyToTemporary(QualType T)3610 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3611   Step S;
3612   S.Kind = SK_ExtraneousCopyToTemporary;
3613   S.Type = T;
3614   Steps.push_back(S);
3615 }
3616 
3617 void
AddUserConversionStep(FunctionDecl * Function,DeclAccessPair FoundDecl,QualType T,bool HadMultipleCandidates)3618 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3619                                               DeclAccessPair FoundDecl,
3620                                               QualType T,
3621                                               bool HadMultipleCandidates) {
3622   Step S;
3623   S.Kind = SK_UserConversion;
3624   S.Type = T;
3625   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3626   S.Function.Function = Function;
3627   S.Function.FoundDecl = FoundDecl;
3628   Steps.push_back(S);
3629 }
3630 
AddQualificationConversionStep(QualType Ty,ExprValueKind VK)3631 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3632                                                             ExprValueKind VK) {
3633   Step S;
3634   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3635   switch (VK) {
3636   case VK_RValue:
3637     S.Kind = SK_QualificationConversionRValue;
3638     break;
3639   case VK_XValue:
3640     S.Kind = SK_QualificationConversionXValue;
3641     break;
3642   case VK_LValue:
3643     S.Kind = SK_QualificationConversionLValue;
3644     break;
3645   }
3646   S.Type = Ty;
3647   Steps.push_back(S);
3648 }
3649 
AddFunctionReferenceConversionStep(QualType Ty)3650 void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) {
3651   Step S;
3652   S.Kind = SK_FunctionReferenceConversion;
3653   S.Type = Ty;
3654   Steps.push_back(S);
3655 }
3656 
AddAtomicConversionStep(QualType Ty)3657 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3658   Step S;
3659   S.Kind = SK_AtomicConversion;
3660   S.Type = Ty;
3661   Steps.push_back(S);
3662 }
3663 
AddConversionSequenceStep(const ImplicitConversionSequence & ICS,QualType T,bool TopLevelOfInitList)3664 void InitializationSequence::AddConversionSequenceStep(
3665     const ImplicitConversionSequence &ICS, QualType T,
3666     bool TopLevelOfInitList) {
3667   Step S;
3668   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3669                               : SK_ConversionSequence;
3670   S.Type = T;
3671   S.ICS = new ImplicitConversionSequence(ICS);
3672   Steps.push_back(S);
3673 }
3674 
AddListInitializationStep(QualType T)3675 void InitializationSequence::AddListInitializationStep(QualType T) {
3676   Step S;
3677   S.Kind = SK_ListInitialization;
3678   S.Type = T;
3679   Steps.push_back(S);
3680 }
3681 
AddConstructorInitializationStep(DeclAccessPair FoundDecl,CXXConstructorDecl * Constructor,QualType T,bool HadMultipleCandidates,bool FromInitList,bool AsInitList)3682 void InitializationSequence::AddConstructorInitializationStep(
3683     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3684     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3685   Step S;
3686   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3687                                      : SK_ConstructorInitializationFromList
3688                         : SK_ConstructorInitialization;
3689   S.Type = T;
3690   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3691   S.Function.Function = Constructor;
3692   S.Function.FoundDecl = FoundDecl;
3693   Steps.push_back(S);
3694 }
3695 
AddZeroInitializationStep(QualType T)3696 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3697   Step S;
3698   S.Kind = SK_ZeroInitialization;
3699   S.Type = T;
3700   Steps.push_back(S);
3701 }
3702 
AddCAssignmentStep(QualType T)3703 void InitializationSequence::AddCAssignmentStep(QualType T) {
3704   Step S;
3705   S.Kind = SK_CAssignment;
3706   S.Type = T;
3707   Steps.push_back(S);
3708 }
3709 
AddStringInitStep(QualType T)3710 void InitializationSequence::AddStringInitStep(QualType T) {
3711   Step S;
3712   S.Kind = SK_StringInit;
3713   S.Type = T;
3714   Steps.push_back(S);
3715 }
3716 
AddObjCObjectConversionStep(QualType T)3717 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3718   Step S;
3719   S.Kind = SK_ObjCObjectConversion;
3720   S.Type = T;
3721   Steps.push_back(S);
3722 }
3723 
AddArrayInitStep(QualType T,bool IsGNUExtension)3724 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3725   Step S;
3726   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3727   S.Type = T;
3728   Steps.push_back(S);
3729 }
3730 
AddArrayInitLoopStep(QualType T,QualType EltT)3731 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3732   Step S;
3733   S.Kind = SK_ArrayLoopIndex;
3734   S.Type = EltT;
3735   Steps.insert(Steps.begin(), S);
3736 
3737   S.Kind = SK_ArrayLoopInit;
3738   S.Type = T;
3739   Steps.push_back(S);
3740 }
3741 
AddParenthesizedArrayInitStep(QualType T)3742 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3743   Step S;
3744   S.Kind = SK_ParenthesizedArrayInit;
3745   S.Type = T;
3746   Steps.push_back(S);
3747 }
3748 
AddPassByIndirectCopyRestoreStep(QualType type,bool shouldCopy)3749 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3750                                                               bool shouldCopy) {
3751   Step s;
3752   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3753                        : SK_PassByIndirectRestore);
3754   s.Type = type;
3755   Steps.push_back(s);
3756 }
3757 
AddProduceObjCObjectStep(QualType T)3758 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3759   Step S;
3760   S.Kind = SK_ProduceObjCObject;
3761   S.Type = T;
3762   Steps.push_back(S);
3763 }
3764 
AddStdInitializerListConstructionStep(QualType T)3765 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3766   Step S;
3767   S.Kind = SK_StdInitializerList;
3768   S.Type = T;
3769   Steps.push_back(S);
3770 }
3771 
AddOCLSamplerInitStep(QualType T)3772 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3773   Step S;
3774   S.Kind = SK_OCLSamplerInit;
3775   S.Type = T;
3776   Steps.push_back(S);
3777 }
3778 
AddOCLZeroOpaqueTypeStep(QualType T)3779 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3780   Step S;
3781   S.Kind = SK_OCLZeroOpaqueType;
3782   S.Type = T;
3783   Steps.push_back(S);
3784 }
3785 
RewrapReferenceInitList(QualType T,InitListExpr * Syntactic)3786 void InitializationSequence::RewrapReferenceInitList(QualType T,
3787                                                      InitListExpr *Syntactic) {
3788   assert(Syntactic->getNumInits() == 1 &&
3789          "Can only rewrap trivial init lists.");
3790   Step S;
3791   S.Kind = SK_UnwrapInitList;
3792   S.Type = Syntactic->getInit(0)->getType();
3793   Steps.insert(Steps.begin(), S);
3794 
3795   S.Kind = SK_RewrapInitList;
3796   S.Type = T;
3797   S.WrappingSyntacticList = Syntactic;
3798   Steps.push_back(S);
3799 }
3800 
SetOverloadFailure(FailureKind Failure,OverloadingResult Result)3801 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3802                                                 OverloadingResult Result) {
3803   setSequenceKind(FailedSequence);
3804   this->Failure = Failure;
3805   this->FailedOverloadResult = Result;
3806 }
3807 
3808 //===----------------------------------------------------------------------===//
3809 // Attempt initialization
3810 //===----------------------------------------------------------------------===//
3811 
3812 /// Tries to add a zero initializer. Returns true if that worked.
3813 static bool
maybeRecoverWithZeroInitialization(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)3814 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3815                                    const InitializedEntity &Entity) {
3816   if (Entity.getKind() != InitializedEntity::EK_Variable)
3817     return false;
3818 
3819   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3820   if (VD->getInit() || VD->getEndLoc().isMacroID())
3821     return false;
3822 
3823   QualType VariableTy = VD->getType().getCanonicalType();
3824   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3825   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3826   if (!Init.empty()) {
3827     Sequence.AddZeroInitializationStep(Entity.getType());
3828     Sequence.SetZeroInitializationFixit(Init, Loc);
3829     return true;
3830   }
3831   return false;
3832 }
3833 
MaybeProduceObjCObject(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)3834 static void MaybeProduceObjCObject(Sema &S,
3835                                    InitializationSequence &Sequence,
3836                                    const InitializedEntity &Entity) {
3837   if (!S.getLangOpts().ObjCAutoRefCount) return;
3838 
3839   /// When initializing a parameter, produce the value if it's marked
3840   /// __attribute__((ns_consumed)).
3841   if (Entity.isParameterKind()) {
3842     if (!Entity.isParameterConsumed())
3843       return;
3844 
3845     assert(Entity.getType()->isObjCRetainableType() &&
3846            "consuming an object of unretainable type?");
3847     Sequence.AddProduceObjCObjectStep(Entity.getType());
3848 
3849   /// When initializing a return value, if the return type is a
3850   /// retainable type, then returns need to immediately retain the
3851   /// object.  If an autorelease is required, it will be done at the
3852   /// last instant.
3853   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3854              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3855     if (!Entity.getType()->isObjCRetainableType())
3856       return;
3857 
3858     Sequence.AddProduceObjCObjectStep(Entity.getType());
3859   }
3860 }
3861 
3862 static void TryListInitialization(Sema &S,
3863                                   const InitializedEntity &Entity,
3864                                   const InitializationKind &Kind,
3865                                   InitListExpr *InitList,
3866                                   InitializationSequence &Sequence,
3867                                   bool TreatUnavailableAsInvalid);
3868 
3869 /// When initializing from init list via constructor, handle
3870 /// initialization of an object of type std::initializer_list<T>.
3871 ///
3872 /// \return true if we have handled initialization of an object of type
3873 /// std::initializer_list<T>, false otherwise.
TryInitializerListConstruction(Sema & S,InitListExpr * List,QualType DestType,InitializationSequence & Sequence,bool TreatUnavailableAsInvalid)3874 static bool TryInitializerListConstruction(Sema &S,
3875                                            InitListExpr *List,
3876                                            QualType DestType,
3877                                            InitializationSequence &Sequence,
3878                                            bool TreatUnavailableAsInvalid) {
3879   QualType E;
3880   if (!S.isStdInitializerList(DestType, &E))
3881     return false;
3882 
3883   if (!S.isCompleteType(List->getExprLoc(), E)) {
3884     Sequence.setIncompleteTypeFailure(E);
3885     return true;
3886   }
3887 
3888   // Try initializing a temporary array from the init list.
3889   QualType ArrayType = S.Context.getConstantArrayType(
3890       E.withConst(),
3891       llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3892                   List->getNumInits()),
3893       nullptr, clang::ArrayType::Normal, 0);
3894   InitializedEntity HiddenArray =
3895       InitializedEntity::InitializeTemporary(ArrayType);
3896   InitializationKind Kind = InitializationKind::CreateDirectList(
3897       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3898   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3899                         TreatUnavailableAsInvalid);
3900   if (Sequence)
3901     Sequence.AddStdInitializerListConstructionStep(DestType);
3902   return true;
3903 }
3904 
3905 /// Determine if the constructor has the signature of a copy or move
3906 /// constructor for the type T of the class in which it was found. That is,
3907 /// determine if its first parameter is of type T or reference to (possibly
3908 /// cv-qualified) T.
hasCopyOrMoveCtorParam(ASTContext & Ctx,const ConstructorInfo & Info)3909 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3910                                    const ConstructorInfo &Info) {
3911   if (Info.Constructor->getNumParams() == 0)
3912     return false;
3913 
3914   QualType ParmT =
3915       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3916   QualType ClassT =
3917       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3918 
3919   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3920 }
3921 
3922 static OverloadingResult
ResolveConstructorOverload(Sema & S,SourceLocation DeclLoc,MultiExprArg Args,OverloadCandidateSet & CandidateSet,QualType DestType,DeclContext::lookup_result Ctors,OverloadCandidateSet::iterator & Best,bool CopyInitializing,bool AllowExplicit,bool OnlyListConstructors,bool IsListInit,bool SecondStepOfCopyInit=false)3923 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3924                            MultiExprArg Args,
3925                            OverloadCandidateSet &CandidateSet,
3926                            QualType DestType,
3927                            DeclContext::lookup_result Ctors,
3928                            OverloadCandidateSet::iterator &Best,
3929                            bool CopyInitializing, bool AllowExplicit,
3930                            bool OnlyListConstructors, bool IsListInit,
3931                            bool SecondStepOfCopyInit = false) {
3932   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3933   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3934 
3935   for (NamedDecl *D : Ctors) {
3936     auto Info = getConstructorInfo(D);
3937     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3938       continue;
3939 
3940     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3941       continue;
3942 
3943     // C++11 [over.best.ics]p4:
3944     //   ... and the constructor or user-defined conversion function is a
3945     //   candidate by
3946     //   - 13.3.1.3, when the argument is the temporary in the second step
3947     //     of a class copy-initialization, or
3948     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3949     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3950     //     one element that is itself an initializer list, and the target is
3951     //     the first parameter of a constructor of class X, and the conversion
3952     //     is to X or reference to (possibly cv-qualified X),
3953     //   user-defined conversion sequences are not considered.
3954     bool SuppressUserConversions =
3955         SecondStepOfCopyInit ||
3956         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3957          hasCopyOrMoveCtorParam(S.Context, Info));
3958 
3959     if (Info.ConstructorTmpl)
3960       S.AddTemplateOverloadCandidate(
3961           Info.ConstructorTmpl, Info.FoundDecl,
3962           /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3963           /*PartialOverloading=*/false, AllowExplicit);
3964     else {
3965       // C++ [over.match.copy]p1:
3966       //   - When initializing a temporary to be bound to the first parameter
3967       //     of a constructor [for type T] that takes a reference to possibly
3968       //     cv-qualified T as its first argument, called with a single
3969       //     argument in the context of direct-initialization, explicit
3970       //     conversion functions are also considered.
3971       // FIXME: What if a constructor template instantiates to such a signature?
3972       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3973                                Args.size() == 1 &&
3974                                hasCopyOrMoveCtorParam(S.Context, Info);
3975       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3976                              CandidateSet, SuppressUserConversions,
3977                              /*PartialOverloading=*/false, AllowExplicit,
3978                              AllowExplicitConv);
3979     }
3980   }
3981 
3982   // FIXME: Work around a bug in C++17 guaranteed copy elision.
3983   //
3984   // When initializing an object of class type T by constructor
3985   // ([over.match.ctor]) or by list-initialization ([over.match.list])
3986   // from a single expression of class type U, conversion functions of
3987   // U that convert to the non-reference type cv T are candidates.
3988   // Explicit conversion functions are only candidates during
3989   // direct-initialization.
3990   //
3991   // Note: SecondStepOfCopyInit is only ever true in this case when
3992   // evaluating whether to produce a C++98 compatibility warning.
3993   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3994       !SecondStepOfCopyInit) {
3995     Expr *Initializer = Args[0];
3996     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3997     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3998       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3999       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4000         NamedDecl *D = *I;
4001         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4002         D = D->getUnderlyingDecl();
4003 
4004         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4005         CXXConversionDecl *Conv;
4006         if (ConvTemplate)
4007           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4008         else
4009           Conv = cast<CXXConversionDecl>(D);
4010 
4011         if (ConvTemplate)
4012           S.AddTemplateConversionCandidate(
4013               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4014               CandidateSet, AllowExplicit, AllowExplicit,
4015               /*AllowResultConversion*/ false);
4016         else
4017           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
4018                                    DestType, CandidateSet, AllowExplicit,
4019                                    AllowExplicit,
4020                                    /*AllowResultConversion*/ false);
4021       }
4022     }
4023   }
4024 
4025   // Perform overload resolution and return the result.
4026   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
4027 }
4028 
4029 /// Attempt initialization by constructor (C++ [dcl.init]), which
4030 /// enumerates the constructors of the initialized entity and performs overload
4031 /// resolution to select the best.
4032 /// \param DestType       The destination class type.
4033 /// \param DestArrayType  The destination type, which is either DestType or
4034 ///                       a (possibly multidimensional) array of DestType.
4035 /// \param IsListInit     Is this list-initialization?
4036 /// \param IsInitListCopy Is this non-list-initialization resulting from a
4037 ///                       list-initialization from {x} where x is the same
4038 ///                       type as the entity?
TryConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType DestType,QualType DestArrayType,InitializationSequence & Sequence,bool IsListInit=false,bool IsInitListCopy=false)4039 static void TryConstructorInitialization(Sema &S,
4040                                          const InitializedEntity &Entity,
4041                                          const InitializationKind &Kind,
4042                                          MultiExprArg Args, QualType DestType,
4043                                          QualType DestArrayType,
4044                                          InitializationSequence &Sequence,
4045                                          bool IsListInit = false,
4046                                          bool IsInitListCopy = false) {
4047   assert(((!IsListInit && !IsInitListCopy) ||
4048           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
4049          "IsListInit/IsInitListCopy must come with a single initializer list "
4050          "argument.");
4051   InitListExpr *ILE =
4052       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
4053   MultiExprArg UnwrappedArgs =
4054       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
4055 
4056   // The type we're constructing needs to be complete.
4057   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
4058     Sequence.setIncompleteTypeFailure(DestType);
4059     return;
4060   }
4061 
4062   // C++17 [dcl.init]p17:
4063   //     - If the initializer expression is a prvalue and the cv-unqualified
4064   //       version of the source type is the same class as the class of the
4065   //       destination, the initializer expression is used to initialize the
4066   //       destination object.
4067   // Per DR (no number yet), this does not apply when initializing a base
4068   // class or delegating to another constructor from a mem-initializer.
4069   // ObjC++: Lambda captured by the block in the lambda to block conversion
4070   // should avoid copy elision.
4071   if (S.getLangOpts().CPlusPlus17 &&
4072       Entity.getKind() != InitializedEntity::EK_Base &&
4073       Entity.getKind() != InitializedEntity::EK_Delegating &&
4074       Entity.getKind() !=
4075           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4076       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
4077       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4078     // Convert qualifications if necessary.
4079     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4080     if (ILE)
4081       Sequence.RewrapReferenceInitList(DestType, ILE);
4082     return;
4083   }
4084 
4085   const RecordType *DestRecordType = DestType->getAs<RecordType>();
4086   assert(DestRecordType && "Constructor initialization requires record type");
4087   CXXRecordDecl *DestRecordDecl
4088     = cast<CXXRecordDecl>(DestRecordType->getDecl());
4089 
4090   // Build the candidate set directly in the initialization sequence
4091   // structure, so that it will persist if we fail.
4092   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4093 
4094   // Determine whether we are allowed to call explicit constructors or
4095   // explicit conversion operators.
4096   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4097   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4098 
4099   //   - Otherwise, if T is a class type, constructors are considered. The
4100   //     applicable constructors are enumerated, and the best one is chosen
4101   //     through overload resolution.
4102   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4103 
4104   OverloadingResult Result = OR_No_Viable_Function;
4105   OverloadCandidateSet::iterator Best;
4106   bool AsInitializerList = false;
4107 
4108   // C++11 [over.match.list]p1, per DR1467:
4109   //   When objects of non-aggregate type T are list-initialized, such that
4110   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
4111   //   according to the rules in this section, overload resolution selects
4112   //   the constructor in two phases:
4113   //
4114   //   - Initially, the candidate functions are the initializer-list
4115   //     constructors of the class T and the argument list consists of the
4116   //     initializer list as a single argument.
4117   if (IsListInit) {
4118     AsInitializerList = true;
4119 
4120     // If the initializer list has no elements and T has a default constructor,
4121     // the first phase is omitted.
4122     if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4123       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4124                                           CandidateSet, DestType, Ctors, Best,
4125                                           CopyInitialization, AllowExplicit,
4126                                           /*OnlyListConstructors=*/true,
4127                                           IsListInit);
4128   }
4129 
4130   // C++11 [over.match.list]p1:
4131   //   - If no viable initializer-list constructor is found, overload resolution
4132   //     is performed again, where the candidate functions are all the
4133   //     constructors of the class T and the argument list consists of the
4134   //     elements of the initializer list.
4135   if (Result == OR_No_Viable_Function) {
4136     AsInitializerList = false;
4137     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4138                                         CandidateSet, DestType, Ctors, Best,
4139                                         CopyInitialization, AllowExplicit,
4140                                         /*OnlyListConstructors=*/false,
4141                                         IsListInit);
4142   }
4143   if (Result) {
4144     Sequence.SetOverloadFailure(
4145         IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed
4146                    : InitializationSequence::FK_ConstructorOverloadFailed,
4147         Result);
4148 
4149     if (Result != OR_Deleted)
4150       return;
4151   }
4152 
4153   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4154 
4155   // In C++17, ResolveConstructorOverload can select a conversion function
4156   // instead of a constructor.
4157   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4158     // Add the user-defined conversion step that calls the conversion function.
4159     QualType ConvType = CD->getConversionType();
4160     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
4161            "should not have selected this conversion function");
4162     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4163                                    HadMultipleCandidates);
4164     if (!S.Context.hasSameType(ConvType, DestType))
4165       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4166     if (IsListInit)
4167       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4168     return;
4169   }
4170 
4171   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4172   if (Result != OR_Deleted) {
4173     // C++11 [dcl.init]p6:
4174     //   If a program calls for the default initialization of an object
4175     //   of a const-qualified type T, T shall be a class type with a
4176     //   user-provided default constructor.
4177     // C++ core issue 253 proposal:
4178     //   If the implicit default constructor initializes all subobjects, no
4179     //   initializer should be required.
4180     // The 253 proposal is for example needed to process libstdc++ headers
4181     // in 5.x.
4182     if (Kind.getKind() == InitializationKind::IK_Default &&
4183         Entity.getType().isConstQualified()) {
4184       if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4185         if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4186           Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4187         return;
4188       }
4189     }
4190 
4191     // C++11 [over.match.list]p1:
4192     //   In copy-list-initialization, if an explicit constructor is chosen, the
4193     //   initializer is ill-formed.
4194     if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4195       Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4196       return;
4197     }
4198   }
4199 
4200   // [class.copy.elision]p3:
4201   // In some copy-initialization contexts, a two-stage overload resolution
4202   // is performed.
4203   // If the first overload resolution selects a deleted function, we also
4204   // need the initialization sequence to decide whether to perform the second
4205   // overload resolution.
4206   // For deleted functions in other contexts, there is no need to get the
4207   // initialization sequence.
4208   if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy)
4209     return;
4210 
4211   // Add the constructor initialization step. Any cv-qualification conversion is
4212   // subsumed by the initialization.
4213   Sequence.AddConstructorInitializationStep(
4214       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4215       IsListInit | IsInitListCopy, AsInitializerList);
4216 }
4217 
4218 static bool
ResolveOverloadedFunctionForReferenceBinding(Sema & S,Expr * Initializer,QualType & SourceType,QualType & UnqualifiedSourceType,QualType UnqualifiedTargetType,InitializationSequence & Sequence)4219 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4220                                              Expr *Initializer,
4221                                              QualType &SourceType,
4222                                              QualType &UnqualifiedSourceType,
4223                                              QualType UnqualifiedTargetType,
4224                                              InitializationSequence &Sequence) {
4225   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4226         S.Context.OverloadTy) {
4227     DeclAccessPair Found;
4228     bool HadMultipleCandidates = false;
4229     if (FunctionDecl *Fn
4230         = S.ResolveAddressOfOverloadedFunction(Initializer,
4231                                                UnqualifiedTargetType,
4232                                                false, Found,
4233                                                &HadMultipleCandidates)) {
4234       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4235                                                 HadMultipleCandidates);
4236       SourceType = Fn->getType();
4237       UnqualifiedSourceType = SourceType.getUnqualifiedType();
4238     } else if (!UnqualifiedTargetType->isRecordType()) {
4239       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4240       return true;
4241     }
4242   }
4243   return false;
4244 }
4245 
4246 static void TryReferenceInitializationCore(Sema &S,
4247                                            const InitializedEntity &Entity,
4248                                            const InitializationKind &Kind,
4249                                            Expr *Initializer,
4250                                            QualType cv1T1, QualType T1,
4251                                            Qualifiers T1Quals,
4252                                            QualType cv2T2, QualType T2,
4253                                            Qualifiers T2Quals,
4254                                            InitializationSequence &Sequence);
4255 
4256 static void TryValueInitialization(Sema &S,
4257                                    const InitializedEntity &Entity,
4258                                    const InitializationKind &Kind,
4259                                    InitializationSequence &Sequence,
4260                                    InitListExpr *InitList = nullptr);
4261 
4262 /// Attempt list initialization of a reference.
TryReferenceListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence,bool TreatUnavailableAsInvalid)4263 static void TryReferenceListInitialization(Sema &S,
4264                                            const InitializedEntity &Entity,
4265                                            const InitializationKind &Kind,
4266                                            InitListExpr *InitList,
4267                                            InitializationSequence &Sequence,
4268                                            bool TreatUnavailableAsInvalid) {
4269   // First, catch C++03 where this isn't possible.
4270   if (!S.getLangOpts().CPlusPlus11) {
4271     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4272     return;
4273   }
4274   // Can't reference initialize a compound literal.
4275   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4276     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4277     return;
4278   }
4279 
4280   QualType DestType = Entity.getType();
4281   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4282   Qualifiers T1Quals;
4283   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4284 
4285   // Reference initialization via an initializer list works thus:
4286   // If the initializer list consists of a single element that is
4287   // reference-related to the referenced type, bind directly to that element
4288   // (possibly creating temporaries).
4289   // Otherwise, initialize a temporary with the initializer list and
4290   // bind to that.
4291   if (InitList->getNumInits() == 1) {
4292     Expr *Initializer = InitList->getInit(0);
4293     QualType cv2T2 = S.getCompletedType(Initializer);
4294     Qualifiers T2Quals;
4295     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4296 
4297     // If this fails, creating a temporary wouldn't work either.
4298     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4299                                                      T1, Sequence))
4300       return;
4301 
4302     SourceLocation DeclLoc = Initializer->getBeginLoc();
4303     Sema::ReferenceCompareResult RefRelationship
4304       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4305     if (RefRelationship >= Sema::Ref_Related) {
4306       // Try to bind the reference here.
4307       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4308                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4309       if (Sequence)
4310         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4311       return;
4312     }
4313 
4314     // Update the initializer if we've resolved an overloaded function.
4315     if (Sequence.step_begin() != Sequence.step_end())
4316       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4317   }
4318   // Perform address space compatibility check.
4319   QualType cv1T1IgnoreAS = cv1T1;
4320   if (T1Quals.hasAddressSpace()) {
4321     Qualifiers T2Quals;
4322     (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals);
4323     if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4324       Sequence.SetFailed(
4325           InitializationSequence::FK_ReferenceInitDropsQualifiers);
4326       return;
4327     }
4328     // Ignore address space of reference type at this point and perform address
4329     // space conversion after the reference binding step.
4330     cv1T1IgnoreAS =
4331         S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace());
4332   }
4333   // Not reference-related. Create a temporary and bind to that.
4334   InitializedEntity TempEntity =
4335       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4336 
4337   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4338                         TreatUnavailableAsInvalid);
4339   if (Sequence) {
4340     if (DestType->isRValueReferenceType() ||
4341         (T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4342       Sequence.AddReferenceBindingStep(cv1T1IgnoreAS,
4343                                        /*BindingTemporary=*/true);
4344       if (T1Quals.hasAddressSpace())
4345         Sequence.AddQualificationConversionStep(
4346             cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue);
4347     } else
4348       Sequence.SetFailed(
4349           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4350   }
4351 }
4352 
4353 /// Attempt list initialization (C++0x [dcl.init.list])
TryListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence,bool TreatUnavailableAsInvalid)4354 static void TryListInitialization(Sema &S,
4355                                   const InitializedEntity &Entity,
4356                                   const InitializationKind &Kind,
4357                                   InitListExpr *InitList,
4358                                   InitializationSequence &Sequence,
4359                                   bool TreatUnavailableAsInvalid) {
4360   QualType DestType = Entity.getType();
4361 
4362   // C++ doesn't allow scalar initialization with more than one argument.
4363   // But C99 complex numbers are scalars and it makes sense there.
4364   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4365       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4366     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4367     return;
4368   }
4369   if (DestType->isReferenceType()) {
4370     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4371                                    TreatUnavailableAsInvalid);
4372     return;
4373   }
4374 
4375   if (DestType->isRecordType() &&
4376       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4377     Sequence.setIncompleteTypeFailure(DestType);
4378     return;
4379   }
4380 
4381   // C++11 [dcl.init.list]p3, per DR1467:
4382   // - If T is a class type and the initializer list has a single element of
4383   //   type cv U, where U is T or a class derived from T, the object is
4384   //   initialized from that element (by copy-initialization for
4385   //   copy-list-initialization, or by direct-initialization for
4386   //   direct-list-initialization).
4387   // - Otherwise, if T is a character array and the initializer list has a
4388   //   single element that is an appropriately-typed string literal
4389   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4390   //   in that section.
4391   // - Otherwise, if T is an aggregate, [...] (continue below).
4392   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4393     if (DestType->isRecordType()) {
4394       QualType InitType = InitList->getInit(0)->getType();
4395       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4396           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4397         Expr *InitListAsExpr = InitList;
4398         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4399                                      DestType, Sequence,
4400                                      /*InitListSyntax*/false,
4401                                      /*IsInitListCopy*/true);
4402         return;
4403       }
4404     }
4405     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4406       Expr *SubInit[1] = {InitList->getInit(0)};
4407       if (!isa<VariableArrayType>(DestAT) &&
4408           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4409         InitializationKind SubKind =
4410             Kind.getKind() == InitializationKind::IK_DirectList
4411                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4412                                                    InitList->getLBraceLoc(),
4413                                                    InitList->getRBraceLoc())
4414                 : Kind;
4415         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4416                                 /*TopLevelOfInitList*/ true,
4417                                 TreatUnavailableAsInvalid);
4418 
4419         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4420         // the element is not an appropriately-typed string literal, in which
4421         // case we should proceed as in C++11 (below).
