1 /*
2 * Copyright (c) 1997 Greg Ward Larson
3 * Copyright (c) 1997 Silicon Graphics, Inc.
4 *
5 * Permission to use, copy, modify, distribute, and sell this software and
6 * its documentation for any purpose is hereby granted without fee, provided
7 * that (i) the above copyright notices and this permission notice appear in
8 * all copies of the software and related documentation, and (ii) the names of
9 * Sam Leffler, Greg Larson and Silicon Graphics may not be used in any
10 * advertising or publicity relating to the software without the specific,
11 * prior written permission of Sam Leffler, Greg Larson and Silicon Graphics.
12 *
13 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
14 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
15 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
16 *
17 * IN NO EVENT SHALL SAM LEFFLER, GREG LARSON OR SILICON GRAPHICS BE LIABLE
18 * FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
19 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
20 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
21 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
22 * OF THIS SOFTWARE.
23 */
24
25 #include <precomp.h>
26 #ifdef LOGLUV_SUPPORT
27
28 /*
29 * TIFF Library.
30 * LogLuv compression support for high dynamic range images.
31 *
32 * Contributed by Greg Larson.
33 *
34 * LogLuv image support uses the TIFF library to store 16 or 10-bit
35 * log luminance values with 8 bits each of u and v or a 14-bit index.
36 *
37 * The codec can take as input and produce as output 32-bit IEEE float values
38 * as well as 16-bit integer values. A 16-bit luminance is interpreted
39 * as a sign bit followed by a 15-bit integer that is converted
40 * to and from a linear magnitude using the transformation:
41 *
42 * L = 2^( (Le+.5)/256 - 64 ) # real from 15-bit
43 *
44 * Le = floor( 256*(log2(L) + 64) ) # 15-bit from real
45 *
46 * The actual conversion to world luminance units in candelas per sq. meter
47 * requires an additional multiplier, which is stored in the TIFFTAG_STONITS.
48 * This value is usually set such that a reasonable exposure comes from
49 * clamping decoded luminances above 1 to 1 in the displayed image.
50 *
51 * The 16-bit values for u and v may be converted to real values by dividing
52 * each by 32768. (This allows for negative values, which aren't useful as
53 * far as we know, but are left in case of future improvements in human
54 * color vision.)
55 *
56 * Conversion from (u,v), which is actually the CIE (u',v') system for
57 * you color scientists, is accomplished by the following transformation:
58 *
59 * u = 4*x / (-2*x + 12*y + 3)
60 * v = 9*y / (-2*x + 12*y + 3)
61 *
62 * x = 9*u / (6*u - 16*v + 12)
63 * y = 4*v / (6*u - 16*v + 12)
64 *
65 * This process is greatly simplified by passing 32-bit IEEE floats
66 * for each of three CIE XYZ coordinates. The codec then takes care
67 * of conversion to and from LogLuv, though the application is still
68 * responsible for interpreting the TIFFTAG_STONITS calibration factor.
69 *
70 * By definition, a CIE XYZ vector of [1 1 1] corresponds to a neutral white
71 * point of (x,y)=(1/3,1/3). However, most color systems assume some other
72 * white point, such as D65, and an absolute color conversion to XYZ then
73 * to another color space with a different white point may introduce an
74 * unwanted color cast to the image. It is often desirable, therefore, to
75 * perform a white point conversion that maps the input white to [1 1 1]
76 * in XYZ, then record the original white point using the TIFFTAG_WHITEPOINT
77 * tag value. A decoder that demands absolute color calibration may use
78 * this white point tag to get back the original colors, but usually it
79 * will be ignored and the new white point will be used instead that
80 * matches the output color space.
81 *
82 * Pixel information is compressed into one of two basic encodings, depending
83 * on the setting of the compression tag, which is one of COMPRESSION_SGILOG
84 * or COMPRESSION_SGILOG24. For COMPRESSION_SGILOG, greyscale data is
85 * stored as:
86 *
87 * 1 15
88 * |-+---------------|
89 *
90 * COMPRESSION_SGILOG color data is stored as:
91 *
92 * 1 15 8 8
93 * |-+---------------|--------+--------|
94 * S Le ue ve
95 *
96 * For the 24-bit COMPRESSION_SGILOG24 color format, the data is stored as:
97 *
98 * 10 14
99 * |----------|--------------|
100 * Le' Ce
101 *
102 * There is no sign bit in the 24-bit case, and the (u,v) chromaticity is
103 * encoded as an index for optimal color resolution. The 10 log bits are
104 * defined by the following conversions:
105 *
106 * L = 2^((Le'+.5)/64 - 12) # real from 10-bit
107 *
108 * Le' = floor( 64*(log2(L) + 12) ) # 10-bit from real
109 *
110 * The 10 bits of the smaller format may be converted into the 15 bits of
111 * the larger format by multiplying by 4 and adding 13314. Obviously,
112 * a smaller range of magnitudes is covered (about 5 orders of magnitude
113 * instead of 38), and the lack of a sign bit means that negative luminances
114 * are not allowed. (Well, they aren't allowed in the real world, either,
115 * but they are useful for certain types of image processing.)
116 *
117 * The desired user format is controlled by the setting the internal
118 * pseudo tag TIFFTAG_SGILOGDATAFMT to one of:
119 * SGILOGDATAFMT_FLOAT = IEEE 32-bit float XYZ values
120 * SGILOGDATAFMT_16BIT = 16-bit integer encodings of logL, u and v
121 * Raw data i/o is also possible using:
122 * SGILOGDATAFMT_RAW = 32-bit unsigned integer with encoded pixel
123 * In addition, the following decoding is provided for ease of display:
124 * SGILOGDATAFMT_8BIT = 8-bit default RGB gamma-corrected values
125 *
126 * For grayscale images, we provide the following data formats:
127 * SGILOGDATAFMT_FLOAT = IEEE 32-bit float Y values
128 * SGILOGDATAFMT_16BIT = 16-bit integer w/ encoded luminance
129 * SGILOGDATAFMT_8BIT = 8-bit gray monitor values
130 *
131 * Note that the COMPRESSION_SGILOG applies a simple run-length encoding
132 * scheme by separating the logL, u and v bytes for each row and applying
133 * a PackBits type of compression. Since the 24-bit encoding is not
134 * adaptive, the 32-bit color format takes less space in many cases.
135 *
136 * Further control is provided over the conversion from higher-resolution
137 * formats to final encoded values through the pseudo tag
138 * TIFFTAG_SGILOGENCODE:
139 * SGILOGENCODE_NODITHER = do not dither encoded values
140 * SGILOGENCODE_RANDITHER = apply random dithering during encoding
141 *
142 * The default value of this tag is SGILOGENCODE_NODITHER for
143 * COMPRESSION_SGILOG to maximize run-length encoding and
144 * SGILOGENCODE_RANDITHER for COMPRESSION_SGILOG24 to turn
145 * quantization errors into noise.
146 */
147
148 #include <stdio.h>
149 #include <stdlib.h>
150 #include <math.h>
151
152 /*
153 * State block for each open TIFF
154 * file using LogLuv compression/decompression.
