xref: /openbsd/gnu/gcc/gcc/lambda.h (revision 404b540a)
1 /* Lambda matrix and vector interface.
2    Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3    Contributed by Daniel Berlin <dberlin@dberlin.org>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA.  */
21 
22 #ifndef LAMBDA_H
23 #define LAMBDA_H
24 
25 #include "vec.h"
26 
27 /* An integer vector.  A vector formally consists of an element of a vector
28    space. A vector space is a set that is closed under vector addition
29    and scalar multiplication.  In this vector space, an element is a list of
30    integers.  */
31 typedef int *lambda_vector;
32 
33 DEF_VEC_P(lambda_vector);
34 DEF_VEC_ALLOC_P(lambda_vector,heap);
35 
36 /* An integer matrix.  A matrix consists of m vectors of length n (IE
37    all vectors are the same length).  */
38 typedef lambda_vector *lambda_matrix;
39 
40 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
41    matrix.  Rather than use floats, we simply keep a single DENOMINATOR that
42    represents the denominator for every element in the matrix.  */
43 typedef struct
44 {
45   lambda_matrix matrix;
46   int rowsize;
47   int colsize;
48   int denominator;
49 } *lambda_trans_matrix;
50 #define LTM_MATRIX(T) ((T)->matrix)
51 #define LTM_ROWSIZE(T) ((T)->rowsize)
52 #define LTM_COLSIZE(T) ((T)->colsize)
53 #define LTM_DENOMINATOR(T) ((T)->denominator)
54 
55 /* A vector representing a statement in the body of a loop.
56    The COEFFICIENTS vector contains a coefficient for each induction variable
57    in the loop nest containing the statement.
58    The DENOMINATOR represents the denominator for each coefficient in the
59    COEFFICIENT vector.
60 
61    This structure is used during code generation in order to rewrite the old
62    induction variable uses in a statement in terms of the newly created
63    induction variables.  */
64 typedef struct
65 {
66   lambda_vector coefficients;
67   int size;
68   int denominator;
69 } *lambda_body_vector;
70 #define LBV_COEFFICIENTS(T) ((T)->coefficients)
71 #define LBV_SIZE(T) ((T)->size)
72 #define LBV_DENOMINATOR(T) ((T)->denominator)
73 
74 /* Piecewise linear expression.
75    This structure represents a linear expression with terms for the invariants
76    and induction variables of a loop.
77    COEFFICIENTS is a vector of coefficients for the induction variables, one
78    per loop in the loop nest.
79    CONSTANT is the constant portion of the linear expression
80    INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
81    one per invariant.
82    DENOMINATOR is the denominator for all of the coefficients and constants in
83    the expression.
84    The linear expressions can be linked together using the NEXT field, in
85    order to represent MAX or MIN of a group of linear expressions.  */
86 typedef struct lambda_linear_expression_s
87 {
88   lambda_vector coefficients;
89   int constant;
90   lambda_vector invariant_coefficients;
91   int denominator;
92   struct lambda_linear_expression_s *next;
93 } *lambda_linear_expression;
94 
95 #define LLE_COEFFICIENTS(T) ((T)->coefficients)
96 #define LLE_CONSTANT(T) ((T)->constant)
97 #define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
98 #define LLE_DENOMINATOR(T) ((T)->denominator)
99 #define LLE_NEXT(T) ((T)->next)
100 
101 lambda_linear_expression lambda_linear_expression_new (int, int);
102 void print_lambda_linear_expression (FILE *, lambda_linear_expression, int,
103 				     int, char);
104 
105 /* Loop structure.  Our loop structure consists of a constant representing the
106    STEP of the loop, a set of linear expressions representing the LOWER_BOUND
107    of the loop, a set of linear expressions representing the UPPER_BOUND of
108    the loop, and a set of linear expressions representing the LINEAR_OFFSET of
109    the loop.  The linear offset is a set of linear expressions that are
110    applied to *both* the lower bound, and the upper bound.  */
111 typedef struct lambda_loop_s
112 {
113   lambda_linear_expression lower_bound;
114   lambda_linear_expression upper_bound;
115   lambda_linear_expression linear_offset;
116   int step;
117 } *lambda_loop;
118 
119 #define LL_LOWER_BOUND(T) ((T)->lower_bound)
120 #define LL_UPPER_BOUND(T) ((T)->upper_bound)
121 #define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
122 #define LL_STEP(T)   ((T)->step)
123 
124 /* Loop nest structure.