4422         if (Sequence) {
4423           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4424           return;
4425         }
4426       }
4427     }
4428   }
4429 
4430   // C++11 [dcl.init.list]p3:
4431   //   - If T is an aggregate, aggregate initialization is performed.
4432   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4433       (S.getLangOpts().CPlusPlus11 &&
4434        S.isStdInitializerList(DestType, nullptr))) {
4435     if (S.getLangOpts().CPlusPlus11) {
4436       //   - Otherwise, if the initializer list has no elements and T is a
4437       //     class type with a default constructor, the object is
4438       //     value-initialized.
4439       if (InitList->getNumInits() == 0) {
4440         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4441         if (S.LookupDefaultConstructor(RD)) {
4442           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4443           return;
4444         }
4445       }
4446 
4447       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4448       //     an initializer_list object constructed [...]
4449       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4450                                          TreatUnavailableAsInvalid))
4451         return;
4452 
4453       //   - Otherwise, if T is a class type, constructors are considered.
4454       Expr *InitListAsExpr = InitList;
4455       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4456                                    DestType, Sequence, /*InitListSyntax*/true);
4457     } else
4458       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4459     return;
4460   }
4461 
4462   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4463       InitList->getNumInits() == 1) {
4464     Expr *E = InitList->getInit(0);
4465 
4466     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4467     //     the initializer-list has a single element v, and the initialization
4468     //     is direct-list-initialization, the object is initialized with the
4469     //     value T(v); if a narrowing conversion is required to convert v to
4470     //     the underlying type of T, the program is ill-formed.
4471     auto *ET = DestType->getAs<EnumType>();
4472     if (S.getLangOpts().CPlusPlus17 &&
4473         Kind.getKind() == InitializationKind::IK_DirectList &&
4474         ET && ET->getDecl()->isFixed() &&
4475         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4476         (E->getType()->isIntegralOrEnumerationType() ||
4477          E->getType()->isFloatingType())) {
4478       // There are two ways that T(v) can work when T is an enumeration type.
4479       // If there is either an implicit conversion sequence from v to T or
4480       // a conversion function that can convert from v to T, then we use that.
4481       // Otherwise, if v is of integral, enumeration, or floating-point type,
4482       // it is converted to the enumeration type via its underlying type.
4483       // There is no overlap possible between these two cases (except when the
4484       // source value is already of the destination type), and the first
4485       // case is handled by the general case for single-element lists below.
4486       ImplicitConversionSequence ICS;
4487       ICS.setStandard();
4488       ICS.Standard.setAsIdentityConversion();
4489       if (!E->isRValue())
4490         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4491       // If E is of a floating-point type, then the conversion is ill-formed
4492       // due to narrowing, but go through the motions in order to produce the
4493       // right diagnostic.
4494       ICS.Standard.Second = E->getType()->isFloatingType()
4495                                 ? ICK_Floating_Integral
4496                                 : ICK_Integral_Conversion;
4497       ICS.Standard.setFromType(E->getType());
4498       ICS.Standard.setToType(0, E->getType());
4499       ICS.Standard.setToType(1, DestType);
4500       ICS.Standard.setToType(2, DestType);
4501       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4502                                          /*TopLevelOfInitList*/true);
4503       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4504       return;
4505     }
4506 
4507     //   - Otherwise, if the initializer list has a single element of type E
4508     //     [...references are handled above...], the object or reference is
4509     //     initialized from that element (by copy-initialization for
4510     //     copy-list-initialization, or by direct-initialization for
4511     //     direct-list-initialization); if a narrowing conversion is required
4512     //     to convert the element to T, the program is ill-formed.
4513     //
4514     // Per core-24034, this is direct-initialization if we were performing
4515     // direct-list-initialization and copy-initialization otherwise.
4516     // We can't use InitListChecker for this, because it always performs
4517     // copy-initialization. This only matters if we might use an 'explicit'
4518     // conversion operator, or for the special case conversion of nullptr_t to
4519     // bool, so we only need to handle those cases.
4520     //
4521     // FIXME: Why not do this in all cases?
4522     Expr *Init = InitList->getInit(0);
4523     if (Init->getType()->isRecordType() ||
4524         (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4525       InitializationKind SubKind =
4526           Kind.getKind() == InitializationKind::IK_DirectList
4527               ? InitializationKind::CreateDirect(Kind.getLocation(),
4528                                                  InitList->getLBraceLoc(),
4529                                                  InitList->getRBraceLoc())
4530               : Kind;
4531       Expr *SubInit[1] = { Init };
4532       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4533                               /*TopLevelOfInitList*/true,
4534                               TreatUnavailableAsInvalid);
4535       if (Sequence)
4536         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4537       return;
4538     }
4539   }
4540 
4541   InitListChecker CheckInitList(S, Entity, InitList,
4542           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4543   if (CheckInitList.HadError()) {
4544     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4545     return;
4546   }
4547 
4548   // Add the list initialization step with the built init list.
4549   Sequence.AddListInitializationStep(DestType);
4550 }
4551 
4552 /// Try a reference initialization that involves calling a conversion
4553 /// function.
TryRefInitWithConversionFunction(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,bool AllowRValues,bool IsLValueRef,InitializationSequence & Sequence)4554 static OverloadingResult TryRefInitWithConversionFunction(
4555     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4556     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4557     InitializationSequence &Sequence) {
4558   QualType DestType = Entity.getType();
4559   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4560   QualType T1 = cv1T1.getUnqualifiedType();
4561   QualType cv2T2 = Initializer->getType();
4562   QualType T2 = cv2T2.getUnqualifiedType();
4563 
4564   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&
4565          "Must have incompatible references when binding via conversion");
4566 
4567   // Build the candidate set directly in the initialization sequence
4568   // structure, so that it will persist if we fail.
4569   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4570   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4571 
4572   // Determine whether we are allowed to call explicit conversion operators.
4573   // Note that none of [over.match.copy], [over.match.conv], nor
4574   // [over.match.ref] permit an explicit constructor to be chosen when
4575   // initializing a reference, not even for direct-initialization.
4576   bool AllowExplicitCtors = false;
4577   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4578 
4579   const RecordType *T1RecordType = nullptr;
4580   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4581       S.isCompleteType(Kind.getLocation(), T1)) {
4582     // The type we're converting to is a class type. Enumerate its constructors
4583     // to see if there is a suitable conversion.
4584     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4585 
4586     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4587       auto Info = getConstructorInfo(D);
4588       if (!Info.Constructor)
4589         continue;
4590 
4591       if (!Info.Constructor->isInvalidDecl() &&
4592           Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4593         if (Info.ConstructorTmpl)
4594           S.AddTemplateOverloadCandidate(
4595               Info.ConstructorTmpl, Info.FoundDecl,
4596               /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4597               /*SuppressUserConversions=*/true,
4598               /*PartialOverloading*/ false, AllowExplicitCtors);
4599         else
4600           S.AddOverloadCandidate(
4601               Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4602               /*SuppressUserConversions=*/true,
4603               /*PartialOverloading*/ false, AllowExplicitCtors);
4604       }
4605     }
4606   }
4607   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4608     return OR_No_Viable_Function;
4609 
4610   const RecordType *T2RecordType = nullptr;
4611   if ((T2RecordType = T2->getAs<RecordType>()) &&
4612       S.isCompleteType(Kind.getLocation(), T2)) {
4613     // The type we're converting from is a class type, enumerate its conversion
4614     // functions.
4615     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4616 
4617     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4618     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4619       NamedDecl *D = *I;
4620       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4621       if (isa<UsingShadowDecl>(D))
4622         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4623 
4624       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4625       CXXConversionDecl *Conv;
4626       if (ConvTemplate)
4627         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4628       else
4629         Conv = cast<CXXConversionDecl>(D);
4630 
4631       // If the conversion function doesn't return a reference type,
4632       // it can't be considered for this conversion unless we're allowed to
4633       // consider rvalues.
4634       // FIXME: Do we need to make sure that we only consider conversion
4635       // candidates with reference-compatible results? That might be needed to
4636       // break recursion.
4637       if ((AllowRValues ||
4638            Conv->getConversionType()->isLValueReferenceType())) {
4639         if (ConvTemplate)
4640           S.AddTemplateConversionCandidate(
4641               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4642               CandidateSet,
4643               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4644         else
4645           S.AddConversionCandidate(
4646               Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4647               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4648       }
4649     }
4650   }
4651   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4652     return OR_No_Viable_Function;
4653 
4654   SourceLocation DeclLoc = Initializer->getBeginLoc();
4655 
4656   // Perform overload resolution. If it fails, return the failed result.
4657   OverloadCandidateSet::iterator Best;
4658   if (OverloadingResult Result
4659         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4660     return Result;
4661 
4662   FunctionDecl *Function = Best->Function;
4663   // This is the overload that will be used for this initialization step if we
4664   // use this initialization. Mark it as referenced.
4665   Function->setReferenced();
4666 
4667   // Compute the returned type and value kind of the conversion.
4668   QualType cv3T3;
4669   if (isa<CXXConversionDecl>(Function))
4670     cv3T3 = Function->getReturnType();
4671   else
4672     cv3T3 = T1;
4673 
4674   ExprValueKind VK = VK_RValue;
4675   if (cv3T3->isLValueReferenceType())
4676     VK = VK_LValue;
4677   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4678     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4679   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4680 
4681   // Add the user-defined conversion step.
4682   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4683   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4684                                  HadMultipleCandidates);
4685 
4686   // Determine whether we'll need to perform derived-to-base adjustments or
4687   // other conversions.
4688   Sema::ReferenceConversions RefConv;
4689   Sema::ReferenceCompareResult NewRefRelationship =
4690       S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4691 
4692   // Add the final conversion sequence, if necessary.
4693   if (NewRefRelationship == Sema::Ref_Incompatible) {
4694     assert(!isa<CXXConstructorDecl>(Function) &&
4695            "should not have conversion after constructor");
4696 
4697     ImplicitConversionSequence ICS;
4698     ICS.setStandard();
4699     ICS.Standard = Best->FinalConversion;
4700     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4701 
4702     // Every implicit conversion results in a prvalue, except for a glvalue
4703     // derived-to-base conversion, which we handle below.
4704     cv3T3 = ICS.Standard.getToType(2);
4705     VK = VK_RValue;
4706   }
4707 
4708   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4709   //   type "cv1 T4" and the temporary materialization conversion is applied.
4710   //
4711   // We adjust the cv-qualifications to match the reference regardless of
4712   // whether we have a prvalue so that the AST records the change. In this
4713   // case, T4 is "cv3 T3".
4714   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4715   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4716     Sequence.AddQualificationConversionStep(cv1T4, VK);
4717   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4718   VK = IsLValueRef ? VK_LValue : VK_XValue;
4719 
4720   if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4721     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4722   else if (RefConv & Sema::ReferenceConversions::ObjC)
4723     Sequence.AddObjCObjectConversionStep(cv1T1);
4724   else if (RefConv & Sema::ReferenceConversions::Function)
4725     Sequence.AddFunctionReferenceConversionStep(cv1T1);
4726   else if (RefConv & Sema::ReferenceConversions::Qualification) {
4727     if (!S.Context.hasSameType(cv1T4, cv1T1))
4728       Sequence.AddQualificationConversionStep(cv1T1, VK);
4729   }
4730 
4731   return OR_Success;
4732 }
4733 
4734 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4735                                            const InitializedEntity &Entity,
4736                                            Expr *CurInitExpr);
4737 
4738 /// Attempt reference initialization (C++0x [dcl.init.ref])
TryReferenceInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)4739 static void TryReferenceInitialization(Sema &S,
4740                                        const InitializedEntity &Entity,
4741                                        const InitializationKind &Kind,
4742                                        Expr *Initializer,
4743                                        InitializationSequence &Sequence) {
4744   QualType DestType = Entity.getType();
4745   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4746   Qualifiers T1Quals;
4747   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4748   QualType cv2T2 = S.getCompletedType(Initializer);
4749   Qualifiers T2Quals;
4750   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4751 
4752   // If the initializer is the address of an overloaded function, try
4753   // to resolve the overloaded function. If all goes well, T2 is the
4754   // type of the resulting function.
4755   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4756                                                    T1, Sequence))
4757     return;
4758 
4759   // Delegate everything else to a subfunction.
4760   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4761                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4762 }
4763 
4764 /// Determine whether an expression is a non-referenceable glvalue (one to
4765 /// which a reference can never bind). Attempting to bind a reference to
4766 /// such a glvalue will always create a temporary.
isNonReferenceableGLValue(Expr * E)4767 static bool isNonReferenceableGLValue(Expr *E) {
4768   return E->refersToBitField() || E->refersToVectorElement() ||
4769          E->refersToMatrixElement();
4770 }
4771 
4772 /// Reference initialization without resolving overloaded functions.
4773 ///
4774 /// We also can get here in C if we call a builtin which is declared as
4775 /// a function with a parameter of reference type (such as __builtin_va_end()).
TryReferenceInitializationCore(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,QualType cv1T1,QualType T1,Qualifiers T1Quals,QualType cv2T2,QualType T2,Qualifiers T2Quals,InitializationSequence & Sequence)4776 static void TryReferenceInitializationCore(Sema &S,
4777                                            const InitializedEntity &Entity,
4778                                            const InitializationKind &Kind,
4779                                            Expr *Initializer,
4780                                            QualType cv1T1, QualType T1,
4781                                            Qualifiers T1Quals,
4782                                            QualType cv2T2, QualType T2,
4783                                            Qualifiers T2Quals,
4784                                            InitializationSequence &Sequence) {
4785   QualType DestType = Entity.getType();
4786   SourceLocation DeclLoc = Initializer->getBeginLoc();
4787 
4788   // Compute some basic properties of the types and the initializer.
4789   bool isLValueRef = DestType->isLValueReferenceType();
4790   bool isRValueRef = !isLValueRef;
4791   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4792 
4793   Sema::ReferenceConversions RefConv;
4794   Sema::ReferenceCompareResult RefRelationship =
4795       S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4796 
4797   // C++0x [dcl.init.ref]p5:
4798   //   A reference to type "cv1 T1" is initialized by an expression of type
4799   //   "cv2 T2" as follows:
4800   //
4801   //     - If the reference is an lvalue reference and the initializer
4802   //       expression
4803   // Note the analogous bullet points for rvalue refs to functions. Because
4804   // there are no function rvalues in C++, rvalue refs to functions are treated
4805   // like lvalue refs.
4806   OverloadingResult ConvOvlResult = OR_Success;
4807   bool T1Function = T1->isFunctionType();
4808   if (isLValueRef || T1Function) {
4809     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4810         (RefRelationship == Sema::Ref_Compatible ||
4811          (Kind.isCStyleOrFunctionalCast() &&
4812           RefRelationship == Sema::Ref_Related))) {
4813       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4814       //     reference-compatible with "cv2 T2," or
4815       if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
4816                      Sema::ReferenceConversions::ObjC)) {
4817         // If we're converting the pointee, add any qualifiers first;
4818         // these qualifiers must all be top-level, so just convert to "cv1 T2".
4819         if (RefConv & (Sema::ReferenceConversions::Qualification))
4820           Sequence.AddQualificationConversionStep(
4821               S.Context.getQualifiedType(T2, T1Quals),
4822               Initializer->getValueKind());
4823         if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4824           Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4825         else
4826           Sequence.AddObjCObjectConversionStep(cv1T1);
4827       } else if (RefConv & Sema::ReferenceConversions::Qualification) {
4828         // Perform a (possibly multi-level) qualification conversion.
4829         Sequence.AddQualificationConversionStep(cv1T1,
4830                                                 Initializer->getValueKind());
4831       } else if (RefConv & Sema::ReferenceConversions::Function) {
4832         Sequence.AddFunctionReferenceConversionStep(cv1T1);
4833       }
4834 
4835       // We only create a temporary here when binding a reference to a
4836       // bit-field or vector element. Those cases are't supposed to be
4837       // handled by this bullet, but the outcome is the same either way.
4838       Sequence.AddReferenceBindingStep(cv1T1, false);
4839       return;
4840     }
4841 
4842     //     - has a class type (i.e., T2 is a class type), where T1 is not
4843     //       reference-related to T2, and can be implicitly converted to an
4844     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4845     //       with "cv3 T3" (this conversion is selected by enumerating the
4846     //       applicable conversion functions (13.3.1.6) and choosing the best
4847     //       one through overload resolution (13.3)),
4848     // If we have an rvalue ref to function type here, the rhs must be
4849     // an rvalue. DR1287 removed the "implicitly" here.
4850     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4851         (isLValueRef || InitCategory.isRValue())) {
4852       if (S.getLangOpts().CPlusPlus) {
4853         // Try conversion functions only for C++.
4854         ConvOvlResult = TryRefInitWithConversionFunction(
4855             S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4856             /*IsLValueRef*/ isLValueRef, Sequence);
4857         if (ConvOvlResult == OR_Success)
4858           return;
4859         if (ConvOvlResult != OR_No_Viable_Function)
4860           Sequence.SetOverloadFailure(
4861               InitializationSequence::FK_ReferenceInitOverloadFailed,
4862               ConvOvlResult);
4863       } else {
4864         ConvOvlResult = OR_No_Viable_Function;
4865       }
4866     }
4867   }
4868 
4869   //     - Otherwise, the reference shall be an lvalue reference to a
4870   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4871   //       shall be an rvalue reference.
4872   //       For address spaces, we interpret this to mean that an addr space
4873   //       of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4874   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4875                        T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4876     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4877       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4878     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4879       Sequence.SetOverloadFailure(
4880                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4881                                   ConvOvlResult);
4882     else if (!InitCategory.isLValue())
4883       Sequence.SetFailed(
4884           T1Quals.isAddressSpaceSupersetOf(T2Quals)
4885               ? InitializationSequence::
4886                     FK_NonConstLValueReferenceBindingToTemporary
4887               : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4888     else {
4889       InitializationSequence::FailureKind FK;
4890       switch (RefRelationship) {
4891       case Sema::Ref_Compatible:
4892         if (Initializer->refersToBitField())
4893           FK = InitializationSequence::
4894               FK_NonConstLValueReferenceBindingToBitfield;
4895         else if (Initializer->refersToVectorElement())
4896           FK = InitializationSequence::
4897               FK_NonConstLValueReferenceBindingToVectorElement;
4898         else if (Initializer->refersToMatrixElement())
4899           FK = InitializationSequence::
4900               FK_NonConstLValueReferenceBindingToMatrixElement;
4901         else
4902           llvm_unreachable("unexpected kind of compatible initializer");
4903         break;
4904       case Sema::Ref_Related:
4905         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4906         break;
4907       case Sema::Ref_Incompatible:
4908         FK = InitializationSequence::
4909             FK_NonConstLValueReferenceBindingToUnrelated;
4910         break;
4911       }
4912       Sequence.SetFailed(FK);
4913     }
4914     return;
4915   }
4916 
4917   //    - If the initializer expression
4918   //      - is an
4919   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4920   // [1z]   rvalue (but not a bit-field) or
4921   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4922   //
4923   // Note: functions are handled above and below rather than here...
4924   if (!T1Function &&
4925       (RefRelationship == Sema::Ref_Compatible ||
4926        (Kind.isCStyleOrFunctionalCast() &&
4927         RefRelationship == Sema::Ref_Related)) &&
4928       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4929        (InitCategory.isPRValue() &&
4930         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4931          T2->isArrayType())))) {
4932     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4933     if (InitCategory.isPRValue() && T2->isRecordType()) {
4934       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4935       // compiler the freedom to perform a copy here or bind to the
4936       // object, while C++0x requires that we bind directly to the
4937       // object. Hence, we always bind to the object without making an
4938       // extra copy. However, in C++03 requires that we check for the
4939       // presence of a suitable copy constructor:
4940       //
4941       //   The constructor that would be used to make the copy shall
4942       //   be callable whether or not the copy is actually done.
4943       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4944         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4945       else if (S.getLangOpts().CPlusPlus11)
4946         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4947     }
4948 
4949     // C++1z [dcl.init.ref]/5.2.1.2:
4950     //   If the converted initializer is a prvalue, its type T4 is adjusted
4951     //   to type "cv1 T4" and the temporary materialization conversion is
4952     //   applied.
4953     // Postpone address space conversions to after the temporary materialization
4954     // conversion to allow creating temporaries in the alloca address space.
4955     auto T1QualsIgnoreAS = T1Quals;
4956     auto T2QualsIgnoreAS = T2Quals;
4957     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4958       T1QualsIgnoreAS.removeAddressSpace();
4959       T2QualsIgnoreAS.removeAddressSpace();
4960     }
4961     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4962     if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4963       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4964     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4965     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4966     // Add addr space conversion if required.
4967     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4968       auto T4Quals = cv1T4.getQualifiers();
4969       T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4970       QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4971       Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4972       cv1T4 = cv1T4WithAS;
4973     }
4974 
4975     //   In any case, the reference is bound to the resulting glvalue (or to
4976     //   an appropriate base class subobject).
4977     if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4978       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4979     else if (RefConv & Sema::ReferenceConversions::ObjC)
4980       Sequence.AddObjCObjectConversionStep(cv1T1);
4981     else if (RefConv & Sema::ReferenceConversions::Qualification) {
4982       if (!S.Context.hasSameType(cv1T4, cv1T1))
4983         Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
4984     }
4985     return;
4986   }
4987 
4988   //       - has a class type (i.e., T2 is a class type), where T1 is not
4989   //         reference-related to T2, and can be implicitly converted to an
4990   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4991   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4992   //
4993   // DR1287 removes the "implicitly" here.
4994   if (T2->isRecordType()) {
4995     if (RefRelationship == Sema::Ref_Incompatible) {
4996       ConvOvlResult = TryRefInitWithConversionFunction(
4997           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4998           /*IsLValueRef*/ isLValueRef, Sequence);
4999       if (ConvOvlResult)
5000         Sequence.SetOverloadFailure(
5001             InitializationSequence::FK_ReferenceInitOverloadFailed,
5002             ConvOvlResult);
5003 
5004       return;
5005     }
5006 
5007     if (RefRelationship == Sema::Ref_Compatible &&
5008         isRValueRef && InitCategory.isLValue()) {
5009       Sequence.SetFailed(
5010         InitializationSequence::FK_RValueReferenceBindingToLValue);
5011       return;
5012     }
5013 
5014     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5015     return;
5016   }
5017 
5018   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
5019   //        from the initializer expression using the rules for a non-reference
5020   //        copy-initialization (8.5). The reference is then bound to the
5021   //        temporary. [...]
5022 
5023   // Ignore address space of reference type at this point and perform address
5024   // space conversion after the reference binding step.
5025   QualType cv1T1IgnoreAS =
5026       T1Quals.hasAddressSpace()
5027           ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
5028           : cv1T1;
5029 
5030   InitializedEntity TempEntity =
5031       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
5032 
5033   // FIXME: Why do we use an implicit conversion here rather than trying
5034   // copy-initialization?
5035   ImplicitConversionSequence ICS
5036     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
5037                               /*SuppressUserConversions=*/false,
5038                               Sema::AllowedExplicit::None,
5039                               /*FIXME:InOverloadResolution=*/false,
5040                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5041                               /*AllowObjCWritebackConversion=*/false);
5042 
5043   if (ICS.isBad()) {
5044     // FIXME: Use the conversion function set stored in ICS to turn
5045     // this into an overloading ambiguity diagnostic. However, we need
5046     // to keep that set as an OverloadCandidateSet rather than as some
5047     // other kind of set.
5048     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
5049       Sequence.SetOverloadFailure(
5050                         InitializationSequence::FK_ReferenceInitOverloadFailed,
5051                                   ConvOvlResult);
5052     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
5053       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5054     else
5055       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
5056     return;
5057   } else {
5058     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
5059   }
5060 
5061   //        [...] If T1 is reference-related to T2, cv1 must be the
5062   //        same cv-qualification as, or greater cv-qualification
5063   //        than, cv2; otherwise, the program is ill-formed.
5064   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
5065   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
5066   if ((RefRelationship == Sema::Ref_Related &&
5067        (T1CVRQuals | T2CVRQuals) != T1CVRQuals) ||
5068       !T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
5069     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5070     return;
5071   }
5072 
5073   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
5074   //   reference, the initializer expression shall not be an lvalue.
5075   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
5076       InitCategory.isLValue()) {
5077     Sequence.SetFailed(
5078                     InitializationSequence::FK_RValueReferenceBindingToLValue);
5079     return;
5080   }
5081 
5082   Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
5083 
5084   if (T1Quals.hasAddressSpace()) {
5085     if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
5086                                               LangAS::Default)) {
5087       Sequence.SetFailed(
5088           InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
5089       return;
5090     }
5091     Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
5092                                                                : VK_XValue);
5093   }
5094 }
5095 
5096 /// Attempt character array initialization from a string literal
5097 /// (C++ [dcl.init.string], C99 6.7.8).
TryStringLiteralInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)5098 static void TryStringLiteralInitialization(Sema &S,
5099                                            const InitializedEntity &Entity,
5100                                            const InitializationKind &Kind,
5101                                            Expr *Initializer,
5102                                        InitializationSequence &Sequence) {
5103   Sequence.AddStringInitStep(Entity.getType());
5104 }
5105 
5106 /// Attempt value initialization (C++ [dcl.init]p7).
TryValueInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence,InitListExpr * InitList)5107 static void TryValueInitialization(Sema &S,
5108                                    const InitializedEntity &Entity,
5109                                    const InitializationKind &Kind,
5110                                    InitializationSequence &Sequence,
5111                                    InitListExpr *InitList) {
5112   assert((!InitList || InitList->getNumInits() == 0) &&
5113          "Shouldn't use value-init for non-empty init lists");
5114 
5115   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5116   //
5117   //   To value-initialize an object of type T means:
5118   QualType T = Entity.getType();
5119 
5120   //     -- if T is an array type, then each element is value-initialized;
5121   T = S.Context.getBaseElementType(T);
5122 
5123   if (const RecordType *RT = T->getAs<RecordType>()) {
5124     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5125       bool NeedZeroInitialization = true;
5126       // C++98:
5127       // -- if T is a class type (clause 9) with a user-declared constructor
5128       //    (12.1), then the default constructor for T is called (and the
5129       //    initialization is ill-formed if T has no accessible default
5130       //    constructor);
5131       // C++11:
5132       // -- if T is a class type (clause 9) with either no default constructor
5133       //    (12.1 [class.ctor]) or a default constructor that is user-provided
5134       //    or deleted, then the object is default-initialized;
5135       //
5136       // Note that the C++11 rule is the same as the C++98 rule if there are no
5137       // defaulted or deleted constructors, so we just use it unconditionally.
5138       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5139       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5140         NeedZeroInitialization = false;
5141 
5142       // -- if T is a (possibly cv-qualified) non-union class type without a
5143       //    user-provided or deleted default constructor, then the object is
5144       //    zero-initialized and, if T has a non-trivial default constructor,
5145       //    default-initialized;
5146       // The 'non-union' here was removed by DR1502. The 'non-trivial default
5147       // constructor' part was removed by DR1507.
5148       if (NeedZeroInitialization)
5149         Sequence.AddZeroInitializationStep(Entity.getType());
5150 
5151       // C++03:
5152       // -- if T is a non-union class type without a user-declared constructor,
5153       //    then every non-static data member and base class component of T is
5154       //    value-initialized;
5155       // [...] A program that calls for [...] value-initialization of an
5156       // entity of reference type is ill-formed.
5157       //
5158       // C++11 doesn't need this handling, because value-initialization does not
5159       // occur recursively there, and the implicit default constructor is
5160       // defined as deleted in the problematic cases.
5161       if (!S.getLangOpts().CPlusPlus11 &&
5162           ClassDecl->hasUninitializedReferenceMember()) {
5163         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5164         return;
5165       }
5166 
5167       // If this is list-value-initialization, pass the empty init list on when
5168       // building the constructor call. This affects the semantics of a few
5169       // things (such as whether an explicit default constructor can be called).
5170       Expr *InitListAsExpr = InitList;
5171       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5172       bool InitListSyntax = InitList;
5173 
5174       // FIXME: Instead of creating a CXXConstructExpr of array type here,
5175       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5176       return TryConstructorInitialization(
5177           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5178     }
5179   }
5180 
5181   Sequence.AddZeroInitializationStep(Entity.getType());
5182 }
5183 
5184 /// Attempt default initialization (C++ [dcl.init]p6).
TryDefaultInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence)5185 static void TryDefaultInitialization(Sema &S,
5186                                      const InitializedEntity &Entity,
5187                                      const InitializationKind &Kind,
5188                                      InitializationSequence &Sequence) {
5189   assert(Kind.getKind() == InitializationKind::IK_Default);
5190 
5191   // C++ [dcl.init]p6:
5192   //   To default-initialize an object of type T means:
5193   //     - if T is an array type, each element is default-initialized;
5194   QualType DestType = S.Context.getBaseElementType(Entity.getType());
5195 
5196   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
5197   //       constructor for T is called (and the initialization is ill-formed if
5198   //       T has no accessible default constructor);
5199   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
5200     TryConstructorInitialization(S, Entity, Kind, None, DestType,
5201                                  Entity.getType(), Sequence);
5202     return;
5203   }
5204 
5205   //     - otherwise, no initialization is performed.
5206 
5207   //   If a program calls for the default initialization of an object of
5208   //   a const-qualified type T, T shall be a class type with a user-provided
5209   //   default constructor.
5210   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5211     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5212       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5213     return;
5214   }
5215 
5216   // If the destination type has a lifetime property, zero-initialize it.
