xref: /original-bsd/sys/pmax/dev/if_le.c (revision a5d1dafb)
1 /*-
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Ralph Campbell and Rick Macklem.
7  *
8  * %sccs.include.redist.c%
9  *
10  *	@(#)if_le.c	8.4 (Berkeley) 10/09/94
11  */
12 
13 #include <le.h>
14 #if NLE > 0
15 
16 #include <bpfilter.h>
17 
18 /*
19  * AMD 7990 LANCE
20  *
21  * This driver will generate and accept trailer encapsulated packets even
22  * though it buys us nothing.  The motivation was to avoid incompatibilities
23  * with VAXen, SUNs, and others that handle and benefit from them.
24  * This reasoning is dubious.
25  */
26 #include <sys/param.h>
27 #include <sys/proc.h>
28 #include <sys/systm.h>
29 #include <sys/mbuf.h>
30 #include <sys/buf.h>
31 #include <sys/protosw.h>
32 #include <sys/socket.h>
33 #include <sys/syslog.h>
34 #include <sys/ioctl.h>
35 #include <sys/errno.h>
36 
37 #include <net/if.h>
38 #include <net/netisr.h>
39 #include <net/route.h>
40 
41 #ifdef INET
42 #include <netinet/in.h>
43 #include <netinet/in_systm.h>
44 #include <netinet/in_var.h>
45 #include <netinet/ip.h>
46 #include <netinet/if_ether.h>
47 #endif
48 
49 #ifdef NS
50 #include <netns/ns.h>
51 #include <netns/ns_if.h>
52 #endif
53 
54 #if defined (CCITT) && defined (LLC)
55 #include <sys/socketvar.h>
56 #include <netccitt/x25.h>
57 extern llc_ctlinput(), cons_rtrequest();
58 #endif
59 
60 #include <machine/machConst.h>
61 
62 #include <pmax/pmax/pmaxtype.h>
63 #include <pmax/pmax/kn01.h>
64 #include <pmax/pmax/kmin.h>
65 #include <pmax/pmax/asic.h>
66 
67 #include <pmax/dev/device.h>
68 #include <pmax/dev/if_lereg.h>
69 
70 #if NBPFILTER > 0
71 #include <net/bpf.h>
72 #include <net/bpfdesc.h>
73 #endif
74 
75 int	leprobe();
76 void	leintr();
77 struct	driver ledriver = {
78 	"le", leprobe, 0, 0, leintr,
79 };
80 
81 int	ledebug = 0;		/* console error messages */
82 
83 /*
84  * Ethernet software status per interface.
85  *
86  * Each interface is referenced by a network interface structure,
87  * le_if, which the routing code uses to locate the interface.
88  * This structure contains the output queue for the interface, its address, ...
89  */
90 struct	le_softc {
91 	struct	arpcom sc_ac;	/* common Ethernet structures */
92 #define	sc_if	sc_ac.ac_if	/* network-visible interface */
93 #define	sc_addr	sc_ac.ac_enaddr	/* hardware Ethernet address */
94 	volatile struct	lereg1 *sc_r1;	/* LANCE registers */
95 	volatile void *sc_r2;	/* dual-port RAM */
96 	int	sc_ler2pad;	/* Do ring descriptors require short pads? */
97 	void	(*sc_copytobuf)(); /* Copy to buffer */
98 	void	(*sc_copyfrombuf)(); /* Copy from buffer */
99 	void	(*sc_zerobuf)(); /* and Zero bytes in buffer */
100 	int	sc_rmd;		/* predicted next rmd to process */
101 	int	sc_tmd;		/* last tmd processed */
102 	int	sc_tmdnext;	/* next tmd to transmit with */
103 	/* stats */
104 	int	sc_runt;
105 	int	sc_merr;
106 	int	sc_babl;
107 	int	sc_cerr;
108 	int	sc_miss;
109 	int	sc_rown;
110 	int	sc_xint;
111 	int	sc_uflo;
112 	int	sc_rxlen;
113 	int	sc_rxoff;
114 	int	sc_txoff;
115 	int	sc_busy;
116 	short	sc_iflags;
117 } le_softc[NLE];
118 
119 /* access LANCE registers */
120 static void lewritereg();
121 #define	LERDWR(cntl, src, dst)	{ (dst) = (src); DELAY(10); }
122 #define	LEWREG(src, dst)	lewritereg(&(dst), (src))
123 
124 #define CPU_TO_CHIP_ADDR(cpu) \
125 	((unsigned)(&(((struct lereg2 *)0)->cpu)))
126 
127 #define LE_OFFSET_RAM		0x0
128 #define LE_OFFSET_LANCE		0x100000
129 #define LE_OFFSET_ROM		0x1c0000
130 
131 void copytobuf_contig(), copyfrombuf_contig(), bzerobuf_contig();
132 void copytobuf_gap2(), copyfrombuf_gap2(), bzerobuf_gap2();
133 void copytobuf_gap16(), copyfrombuf_gap16(), bzerobuf_gap16();
134 
135 extern int pmax_boardtype;
136 extern u_long le_iomem;
137 extern u_long asic_base;
138 
139 /*
140  * Test to see if device is present.
141  * Return true if found and initialized ok.
142  * If interface exists, make available by filling in network interface
143  * record.  System will initialize the interface when it is ready
144  * to accept packets.