155 */
156 typedef struct logLuvState LogLuvState;
157
158 struct logLuvState {
159 int encoder_state; /* 1 if encoder correctly initialized */
160 int user_datafmt; /* user data format */
161 int encode_meth; /* encoding method */
162 int pixel_size; /* bytes per pixel */
163
164 uint8* tbuf; /* translation buffer */
165 tmsize_t tbuflen; /* buffer length */
166 void (*tfunc)(LogLuvState*, uint8*, tmsize_t);
167
168 TIFFVSetMethod vgetparent; /* super-class method */
169 TIFFVSetMethod vsetparent; /* super-class method */
170 };
171
172 #define DecoderState(tif) ((LogLuvState*) (tif)->tif_data)
173 #define EncoderState(tif) ((LogLuvState*) (tif)->tif_data)
174
175 #define SGILOGDATAFMT_UNKNOWN -1
176
177 #define MINRUN 4 /* minimum run length */
178
179 /*
180 * Decode a string of 16-bit gray pixels.
181 */
182 static int
LogL16Decode(TIFF * tif,uint8 * op,tmsize_t occ,uint16 s)183 LogL16Decode(TIFF* tif, uint8* op, tmsize_t occ, uint16 s)
184 {
185 static const char module[] = "LogL16Decode";
186 LogLuvState* sp = DecoderState(tif);
187 int shft;
188 tmsize_t i;
189 tmsize_t npixels;
190 unsigned char* bp;
191 int16* tp;
192 int16 b;
193 tmsize_t cc;
194 int rc;
195
196 assert(s == 0);
197 assert(sp != NULL);
198
199 npixels = occ / sp->pixel_size;
200
201 if (sp->user_datafmt == SGILOGDATAFMT_16BIT)
202 tp = (int16*) op;
203 else {
204 if(sp->tbuflen < npixels) {
205 TIFFErrorExt(tif->tif_clientdata, module,
206 "Translation buffer too short");
207 return (0);
208 }
209 tp = (int16*) sp->tbuf;
210 }
211 _TIFFmemset((void*) tp, 0, npixels*sizeof (tp[0]));
212
213 bp = (unsigned char*) tif->tif_rawcp;
214 cc = tif->tif_rawcc;
215 /* get each byte string */
216 for (shft = 8; shft >= 0; shft -=8) {
217 for (i = 0; i < npixels && cc > 0; ) {
218 if (*bp >= 128) { /* run */
219 if( cc < 2 )
220 break;
221 rc = *bp++ + (2-128);
222 b = (int16)(*bp++ << shft);
223 cc -= 2;
224 while (rc-- && i < npixels)
225 tp[i++] |= b;
226 } else { /* non-run */
227 rc = *bp++; /* nul is noop */
228 while (--cc && rc-- && i < npixels)
229 tp[i++] |= (int16)*bp++ << shft;
230 }
231 }
232 if (i != npixels) {
233 #if defined(__WIN32__) && (defined(_MSC_VER) || defined(__MINGW32__))
234 TIFFErrorExt(tif->tif_clientdata, module,
235 "Not enough data at row %lu (short %I64d pixels)",
236 (unsigned long) tif->tif_row,
237 (unsigned __int64) (npixels - i));
238 #else
239 TIFFErrorExt(tif->tif_clientdata, module,
240 "Not enough data at row %lu (short %llu pixels)",
241 (unsigned long) tif->tif_row,
242 (unsigned long long) (npixels - i));
243 #endif
244 tif->tif_rawcp = (uint8*) bp;
245 tif->tif_rawcc = cc;
246 return (0);
247 }
248 }
249 (*sp->tfunc)(sp, op, npixels);
250 tif->tif_rawcp = (uint8*) bp;
251 tif->tif_rawcc = cc;
252 return (1);
253 }
254
255 /*
256 * Decode a string of 24-bit pixels.
257 */
258 static int
LogLuvDecode24(TIFF * tif,uint8 * op,tmsize_t occ,uint16 s)259 LogLuvDecode24(TIFF* tif, uint8* op, tmsize_t occ, uint16 s)
260 {
261 static const char module[] = "LogLuvDecode24";
262 LogLuvState* sp = DecoderState(tif);
263 tmsize_t cc;
264 tmsize_t i;
265 tmsize_t npixels;
266 unsigned char* bp;
267 uint32* tp;
268
269 assert(s == 0);
270 assert(sp != NULL);
271
272 npixels = occ / sp->pixel_size;
273
274 if (sp->user_datafmt == SGILOGDATAFMT_RAW)
275 tp = (uint32 *)op;
276 else {
277 if(sp->tbuflen < npixels) {
278 TIFFErrorExt(tif->tif_clientdata, module,
279 "Translation buffer too short");
280 return (0);
281 }
282 tp = (uint32 *) sp->tbuf;
283 }
284 /* copy to array of uint32 */
285 bp = (unsigned char*) tif->tif_rawcp;
286 cc = tif->tif_rawcc;
287 for (i = 0; i < npixels && cc >= 3; i++) {
288 tp[i] = bp[0] << 16 | bp[1] << 8 | bp[2];
289 bp += 3;
290 cc -= 3;
291 }
292 tif->tif_rawcp = (uint8*) bp;
293 tif->tif_rawcc = cc;
294 if (i != npixels) {
295 #if defined(__WIN32__) && (defined(_MSC_VER) || defined(__MINGW32__))
296 TIFFErrorExt(tif->tif_clientdata, module,
297 "Not enough data at row %lu (short %I64d pixels)",
298 (unsigned long) tif->tif_row,
299 (unsigned __int64) (npixels - i));
300 #else
301 TIFFErrorExt(tif->tif_clientdata, module,
302 "Not enough data at row %lu (short %llu pixels)",
303 (unsigned long) tif->tif_row,
304 (unsigned long long) (npixels - i));
305 #endif
306 return (0);
307 }
308 (*sp->tfunc)(sp, op, npixels);
309 return (1);
310 }
311
312 /*
313 * Decode a string of 32-bit pixels.