5217   if (DestType.getQualifiers().hasObjCLifetime()) {
5218     Sequence.AddZeroInitializationStep(Entity.getType());
5219     return;
5220   }
5221 }
5222 
5223 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5224 /// which enumerates all conversion functions and performs overload resolution
5225 /// to select the best.
TryUserDefinedConversion(Sema & S,QualType DestType,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence,bool TopLevelOfInitList)5226 static void TryUserDefinedConversion(Sema &S,
5227                                      QualType DestType,
5228                                      const InitializationKind &Kind,
5229                                      Expr *Initializer,
5230                                      InitializationSequence &Sequence,
5231                                      bool TopLevelOfInitList) {
5232   assert(!DestType->isReferenceType() && "References are handled elsewhere");
5233   QualType SourceType = Initializer->getType();
5234   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
5235          "Must have a class type to perform a user-defined conversion");
5236 
5237   // Build the candidate set directly in the initialization sequence
5238   // structure, so that it will persist if we fail.
5239   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5240   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5241   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5242 
5243   // Determine whether we are allowed to call explicit constructors or
5244   // explicit conversion operators.
5245   bool AllowExplicit = Kind.AllowExplicit();
5246 
5247   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5248     // The type we're converting to is a class type. Enumerate its constructors
5249     // to see if there is a suitable conversion.
5250     CXXRecordDecl *DestRecordDecl
5251       = cast<CXXRecordDecl>(DestRecordType->getDecl());
5252 
5253     // Try to complete the type we're converting to.
5254     if (S.isCompleteType(Kind.getLocation(), DestType)) {
5255       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5256         auto Info = getConstructorInfo(D);
5257         if (!Info.Constructor)
5258           continue;
5259 
5260         if (!Info.Constructor->isInvalidDecl() &&
5261             Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5262           if (Info.ConstructorTmpl)
5263             S.AddTemplateOverloadCandidate(
5264                 Info.ConstructorTmpl, Info.FoundDecl,
5265                 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5266                 /*SuppressUserConversions=*/true,
5267                 /*PartialOverloading*/ false, AllowExplicit);
5268           else
5269             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5270                                    Initializer, CandidateSet,
5271                                    /*SuppressUserConversions=*/true,
5272                                    /*PartialOverloading*/ false, AllowExplicit);
5273         }
5274       }
5275     }
5276   }
5277 
5278   SourceLocation DeclLoc = Initializer->getBeginLoc();
5279 
5280   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5281     // The type we're converting from is a class type, enumerate its conversion
5282     // functions.
5283 
5284     // We can only enumerate the conversion functions for a complete type; if
5285     // the type isn't complete, simply skip this step.
5286     if (S.isCompleteType(DeclLoc, SourceType)) {
5287       CXXRecordDecl *SourceRecordDecl
5288         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5289 
5290       const auto &Conversions =
5291           SourceRecordDecl->getVisibleConversionFunctions();
5292       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5293         NamedDecl *D = *I;
5294         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5295         if (isa<UsingShadowDecl>(D))
5296           D = cast<UsingShadowDecl>(D)->getTargetDecl();
5297 
5298         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5299         CXXConversionDecl *Conv;
5300         if (ConvTemplate)
5301           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5302         else
5303           Conv = cast<CXXConversionDecl>(D);
5304 
5305         if (ConvTemplate)
5306           S.AddTemplateConversionCandidate(
5307               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5308               CandidateSet, AllowExplicit, AllowExplicit);
5309         else
5310           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5311                                    DestType, CandidateSet, AllowExplicit,
5312                                    AllowExplicit);
5313       }
5314     }
5315   }
5316 
5317   // Perform overload resolution. If it fails, return the failed result.
5318   OverloadCandidateSet::iterator Best;
5319   if (OverloadingResult Result
5320         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5321     Sequence.SetOverloadFailure(
5322         InitializationSequence::FK_UserConversionOverloadFailed, Result);
5323 
5324     // [class.copy.elision]p3:
5325     // In some copy-initialization contexts, a two-stage overload resolution
5326     // is performed.
5327     // If the first overload resolution selects a deleted function, we also
5328     // need the initialization sequence to decide whether to perform the second
5329     // overload resolution.
5330     if (!(Result == OR_Deleted &&
5331           Kind.getKind() == InitializationKind::IK_Copy))
5332       return;
5333   }
5334 
5335   FunctionDecl *Function = Best->Function;
5336   Function->setReferenced();
5337   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5338 
5339   if (isa<CXXConstructorDecl>(Function)) {
5340     // Add the user-defined conversion step. Any cv-qualification conversion is
5341     // subsumed by the initialization. Per DR5, the created temporary is of the
5342     // cv-unqualified type of the destination.
5343     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5344                                    DestType.getUnqualifiedType(),
5345                                    HadMultipleCandidates);
5346 
5347     // C++14 and before:
5348     //   - if the function is a constructor, the call initializes a temporary
5349     //     of the cv-unqualified version of the destination type. The [...]
5350     //     temporary [...] is then used to direct-initialize, according to the
5351     //     rules above, the object that is the destination of the
5352     //     copy-initialization.
5353     // Note that this just performs a simple object copy from the temporary.
5354     //
5355     // C++17:
5356     //   - if the function is a constructor, the call is a prvalue of the
5357     //     cv-unqualified version of the destination type whose return object
5358     //     is initialized by the constructor. The call is used to
5359     //     direct-initialize, according to the rules above, the object that
5360     //     is the destination of the copy-initialization.
5361     // Therefore we need to do nothing further.
5362     //
5363     // FIXME: Mark this copy as extraneous.
5364     if (!S.getLangOpts().CPlusPlus17)
5365       Sequence.AddFinalCopy(DestType);
5366     else if (DestType.hasQualifiers())
5367       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5368     return;
5369   }
5370 
5371   // Add the user-defined conversion step that calls the conversion function.
5372   QualType ConvType = Function->getCallResultType();
5373   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5374                                  HadMultipleCandidates);
5375 
5376   if (ConvType->getAs<RecordType>()) {
5377     //   The call is used to direct-initialize [...] the object that is the
5378     //   destination of the copy-initialization.
5379     //
5380     // In C++17, this does not call a constructor if we enter /17.6.1:
5381     //   - If the initializer expression is a prvalue and the cv-unqualified
5382     //     version of the source type is the same as the class of the
5383     //     destination [... do not make an extra copy]
5384     //
5385     // FIXME: Mark this copy as extraneous.
5386     if (!S.getLangOpts().CPlusPlus17 ||
5387         Function->getReturnType()->isReferenceType() ||
5388         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5389       Sequence.AddFinalCopy(DestType);
5390     else if (!S.Context.hasSameType(ConvType, DestType))
5391       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5392     return;
5393   }
5394 
5395   // If the conversion following the call to the conversion function
5396   // is interesting, add it as a separate step.
5397   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5398       Best->FinalConversion.Third) {
5399     ImplicitConversionSequence ICS;
5400     ICS.setStandard();
5401     ICS.Standard = Best->FinalConversion;
5402     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5403   }
5404 }
5405 
5406 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5407 /// a function with a pointer return type contains a 'return false;' statement.
5408 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5409 /// code using that header.
5410 ///
5411 /// Work around this by treating 'return false;' as zero-initializing the result
5412 /// if it's used in a pointer-returning function in a system header.
isLibstdcxxPointerReturnFalseHack(Sema & S,const InitializedEntity & Entity,const Expr * Init)5413 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5414                                               const InitializedEntity &Entity,
5415                                               const Expr *Init) {
5416   return S.getLangOpts().CPlusPlus11 &&
5417          Entity.getKind() == InitializedEntity::EK_Result &&
5418          Entity.getType()->isPointerType() &&
5419          isa<CXXBoolLiteralExpr>(Init) &&
5420          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5421          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5422 }
5423 
5424 /// The non-zero enum values here are indexes into diagnostic alternatives.
5425 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5426 
5427 /// Determines whether this expression is an acceptable ICR source.
isInvalidICRSource(ASTContext & C,Expr * e,bool isAddressOf,bool & isWeakAccess)5428 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5429                                          bool isAddressOf, bool &isWeakAccess) {
5430   // Skip parens.
5431   e = e->IgnoreParens();
5432 
5433   // Skip address-of nodes.
5434   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5435     if (op->getOpcode() == UO_AddrOf)
5436       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5437                                 isWeakAccess);
5438 
5439   // Skip certain casts.
5440   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5441     switch (ce->getCastKind()) {
5442     case CK_Dependent:
5443     case CK_BitCast:
5444     case CK_LValueBitCast:
5445     case CK_NoOp:
5446       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5447 
5448     case CK_ArrayToPointerDecay:
5449       return IIK_nonscalar;
5450 
5451     case CK_NullToPointer:
5452       return IIK_okay;
5453 
5454     default:
5455       break;
5456     }
5457 
5458   // If we have a declaration reference, it had better be a local variable.
5459   } else if (isa<DeclRefExpr>(e)) {
5460     // set isWeakAccess to true, to mean that there will be an implicit
5461     // load which requires a cleanup.
5462     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5463       isWeakAccess = true;
5464 
5465     if (!isAddressOf) return IIK_nonlocal;
5466 
5467     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5468     if (!var) return IIK_nonlocal;
5469 
5470     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5471 
5472   // If we have a conditional operator, check both sides.
5473   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5474     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5475                                                 isWeakAccess))
5476       return iik;
5477 
5478     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5479 
5480   // These are never scalar.
5481   } else if (isa<ArraySubscriptExpr>(e)) {
5482     return IIK_nonscalar;
5483 
5484   // Otherwise, it needs to be a null pointer constant.
5485   } else {
5486     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5487             ? IIK_okay : IIK_nonlocal);
5488   }
5489 
5490   return IIK_nonlocal;
5491 }
5492 
5493 /// Check whether the given expression is a valid operand for an
5494 /// indirect copy/restore.
checkIndirectCopyRestoreSource(Sema & S,Expr * src)5495 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5496   assert(src->isRValue());
5497   bool isWeakAccess = false;
5498   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5499   // If isWeakAccess to true, there will be an implicit
5500   // load which requires a cleanup.
5501   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5502     S.Cleanup.setExprNeedsCleanups(true);
5503 
5504   if (iik == IIK_okay) return;
5505 
5506   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5507     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5508     << src->getSourceRange();
5509 }
5510 
5511 /// Determine whether we have compatible array types for the
5512 /// purposes of GNU by-copy array initialization.
hasCompatibleArrayTypes(ASTContext & Context,const ArrayType * Dest,const ArrayType * Source)5513 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5514                                     const ArrayType *Source) {
5515   // If the source and destination array types are equivalent, we're
5516   // done.
5517   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5518     return true;
5519 
5520   // Make sure that the element types are the same.
5521   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5522     return false;
5523 
5524   // The only mismatch we allow is when the destination is an
5525   // incomplete array type and the source is a constant array type.
5526   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5527 }
5528 
tryObjCWritebackConversion(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity,Expr * Initializer)5529 static bool tryObjCWritebackConversion(Sema &S,
5530                                        InitializationSequence &Sequence,
5531                                        const InitializedEntity &Entity,
5532                                        Expr *Initializer) {
5533   bool ArrayDecay = false;
5534   QualType ArgType = Initializer->getType();
5535   QualType ArgPointee;
5536   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5537     ArrayDecay = true;
5538     ArgPointee = ArgArrayType->getElementType();
5539     ArgType = S.Context.getPointerType(ArgPointee);
5540   }
5541 
5542   // Handle write-back conversion.
5543   QualType ConvertedArgType;
5544   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5545                                    ConvertedArgType))
5546     return false;
5547 
5548   // We should copy unless we're passing to an argument explicitly
5549   // marked 'out'.
5550   bool ShouldCopy = true;
5551   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5552     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5553 
5554   // Do we need an lvalue conversion?
5555   if (ArrayDecay || Initializer->isGLValue()) {
5556     ImplicitConversionSequence ICS;
5557     ICS.setStandard();
5558     ICS.Standard.setAsIdentityConversion();
5559 
5560     QualType ResultType;
5561     if (ArrayDecay) {
5562       ICS.Standard.First = ICK_Array_To_Pointer;
5563       ResultType = S.Context.getPointerType(ArgPointee);
5564     } else {
5565       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5566       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5567     }
5568 
5569     Sequence.AddConversionSequenceStep(ICS, ResultType);
5570   }
5571 
5572   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5573   return true;
5574 }
5575 
TryOCLSamplerInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)5576 static bool TryOCLSamplerInitialization(Sema &S,
5577                                         InitializationSequence &Sequence,
5578                                         QualType DestType,
5579                                         Expr *Initializer) {
5580   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5581       (!Initializer->isIntegerConstantExpr(S.Context) &&
5582       !Initializer->getType()->isSamplerT()))
5583     return false;
5584 
5585   Sequence.AddOCLSamplerInitStep(DestType);
5586   return true;
5587 }
5588 
IsZeroInitializer(Expr * Initializer,Sema & S)5589 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5590   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5591     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5592 }
5593 
TryOCLZeroOpaqueTypeInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)5594 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5595                                                InitializationSequence &Sequence,
5596                                                QualType DestType,
5597                                                Expr *Initializer) {
5598   if (!S.getLangOpts().OpenCL)
5599     return false;
5600 
5601   //
5602   // OpenCL 1.2 spec, s6.12.10
5603   //
5604   // The event argument can also be used to associate the
5605   // async_work_group_copy with a previous async copy allowing
5606   // an event to be shared by multiple async copies; otherwise
5607   // event should be zero.
5608   //
5609   if (DestType->isEventT() || DestType->isQueueT()) {
5610     if (!IsZeroInitializer(Initializer, S))
5611       return false;
5612 
5613     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5614     return true;
5615   }
5616 
5617   // We should allow zero initialization for all types defined in the
5618   // cl_intel_device_side_avc_motion_estimation extension, except
5619   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5620   if (S.getOpenCLOptions().isAvailableOption(
5621           "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) &&
5622       DestType->isOCLIntelSubgroupAVCType()) {
5623     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5624         DestType->isOCLIntelSubgroupAVCMceResultType())
5625       return false;
5626     if (!IsZeroInitializer(Initializer, S))
5627       return false;
5628 
5629     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5630     return true;
5631   }
5632 
5633   return false;
5634 }
5635 
InitializationSequence(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,bool TopLevelOfInitList,bool TreatUnavailableAsInvalid)5636 InitializationSequence::InitializationSequence(
5637     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
5638     MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid)
5639     : FailedOverloadResult(OR_Success),
5640       FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5641   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5642                  TreatUnavailableAsInvalid);
5643 }
5644 
5645 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5646 /// address of that function, this returns true. Otherwise, it returns false.
isExprAnUnaddressableFunction(Sema & S,const Expr * E)5647 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5648   auto *DRE = dyn_cast<DeclRefExpr>(E);
5649   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5650     return false;
5651 
5652   return !S.checkAddressOfFunctionIsAvailable(
5653       cast<FunctionDecl>(DRE->getDecl()));
5654 }
5655 
5656 /// Determine whether we can perform an elementwise array copy for this kind
5657 /// of entity.
canPerformArrayCopy(const InitializedEntity & Entity)5658 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5659   switch (Entity.getKind()) {
5660   case InitializedEntity::EK_LambdaCapture:
5661     // C++ [expr.prim.lambda]p24:
5662     //   For array members, the array elements are direct-initialized in
5663     //   increasing subscript order.
5664     return true;
5665 
5666   case InitializedEntity::EK_Variable:
5667     // C++ [dcl.decomp]p1:
5668     //   [...] each element is copy-initialized or direct-initialized from the
5669     //   corresponding element of the assignment-expression [...]
5670     return isa<DecompositionDecl>(Entity.getDecl());
5671 
5672   case InitializedEntity::EK_Member:
5673     // C++ [class.copy.ctor]p14:
5674     //   - if the member is an array, each element is direct-initialized with
5675     //     the corresponding subobject of x
5676     return Entity.isImplicitMemberInitializer();
5677 
5678   case InitializedEntity::EK_ArrayElement:
5679     // All the above cases are intended to apply recursively, even though none
5680     // of them actually say that.
5681     if (auto *E = Entity.getParent())
5682       return canPerformArrayCopy(*E);
5683     break;
5684 
5685   default:
5686     break;
5687   }
5688 
5689   return false;
5690 }
5691 
InitializeFrom(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,bool TopLevelOfInitList,bool TreatUnavailableAsInvalid)5692 void InitializationSequence::InitializeFrom(Sema &S,
5693                                             const InitializedEntity &Entity,
5694                                             const InitializationKind &Kind,
5695                                             MultiExprArg Args,
5696                                             bool TopLevelOfInitList,
5697                                             bool TreatUnavailableAsInvalid) {
5698   ASTContext &Context = S.Context;
5699 
5700   // Eliminate non-overload placeholder types in the arguments.  We
5701   // need to do this before checking whether types are dependent
5702   // because lowering a pseudo-object expression might well give us
5703   // something of dependent type.
5704   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5705     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5706       // FIXME: should we be doing this here?
5707       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5708       if (result.isInvalid()) {
5709         SetFailed(FK_PlaceholderType);
5710         return;
5711       }
5712       Args[I] = result.get();
5713     }
5714 
5715   // C++0x [dcl.init]p16:
5716   //   The semantics of initializers are as follows. The destination type is
5717   //   the type of the object or reference being initialized and the source
5718   //   type is the type of the initializer expression. The source type is not
5719   //   defined when the initializer is a braced-init-list or when it is a
5720   //   parenthesized list of expressions.
5721   QualType DestType = Entity.getType();
5722 
5723   if (DestType->isDependentType() ||
5724       Expr::hasAnyTypeDependentArguments(Args)) {
5725     SequenceKind = DependentSequence;
5726     return;
5727   }
5728 
5729   // Almost everything is a normal sequence.
5730   setSequenceKind(NormalSequence);
5731 
5732   QualType SourceType;
5733   Expr *Initializer = nullptr;
5734   if (Args.size() == 1) {
5735     Initializer = Args[0];
5736     if (S.getLangOpts().ObjC) {
5737       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5738                                               DestType, Initializer->getType(),
5739                                               Initializer) ||
5740           S.CheckConversionToObjCLiteral(DestType, Initializer))
5741         Args[0] = Initializer;
5742     }
5743     if (!isa<InitListExpr>(Initializer))
5744       SourceType = Initializer->getType();
5745   }
5746 
5747   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5748   //       object is list-initialized (8.5.4).
5749   if (Kind.getKind() != InitializationKind::IK_Direct) {
5750     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5751       TryListInitialization(S, Entity, Kind, InitList, *this,
5752                             TreatUnavailableAsInvalid);
5753       return;
5754     }
5755   }
5756 
5757   //     - If the destination type is a reference type, see 8.5.3.
5758   if (DestType->isReferenceType()) {
5759     // C++0x [dcl.init.ref]p1:
5760     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5761     //   (8.3.2), shall be initialized by an object, or function, of type T or
5762     //   by an object that can be converted into a T.
5763     // (Therefore, multiple arguments are not permitted.)
5764     if (Args.size() != 1)
5765       SetFailed(FK_TooManyInitsForReference);
5766     // C++17 [dcl.init.ref]p5:
5767     //   A reference [...] is initialized by an expression [...] as follows:
5768     // If the initializer is not an expression, presumably we should reject,
5769     // but the standard fails to actually say so.
5770     else if (isa<InitListExpr>(Args[0]))
5771       SetFailed(FK_ParenthesizedListInitForReference);
5772     else
5773       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5774     return;
5775   }
5776 
5777   //     - If the initializer is (), the object is value-initialized.
5778   if (Kind.getKind() == InitializationKind::IK_Value ||
5779       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5780     TryValueInitialization(S, Entity, Kind, *this);
5781     return;
5782   }
5783 
5784   // Handle default initialization.
5785   if (Kind.getKind() == InitializationKind::IK_Default) {
5786     TryDefaultInitialization(S, Entity, Kind, *this);
5787     return;
5788   }
5789 
5790   //     - If the destination type is an array of characters, an array of
5791   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5792   //       initializer is a string literal, see 8.5.2.
5793   //     - Otherwise, if the destination type is an array, the program is
5794   //       ill-formed.
5795   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5796     if (Initializer && isa<VariableArrayType>(DestAT)) {
5797       SetFailed(FK_VariableLengthArrayHasInitializer);
5798       return;
5799     }
5800 
5801     if (Initializer) {
5802       switch (IsStringInit(Initializer, DestAT, Context)) {
5803       case SIF_None:
5804         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5805         return;
5806       case SIF_NarrowStringIntoWideChar:
5807         SetFailed(FK_NarrowStringIntoWideCharArray);
5808         return;
5809       case SIF_WideStringIntoChar:
5810         SetFailed(FK_WideStringIntoCharArray);
5811         return;
5812       case SIF_IncompatWideStringIntoWideChar:
5813         SetFailed(FK_IncompatWideStringIntoWideChar);
5814         return;
5815       case SIF_PlainStringIntoUTF8Char:
5816         SetFailed(FK_PlainStringIntoUTF8Char);
5817         return;
5818       case SIF_UTF8StringIntoPlainChar:
5819         SetFailed(FK_UTF8StringIntoPlainChar);
5820         return;
5821       case SIF_Other:
5822         break;
5823       }
5824     }
5825 
5826     // Some kinds of initialization permit an array to be initialized from
5827     // another array of the same type, and perform elementwise initialization.
5828     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5829         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5830                                          Entity.getType()) &&
5831         canPerformArrayCopy(Entity)) {
5832       // If source is a prvalue, use it directly.
5833       if (Initializer->getValueKind() == VK_RValue) {
5834         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5835         return;
5836       }
5837 
5838       // Emit element-at-a-time copy loop.
5839       InitializedEntity Element =
5840           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5841       QualType InitEltT =
5842           Context.getAsArrayType(Initializer->getType())->getElementType();
5843       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5844                           Initializer->getValueKind(),
5845                           Initializer->getObjectKind());
5846       Expr *OVEAsExpr = &OVE;
5847       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5848                      TreatUnavailableAsInvalid);
5849       if (!Failed())
5850         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5851       return;
5852     }
5853 
5854     // Note: as an GNU C extension, we allow initialization of an
5855     // array from a compound literal that creates an array of the same
5856     // type, so long as the initializer has no side effects.
5857     if (!S.getLangOpts().CPlusPlus && Initializer &&
5858         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5859         Initializer->getType()->isArrayType()) {
5860       const ArrayType *SourceAT
5861         = Context.getAsArrayType(Initializer->getType());
5862       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5863         SetFailed(FK_ArrayTypeMismatch);
5864       else if (Initializer->HasSideEffects(S.Context))
5865         SetFailed(FK_NonConstantArrayInit);
5866       else {
5867         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5868       }
5869     }
5870     // Note: as a GNU C++ extension, we allow list-initialization of a
5871     // class member of array type from a parenthesized initializer list.
5872     else if (S.getLangOpts().CPlusPlus &&
5873              Entity.getKind() == InitializedEntity::EK_Member &&
5874              Initializer && isa<InitListExpr>(Initializer)) {
5875       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5876                             *this, TreatUnavailableAsInvalid);
5877       AddParenthesizedArrayInitStep(DestType);
5878     } else if (DestAT->getElementType()->isCharType())
5879       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5880     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5881       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5882     else
5883       SetFailed(FK_ArrayNeedsInitList);
5884 
5885     return;
5886   }
5887 
5888   // Determine whether we should consider writeback conversions for
5889   // Objective-C ARC.
5890   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5891          Entity.isParameterKind();
5892 
5893   if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5894     return;
5895 
5896   // We're at the end of the line for C: it's either a write-back conversion
5897   // or it's a C assignment. There's no need to check anything else.
5898   if (!S.getLangOpts().CPlusPlus) {
5899     // If allowed, check whether this is an Objective-C writeback conversion.
5900     if (allowObjCWritebackConversion &&
5901         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5902       return;
5903     }
5904 
5905     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5906       return;
5907 
5908     // Handle initialization in C
5909     AddCAssignmentStep(DestType);
5910     MaybeProduceObjCObject(S, *this, Entity);
5911     return;
5912   }
5913 
5914   assert(S.getLangOpts().CPlusPlus);
5915 
5916   //     - If the destination type is a (possibly cv-qualified) class type:
5917   if (DestType->isRecordType()) {
5918     //     - If the initialization is direct-initialization, or if it is
5919     //       copy-initialization where the cv-unqualified version of the
5920     //       source type is the same class as, or a derived class of, the
5921     //       class of the destination, constructors are considered. [...]
5922     if (Kind.getKind() == InitializationKind::IK_Direct ||
5923         (Kind.getKind() == InitializationKind::IK_Copy &&
5924          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5925           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5926       TryConstructorInitialization(S, Entity, Kind, Args,
5927                                    DestType, DestType, *this);
5928     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5929     //       user-defined conversion sequences that can convert from the source
5930     //       type to the destination type or (when a conversion function is
5931     //       used) to a derived class thereof are enumerated as described in
5932     //       13.3.1.4, and the best one is chosen through overload resolution
5933     //       (13.3).
5934     else
5935       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5936                                TopLevelOfInitList);
5937     return;
5938   }
5939 
5940   assert(Args.size() >= 1 && "Zero-argument case handled above");
5941 
5942   // The remaining cases all need a source type.
5943   if (Args.size() > 1) {
5944     SetFailed(FK_TooManyInitsForScalar);
5945     return;
5946   } else if (isa<InitListExpr>(Args[0])) {
5947     SetFailed(FK_ParenthesizedListInitForScalar);
5948     return;
5949   }
5950 
5951   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5952   //      type, conversion functions are considered.
5953   if (!SourceType.isNull() && SourceType->isRecordType()) {
5954     // For a conversion to _Atomic(T) from either T or a class type derived
5955     // from T, initialize the T object then convert to _Atomic type.
5956     bool NeedAtomicConversion = false;
5957     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5958       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5959           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5960                           Atomic->getValueType())) {
5961         DestType = Atomic->getValueType();
5962         NeedAtomicConversion = true;
5963       }
5964     }
5965 
5966     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5967                              TopLevelOfInitList);
5968     MaybeProduceObjCObject(S, *this, Entity);
5969     if (!Failed() && NeedAtomicConversion)
5970       AddAtomicConversionStep(Entity.getType());
5971     return;
5972   }
5973 
5974   //    - Otherwise, if the initialization is direct-initialization, the source
5975   //    type is std::nullptr_t, and the destination type is bool, the initial
5976   //    value of the object being initialized is false.
5977   if (!SourceType.isNull() && SourceType->isNullPtrType() &&
5978       DestType->isBooleanType() &&
5979       Kind.getKind() == InitializationKind::IK_Direct) {
5980     AddConversionSequenceStep(
5981         ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
5982                                                      Initializer->isGLValue()),
5983         DestType);
5984     return;
5985   }
5986 
5987   //    - Otherwise, the initial value of the object being initialized is the
5988   //      (possibly converted) value of the initializer expression. Standard
5989   //      conversions (Clause 4) will be used, if necessary, to convert the
5990   //      initializer expression to the cv-unqualified version of the
5991   //      destination type; no user-defined conversions are considered.
5992 
5993   ImplicitConversionSequence ICS
5994     = S.TryImplicitConversion(Initializer, DestType,
5995                               /*SuppressUserConversions*/true,
5996                               Sema::AllowedExplicit::None,
5997                               /*InOverloadResolution*/ false,
5998                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5999                               allowObjCWritebackConversion);
6000 
6001   if (ICS.isStandard() &&
6002       ICS.Standard.Second == ICK_Writeback_Conversion) {
6003     // Objective-C ARC writeback conversion.
6004 
6005     // We should copy unless we're passing to an argument explicitly
6006     // marked 'out'.
6007     bool ShouldCopy = true;
6008     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
6009       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
6010 
6011     // If there was an lvalue adjustment, add it as a separate conversion.
6012     if (ICS.Standard.First == ICK_Array_To_Pointer ||
6013         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6014       ImplicitConversionSequence LvalueICS;
6015       LvalueICS.setStandard();
6016       LvalueICS.Standard.setAsIdentityConversion();
6017       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
6018       LvalueICS.Standard.First = ICS.Standard.First;
6019       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
6020     }
6021 
6022     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
6023   } else if (ICS.isBad()) {
6024     DeclAccessPair dap;
6025     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
6026       AddZeroInitializationStep(Entity.getType());
6027     } else if (Initializer->getType() == Context.OverloadTy &&
6028                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
6029                                                      false, dap))
6030       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
6031     else if (Initializer->getType()->isFunctionType() &&
6032              isExprAnUnaddressableFunction(S, Initializer))
6033       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
6034     else
6035       SetFailed(InitializationSequence::FK_ConversionFailed);
6036   } else {
6037     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
6038 
6039     MaybeProduceObjCObject(S, *this, Entity);
6040   }
6041 }
6042 
~InitializationSequence()6043 InitializationSequence::~InitializationSequence() {
6044   for (auto &S : Steps)
6045     S.Destroy();
6046 }
6047 
6048 //===----------------------------------------------------------------------===//
6049 // Perform initialization
6050 //===----------------------------------------------------------------------===//
6051 static Sema::AssignmentAction
getAssignmentAction(const InitializedEntity & Entity,bool Diagnose=false)6052 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
6053   switch(Entity.getKind()) {
6054   case InitializedEntity::EK_Variable:
6055   case InitializedEntity::EK_New:
6056   case InitializedEntity::EK_Exception:
6057   case InitializedEntity::EK_Base:
6058   case InitializedEntity::EK_Delegating:
6059     return Sema::AA_Initializing;
6060 
6061   case InitializedEntity::EK_Parameter:
6062     if (Entity.getDecl() &&
6063         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6064       return Sema::AA_Sending;
6065 
6066     return Sema::AA_Passing;
6067 
6068   case InitializedEntity::EK_Parameter_CF_Audited:
6069     if (Entity.getDecl() &&
6070       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6071       return Sema::AA_Sending;
6072 
6073     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
6074 
6075   case InitializedEntity::EK_Result:
6076   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
6077     return Sema::AA_Returning;
6078 
6079   case InitializedEntity::EK_Temporary:
6080   case InitializedEntity::EK_RelatedResult:
6081     // FIXME: Can we tell apart casting vs. converting?