145  */
146 leprobe(dp)
147 	struct pmax_ctlr *dp;
148 {
149 	volatile struct lereg1 *ler1;
150 	struct le_softc *le = &le_softc[dp->pmax_unit];
151 	struct ifnet *ifp = &le->sc_if;
152 	u_char *cp;
153 	int i;
154 	extern int leinit(), lereset(), leioctl(), lestart(), ether_output();
155 
156 	switch (pmax_boardtype) {
157 	case DS_PMAX:
158 		le->sc_r1 = ler1 = (volatile struct lereg1 *)dp->pmax_addr;
159 		le->sc_r2 = (volatile void *)MACH_PHYS_TO_UNCACHED(0x19000000);
160 		cp = (u_char *)(MACH_PHYS_TO_UNCACHED(KN01_SYS_CLOCK) + 1);
161 		le->sc_ler2pad = 1;
162 		le->sc_copytobuf = copytobuf_gap2;
163 		le->sc_copyfrombuf = copyfrombuf_gap2;
164 		le->sc_zerobuf = bzerobuf_gap2;
165 		break;
166 	case DS_3MIN:
167 	case DS_MAXINE:
168 	case DS_3MAXPLUS:
169 		if (dp->pmax_unit == 0) {
170 			volatile u_int *ssr, *ldp;
171 
172 			le->sc_r1 = ler1 = (volatile struct lereg1 *)
173 				ASIC_SYS_LANCE(asic_base);
174 			cp = (u_char *)ASIC_SYS_ETHER_ADDRESS(asic_base);
175 			le->sc_r2 = (volatile void *)
176 				MACH_PHYS_TO_UNCACHED(le_iomem);
177 			le->sc_ler2pad = 1;
178 			le->sc_copytobuf = copytobuf_gap16;
179 			le->sc_copyfrombuf = copyfrombuf_gap16;
180 			le->sc_zerobuf = bzerobuf_gap16;
181 
182 			/*
183 			 * And enable Lance dma through the asic.
184 			 */
185 			ssr = (volatile u_int *)ASIC_REG_CSR(asic_base);
186 			ldp = (volatile u_int *)
187 				ASIC_REG_LANCE_DMAPTR(asic_base);
188 			*ldp = (le_iomem << 3);	/* phys addr << 3 */
189 			*ssr |= ASIC_CSR_DMAEN_LANCE;
190 			break;
191 		}
192 		/*
193 		 * Units other than 0 are turbochannel option boards and fall
194 		 * through to DS_3MAX.
195 		 */
196 	case DS_3MAX:
197 		le->sc_r1 = ler1 = (volatile struct lereg1 *)
198 			(dp->pmax_addr + LE_OFFSET_LANCE);
199 		le->sc_r2 = (volatile void *)(dp->pmax_addr + LE_OFFSET_RAM);
200 		cp = (u_char *)(dp->pmax_addr + LE_OFFSET_ROM + 2);
201 		le->sc_ler2pad = 0;
202 		le->sc_copytobuf = copytobuf_contig;
203 		le->sc_copyfrombuf = copyfrombuf_contig;
204 		le->sc_zerobuf = bzerobuf_contig;
205 		break;
206 	default:
207 		printf("Unknown CPU board type %d\n", pmax_boardtype);
208 		return (0);
209 	};
210 
211 	/*
212 	 * Get the ethernet address out of rom
213 	 */
214 	for (i = 0; i < sizeof(le->sc_addr); i++) {
215 		le->sc_addr[i] = *cp;
216 		cp += 4;
217 	}
218 
219 	/* make sure the chip is stopped */
220 	LEWREG(LE_CSR0, ler1->ler1_rap);
221 	LEWREG(LE_STOP, ler1->ler1_rdp);
222 
223 	ifp->if_unit = dp->pmax_unit;
224 	ifp->if_name = "le";
225 	ifp->if_mtu = ETHERMTU;
226 	ifp->if_init = leinit;
227 	ifp->if_reset = lereset;
228 	ifp->if_ioctl = leioctl;
229 	ifp->if_output = ether_output;
230 	ifp->if_start = lestart;
231 #ifdef MULTICAST
232 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
233 #else
234 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX;
235 #endif
236 #if NBPFILTER > 0
237 	bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
238 #endif
239 	if_attach(ifp);
240 
241 	printf("le%d at nexus0 csr 0x%x priority %d ethernet address %s\n",
242 		dp->pmax_unit, dp->pmax_addr, dp->pmax_pri,
243 		ether_sprintf(le->sc_addr));
244 	return (1);
245 }
246 
247 #ifdef MULTICAST
248 /*
249  * Setup the logical address filter
250  */
251 void
lesetladrf(le)252 lesetladrf(le)
253 	register struct le_softc *le;
254 {
255 	register volatile struct lereg2 *ler2 = le->sc_r2;
256 	register struct ifnet *ifp = &le->sc_if;
257 	register struct ether_multi *enm;
258 	register u_char *cp;
259 	register u_long crc;
260 	register u_long c;
261 	register int i, len;
262 	struct ether_multistep step;
263 
264 	/*
265 	 * Set up multicast address filter by passing all multicast
266 	 * addresses through a crc generator, and then using the high
267 	 * order 6 bits as an index into the 64 bit logical address
268 	 * filter. The high order two bits select the word, while the
269 	 * rest of the bits select the bit within the word.
270 	 */
271 
272 	LER2_ladrf0(ler2, 0);
273 	LER2_ladrf1(ler2, 0);
274 	ifp->if_flags &= ~IFF_ALLMULTI;
275 	ETHER_FIRST_MULTI(step, &le->sc_ac, enm);
276 	while (enm != NULL) {
277 		if (bcmp((caddr_t)&enm->enm_addrlo,
278 		    (caddr_t)&enm->enm_addrhi, sizeof(enm->enm_addrlo)) == 0) {
279 			/*
280 			 * We must listen to a range of multicast
281 			 * addresses. For now, just accept all
282 			 * multicasts, rather than trying to set only
283 			 * those filter bits needed to match the range.
284 			 * (At this time, the only use of address
285 			 * ranges is for IP multicast routing, for
286 			 * which the range is big enough to require all
287 			 * bits set.)