314 */
315 static int
LogLuvDecode32(TIFF * tif,uint8 * op,tmsize_t occ,uint16 s)316 LogLuvDecode32(TIFF* tif, uint8* op, tmsize_t occ, uint16 s)
317 {
318 static const char module[] = "LogLuvDecode32";
319 LogLuvState* sp;
320 int shft;
321 tmsize_t i;
322 tmsize_t npixels;
323 unsigned char* bp;
324 uint32* tp;
325 uint32 b;
326 tmsize_t cc;
327 int rc;
328
329 assert(s == 0);
330 sp = DecoderState(tif);
331 assert(sp != NULL);
332
333 npixels = occ / sp->pixel_size;
334
335 if (sp->user_datafmt == SGILOGDATAFMT_RAW)
336 tp = (uint32*) op;
337 else {
338 if(sp->tbuflen < npixels) {
339 TIFFErrorExt(tif->tif_clientdata, module,
340 "Translation buffer too short");
341 return (0);
342 }
343 tp = (uint32*) sp->tbuf;
344 }
345 _TIFFmemset((void*) tp, 0, npixels*sizeof (tp[0]));
346
347 bp = (unsigned char*) tif->tif_rawcp;
348 cc = tif->tif_rawcc;
349 /* get each byte string */
350 for (shft = 24; shft >= 0; shft -=8) {
351 for (i = 0; i < npixels && cc > 0; ) {
352 if (*bp >= 128) { /* run */
353 if( cc < 2 )
354 break;
355 rc = *bp++ + (2-128);
356 b = (uint32)*bp++ << shft;
357 cc -= 2;
358 while (rc-- && i < npixels)
359 tp[i++] |= b;
360 } else { /* non-run */
361 rc = *bp++; /* nul is noop */
362 while (--cc && rc-- && i < npixels)
363 tp[i++] |= (uint32)*bp++ << shft;
364 }
365 }
366 if (i != npixels) {
367 #if defined(__WIN32__) && (defined(_MSC_VER) || defined(__MINGW32__))
368 TIFFErrorExt(tif->tif_clientdata, module,
369 "Not enough data at row %lu (short %I64d pixels)",
370 (unsigned long) tif->tif_row,
371 (unsigned __int64) (npixels - i));
372 #else
373 TIFFErrorExt(tif->tif_clientdata, module,
374 "Not enough data at row %lu (short %llu pixels)",
375 (unsigned long) tif->tif_row,
376 (unsigned long long) (npixels - i));
377 #endif
378 tif->tif_rawcp = (uint8*) bp;
379 tif->tif_rawcc = cc;
380 return (0);
381 }
382 }
383 (*sp->tfunc)(sp, op, npixels);
384 tif->tif_rawcp = (uint8*) bp;
385 tif->tif_rawcc = cc;
386 return (1);
387 }
388
389 /*
390 * Decode a strip of pixels. We break it into rows to
391 * maintain synchrony with the encode algorithm, which
392 * is row by row.
393 */
394 static int
LogLuvDecodeStrip(TIFF * tif,uint8 * bp,tmsize_t cc,uint16 s)395 LogLuvDecodeStrip(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
396 {
397 tmsize_t rowlen = TIFFScanlineSize(tif);
398
399 if (rowlen == 0)
400 return 0;
401
402 assert(cc%rowlen == 0);
403 while (cc && (*tif->tif_decoderow)(tif, bp, rowlen, s)) {
404 bp += rowlen;
405 cc -= rowlen;
406 }
407 return (cc == 0);
408 }
409
410 /*
411 * Decode a tile of pixels. We break it into rows to
412 * maintain synchrony with the encode algorithm, which
413 * is row by row.
414 */
415 static int
LogLuvDecodeTile(TIFF * tif,uint8 * bp,tmsize_t cc,uint16 s)416 LogLuvDecodeTile(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
417 {
418 tmsize_t rowlen = TIFFTileRowSize(tif);
419
420 if (rowlen == 0)
421 return 0;
422
423 assert(cc%rowlen == 0);
424 while (cc && (*tif->tif_decoderow)(tif, bp, rowlen, s)) {
425 bp += rowlen;
426 cc -= rowlen;
427 }
428 return (cc == 0);
429 }
430
431 /*
432 * Encode a row of 16-bit pixels.
433 */
434 static int
LogL16Encode(TIFF * tif,uint8 * bp,tmsize_t cc,uint16 s)435 LogL16Encode(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
436 {
437 static const char module[] = "LogL16Encode";
438 LogLuvState* sp = EncoderState(tif);
439 int shft;
440 tmsize_t i;
441 tmsize_t j;
442 tmsize_t npixels;
443 uint8* op;
444 int16* tp;
445 int16 b;
446 tmsize_t occ;
447 int rc=0, mask;
448 tmsize_t beg;
449
450 assert(s == 0);
451 assert(sp != NULL);
452 npixels = cc / sp->pixel_size;
453
454 if (sp->user_datafmt == SGILOGDATAFMT_16BIT)
455 tp = (int16*) bp;
456 else {
457 tp = (int16*) sp->tbuf;
458 if(sp->tbuflen < npixels) {
459 TIFFErrorExt(tif->tif_clientdata, module,
460 "Translation buffer too short");
461 return (0);
462 }
463 (*sp->tfunc)(sp, bp, npixels);
464 }
465 /* compress each byte string */
466 op = tif->tif_rawcp;
467 occ = tif->tif_rawdatasize - tif->tif_rawcc;
468 for (shft = 8; shft >= 0; shft -=8) {
469 for (i = 0; i < npixels; i += rc) {
470 if (occ < 4) {
471 tif->tif_rawcp = op;
472 tif->tif_rawcc = tif->tif_rawdatasize - occ;
473 if (!TIFFFlushData1(tif))
474 return (0);
475 op = tif->tif_rawcp;
476 occ = tif->tif_rawdatasize - tif->tif_rawcc;
477 }
478 mask = 0xff << shft; /* find next run */
479 for (beg = i; beg < npixels; beg += rc) {
480 b = (int16) (tp[beg] & mask);
481 rc = 1;
482 while (rc < 127+2 && beg+rc < npixels &&
483 (tp[beg+rc] & mask) == b)
484 rc++;
485 if (rc >= MINRUN)
486 break; /* long enough */
487 }
488 if (beg-i > 1 && beg-i < MINRUN) {
489 b = (int16) (tp[i] & mask);/*check short run */
490 j = i+1;
491 while ((tp[j++] & mask) == b)
492 if (j == beg) {
493 *op++ = (uint8)(128-2+j-i);
494 *op++ = (uint8)(b >> shft);
495 occ -= 2;
496 i = beg;
497 break;
498 }
499 }
500 while (i < beg) { /* write out non-run */
501 if ((j = beg-i) > 127) j = 127;
502 if (occ < j+3) {
503 tif->tif_rawcp = op;
504 tif->tif_rawcc = tif->tif_rawdatasize - occ;
505 if (!TIFFFlushData1(tif))
506 return (0);
507 op = tif->tif_rawcp;
508 occ = tif->tif_rawdatasize - tif->tif_rawcc;
509 }
510 *op++ = (uint8) j; occ--;
511 while (j--) {
512 *op++ = (uint8) (tp[i++] >> shft & 0xff);
513 occ--;
514 }
515 }
516 if (rc >= MINRUN) { /* write out run */
517 *op++ = (uint8) (128-2+rc);
518 *op++ = (uint8) (tp[beg] >> shft & 0xff);
519 occ -= 2;
520 } else
521 rc = 0;
522 }
523 }
524 tif->tif_rawcp = op;
525 tif->tif_rawcc = tif->tif_rawdatasize - occ;
526
527 return (1);
528 }
529
530 /*
531 * Encode a row of 24-bit pixels.
