xref: /openbsd/sys/sys/queue.h (revision 8149cf72)
1 /*	$OpenBSD: queue.h,v 1.46 2020/12/30 13:33:12 millert Exp $	*/
2 /*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*/
3 
4 /*
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)queue.h	8.5 (Berkeley) 8/20/94
33  */
34 
35 #ifndef	_SYS_QUEUE_H_
36 #define	_SYS_QUEUE_H_
37 
38 #include <sys/_null.h>
39 
40 /*
41  * This file defines five types of data structures: singly-linked lists,
42  * lists, simple queues, tail queues and XOR simple queues.
43  *
44  *
45  * A singly-linked list is headed by a single forward pointer. The elements
46  * are singly linked for minimum space and pointer manipulation overhead at
47  * the expense of O(n) removal for arbitrary elements. New elements can be
48  * added to the list after an existing element or at the head of the list.
49  * Elements being removed from the head of the list should use the explicit
50  * macro for this purpose for optimum efficiency. A singly-linked list may
51  * only be traversed in the forward direction.  Singly-linked lists are ideal
52  * for applications with large datasets and few or no removals or for
53  * implementing a LIFO queue.
54  *
55  * A list is headed by a single forward pointer (or an array of forward
56  * pointers for a hash table header). The elements are doubly linked
57  * so that an arbitrary element can be removed without a need to
58  * traverse the list. New elements can be added to the list before
59  * or after an existing element or at the head of the list. A list
60  * may only be traversed in the forward direction.
61  *
62  * A simple queue is headed by a pair of pointers, one to the head of the
63  * list and the other to the tail of the list. The elements are singly
64  * linked to save space, so elements can only be removed from the
65  * head of the list. New elements can be added to the list before or after
66  * an existing element, at the head of the list, or at the end of the
67  * list. A simple queue may only be traversed in the forward direction.
68  *
69  * A tail queue is headed by a pair of pointers, one to the head of the
70  * list and the other to the tail of the list. The elements are doubly
71  * linked so that an arbitrary element can be removed without a need to
72  * traverse the list. New elements can be added to the list before or
73  * after an existing element, at the head of the list, or at the end of
74  * the list. A tail queue may be traversed in either direction.
75  *
76  * An XOR simple queue is used in the same way as a regular simple queue.
77  * The difference is that the head structure also includes a "cookie" that
78  * is XOR'd with the queue pointer (first, last or next) to generate the
79  * real pointer value.
80  *
81  * For details on the use of these macros, see the queue(3) manual page.
82  */
83 
84 #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
85 #define _Q_INVALID ((void *)-1)
86 #define _Q_INVALIDATE(a) (a) = _Q_INVALID
87 #else
88 #define _Q_INVALIDATE(a)
89 #endif
90 
91 /*
92  * Singly-linked List definitions.
93  */
94 #define SLIST_HEAD(name, type)						\
95 struct name {								\
96 	struct type *slh_first;	/* first element */			\
97 }
98 
99 #define	SLIST_HEAD_INITIALIZER(head)					\
100 	{ NULL }
101 
102 #define SLIST_ENTRY(type)						\
103 struct {								\
104 	struct type *sle_next;	/* next element */			\
105 }
106 
107 /*
108  * Singly-linked List access methods.
109  */
110 #define	SLIST_FIRST(head)	((head)->slh_first)
111 #define	SLIST_END(head)		NULL
112 #define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))
113 #define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
114 
115 #define	SLIST_FOREACH(var, head, field)					\
116 	for((var) = SLIST_FIRST(head);					\
117 	    (var) != SLIST_END(head);					\
118 	    (var) = SLIST_NEXT(var, field))
119 
120 #define	SLIST_FOREACH_SAFE(var, head, field, tvar)			\
121 	for ((var) = SLIST_FIRST(head);				\
122 	    (var) && ((tvar) = SLIST_NEXT(var, field), 1);		\
123 	    (var) = (tvar))
124 
125 /*
126  * Singly-linked List functions.