288 			 */
289 			LER2_ladrf0(ler2, 0xff);
290 			LER2_ladrf1(ler2, 0xff);
291 			LER2_ladrf2(ler2, 0xff);
292 			LER2_ladrf3(ler2, 0xff);
293 			ifp->if_flags |= IFF_ALLMULTI;
294 			return;
295 		}
296 
297 		cp = (unsigned char *)&enm->enm_addrlo;
298 		c = *cp;
299 		crc = 0xffffffff;
300 		len = 6;
301 		while (len-- > 0) {
302 			c = *cp;
303 			for (i = 0; i < 8; i++) {
304 				if ((c & 0x01) ^ (crc & 0x01)) {
305 					crc >>= 1;
306 					crc = crc ^ 0xedb88320;
307 				}
308 				else
309 					crc >>= 1;
310 				c >>= 1;
311 			}
312 			cp++;
313 		}
314 		/* Just want the 6 most significant bits. */
315 		crc = crc >> 26;
316 
317 		/* Turn on the corresponding bit in the filter. */
318 		switch (crc >> 5) {
319 		case 0:
320 			LER2_ladrf0(ler2, 1 << (crc & 0x1f));
321 			break;
322 		case 1:
323 			LER2_ladrf1(ler2, 1 << (crc & 0x1f));
324 			break;
325 		case 2:
326 			LER2_ladrf2(ler2, 1 << (crc & 0x1f));
327 			break;
328 		case 3:
329 			LER2_ladrf3(ler2, 1 << (crc & 0x1f));
330 		}
331 
332 		ETHER_NEXT_MULTI(step, enm);
333 	}
334 }
335 #endif
336 
337 ledrinit(le)
338 	struct le_softc *le;
339 {
340 	register volatile void *rp;
341 	register int i;
342 
343 	for (i = 0; i < LERBUF; i++) {
344 		rp = LER2_RMDADDR(le->sc_r2, i);
345 		LER2_rmd0(rp, CPU_TO_CHIP_ADDR(ler2_rbuf[i][0]));
346 		LER2_rmd1(rp, LE_OWN);
347 		LER2_rmd2(rp, -LEMTU);
348 		LER2_rmd3(rp, 0);
349 	}
350 	for (i = 0; i < LETBUF; i++) {
351 		rp = LER2_TMDADDR(le->sc_r2, i);
352 		LER2_tmd0(rp, CPU_TO_CHIP_ADDR(ler2_tbuf[i][0]));
353 		LER2_tmd1(rp, 0);
354 		LER2_tmd2(rp, 0);
355 		LER2_tmd3(rp, 0);
356 	}
357 }
358 
lereset(unit)359 lereset(unit)
360 	register int unit;
361 {
362 	register struct le_softc *le = &le_softc[unit];
363 	register volatile struct lereg1 *ler1 = le->sc_r1;
364 	register volatile void *ler2 = le->sc_r2;
365 	register int timo = 100000;
366 	register int stat;
367 
368 #ifdef lint
369 	stat = unit;
370 #endif
371 	LEWREG(LE_CSR0, ler1->ler1_rap);
372 	LEWREG(LE_STOP, ler1->ler1_rdp);
373 
374 	/*
375 	 * Setup for transmit/receive
376 	 */
377 #if NBPFILTER > 0
378 	if (le->sc_if.if_flags & IFF_PROMISC)
379 		/* set the promiscuous bit */
380 		LER2_mode(ler2, LE_MODE | 0x8000);
381 	else
382 #endif
383 		LER2_mode(ler2, LE_MODE);
384 	LER2_padr0(ler2, (le->sc_addr[1] << 8) | le->sc_addr[0]);
385 	LER2_padr1(ler2, (le->sc_addr[3] << 8) | le->sc_addr[2]);
386 	LER2_padr2(ler2, (le->sc_addr[5] << 8) | le->sc_addr[4]);
387 	/* Setup the logical address filter */
388 #ifdef MULTICAST
389 	lesetladrf(le);
390 #else
391 	LER2_ladrf0(ler2, 0);
392 	LER2_ladrf1(ler2, 0);
393 	LER2_ladrf2(ler2, 0);
394 	LER2_ladrf3(ler2, 0);
395 #endif
396 	LER2_rlen(ler2, LE_RLEN);
397 	LER2_rdra(ler2, CPU_TO_CHIP_ADDR(ler2_rmd[0]));
398 	LER2_tlen(ler2, LE_TLEN);
399 	LER2_tdra(ler2, CPU_TO_CHIP_ADDR(ler2_tmd[0]));
400 	ledrinit(le);
401 	le->sc_rmd = 0;
402 	le->sc_tmd = LETBUF - 1;
403 	le->sc_tmdnext = 0;
404 
405 	LEWREG(LE_CSR1, ler1->ler1_rap);
406 	LEWREG(CPU_TO_CHIP_ADDR(ler2_mode), ler1->ler1_rdp);
407 	LEWREG(LE_CSR2, ler1->ler1_rap);
408 	LEWREG(0, ler1->ler1_rdp);
409 	LEWREG(LE_CSR3, ler1->ler1_rap);
410 	LEWREG(0, ler1->ler1_rdp);
411 	LEWREG(LE_CSR0, ler1->ler1_rap);
412 	LERDWR(ler0, LE_INIT, ler1->ler1_rdp);
413 	do {
414 		if (--timo == 0) {
415 			printf("le%d: init timeout, stat = 0x%x\n",
416 			       unit, stat);
417 			break;
418 		}
419 		stat = ler1->ler1_rdp;
420 	} while ((stat & LE_IDON) == 0);
421 	LERDWR(ler0, LE_IDON, ler1->ler1_rdp);
422 	LERDWR(ler0, LE_STRT | LE_INEA, ler1->ler1_rdp);
423 	le->sc_if.if_flags &= ~IFF_OACTIVE;
424 }
425 
426 /*
427  * Initialization of interface
428  */
leinit(unit)429 leinit(unit)
430 	int unit;
431 {
432 	register struct ifnet *ifp = &le_softc[unit].sc_if;
433 	register struct ifaddr *ifa;
434 	int s;
435 
436 	/* not yet, if address still unknown */
437 	if (ifp->if_addrlist == NULL)
438 		return;
439 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
440 		s = splnet();
441 		ifp->if_flags |= IFF_RUNNING;
442 		lereset(unit);
443 	        (void) lestart(ifp);
444 		splx(s);
445 	}
446 }
447 
448 #define	LENEXTTMP \
449 	if (++bix == LETBUF) \
450 		bix = 0; \
451 	tmd = LER2_TMDADDR(le->sc_r2, bix)
452 
453 /*
454  * Start output on interface.  Get another datagram to send
455  * off of the interface queue, and copy it to the interface
456  * before starting the output.