6082     return Sema::AA_Casting;
6083 
6084   case InitializedEntity::EK_TemplateParameter:
6085     // This is really initialization, but refer to it as conversion for
6086     // consistency with CheckConvertedConstantExpression.
6087     return Sema::AA_Converting;
6088 
6089   case InitializedEntity::EK_Member:
6090   case InitializedEntity::EK_Binding:
6091   case InitializedEntity::EK_ArrayElement:
6092   case InitializedEntity::EK_VectorElement:
6093   case InitializedEntity::EK_ComplexElement:
6094   case InitializedEntity::EK_BlockElement:
6095   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6096   case InitializedEntity::EK_LambdaCapture:
6097   case InitializedEntity::EK_CompoundLiteralInit:
6098     return Sema::AA_Initializing;
6099   }
6100 
6101   llvm_unreachable("Invalid EntityKind!");
6102 }
6103 
6104 /// Whether we should bind a created object as a temporary when
6105 /// initializing the given entity.
shouldBindAsTemporary(const InitializedEntity & Entity)6106 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
6107   switch (Entity.getKind()) {
6108   case InitializedEntity::EK_ArrayElement:
6109   case InitializedEntity::EK_Member:
6110   case InitializedEntity::EK_Result:
6111   case InitializedEntity::EK_StmtExprResult:
6112   case InitializedEntity::EK_New:
6113   case InitializedEntity::EK_Variable:
6114   case InitializedEntity::EK_Base:
6115   case InitializedEntity::EK_Delegating:
6116   case InitializedEntity::EK_VectorElement:
6117   case InitializedEntity::EK_ComplexElement:
6118   case InitializedEntity::EK_Exception:
6119   case InitializedEntity::EK_BlockElement:
6120   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6121   case InitializedEntity::EK_LambdaCapture:
6122   case InitializedEntity::EK_CompoundLiteralInit:
6123   case InitializedEntity::EK_TemplateParameter:
6124     return false;
6125 
6126   case InitializedEntity::EK_Parameter:
6127   case InitializedEntity::EK_Parameter_CF_Audited:
6128   case InitializedEntity::EK_Temporary:
6129   case InitializedEntity::EK_RelatedResult:
6130   case InitializedEntity::EK_Binding:
6131     return true;
6132   }
6133 
6134   llvm_unreachable("missed an InitializedEntity kind?");
6135 }
6136 
6137 /// Whether the given entity, when initialized with an object
6138 /// created for that initialization, requires destruction.
shouldDestroyEntity(const InitializedEntity & Entity)6139 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6140   switch (Entity.getKind()) {
6141     case InitializedEntity::EK_Result:
6142     case InitializedEntity::EK_StmtExprResult:
6143     case InitializedEntity::EK_New:
6144     case InitializedEntity::EK_Base:
6145     case InitializedEntity::EK_Delegating:
6146     case InitializedEntity::EK_VectorElement:
6147     case InitializedEntity::EK_ComplexElement:
6148     case InitializedEntity::EK_BlockElement:
6149     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6150     case InitializedEntity::EK_LambdaCapture:
6151       return false;
6152 
6153     case InitializedEntity::EK_Member:
6154     case InitializedEntity::EK_Binding:
6155     case InitializedEntity::EK_Variable:
6156     case InitializedEntity::EK_Parameter:
6157     case InitializedEntity::EK_Parameter_CF_Audited:
6158     case InitializedEntity::EK_TemplateParameter:
6159     case InitializedEntity::EK_Temporary:
6160     case InitializedEntity::EK_ArrayElement:
6161     case InitializedEntity::EK_Exception:
6162     case InitializedEntity::EK_CompoundLiteralInit:
6163     case InitializedEntity::EK_RelatedResult:
6164       return true;
6165   }
6166 
6167   llvm_unreachable("missed an InitializedEntity kind?");
6168 }
6169 
6170 /// Get the location at which initialization diagnostics should appear.
getInitializationLoc(const InitializedEntity & Entity,Expr * Initializer)6171 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6172                                            Expr *Initializer) {
6173   switch (Entity.getKind()) {
6174   case InitializedEntity::EK_Result:
6175   case InitializedEntity::EK_StmtExprResult:
6176     return Entity.getReturnLoc();
6177 
6178   case InitializedEntity::EK_Exception:
6179     return Entity.getThrowLoc();
6180 
6181   case InitializedEntity::EK_Variable:
6182   case InitializedEntity::EK_Binding:
6183     return Entity.getDecl()->getLocation();
6184 
6185   case InitializedEntity::EK_LambdaCapture:
6186     return Entity.getCaptureLoc();
6187 
6188   case InitializedEntity::EK_ArrayElement:
6189   case InitializedEntity::EK_Member:
6190   case InitializedEntity::EK_Parameter:
6191   case InitializedEntity::EK_Parameter_CF_Audited:
6192   case InitializedEntity::EK_TemplateParameter:
6193   case InitializedEntity::EK_Temporary:
6194   case InitializedEntity::EK_New:
6195   case InitializedEntity::EK_Base:
6196   case InitializedEntity::EK_Delegating:
6197   case InitializedEntity::EK_VectorElement:
6198   case InitializedEntity::EK_ComplexElement:
6199   case InitializedEntity::EK_BlockElement:
6200   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6201   case InitializedEntity::EK_CompoundLiteralInit:
6202   case InitializedEntity::EK_RelatedResult:
6203     return Initializer->getBeginLoc();
6204   }
6205   llvm_unreachable("missed an InitializedEntity kind?");
6206 }
6207 
6208 /// Make a (potentially elidable) temporary copy of the object
6209 /// provided by the given initializer by calling the appropriate copy
6210 /// constructor.
6211 ///
6212 /// \param S The Sema object used for type-checking.
6213 ///
6214 /// \param T The type of the temporary object, which must either be
6215 /// the type of the initializer expression or a superclass thereof.
6216 ///
6217 /// \param Entity The entity being initialized.
6218 ///
6219 /// \param CurInit The initializer expression.
6220 ///
6221 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6222 /// is permitted in C++03 (but not C++0x) when binding a reference to
6223 /// an rvalue.
6224 ///
6225 /// \returns An expression that copies the initializer expression into
6226 /// a temporary object, or an error expression if a copy could not be
6227 /// created.
CopyObject(Sema & S,QualType T,const InitializedEntity & Entity,ExprResult CurInit,bool IsExtraneousCopy)6228 static ExprResult CopyObject(Sema &S,
6229                              QualType T,
6230                              const InitializedEntity &Entity,
6231                              ExprResult CurInit,
6232                              bool IsExtraneousCopy) {
6233   if (CurInit.isInvalid())
6234     return CurInit;
6235   // Determine which class type we're copying to.
6236   Expr *CurInitExpr = (Expr *)CurInit.get();
6237   CXXRecordDecl *Class = nullptr;
6238   if (const RecordType *Record = T->getAs<RecordType>())
6239     Class = cast<CXXRecordDecl>(Record->getDecl());
6240   if (!Class)
6241     return CurInit;
6242 
6243   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6244 
6245   // Make sure that the type we are copying is complete.
6246   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6247     return CurInit;
6248 
6249   // Perform overload resolution using the class's constructors. Per
6250   // C++11 [dcl.init]p16, second bullet for class types, this initialization
6251   // is direct-initialization.
6252   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6253   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6254 
6255   OverloadCandidateSet::iterator Best;
6256   switch (ResolveConstructorOverload(
6257       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6258       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6259       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6260       /*SecondStepOfCopyInit=*/true)) {
6261   case OR_Success:
6262     break;
6263 
6264   case OR_No_Viable_Function:
6265     CandidateSet.NoteCandidates(
6266         PartialDiagnosticAt(
6267             Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6268                              ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6269                              : diag::err_temp_copy_no_viable)
6270                      << (int)Entity.getKind() << CurInitExpr->getType()
6271                      << CurInitExpr->getSourceRange()),
6272         S, OCD_AllCandidates, CurInitExpr);
6273     if (!IsExtraneousCopy || S.isSFINAEContext())
6274       return ExprError();
6275     return CurInit;
6276 
6277   case OR_Ambiguous:
6278     CandidateSet.NoteCandidates(
6279         PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6280                                      << (int)Entity.getKind()
6281                                      << CurInitExpr->getType()
6282                                      << CurInitExpr->getSourceRange()),
6283         S, OCD_AmbiguousCandidates, CurInitExpr);
6284     return ExprError();
6285 
6286   case OR_Deleted:
6287     S.Diag(Loc, diag::err_temp_copy_deleted)
6288       << (int)Entity.getKind() << CurInitExpr->getType()
6289       << CurInitExpr->getSourceRange();
6290     S.NoteDeletedFunction(Best->Function);
6291     return ExprError();
6292   }
6293 
6294   bool HadMultipleCandidates = CandidateSet.size() > 1;
6295 
6296   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6297   SmallVector<Expr*, 8> ConstructorArgs;
6298   CurInit.get(); // Ownership transferred into MultiExprArg, below.
6299 
6300   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6301                            IsExtraneousCopy);
6302 
6303   if (IsExtraneousCopy) {
6304     // If this is a totally extraneous copy for C++03 reference
6305     // binding purposes, just return the original initialization
6306     // expression. We don't generate an (elided) copy operation here
6307     // because doing so would require us to pass down a flag to avoid
6308     // infinite recursion, where each step adds another extraneous,
6309     // elidable copy.
6310 
6311     // Instantiate the default arguments of any extra parameters in
6312     // the selected copy constructor, as if we were going to create a
6313     // proper call to the copy constructor.
6314     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6315       ParmVarDecl *Parm = Constructor->getParamDecl(I);
6316       if (S.RequireCompleteType(Loc, Parm->getType(),
6317                                 diag::err_call_incomplete_argument))
6318         break;
6319 
6320       // Build the default argument expression; we don't actually care
6321       // if this succeeds or not, because this routine will complain
6322       // if there was a problem.
6323       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6324     }
6325 
6326     return CurInitExpr;
6327   }
6328 
6329   // Determine the arguments required to actually perform the
6330   // constructor call (we might have derived-to-base conversions, or
6331   // the copy constructor may have default arguments).
6332   if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc,
6333                                 ConstructorArgs))
6334     return ExprError();
6335 
6336   // C++0x [class.copy]p32:
6337   //   When certain criteria are met, an implementation is allowed to
6338   //   omit the copy/move construction of a class object, even if the
6339   //   copy/move constructor and/or destructor for the object have
6340   //   side effects. [...]
6341   //     - when a temporary class object that has not been bound to a
6342   //       reference (12.2) would be copied/moved to a class object
6343   //       with the same cv-unqualified type, the copy/move operation
6344   //       can be omitted by constructing the temporary object
6345   //       directly into the target of the omitted copy/move
6346   //
6347   // Note that the other three bullets are handled elsewhere. Copy
6348   // elision for return statements and throw expressions are handled as part
6349   // of constructor initialization, while copy elision for exception handlers
6350   // is handled by the run-time.
6351   //
6352   // FIXME: If the function parameter is not the same type as the temporary, we
6353   // should still be able to elide the copy, but we don't have a way to
6354   // represent in the AST how much should be elided in this case.
6355   bool Elidable =
6356       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6357       S.Context.hasSameUnqualifiedType(
6358           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6359           CurInitExpr->getType());
6360 
6361   // Actually perform the constructor call.
6362   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6363                                     Elidable,
6364                                     ConstructorArgs,
6365                                     HadMultipleCandidates,
6366                                     /*ListInit*/ false,
6367                                     /*StdInitListInit*/ false,
6368                                     /*ZeroInit*/ false,
6369                                     CXXConstructExpr::CK_Complete,
6370                                     SourceRange());
6371 
6372   // If we're supposed to bind temporaries, do so.
6373   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6374     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6375   return CurInit;
6376 }
6377 
6378 /// Check whether elidable copy construction for binding a reference to
6379 /// a temporary would have succeeded if we were building in C++98 mode, for
6380 /// -Wc++98-compat.
CheckCXX98CompatAccessibleCopy(Sema & S,const InitializedEntity & Entity,Expr * CurInitExpr)6381 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6382                                            const InitializedEntity &Entity,
6383                                            Expr *CurInitExpr) {
6384   assert(S.getLangOpts().CPlusPlus11);
6385 
6386   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6387   if (!Record)
6388     return;
6389 
6390   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6391   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6392     return;
6393 
6394   // Find constructors which would have been considered.
6395   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6396   DeclContext::lookup_result Ctors =
6397       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6398 
6399   // Perform overload resolution.
6400   OverloadCandidateSet::iterator Best;
6401   OverloadingResult OR = ResolveConstructorOverload(
6402       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6403       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6404       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6405       /*SecondStepOfCopyInit=*/true);
6406 
6407   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6408     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6409     << CurInitExpr->getSourceRange();
6410 
6411   switch (OR) {
6412   case OR_Success:
6413     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6414                              Best->FoundDecl, Entity, Diag);
6415     // FIXME: Check default arguments as far as that's possible.
6416     break;
6417 
6418   case OR_No_Viable_Function:
6419     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6420                                 OCD_AllCandidates, CurInitExpr);
6421     break;
6422 
6423   case OR_Ambiguous:
6424     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6425                                 OCD_AmbiguousCandidates, CurInitExpr);
6426     break;
6427 
6428   case OR_Deleted:
6429     S.Diag(Loc, Diag);
6430     S.NoteDeletedFunction(Best->Function);
6431     break;
6432   }
6433 }
6434 
PrintInitLocationNote(Sema & S,const InitializedEntity & Entity)6435 void InitializationSequence::PrintInitLocationNote(Sema &S,
6436                                               const InitializedEntity &Entity) {
6437   if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) {
6438     if (Entity.getDecl()->getLocation().isInvalid())
6439       return;
6440 
6441     if (Entity.getDecl()->getDeclName())
6442       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6443         << Entity.getDecl()->getDeclName();
6444     else
6445       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6446   }
6447   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6448            Entity.getMethodDecl())
6449     S.Diag(Entity.getMethodDecl()->getLocation(),
6450            diag::note_method_return_type_change)
6451       << Entity.getMethodDecl()->getDeclName();
6452 }
6453 
6454 /// Returns true if the parameters describe a constructor initialization of
6455 /// an explicit temporary object, e.g. "Point(x, y)".
isExplicitTemporary(const InitializedEntity & Entity,const InitializationKind & Kind,unsigned NumArgs)6456 static bool isExplicitTemporary(const InitializedEntity &Entity,
6457                                 const InitializationKind &Kind,
6458                                 unsigned NumArgs) {
6459   switch (Entity.getKind()) {
6460   case InitializedEntity::EK_Temporary:
6461   case InitializedEntity::EK_CompoundLiteralInit:
6462   case InitializedEntity::EK_RelatedResult:
6463     break;
6464   default:
6465     return false;
6466   }
6467 
6468   switch (Kind.getKind()) {
6469   case InitializationKind::IK_DirectList:
6470     return true;
6471   // FIXME: Hack to work around cast weirdness.
6472   case InitializationKind::IK_Direct:
6473   case InitializationKind::IK_Value:
6474     return NumArgs != 1;
6475   default:
6476     return false;
6477   }
6478 }
6479 
6480 static ExprResult
PerformConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,const InitializationSequence::Step & Step,bool & ConstructorInitRequiresZeroInit,bool IsListInitialization,bool IsStdInitListInitialization,SourceLocation LBraceLoc,SourceLocation RBraceLoc)6481 PerformConstructorInitialization(Sema &S,
6482                                  const InitializedEntity &Entity,
6483                                  const InitializationKind &Kind,
6484                                  MultiExprArg Args,
6485                                  const InitializationSequence::Step& Step,
6486                                  bool &ConstructorInitRequiresZeroInit,
6487                                  bool IsListInitialization,
6488                                  bool IsStdInitListInitialization,
6489                                  SourceLocation LBraceLoc,
6490                                  SourceLocation RBraceLoc) {
6491   unsigned NumArgs = Args.size();
6492   CXXConstructorDecl *Constructor
6493     = cast<CXXConstructorDecl>(Step.Function.Function);
6494   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6495 
6496   // Build a call to the selected constructor.
6497   SmallVector<Expr*, 8> ConstructorArgs;
6498   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6499                          ? Kind.getEqualLoc()
6500                          : Kind.getLocation();
6501 
6502   if (Kind.getKind() == InitializationKind::IK_Default) {
6503     // Force even a trivial, implicit default constructor to be
6504     // semantically checked. We do this explicitly because we don't build
6505     // the definition for completely trivial constructors.
6506     assert(Constructor->getParent() && "No parent class for constructor.");
6507     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6508         Constructor->isTrivial() && !Constructor->isUsed(false)) {
6509       S.runWithSufficientStackSpace(Loc, [&] {
6510         S.DefineImplicitDefaultConstructor(Loc, Constructor);
6511       });
6512     }
6513   }
6514 
6515   ExprResult CurInit((Expr *)nullptr);
6516 
6517   // C++ [over.match.copy]p1:
6518   //   - When initializing a temporary to be bound to the first parameter
6519   //     of a constructor that takes a reference to possibly cv-qualified
6520   //     T as its first argument, called with a single argument in the
6521   //     context of direct-initialization, explicit conversion functions
6522   //     are also considered.
6523   bool AllowExplicitConv =
6524       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6525       hasCopyOrMoveCtorParam(S.Context,
6526                              getConstructorInfo(Step.Function.FoundDecl));
6527 
6528   // Determine the arguments required to actually perform the constructor
6529   // call.
6530   if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc,
6531                                 ConstructorArgs, AllowExplicitConv,
6532                                 IsListInitialization))
6533     return ExprError();
6534 
6535   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6536     // An explicitly-constructed temporary, e.g., X(1, 2).
6537     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6538       return ExprError();
6539 
6540     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6541     if (!TSInfo)
6542       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6543     SourceRange ParenOrBraceRange =
6544         (Kind.getKind() == InitializationKind::IK_DirectList)
6545         ? SourceRange(LBraceLoc, RBraceLoc)
6546         : Kind.getParenOrBraceRange();
6547 
6548     CXXConstructorDecl *CalleeDecl = Constructor;
6549     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6550             Step.Function.FoundDecl.getDecl())) {
6551       CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow);
6552       if (S.DiagnoseUseOfDecl(CalleeDecl, Loc))
6553         return ExprError();
6554     }
6555     S.MarkFunctionReferenced(Loc, CalleeDecl);
6556 
6557     CurInit = S.CheckForImmediateInvocation(
6558         CXXTemporaryObjectExpr::Create(
6559             S.Context, CalleeDecl,
6560             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6561             ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6562             IsListInitialization, IsStdInitListInitialization,
6563             ConstructorInitRequiresZeroInit),
6564         CalleeDecl);
6565   } else {
6566     CXXConstructExpr::ConstructionKind ConstructKind =
6567       CXXConstructExpr::CK_Complete;
6568 
6569     if (Entity.getKind() == InitializedEntity::EK_Base) {
6570       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6571         CXXConstructExpr::CK_VirtualBase :
6572         CXXConstructExpr::CK_NonVirtualBase;
6573     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6574       ConstructKind = CXXConstructExpr::CK_Delegating;
6575     }
6576 
6577     // Only get the parenthesis or brace range if it is a list initialization or
6578     // direct construction.
6579     SourceRange ParenOrBraceRange;
6580     if (IsListInitialization)
6581       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6582     else if (Kind.getKind() == InitializationKind::IK_Direct)
6583       ParenOrBraceRange = Kind.getParenOrBraceRange();
6584 
6585     // If the entity allows NRVO, mark the construction as elidable
6586     // unconditionally.
6587     if (Entity.allowsNRVO())
6588       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6589                                         Step.Function.FoundDecl,
6590                                         Constructor, /*Elidable=*/true,
6591                                         ConstructorArgs,
6592                                         HadMultipleCandidates,
6593                                         IsListInitialization,
6594                                         IsStdInitListInitialization,
6595                                         ConstructorInitRequiresZeroInit,
6596                                         ConstructKind,
6597                                         ParenOrBraceRange);
6598     else
6599       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6600                                         Step.Function.FoundDecl,
6601                                         Constructor,
6602                                         ConstructorArgs,
6603                                         HadMultipleCandidates,
6604                                         IsListInitialization,
6605                                         IsStdInitListInitialization,
6606                                         ConstructorInitRequiresZeroInit,
6607                                         ConstructKind,
6608                                         ParenOrBraceRange);
6609   }
6610   if (CurInit.isInvalid())
6611     return ExprError();
6612 
6613   // Only check access if all of that succeeded.
6614   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6615   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6616     return ExprError();
6617 
6618   if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6619     if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6620       return ExprError();
6621 
6622   if (shouldBindAsTemporary(Entity))
6623     CurInit = S.MaybeBindToTemporary(CurInit.get());
6624 
6625   return CurInit;
6626 }
6627 
6628 namespace {
6629 enum LifetimeKind {
6630   /// The lifetime of a temporary bound to this entity ends at the end of the
6631   /// full-expression, and that's (probably) fine.
6632   LK_FullExpression,
6633 
6634   /// The lifetime of a temporary bound to this entity is extended to the
6635   /// lifeitme of the entity itself.
6636   LK_Extended,
6637 
6638   /// The lifetime of a temporary bound to this entity probably ends too soon,
6639   /// because the entity is allocated in a new-expression.
6640   LK_New,
6641 
6642   /// The lifetime of a temporary bound to this entity ends too soon, because
6643   /// the entity is a return object.
6644   LK_Return,
6645 
6646   /// The lifetime of a temporary bound to this entity ends too soon, because
6647   /// the entity is the result of a statement expression.
6648   LK_StmtExprResult,
6649 
6650   /// This is a mem-initializer: if it would extend a temporary (other than via
6651   /// a default member initializer), the program is ill-formed.
6652   LK_MemInitializer,
6653 };
6654 using LifetimeResult =
6655     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6656 }
6657 
6658 /// Determine the declaration which an initialized entity ultimately refers to,
6659 /// for the purpose of lifetime-extending a temporary bound to a reference in
6660 /// the initialization of \p Entity.
getEntityLifetime(const InitializedEntity * Entity,const InitializedEntity * InitField=nullptr)6661 static LifetimeResult getEntityLifetime(
6662     const InitializedEntity *Entity,
6663     const InitializedEntity *InitField = nullptr) {
6664   // C++11 [class.temporary]p5:
6665   switch (Entity->getKind()) {
6666   case InitializedEntity::EK_Variable:
6667     //   The temporary [...] persists for the lifetime of the reference
6668     return {Entity, LK_Extended};
6669 
6670   case InitializedEntity::EK_Member:
6671     // For subobjects, we look at the complete object.
6672     if (Entity->getParent())
6673       return getEntityLifetime(Entity->getParent(), Entity);
6674 
6675     //   except:
6676     // C++17 [class.base.init]p8:
6677     //   A temporary expression bound to a reference member in a
6678     //   mem-initializer is ill-formed.
6679     // C++17 [class.base.init]p11:
6680     //   A temporary expression bound to a reference member from a
6681     //   default member initializer is ill-formed.
6682     //
6683     // The context of p11 and its example suggest that it's only the use of a
6684     // default member initializer from a constructor that makes the program
6685     // ill-formed, not its mere existence, and that it can even be used by
6686     // aggregate initialization.
6687     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6688                                                          : LK_MemInitializer};
6689 
6690   case InitializedEntity::EK_Binding:
6691     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6692     // type.
6693     return {Entity, LK_Extended};
6694 
6695   case InitializedEntity::EK_Parameter:
6696   case InitializedEntity::EK_Parameter_CF_Audited:
6697     //   -- A temporary bound to a reference parameter in a function call
6698     //      persists until the completion of the full-expression containing
6699     //      the call.
6700     return {nullptr, LK_FullExpression};
6701 
6702   case InitializedEntity::EK_TemplateParameter:
6703     // FIXME: This will always be ill-formed; should we eagerly diagnose it here?
6704     return {nullptr, LK_FullExpression};
6705 
6706   case InitializedEntity::EK_Result:
6707     //   -- The lifetime of a temporary bound to the returned value in a
6708     //      function return statement is not extended; the temporary is
6709     //      destroyed at the end of the full-expression in the return statement.
6710     return {nullptr, LK_Return};
6711 
6712   case InitializedEntity::EK_StmtExprResult:
6713     // FIXME: Should we lifetime-extend through the result of a statement
6714     // expression?
6715     return {nullptr, LK_StmtExprResult};
6716 
6717   case InitializedEntity::EK_New:
6718     //   -- A temporary bound to a reference in a new-initializer persists
6719     //      until the completion of the full-expression containing the
6720     //      new-initializer.
6721     return {nullptr, LK_New};
6722 
6723   case InitializedEntity::EK_Temporary:
6724   case InitializedEntity::EK_CompoundLiteralInit:
6725   case InitializedEntity::EK_RelatedResult:
6726     // We don't yet know the storage duration of the surrounding temporary.
6727     // Assume it's got full-expression duration for now, it will patch up our
6728     // storage duration if that's not correct.
6729     return {nullptr, LK_FullExpression};
6730 
6731   case InitializedEntity::EK_ArrayElement:
6732     // For subobjects, we look at the complete object.
6733     return getEntityLifetime(Entity->getParent(), InitField);
6734 
6735   case InitializedEntity::EK_Base:
6736     // For subobjects, we look at the complete object.
6737     if (Entity->getParent())
6738       return getEntityLifetime(Entity->getParent(), InitField);
6739     return {InitField, LK_MemInitializer};
6740 
6741   case InitializedEntity::EK_Delegating:
6742     // We can reach this case for aggregate initialization in a constructor:
6743     //   struct A { int &&r; };
6744     //   struct B : A { B() : A{0} {} };
6745     // In this case, use the outermost field decl as the context.
6746     return {InitField, LK_MemInitializer};
6747 
6748   case InitializedEntity::EK_BlockElement:
6749   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6750   case InitializedEntity::EK_LambdaCapture:
6751   case InitializedEntity::EK_VectorElement:
6752   case InitializedEntity::EK_ComplexElement:
6753     return {nullptr, LK_FullExpression};
6754 
6755   case InitializedEntity::EK_Exception:
6756     // FIXME: Can we diagnose lifetime problems with exceptions?
6757     return {nullptr, LK_FullExpression};
6758   }
6759   llvm_unreachable("unknown entity kind");
6760 }
6761 
6762 namespace {
6763 enum ReferenceKind {
6764   /// Lifetime would be extended by a reference binding to a temporary.
6765   RK_ReferenceBinding,
6766   /// Lifetime would be extended by a std::initializer_list object binding to
6767   /// its backing array.
6768   RK_StdInitializerList,
6769 };
6770 
6771 /// A temporary or local variable. This will be one of:
6772 ///  * A MaterializeTemporaryExpr.
6773 ///  * A DeclRefExpr whose declaration is a local.
6774 ///  * An AddrLabelExpr.
6775 ///  * A BlockExpr for a block with captures.
6776 using Local = Expr*;
6777 
6778 /// Expressions we stepped over when looking for the local state. Any steps
6779 /// that would inhibit lifetime extension or take us out of subexpressions of
6780 /// the initializer are included.
6781 struct IndirectLocalPathEntry {
6782   enum EntryKind {
6783     DefaultInit,
6784     AddressOf,
6785     VarInit,
6786     LValToRVal,
6787     LifetimeBoundCall,
6788     TemporaryCopy,
6789     LambdaCaptureInit,
6790     GslReferenceInit,
6791     GslPointerInit
6792   } Kind;
6793   Expr *E;
6794   union {
6795     const Decl *D = nullptr;
6796     const LambdaCapture *Capture;
6797   };
IndirectLocalPathEntry__anon470bc26a0511::IndirectLocalPathEntry6798   IndirectLocalPathEntry() {}
IndirectLocalPathEntry__anon470bc26a0511::IndirectLocalPathEntry6799   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
IndirectLocalPathEntry__anon470bc26a0511::IndirectLocalPathEntry6800   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6801       : Kind(K), E(E), D(D) {}
IndirectLocalPathEntry__anon470bc26a0511::IndirectLocalPathEntry6802   IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture)
6803       : Kind(K), E(E), Capture(Capture) {}
6804 };
6805 
6806 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6807 
6808 struct RevertToOldSizeRAII {
6809   IndirectLocalPath &Path;
6810   unsigned OldSize = Path.size();
RevertToOldSizeRAII__anon470bc26a0511::RevertToOldSizeRAII6811   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
~RevertToOldSizeRAII__anon470bc26a0511::RevertToOldSizeRAII6812   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6813 };
6814 
6815 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6816                                              ReferenceKind RK)>;
6817 }
6818 
isVarOnPath(IndirectLocalPath & Path,VarDecl * VD)6819 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6820   for (auto E : Path)
6821     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6822       return true;
6823   return false;
6824 }
6825 
pathContainsInit(IndirectLocalPath & Path)6826 static bool pathContainsInit(IndirectLocalPath &Path) {
6827   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6828     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6829            E.Kind == IndirectLocalPathEntry::VarInit;
6830   });
6831 }
6832 
6833 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6834                                              Expr *Init, LocalVisitor Visit,
6835                                              bool RevisitSubinits,
6836                                              bool EnableLifetimeWarnings);
6837 
6838 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6839                                                   Expr *Init, ReferenceKind RK,
6840                                                   LocalVisitor Visit,
6841                                                   bool EnableLifetimeWarnings);
6842 
isRecordWithAttr(QualType Type)6843 template <typename T> static bool isRecordWithAttr(QualType Type) {
6844   if (auto *RD = Type->getAsCXXRecordDecl())
6845     return RD->hasAttr<T>();
6846   return false;
6847 }
6848 
6849 // Decl::isInStdNamespace will return false for iterators in some STL
6850 // implementations due to them being defined in a namespace outside of the std
6851 // namespace.
isInStlNamespace(const Decl * D)6852 static bool isInStlNamespace(const Decl *D) {
6853   const DeclContext *DC = D->getDeclContext();
6854   if (!DC)
6855     return false;
6856   if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
6857     if (const IdentifierInfo *II = ND->getIdentifier()) {
6858       StringRef Name = II->getName();
6859       if (Name.size() >= 2 && Name.front() == '_' &&
6860           (Name[1] == '_' || isUppercase(Name[1])))
6861         return true;
6862     }
6863 
6864   return DC->isStdNamespace();
6865 }
6866 
shouldTrackImplicitObjectArg(const CXXMethodDecl * Callee)6867 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
6868   if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
6869     if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
6870       return true;
6871   if (!isInStlNamespace(Callee->getParent()))
6872     return false;
6873   if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
6874       !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
6875     return false;
6876   if (Callee->getReturnType()->isPointerType() ||
6877       isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
6878     if (!Callee->getIdentifier())
6879       return false;
6880     return llvm::StringSwitch<bool>(Callee->getName())
6881         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6882         .Cases("end", "rend", "cend", "crend", true)
6883         .Cases("c_str", "data", "get", true)
6884         // Map and set types.