127  */
128 #define	SLIST_INIT(head) {						\
129 	SLIST_FIRST(head) = SLIST_END(head);				\
130 }
131 
132 #define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
133 	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
134 	(slistelm)->field.sle_next = (elm);				\
135 } while (0)
136 
137 #define	SLIST_INSERT_HEAD(head, elm, field) do {			\
138 	(elm)->field.sle_next = (head)->slh_first;			\
139 	(head)->slh_first = (elm);					\
140 } while (0)
141 
142 #define	SLIST_REMOVE_AFTER(elm, field) do {				\
143 	(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next;	\
144 } while (0)
145 
146 #define	SLIST_REMOVE_HEAD(head, field) do {				\
147 	(head)->slh_first = (head)->slh_first->field.sle_next;		\
148 } while (0)
149 
150 #define SLIST_REMOVE(head, elm, type, field) do {			\
151 	if ((head)->slh_first == (elm)) {				\
152 		SLIST_REMOVE_HEAD((head), field);			\
153 	} else {							\
154 		struct type *curelm = (head)->slh_first;		\
155 									\
156 		while (curelm->field.sle_next != (elm))			\
157 			curelm = curelm->field.sle_next;		\
158 		curelm->field.sle_next =				\
159 		    curelm->field.sle_next->field.sle_next;		\
160 	}								\
161 	_Q_INVALIDATE((elm)->field.sle_next);				\
162 } while (0)
163 
164 /*
165  * List definitions.
166  */
167 #define LIST_HEAD(name, type)						\
168 struct name {								\
169 	struct type *lh_first;	/* first element */			\
170 }
171 
172 #define LIST_HEAD_INITIALIZER(head)					\
173 	{ NULL }
174 
175 #define LIST_ENTRY(type)						\
176 struct {								\
177 	struct type *le_next;	/* next element */			\
178 	struct type **le_prev;	/* address of previous next element */	\
179 }
180 
181 /*
182  * List access methods.
183  */
184 #define	LIST_FIRST(head)		((head)->lh_first)
185 #define	LIST_END(head)			NULL
186 #define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))
187 #define	LIST_NEXT(elm, field)		((elm)->field.le_next)
188 
189 #define LIST_FOREACH(var, head, field)					\
190 	for((var) = LIST_FIRST(head);					\
191 	    (var)!= LIST_END(head);					\
192 	    (var) = LIST_NEXT(var, field))
193 
194 #define	LIST_FOREACH_SAFE(var, head, field, tvar)			\
195 	for ((var) = LIST_FIRST(head);				\
196 	    (var) && ((tvar) = LIST_NEXT(var, field), 1);		\
197 	    (var) = (tvar))
198 
199 /*
200  * List functions.
201  */
202 #define	LIST_INIT(head) do {						\
203 	LIST_FIRST(head) = LIST_END(head);				\
204 } while (0)
205 
206 #define LIST_INSERT_AFTER(listelm, elm, field) do {			\
207 	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
208 		(listelm)->field.le_next->field.le_prev =		\
209 		    &(elm)->field.le_next;				\
210 	(listelm)->field.le_next = (elm);				\
211 	(elm)->field.le_prev = &(listelm)->field.le_next;		\
212 } while (0)
213 
214 #define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
215 	(elm)->field.le_prev = (listelm)->field.le_prev;		\
216 	(elm)->field.le_next = (listelm);				\
217 	*(listelm)->field.le_prev = (elm);				\
218 	(listelm)->field.le_prev = &(elm)->field.le_next;		\
219 } while (0)
220 
221 #define LIST_INSERT_HEAD(head, elm, field) do {				\
222 	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
223 		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
224 	(head)->lh_first = (elm);					\
225 	(elm)->field.le_prev = &(head)->lh_first;			\
226 } while (0)
227 
228 #define LIST_REMOVE(elm, field) do {					\
229 	if ((elm)->field.le_next != NULL)				\
230 		(elm)->field.le_next->field.le_prev =			\
231 		    (elm)->field.le_prev;				\
232 	*(elm)->field.le_prev = (elm)->field.le_next;			\
233 	_Q_INVALIDATE((elm)->field.le_prev);				\
234 	_Q_INVALIDATE((elm)->field.le_next);				\
235 } while (0)
236 
237 #define LIST_REPLACE(elm, elm2, field) do {				\
238 	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\
239 		(elm2)->field.le_next->field.le_prev =			\
240 		    &(elm2)->field.le_next;				\
241 	(elm2)->field.le_prev = (elm)->field.le_prev;			\
242 	*(elm2)->field.le_prev = (elm2);				\
243 	_Q_INVALIDATE((elm)->field.le_prev);				\
244 	_Q_INVALIDATE((elm)->field.le_next);				\
245 } while (0)
246 
247 /*
248  * Simple queue definitions.