457  */
458 lestart(ifp)
459 	struct ifnet *ifp;
460 {
461 	register struct le_softc *le = &le_softc[ifp->if_unit];
462 	register int bix = le->sc_tmdnext;
463 	register volatile void *tmd = LER2_TMDADDR(le->sc_r2, bix);
464 	register struct mbuf *m;
465 	int len = 0;
466 
467 	if ((le->sc_if.if_flags & IFF_RUNNING) == 0)
468 		return (0);
469 	while (bix != le->sc_tmd) {
470 		if (LER2V_tmd1(tmd) & LE_OWN)
471 			panic("lestart");
472 		IF_DEQUEUE(&le->sc_if.if_snd, m);
473 		if (m == 0)
474 			break;
475 #if NBPFILTER > 0
476 		/*
477 		 * If bpf is listening on this interface, let it
478 		 * see the packet before we commit it to the wire.
479 		 */
480 		if (ifp->if_bpf)
481 			bpf_mtap(ifp->if_bpf, m);
482 #endif
483 		len = leput(le, LER2_TBUFADDR(le->sc_r2, bix), m);
484 		LER2_tmd3(tmd, 0);
485 		LER2_tmd2(tmd, -len);
486 		LER2_tmd1(tmd, LE_OWN | LE_STP | LE_ENP);
487 		LENEXTTMP;
488 	}
489 	if (len != 0) {
490 		le->sc_if.if_flags |= IFF_OACTIVE;
491 		LERDWR(ler0, LE_TDMD | LE_INEA, le->sc_r1->ler1_rdp);
492 	}
493 	le->sc_tmdnext = bix;
494 	return (0);
495 }
496 
497 /*
498  * Process interrupts from the 7990 chip.
499  */
500 void
leintr(unit)501 leintr(unit)
502 	int unit;
503 {
504 	register struct le_softc *le;
505 	register volatile struct lereg1 *ler1;
506 	register int stat;
507 
508 	le = &le_softc[unit];
509 	ler1 = le->sc_r1;
510 	stat = ler1->ler1_rdp;
511 	if (!(stat & LE_INTR)) {
512 		printf("le%d: spurrious interrupt\n", unit);
513 		return;
514 	}
515 	if (stat & LE_SERR) {
516 		leerror(unit, stat);
517 		if (stat & LE_MERR) {
518 			le->sc_merr++;
519 			lereset(unit);
520 			return;
521 		}
522 		if (stat & LE_BABL)
523 			le->sc_babl++;
524 		if (stat & LE_CERR)
525 			le->sc_cerr++;
526 		if (stat & LE_MISS)
527 			le->sc_miss++;
528 		LERDWR(ler0, LE_BABL|LE_CERR|LE_MISS|LE_INEA, ler1->ler1_rdp);
529 	}
530 	if ((stat & LE_RXON) == 0) {
531 		le->sc_rxoff++;
532 		lereset(unit);
533 		return;
534 	}
535 	if ((stat & LE_TXON) == 0) {
536 		le->sc_txoff++;
537 		lereset(unit);
538 		return;
539 	}
540 	if (stat & LE_RINT) {
541 		/* interrupt is cleared in lerint */
542 		lerint(unit);
543 	}
544 	if (stat & LE_TINT) {
545 		LERDWR(ler0, LE_TINT|LE_INEA, ler1->ler1_rdp);
546 		lexint(unit);
547 	}
548 }
549 
550 /*
551  * Ethernet interface transmitter interrupt.
552  * Start another output if more data to send.
553  */
lexint(unit)554 lexint(unit)
555 	register int unit;
556 {
557 	register struct le_softc *le = &le_softc[unit];
558 	register int bix = le->sc_tmd;
559 	register volatile void *tmd;
560 
561 	if ((le->sc_if.if_flags & IFF_OACTIVE) == 0) {
562 		le->sc_xint++;
563 		return;
564 	}
565 	LENEXTTMP;
566 	while (bix != le->sc_tmdnext && (LER2V_tmd1(tmd) & LE_OWN) == 0) {
567 		le->sc_tmd = bix;
568 		if ((LER2V_tmd1(tmd) & LE_ERR) || (LER2V_tmd3(tmd) & LE_TBUFF)) {
569 			lexerror(unit);
570 			le->sc_if.if_oerrors++;
571 			if (LER2V_tmd3(tmd) & (LE_TBUFF|LE_UFLO)) {
572 				le->sc_uflo++;
573 				lereset(unit);
574 				break;
575 			}
576 			else if (LER2V_tmd3(tmd) & LE_LCOL)
577 				le->sc_if.if_collisions++;
578 			else if (LER2V_tmd3(tmd) & LE_RTRY)
579 				le->sc_if.if_collisions += 16;
580 		}
581 		else if (LER2V_tmd1(tmd) & LE_ONE)
582 			le->sc_if.if_collisions++;
583 		else if (LER2V_tmd1(tmd) & LE_MORE)
584 			/* what is the real number? */
585 			le->sc_if.if_collisions += 2;
586 		else
587 			le->sc_if.if_opackets++;
588 		LENEXTTMP;
589 	}
590 	if (bix == le->sc_tmdnext)
591 		le->sc_if.if_flags &= ~IFF_OACTIVE;
592 	(void) lestart(&le->sc_if);
593 }
594 
595 #define	LENEXTRMP \
596 	if (++bix == LERBUF) \
597 		bix = 0; \
598 	rmd = LER2_RMDADDR(le->sc_r2, bix)
599 
600 /*
601  * Ethernet interface receiver interrupt.
602  * If input error just drop packet.
603  * Decapsulate packet based on type and pass to type specific
604  * higher-level input routine.
605  */
lerint(unit)606 lerint(unit)
607 	int unit;
608 {
609 	register struct le_softc *le = &le_softc[unit];
610 	register int bix = le->sc_rmd;
611 	register volatile void *rmd = LER2_RMDADDR(le->sc_r2, bix);
612 
613 	/*
614 	 * Out of sync with hardware, should never happen?