532 */
533 static int
LogLuvEncode24(TIFF * tif,uint8 * bp,tmsize_t cc,uint16 s)534 LogLuvEncode24(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
535 {
536 static const char module[] = "LogLuvEncode24";
537 LogLuvState* sp = EncoderState(tif);
538 tmsize_t i;
539 tmsize_t npixels;
540 tmsize_t occ;
541 uint8* op;
542 uint32* tp;
543
544 assert(s == 0);
545 assert(sp != NULL);
546 npixels = cc / sp->pixel_size;
547
548 if (sp->user_datafmt == SGILOGDATAFMT_RAW)
549 tp = (uint32*) bp;
550 else {
551 tp = (uint32*) sp->tbuf;
552 if(sp->tbuflen < npixels) {
553 TIFFErrorExt(tif->tif_clientdata, module,
554 "Translation buffer too short");
555 return (0);
556 }
557 (*sp->tfunc)(sp, bp, npixels);
558 }
559 /* write out encoded pixels */
560 op = tif->tif_rawcp;
561 occ = tif->tif_rawdatasize - tif->tif_rawcc;
562 for (i = npixels; i--; ) {
563 if (occ < 3) {
564 tif->tif_rawcp = op;
565 tif->tif_rawcc = tif->tif_rawdatasize - occ;
566 if (!TIFFFlushData1(tif))
567 return (0);
568 op = tif->tif_rawcp;
569 occ = tif->tif_rawdatasize - tif->tif_rawcc;
570 }
571 *op++ = (uint8)(*tp >> 16);
572 *op++ = (uint8)(*tp >> 8 & 0xff);
573 *op++ = (uint8)(*tp++ & 0xff);
574 occ -= 3;
575 }
576 tif->tif_rawcp = op;
577 tif->tif_rawcc = tif->tif_rawdatasize - occ;
578
579 return (1);
580 }
581
582 /*
583 * Encode a row of 32-bit pixels.
584 */
585 static int
LogLuvEncode32(TIFF * tif,uint8 * bp,tmsize_t cc,uint16 s)586 LogLuvEncode32(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
587 {
588 static const char module[] = "LogLuvEncode32";
589 LogLuvState* sp = EncoderState(tif);
590 int shft;
591 tmsize_t i;
592 tmsize_t j;
593 tmsize_t npixels;
594 uint8* op;
595 uint32* tp;
596 uint32 b;
597 tmsize_t occ;
598 int rc=0, mask;
599 tmsize_t beg;
600
601 assert(s == 0);
602 assert(sp != NULL);
603
604 npixels = cc / sp->pixel_size;
605
606 if (sp->user_datafmt == SGILOGDATAFMT_RAW)
607 tp = (uint32*) bp;
608 else {
609 tp = (uint32*) sp->tbuf;
610 if(sp->tbuflen < npixels) {
611 TIFFErrorExt(tif->tif_clientdata, module,
612 "Translation buffer too short");
613 return (0);
614 }
615 (*sp->tfunc)(sp, bp, npixels);
616 }
617 /* compress each byte string */
618 op = tif->tif_rawcp;
619 occ = tif->tif_rawdatasize - tif->tif_rawcc;
620 for (shft = 24; shft >= 0; shft -=8) {
621 for (i = 0; i < npixels; i += rc) {
622 if (occ < 4) {
623 tif->tif_rawcp = op;
624 tif->tif_rawcc = tif->tif_rawdatasize - occ;
625 if (!TIFFFlushData1(tif))
626 return (0);
627 op = tif->tif_rawcp;
628 occ = tif->tif_rawdatasize - tif->tif_rawcc;
629 }
630 mask = 0xff << shft; /* find next run */
631 for (beg = i; beg < npixels; beg += rc) {
632 b = tp[beg] & mask;
633 rc = 1;
634 while (rc < 127+2 && beg+rc < npixels &&
635 (tp[beg+rc] & mask) == b)
636 rc++;
637 if (rc >= MINRUN)
638 break; /* long enough */
639 }
640 if (beg-i > 1 && beg-i < MINRUN) {
641 b = tp[i] & mask; /* check short run */
642 j = i+1;
643 while ((tp[j++] & mask) == b)
644 if (j == beg) {
645 *op++ = (uint8)(128-2+j-i);
646 *op++ = (uint8)(b >> shft);
647 occ -= 2;
648 i = beg;
649 break;
650 }
651 }
652 while (i < beg) { /* write out non-run */
653 if ((j = beg-i) > 127) j = 127;
654 if (occ < j+3) {
655 tif->tif_rawcp = op;
656 tif->tif_rawcc = tif->tif_rawdatasize - occ;
657 if (!TIFFFlushData1(tif))
658 return (0);
659 op = tif->tif_rawcp;
660 occ = tif->tif_rawdatasize - tif->tif_rawcc;
661 }
662 *op++ = (uint8) j; occ--;
663 while (j--) {
664 *op++ = (uint8)(tp[i++] >> shft & 0xff);
665 occ--;
666 }
667 }
668 if (rc >= MINRUN) { /* write out run */
669 *op++ = (uint8) (128-2+rc);
670 *op++ = (uint8)(tp[beg] >> shft & 0xff);
671 occ -= 2;
672 } else
673 rc = 0;
674 }
675 }
676 tif->tif_rawcp = op;
677 tif->tif_rawcc = tif->tif_rawdatasize - occ;
678
679 return (1);
680 }
681
682 /*
683 * Encode a strip of pixels. We break it into rows to
684 * avoid encoding runs across row boundaries.
685 */
686 static int
LogLuvEncodeStrip(TIFF * tif,uint8 * bp,tmsize_t cc,uint16 s)687 LogLuvEncodeStrip(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
688 {
689 tmsize_t rowlen = TIFFScanlineSize(tif);
690
691 if (rowlen == 0)
692 return 0;
693
694 assert(cc%rowlen == 0);
695 while (cc && (*tif->tif_encoderow)(tif, bp, rowlen, s) == 1) {
696 bp += rowlen;
697 cc -= rowlen;
698 }
699 return (cc == 0);
700 }
701
702 /*
703 * Encode a tile of pixels. We break it into rows to
704 * avoid encoding runs across row boundaries.
705 */
706 static int
LogLuvEncodeTile(TIFF * tif,uint8 * bp,tmsize_t cc,uint16 s)707 LogLuvEncodeTile(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
708 {
709 tmsize_t rowlen = TIFFTileRowSize(tif);
710
711 if (rowlen == 0)
712 return 0;
713
714 assert(cc%rowlen == 0);
715 while (cc && (*tif->tif_encoderow)(tif, bp, rowlen, s) == 1) {
716 bp += rowlen;
717 cc -= rowlen;
718 }
719 return (cc == 0);
720 }
721
722 /*
723 * Encode/Decode functions for converting to and from user formats.
724 */
725
726 #include "uvcode.h"
727
728 #ifndef UVSCALE
729 #define U_NEU 0.210526316
730 #define V_NEU 0.473684211
731 #define UVSCALE 410.