249  */
250 #define SIMPLEQ_HEAD(name, type)					\
251 struct name {								\
252 	struct type *sqh_first;	/* first element */			\
253 	struct type **sqh_last;	/* addr of last next element */		\
254 }
255 
256 #define SIMPLEQ_HEAD_INITIALIZER(head)					\
257 	{ NULL, &(head).sqh_first }
258 
259 #define SIMPLEQ_ENTRY(type)						\
260 struct {								\
261 	struct type *sqe_next;	/* next element */			\
262 }
263 
264 /*
265  * Simple queue access methods.
266  */
267 #define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)
268 #define	SIMPLEQ_END(head)	    NULL
269 #define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
270 #define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
271 
272 #define SIMPLEQ_FOREACH(var, head, field)				\
273 	for((var) = SIMPLEQ_FIRST(head);				\
274 	    (var) != SIMPLEQ_END(head);					\
275 	    (var) = SIMPLEQ_NEXT(var, field))
276 
277 #define	SIMPLEQ_FOREACH_SAFE(var, head, field, tvar)			\
278 	for ((var) = SIMPLEQ_FIRST(head);				\
279 	    (var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1);		\
280 	    (var) = (tvar))
281 
282 /*
283  * Simple queue functions.
284  */
285 #define	SIMPLEQ_INIT(head) do {						\
286 	(head)->sqh_first = NULL;					\
287 	(head)->sqh_last = &(head)->sqh_first;				\
288 } while (0)
289 
290 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
291 	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
292 		(head)->sqh_last = &(elm)->field.sqe_next;		\
293 	(head)->sqh_first = (elm);					\
294 } while (0)
295 
296 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
297 	(elm)->field.sqe_next = NULL;					\
298 	*(head)->sqh_last = (elm);					\
299 	(head)->sqh_last = &(elm)->field.sqe_next;			\
300 } while (0)
301 
302 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
303 	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
304 		(head)->sqh_last = &(elm)->field.sqe_next;		\
305 	(listelm)->field.sqe_next = (elm);				\
306 } while (0)
307 
308 #define SIMPLEQ_REMOVE_HEAD(head, field) do {			\
309 	if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
310 		(head)->sqh_last = &(head)->sqh_first;			\
311 } while (0)
312 
313 #define SIMPLEQ_REMOVE_AFTER(head, elm, field) do {			\
314 	if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \
315 	    == NULL)							\
316 		(head)->sqh_last = &(elm)->field.sqe_next;		\
317 } while (0)
318 
319 #define SIMPLEQ_CONCAT(head1, head2) do {				\
320 	if (!SIMPLEQ_EMPTY((head2))) {					\
321 		*(head1)->sqh_last = (head2)->sqh_first;		\
322 		(head1)->sqh_last = (head2)->sqh_last;			\
323 		SIMPLEQ_INIT((head2));					\
324 	}								\
325 } while (0)
326 
327 /*
328  * XOR Simple queue definitions.
329  */
330 #define XSIMPLEQ_HEAD(name, type)					\
331 struct name {								\
332 	struct type *sqx_first;	/* first element */			\
333 	struct type **sqx_last;	/* addr of last next element */		\
334 	unsigned long sqx_cookie;					\
335 }
336 
337 #define XSIMPLEQ_ENTRY(type)						\
338 struct {								\
339 	struct type *sqx_next;	/* next element */			\
340 }
341 
342 /*
343  * XOR Simple queue access methods.
344  */
345 #define XSIMPLEQ_XOR(head, ptr)	    ((__typeof(ptr))((head)->sqx_cookie ^ \
346 					(unsigned long)(ptr)))
347 #define	XSIMPLEQ_FIRST(head)	    XSIMPLEQ_XOR(head, ((head)->sqx_first))
348 #define	XSIMPLEQ_END(head)	    NULL
349 #define	XSIMPLEQ_EMPTY(head)	    (XSIMPLEQ_FIRST(head) == XSIMPLEQ_END(head))
350 #define	XSIMPLEQ_NEXT(head, elm, field)    XSIMPLEQ_XOR(head, ((elm)->field.sqx_next))
351 
352 
353 #define XSIMPLEQ_FOREACH(var, head, field)				\
354 	for ((var) = XSIMPLEQ_FIRST(head);				\
355 	    (var) != XSIMPLEQ_END(head);				\
356 	    (var) = XSIMPLEQ_NEXT(head, var, field))
357 
358 #define	XSIMPLEQ_FOREACH_SAFE(var, head, field, tvar)			\
359 	for ((var) = XSIMPLEQ_FIRST(head);				\
360 	    (var) && ((tvar) = XSIMPLEQ_NEXT(head, var, field), 1);	\
361 	    (var) = (tvar))
362 
363 /*
364  * XOR Simple queue functions.