615 	 */
616 	if (LER2V_rmd1(rmd) & LE_OWN) {
617 		le->sc_rown++;
618 		LERDWR(le->sc_r0, LE_RINT|LE_INEA, le->sc_r1->ler1_rdp);
619 		return;
620 	}
621 
622 	/*
623 	 * Process all buffers with valid data
624 	 */
625 	while ((LER2V_rmd1(rmd) & LE_OWN) == 0) {
626 		int len = LER2V_rmd3(rmd);
627 
628 		/* Clear interrupt to avoid race condition */
629 		LERDWR(le->sc_r0, LE_RINT|LE_INEA, le->sc_r1->ler1_rdp);
630 
631 		if (LER2V_rmd1(rmd) & LE_ERR) {
632 			le->sc_rmd = bix;
633 			lererror(unit, "bad packet");
634 			le->sc_if.if_ierrors++;
635 		} else if ((LER2V_rmd1(rmd) & (LE_STP|LE_ENP)) != (LE_STP|LE_ENP)) {
636 			/*
637 			 * Find the end of the packet so we can see how long
638 			 * it was.  We still throw it away.
639 			 */
640 			do {
641 				LERDWR(le->sc_r0, LE_RINT|LE_INEA,
642 				       le->sc_r1->ler1_rdp);
643 				LER2_rmd3(rmd, 0);
644 				LER2_rmd1(rmd, LE_OWN);
645 				LENEXTRMP;
646 			} while (!(LER2V_rmd1(rmd) & (LE_OWN|LE_ERR|LE_STP|LE_ENP)));
647 			le->sc_rmd = bix;
648 			lererror(unit, "chained buffer");
649 			le->sc_rxlen++;
650 			/*
651 			 * If search terminated without successful completion
652 			 * we reset the hardware (conservative).
653 			 */
654 			if ((LER2V_rmd1(rmd) & (LE_OWN|LE_ERR|LE_STP|LE_ENP)) !=
655 			    LE_ENP) {
656 				lereset(unit);
657 				return;
658 			}
659 		} else
660 			leread(unit, LER2_RBUFADDR(le->sc_r2, bix), len);
661 		LER2_rmd3(rmd, 0);
662 		LER2_rmd1(rmd, LE_OWN);
663 		LENEXTRMP;
664 	}
665 	MachEmptyWriteBuffer();		/* Paranoia */
666 	le->sc_rmd = bix;
667 }
668 
669 /*
670  * Look at the packet in network buffer memory so we can be smart about how
671  * we copy the data into mbufs.
672  * This needs work since we can't just read network buffer memory like
673  * regular memory.
674  */
leread(unit,buf,len)675 leread(unit, buf, len)
676 	int unit;
677 	volatile void *buf;
678 	int len;
679 {
680 	register struct le_softc *le = &le_softc[unit];
681 	struct ether_header et;
682     	struct mbuf *m;
683 	int off, resid, flags;
684 	u_short sbuf[2], eth_type;
685 	extern struct mbuf *leget();
686 
687 	le->sc_if.if_ipackets++;
688 	(*le->sc_copyfrombuf)(buf, 0, (char *)&et, sizeof (et));
689 	eth_type = ntohs(et.ether_type);
690 	/* adjust input length to account for header and CRC */
691 	len = len - sizeof(struct ether_header) - 4;
692 
693 	if (eth_type >= ETHERTYPE_TRAIL &&
694 	    eth_type < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
695 		off = (eth_type - ETHERTYPE_TRAIL) * 512;
696 		if (off >= ETHERMTU)
697 			return;		/* sanity */
698 		(*le->sc_copyfrombuf)(buf, sizeof (et) + off, (char *)sbuf,
699 			sizeof (sbuf));
700 		eth_type = ntohs(sbuf[0]);
701 		resid = ntohs(sbuf[1]);
702 		if (off + resid > len)
703 			return;		/* sanity */
704 		len = off + resid;
705 	} else
706 		off = 0;
707 
708 	if (len <= 0) {
709 		if (ledebug)
710 			log(LOG_WARNING,
711 			    "le%d: ierror(runt packet): from %s: len=%d\n",
712 			    unit, ether_sprintf(et.ether_shost), len);
713 		le->sc_runt++;
714 		le->sc_if.if_ierrors++;
715 		return;
716 	}
717 	flags = 0;
718 	if (bcmp((caddr_t)etherbroadcastaddr,
719 	    (caddr_t)et.ether_dhost, sizeof(etherbroadcastaddr)) == 0)
720 		flags |= M_BCAST;
721 	if (et.ether_dhost[0] & 1)
722 		flags |= M_MCAST;
723 
724 	/*
725 	 * Pull packet off interface.  Off is nonzero if packet
726 	 * has trailing header; leget will then force this header
727 	 * information to be at the front, but we still have to drop
728 	 * the type and length which are at the front of any trailer data.
729 	 */
730 	m = leget(le, buf, len, off, &le->sc_if);
731 	if (m == 0)
732 		return;
733 #if NBPFILTER > 0
734 	/*
735 	 * Check if there's a bpf filter listening on this interface.
736 	 * If so, hand off the raw packet to enet.
737 	 */
738 	if (le->sc_if.if_bpf) {
739 		bpf_mtap(le->sc_if.if_bpf, m);
740 
741 		/*
742 		 * Keep the packet if it's a broadcast or has our
743 		 * physical ethernet address (or if we support
744 		 * multicast and it's one).
745 		 */
746 		if (
747 #ifdef MULTICAST
748 		    (flags & (M_BCAST | M_MCAST)) == 0 &&
749 #else
750 		    (flags & M_BCAST) == 0 &&
751 #endif
752 		    bcmp(et.ether_dhost, le->sc_addr,
753 			sizeof(et.ether_dhost)) != 0) {
754 			m_freem(m);
755 			return;
756 		}
757 	}
758 #endif
759 	m->m_flags |= flags;
760 	et.ether_type = eth_type;
761 	ether_input(&le->sc_if, &et, m);
762 }
763 
764 /*
765  * Routine to copy from mbuf chain to transmit buffer in
766  * network buffer memory.
767  */
768 leput(le, lebuf, m)
769 	struct le_softc *le;
770 	register volatile void *lebuf;
771 	register struct mbuf *m;
772 {
773 	register struct mbuf *mp;
774 	register int len, tlen = 0;
775 	register int boff = 0;
776 
777 	for (mp = m; mp; mp = mp->m_next) {
778 		len = mp->m_len;
779 		if (len == 0)
780 			continue;
781 		(*le->sc_copytobuf)(mtod(mp, char *), lebuf, boff, len);
782 		tlen += len;
783 		boff += len;
784 	}
785 	m_freem(m);
786 	if (tlen < LEMINSIZE) {
787 		(*le->sc_zerobuf)(lebuf, boff, LEMINSIZE - tlen);
788 		tlen = LEMINSIZE;
789 	}
790 	return(tlen);
791 }
792 
793 /*
794  * Routine to copy from network buffer memory into mbufs.