732 #endif
733
734 #ifndef M_LN2
735 #define M_LN2 0.69314718055994530942
736 #endif
737 #ifndef M_PI
738 #define M_PI 3.14159265358979323846
739 #endif
740 #undef log2 /* Conflict with C'99 function */
741 #define log2(x) ((1./M_LN2)*log(x))
742 #undef exp2 /* Conflict with C'99 function */
743 #define exp2(x) exp(M_LN2*(x))
744
itrunc(double x,int m)745 static int itrunc(double x, int m)
746 {
747 if( m == SGILOGENCODE_NODITHER )
748 return (int)x;
749 /* Silence CoverityScan warning about bad crypto function */
750 /* coverity[dont_call] */
751 return (int)(x + rand()*(1./RAND_MAX) - .5);
752 }
753
754 #if !LOGLUV_PUBLIC
755 static
756 #endif
757 double
LogL16toY(int p16)758 LogL16toY(int p16) /* compute luminance from 16-bit LogL */
759 {
760 int Le = p16 & 0x7fff;
761 double Y;
762
763 if (!Le)
764 return (0.);
765 Y = exp(M_LN2/256.*(Le+.5) - M_LN2*64.);
766 return (!(p16 & 0x8000) ? Y : -Y);
767 }
768
769 #if !LOGLUV_PUBLIC
770 static
771 #endif
772 int
LogL16fromY(double Y,int em)773 LogL16fromY(double Y, int em) /* get 16-bit LogL from Y */
774 {
775 if (Y >= 1.8371976e19)
776 return (0x7fff);
777 if (Y <= -1.8371976e19)
778 return (0xffff);
779 if (Y > 5.4136769e-20)
780 return itrunc(256.*(log2(Y) + 64.), em);
781 if (Y < -5.4136769e-20)
782 return (~0x7fff | itrunc(256.*(log2(-Y) + 64.), em));
783 return (0);
784 }
785
786 static void
L16toY(LogLuvState * sp,uint8 * op,tmsize_t n)787 L16toY(LogLuvState* sp, uint8* op, tmsize_t n)
788 {
789 int16* l16 = (int16*) sp->tbuf;
790 float* yp = (float*) op;
791
792 while (n-- > 0)
793 *yp++ = (float)LogL16toY(*l16++);
794 }
795
796 static void
L16toGry(LogLuvState * sp,uint8 * op,tmsize_t n)797 L16toGry(LogLuvState* sp, uint8* op, tmsize_t n)
798 {
799 int16* l16 = (int16*) sp->tbuf;
800 uint8* gp = (uint8*) op;
801
802 while (n-- > 0) {
803 double Y = LogL16toY(*l16++);
804 *gp++ = (uint8) ((Y <= 0.) ? 0 : (Y >= 1.) ? 255 : (int)(256.*sqrt(Y)));
805 }
806 }
807
808 static void
L16fromY(LogLuvState * sp,uint8 * op,tmsize_t n)809 L16fromY(LogLuvState* sp, uint8* op, tmsize_t n)
810 {
811 int16* l16 = (int16*) sp->tbuf;
812 float* yp = (float*) op;
813
814 while (n-- > 0)
815 *l16++ = (int16) (LogL16fromY(*yp++, sp->encode_meth));
816 }
817
818 #if !LOGLUV_PUBLIC
819 static
820 #endif
821 void
XYZtoRGB24(float xyz[3],uint8 rgb[3])822 XYZtoRGB24(float xyz[3], uint8 rgb[3])
823 {
824 double r, g, b;
825 /* assume CCIR-709 primaries */
826 r = 2.690*xyz[0] + -1.276*xyz[1] + -0.414*xyz[2];
827 g = -1.022*xyz[0] + 1.978*xyz[1] + 0.044*xyz[2];
828 b = 0.061*xyz[0] + -0.224*xyz[1] + 1.163*xyz[2];
829 /* assume 2.0 gamma for speed */
830 /* could use integer sqrt approx., but this is probably faster */
831 rgb[0] = (uint8)((r<=0.) ? 0 : (r >= 1.) ? 255 : (int)(256.*sqrt(r)));
832 rgb[1] = (uint8)((g<=0.) ? 0 : (g >= 1.) ? 255 : (int)(256.*sqrt(g)));
833 rgb[2] = (uint8)((b<=0.) ? 0 : (b >= 1.) ? 255 : (int)(256.*sqrt(b)));
834 }
835
836 #if !LOGLUV_PUBLIC
837 static
838 #endif
839 double
LogL10toY(int p10)840 LogL10toY(int p10) /* compute luminance from 10-bit LogL */
841 {
842 if (p10 == 0)
843 return (0.);
844 return (exp(M_LN2/64.*(p10+.5) - M_LN2*12.));
845 }
846
847 #if !LOGLUV_PUBLIC
848 static
849 #endif
850 int
LogL10fromY(double Y,int em)851 LogL10fromY(double Y, int em) /* get 10-bit LogL from Y */
852 {
853 if (Y >= 15.742)
854 return (0x3ff);
855 else if (Y <= .00024283)
856 return (0);
857 else
858 return itrunc(64.*(log2(Y) + 12.), em);
859 }
860
861 #define NANGLES 100
862 #define uv2ang(u, v) ( (NANGLES*.499999999/M_PI) \
863 * atan2((v)-V_NEU,(u)-U_NEU) + .5*NANGLES )
864
865 static int
oog_encode(double u,double v)866 oog_encode(double u, double v) /* encode out-of-gamut chroma */
867 {
868 static int oog_table[NANGLES];
869 static int initialized = 0;
870 register int i;
871
872 if (!initialized) { /* set up perimeter table */
873 double eps[NANGLES], ua, va, ang, epsa;
874 int ui, vi, ustep;
875 for (i = NANGLES; i--; )
876 eps[i] = 2.;
877 for (vi = UV_NVS; vi--; ) {
878 va = UV_VSTART + (vi+.5)*UV_SQSIZ;
879 ustep = uv_row[vi].nus-1;
880 if (vi == UV_NVS-1 || vi == 0 || ustep <= 0)
881 ustep = 1;
882 for (ui = uv_row[vi].nus-1; ui >= 0; ui -= ustep) {
883 ua = uv_row[vi].ustart + (ui+.5)*UV_SQSIZ;
884 ang = uv2ang(ua, va);
885 i = (int) ang;
886 epsa = fabs(ang - (i+.5));
887 if (epsa < eps[i]) {
888 oog_table[i] = uv_row[vi].ncum + ui;
889 eps[i] = epsa;
890 }
891 }
892 }
893 for (i = NANGLES; i--; ) /* fill any holes */
894 if (eps[i] > 1.5) {
895 int i1, i2;
896 for (i1 = 1; i1 < NANGLES/2; i1++)
897 if (eps[(i+i1)%NANGLES] < 1.5)
898 break;
899 for (i2 = 1; i2 < NANGLES/2; i2++)
900 if (eps[(i+NANGLES-i2)%NANGLES] < 1.5)
901 break;
902 if (i1 < i2)
903 oog_table[i] =
904 oog_table[(i+i1)%NANGLES];
905 else
906 oog_table[i] =
907 oog_table[(i+NANGLES-i2)%NANGLES];
908 }
909 initialized = 1;
910 }
911 i = (int) uv2ang(u, v); /* look up hue angle */
912 return (oog_table[i]);
913 }
914
915 #undef uv2ang
916 #undef NANGLES
917
918 #if !LOGLUV_PUBLIC
919 static
920 #endif
921 int
uv_encode(double u,double v,int em)922 uv_encode(double u, double v, int em) /* encode (u',v') coordinates */
923 {
924 register int vi, ui;
925
926 if (v < UV_VSTART)
927 return oog_encode(u, v);
928 vi = itrunc((v - UV_VSTART)*(1./UV_SQSIZ), em);
929 if (vi >= UV_NVS)
930 return oog_encode(u, v);
931 if (u < uv_row[vi].ustart)
932 return oog_encode(u, v);