365  */
366 #define	XSIMPLEQ_INIT(head) do {					\
367 	arc4random_buf(&(head)->sqx_cookie, sizeof((head)->sqx_cookie)); \
368 	(head)->sqx_first = XSIMPLEQ_XOR(head, NULL);			\
369 	(head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first);	\
370 } while (0)
371 
372 #define XSIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
373 	if (((elm)->field.sqx_next = (head)->sqx_first) ==		\
374 	    XSIMPLEQ_XOR(head, NULL))					\
375 		(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
376 	(head)->sqx_first = XSIMPLEQ_XOR(head, (elm));			\
377 } while (0)
378 
379 #define XSIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
380 	(elm)->field.sqx_next = XSIMPLEQ_XOR(head, NULL);		\
381 	*(XSIMPLEQ_XOR(head, (head)->sqx_last)) = XSIMPLEQ_XOR(head, (elm)); \
382 	(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next);	\
383 } while (0)
384 
385 #define XSIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
386 	if (((elm)->field.sqx_next = (listelm)->field.sqx_next) ==	\
387 	    XSIMPLEQ_XOR(head, NULL))					\
388 		(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
389 	(listelm)->field.sqx_next = XSIMPLEQ_XOR(head, (elm));		\
390 } while (0)
391 
392 #define XSIMPLEQ_REMOVE_HEAD(head, field) do {				\
393 	if (((head)->sqx_first = XSIMPLEQ_XOR(head,			\
394 	    (head)->sqx_first)->field.sqx_next) == XSIMPLEQ_XOR(head, NULL)) \
395 		(head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
396 } while (0)
397 
398 #define XSIMPLEQ_REMOVE_AFTER(head, elm, field) do {			\
399 	if (((elm)->field.sqx_next = XSIMPLEQ_XOR(head,			\
400 	    (elm)->field.sqx_next)->field.sqx_next)			\
401 	    == XSIMPLEQ_XOR(head, NULL))				\
402 		(head)->sqx_last = 					\
403 		    XSIMPLEQ_XOR(head, &(elm)->field.sqx_next);		\
404 } while (0)
405 
406 
407 /*
408  * Tail queue definitions.
409  */
410 #define TAILQ_HEAD(name, type)						\
411 struct name {								\
412 	struct type *tqh_first;	/* first element */			\
413 	struct type **tqh_last;	/* addr of last next element */		\
414 }
415 
416 #define TAILQ_HEAD_INITIALIZER(head)					\
417 	{ NULL, &(head).tqh_first }
418 
419 #define TAILQ_ENTRY(type)						\
420 struct {								\
421 	struct type *tqe_next;	/* next element */			\
422 	struct type **tqe_prev;	/* address of previous next element */	\
423 }
424 
425 /*
426  * Tail queue access methods.
427  */
428 #define	TAILQ_FIRST(head)		((head)->tqh_first)
429 #define	TAILQ_END(head)			NULL
430 #define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
431 #define TAILQ_LAST(head, headname)					\
432 	(*(((struct headname *)((head)->tqh_last))->tqh_last))
433 /* XXX */
434 #define TAILQ_PREV(elm, headname, field)				\
435 	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
436 #define	TAILQ_EMPTY(head)						\
437 	(TAILQ_FIRST(head) == TAILQ_END(head))
438 
439 #define TAILQ_FOREACH(var, head, field)					\
440 	for((var) = TAILQ_FIRST(head);					\
441 	    (var) != TAILQ_END(head);					\
442 	    (var) = TAILQ_NEXT(var, field))
443 
444 #define	TAILQ_FOREACH_SAFE(var, head, field, tvar)			\
445 	for ((var) = TAILQ_FIRST(head);					\
446 	    (var) != TAILQ_END(head) &&					\
447 	    ((tvar) = TAILQ_NEXT(var, field), 1);			\
448 	    (var) = (tvar))
449 
450 
451 #define TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
452 	for((var) = TAILQ_LAST(head, headname);				\
453 	    (var) != TAILQ_END(head);					\
454 	    (var) = TAILQ_PREV(var, headname, field))
455 
456 #define	TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar)	\
457 	for ((var) = TAILQ_LAST(head, headname);			\
458 	    (var) != TAILQ_END(head) &&					\
459 	    ((tvar) = TAILQ_PREV(var, headname, field), 1);		\
460 	    (var) = (tvar))
461 
462 /*
463  * Tail queue functions.