795  */
796 struct mbuf *
leget(le,lebuf,totlen,off,ifp)797 leget(le, lebuf, totlen, off, ifp)
798 	struct le_softc *le;
799 	volatile void *lebuf;
800 	int totlen, off;
801 	struct ifnet *ifp;
802 {
803 	register struct mbuf *m;
804 	struct mbuf *top = 0, **mp = &top;
805 	register int len, resid, boff;
806 
807 	/* NOTE: sizeof(struct ether_header) should be even */
808 	boff = sizeof(struct ether_header);
809 	if (off) {
810 		/* NOTE: off should be even */
811 		boff += off + 2 * sizeof(u_short);
812 		totlen -= 2 * sizeof(u_short);
813 		resid = totlen - off;
814 	} else
815 		resid = totlen;
816 
817 	MGETHDR(m, M_DONTWAIT, MT_DATA);
818 	if (m == 0)
819 		return (0);
820 	m->m_pkthdr.rcvif = ifp;
821 	m->m_pkthdr.len = totlen;
822 	m->m_len = MHLEN;
823 
824 	while (totlen > 0) {
825 		if (top) {
826 			MGET(m, M_DONTWAIT, MT_DATA);
827 			if (m == 0) {
828 				m_freem(top);
829 				return (0);
830 			}
831 			m->m_len = MLEN;
832 		}
833 
834 		if (resid >= MINCLSIZE)
835 			MCLGET(m, M_DONTWAIT);
836 		if (m->m_flags & M_EXT)
837 			m->m_len = min(resid, MCLBYTES);
838 		else if (resid < m->m_len) {
839 			/*
840 			 * Place initial small packet/header at end of mbuf.
841 			 */
842 			if (top == 0 && resid + max_linkhdr <= m->m_len)
843 				m->m_data += max_linkhdr;
844 			m->m_len = resid;
845 		}
846 		len = m->m_len;
847 		(*le->sc_copyfrombuf)(lebuf, boff, mtod(m, char *), len);
848 		boff += len;
849 		*mp = m;
850 		mp = &m->m_next;
851 		totlen -= len;
852 		resid -= len;
853 		if (resid == 0) {
854 			boff = sizeof (struct ether_header);
855 			resid = totlen;
856 		}
857 	}
858 	return (top);
859 }
860 
861 /*
862  * Process an ioctl request.
863  */
leioctl(ifp,cmd,data)864 leioctl(ifp, cmd, data)
865 	register struct ifnet *ifp;
866 	int cmd;
867 	caddr_t data;
868 {
869 	register struct ifaddr *ifa = (struct ifaddr *)data;
870 	struct le_softc *le = &le_softc[ifp->if_unit];
871 	volatile struct lereg1 *ler1 = le->sc_r1;
872 	int s, error = 0;
873 
874 	s = splnet();
875 	switch (cmd) {
876 
877 	case SIOCSIFADDR:
878 		ifp->if_flags |= IFF_UP;
879 		switch (ifa->ifa_addr->sa_family) {
880 #ifdef INET
881 		case AF_INET:
882 			leinit(ifp->if_unit);	/* before arpwhohas */
883 			((struct arpcom *)ifp)->ac_ipaddr =
884 				IA_SIN(ifa)->sin_addr;
885 			arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr);
886 			break;
887 #endif
888 #ifdef NS
889 		case AF_NS:
890 		    {
891 			register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
892 
893 			if (ns_nullhost(*ina))
894 				ina->x_host = *(union ns_host *)(le->sc_addr);
895 			else {
896 				/*
897 				 * The manual says we can't change the address
898 				 * while the receiver is armed,
899 				 * so reset everything
900 				 */
901 				ifp->if_flags &= ~IFF_RUNNING;
902 				LEWREG(LE_STOP, ler1->ler1_rdp);
903 				bcopy((caddr_t)ina->x_host.c_host,
904 				    (caddr_t)le->sc_addr, sizeof(le->sc_addr));
905 			}
906 			leinit(ifp->if_unit); /* does le_setaddr() */
907 			break;
908 		    }
909 #endif
910 		default:
911 			leinit(ifp->if_unit);
912 			break;
913 		}
914 		break;
915 
916 #if defined (CCITT) && defined (LLC)
917 	case SIOCSIFCONF_X25:
918 		ifp->if_flags |= IFF_UP;
919 		ifa->ifa_rtrequest = cons_rtrequest;
920 		error = x25_llcglue(PRC_IFUP, ifa->ifa_addr);
921 		if (error == 0)
922 			leinit(ifp->if_unit);
923 		break;
924 #endif /* CCITT && LLC */
925 
926 	case SIOCSIFFLAGS:
927 		if ((ifp->if_flags & IFF_UP) == 0 &&
928 		    ifp->if_flags & IFF_RUNNING) {
929 			LEWREG(LE_STOP, ler1->ler1_rdp);
930 			ifp->if_flags &= ~IFF_RUNNING;
931 		} else if (ifp->if_flags & IFF_UP &&
932 		    (ifp->if_flags & IFF_RUNNING) == 0)
933 			leinit(ifp->if_unit);
934 		/*
935 		 * If the state of the promiscuous bit changes, the interface
936 		 * must be reset to effect the change.
937 		 */
938 		if (((ifp->if_flags ^ le->sc_iflags) & IFF_PROMISC) &&
939 		    (ifp->if_flags & IFF_RUNNING)) {
940 			le->sc_iflags = ifp->if_flags;
941 			lereset(ifp->if_unit);
942 			lestart(ifp);
943 		}
944 		break;
945 
946 #ifdef MULTICAST
947 	case SIOCADDMULTI:
948 	case SIOCDELMULTI:
949 		/* Update our multicast list  */
950 		error = (cmd == SIOCADDMULTI) ?
951 		    ether_addmulti((struct ifreq *)data, &le->sc_ac) :
952 		    ether_delmulti((struct ifreq *)data, &le->sc_ac);
953 
954 		if (error == ENETRESET) {
955 			/*
956 			 * Multicast list has changed; set the hardware
957 			 * filter accordingly.