933 ui = itrunc((u - uv_row[vi].ustart)*(1./UV_SQSIZ), em);
934 if (ui >= uv_row[vi].nus)
935 return oog_encode(u, v);
936
937 return (uv_row[vi].ncum + ui);
938 }
939
940 #if !LOGLUV_PUBLIC
941 static
942 #endif
943 int
uv_decode(double * up,double * vp,int c)944 uv_decode(double *up, double *vp, int c) /* decode (u',v') index */
945 {
946 int upper, lower;
947 register int ui, vi;
948
949 if (c < 0 || c >= UV_NDIVS)
950 return (-1);
951 lower = 0; /* binary search */
952 upper = UV_NVS;
953 while (upper - lower > 1) {
954 vi = (lower + upper) >> 1;
955 ui = c - uv_row[vi].ncum;
956 if (ui > 0)
957 lower = vi;
958 else if (ui < 0)
959 upper = vi;
960 else {
961 lower = vi;
962 break;
963 }
964 }
965 vi = lower;
966 ui = c - uv_row[vi].ncum;
967 *up = uv_row[vi].ustart + (ui+.5)*UV_SQSIZ;
968 *vp = UV_VSTART + (vi+.5)*UV_SQSIZ;
969 return (0);
970 }
971
972 #if !LOGLUV_PUBLIC
973 static
974 #endif
975 void
LogLuv24toXYZ(uint32 p,float XYZ[3])976 LogLuv24toXYZ(uint32 p, float XYZ[3])
977 {
978 int Ce;
979 double L, u, v, s, x, y;
980 /* decode luminance */
981 L = LogL10toY(p>>14 & 0x3ff);
982 if (L <= 0.) {
983 XYZ[0] = XYZ[1] = XYZ[2] = 0.;
984 return;
985 }
986 /* decode color */
987 Ce = p & 0x3fff;
988 if (uv_decode(&u, &v, Ce) < 0) {
989 u = U_NEU; v = V_NEU;
990 }
991 s = 1./(6.*u - 16.*v + 12.);
992 x = 9.*u * s;
993 y = 4.*v * s;
994 /* convert to XYZ */
995 XYZ[0] = (float)(x/y * L);
996 XYZ[1] = (float)L;
997 XYZ[2] = (float)((1.-x-y)/y * L);
998 }
999
1000 #if !LOGLUV_PUBLIC
1001 static
1002 #endif
1003 uint32
LogLuv24fromXYZ(float XYZ[3],int em)1004 LogLuv24fromXYZ(float XYZ[3], int em)
1005 {
1006 int Le, Ce;
1007 double u, v, s;
1008 /* encode luminance */
1009 Le = LogL10fromY(XYZ[1], em);
1010 /* encode color */
1011 s = XYZ[0] + 15.*XYZ[1] + 3.*XYZ[2];
1012 if (!Le || s <= 0.) {
1013 u = U_NEU;
1014 v = V_NEU;
1015 } else {
1016 u = 4.*XYZ[0] / s;
1017 v = 9.*XYZ[1] / s;
1018 }
1019 Ce = uv_encode(u, v, em);
1020 if (Ce < 0) /* never happens */
1021 Ce = uv_encode(U_NEU, V_NEU, SGILOGENCODE_NODITHER);
1022 /* combine encodings */
1023 return (Le << 14 | Ce);
1024 }
1025
1026 static void
Luv24toXYZ(LogLuvState * sp,uint8 * op,tmsize_t n)1027 Luv24toXYZ(LogLuvState* sp, uint8* op, tmsize_t n)
1028 {
1029 uint32* luv = (uint32*) sp->tbuf;
1030 float* xyz = (float*) op;
1031
1032 while (n-- > 0) {
1033 LogLuv24toXYZ(*luv, xyz);
1034 xyz += 3;
1035 luv++;
1036 }
1037 }
1038
1039 static void
Luv24toLuv48(LogLuvState * sp,uint8 * op,tmsize_t n)1040 Luv24toLuv48(LogLuvState* sp, uint8* op, tmsize_t n)
1041 {
1042 uint32* luv = (uint32*) sp->tbuf;
1043 int16* luv3 = (int16*) op;
1044
1045 while (n-- > 0) {
1046 double u, v;
1047
1048 *luv3++ = (int16)((*luv >> 12 & 0xffd) + 13314);
1049 if (uv_decode(&u, &v, *luv&0x3fff) < 0) {
1050 u = U_NEU;
1051 v = V_NEU;
1052 }
1053 *luv3++ = (int16)(u * (1L<<15));
1054 *luv3++ = (int16)(v * (1L<<15));
1055 luv++;
1056 }
1057 }
1058
1059 static void
Luv24toRGB(LogLuvState * sp,uint8 * op,tmsize_t n)1060 Luv24toRGB(LogLuvState* sp, uint8* op, tmsize_t n)
1061 {
1062 uint32* luv = (uint32*) sp->tbuf;
1063 uint8* rgb = (uint8*) op;
1064
1065 while (n-- > 0) {
1066 float xyz[3];
1067
1068 LogLuv24toXYZ(*luv++, xyz);
1069 XYZtoRGB24(xyz, rgb);
1070 rgb += 3;
1071 }
1072 }
1073
1074 static void
Luv24fromXYZ(LogLuvState * sp,uint8 * op,tmsize_t n)1075 Luv24fromXYZ(LogLuvState* sp, uint8* op, tmsize_t n)
1076 {
1077 uint32* luv = (uint32*) sp->tbuf;
1078 float* xyz = (float*) op;
1079
1080 while (n-- > 0) {
1081 *luv++ = LogLuv24fromXYZ(xyz, sp->encode_meth);
1082 xyz += 3;
1083 }
1084 }
1085
1086 static void
Luv24fromLuv48(LogLuvState * sp,uint8 * op,tmsize_t n)1087 Luv24fromLuv48(LogLuvState* sp, uint8* op, tmsize_t n)
1088 {
1089 uint32* luv = (uint32*) sp->tbuf;
1090 int16* luv3 = (int16*) op;
1091
1092 while (n-- > 0) {
1093 int Le, Ce;
1094
1095 if (luv3[0] <= 0)
1096 Le = 0;
1097 else if (luv3[0] >= (1<<12)+3314)
1098 Le = (1<<10) - 1;
1099 else if (sp->encode_meth == SGILOGENCODE_NODITHER)
1100 Le = (luv3[0]-3314) >> 2;
1101 else
1102 Le = itrunc(.25*(luv3[0]-3314.), sp->encode_meth);
1103
1104 Ce = uv_encode((luv3[1]+.5)/(1<<15), (luv3[2]+.5)/(1<<15),
1105 sp->encode_meth);
1106 if (Ce < 0) /* never happens */
1107 Ce = uv_encode(U_NEU, V_NEU, SGILOGENCODE_NODITHER);
1108 *luv++ = (uint32)Le << 14 | Ce;
1109 luv3 += 3;
1110 }
1111 }
1112
1113 #if !LOGLUV_PUBLIC
1114 static
1115 #endif
1116 void
LogLuv32toXYZ(uint32 p,float XYZ[3])1117 LogLuv32toXYZ(uint32 p, float XYZ[3])
1118 {
1119 double L, u, v, s, x, y;
1120 /* decode luminance */
1121 L = LogL16toY((int)p >> 16);
1122 if (L <= 0.) {
1123 XYZ[0] = XYZ[1] = XYZ[2] = 0.;
1124 return;
1125 }
1126 /* decode color */
1127 u = 1./UVSCALE * ((p>>8 & 0xff) + .5);
1128 v = 1./UVSCALE * ((p & 0xff) + .5);
1129 s = 1./(6.*u - 16.*v + 12.);
1130 x = 9.*u * s;
1131 y = 4.*v * s;
1132 /* convert to XYZ */
1133 XYZ[0] = (float)(x/y * L);
1134 XYZ[1] = (float)L;
1135 XYZ[2] = (float)((1.-x-y)/y * L);
1136 }
1137
1138 #if !LOGLUV_PUBLIC
1139 static
1140 #endif
1141 uint32
LogLuv32fromXYZ(float XYZ[3],int em)1142 LogLuv32fromXYZ(float XYZ[3], int em)
1143 {
1144 unsigned int Le, ue, ve;
1145 double u, v, s;
1146 /* encode luminance */
1147 Le = (unsigned int)LogL16fromY(XYZ[1], em);
1148 /* encode color */
1149 s = XYZ[0] + 15.*XYZ[1] + 3.*XYZ[2];
1150 if (!Le || s <= 0.) {
1151 u = U_NEU;
1152 v = V_NEU;
1153 } else {
1154 u = 4.*XYZ[0] / s;