464  */
465 #define	TAILQ_INIT(head) do {						\
466 	(head)->tqh_first = NULL;					\
467 	(head)->tqh_last = &(head)->tqh_first;				\
468 } while (0)
469 
470 #define TAILQ_INSERT_HEAD(head, elm, field) do {			\
471 	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
472 		(head)->tqh_first->field.tqe_prev =			\
473 		    &(elm)->field.tqe_next;				\
474 	else								\
475 		(head)->tqh_last = &(elm)->field.tqe_next;		\
476 	(head)->tqh_first = (elm);					\
477 	(elm)->field.tqe_prev = &(head)->tqh_first;			\
478 } while (0)
479 
480 #define TAILQ_INSERT_TAIL(head, elm, field) do {			\
481 	(elm)->field.tqe_next = NULL;					\
482 	(elm)->field.tqe_prev = (head)->tqh_last;			\
483 	*(head)->tqh_last = (elm);					\
484 	(head)->tqh_last = &(elm)->field.tqe_next;			\
485 } while (0)
486 
487 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
488 	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
489 		(elm)->field.tqe_next->field.tqe_prev =			\
490 		    &(elm)->field.tqe_next;				\
491 	else								\
492 		(head)->tqh_last = &(elm)->field.tqe_next;		\
493 	(listelm)->field.tqe_next = (elm);				\
494 	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
495 } while (0)
496 
497 #define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
498 	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
499 	(elm)->field.tqe_next = (listelm);				\
500 	*(listelm)->field.tqe_prev = (elm);				\
501 	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
502 } while (0)
503 
504 #define TAILQ_REMOVE(head, elm, field) do {				\
505 	if (((elm)->field.tqe_next) != NULL)				\
506 		(elm)->field.tqe_next->field.tqe_prev =			\
507 		    (elm)->field.tqe_prev;				\
508 	else								\
509 		(head)->tqh_last = (elm)->field.tqe_prev;		\
510 	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
511 	_Q_INVALIDATE((elm)->field.tqe_prev);				\
512 	_Q_INVALIDATE((elm)->field.tqe_next);				\
513 } while (0)
514 
515 #define TAILQ_REPLACE(head, elm, elm2, field) do {			\
516 	if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)	\
517 		(elm2)->field.tqe_next->field.tqe_prev =		\
518 		    &(elm2)->field.tqe_next;				\
519 	else								\
520 		(head)->tqh_last = &(elm2)->field.tqe_next;		\
521 	(elm2)->field.tqe_prev = (elm)->field.tqe_prev;			\
522 	*(elm2)->field.tqe_prev = (elm2);				\
523 	_Q_INVALIDATE((elm)->field.tqe_prev);				\
524 	_Q_INVALIDATE((elm)->field.tqe_next);				\
525 } while (0)
526 
527 #define TAILQ_CONCAT(head1, head2, field) do {				\
528 	if (!TAILQ_EMPTY(head2)) {					\
529 		*(head1)->tqh_last = (head2)->tqh_first;		\
530 		(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;	\
531 		(head1)->tqh_last = (head2)->tqh_last;			\
532 		TAILQ_INIT((head2));					\
533 	}								\
534 } while (0)
535 
536 /*
537  * Singly-linked Tail queue declarations.
538  */
539 #define	STAILQ_HEAD(name, type)						\
540 struct name {								\
541 	struct type *stqh_first;	/* first element */		\
542 	struct type **stqh_last;	/* addr of last next element */	\
543 }
544 
545 #define	STAILQ_HEAD_INITIALIZER(head)					\
546 	{ NULL, &(head).stqh_first }
547 
548 #define	STAILQ_ENTRY(type)						\
549 struct {								\
550 	struct type *stqe_next;	/* next element */			\
551 }
552 
553 /*
554  * Singly-linked Tail queue access methods.