958 			 */
959 			lereset(ifp->if_unit);
960 			error = 0;
961 		}
962 		break;
963 #endif
964 
965 	default:
966 		error = EINVAL;
967 	}
968 	splx(s);
969 	return (error);
970 }
971 
leerror(unit,stat)972 leerror(unit, stat)
973 	int unit;
974 	int stat;
975 {
976 	if (!ledebug)
977 		return;
978 
979 	/*
980 	 * Not all transceivers implement heartbeat
981 	 * so we only log CERR once.
982 	 */
983 	if ((stat & LE_CERR) && le_softc[unit].sc_cerr)
984 		return;
985 	log(LOG_WARNING,
986 	    "le%d: error: stat=%b\n", unit,
987 	    stat,
988 	    "\20\20ERR\17BABL\16CERR\15MISS\14MERR\13RINT\12TINT\11IDON\10INTR\07INEA\06RXON\05TXON\04TDMD\03STOP\02STRT\01INIT");
989 }
990 
lererror(unit,msg)991 lererror(unit, msg)
992 	int unit;
993 	char *msg;
994 {
995 	register struct le_softc *le = &le_softc[unit];
996 	register volatile void *rmd;
997 	u_char eaddr[6];
998 	int len;
999 
1000 	if (!ledebug)
1001 		return;
1002 
1003 	rmd = LER2_RMDADDR(le->sc_r2, le->sc_rmd);
1004 	len = LER2V_rmd3(rmd);
1005 	if (len > 11)
1006 		(*le->sc_copyfrombuf)(LER2_RBUFADDR(le->sc_r2, le->sc_rmd),
1007 			6, eaddr, 6);
1008 	log(LOG_WARNING,
1009 	    "le%d: ierror(%s): from %s: buf=%d, len=%d, rmd1=%b\n",
1010 	    unit, msg,
1011 	    len > 11 ? ether_sprintf(eaddr) : "unknown",
1012 	    le->sc_rmd, len,
1013 	    LER2V_rmd1(rmd),
1014 	    "\20\20OWN\17ERR\16FRAM\15OFLO\14CRC\13RBUF\12STP\11ENP");
1015 }
1016 
lexerror(unit)1017 lexerror(unit)
1018 	int unit;
1019 {
1020 	register struct le_softc *le = &le_softc[unit];
1021 	register volatile void *tmd;
1022 	u_char eaddr[6];
1023 	int len;
1024 
1025 	if (!ledebug)
1026 		return;
1027 
1028 	tmd = LER2_TMDADDR(le->sc_r2, 0);
1029 	len = -LER2V_tmd2(tmd);
1030 	if (len > 5)
1031 		(*le->sc_copyfrombuf)(LER2_TBUFADDR(le->sc_r2, 0), 0, eaddr, 6);
1032 	log(LOG_WARNING,
1033 	    "le%d: oerror: to %s: buf=%d, len=%d, tmd1=%b, tmd3=%b\n",
1034 	    unit,
1035 	    len > 5 ? ether_sprintf(eaddr) : "unknown",
1036 	    0, len,
1037 	    LER2V_tmd1(tmd),
1038 	    "\20\20OWN\17ERR\16RES\15MORE\14ONE\13DEF\12STP\11ENP",
1039 	    LER2V_tmd3(tmd),
1040 	    "\20\20BUFF\17UFLO\16RES\15LCOL\14LCAR\13RTRY");
1041 }
1042 
1043 /*
1044  * Write a lance register port, reading it back to ensure success. This seems
1045  * to be necessary during initialization, since the chip appears to be a bit
1046  * pokey sometimes.
1047  */
1048 static void
lewritereg(regptr,val)1049 lewritereg(regptr, val)
1050 	register volatile u_short *regptr;
1051 	register u_short val;
1052 {
1053 	register int i = 0;
1054 
1055 	while (*regptr != val) {
1056 		*regptr = val;
1057 		MachEmptyWriteBuffer();
1058 		if (++i > 10000) {
1059 			printf("le: Reg did not settle (to x%x): x%x\n",
1060 			       val, *regptr);
1061 			return;
1062 		}
1063 		DELAY(100);
1064 	}
1065 }
1066 
1067 /*
1068  * Routines for accessing the transmit and receive buffers. Unfortunately,
1069  * CPU addressing of these buffers is done in one of 3 ways:
1070  * - contiguous (for the 3max and turbochannel option card)
1071  * - gap2, which means shorts (2 bytes) interspersed with short (2 byte)
1072  *   spaces (for the pmax)
1073  * - gap16, which means 16bytes interspersed with 16byte spaces
1074  *   for buffers which must begin on a 32byte boundary (for 3min and maxine)
1075  * The buffer offset is the logical byte offset, assuming contiguous storage.
1076  */
1077 void
copytobuf_contig(from,lebuf,boff,len)1078 copytobuf_contig(from, lebuf, boff, len)
1079 	char *from;
1080 	volatile void *lebuf;
1081 	int boff;
1082 	int len;
1083 {
1084 
1085 	/*
1086 	 * Just call bcopy() to do the work.
1087 	 */
1088 	bcopy(from, ((char *)lebuf) + boff, len);
1089 }
1090 
1091 void
copyfrombuf_contig(lebuf,boff,to,len)1092 copyfrombuf_contig(lebuf, boff, to, len)
1093 	volatile void *lebuf;
1094 	int boff;
1095 	char *to;
1096 	int len;
1097 {
1098 
1099 	/*
1100 	 * Just call bcopy() to do the work.
1101 	 */
1102 	bcopy(((char *)lebuf) + boff, to, len);
1103 }
1104 
1105 void
bzerobuf_contig(lebuf,boff,len)1106 bzerobuf_contig(lebuf, boff, len)
1107 	volatile void *lebuf;
1108 	int boff;
1109 	int len;
1110 {
1111 
1112 	/*
1113 	 * Just let bzero() do the work
1114 	 */
1115 	bzero(((char *)lebuf) + boff, len);
1116 }
1117 
1118 /*
1119  * For the pmax the buffer consists of shorts (2 bytes) interspersed with
1120  * short (2 byte) spaces and must be accessed with halfword load/stores.