6885         .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
6886         .Default(false);
6887   } else if (Callee->getReturnType()->isReferenceType()) {
6888     if (!Callee->getIdentifier()) {
6889       auto OO = Callee->getOverloadedOperator();
6890       return OO == OverloadedOperatorKind::OO_Subscript ||
6891              OO == OverloadedOperatorKind::OO_Star;
6892     }
6893     return llvm::StringSwitch<bool>(Callee->getName())
6894         .Cases("front", "back", "at", "top", "value", true)
6895         .Default(false);
6896   }
6897   return false;
6898 }
6899 
shouldTrackFirstArgument(const FunctionDecl * FD)6900 static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
6901   if (!FD->getIdentifier() || FD->getNumParams() != 1)
6902     return false;
6903   const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
6904   if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
6905     return false;
6906   if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
6907       !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
6908     return false;
6909   if (FD->getReturnType()->isPointerType() ||
6910       isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
6911     return llvm::StringSwitch<bool>(FD->getName())
6912         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6913         .Cases("end", "rend", "cend", "crend", true)
6914         .Case("data", true)
6915         .Default(false);
6916   } else if (FD->getReturnType()->isReferenceType()) {
6917     return llvm::StringSwitch<bool>(FD->getName())
6918         .Cases("get", "any_cast", true)
6919         .Default(false);
6920   }
6921   return false;
6922 }
6923 
handleGslAnnotatedTypes(IndirectLocalPath & Path,Expr * Call,LocalVisitor Visit)6924 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
6925                                     LocalVisitor Visit) {
6926   auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
6927     // We are not interested in the temporary base objects of gsl Pointers:
6928     //   Temp().ptr; // Here ptr might not dangle.
6929     if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
6930       return;
6931     // Once we initialized a value with a reference, it can no longer dangle.
6932     if (!Value) {
6933       for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
6934         if (It->Kind == IndirectLocalPathEntry::GslReferenceInit)
6935           continue;
6936         if (It->Kind == IndirectLocalPathEntry::GslPointerInit)
6937           return;
6938         break;
6939       }
6940     }
6941     Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
6942                           : IndirectLocalPathEntry::GslReferenceInit,
6943                     Arg, D});
6944     if (Arg->isGLValue())
6945       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6946                                             Visit,
6947                                             /*EnableLifetimeWarnings=*/true);
6948     else
6949       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6950                                        /*EnableLifetimeWarnings=*/true);
6951     Path.pop_back();
6952   };
6953 
6954   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6955     const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
6956     if (MD && shouldTrackImplicitObjectArg(MD))
6957       VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
6958                       !MD->getReturnType()->isReferenceType());
6959     return;
6960   } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
6961     FunctionDecl *Callee = OCE->getDirectCallee();
6962     if (Callee && Callee->isCXXInstanceMember() &&
6963         shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
6964       VisitPointerArg(Callee, OCE->getArg(0),
6965                       !Callee->getReturnType()->isReferenceType());
6966     return;
6967   } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
6968     FunctionDecl *Callee = CE->getDirectCallee();
6969     if (Callee && shouldTrackFirstArgument(Callee))
6970       VisitPointerArg(Callee, CE->getArg(0),
6971                       !Callee->getReturnType()->isReferenceType());
6972     return;
6973   }
6974 
6975   if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
6976     const auto *Ctor = CCE->getConstructor();
6977     const CXXRecordDecl *RD = Ctor->getParent();
6978     if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
6979       VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
6980   }
6981 }
6982 
implicitObjectParamIsLifetimeBound(const FunctionDecl * FD)6983 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6984   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6985   if (!TSI)
6986     return false;
6987   // Don't declare this variable in the second operand of the for-statement;
6988   // GCC miscompiles that by ending its lifetime before evaluating the
6989   // third operand. See gcc.gnu.org/PR86769.
6990   AttributedTypeLoc ATL;
6991   for (TypeLoc TL = TSI->getTypeLoc();
6992        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6993        TL = ATL.getModifiedLoc()) {
6994     if (ATL.getAttrAs<LifetimeBoundAttr>())
6995       return true;
6996   }
6997 
6998   // Assume that all assignment operators with a "normal" return type return
6999   // *this, that is, an lvalue reference that is the same type as the implicit
7000   // object parameter (or the LHS for a non-member operator$=).
7001   OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator();
7002   if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) {
7003     QualType RetT = FD->getReturnType();
7004     if (RetT->isLValueReferenceType()) {
7005       ASTContext &Ctx = FD->getASTContext();
7006       QualType LHST;
7007       auto *MD = dyn_cast<CXXMethodDecl>(FD);
7008       if (MD && MD->isCXXInstanceMember())
7009         LHST = Ctx.getLValueReferenceType(MD->getThisObjectType());
7010       else
7011         LHST = MD->getParamDecl(0)->getType();
7012       if (Ctx.hasSameType(RetT, LHST))
7013         return true;
7014     }
7015   }
7016 
7017   return false;
7018 }
7019 
visitLifetimeBoundArguments(IndirectLocalPath & Path,Expr * Call,LocalVisitor Visit)7020 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
7021                                         LocalVisitor Visit) {
7022   const FunctionDecl *Callee;
7023   ArrayRef<Expr*> Args;
7024 
7025   if (auto *CE = dyn_cast<CallExpr>(Call)) {
7026     Callee = CE->getDirectCallee();
7027     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
7028   } else {
7029     auto *CCE = cast<CXXConstructExpr>(Call);
7030     Callee = CCE->getConstructor();
7031     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
7032   }
7033   if (!Callee)
7034     return;
7035 
7036   Expr *ObjectArg = nullptr;
7037   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
7038     ObjectArg = Args[0];
7039     Args = Args.slice(1);
7040   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
7041     ObjectArg = MCE->getImplicitObjectArgument();
7042   }
7043 
7044   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
7045     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
7046     if (Arg->isGLValue())
7047       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
7048                                             Visit,
7049                                             /*EnableLifetimeWarnings=*/false);
7050     else
7051       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7052                                        /*EnableLifetimeWarnings=*/false);
7053     Path.pop_back();
7054   };
7055 
7056   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
7057     VisitLifetimeBoundArg(Callee, ObjectArg);
7058 
7059   for (unsigned I = 0,
7060                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
7061        I != N; ++I) {
7062     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
7063       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
7064   }
7065 }
7066 
7067 /// Visit the locals that would be reachable through a reference bound to the
7068 /// glvalue expression \c Init.
visitLocalsRetainedByReferenceBinding(IndirectLocalPath & Path,Expr * Init,ReferenceKind RK,LocalVisitor Visit,bool EnableLifetimeWarnings)7069 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
7070                                                   Expr *Init, ReferenceKind RK,
7071                                                   LocalVisitor Visit,
7072                                                   bool EnableLifetimeWarnings) {
7073   RevertToOldSizeRAII RAII(Path);
7074 
7075   // Walk past any constructs which we can lifetime-extend across.
7076   Expr *Old;
7077   do {
7078     Old = Init;
7079 
7080     if (auto *FE = dyn_cast<FullExpr>(Init))
7081       Init = FE->getSubExpr();
7082 
7083     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7084       // If this is just redundant braces around an initializer, step over it.
7085       if (ILE->isTransparent())
7086         Init = ILE->getInit(0);
7087     }
7088 
7089     // Step over any subobject adjustments; we may have a materialized
7090     // temporary inside them.
7091     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7092 
7093     // Per current approach for DR1376, look through casts to reference type
7094     // when performing lifetime extension.
7095     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
7096       if (CE->getSubExpr()->isGLValue())
7097         Init = CE->getSubExpr();
7098 
7099     // Per the current approach for DR1299, look through array element access
7100     // on array glvalues when performing lifetime extension.
7101     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
7102       Init = ASE->getBase();
7103       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
7104       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
7105         Init = ICE->getSubExpr();
7106       else
7107         // We can't lifetime extend through this but we might still find some
7108         // retained temporaries.
7109         return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
7110                                                 EnableLifetimeWarnings);
7111     }
7112 
7113     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7114     // constructor inherits one as an implicit mem-initializer.
7115     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7116       Path.push_back(
7117           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7118       Init = DIE->getExpr();
7119     }
7120   } while (Init != Old);
7121 
7122   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
7123     if (Visit(Path, Local(MTE), RK))
7124       visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
7125                                        EnableLifetimeWarnings);
7126   }
7127 
7128   if (isa<CallExpr>(Init)) {
7129     if (EnableLifetimeWarnings)
7130       handleGslAnnotatedTypes(Path, Init, Visit);
7131     return visitLifetimeBoundArguments(Path, Init, Visit);
7132   }
7133 
7134   switch (Init->getStmtClass()) {
7135   case Stmt::DeclRefExprClass: {
7136     // If we find the name of a local non-reference parameter, we could have a
7137     // lifetime problem.
7138     auto *DRE = cast<DeclRefExpr>(Init);
7139     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7140     if (VD && VD->hasLocalStorage() &&
7141         !DRE->refersToEnclosingVariableOrCapture()) {
7142       if (!VD->getType()->isReferenceType()) {
7143         Visit(Path, Local(DRE), RK);
7144       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
7145         // The lifetime of a reference parameter is unknown; assume it's OK
7146         // for now.
7147         break;
7148       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
7149         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7150         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
7151                                               RK_ReferenceBinding, Visit,
7152                                               EnableLifetimeWarnings);
7153       }
7154     }
7155     break;
7156   }
7157 
7158   case Stmt::UnaryOperatorClass: {
7159     // The only unary operator that make sense to handle here
7160     // is Deref.  All others don't resolve to a "name."  This includes
7161     // handling all sorts of rvalues passed to a unary operator.
7162     const UnaryOperator *U = cast<UnaryOperator>(Init);
7163     if (U->getOpcode() == UO_Deref)
7164       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7165                                        EnableLifetimeWarnings);
7166     break;
7167   }
7168 
7169   case Stmt::OMPArraySectionExprClass: {
7170     visitLocalsRetainedByInitializer(Path,
7171                                      cast<OMPArraySectionExpr>(Init)->getBase(),
7172                                      Visit, true, EnableLifetimeWarnings);
7173     break;
7174   }
7175 
7176   case Stmt::ConditionalOperatorClass:
7177   case Stmt::BinaryConditionalOperatorClass: {
7178     auto *C = cast<AbstractConditionalOperator>(Init);
7179     if (!C->getTrueExpr()->getType()->isVoidType())
7180       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7181                                             EnableLifetimeWarnings);
7182     if (!C->getFalseExpr()->getType()->isVoidType())
7183       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7184                                             EnableLifetimeWarnings);
7185     break;
7186   }
7187 
7188   // FIXME: Visit the left-hand side of an -> or ->*.
7189 
7190   default:
7191     break;
7192   }
7193 }
7194 
7195 /// Visit the locals that would be reachable through an object initialized by
7196 /// the prvalue expression \c Init.
visitLocalsRetainedByInitializer(IndirectLocalPath & Path,Expr * Init,LocalVisitor Visit,bool RevisitSubinits,bool EnableLifetimeWarnings)7197 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7198                                              Expr *Init, LocalVisitor Visit,
7199                                              bool RevisitSubinits,
7200                                              bool EnableLifetimeWarnings) {
7201   RevertToOldSizeRAII RAII(Path);
7202 
7203   Expr *Old;
7204   do {
7205     Old = Init;
7206 
7207     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7208     // constructor inherits one as an implicit mem-initializer.
7209     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7210       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7211       Init = DIE->getExpr();
7212     }
7213 
7214     if (auto *FE = dyn_cast<FullExpr>(Init))
7215       Init = FE->getSubExpr();
7216 
7217     // Dig out the expression which constructs the extended temporary.
7218     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7219 
7220     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7221       Init = BTE->getSubExpr();
7222 
7223     Init = Init->IgnoreParens();
7224 
7225     // Step over value-preserving rvalue casts.
7226     if (auto *CE = dyn_cast<CastExpr>(Init)) {
7227       switch (CE->getCastKind()) {
7228       case CK_LValueToRValue:
7229         // If we can match the lvalue to a const object, we can look at its
7230         // initializer.
7231         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7232         return visitLocalsRetainedByReferenceBinding(
7233             Path, Init, RK_ReferenceBinding,
7234             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7235           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7236             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7237             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7238                 !isVarOnPath(Path, VD)) {
7239               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7240               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7241                                                EnableLifetimeWarnings);
7242             }
7243           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7244             if (MTE->getType().isConstQualified())
7245               visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7246                                                true, EnableLifetimeWarnings);
7247           }
7248           return false;
7249         }, EnableLifetimeWarnings);
7250 
7251         // We assume that objects can be retained by pointers cast to integers,
7252         // but not if the integer is cast to floating-point type or to _Complex.
7253         // We assume that casts to 'bool' do not preserve enough information to
7254         // retain a local object.
7255       case CK_NoOp:
7256       case CK_BitCast:
7257       case CK_BaseToDerived:
7258       case CK_DerivedToBase:
7259       case CK_UncheckedDerivedToBase:
7260       case CK_Dynamic:
7261       case CK_ToUnion:
7262       case CK_UserDefinedConversion:
7263       case CK_ConstructorConversion:
7264       case CK_IntegralToPointer:
7265       case CK_PointerToIntegral:
7266       case CK_VectorSplat:
7267       case CK_IntegralCast:
7268       case CK_CPointerToObjCPointerCast:
7269       case CK_BlockPointerToObjCPointerCast:
7270       case CK_AnyPointerToBlockPointerCast:
7271       case CK_AddressSpaceConversion:
7272         break;
7273 
7274       case CK_ArrayToPointerDecay:
7275         // Model array-to-pointer decay as taking the address of the array
7276         // lvalue.
7277         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7278         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7279                                                      RK_ReferenceBinding, Visit,
7280                                                      EnableLifetimeWarnings);
7281 
7282       default:
7283         return;
7284       }
7285 
7286       Init = CE->getSubExpr();
7287     }
7288   } while (Old != Init);
7289 
7290   // C++17 [dcl.init.list]p6:
7291   //   initializing an initializer_list object from the array extends the
7292   //   lifetime of the array exactly like binding a reference to a temporary.
7293   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7294     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7295                                                  RK_StdInitializerList, Visit,
7296                                                  EnableLifetimeWarnings);
7297 
7298   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7299     // We already visited the elements of this initializer list while
7300     // performing the initialization. Don't visit them again unless we've
7301     // changed the lifetime of the initialized entity.
7302     if (!RevisitSubinits)
7303       return;
7304 
7305     if (ILE->isTransparent())
7306       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7307                                               RevisitSubinits,
7308                                               EnableLifetimeWarnings);
7309 
7310     if (ILE->getType()->isArrayType()) {
7311       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7312         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7313                                          RevisitSubinits,
7314                                          EnableLifetimeWarnings);
7315       return;
7316     }
7317 
7318     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7319       assert(RD->isAggregate() && "aggregate init on non-aggregate");
7320 
7321       // If we lifetime-extend a braced initializer which is initializing an
7322       // aggregate, and that aggregate contains reference members which are
7323       // bound to temporaries, those temporaries are also lifetime-extended.
7324       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7325           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7326         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7327                                               RK_ReferenceBinding, Visit,
7328                                               EnableLifetimeWarnings);
7329       else {
7330         unsigned Index = 0;
7331         for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7332           visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7333                                            RevisitSubinits,
7334                                            EnableLifetimeWarnings);
7335         for (const auto *I : RD->fields()) {
7336           if (Index >= ILE->getNumInits())
7337             break;
7338           if (I->isUnnamedBitfield())
7339             continue;
7340           Expr *SubInit = ILE->getInit(Index);
7341           if (I->getType()->isReferenceType())
7342             visitLocalsRetainedByReferenceBinding(Path, SubInit,
7343                                                   RK_ReferenceBinding, Visit,
7344                                                   EnableLifetimeWarnings);
7345           else
7346             // This might be either aggregate-initialization of a member or
7347             // initialization of a std::initializer_list object. Regardless,
7348             // we should recursively lifetime-extend that initializer.
7349             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7350                                              RevisitSubinits,
7351                                              EnableLifetimeWarnings);
7352           ++Index;
7353         }
7354       }
7355     }
7356     return;
7357   }
7358 
7359   // The lifetime of an init-capture is that of the closure object constructed
7360   // by a lambda-expression.
7361   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7362     LambdaExpr::capture_iterator CapI = LE->capture_begin();
7363     for (Expr *E : LE->capture_inits()) {
7364       assert(CapI != LE->capture_end());
7365       const LambdaCapture &Cap = *CapI++;
7366       if (!E)
7367         continue;
7368       if (Cap.capturesVariable())
7369         Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap});
7370       if (E->isGLValue())
7371         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7372                                               Visit, EnableLifetimeWarnings);
7373       else
7374         visitLocalsRetainedByInitializer(Path, E, Visit, true,
7375                                          EnableLifetimeWarnings);
7376       if (Cap.capturesVariable())
7377         Path.pop_back();
7378     }
7379   }
7380 
7381   // Assume that a copy or move from a temporary references the same objects
7382   // that the temporary does.
7383   if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
7384     if (CCE->getConstructor()->isCopyOrMoveConstructor()) {
7385       if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) {
7386         Expr *Arg = MTE->getSubExpr();
7387         Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg,
7388                         CCE->getConstructor()});
7389         visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7390                                          /*EnableLifetimeWarnings*/false);
7391         Path.pop_back();
7392       }
7393     }
7394   }
7395 
7396   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7397     if (EnableLifetimeWarnings)
7398       handleGslAnnotatedTypes(Path, Init, Visit);
7399     return visitLifetimeBoundArguments(Path, Init, Visit);
7400   }
7401 
7402   switch (Init->getStmtClass()) {
7403   case Stmt::UnaryOperatorClass: {
7404     auto *UO = cast<UnaryOperator>(Init);
7405     // If the initializer is the address of a local, we could have a lifetime
7406     // problem.
7407     if (UO->getOpcode() == UO_AddrOf) {
7408       // If this is &rvalue, then it's ill-formed and we have already diagnosed
7409       // it. Don't produce a redundant warning about the lifetime of the
7410       // temporary.
7411       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7412         return;
7413 
7414       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7415       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7416                                             RK_ReferenceBinding, Visit,
7417                                             EnableLifetimeWarnings);
7418     }
7419     break;
7420   }
7421 
7422   case Stmt::BinaryOperatorClass: {
7423     // Handle pointer arithmetic.
7424     auto *BO = cast<BinaryOperator>(Init);
7425     BinaryOperatorKind BOK = BO->getOpcode();
7426     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7427       break;
7428 
7429     if (BO->getLHS()->getType()->isPointerType())
7430       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7431                                        EnableLifetimeWarnings);
7432     else if (BO->getRHS()->getType()->isPointerType())
7433       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7434                                        EnableLifetimeWarnings);
7435     break;
7436   }
7437 
7438   case Stmt::ConditionalOperatorClass:
7439   case Stmt::BinaryConditionalOperatorClass: {
7440     auto *C = cast<AbstractConditionalOperator>(Init);
7441     // In C++, we can have a throw-expression operand, which has 'void' type
7442     // and isn't interesting from a lifetime perspective.
7443     if (!C->getTrueExpr()->getType()->isVoidType())
7444       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7445                                        EnableLifetimeWarnings);
7446     if (!C->getFalseExpr()->getType()->isVoidType())
7447       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7448                                        EnableLifetimeWarnings);
7449     break;
7450   }
7451 
7452   case Stmt::BlockExprClass:
7453     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7454       // This is a local block, whose lifetime is that of the function.
7455       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7456     }
7457     break;
7458 
7459   case Stmt::AddrLabelExprClass:
7460     // We want to warn if the address of a label would escape the function.
7461     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7462     break;
7463 
7464   default:
7465     break;
7466   }
7467 }
7468 
7469 /// Whether a path to an object supports lifetime extension.
7470 enum PathLifetimeKind {
7471   /// Lifetime-extend along this path.
7472   Extend,
7473   /// We should lifetime-extend, but we don't because (due to technical
7474   /// limitations) we can't. This happens for default member initializers,
7475   /// which we don't clone for every use, so we don't have a unique
7476   /// MaterializeTemporaryExpr to update.
7477   ShouldExtend,
7478   /// Do not lifetime extend along this path.
7479   NoExtend
7480 };
7481 
7482 /// Determine whether this is an indirect path to a temporary that we are
7483 /// supposed to lifetime-extend along.
7484 static PathLifetimeKind
shouldLifetimeExtendThroughPath(const IndirectLocalPath & Path)7485 shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
7486   PathLifetimeKind Kind = PathLifetimeKind::Extend;
7487   for (auto Elem : Path) {
7488     if (Elem.Kind == IndirectLocalPathEntry::DefaultInit)
7489       Kind = PathLifetimeKind::ShouldExtend;
7490     else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit)
7491       return PathLifetimeKind::NoExtend;
7492   }
7493   return Kind;
7494 }
7495 
7496 /// Find the range for the first interesting entry in the path at or after I.
nextPathEntryRange(const IndirectLocalPath & Path,unsigned I,Expr * E)7497 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
7498                                       Expr *E) {
7499   for (unsigned N = Path.size(); I != N; ++I) {
7500     switch (Path[I].Kind) {
7501     case IndirectLocalPathEntry::AddressOf:
7502     case IndirectLocalPathEntry::LValToRVal:
7503     case IndirectLocalPathEntry::LifetimeBoundCall:
7504     case IndirectLocalPathEntry::TemporaryCopy:
7505     case IndirectLocalPathEntry::GslReferenceInit:
7506     case IndirectLocalPathEntry::GslPointerInit:
7507       // These exist primarily to mark the path as not permitting or
7508       // supporting lifetime extension.
7509       break;
7510 
7511     case IndirectLocalPathEntry::VarInit:
7512       if (cast<VarDecl>(Path[I].D)->isImplicit())
7513         return SourceRange();
7514       LLVM_FALLTHROUGH;
7515     case IndirectLocalPathEntry::DefaultInit:
7516       return Path[I].E->getSourceRange();
7517 
7518     case IndirectLocalPathEntry::LambdaCaptureInit:
7519       if (!Path[I].Capture->capturesVariable())
7520         continue;
7521       return Path[I].E->getSourceRange();
7522     }
7523   }
7524   return E->getSourceRange();
7525 }
7526 
pathOnlyInitializesGslPointer(IndirectLocalPath & Path)7527 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
7528   for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
7529     if (It->Kind == IndirectLocalPathEntry::VarInit)
7530       continue;
7531     if (It->Kind == IndirectLocalPathEntry::AddressOf)
7532       continue;
7533     if (It->Kind == IndirectLocalPathEntry::LifetimeBoundCall)
7534       continue;
7535     return It->Kind == IndirectLocalPathEntry::GslPointerInit ||
7536            It->Kind == IndirectLocalPathEntry::GslReferenceInit;
7537   }
7538   return false;
7539 }
7540 
checkInitializerLifetime(const InitializedEntity & Entity,Expr * Init)7541 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
7542                                     Expr *Init) {
7543   LifetimeResult LR = getEntityLifetime(&Entity);
7544   LifetimeKind LK = LR.getInt();
7545   const InitializedEntity *ExtendingEntity = LR.getPointer();
7546 
7547   // If this entity doesn't have an interesting lifetime, don't bother looking
7548   // for temporaries within its initializer.
7549   if (LK == LK_FullExpression)
7550     return;
7551 
7552   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7553                               ReferenceKind RK) -> bool {
7554     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7555     SourceLocation DiagLoc = DiagRange.getBegin();
7556 
7557     auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7558 
7559     bool IsGslPtrInitWithGslTempOwner = false;
7560     bool IsLocalGslOwner = false;
7561     if (pathOnlyInitializesGslPointer(Path)) {
7562       if (isa<DeclRefExpr>(L)) {
7563         // We do not want to follow the references when returning a pointer originating
7564         // from a local owner to avoid the following false positive:
7565         //   int &p = *localUniquePtr;
7566         //   someContainer.add(std::move(localUniquePtr));
7567         //   return p;
7568         IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
7569         if (pathContainsInit(Path) || !IsLocalGslOwner)
7570           return false;
7571       } else {
7572         IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
7573                             isRecordWithAttr<OwnerAttr>(MTE->getType());
7574         // Skipping a chain of initializing gsl::Pointer annotated objects.
7575         // We are looking only for the final source to find out if it was
7576         // a local or temporary owner or the address of a local variable/param.
7577         if (!IsGslPtrInitWithGslTempOwner)
7578           return true;
7579       }
7580     }
7581 
7582     switch (LK) {
7583     case LK_FullExpression:
7584       llvm_unreachable("already handled this");
7585 
7586     case LK_Extended: {
7587       if (!MTE) {
7588         // The initialized entity has lifetime beyond the full-expression,
7589         // and the local entity does too, so don't warn.
7590         //
7591         // FIXME: We should consider warning if a static / thread storage
7592         // duration variable retains an automatic storage duration local.
7593         return false;
7594       }
7595 
7596       if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
7597         Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7598         return false;
7599       }
7600 
7601       switch (shouldLifetimeExtendThroughPath(Path)) {
7602       case PathLifetimeKind::Extend:
7603         // Update the storage duration of the materialized temporary.
7604         // FIXME: Rebuild the expression instead of mutating it.
7605         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7606                               ExtendingEntity->allocateManglingNumber());
7607         // Also visit the temporaries lifetime-extended by this initializer.
7608         return true;
7609 
7610       case PathLifetimeKind::ShouldExtend:
7611         // We're supposed to lifetime-extend the temporary along this path (per
7612         // the resolution of DR1815), but we don't support that yet.
7613         //
7614         // FIXME: Properly handle this situation. Perhaps the easiest approach
7615         // would be to clone the initializer expression on each use that would
7616         // lifetime extend its temporaries.
7617         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7618             << RK << DiagRange;
7619         break;
7620 
7621       case PathLifetimeKind::NoExtend:
7622         // If the path goes through the initialization of a variable or field,
7623         // it can't possibly reach a temporary created in this full-expression.
7624         // We will have already diagnosed any problems with the initializer.
7625         if (pathContainsInit(Path))
7626           return false;
7627 
7628         Diag(DiagLoc, diag::warn_dangling_variable)
7629             << RK << !Entity.getParent()
7630             << ExtendingEntity->getDecl()->isImplicit()
7631             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7632         break;
7633       }
7634       break;
7635     }
7636 
7637     case LK_MemInitializer: {
7638       if (isa<MaterializeTemporaryExpr>(L)) {
7639         // Under C++ DR1696, if a mem-initializer (or a default member
7640         // initializer used by the absence of one) would lifetime-extend a
7641         // temporary, the program is ill-formed.
7642         if (auto *ExtendingDecl =
7643                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7644           if (IsGslPtrInitWithGslTempOwner) {
7645             Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
7646                 << ExtendingDecl << DiagRange;
7647             Diag(ExtendingDecl->getLocation(),
7648                  diag::note_ref_or_ptr_member_declared_here)
7649                 << true;
7650             return false;
7651           }
7652           bool IsSubobjectMember = ExtendingEntity != &Entity;
7653           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) !=
7654                                 PathLifetimeKind::NoExtend
7655                             ? diag::err_dangling_member
7656                             : diag::warn_dangling_member)
7657               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7658           // Don't bother adding a note pointing to the field if we're inside
7659           // its default member initializer; our primary diagnostic points to
7660           // the same place in that case.
7661           if (Path.empty() ||
7662               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7663             Diag(ExtendingDecl->getLocation(),
7664                  diag::note_lifetime_extending_member_declared_here)
7665                 << RK << IsSubobjectMember;
7666           }
7667         } else {
7668           // We have a mem-initializer but no particular field within it; this
7669           // is either a base class or a delegating initializer directly
7670           // initializing the base-class from something that doesn't live long
7671           // enough.
7672           //
7673           // FIXME: Warn on this.