1155 v = 9.*XYZ[1] / s;
1156 }
1157 if (u <= 0.) ue = 0;
1158 else ue = itrunc(UVSCALE*u, em);
1159 if (ue > 255) ue = 255;
1160 if (v <= 0.) ve = 0;
1161 else ve = itrunc(UVSCALE*v, em);
1162 if (ve > 255) ve = 255;
1163 /* combine encodings */
1164 return (Le << 16 | ue << 8 | ve);
1165 }
1166
1167 static void
Luv32toXYZ(LogLuvState * sp,uint8 * op,tmsize_t n)1168 Luv32toXYZ(LogLuvState* sp, uint8* op, tmsize_t n)
1169 {
1170 uint32* luv = (uint32*) sp->tbuf;
1171 float* xyz = (float*) op;
1172
1173 while (n-- > 0) {
1174 LogLuv32toXYZ(*luv++, xyz);
1175 xyz += 3;
1176 }
1177 }
1178
1179 static void
Luv32toLuv48(LogLuvState * sp,uint8 * op,tmsize_t n)1180 Luv32toLuv48(LogLuvState* sp, uint8* op, tmsize_t n)
1181 {
1182 uint32* luv = (uint32*) sp->tbuf;
1183 int16* luv3 = (int16*) op;
1184
1185 while (n-- > 0) {
1186 double u, v;
1187
1188 *luv3++ = (int16)(*luv >> 16);
1189 u = 1./UVSCALE * ((*luv>>8 & 0xff) + .5);
1190 v = 1./UVSCALE * ((*luv & 0xff) + .5);
1191 *luv3++ = (int16)(u * (1L<<15));
1192 *luv3++ = (int16)(v * (1L<<15));
1193 luv++;
1194 }
1195 }
1196
1197 static void
Luv32toRGB(LogLuvState * sp,uint8 * op,tmsize_t n)1198 Luv32toRGB(LogLuvState* sp, uint8* op, tmsize_t n)
1199 {
1200 uint32* luv = (uint32*) sp->tbuf;
1201 uint8* rgb = (uint8*) op;
1202
1203 while (n-- > 0) {
1204 float xyz[3];
1205
1206 LogLuv32toXYZ(*luv++, xyz);
1207 XYZtoRGB24(xyz, rgb);
1208 rgb += 3;
1209 }
1210 }
1211
1212 static void
Luv32fromXYZ(LogLuvState * sp,uint8 * op,tmsize_t n)1213 Luv32fromXYZ(LogLuvState* sp, uint8* op, tmsize_t n)
1214 {
1215 uint32* luv = (uint32*) sp->tbuf;
1216 float* xyz = (float*) op;
1217
1218 while (n-- > 0) {
1219 *luv++ = LogLuv32fromXYZ(xyz, sp->encode_meth);
1220 xyz += 3;
1221 }
1222 }
1223
1224 static void
Luv32fromLuv48(LogLuvState * sp,uint8 * op,tmsize_t n)1225 Luv32fromLuv48(LogLuvState* sp, uint8* op, tmsize_t n)
1226 {
1227 uint32* luv = (uint32*) sp->tbuf;
1228 int16* luv3 = (int16*) op;
1229
1230 if (sp->encode_meth == SGILOGENCODE_NODITHER) {
1231 while (n-- > 0) {
1232 *luv++ = (uint32)luv3[0] << 16 |
1233 (luv3[1]*(uint32)(UVSCALE+.5) >> 7 & 0xff00) |
1234 (luv3[2]*(uint32)(UVSCALE+.5) >> 15 & 0xff);
1235 luv3 += 3;
1236 }
1237 return;
1238 }
1239 while (n-- > 0) {
1240 *luv++ = (uint32)luv3[0] << 16 |
1241 (itrunc(luv3[1]*(UVSCALE/(1<<15)), sp->encode_meth) << 8 & 0xff00) |
1242 (itrunc(luv3[2]*(UVSCALE/(1<<15)), sp->encode_meth) & 0xff);
1243 luv3 += 3;
1244 }
1245 }
1246
1247 static void
_logLuvNop(LogLuvState * sp,uint8 * op,tmsize_t n)1248 _logLuvNop(LogLuvState* sp, uint8* op, tmsize_t n)
1249 {
1250 (void) sp; (void) op; (void) n;
1251 }
1252
1253 static int
LogL16GuessDataFmt(TIFFDirectory * td)1254 LogL16GuessDataFmt(TIFFDirectory *td)
1255 {
1256 #define PACK(s,b,f) (((b)<<6)|((s)<<3)|(f))
1257 switch (PACK(td->td_samplesperpixel, td->td_bitspersample, td->td_sampleformat)) {
1258 case PACK(1, 32, SAMPLEFORMAT_IEEEFP):
1259 return (SGILOGDATAFMT_FLOAT);
1260 case PACK(1, 16, SAMPLEFORMAT_VOID):
1261 case PACK(1, 16, SAMPLEFORMAT_INT):
1262 case PACK(1, 16, SAMPLEFORMAT_UINT):
1263 return (SGILOGDATAFMT_16BIT);
1264 case PACK(1, 8, SAMPLEFORMAT_VOID):
1265 case PACK(1, 8, SAMPLEFORMAT_UINT):
1266 return (SGILOGDATAFMT_8BIT);
1267 }
1268 #undef PACK
1269 return (SGILOGDATAFMT_UNKNOWN);
1270 }
1271
1272 static tmsize_t
multiply_ms(tmsize_t m1,tmsize_t m2)1273 multiply_ms(tmsize_t m1, tmsize_t m2)
1274 {
1275 return _TIFFMultiplySSize(NULL, m1, m2, NULL);
1276 }
1277
1278 static int
LogL16InitState(TIFF * tif)1279 LogL16InitState(TIFF* tif)
1280 {
1281 static const char module[] = "LogL16InitState";
1282 TIFFDirectory *td = &tif->tif_dir;
1283 LogLuvState* sp = DecoderState(tif);
1284
1285 assert(sp != NULL);
1286 assert(td->td_photometric == PHOTOMETRIC_LOGL);
1287
1288 if( td->td_samplesperpixel != 1 )
1289 {
1290 TIFFErrorExt(tif->tif_clientdata, module,
1291 "Sorry, can not handle LogL image with %s=%d",
1292 "Samples/pixel", td->td_samplesperpixel);
1293 return 0;
1294 }
1295
1296 /* for some reason, we can't do this in TIFFInitLogL16 */
1297 if (sp->user_datafmt == SGILOGDATAFMT_UNKNOWN)
1298 sp->user_datafmt = LogL16GuessDataFmt(td);
1299 switch (sp->user_datafmt) {
1300 case SGILOGDATAFMT_FLOAT:
1301 sp->pixel_size = sizeof (float);
1302 break;
1303 case SGILOGDATAFMT_16BIT:
1304 sp->pixel_size = sizeof (int16);
1305 break;
1306 case SGILOGDATAFMT_8BIT:
1307 sp->pixel_size = sizeof (uint8);
1308 break;
1309 default:
1310 TIFFErrorExt(tif->tif_clientdata, module,
1311 "No support for converting user data format to LogL");
1312 return (0);
1313 }
1314 if( isTiled(tif) )
1315 sp->tbuflen = multiply_ms(td->td_tilewidth, td->td_tilelength);
1316 else if( td->td_rowsperstrip < td->td_imagelength )
1317 sp->tbuflen = multiply_ms(td->td_imagewidth, td->td_rowsperstrip);
1318 else
1319 sp->tbuflen = multiply_ms(td->td_imagewidth, td->td_imagelength);
1320 if (multiply_ms(sp->tbuflen, sizeof (int16)) == 0 ||
1321 (sp->tbuf = (uint8*) _TIFFmalloc(sp->tbuflen * sizeof (int16))) == NULL) {
1322 TIFFErrorExt(tif->tif_clientdata, module, "No space for SGILog translation buffer");
1323 return (0);
1324 }
1325 return (1);
1326 }
1327
1328 static int
LogLuvGuessDataFmt(TIFFDirectory * td)1329 LogLuvGuessDataFmt(TIFFDirectory *td)
1330 {
1331 int guess;
1332
1333 /*
1334 * If the user didn't tell us their datafmt,
1335 * take our best guess from the bitspersample.