1121  * (don't worry about doing an extra byte)
1122  */
1123 void
copytobuf_gap2(from,lebuf,boff,len)1124 copytobuf_gap2(from, lebuf, boff, len)
1125 	register char *from;
1126 	volatile void *lebuf;
1127 	int boff;
1128 	register int len;
1129 {
1130 	register volatile u_short *bptr;
1131 	register int xfer;
1132 
1133 	if (boff & 0x1) {
1134 		/* handle unaligned first byte */
1135 		bptr = ((volatile u_short *)lebuf) + (boff - 1);
1136 		*bptr = (*from++ << 8) | (*bptr & 0xff);
1137 		bptr += 2;
1138 		len--;
1139 	} else
1140 		bptr = ((volatile u_short *)lebuf) + boff;
1141 	if ((unsigned)from & 0x1) {
1142 		while (len > 1) {
1143 			*bptr = (from[1] << 8) | (from[0] & 0xff);
1144 			bptr += 2;
1145 			from += 2;
1146 			len -= 2;
1147 		}
1148 	} else {
1149 		/* optimize for aligned transfers */
1150 		xfer = (int)((unsigned)len & ~0x1);
1151 		CopyToBuffer((u_short *)from, bptr, xfer);
1152 		bptr += xfer;
1153 		from += xfer;
1154 		len -= xfer;
1155 	}
1156 	if (len == 1)
1157 		*bptr = (u_short)*from;
1158 }
1159 
1160 void
copyfrombuf_gap2(lebuf,boff,to,len)1161 copyfrombuf_gap2(lebuf, boff, to, len)
1162 	volatile void *lebuf;
1163 	int boff;
1164 	register char *to;
1165 	register int len;
1166 {
1167 	register volatile u_short *bptr;
1168 	register u_short tmp;
1169 	register int xfer;
1170 
1171 	if (boff & 0x1) {
1172 		/* handle unaligned first byte */
1173 		bptr = ((volatile u_short *)lebuf) + (boff - 1);
1174 		*to++ = (*bptr >> 8) & 0xff;
1175 		bptr += 2;
1176 		len--;
1177 	} else
1178 		bptr = ((volatile u_short *)lebuf) + boff;
1179 	if ((unsigned)to & 0x1) {
1180 		while (len > 1) {
1181 			tmp = *bptr;
1182 			*to++ = tmp & 0xff;
1183 			*to++ = (tmp >> 8) & 0xff;
1184 			bptr += 2;
1185 			len -= 2;
1186 		}
1187 	} else {
1188 		/* optimize for aligned transfers */
1189 		xfer = (int)((unsigned)len & ~0x1);
1190 		CopyFromBuffer(bptr, to, xfer);
1191 		bptr += xfer;
1192 		to += xfer;
1193 		len -= xfer;
1194 	}
1195 	if (len == 1)
1196 		*to = *bptr & 0xff;
1197 }
1198 
1199 void
bzerobuf_gap2(lebuf,boff,len)1200 bzerobuf_gap2(lebuf, boff, len)
1201 	volatile void *lebuf;
1202 	int boff;
1203 	int len;
1204 {
1205 	register volatile u_short *bptr;
1206 
1207 	if ((unsigned)boff & 0x1) {
1208 		bptr = ((volatile u_short *)lebuf) + (boff - 1);
1209 		*bptr &= 0xff;
1210 		bptr += 2;
1211 		len--;
1212 	} else
1213 		bptr = ((volatile u_short *)lebuf) + boff;
1214 	while (len > 0) {
1215 		*bptr = 0;
1216 		bptr += 2;
1217 		len -= 2;
1218 	}
1219 }
1220 
1221 /*
1222  * For the 3min and maxine, the buffers are in main memory filled in with
1223  * 16byte blocks interspersed with 16byte spaces.
1224  */
1225 void
copytobuf_gap16(from,lebuf,boff,len)1226 copytobuf_gap16(from, lebuf, boff, len)
1227 	register char *from;
1228 	volatile void *lebuf;
1229 	int boff;
1230 	register int len;
1231 {
1232 	register char *bptr;
1233 	register int xfer;
1234 
1235 	bptr = ((char *)lebuf) + ((boff << 1) & ~0x1f);
1236 	boff &= 0xf;
1237 	xfer = min(len, 16 - boff);
1238 	while (len > 0) {
1239 		bcopy(from, ((char *)bptr) + boff, xfer);
1240 		from += xfer;
1241 		bptr += 32;
1242 		boff = 0;
1243 		len -= xfer;
1244 		xfer = min(len, 16);
1245 	}
1246 }
1247 
1248 void
copyfrombuf_gap16(lebuf,boff,to,len)1249 copyfrombuf_gap16(lebuf, boff, to, len)
1250 	volatile void *lebuf;
1251 	int boff;
1252 	register char *to;
1253 	register int len;
1254 {
1255 	register char *bptr;
1256 	register int xfer;
1257 
1258 	bptr = ((char *)lebuf) + ((boff << 1) & ~0x1f);
1259 	boff &= 0xf;
1260 	xfer = min(len, 16 - boff);
1261 	while (len > 0) {
1262 		bcopy(((char *)bptr) + boff, to, xfer);
1263 		to += xfer;
1264 		bptr += 32;
1265 		boff = 0;
1266 		len -= xfer;
1267 		xfer = min(len, 16);
1268 	}
1269 }
1270 
1271 void
bzerobuf_gap16(lebuf,boff,len)1272 bzerobuf_gap16(lebuf, boff, len)
1273 	volatile void *lebuf;
1274 	int boff;
1275 	register int len;
1276 {
1277 	register char *bptr;
1278 	register int xfer;
1279 
1280 	bptr = ((char *)lebuf) + ((boff << 1) & ~0x1f);
1281 	boff &= 0xf;
1282 	xfer = min(len, 16 - boff);
1283 	while (len > 0) {
1284 		bzero(((char *)bptr) + boff, xfer);
1285 		bptr += 32;
1286 		boff = 0;
1287 		len -= xfer;
1288 		xfer = min(len, 16);
1289 	}
1290 }
1291 #endif /* NLE */
1292