7674           return false;
7675         }
7676       } else {
7677         // Paths via a default initializer can only occur during error recovery
7678         // (there's no other way that a default initializer can refer to a
7679         // local). Don't produce a bogus warning on those cases.
7680         if (pathContainsInit(Path))
7681           return false;
7682 
7683         // Suppress false positives for code like the one below:
7684         //   Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
7685         if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
7686           return false;
7687 
7688         auto *DRE = dyn_cast<DeclRefExpr>(L);
7689         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7690         if (!VD) {
7691           // A member was initialized to a local block.
7692           // FIXME: Warn on this.
7693           return false;
7694         }
7695 
7696         if (auto *Member =
7697                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7698           bool IsPointer = !Member->getType()->isReferenceType();
7699           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7700                                   : diag::warn_bind_ref_member_to_parameter)
7701               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7702           Diag(Member->getLocation(),
7703                diag::note_ref_or_ptr_member_declared_here)
7704               << (unsigned)IsPointer;
7705         }
7706       }
7707       break;
7708     }
7709 
7710     case LK_New:
7711       if (isa<MaterializeTemporaryExpr>(L)) {
7712         if (IsGslPtrInitWithGslTempOwner)
7713           Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7714         else
7715           Diag(DiagLoc, RK == RK_ReferenceBinding
7716                             ? diag::warn_new_dangling_reference
7717                             : diag::warn_new_dangling_initializer_list)
7718               << !Entity.getParent() << DiagRange;
7719       } else {
7720         // We can't determine if the allocation outlives the local declaration.
7721         return false;
7722       }
7723       break;
7724 
7725     case LK_Return:
7726     case LK_StmtExprResult:
7727       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7728         // We can't determine if the local variable outlives the statement
7729         // expression.
7730         if (LK == LK_StmtExprResult)
7731           return false;
7732         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7733             << Entity.getType()->isReferenceType() << DRE->getDecl()
7734             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7735       } else if (isa<BlockExpr>(L)) {
7736         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7737       } else if (isa<AddrLabelExpr>(L)) {
7738         // Don't warn when returning a label from a statement expression.
7739         // Leaving the scope doesn't end its lifetime.
7740         if (LK == LK_StmtExprResult)
7741           return false;
7742         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7743       } else {
7744         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7745          << Entity.getType()->isReferenceType() << DiagRange;
7746       }
7747       break;
7748     }
7749 
7750     for (unsigned I = 0; I != Path.size(); ++I) {
7751       auto Elem = Path[I];
7752 
7753       switch (Elem.Kind) {
7754       case IndirectLocalPathEntry::AddressOf:
7755       case IndirectLocalPathEntry::LValToRVal:
7756         // These exist primarily to mark the path as not permitting or
7757         // supporting lifetime extension.
7758         break;
7759 
7760       case IndirectLocalPathEntry::LifetimeBoundCall:
7761       case IndirectLocalPathEntry::TemporaryCopy:
7762       case IndirectLocalPathEntry::GslPointerInit:
7763       case IndirectLocalPathEntry::GslReferenceInit:
7764         // FIXME: Consider adding a note for these.
7765         break;
7766 
7767       case IndirectLocalPathEntry::DefaultInit: {
7768         auto *FD = cast<FieldDecl>(Elem.D);
7769         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7770             << FD << nextPathEntryRange(Path, I + 1, L);
7771         break;
7772       }
7773 
7774       case IndirectLocalPathEntry::VarInit: {
7775         const VarDecl *VD = cast<VarDecl>(Elem.D);
7776         Diag(VD->getLocation(), diag::note_local_var_initializer)
7777             << VD->getType()->isReferenceType()
7778             << VD->isImplicit() << VD->getDeclName()
7779             << nextPathEntryRange(Path, I + 1, L);
7780         break;
7781       }
7782 
7783       case IndirectLocalPathEntry::LambdaCaptureInit:
7784         if (!Elem.Capture->capturesVariable())
7785           break;
7786         // FIXME: We can't easily tell apart an init-capture from a nested
7787         // capture of an init-capture.
7788         const VarDecl *VD = Elem.Capture->getCapturedVar();
7789         Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer)
7790             << VD << VD->isInitCapture() << Elem.Capture->isExplicit()
7791             << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD
7792             << nextPathEntryRange(Path, I + 1, L);
7793         break;
7794       }
7795     }
7796 
7797     // We didn't lifetime-extend, so don't go any further; we don't need more
7798     // warnings or errors on inner temporaries within this one's initializer.
7799     return false;
7800   };
7801 
7802   bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
7803       diag::warn_dangling_lifetime_pointer, SourceLocation());
7804   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7805   if (Init->isGLValue())
7806     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7807                                           TemporaryVisitor,
7808                                           EnableLifetimeWarnings);
7809   else
7810     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
7811                                      EnableLifetimeWarnings);
7812 }
7813 
7814 static void DiagnoseNarrowingInInitList(Sema &S,
7815                                         const ImplicitConversionSequence &ICS,
7816                                         QualType PreNarrowingType,
7817                                         QualType EntityType,
7818                                         const Expr *PostInit);
7819 
7820 /// Provide warnings when std::move is used on construction.
CheckMoveOnConstruction(Sema & S,const Expr * InitExpr,bool IsReturnStmt)7821 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7822                                     bool IsReturnStmt) {
7823   if (!InitExpr)
7824     return;
7825 
7826   if (S.inTemplateInstantiation())
7827     return;
7828 
7829   QualType DestType = InitExpr->getType();
7830   if (!DestType->isRecordType())
7831     return;
7832 
7833   unsigned DiagID = 0;
7834   if (IsReturnStmt) {
7835     const CXXConstructExpr *CCE =
7836         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7837     if (!CCE || CCE->getNumArgs() != 1)
7838       return;
7839 
7840     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7841       return;
7842 
7843     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7844   }
7845 
7846   // Find the std::move call and get the argument.
7847   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7848   if (!CE || !CE->isCallToStdMove())
7849     return;
7850 
7851   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7852 
7853   if (IsReturnStmt) {
7854     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7855     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7856       return;
7857 
7858     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7859     if (!VD || !VD->hasLocalStorage())
7860       return;
7861 
7862     // __block variables are not moved implicitly.
7863     if (VD->hasAttr<BlocksAttr>())
7864       return;
7865 
7866     QualType SourceType = VD->getType();
7867     if (!SourceType->isRecordType())
7868       return;
7869 
7870     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7871       return;
7872     }
7873 
7874     // If we're returning a function parameter, copy elision
7875     // is not possible.
7876     if (isa<ParmVarDecl>(VD))
7877       DiagID = diag::warn_redundant_move_on_return;
7878     else
7879       DiagID = diag::warn_pessimizing_move_on_return;
7880   } else {
7881     DiagID = diag::warn_pessimizing_move_on_initialization;
7882     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7883     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7884       return;
7885   }
7886 
7887   S.Diag(CE->getBeginLoc(), DiagID);
7888 
7889   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7890   // is within a macro.
7891   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7892   if (CallBegin.isMacroID())
7893     return;
7894   SourceLocation RParen = CE->getRParenLoc();
7895   if (RParen.isMacroID())
7896     return;
7897   SourceLocation LParen;
7898   SourceLocation ArgLoc = Arg->getBeginLoc();
7899 
7900   // Special testing for the argument location.  Since the fix-it needs the
7901   // location right before the argument, the argument location can be in a
7902   // macro only if it is at the beginning of the macro.
7903   while (ArgLoc.isMacroID() &&
7904          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7905     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7906   }
7907 
7908   if (LParen.isMacroID())
7909     return;
7910 
7911   LParen = ArgLoc.getLocWithOffset(-1);
7912 
7913   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7914       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7915       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7916 }
7917 
CheckForNullPointerDereference(Sema & S,const Expr * E)7918 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7919   // Check to see if we are dereferencing a null pointer.  If so, this is
7920   // undefined behavior, so warn about it.  This only handles the pattern
7921   // "*null", which is a very syntactic check.
7922   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7923     if (UO->getOpcode() == UO_Deref &&
7924         UO->getSubExpr()->IgnoreParenCasts()->
7925         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7926     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7927                           S.PDiag(diag::warn_binding_null_to_reference)
7928                             << UO->getSubExpr()->getSourceRange());
7929   }
7930 }
7931 
7932 MaterializeTemporaryExpr *
CreateMaterializeTemporaryExpr(QualType T,Expr * Temporary,bool BoundToLvalueReference)7933 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7934                                      bool BoundToLvalueReference) {
7935   auto MTE = new (Context)
7936       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7937 
7938   // Order an ExprWithCleanups for lifetime marks.
7939   //
7940   // TODO: It'll be good to have a single place to check the access of the
7941   // destructor and generate ExprWithCleanups for various uses. Currently these
7942   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7943   // but there may be a chance to merge them.
7944   Cleanup.setExprNeedsCleanups(false);
7945   return MTE;
7946 }
7947 
TemporaryMaterializationConversion(Expr * E)7948 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7949   // In C++98, we don't want to implicitly create an xvalue.
7950   // FIXME: This means that AST consumers need to deal with "prvalues" that
7951   // denote materialized temporaries. Maybe we should add another ValueKind
7952   // for "xvalue pretending to be a prvalue" for C++98 support.
7953   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7954     return E;
7955 
7956   // C++1z [conv.rval]/1: T shall be a complete type.
7957   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7958   // If so, we should check for a non-abstract class type here too.
7959   QualType T = E->getType();
7960   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7961     return ExprError();
7962 
7963   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7964 }
7965 
PerformQualificationConversion(Expr * E,QualType Ty,ExprValueKind VK,CheckedConversionKind CCK)7966 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7967                                                 ExprValueKind VK,
7968                                                 CheckedConversionKind CCK) {
7969 
7970   CastKind CK = CK_NoOp;
7971 
7972   if (VK == VK_RValue) {
7973     auto PointeeTy = Ty->getPointeeType();
7974     auto ExprPointeeTy = E->getType()->getPointeeType();
7975     if (!PointeeTy.isNull() &&
7976         PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
7977       CK = CK_AddressSpaceConversion;
7978   } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
7979     CK = CK_AddressSpaceConversion;
7980   }
7981 
7982   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7983 }
7984 
Perform(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType * ResultType)7985 ExprResult InitializationSequence::Perform(Sema &S,
7986                                            const InitializedEntity &Entity,
7987                                            const InitializationKind &Kind,
7988                                            MultiExprArg Args,
7989                                            QualType *ResultType) {
7990   if (Failed()) {
7991     Diagnose(S, Entity, Kind, Args);
7992     return ExprError();
7993   }
7994   if (!ZeroInitializationFixit.empty()) {
7995     unsigned DiagID = diag::err_default_init_const;
7996     if (Decl *D = Entity.getDecl())
7997       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7998         DiagID = diag::ext_default_init_const;
7999 
8000     // The initialization would have succeeded with this fixit. Since the fixit
8001     // is on the error, we need to build a valid AST in this case, so this isn't
8002     // handled in the Failed() branch above.
8003     QualType DestType = Entity.getType();
8004     S.Diag(Kind.getLocation(), DiagID)
8005         << DestType << (bool)DestType->getAs<RecordType>()
8006         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
8007                                       ZeroInitializationFixit);
8008   }
8009 
8010   if (getKind() == DependentSequence) {
8011     // If the declaration is a non-dependent, incomplete array type
8012     // that has an initializer, then its type will be completed once
8013     // the initializer is instantiated.
8014     if (ResultType && !Entity.getType()->isDependentType() &&
8015         Args.size() == 1) {
8016       QualType DeclType = Entity.getType();
8017       if (const IncompleteArrayType *ArrayT
8018                            = S.Context.getAsIncompleteArrayType(DeclType)) {
8019         // FIXME: We don't currently have the ability to accurately
8020         // compute the length of an initializer list without
8021         // performing full type-checking of the initializer list
8022         // (since we have to determine where braces are implicitly
8023         // introduced and such).  So, we fall back to making the array
8024         // type a dependently-sized array type with no specified
8025         // bound.
8026         if (isa<InitListExpr>((Expr *)Args[0])) {
8027           SourceRange Brackets;
8028 
8029           // Scavange the location of the brackets from the entity, if we can.
8030           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
8031             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
8032               TypeLoc TL = TInfo->getTypeLoc();
8033               if (IncompleteArrayTypeLoc ArrayLoc =
8034                       TL.getAs<IncompleteArrayTypeLoc>())
8035                 Brackets = ArrayLoc.getBracketsRange();
8036             }
8037           }
8038 
8039           *ResultType
8040             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
8041                                                    /*NumElts=*/nullptr,
8042                                                    ArrayT->getSizeModifier(),
8043                                        ArrayT->getIndexTypeCVRQualifiers(),
8044                                                    Brackets);
8045         }
8046 
8047       }
8048     }
8049     if (Kind.getKind() == InitializationKind::IK_Direct &&
8050         !Kind.isExplicitCast()) {
8051       // Rebuild the ParenListExpr.
8052       SourceRange ParenRange = Kind.getParenOrBraceRange();
8053       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
8054                                   Args);
8055     }
8056     assert(Kind.getKind() == InitializationKind::IK_Copy ||
8057            Kind.isExplicitCast() ||
8058            Kind.getKind() == InitializationKind::IK_DirectList);
8059     return ExprResult(Args[0]);
8060   }
8061 
8062   // No steps means no initialization.
8063   if (Steps.empty())
8064     return ExprResult((Expr *)nullptr);
8065 
8066   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
8067       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
8068       !Entity.isParamOrTemplateParamKind()) {
8069     // Produce a C++98 compatibility warning if we are initializing a reference
8070     // from an initializer list. For parameters, we produce a better warning
8071     // elsewhere.
8072     Expr *Init = Args[0];
8073     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
8074         << Init->getSourceRange();
8075   }
8076 
8077   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
8078   QualType ETy = Entity.getType();
8079   bool HasGlobalAS = ETy.hasAddressSpace() &&
8080                      ETy.getAddressSpace() == LangAS::opencl_global;
8081 
8082   if (S.getLangOpts().OpenCLVersion >= 200 &&
8083       ETy->isAtomicType() && !HasGlobalAS &&
8084       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
8085     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
8086         << 1
8087         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
8088     return ExprError();
8089   }
8090 
8091   QualType DestType = Entity.getType().getNonReferenceType();
8092   // FIXME: Ugly hack around the fact that Entity.getType() is not
8093   // the same as Entity.getDecl()->getType() in cases involving type merging,
8094   //  and we want latter when it makes sense.
8095   if (ResultType)
8096     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
8097                                      Entity.getType();
8098 
8099   ExprResult CurInit((Expr *)nullptr);
8100   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
8101 
8102   // For initialization steps that start with a single initializer,
8103   // grab the only argument out the Args and place it into the "current"
8104   // initializer.
8105   switch (Steps.front().Kind) {
8106   case SK_ResolveAddressOfOverloadedFunction:
8107   case SK_CastDerivedToBaseRValue:
8108   case SK_CastDerivedToBaseXValue:
8109   case SK_CastDerivedToBaseLValue:
8110   case SK_BindReference:
8111   case SK_BindReferenceToTemporary:
8112   case SK_FinalCopy:
8113   case SK_ExtraneousCopyToTemporary:
8114   case SK_UserConversion:
8115   case SK_QualificationConversionLValue:
8116   case SK_QualificationConversionXValue:
8117   case SK_QualificationConversionRValue:
8118   case SK_FunctionReferenceConversion:
8119   case SK_AtomicConversion:
8120   case SK_ConversionSequence:
8121   case SK_ConversionSequenceNoNarrowing:
8122   case SK_ListInitialization:
8123   case SK_UnwrapInitList:
8124   case SK_RewrapInitList:
8125   case SK_CAssignment:
8126   case SK_StringInit:
8127   case SK_ObjCObjectConversion:
8128   case SK_ArrayLoopIndex:
8129   case SK_ArrayLoopInit:
8130   case SK_ArrayInit:
8131   case SK_GNUArrayInit:
8132   case SK_ParenthesizedArrayInit:
8133   case SK_PassByIndirectCopyRestore:
8134   case SK_PassByIndirectRestore:
8135   case SK_ProduceObjCObject:
8136   case SK_StdInitializerList:
8137   case SK_OCLSamplerInit:
8138   case SK_OCLZeroOpaqueType: {
8139     assert(Args.size() == 1);
8140     CurInit = Args[0];
8141     if (!CurInit.get()) return ExprError();
8142     break;
8143   }
8144 
8145   case SK_ConstructorInitialization:
8146   case SK_ConstructorInitializationFromList:
8147   case SK_StdInitializerListConstructorCall:
8148   case SK_ZeroInitialization:
8149     break;
8150   }
8151 
8152   // Promote from an unevaluated context to an unevaluated list context in
8153   // C++11 list-initialization; we need to instantiate entities usable in
8154   // constant expressions here in order to perform narrowing checks =(
8155   EnterExpressionEvaluationContext Evaluated(
8156       S, EnterExpressionEvaluationContext::InitList,
8157       CurInit.get() && isa<InitListExpr>(CurInit.get()));
8158 
8159   // C++ [class.abstract]p2:
8160   //   no objects of an abstract class can be created except as subobjects
8161   //   of a class derived from it
8162   auto checkAbstractType = [&](QualType T) -> bool {
8163     if (Entity.getKind() == InitializedEntity::EK_Base ||
8164         Entity.getKind() == InitializedEntity::EK_Delegating)
8165       return false;
8166     return S.RequireNonAbstractType(Kind.getLocation(), T,
8167                                     diag::err_allocation_of_abstract_type);
8168   };
8169 
8170   // Walk through the computed steps for the initialization sequence,
8171   // performing the specified conversions along the way.
8172   bool ConstructorInitRequiresZeroInit = false;
8173   for (step_iterator Step = step_begin(), StepEnd = step_end();
8174        Step != StepEnd; ++Step) {
8175     if (CurInit.isInvalid())
8176       return ExprError();
8177 
8178     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
8179 
8180     switch (Step->Kind) {
8181     case SK_ResolveAddressOfOverloadedFunction:
8182       // Overload resolution determined which function invoke; update the
8183       // initializer to reflect that choice.
8184       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
8185       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
8186         return ExprError();
8187       CurInit = S.FixOverloadedFunctionReference(CurInit,
8188                                                  Step->Function.FoundDecl,
8189                                                  Step->Function.Function);
8190       break;
8191 
8192     case SK_CastDerivedToBaseRValue:
8193     case SK_CastDerivedToBaseXValue:
8194     case SK_CastDerivedToBaseLValue: {
8195       // We have a derived-to-base cast that produces either an rvalue or an
8196       // lvalue. Perform that cast.
8197 
8198       CXXCastPath BasePath;
8199 
8200       // Casts to inaccessible base classes are allowed with C-style casts.
8201       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
8202       if (S.CheckDerivedToBaseConversion(
8203               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
8204               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
8205         return ExprError();
8206 
8207       ExprValueKind VK =
8208           Step->Kind == SK_CastDerivedToBaseLValue ?
8209               VK_LValue :
8210               (Step->Kind == SK_CastDerivedToBaseXValue ?
8211                    VK_XValue :
8212                    VK_RValue);
8213       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8214                                          CK_DerivedToBase, CurInit.get(),
8215                                          &BasePath, VK, FPOptionsOverride());
8216       break;
8217     }
8218 
8219     case SK_BindReference:
8220       // Reference binding does not have any corresponding ASTs.
8221 
8222       // Check exception specifications
8223       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8224         return ExprError();
8225 
8226       // We don't check for e.g. function pointers here, since address
8227       // availability checks should only occur when the function first decays
8228       // into a pointer or reference.
8229       if (CurInit.get()->getType()->isFunctionProtoType()) {
8230         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8231           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8232             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8233                                                      DRE->getBeginLoc()))
8234               return ExprError();
8235           }
8236         }
8237       }
8238 
8239       CheckForNullPointerDereference(S, CurInit.get());
8240       break;
8241 
8242     case SK_BindReferenceToTemporary: {
8243       // Make sure the "temporary" is actually an rvalue.
8244       assert(CurInit.get()->isRValue() && "not a temporary");
8245 
8246       // Check exception specifications
8247       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8248         return ExprError();
8249 
8250       QualType MTETy = Step->Type;
8251 
8252       // When this is an incomplete array type (such as when this is
8253       // initializing an array of unknown bounds from an init list), use THAT
8254       // type instead so that we propogate the array bounds.
8255       if (MTETy->isIncompleteArrayType() &&
8256           !CurInit.get()->getType()->isIncompleteArrayType() &&
8257           S.Context.hasSameType(
8258               MTETy->getPointeeOrArrayElementType(),
8259               CurInit.get()->getType()->getPointeeOrArrayElementType()))
8260         MTETy = CurInit.get()->getType();
8261 
8262       // Materialize the temporary into memory.
8263       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8264           MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType());
8265       CurInit = MTE;
8266 
8267       // If we're extending this temporary to automatic storage duration -- we
8268       // need to register its cleanup during the full-expression's cleanups.
8269       if (MTE->getStorageDuration() == SD_Automatic &&
8270           MTE->getType().isDestructedType())
8271         S.Cleanup.setExprNeedsCleanups(true);
8272       break;
8273     }
8274 
8275     case SK_FinalCopy:
8276       if (checkAbstractType(Step->Type))
8277         return ExprError();
8278 
8279       // If the overall initialization is initializing a temporary, we already
8280       // bound our argument if it was necessary to do so. If not (if we're
8281       // ultimately initializing a non-temporary), our argument needs to be
8282       // bound since it's initializing a function parameter.
8283       // FIXME: This is a mess. Rationalize temporary destruction.
8284       if (!shouldBindAsTemporary(Entity))
8285         CurInit = S.MaybeBindToTemporary(CurInit.get());
8286       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8287                            /*IsExtraneousCopy=*/false);
8288       break;
8289 
8290     case SK_ExtraneousCopyToTemporary:
8291       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8292                            /*IsExtraneousCopy=*/true);
8293       break;
8294 
8295     case SK_UserConversion: {
8296       // We have a user-defined conversion that invokes either a constructor
8297       // or a conversion function.
8298       CastKind CastKind;
8299       FunctionDecl *Fn = Step->Function.Function;
8300       DeclAccessPair FoundFn = Step->Function.FoundDecl;
8301       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8302       bool CreatedObject = false;
8303       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8304         // Build a call to the selected constructor.
8305         SmallVector<Expr*, 8> ConstructorArgs;
8306         SourceLocation Loc = CurInit.get()->getBeginLoc();
8307 
8308         // Determine the arguments required to actually perform the constructor
8309         // call.
8310         Expr *Arg = CurInit.get();
8311         if (S.CompleteConstructorCall(Constructor, Step->Type,
8312                                       MultiExprArg(&Arg, 1), Loc,
8313                                       ConstructorArgs))
8314           return ExprError();
8315 
8316         // Build an expression that constructs a temporary.
8317         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8318                                           FoundFn, Constructor,
8319                                           ConstructorArgs,
8320                                           HadMultipleCandidates,
8321                                           /*ListInit*/ false,
8322                                           /*StdInitListInit*/ false,
8323                                           /*ZeroInit*/ false,
8324                                           CXXConstructExpr::CK_Complete,
8325                                           SourceRange());
8326         if (CurInit.isInvalid())
8327           return ExprError();
8328 
8329         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8330                                  Entity);
8331         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8332           return ExprError();
8333 
8334         CastKind = CK_ConstructorConversion;
8335         CreatedObject = true;
8336       } else {
8337         // Build a call to the conversion function.
8338         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8339         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8340                                     FoundFn);
8341         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8342           return ExprError();
8343 
8344         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8345                                            HadMultipleCandidates);
8346         if (CurInit.isInvalid())
8347           return ExprError();
8348 
8349         CastKind = CK_UserDefinedConversion;
8350         CreatedObject = Conversion->getReturnType()->isRecordType();
8351       }
8352 
8353       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8354         return ExprError();
8355 
8356       CurInit = ImplicitCastExpr::Create(
8357           S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr,
8358           CurInit.get()->getValueKind(), S.CurFPFeatureOverrides());
8359 
8360       if (shouldBindAsTemporary(Entity))
8361         // The overall entity is temporary, so this expression should be
8362         // destroyed at the end of its full-expression.
8363         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8364       else if (CreatedObject && shouldDestroyEntity(Entity)) {
8365         // The object outlasts the full-expression, but we need to prepare for
8366         // a destructor being run on it.
8367         // FIXME: It makes no sense to do this here. This should happen
8368         // regardless of how we initialized the entity.
8369         QualType T = CurInit.get()->getType();
8370         if (const RecordType *Record = T->getAs<RecordType>()) {
8371           CXXDestructorDecl *Destructor
8372             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8373           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8374                                   S.PDiag(diag::err_access_dtor_temp) << T);
8375           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8376           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8377             return ExprError();
8378         }
8379       }
8380       break;
8381     }
8382 
8383     case SK_QualificationConversionLValue:
8384     case SK_QualificationConversionXValue:
8385     case SK_QualificationConversionRValue: {
8386       // Perform a qualification conversion; these can never go wrong.
8387       ExprValueKind VK =
8388           Step->Kind == SK_QualificationConversionLValue
8389               ? VK_LValue
8390               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8391                                                                 : VK_RValue);
8392       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8393       break;
8394     }
8395 
8396     case SK_FunctionReferenceConversion:
8397       assert(CurInit.get()->isLValue() &&
8398              "function reference should be lvalue");
8399       CurInit =
8400           S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue);
8401       break;
8402 
8403     case SK_AtomicConversion: {
8404       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
8405       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8406                                     CK_NonAtomicToAtomic, VK_RValue);
8407       break;
8408     }
8409 
8410     case SK_ConversionSequence:
8411     case SK_ConversionSequenceNoNarrowing: {
8412       if (const auto *FromPtrType =
8413               CurInit.get()->getType()->getAs<PointerType>()) {
8414         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8415           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8416               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8417             // Do not check static casts here because they are checked earlier
8418             // in Sema::ActOnCXXNamedCast()
8419             if (!Kind.isStaticCast()) {
8420               S.Diag(CurInit.get()->getExprLoc(),
8421                      diag::warn_noderef_to_dereferenceable_pointer)
8422                   << CurInit.get()->getSourceRange();
8423             }
8424           }
8425         }
8426       }
8427 
8428       Sema::CheckedConversionKind CCK
8429         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8430         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8431         : Kind.isExplicitCast()? Sema::CCK_OtherCast
8432         : Sema::CCK_ImplicitConversion;
8433       ExprResult CurInitExprRes =
8434         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8435                                     getAssignmentAction(Entity), CCK);
8436       if (CurInitExprRes.isInvalid())
8437         return ExprError();
8438 
8439       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8440 
8441       CurInit = CurInitExprRes;
8442 
8443       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8444           S.getLangOpts().CPlusPlus)
8445         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
8446                                     CurInit.get());
8447 
8448       break;
8449     }
8450 
8451     case SK_ListInitialization: {
8452       if (checkAbstractType(Step->Type))
8453         return ExprError();
8454 
8455       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
8456       // If we're not initializing the top-level entity, we need to create an
8457       // InitializeTemporary entity for our target type.
8458       QualType Ty = Step->Type;
8459       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
8460       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
8461       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
8462       InitListChecker PerformInitList(S, InitEntity,
8463           InitList, Ty, /*VerifyOnly=*/false,
8464           /*TreatUnavailableAsInvalid=*/false);
8465       if (PerformInitList.HadError())
8466         return ExprError();
8467 
8468       // Hack: We must update *ResultType if available in order to set the
8469       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
8470       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
8471       if (ResultType &&
8472           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
8473         if ((*ResultType)->isRValueReferenceType())
8474           Ty = S.Context.getRValueReferenceType(Ty);
8475         else if ((*ResultType)->isLValueReferenceType())
8476           Ty = S.Context.getLValueReferenceType(Ty,
8477             (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
8478         *ResultType = Ty;
8479       }
8480 
8481       InitListExpr *StructuredInitList =
8482           PerformInitList.getFullyStructuredList();
8483       CurInit.get();
8484       CurInit = shouldBindAsTemporary(InitEntity)
8485           ? S.MaybeBindToTemporary(StructuredInitList)
8486           : StructuredInitList;
8487       break;
8488     }
8489 
8490     case SK_ConstructorInitializationFromList: {
8491       if (checkAbstractType(Step->Type))
8492         return ExprError();
8493 
8494       // When an initializer list is passed for a parameter of type "reference
8495       // to object", we don't get an EK_Temporary entity, but instead an
8496       // EK_Parameter entity with reference type.
8497       // FIXME: This is a hack. What we really should do is create a user
8498       // conversion step for this case, but this makes it considerably more
8499       // complicated. For now, this will do.
8500       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8501                                         Entity.getType().getNonReferenceType());
8502       bool UseTemporary = Entity.getType()->isReferenceType();
8503       assert(Args.size() == 1 && "expected a single argument for list init");
8504       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8505       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
8506         << InitList->getSourceRange();
8507       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
8508       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
8509                                                                    Entity,
8510                                                  Kind, Arg, *Step,
8511                                                ConstructorInitRequiresZeroInit,
8512                                                /*IsListInitialization*/true,
8513                                                /*IsStdInitListInit*/false,
8514                                                InitList->getLBraceLoc(),
8515                                                InitList->getRBraceLoc());
8516       break;
8517     }
8518 
8519     case SK_UnwrapInitList:
8520       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
8521       break;
8522 
8523     case SK_RewrapInitList: {
8524       Expr *E = CurInit.get();
8525       InitListExpr *Syntactic = Step->WrappingSyntacticList;
8526       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
8527           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
8528       ILE->setSyntacticForm(Syntactic);
8529       ILE->setType(E->getType());
8530       ILE->setValueKind(E->getValueKind());
8531       CurInit = ILE;
8532       break;
8533     }
8534 
8535     case SK_ConstructorInitialization:
8536     case SK_StdInitializerListConstructorCall: {
8537       if (checkAbstractType(Step->Type))
8538         return ExprError();
8539 
8540       // When an initializer list is passed for a parameter of type "reference
8541       // to object", we don't get an EK_Temporary entity, but instead an
8542       // EK_Parameter entity with reference type.