125    The loop nest structure consists of a set of loop structures (defined
126    above) in LOOPS, along with an integer representing the DEPTH of the loop,
127    and an integer representing the number of INVARIANTS in the loop.  Both of
128    these integers are used to size the associated coefficient vectors in the
129    linear expression structures.  */
130 typedef struct
131 {
132   lambda_loop *loops;
133   int depth;
134   int invariants;
135 } *lambda_loopnest;
136 
137 #define LN_LOOPS(T) ((T)->loops)
138 #define LN_DEPTH(T) ((T)->depth)
139 #define LN_INVARIANTS(T) ((T)->invariants)
140 
141 lambda_loopnest lambda_loopnest_new (int, int);
142 lambda_loopnest lambda_loopnest_transform (lambda_loopnest, lambda_trans_matrix);
143 struct loop;
144 struct loops;
145 bool perfect_nest_p (struct loop *);
146 void print_lambda_loopnest (FILE *, lambda_loopnest, char);
147 
148 #define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s))
149 
150 void print_lambda_loop (FILE *, lambda_loop, int, int, char);
151 
152 lambda_matrix lambda_matrix_new (int, int);
153 
154 void lambda_matrix_id (lambda_matrix, int);
155 bool lambda_matrix_id_p (lambda_matrix, int);
156 void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
157 void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
158 void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
159 void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
160 			int);
161 void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
162 			   lambda_matrix, int, int);
163 void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
164 			 int, int, int);
165 void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
166 void lambda_matrix_row_exchange (lambda_matrix, int, int);
167 void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
168 void lambda_matrix_row_negate (lambda_matrix mat, int, int);
169 void lambda_matrix_row_mc (lambda_matrix, int, int, int);
170 void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
171 void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
172 void lambda_matrix_col_negate (lambda_matrix, int, int);
173 void lambda_matrix_col_mc (lambda_matrix, int, int, int);
174 int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int);
175 void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
176 void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
177 void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
178 int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
179 void lambda_matrix_project_to_null (lambda_matrix, int, int, int,
180 				    lambda_vector);
181 void print_lambda_matrix (FILE *, lambda_matrix, int, int);
182 
183 lambda_trans_matrix lambda_trans_matrix_new (int, int);
184 bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix);
185 bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix);
186 int lambda_trans_matrix_rank (lambda_trans_matrix);
187 lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix);
188 lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix);
189 lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix);
190 void print_lambda_trans_matrix (FILE *, lambda_trans_matrix);
191 void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector,
192 				lambda_vector);
193 bool lambda_trans_matrix_id_p (lambda_trans_matrix);
194 
195 lambda_body_vector lambda_body_vector_new (int);
196 lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix,
197 						   lambda_body_vector);
198 void print_lambda_body_vector (FILE *, lambda_body_vector);
199 lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loops *,
200 						 struct loop *,
201 						 VEC(tree,heap) **,
202 						 VEC(tree,heap) **);
203 void lambda_loopnest_to_gcc_loopnest (struct loop *,
204 				      VEC(tree,heap) *, VEC(tree,heap) *,
205 				      lambda_loopnest, lambda_trans_matrix);
206 
207 
208 static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
209 static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
210 static inline void lambda_vector_add (lambda_vector, lambda_vector,
211 				      lambda_vector, int);
212 static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
213 					 lambda_vector, int);
214 static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
215 static inline bool lambda_vector_zerop (lambda_vector, int);
216 static inline void lambda_vector_clear (lambda_vector, int);
217 static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
218 static inline int lambda_vector_min_nz (lambda_vector, int, int);
219 static inline int lambda_vector_first_nz (lambda_vector, int, int);
220 static inline void print_lambda_vector (FILE *, lambda_vector, int);
221 
222 /* Allocate a new vector of given SIZE.  */
223 
224 static inline lambda_vector
lambda_vector_new(int size)225 lambda_vector_new (int size)
226 {
227   return GGC_CNEWVEC (int, size);
228 }
229 
230 
231 
232 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
233    and store the result in VEC2.  */
234 
235 static inline void
lambda_vector_mult_const(lambda_vector vec1,lambda_vector vec2,int size,int const1)236 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
237 			  int size, int const1)
238 {
239   int i;
240 
241   if (const1 == 0)
242     lambda_vector_clear (vec2, size);
243   else
244     for (i = 0; i < size; i++)
245       vec2[i] = const1 * vec1[i];
246 }
247 
248 /* Negate vector VEC1 with length SIZE and store it in VEC2.  */