555  */
556 #define	STAILQ_FIRST(head)	((head)->stqh_first)
557 #define	STAILQ_END(head)	NULL
558 #define	STAILQ_EMPTY(head)	(STAILQ_FIRST(head) == STAILQ_END(head))
559 #define	STAILQ_NEXT(elm, field)	((elm)->field.stqe_next)
560 
561 #define STAILQ_FOREACH(var, head, field)				\
562 	for ((var) = STAILQ_FIRST(head);				\
563 	    (var) != STAILQ_END(head);					\
564 	    (var) = STAILQ_NEXT(var, field))
565 
566 #define	STAILQ_FOREACH_SAFE(var, head, field, tvar)			\
567 	for ((var) = STAILQ_FIRST(head);				\
568 	    (var) && ((tvar) = STAILQ_NEXT(var, field), 1);		\
569 	    (var) = (tvar))
570 
571 /*
572  * Singly-linked Tail queue functions.
573  */
574 #define	STAILQ_INIT(head) do {						\
575 	STAILQ_FIRST((head)) = NULL;					\
576 	(head)->stqh_last = &STAILQ_FIRST((head));			\
577 } while (0)
578 
579 #define	STAILQ_INSERT_HEAD(head, elm, field) do {			\
580 	if ((STAILQ_NEXT((elm), field) = STAILQ_FIRST((head))) == NULL)	\
581 		(head)->stqh_last = &STAILQ_NEXT((elm), field);		\
582 	STAILQ_FIRST((head)) = (elm);					\
583 } while (0)
584 
585 #define	STAILQ_INSERT_TAIL(head, elm, field) do {			\
586 	STAILQ_NEXT((elm), field) = NULL;				\
587 	*(head)->stqh_last = (elm);					\
588 	(head)->stqh_last = &STAILQ_NEXT((elm), field);			\
589 } while (0)
590 
591 #define	STAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
592 	if ((STAILQ_NEXT((elm), field) = STAILQ_NEXT((elm), field)) == NULL)\
593 		(head)->stqh_last = &STAILQ_NEXT((elm), field);		\
594 	STAILQ_NEXT((elm), field) = (elm);				\
595 } while (0)
596 
597 #define STAILQ_REMOVE_HEAD(head, field) do {                            \
598 	if ((STAILQ_FIRST((head)) =					\
599 	    STAILQ_NEXT(STAILQ_FIRST((head)), field)) == NULL)		\
600 		(head)->stqh_last = &STAILQ_FIRST((head));		\
601 } while (0)
602 
603 #define STAILQ_REMOVE_AFTER(head, elm, field) do {                      \
604 	if ((STAILQ_NEXT(elm, field) =					\
605 	    STAILQ_NEXT(STAILQ_NEXT(elm, field), field)) == NULL)	\
606 		(head)->stqh_last = &STAILQ_NEXT((elm), field);		\
607 } while (0)
608 
609 #define	STAILQ_REMOVE(head, elm, type, field) do {			\
610 	if (STAILQ_FIRST((head)) == (elm)) {				\
611 		STAILQ_REMOVE_HEAD((head), field);			\
612 	} else {							\
613 		struct type *curelm = (head)->stqh_first;		\
614 		while (STAILQ_NEXT(curelm, field) != (elm))		\
615 			curelm = STAILQ_NEXT(curelm, field);		\
616 		STAILQ_REMOVE_AFTER(head, curelm, field);		\
617 	}								\
618 } while (0)
619 
620 #define	STAILQ_CONCAT(head1, head2) do {				\
621 	if (!STAILQ_EMPTY((head2))) {					\
622 		*(head1)->stqh_last = (head2)->stqh_first;		\
623 		(head1)->stqh_last = (head2)->stqh_last;		\
624 		STAILQ_INIT((head2));					\
625 	}								\
626 } while (0)
627 
628 #define	STAILQ_LAST(head, type, field)					\
629 	(STAILQ_EMPTY((head)) ?	NULL :					\
630 	        ((struct type *)(void *)				\
631 		((char *)((head)->stqh_last) - offsetof(struct type, field))))
632 
633 #endif	/* !_SYS_QUEUE_H_ */
634