8543       // FIXME: This is a hack. What we really should do is create a user
8544       // conversion step for this case, but this makes it considerably more
8545       // complicated. For now, this will do.
8546       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8547                                         Entity.getType().getNonReferenceType());
8548       bool UseTemporary = Entity.getType()->isReferenceType();
8549       bool IsStdInitListInit =
8550           Step->Kind == SK_StdInitializerListConstructorCall;
8551       Expr *Source = CurInit.get();
8552       SourceRange Range = Kind.hasParenOrBraceRange()
8553                               ? Kind.getParenOrBraceRange()
8554                               : SourceRange();
8555       CurInit = PerformConstructorInitialization(
8556           S, UseTemporary ? TempEntity : Entity, Kind,
8557           Source ? MultiExprArg(Source) : Args, *Step,
8558           ConstructorInitRequiresZeroInit,
8559           /*IsListInitialization*/ IsStdInitListInit,
8560           /*IsStdInitListInitialization*/ IsStdInitListInit,
8561           /*LBraceLoc*/ Range.getBegin(),
8562           /*RBraceLoc*/ Range.getEnd());
8563       break;
8564     }
8565 
8566     case SK_ZeroInitialization: {
8567       step_iterator NextStep = Step;
8568       ++NextStep;
8569       if (NextStep != StepEnd &&
8570           (NextStep->Kind == SK_ConstructorInitialization ||
8571            NextStep->Kind == SK_ConstructorInitializationFromList)) {
8572         // The need for zero-initialization is recorded directly into
8573         // the call to the object's constructor within the next step.
8574         ConstructorInitRequiresZeroInit = true;
8575       } else if (Kind.getKind() == InitializationKind::IK_Value &&
8576                  S.getLangOpts().CPlusPlus &&
8577                  !Kind.isImplicitValueInit()) {
8578         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
8579         if (!TSInfo)
8580           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
8581                                                     Kind.getRange().getBegin());
8582 
8583         CurInit = new (S.Context) CXXScalarValueInitExpr(
8584             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
8585             Kind.getRange().getEnd());
8586       } else {
8587         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
8588       }
8589       break;
8590     }
8591 
8592     case SK_CAssignment: {
8593       QualType SourceType = CurInit.get()->getType();
8594 
8595       // Save off the initial CurInit in case we need to emit a diagnostic
8596       ExprResult InitialCurInit = CurInit;
8597       ExprResult Result = CurInit;
8598       Sema::AssignConvertType ConvTy =
8599         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
8600             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
8601       if (Result.isInvalid())
8602         return ExprError();
8603       CurInit = Result;
8604 
8605       // If this is a call, allow conversion to a transparent union.
8606       ExprResult CurInitExprRes = CurInit;
8607       if (ConvTy != Sema::Compatible &&
8608           Entity.isParameterKind() &&
8609           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
8610             == Sema::Compatible)
8611         ConvTy = Sema::Compatible;
8612       if (CurInitExprRes.isInvalid())
8613         return ExprError();
8614       CurInit = CurInitExprRes;
8615 
8616       bool Complained;
8617       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
8618                                      Step->Type, SourceType,
8619                                      InitialCurInit.get(),
8620                                      getAssignmentAction(Entity, true),
8621                                      &Complained)) {
8622         PrintInitLocationNote(S, Entity);
8623         return ExprError();
8624       } else if (Complained)
8625         PrintInitLocationNote(S, Entity);
8626       break;
8627     }
8628 
8629     case SK_StringInit: {
8630       QualType Ty = Step->Type;
8631       bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType();
8632       CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty,
8633                       S.Context.getAsArrayType(Ty), S);
8634       break;
8635     }
8636 
8637     case SK_ObjCObjectConversion:
8638       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8639                           CK_ObjCObjectLValueCast,
8640                           CurInit.get()->getValueKind());
8641       break;
8642 
8643     case SK_ArrayLoopIndex: {
8644       Expr *Cur = CurInit.get();
8645       Expr *BaseExpr = new (S.Context)
8646           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8647                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
8648       Expr *IndexExpr =
8649           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8650       CurInit = S.CreateBuiltinArraySubscriptExpr(
8651           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8652       ArrayLoopCommonExprs.push_back(BaseExpr);
8653       break;
8654     }
8655 
8656     case SK_ArrayLoopInit: {
8657       assert(!ArrayLoopCommonExprs.empty() &&
8658              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
8659       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8660       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8661                                                   CurInit.get());
8662       break;
8663     }
8664 
8665     case SK_GNUArrayInit:
8666       // Okay: we checked everything before creating this step. Note that
8667       // this is a GNU extension.
8668       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8669         << Step->Type << CurInit.get()->getType()
8670         << CurInit.get()->getSourceRange();
8671       updateGNUCompoundLiteralRValue(CurInit.get());
8672       LLVM_FALLTHROUGH;
8673     case SK_ArrayInit:
8674       // If the destination type is an incomplete array type, update the
8675       // type accordingly.
8676       if (ResultType) {
8677         if (const IncompleteArrayType *IncompleteDest
8678                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
8679           if (const ConstantArrayType *ConstantSource
8680                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8681             *ResultType = S.Context.getConstantArrayType(
8682                                              IncompleteDest->getElementType(),
8683                                              ConstantSource->getSize(),
8684                                              ConstantSource->getSizeExpr(),
8685                                              ArrayType::Normal, 0);
8686           }
8687         }
8688       }
8689       break;
8690 
8691     case SK_ParenthesizedArrayInit:
8692       // Okay: we checked everything before creating this step. Note that
8693       // this is a GNU extension.
8694       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8695         << CurInit.get()->getSourceRange();
8696       break;
8697 
8698     case SK_PassByIndirectCopyRestore:
8699     case SK_PassByIndirectRestore:
8700       checkIndirectCopyRestoreSource(S, CurInit.get());
8701       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8702           CurInit.get(), Step->Type,
8703           Step->Kind == SK_PassByIndirectCopyRestore);
8704       break;
8705 
8706     case SK_ProduceObjCObject:
8707       CurInit = ImplicitCastExpr::Create(
8708           S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr,
8709           VK_RValue, FPOptionsOverride());
8710       break;
8711 
8712     case SK_StdInitializerList: {
8713       S.Diag(CurInit.get()->getExprLoc(),
8714              diag::warn_cxx98_compat_initializer_list_init)
8715         << CurInit.get()->getSourceRange();
8716 
8717       // Materialize the temporary into memory.
8718       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8719           CurInit.get()->getType(), CurInit.get(),
8720           /*BoundToLvalueReference=*/false);
8721 
8722       // Wrap it in a construction of a std::initializer_list<T>.
8723       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8724 
8725       // Bind the result, in case the library has given initializer_list a
8726       // non-trivial destructor.
8727       if (shouldBindAsTemporary(Entity))
8728         CurInit = S.MaybeBindToTemporary(CurInit.get());
8729       break;
8730     }
8731 
8732     case SK_OCLSamplerInit: {
8733       // Sampler initialization have 5 cases:
8734       //   1. function argument passing
8735       //      1a. argument is a file-scope variable
8736       //      1b. argument is a function-scope variable
8737       //      1c. argument is one of caller function's parameters
8738       //   2. variable initialization
8739       //      2a. initializing a file-scope variable
8740       //      2b. initializing a function-scope variable
8741       //
8742       // For file-scope variables, since they cannot be initialized by function
8743       // call of __translate_sampler_initializer in LLVM IR, their references
8744       // need to be replaced by a cast from their literal initializers to
8745       // sampler type. Since sampler variables can only be used in function
8746       // calls as arguments, we only need to replace them when handling the
8747       // argument passing.
8748       assert(Step->Type->isSamplerT() &&
8749              "Sampler initialization on non-sampler type.");
8750       Expr *Init = CurInit.get()->IgnoreParens();
8751       QualType SourceType = Init->getType();
8752       // Case 1
8753       if (Entity.isParameterKind()) {
8754         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8755           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8756             << SourceType;
8757           break;
8758         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8759           auto Var = cast<VarDecl>(DRE->getDecl());
8760           // Case 1b and 1c
8761           // No cast from integer to sampler is needed.
8762           if (!Var->hasGlobalStorage()) {
8763             CurInit = ImplicitCastExpr::Create(
8764                 S.Context, Step->Type, CK_LValueToRValue, Init,
8765                 /*BasePath=*/nullptr, VK_RValue, FPOptionsOverride());
8766             break;
8767           }
8768           // Case 1a
8769           // For function call with a file-scope sampler variable as argument,
8770           // get the integer literal.
8771           // Do not diagnose if the file-scope variable does not have initializer
8772           // since this has already been diagnosed when parsing the variable
8773           // declaration.
8774           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8775             break;
8776           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8777             Var->getInit()))->getSubExpr();
8778           SourceType = Init->getType();
8779         }
8780       } else {
8781         // Case 2
8782         // Check initializer is 32 bit integer constant.
8783         // If the initializer is taken from global variable, do not diagnose since
8784         // this has already been done when parsing the variable declaration.
8785         if (!Init->isConstantInitializer(S.Context, false))
8786           break;
8787 
8788         if (!SourceType->isIntegerType() ||
8789             32 != S.Context.getIntWidth(SourceType)) {
8790           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8791             << SourceType;
8792           break;
8793         }
8794 
8795         Expr::EvalResult EVResult;
8796         Init->EvaluateAsInt(EVResult, S.Context);
8797         llvm::APSInt Result = EVResult.Val.getInt();
8798         const uint64_t SamplerValue = Result.getLimitedValue();
8799         // 32-bit value of sampler's initializer is interpreted as
8800         // bit-field with the following structure:
8801         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8802         // |31        6|5    4|3             1|                 0|
8803         // This structure corresponds to enum values of sampler properties
8804         // defined in SPIR spec v1.2 and also opencl-c.h
8805         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8806         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8807         if (FilterMode != 1 && FilterMode != 2 &&
8808             !S.getOpenCLOptions().isAvailableOption(
8809                 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()))
8810           S.Diag(Kind.getLocation(),
8811                  diag::warn_sampler_initializer_invalid_bits)
8812                  << "Filter Mode";
8813         if (AddressingMode > 4)
8814           S.Diag(Kind.getLocation(),
8815                  diag::warn_sampler_initializer_invalid_bits)
8816                  << "Addressing Mode";
8817       }
8818 
8819       // Cases 1a, 2a and 2b
8820       // Insert cast from integer to sampler.
8821       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8822                                       CK_IntToOCLSampler);
8823       break;
8824     }
8825     case SK_OCLZeroOpaqueType: {
8826       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8827               Step->Type->isOCLIntelSubgroupAVCType()) &&
8828              "Wrong type for initialization of OpenCL opaque type.");
8829 
8830       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8831                                     CK_ZeroToOCLOpaqueType,
8832                                     CurInit.get()->getValueKind());
8833       break;
8834     }
8835     }
8836   }
8837 
8838   // Check whether the initializer has a shorter lifetime than the initialized
8839   // entity, and if not, either lifetime-extend or warn as appropriate.
8840   if (auto *Init = CurInit.get())
8841     S.checkInitializerLifetime(Entity, Init);
8842 
8843   // Diagnose non-fatal problems with the completed initialization.
8844   if (Entity.getKind() == InitializedEntity::EK_Member &&
8845       cast<FieldDecl>(Entity.getDecl())->isBitField())
8846     S.CheckBitFieldInitialization(Kind.getLocation(),
8847                                   cast<FieldDecl>(Entity.getDecl()),
8848                                   CurInit.get());
8849 
8850   // Check for std::move on construction.
8851   if (const Expr *E = CurInit.get()) {
8852     CheckMoveOnConstruction(S, E,
8853                             Entity.getKind() == InitializedEntity::EK_Result);
8854   }
8855 
8856   return CurInit;
8857 }
8858 
8859 /// Somewhere within T there is an uninitialized reference subobject.
8860 /// Dig it out and diagnose it.
DiagnoseUninitializedReference(Sema & S,SourceLocation Loc,QualType T)8861 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8862                                            QualType T) {
8863   if (T->isReferenceType()) {
8864     S.Diag(Loc, diag::err_reference_without_init)
8865       << T.getNonReferenceType();
8866     return true;
8867   }
8868 
8869   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8870   if (!RD || !RD->hasUninitializedReferenceMember())
8871     return false;
8872 
8873   for (const auto *FI : RD->fields()) {
8874     if (FI->isUnnamedBitfield())
8875       continue;
8876 
8877     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8878       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8879       return true;
8880     }
8881   }
8882 
8883   for (const auto &BI : RD->bases()) {
8884     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8885       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8886       return true;
8887     }
8888   }
8889 
8890   return false;
8891 }
8892 
8893 
8894 //===----------------------------------------------------------------------===//
8895 // Diagnose initialization failures
8896 //===----------------------------------------------------------------------===//
8897 
8898 /// Emit notes associated with an initialization that failed due to a
8899 /// "simple" conversion failure.
emitBadConversionNotes(Sema & S,const InitializedEntity & entity,Expr * op)8900 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8901                                    Expr *op) {
8902   QualType destType = entity.getType();
8903   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8904       op->getType()->isObjCObjectPointerType()) {
8905 
8906     // Emit a possible note about the conversion failing because the
8907     // operand is a message send with a related result type.
8908     S.EmitRelatedResultTypeNote(op);
8909 
8910     // Emit a possible note about a return failing because we're
8911     // expecting a related result type.
8912     if (entity.getKind() == InitializedEntity::EK_Result)
8913       S.EmitRelatedResultTypeNoteForReturn(destType);
8914   }
8915   QualType fromType = op->getType();
8916   auto *fromDecl = fromType.getTypePtr()->getPointeeCXXRecordDecl();
8917   auto *destDecl = destType.getTypePtr()->getPointeeCXXRecordDecl();
8918   if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
8919       destDecl->getDeclKind() == Decl::CXXRecord &&
8920       !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
8921       !fromDecl->hasDefinition())
8922     S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
8923         << S.getASTContext().getTagDeclType(fromDecl)
8924         << S.getASTContext().getTagDeclType(destDecl);
8925 }
8926 
diagnoseListInit(Sema & S,const InitializedEntity & Entity,InitListExpr * InitList)8927 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8928                              InitListExpr *InitList) {
8929   QualType DestType = Entity.getType();
8930 
8931   QualType E;
8932   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8933     QualType ArrayType = S.Context.getConstantArrayType(
8934         E.withConst(),
8935         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8936                     InitList->getNumInits()),
8937         nullptr, clang::ArrayType::Normal, 0);
8938     InitializedEntity HiddenArray =
8939         InitializedEntity::InitializeTemporary(ArrayType);
8940     return diagnoseListInit(S, HiddenArray, InitList);
8941   }
8942 
8943   if (DestType->isReferenceType()) {
8944     // A list-initialization failure for a reference means that we tried to
8945     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8946     // inner initialization failed.
8947     QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
8948     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8949     SourceLocation Loc = InitList->getBeginLoc();
8950     if (auto *D = Entity.getDecl())
8951       Loc = D->getLocation();
8952     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8953     return;
8954   }
8955 
8956   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8957                                    /*VerifyOnly=*/false,
8958                                    /*TreatUnavailableAsInvalid=*/false);
8959   assert(DiagnoseInitList.HadError() &&
8960          "Inconsistent init list check result.");
8961 }
8962 
Diagnose(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,ArrayRef<Expr * > Args)8963 bool InitializationSequence::Diagnose(Sema &S,
8964                                       const InitializedEntity &Entity,
8965                                       const InitializationKind &Kind,
8966                                       ArrayRef<Expr *> Args) {
8967   if (!Failed())
8968     return false;
8969 
8970   // When we want to diagnose only one element of a braced-init-list,
8971   // we need to factor it out.
8972   Expr *OnlyArg;
8973   if (Args.size() == 1) {
8974     auto *List = dyn_cast<InitListExpr>(Args[0]);
8975     if (List && List->getNumInits() == 1)
8976       OnlyArg = List->getInit(0);
8977     else
8978       OnlyArg = Args[0];
8979   }
8980   else
8981     OnlyArg = nullptr;
8982 
8983   QualType DestType = Entity.getType();
8984   switch (Failure) {
8985   case FK_TooManyInitsForReference:
8986     // FIXME: Customize for the initialized entity?
8987     if (Args.empty()) {
8988       // Dig out the reference subobject which is uninitialized and diagnose it.
8989       // If this is value-initialization, this could be nested some way within
8990       // the target type.
8991       assert(Kind.getKind() == InitializationKind::IK_Value ||
8992              DestType->isReferenceType());
8993       bool Diagnosed =
8994         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8995       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
8996       (void)Diagnosed;
8997     } else  // FIXME: diagnostic below could be better!
8998       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8999           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9000     break;
9001   case FK_ParenthesizedListInitForReference:
9002     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9003       << 1 << Entity.getType() << Args[0]->getSourceRange();
9004     break;
9005 
9006   case FK_ArrayNeedsInitList:
9007     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
9008     break;
9009   case FK_ArrayNeedsInitListOrStringLiteral:
9010     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
9011     break;
9012   case FK_ArrayNeedsInitListOrWideStringLiteral:
9013     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
9014     break;
9015   case FK_NarrowStringIntoWideCharArray:
9016     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
9017     break;
9018   case FK_WideStringIntoCharArray:
9019     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
9020     break;
9021   case FK_IncompatWideStringIntoWideChar:
9022     S.Diag(Kind.getLocation(),
9023            diag::err_array_init_incompat_wide_string_into_wchar);
9024     break;
9025   case FK_PlainStringIntoUTF8Char:
9026     S.Diag(Kind.getLocation(),
9027            diag::err_array_init_plain_string_into_char8_t);
9028     S.Diag(Args.front()->getBeginLoc(),
9029            diag::note_array_init_plain_string_into_char8_t)
9030         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
9031     break;
9032   case FK_UTF8StringIntoPlainChar:
9033     S.Diag(Kind.getLocation(),
9034            diag::err_array_init_utf8_string_into_char)
9035       << S.getLangOpts().CPlusPlus20;
9036     break;
9037   case FK_ArrayTypeMismatch:
9038   case FK_NonConstantArrayInit:
9039     S.Diag(Kind.getLocation(),
9040            (Failure == FK_ArrayTypeMismatch
9041               ? diag::err_array_init_different_type
9042               : diag::err_array_init_non_constant_array))
9043       << DestType.getNonReferenceType()
9044       << OnlyArg->getType()
9045       << Args[0]->getSourceRange();
9046     break;
9047 
9048   case FK_VariableLengthArrayHasInitializer:
9049     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
9050       << Args[0]->getSourceRange();
9051     break;
9052 
9053   case FK_AddressOfOverloadFailed: {
9054     DeclAccessPair Found;
9055     S.ResolveAddressOfOverloadedFunction(OnlyArg,
9056                                          DestType.getNonReferenceType(),
9057                                          true,
9058                                          Found);
9059     break;
9060   }
9061 
9062   case FK_AddressOfUnaddressableFunction: {
9063     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
9064     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
9065                                         OnlyArg->getBeginLoc());
9066     break;
9067   }
9068 
9069   case FK_ReferenceInitOverloadFailed:
9070   case FK_UserConversionOverloadFailed:
9071     switch (FailedOverloadResult) {
9072     case OR_Ambiguous:
9073 
9074       FailedCandidateSet.NoteCandidates(
9075           PartialDiagnosticAt(
9076               Kind.getLocation(),
9077               Failure == FK_UserConversionOverloadFailed
9078                   ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
9079                      << OnlyArg->getType() << DestType
9080                      << Args[0]->getSourceRange())
9081                   : (S.PDiag(diag::err_ref_init_ambiguous)
9082                      << DestType << OnlyArg->getType()
9083                      << Args[0]->getSourceRange())),
9084           S, OCD_AmbiguousCandidates, Args);
9085       break;
9086 
9087     case OR_No_Viable_Function: {
9088       auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
9089       if (!S.RequireCompleteType(Kind.getLocation(),
9090                                  DestType.getNonReferenceType(),
9091                           diag::err_typecheck_nonviable_condition_incomplete,
9092                                OnlyArg->getType(), Args[0]->getSourceRange()))
9093         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
9094           << (Entity.getKind() == InitializedEntity::EK_Result)
9095           << OnlyArg->getType() << Args[0]->getSourceRange()
9096           << DestType.getNonReferenceType();
9097 
9098       FailedCandidateSet.NoteCandidates(S, Args, Cands);
9099       break;
9100     }
9101     case OR_Deleted: {
9102       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
9103         << OnlyArg->getType() << DestType.getNonReferenceType()
9104         << Args[0]->getSourceRange();
9105       OverloadCandidateSet::iterator Best;
9106       OverloadingResult Ovl
9107         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9108       if (Ovl == OR_Deleted) {
9109         S.NoteDeletedFunction(Best->Function);
9110       } else {
9111         llvm_unreachable("Inconsistent overload resolution?");
9112       }
9113       break;
9114     }
9115 
9116     case OR_Success:
9117       llvm_unreachable("Conversion did not fail!");
9118     }
9119     break;
9120 
9121   case FK_NonConstLValueReferenceBindingToTemporary:
9122     if (isa<InitListExpr>(Args[0])) {
9123       S.Diag(Kind.getLocation(),
9124              diag::err_lvalue_reference_bind_to_initlist)
9125       << DestType.getNonReferenceType().isVolatileQualified()
9126       << DestType.getNonReferenceType()
9127       << Args[0]->getSourceRange();
9128       break;
9129     }
9130     LLVM_FALLTHROUGH;
9131 
9132   case FK_NonConstLValueReferenceBindingToUnrelated:
9133     S.Diag(Kind.getLocation(),
9134            Failure == FK_NonConstLValueReferenceBindingToTemporary
9135              ? diag::err_lvalue_reference_bind_to_temporary
9136              : diag::err_lvalue_reference_bind_to_unrelated)
9137       << DestType.getNonReferenceType().isVolatileQualified()
9138       << DestType.getNonReferenceType()
9139       << OnlyArg->getType()
9140       << Args[0]->getSourceRange();
9141     break;
9142 
9143   case FK_NonConstLValueReferenceBindingToBitfield: {
9144     // We don't necessarily have an unambiguous source bit-field.
9145     FieldDecl *BitField = Args[0]->getSourceBitField();
9146     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
9147       << DestType.isVolatileQualified()
9148       << (BitField ? BitField->getDeclName() : DeclarationName())
9149       << (BitField != nullptr)
9150       << Args[0]->getSourceRange();
9151     if (BitField)
9152       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
9153     break;
9154   }
9155 
9156   case FK_NonConstLValueReferenceBindingToVectorElement:
9157     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
9158       << DestType.isVolatileQualified()
9159       << Args[0]->getSourceRange();
9160     break;
9161 
9162   case FK_NonConstLValueReferenceBindingToMatrixElement:
9163     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
9164         << DestType.isVolatileQualified() << Args[0]->getSourceRange();
9165     break;
9166 
9167   case FK_RValueReferenceBindingToLValue:
9168     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
9169       << DestType.getNonReferenceType() << OnlyArg->getType()
9170       << Args[0]->getSourceRange();
9171     break;
9172 
9173   case FK_ReferenceAddrspaceMismatchTemporary:
9174     S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
9175         << DestType << Args[0]->getSourceRange();
9176     break;
9177 
9178   case FK_ReferenceInitDropsQualifiers: {
9179     QualType SourceType = OnlyArg->getType();
9180     QualType NonRefType = DestType.getNonReferenceType();
9181     Qualifiers DroppedQualifiers =
9182         SourceType.getQualifiers() - NonRefType.getQualifiers();
9183 
9184     if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
9185             SourceType.getQualifiers()))
9186       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9187           << NonRefType << SourceType << 1 /*addr space*/
9188           << Args[0]->getSourceRange();
9189     else if (DroppedQualifiers.hasQualifiers())
9190       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9191           << NonRefType << SourceType << 0 /*cv quals*/
9192           << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
9193           << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
9194     else
9195       // FIXME: Consider decomposing the type and explaining which qualifiers
9196       // were dropped where, or on which level a 'const' is missing, etc.
9197       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9198           << NonRefType << SourceType << 2 /*incompatible quals*/
9199           << Args[0]->getSourceRange();
9200     break;
9201   }
9202 
9203   case FK_ReferenceInitFailed:
9204     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
9205       << DestType.getNonReferenceType()
9206       << DestType.getNonReferenceType()->isIncompleteType()
9207       << OnlyArg->isLValue()
9208       << OnlyArg->getType()
9209       << Args[0]->getSourceRange();
9210     emitBadConversionNotes(S, Entity, Args[0]);
9211     break;
9212 
9213   case FK_ConversionFailed: {
9214     QualType FromType = OnlyArg->getType();
9215     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
9216       << (int)Entity.getKind()
9217       << DestType
9218       << OnlyArg->isLValue()
9219       << FromType
9220       << Args[0]->getSourceRange();
9221     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
9222     S.Diag(Kind.getLocation(), PDiag);
9223     emitBadConversionNotes(S, Entity, Args[0]);
9224     break;
9225   }
9226 
9227   case FK_ConversionFromPropertyFailed:
9228     // No-op. This error has already been reported.
9229     break;
9230 
9231   case FK_TooManyInitsForScalar: {
9232     SourceRange R;
9233 
9234     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
9235     if (InitList && InitList->getNumInits() >= 1) {
9236       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
9237     } else {
9238       assert(Args.size() > 1 && "Expected multiple initializers!");
9239       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
9240     }
9241 
9242     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
9243     if (Kind.isCStyleOrFunctionalCast())
9244       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
9245         << R;
9246     else
9247       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
9248         << /*scalar=*/2 << R;
9249     break;
9250   }
9251 
9252   case FK_ParenthesizedListInitForScalar:
9253     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9254       << 0 << Entity.getType() << Args[0]->getSourceRange();
9255     break;
9256 
9257   case FK_ReferenceBindingToInitList:
9258     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9259       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9260     break;
9261 
9262   case FK_InitListBadDestinationType:
9263     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9264       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9265     break;
9266 
9267   case FK_ListConstructorOverloadFailed:
9268   case FK_ConstructorOverloadFailed: {
9269     SourceRange ArgsRange;
9270     if (Args.size())
9271       ArgsRange =
9272           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9273 
9274     if (Failure == FK_ListConstructorOverloadFailed) {
9275       assert(Args.size() == 1 &&
9276              "List construction from other than 1 argument.");
9277       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9278       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9279     }
9280 
9281     // FIXME: Using "DestType" for the entity we're printing is probably
9282     // bad.
9283     switch (FailedOverloadResult) {
9284       case OR_Ambiguous:
9285         FailedCandidateSet.NoteCandidates(
9286             PartialDiagnosticAt(Kind.getLocation(),
9287                                 S.PDiag(diag::err_ovl_ambiguous_init)
9288                                     << DestType << ArgsRange),
9289             S, OCD_AmbiguousCandidates, Args);
9290         break;
9291 
9292       case OR_No_Viable_Function:
9293         if (Kind.getKind() == InitializationKind::IK_Default &&
9294             (Entity.getKind() == InitializedEntity::EK_Base ||
9295              Entity.getKind() == InitializedEntity::EK_Member) &&
9296             isa<CXXConstructorDecl>(S.CurContext)) {
9297           // This is implicit default initialization of a member or
9298           // base within a constructor. If no viable function was
9299           // found, notify the user that they need to explicitly
9300           // initialize this base/member.
9301           CXXConstructorDecl *Constructor
9302             = cast<CXXConstructorDecl>(S.CurContext);
9303           const CXXRecordDecl *InheritedFrom = nullptr;
9304           if (auto Inherited = Constructor->getInheritedConstructor())
9305             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9306           if (Entity.getKind() == InitializedEntity::EK_Base) {
9307             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9308               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9309               << S.Context.getTypeDeclType(Constructor->getParent())
9310               << /*base=*/0
9311               << Entity.getType()
9312               << InheritedFrom;
9313 
9314             RecordDecl *BaseDecl
9315               = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9316                                                                   ->getDecl();
9317             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9318               << S.Context.getTagDeclType(BaseDecl);
9319           } else {
9320             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9321               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9322               << S.Context.getTypeDeclType(Constructor->getParent())
9323               << /*member=*/1
9324               << Entity.getName()
9325               << InheritedFrom;
9326             S.Diag(Entity.getDecl()->getLocation(),
9327                    diag::note_member_declared_at);
9328 
9329             if (const RecordType *Record
9330                                  = Entity.getType()->getAs<RecordType>())
9331               S.Diag(Record->getDecl()->getLocation(),
9332                      diag::note_previous_decl)
9333                 << S.Context.getTagDeclType(Record->getDecl());
9334           }
9335           break;
9336         }
9337 
9338         FailedCandidateSet.NoteCandidates(
9339             PartialDiagnosticAt(
9340                 Kind.getLocation(),
9341                 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9342                     << DestType << ArgsRange),
9343             S, OCD_AllCandidates, Args);
9344         break;
9345 
9346       case OR_Deleted: {
9347         OverloadCandidateSet::iterator Best;
9348         OverloadingResult Ovl
9349           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9350         if (Ovl != OR_Deleted) {
9351           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9352               << DestType << ArgsRange;
9353           llvm_unreachable("Inconsistent overload resolution?");
9354           break;
9355         }
9356 
9357         // If this is a defaulted or implicitly-declared function, then
9358         // it was implicitly deleted. Make it clear that the deletion was
9359         // implicit.