249 
250 static inline void
lambda_vector_negate(lambda_vector vec1,lambda_vector vec2,int size)251 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
252 		      int size)
253 {
254   lambda_vector_mult_const (vec1, vec2, size, -1);
255 }
256 
257 /* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE.  */
258 
259 static inline void
lambda_vector_add(lambda_vector vec1,lambda_vector vec2,lambda_vector vec3,int size)260 lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
261 		   lambda_vector vec3, int size)
262 {
263   int i;
264   for (i = 0; i < size; i++)
265     vec3[i] = vec1[i] + vec2[i];
266 }
267 
268 /* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2.  All vectors have length SIZE.  */
269 
270 static inline void
lambda_vector_add_mc(lambda_vector vec1,int const1,lambda_vector vec2,int const2,lambda_vector vec3,int size)271 lambda_vector_add_mc (lambda_vector vec1, int const1,
272 		      lambda_vector vec2, int const2,
273 		      lambda_vector vec3, int size)
274 {
275   int i;
276   for (i = 0; i < size; i++)
277     vec3[i] = const1 * vec1[i] + const2 * vec2[i];
278 }
279 
280 /* Copy the elements of vector VEC1 with length SIZE to VEC2.  */
281 
282 static inline void
lambda_vector_copy(lambda_vector vec1,lambda_vector vec2,int size)283 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
284 		    int size)
285 {
286   memcpy (vec2, vec1, size * sizeof (*vec1));
287 }
288 
289 /* Return true if vector VEC1 of length SIZE is the zero vector.  */
290 
291 static inline bool
lambda_vector_zerop(lambda_vector vec1,int size)292 lambda_vector_zerop (lambda_vector vec1, int size)
293 {
294   int i;
295   for (i = 0; i < size; i++)
296     if (vec1[i] != 0)
297       return false;
298   return true;
299 }
300 
301 /* Clear out vector VEC1 of length SIZE.  */
302 
303 static inline void
lambda_vector_clear(lambda_vector vec1,int size)304 lambda_vector_clear (lambda_vector vec1, int size)
305 {
306   memset (vec1, 0, size * sizeof (*vec1));
307 }
308 
309 /* Return true if two vectors are equal.  */
310 
311 static inline bool
lambda_vector_equal(lambda_vector vec1,lambda_vector vec2,int size)312 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
313 {
314   int i;
315   for (i = 0; i < size; i++)
316     if (vec1[i] != vec2[i])
317       return false;
318   return true;
319 }
320 
321 /* Return the minimum nonzero element in vector VEC1 between START and N.
322    We must have START <= N.  */
323 
324 static inline int
lambda_vector_min_nz(lambda_vector vec1,int n,int start)325 lambda_vector_min_nz (lambda_vector vec1, int n, int start)
326 {
327   int j;
328   int min = -1;
329 
330   gcc_assert (start <= n);
331   for (j = start; j < n; j++)
332     {
333       if (vec1[j])
334 	if (min < 0 || vec1[j] < vec1[min])
335 	  min = j;
336     }
337   gcc_assert (min >= 0);
338 
339   return min;
340 }
341 
342 /* Return the first nonzero element of vector VEC1 between START and N.
343    We must have START <= N.   Returns N if VEC1 is the zero vector.  */
344 
345 static inline int
lambda_vector_first_nz(lambda_vector vec1,int n,int start)346 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
347 {
348   int j = start;
349   while (j < n && vec1[j] == 0)
350     j++;
351   return j;
352 }
353 
354 
355 /* Multiply a vector by a matrix.  */
356 
357 static inline void
lambda_vector_matrix_mult(lambda_vector vect,int m,lambda_matrix mat,int n,lambda_vector dest)358 lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat,
359 			   int n, lambda_vector dest)
360 {
361   int i, j;
362   lambda_vector_clear (dest, n);
363   for (i = 0; i < n; i++)
364     for (j = 0; j < m; j++)
365       dest[i] += mat[j][i] * vect[j];
366 }
367 
368 
369 /* Print out a vector VEC of length N to OUTFILE.  */
370 
371 static inline void
print_lambda_vector(FILE * outfile,lambda_vector vector,int n)372 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
373 {
374   int i;
375 
376   for (i = 0; i < n; i++)
377     fprintf (outfile, "%3d ", vector[i]);
378   fprintf (outfile, "\n");
379 }
380 
381 /* Compute the greatest common divisor of two numbers using
382    Euclid's algorithm.  */
383 
384 static inline int
gcd(int a,int b)385 gcd (int a, int b)
386 {
387   int x, y, z;
388 
389   x = abs (a);
390   y = abs (b);
391 
392   while (x > 0)
393     {
394       z = y % x;
395       y = x;
396       x = z;
397     }
398 
399   return y;
400 }
401 
402 /* Compute the greatest common divisor of a VECTOR of SIZE numbers.  */
403 
404 static inline int
lambda_vector_gcd(lambda_vector vector,int size)405 lambda_vector_gcd (lambda_vector vector, int size)
406 {
407   int i;
408   int gcd1 = 0;
409 
410   if (size > 0)
411     {
412       gcd1 = vector[0];
413       for (i = 1; i < size; i++)
414 	gcd1 = gcd (gcd1, vector[i]);
415     }
416   return gcd1;
417 }
418 
419 /* Returns true when the vector V is lexicographically positive, in
420    other words, when the first nonzero element is positive.  */
421 
422 static inline bool
lambda_vector_lexico_pos(lambda_vector v,unsigned n)423 lambda_vector_lexico_pos (lambda_vector v,
424 			  unsigned n)
425 {
426   unsigned i;
427   for (i = 0; i < n; i++)
428     {
429       if (v[i] == 0)
430 	continue;
431       if (v[i] < 0)
432 	return false;
433       if (v[i] > 0)
434 	return true;
435     }
436   return true;
437 }
438 
439 #endif /* LAMBDA_H  */
440 
441