9360         if (S.isImplicitlyDeleted(Best->Function))
9361           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9362             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9363             << DestType << ArgsRange;
9364         else
9365           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9366               << DestType << ArgsRange;
9367 
9368         S.NoteDeletedFunction(Best->Function);
9369         break;
9370       }
9371 
9372       case OR_Success:
9373         llvm_unreachable("Conversion did not fail!");
9374     }
9375   }
9376   break;
9377 
9378   case FK_DefaultInitOfConst:
9379     if (Entity.getKind() == InitializedEntity::EK_Member &&
9380         isa<CXXConstructorDecl>(S.CurContext)) {
9381       // This is implicit default-initialization of a const member in
9382       // a constructor. Complain that it needs to be explicitly
9383       // initialized.
9384       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9385       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9386         << (Constructor->getInheritedConstructor() ? 2 :
9387             Constructor->isImplicit() ? 1 : 0)
9388         << S.Context.getTypeDeclType(Constructor->getParent())
9389         << /*const=*/1
9390         << Entity.getName();
9391       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9392         << Entity.getName();
9393     } else {
9394       S.Diag(Kind.getLocation(), diag::err_default_init_const)
9395           << DestType << (bool)DestType->getAs<RecordType>();
9396     }
9397     break;
9398 
9399   case FK_Incomplete:
9400     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9401                           diag::err_init_incomplete_type);
9402     break;
9403 
9404   case FK_ListInitializationFailed: {
9405     // Run the init list checker again to emit diagnostics.
9406     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9407     diagnoseListInit(S, Entity, InitList);
9408     break;
9409   }
9410 
9411   case FK_PlaceholderType: {
9412     // FIXME: Already diagnosed!
9413     break;
9414   }
9415 
9416   case FK_ExplicitConstructor: {
9417     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9418       << Args[0]->getSourceRange();
9419     OverloadCandidateSet::iterator Best;
9420     OverloadingResult Ovl
9421       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9422     (void)Ovl;
9423     assert(Ovl == OR_Success && "Inconsistent overload resolution");
9424     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9425     S.Diag(CtorDecl->getLocation(),
9426            diag::note_explicit_ctor_deduction_guide_here) << false;
9427     break;
9428   }
9429   }
9430 
9431   PrintInitLocationNote(S, Entity);
9432   return true;
9433 }
9434 
dump(raw_ostream & OS) const9435 void InitializationSequence::dump(raw_ostream &OS) const {
9436   switch (SequenceKind) {
9437   case FailedSequence: {
9438     OS << "Failed sequence: ";
9439     switch (Failure) {
9440     case FK_TooManyInitsForReference:
9441       OS << "too many initializers for reference";
9442       break;
9443 
9444     case FK_ParenthesizedListInitForReference:
9445       OS << "parenthesized list init for reference";
9446       break;
9447 
9448     case FK_ArrayNeedsInitList:
9449       OS << "array requires initializer list";
9450       break;
9451 
9452     case FK_AddressOfUnaddressableFunction:
9453       OS << "address of unaddressable function was taken";
9454       break;
9455 
9456     case FK_ArrayNeedsInitListOrStringLiteral:
9457       OS << "array requires initializer list or string literal";
9458       break;
9459 
9460     case FK_ArrayNeedsInitListOrWideStringLiteral:
9461       OS << "array requires initializer list or wide string literal";
9462       break;
9463 
9464     case FK_NarrowStringIntoWideCharArray:
9465       OS << "narrow string into wide char array";
9466       break;
9467 
9468     case FK_WideStringIntoCharArray:
9469       OS << "wide string into char array";
9470       break;
9471 
9472     case FK_IncompatWideStringIntoWideChar:
9473       OS << "incompatible wide string into wide char array";
9474       break;
9475 
9476     case FK_PlainStringIntoUTF8Char:
9477       OS << "plain string literal into char8_t array";
9478       break;
9479 
9480     case FK_UTF8StringIntoPlainChar:
9481       OS << "u8 string literal into char array";
9482       break;
9483 
9484     case FK_ArrayTypeMismatch:
9485       OS << "array type mismatch";
9486       break;
9487 
9488     case FK_NonConstantArrayInit:
9489       OS << "non-constant array initializer";
9490       break;
9491 
9492     case FK_AddressOfOverloadFailed:
9493       OS << "address of overloaded function failed";
9494       break;
9495 
9496     case FK_ReferenceInitOverloadFailed:
9497       OS << "overload resolution for reference initialization failed";
9498       break;
9499 
9500     case FK_NonConstLValueReferenceBindingToTemporary:
9501       OS << "non-const lvalue reference bound to temporary";
9502       break;
9503 
9504     case FK_NonConstLValueReferenceBindingToBitfield:
9505       OS << "non-const lvalue reference bound to bit-field";
9506       break;
9507 
9508     case FK_NonConstLValueReferenceBindingToVectorElement:
9509       OS << "non-const lvalue reference bound to vector element";
9510       break;
9511 
9512     case FK_NonConstLValueReferenceBindingToMatrixElement:
9513       OS << "non-const lvalue reference bound to matrix element";
9514       break;
9515 
9516     case FK_NonConstLValueReferenceBindingToUnrelated:
9517       OS << "non-const lvalue reference bound to unrelated type";
9518       break;
9519 
9520     case FK_RValueReferenceBindingToLValue:
9521       OS << "rvalue reference bound to an lvalue";
9522       break;
9523 
9524     case FK_ReferenceInitDropsQualifiers:
9525       OS << "reference initialization drops qualifiers";
9526       break;
9527 
9528     case FK_ReferenceAddrspaceMismatchTemporary:
9529       OS << "reference with mismatching address space bound to temporary";
9530       break;
9531 
9532     case FK_ReferenceInitFailed:
9533       OS << "reference initialization failed";
9534       break;
9535 
9536     case FK_ConversionFailed:
9537       OS << "conversion failed";
9538       break;
9539 
9540     case FK_ConversionFromPropertyFailed:
9541       OS << "conversion from property failed";
9542       break;
9543 
9544     case FK_TooManyInitsForScalar:
9545       OS << "too many initializers for scalar";
9546       break;
9547 
9548     case FK_ParenthesizedListInitForScalar:
9549       OS << "parenthesized list init for reference";
9550       break;
9551 
9552     case FK_ReferenceBindingToInitList:
9553       OS << "referencing binding to initializer list";
9554       break;
9555 
9556     case FK_InitListBadDestinationType:
9557       OS << "initializer list for non-aggregate, non-scalar type";
9558       break;
9559 
9560     case FK_UserConversionOverloadFailed:
9561       OS << "overloading failed for user-defined conversion";
9562       break;
9563 
9564     case FK_ConstructorOverloadFailed:
9565       OS << "constructor overloading failed";
9566       break;
9567 
9568     case FK_DefaultInitOfConst:
9569       OS << "default initialization of a const variable";
9570       break;
9571 
9572     case FK_Incomplete:
9573       OS << "initialization of incomplete type";
9574       break;
9575 
9576     case FK_ListInitializationFailed:
9577       OS << "list initialization checker failure";
9578       break;
9579 
9580     case FK_VariableLengthArrayHasInitializer:
9581       OS << "variable length array has an initializer";
9582       break;
9583 
9584     case FK_PlaceholderType:
9585       OS << "initializer expression isn't contextually valid";
9586       break;
9587 
9588     case FK_ListConstructorOverloadFailed:
9589       OS << "list constructor overloading failed";
9590       break;
9591 
9592     case FK_ExplicitConstructor:
9593       OS << "list copy initialization chose explicit constructor";
9594       break;
9595     }
9596     OS << '\n';
9597     return;
9598   }
9599 
9600   case DependentSequence:
9601     OS << "Dependent sequence\n";
9602     return;
9603 
9604   case NormalSequence:
9605     OS << "Normal sequence: ";
9606     break;
9607   }
9608 
9609   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
9610     if (S != step_begin()) {
9611       OS << " -> ";
9612     }
9613 
9614     switch (S->Kind) {
9615     case SK_ResolveAddressOfOverloadedFunction:
9616       OS << "resolve address of overloaded function";
9617       break;
9618 
9619     case SK_CastDerivedToBaseRValue:
9620       OS << "derived-to-base (rvalue)";
9621       break;
9622 
9623     case SK_CastDerivedToBaseXValue:
9624       OS << "derived-to-base (xvalue)";
9625       break;
9626 
9627     case SK_CastDerivedToBaseLValue:
9628       OS << "derived-to-base (lvalue)";
9629       break;
9630 
9631     case SK_BindReference:
9632       OS << "bind reference to lvalue";
9633       break;
9634 
9635     case SK_BindReferenceToTemporary:
9636       OS << "bind reference to a temporary";
9637       break;
9638 
9639     case SK_FinalCopy:
9640       OS << "final copy in class direct-initialization";
9641       break;
9642 
9643     case SK_ExtraneousCopyToTemporary:
9644       OS << "extraneous C++03 copy to temporary";
9645       break;
9646 
9647     case SK_UserConversion:
9648       OS << "user-defined conversion via " << *S->Function.Function;
9649       break;
9650 
9651     case SK_QualificationConversionRValue:
9652       OS << "qualification conversion (rvalue)";
9653       break;
9654 
9655     case SK_QualificationConversionXValue:
9656       OS << "qualification conversion (xvalue)";
9657       break;
9658 
9659     case SK_QualificationConversionLValue:
9660       OS << "qualification conversion (lvalue)";
9661       break;
9662 
9663     case SK_FunctionReferenceConversion:
9664       OS << "function reference conversion";
9665       break;
9666 
9667     case SK_AtomicConversion:
9668       OS << "non-atomic-to-atomic conversion";
9669       break;
9670 
9671     case SK_ConversionSequence:
9672       OS << "implicit conversion sequence (";
9673       S->ICS->dump(); // FIXME: use OS
9674       OS << ")";
9675       break;
9676 
9677     case SK_ConversionSequenceNoNarrowing:
9678       OS << "implicit conversion sequence with narrowing prohibited (";
9679       S->ICS->dump(); // FIXME: use OS
9680       OS << ")";
9681       break;
9682 
9683     case SK_ListInitialization:
9684       OS << "list aggregate initialization";
9685       break;
9686 
9687     case SK_UnwrapInitList:
9688       OS << "unwrap reference initializer list";
9689       break;
9690 
9691     case SK_RewrapInitList:
9692       OS << "rewrap reference initializer list";
9693       break;
9694 
9695     case SK_ConstructorInitialization:
9696       OS << "constructor initialization";
9697       break;
9698 
9699     case SK_ConstructorInitializationFromList:
9700       OS << "list initialization via constructor";
9701       break;
9702 
9703     case SK_ZeroInitialization:
9704       OS << "zero initialization";
9705       break;
9706 
9707     case SK_CAssignment:
9708       OS << "C assignment";
9709       break;
9710 
9711     case SK_StringInit:
9712       OS << "string initialization";
9713       break;
9714 
9715     case SK_ObjCObjectConversion:
9716       OS << "Objective-C object conversion";
9717       break;
9718 
9719     case SK_ArrayLoopIndex:
9720       OS << "indexing for array initialization loop";
9721       break;
9722 
9723     case SK_ArrayLoopInit:
9724       OS << "array initialization loop";
9725       break;
9726 
9727     case SK_ArrayInit:
9728       OS << "array initialization";
9729       break;
9730 
9731     case SK_GNUArrayInit:
9732       OS << "array initialization (GNU extension)";
9733       break;
9734 
9735     case SK_ParenthesizedArrayInit:
9736       OS << "parenthesized array initialization";
9737       break;
9738 
9739     case SK_PassByIndirectCopyRestore:
9740       OS << "pass by indirect copy and restore";
9741       break;
9742 
9743     case SK_PassByIndirectRestore:
9744       OS << "pass by indirect restore";
9745       break;
9746 
9747     case SK_ProduceObjCObject:
9748       OS << "Objective-C object retension";
9749       break;
9750 
9751     case SK_StdInitializerList:
9752       OS << "std::initializer_list from initializer list";
9753       break;
9754 
9755     case SK_StdInitializerListConstructorCall:
9756       OS << "list initialization from std::initializer_list";
9757       break;
9758 
9759     case SK_OCLSamplerInit:
9760       OS << "OpenCL sampler_t from integer constant";
9761       break;
9762 
9763     case SK_OCLZeroOpaqueType:
9764       OS << "OpenCL opaque type from zero";
9765       break;
9766     }
9767 
9768     OS << " [" << S->Type.getAsString() << ']';
9769   }
9770 
9771   OS << '\n';
9772 }
9773 
dump() const9774 void InitializationSequence::dump() const {
9775   dump(llvm::errs());
9776 }
9777 
NarrowingErrs(const LangOptions & L)9778 static bool NarrowingErrs(const LangOptions &L) {
9779   return L.CPlusPlus11 &&
9780          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9781 }
9782 
DiagnoseNarrowingInInitList(Sema & S,const ImplicitConversionSequence & ICS,QualType PreNarrowingType,QualType EntityType,const Expr * PostInit)9783 static void DiagnoseNarrowingInInitList(Sema &S,
9784                                         const ImplicitConversionSequence &ICS,
9785                                         QualType PreNarrowingType,
9786                                         QualType EntityType,
9787                                         const Expr *PostInit) {
9788   const StandardConversionSequence *SCS = nullptr;
9789   switch (ICS.getKind()) {
9790   case ImplicitConversionSequence::StandardConversion:
9791     SCS = &ICS.Standard;
9792     break;
9793   case ImplicitConversionSequence::UserDefinedConversion:
9794     SCS = &ICS.UserDefined.After;
9795     break;
9796   case ImplicitConversionSequence::AmbiguousConversion:
9797   case ImplicitConversionSequence::EllipsisConversion:
9798   case ImplicitConversionSequence::BadConversion:
9799     return;
9800   }
9801 
9802   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9803   APValue ConstantValue;
9804   QualType ConstantType;
9805   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9806                                 ConstantType)) {
9807   case NK_Not_Narrowing:
9808   case NK_Dependent_Narrowing:
9809     // No narrowing occurred.
9810     return;
9811 
9812   case NK_Type_Narrowing:
9813     // This was a floating-to-integer conversion, which is always considered a
9814     // narrowing conversion even if the value is a constant and can be
9815     // represented exactly as an integer.
9816     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9817                                         ? diag::ext_init_list_type_narrowing
9818                                         : diag::warn_init_list_type_narrowing)
9819         << PostInit->getSourceRange()
9820         << PreNarrowingType.getLocalUnqualifiedType()
9821         << EntityType.getLocalUnqualifiedType();
9822     break;
9823 
9824   case NK_Constant_Narrowing:
9825     // A constant value was narrowed.
9826     S.Diag(PostInit->getBeginLoc(),
9827            NarrowingErrs(S.getLangOpts())
9828                ? diag::ext_init_list_constant_narrowing
9829                : diag::warn_init_list_constant_narrowing)
9830         << PostInit->getSourceRange()
9831         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9832         << EntityType.getLocalUnqualifiedType();
9833     break;
9834 
9835   case NK_Variable_Narrowing:
9836     // A variable's value may have been narrowed.
9837     S.Diag(PostInit->getBeginLoc(),
9838            NarrowingErrs(S.getLangOpts())
9839                ? diag::ext_init_list_variable_narrowing
9840                : diag::warn_init_list_variable_narrowing)
9841         << PostInit->getSourceRange()
9842         << PreNarrowingType.getLocalUnqualifiedType()
9843         << EntityType.getLocalUnqualifiedType();
9844     break;
9845   }
9846 
9847   SmallString<128> StaticCast;
9848   llvm::raw_svector_ostream OS(StaticCast);
9849   OS << "static_cast<";
9850   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9851     // It's important to use the typedef's name if there is one so that the
9852     // fixit doesn't break code using types like int64_t.
9853     //
9854     // FIXME: This will break if the typedef requires qualification.  But
9855     // getQualifiedNameAsString() includes non-machine-parsable components.
9856     OS << *TT->getDecl();
9857   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9858     OS << BT->getName(S.getLangOpts());
9859   else {
9860     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9861     // with a broken cast.
9862     return;
9863   }
9864   OS << ">(";
9865   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9866       << PostInit->getSourceRange()
9867       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9868       << FixItHint::CreateInsertion(
9869              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9870 }
9871 
9872 //===----------------------------------------------------------------------===//
9873 // Initialization helper functions
9874 //===----------------------------------------------------------------------===//
9875 bool
CanPerformCopyInitialization(const InitializedEntity & Entity,ExprResult Init)9876 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9877                                    ExprResult Init) {
9878   if (Init.isInvalid())
9879     return false;
9880 
9881   Expr *InitE = Init.get();
9882   assert(InitE && "No initialization expression");
9883 
9884   InitializationKind Kind =
9885       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9886   InitializationSequence Seq(*this, Entity, Kind, InitE);
9887   return !Seq.Failed();
9888 }
9889 
9890 ExprResult
PerformCopyInitialization(const InitializedEntity & Entity,SourceLocation EqualLoc,ExprResult Init,bool TopLevelOfInitList,bool AllowExplicit)9891 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9892                                 SourceLocation EqualLoc,
9893                                 ExprResult Init,
9894                                 bool TopLevelOfInitList,
9895                                 bool AllowExplicit) {
9896   if (Init.isInvalid())
9897     return ExprError();
9898 
9899   Expr *InitE = Init.get();
9900   assert(InitE && "No initialization expression?");
9901 
9902   if (EqualLoc.isInvalid())
9903     EqualLoc = InitE->getBeginLoc();
9904 
9905   InitializationKind Kind = InitializationKind::CreateCopy(
9906       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9907   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9908 
9909   // Prevent infinite recursion when performing parameter copy-initialization.
9910   const bool ShouldTrackCopy =
9911       Entity.isParameterKind() && Seq.isConstructorInitialization();
9912   if (ShouldTrackCopy) {
9913     if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9914         CurrentParameterCopyTypes.end()) {
9915       Seq.SetOverloadFailure(
9916           InitializationSequence::FK_ConstructorOverloadFailed,
9917           OR_No_Viable_Function);
9918 
9919       // Try to give a meaningful diagnostic note for the problematic
9920       // constructor.
9921       const auto LastStep = Seq.step_end() - 1;
9922       assert(LastStep->Kind ==
9923              InitializationSequence::SK_ConstructorInitialization);
9924       const FunctionDecl *Function = LastStep->Function.Function;
9925       auto Candidate =
9926           llvm::find_if(Seq.getFailedCandidateSet(),
9927                         [Function](const OverloadCandidate &Candidate) -> bool {
9928                           return Candidate.Viable &&
9929                                  Candidate.Function == Function &&
9930                                  Candidate.Conversions.size() > 0;
9931                         });
9932       if (Candidate != Seq.getFailedCandidateSet().end() &&
9933           Function->getNumParams() > 0) {
9934         Candidate->Viable = false;
9935         Candidate->FailureKind = ovl_fail_bad_conversion;
9936         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9937                                          InitE,
9938                                          Function->getParamDecl(0)->getType());
9939       }
9940     }
9941     CurrentParameterCopyTypes.push_back(Entity.getType());
9942   }
9943 
9944   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9945 
9946   if (ShouldTrackCopy)
9947     CurrentParameterCopyTypes.pop_back();
9948 
9949   return Result;
9950 }
9951 
9952 /// Determine whether RD is, or is derived from, a specialization of CTD.
isOrIsDerivedFromSpecializationOf(CXXRecordDecl * RD,ClassTemplateDecl * CTD)9953 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9954                                               ClassTemplateDecl *CTD) {
9955   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9956     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9957     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9958   };
9959   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9960 }
9961 
DeduceTemplateSpecializationFromInitializer(TypeSourceInfo * TSInfo,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Inits)9962 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9963     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9964     const InitializationKind &Kind, MultiExprArg Inits) {
9965   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9966       TSInfo->getType()->getContainedDeducedType());
9967   assert(DeducedTST && "not a deduced template specialization type");
9968 
9969   auto TemplateName = DeducedTST->getTemplateName();
9970   if (TemplateName.isDependent())
9971     return SubstAutoType(TSInfo->getType(), Context.DependentTy);
9972 
9973   // We can only perform deduction for class templates.
9974   auto *Template =
9975       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9976   if (!Template) {
9977     Diag(Kind.getLocation(),
9978          diag::err_deduced_non_class_template_specialization_type)
9979       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9980     if (auto *TD = TemplateName.getAsTemplateDecl())
9981       Diag(TD->getLocation(), diag::note_template_decl_here);
9982     return QualType();
9983   }
9984 
9985   // Can't deduce from dependent arguments.
9986   if (Expr::hasAnyTypeDependentArguments(Inits)) {
9987     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9988          diag::warn_cxx14_compat_class_template_argument_deduction)
9989         << TSInfo->getTypeLoc().getSourceRange() << 0;
9990     return SubstAutoType(TSInfo->getType(), Context.DependentTy);
9991   }
9992 
9993   // FIXME: Perform "exact type" matching first, per CWG discussion?
9994   //        Or implement this via an implied 'T(T) -> T' deduction guide?
9995 
9996   // FIXME: Do we need/want a std::initializer_list<T> special case?
9997 
9998   // Look up deduction guides, including those synthesized from constructors.
9999   //
10000   // C++1z [over.match.class.deduct]p1:
10001   //   A set of functions and function templates is formed comprising:
10002   //   - For each constructor of the class template designated by the
10003   //     template-name, a function template [...]
10004   //  - For each deduction-guide, a function or function template [...]
10005   DeclarationNameInfo NameInfo(
10006       Context.DeclarationNames.getCXXDeductionGuideName(Template),
10007       TSInfo->getTypeLoc().getEndLoc());
10008   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
10009   LookupQualifiedName(Guides, Template->getDeclContext());
10010 
10011   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
10012   // clear on this, but they're not found by name so access does not apply.
10013   Guides.suppressDiagnostics();
10014 
10015   // Figure out if this is list-initialization.
10016   InitListExpr *ListInit =
10017       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
10018           ? dyn_cast<InitListExpr>(Inits[0])
10019           : nullptr;
10020 
10021   // C++1z [over.match.class.deduct]p1:
10022   //   Initialization and overload resolution are performed as described in
10023   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
10024   //   (as appropriate for the type of initialization performed) for an object
10025   //   of a hypothetical class type, where the selected functions and function
10026   //   templates are considered to be the constructors of that class type
10027   //
10028   // Since we know we're initializing a class type of a type unrelated to that
10029   // of the initializer, this reduces to something fairly reasonable.
10030   OverloadCandidateSet Candidates(Kind.getLocation(),
10031                                   OverloadCandidateSet::CSK_Normal);
10032   OverloadCandidateSet::iterator Best;
10033 
10034   bool HasAnyDeductionGuide = false;
10035   bool AllowExplicit = !Kind.isCopyInit() || ListInit;
10036 
10037   auto tryToResolveOverload =
10038       [&](bool OnlyListConstructors) -> OverloadingResult {
10039     Candidates.clear(OverloadCandidateSet::CSK_Normal);
10040     HasAnyDeductionGuide = false;
10041 
10042     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
10043       NamedDecl *D = (*I)->getUnderlyingDecl();
10044       if (D->isInvalidDecl())
10045         continue;
10046 
10047       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
10048       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
10049           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
10050       if (!GD)
10051         continue;
10052 
10053       if (!GD->isImplicit())
10054         HasAnyDeductionGuide = true;
10055 
10056       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
10057       //   For copy-initialization, the candidate functions are all the
10058       //   converting constructors (12.3.1) of that class.
10059       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
10060       //   The converting constructors of T are candidate functions.
10061       if (!AllowExplicit) {
10062         // Overload resolution checks whether the deduction guide is declared
10063         // explicit for us.
10064 
10065         // When looking for a converting constructor, deduction guides that
10066         // could never be called with one argument are not interesting to
10067         // check or note.
10068         if (GD->getMinRequiredArguments() > 1 ||
10069             (GD->getNumParams() == 0 && !GD->isVariadic()))
10070           continue;
10071       }
10072 
10073       // C++ [over.match.list]p1.1: (first phase list initialization)
10074       //   Initially, the candidate functions are the initializer-list
10075       //   constructors of the class T
10076       if (OnlyListConstructors && !isInitListConstructor(GD))
10077         continue;
10078 
10079       // C++ [over.match.list]p1.2: (second phase list initialization)
10080       //   the candidate functions are all the constructors of the class T
10081       // C++ [over.match.ctor]p1: (all other cases)
10082       //   the candidate functions are all the constructors of the class of
10083       //   the object being initialized
10084 
10085       // C++ [over.best.ics]p4:
10086       //   When [...] the constructor [...] is a candidate by
10087       //    - [over.match.copy] (in all cases)
10088       // FIXME: The "second phase of [over.match.list] case can also
10089       // theoretically happen here, but it's not clear whether we can
10090       // ever have a parameter of the right type.
10091       bool SuppressUserConversions = Kind.isCopyInit();
10092 
10093       if (TD)
10094         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
10095                                      Inits, Candidates, SuppressUserConversions,
10096                                      /*PartialOverloading*/ false,
10097                                      AllowExplicit);
10098       else
10099         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
10100                              SuppressUserConversions,
10101                              /*PartialOverloading*/ false, AllowExplicit);
10102     }
10103     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
10104   };
10105 
10106   OverloadingResult Result = OR_No_Viable_Function;
10107 
10108   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
10109   // try initializer-list constructors.
10110   if (ListInit) {
10111     bool TryListConstructors = true;
10112 
10113     // Try list constructors unless the list is empty and the class has one or
10114     // more default constructors, in which case those constructors win.
10115     if (!ListInit->getNumInits()) {
10116       for (NamedDecl *D : Guides) {
10117         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
10118         if (FD && FD->getMinRequiredArguments() == 0) {
10119           TryListConstructors = false;
10120           break;
10121         }
10122       }
10123     } else if (ListInit->getNumInits() == 1) {
10124       // C++ [over.match.class.deduct]:
10125       //   As an exception, the first phase in [over.match.list] (considering
10126       //   initializer-list constructors) is omitted if the initializer list
10127       //   consists of a single expression of type cv U, where U is a
10128       //   specialization of C or a class derived from a specialization of C.
10129       Expr *E = ListInit->getInit(0);
10130       auto *RD = E->getType()->getAsCXXRecordDecl();
10131       if (!isa<InitListExpr>(E) && RD &&
10132           isCompleteType(Kind.getLocation(), E->getType()) &&
10133           isOrIsDerivedFromSpecializationOf(RD, Template))
10134         TryListConstructors = false;
10135     }
10136 
10137     if (TryListConstructors)
10138       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
10139     // Then unwrap the initializer list and try again considering all
10140     // constructors.
10141     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
10142   }
10143 
10144   // If list-initialization fails, or if we're doing any other kind of
10145   // initialization, we (eventually) consider constructors.
10146   if (Result == OR_No_Viable_Function)
10147     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
10148 
10149   switch (Result) {
10150   case OR_Ambiguous:
10151     // FIXME: For list-initialization candidates, it'd usually be better to
10152     // list why they were not viable when given the initializer list itself as
10153     // an argument.
10154     Candidates.NoteCandidates(
10155         PartialDiagnosticAt(
10156             Kind.getLocation(),
10157             PDiag(diag::err_deduced_class_template_ctor_ambiguous)
10158                 << TemplateName),
10159         *this, OCD_AmbiguousCandidates, Inits);
10160     return QualType();
10161 
10162   case OR_No_Viable_Function: {
10163     CXXRecordDecl *Primary =
10164         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
10165     bool Complete =
10166         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
10167     Candidates.NoteCandidates(
10168         PartialDiagnosticAt(
10169             Kind.getLocation(),
10170             PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
10171                            : diag::err_deduced_class_template_incomplete)
10172                 << TemplateName << !Guides.empty()),
10173         *this, OCD_AllCandidates, Inits);
10174     return QualType();
10175   }
10176 
10177   case OR_Deleted: {
10178     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
10179       << TemplateName;
10180     NoteDeletedFunction(Best->Function);
10181     return QualType();
10182   }
10183 
10184   case OR_Success:
10185     // C++ [over.match.list]p1:
10186     //   In copy-list-initialization, if an explicit constructor is chosen, the
10187     //   initialization is ill-formed.
10188     if (Kind.isCopyInit() && ListInit &&
10189         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
10190       bool IsDeductionGuide = !Best->Function->isImplicit();
10191       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
10192           << TemplateName << IsDeductionGuide;
10193       Diag(Best->Function->getLocation(),
10194            diag::note_explicit_ctor_deduction_guide_here)
10195           << IsDeductionGuide;
10196       return QualType();
10197     }
10198 
10199     // Make sure we didn't select an unusable deduction guide, and mark it
10200     // as referenced.
10201     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
10202     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
10203     break;
10204   }
10205 
10206   // C++ [dcl.type.class.deduct]p1:
10207   //  The placeholder is replaced by the return type of the function selected
10208   //  by overload resolution for class template deduction.
10209   QualType DeducedType =
10210       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
10211   Diag(TSInfo->getTypeLoc().getBeginLoc(),
10212        diag::warn_cxx14_compat_class_template_argument_deduction)
10213       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
10214 
10215   // Warn if CTAD was used on a type that does not have any user-defined
10216   // deduction guides.
10217   if (!HasAnyDeductionGuide) {
10218     Diag(TSInfo->getTypeLoc().getBeginLoc(),
10219          diag::warn_ctad_maybe_unsupported)
10220         << TemplateName;
10221     Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
10222   }
10223 
10224   return DeducedType;
10225 }
10226