1336 */
1337 #define PACK(a,b) (((a)<<3)|(b))
1338 switch (PACK(td->td_bitspersample, td->td_sampleformat)) {
1339 case PACK(32, SAMPLEFORMAT_IEEEFP):
1340 guess = SGILOGDATAFMT_FLOAT;
1341 break;
1342 case PACK(32, SAMPLEFORMAT_VOID):
1343 case PACK(32, SAMPLEFORMAT_UINT):
1344 case PACK(32, SAMPLEFORMAT_INT):
1345 guess = SGILOGDATAFMT_RAW;
1346 break;
1347 case PACK(16, SAMPLEFORMAT_VOID):
1348 case PACK(16, SAMPLEFORMAT_INT):
1349 case PACK(16, SAMPLEFORMAT_UINT):
1350 guess = SGILOGDATAFMT_16BIT;
1351 break;
1352 case PACK( 8, SAMPLEFORMAT_VOID):
1353 case PACK( 8, SAMPLEFORMAT_UINT):
1354 guess = SGILOGDATAFMT_8BIT;
1355 break;
1356 default:
1357 guess = SGILOGDATAFMT_UNKNOWN;
1358 break;
1359 #undef PACK
1360 }
1361 /*
1362 * Double-check samples per pixel.
1363 */
1364 switch (td->td_samplesperpixel) {
1365 case 1:
1366 if (guess != SGILOGDATAFMT_RAW)
1367 guess = SGILOGDATAFMT_UNKNOWN;
1368 break;
1369 case 3:
1370 if (guess == SGILOGDATAFMT_RAW)
1371 guess = SGILOGDATAFMT_UNKNOWN;
1372 break;
1373 default:
1374 guess = SGILOGDATAFMT_UNKNOWN;
1375 break;
1376 }
1377 return (guess);
1378 }
1379
1380 static int
LogLuvInitState(TIFF * tif)1381 LogLuvInitState(TIFF* tif)
1382 {
1383 static const char module[] = "LogLuvInitState";
1384 TIFFDirectory* td = &tif->tif_dir;
1385 LogLuvState* sp = DecoderState(tif);
1386
1387 assert(sp != NULL);
1388 assert(td->td_photometric == PHOTOMETRIC_LOGLUV);
1389
1390 /* for some reason, we can't do this in TIFFInitLogLuv */
1391 if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
1392 TIFFErrorExt(tif->tif_clientdata, module,
1393 "SGILog compression cannot handle non-contiguous data");
1394 return (0);
1395 }
1396 if (sp->user_datafmt == SGILOGDATAFMT_UNKNOWN)
1397 sp->user_datafmt = LogLuvGuessDataFmt(td);
1398 switch (sp->user_datafmt) {
1399 case SGILOGDATAFMT_FLOAT:
1400 sp->pixel_size = 3*sizeof (float);
1401 break;
1402 case SGILOGDATAFMT_16BIT:
1403 sp->pixel_size = 3*sizeof (int16);
1404 break;
1405 case SGILOGDATAFMT_RAW:
1406 sp->pixel_size = sizeof (uint32);
1407 break;
1408 case SGILOGDATAFMT_8BIT:
1409 sp->pixel_size = 3*sizeof (uint8);
1410 break;
1411 default:
1412 TIFFErrorExt(tif->tif_clientdata, module,
1413 "No support for converting user data format to LogLuv");
1414 return (0);
1415 }
1416 if( isTiled(tif) )
1417 sp->tbuflen = multiply_ms(td->td_tilewidth, td->td_tilelength);
1418 else if( td->td_rowsperstrip < td->td_imagelength )
1419 sp->tbuflen = multiply_ms(td->td_imagewidth, td->td_rowsperstrip);
1420 else
1421 sp->tbuflen = multiply_ms(td->td_imagewidth, td->td_imagelength);
1422 if (multiply_ms(sp->tbuflen, sizeof (uint32)) == 0 ||
1423 (sp->tbuf = (uint8*) _TIFFmalloc(sp->tbuflen * sizeof (uint32))) == NULL) {
1424 TIFFErrorExt(tif->tif_clientdata, module, "No space for SGILog translation buffer");
1425 return (0);
1426 }
1427 return (1);
1428 }
1429
1430 static int
LogLuvFixupTags(TIFF * tif)1431 LogLuvFixupTags(TIFF* tif)
1432 {
1433 (void) tif;
1434 return (1);
1435 }
1436
1437 static int
LogLuvSetupDecode(TIFF * tif)1438 LogLuvSetupDecode(TIFF* tif)
1439 {
1440 static const char module[] = "LogLuvSetupDecode";
1441 LogLuvState* sp = DecoderState(tif);
1442 TIFFDirectory* td = &tif->tif_dir;
1443
1444 tif->tif_postdecode = _TIFFNoPostDecode;
1445 switch (td->td_photometric) {
1446 case PHOTOMETRIC_LOGLUV:
1447 if (!LogLuvInitState(tif))
1448 break;
1449 if (td->td_compression == COMPRESSION_SGILOG24) {
1450 tif->tif_decoderow = LogLuvDecode24;
1451 switch (sp->user_datafmt) {
1452 case SGILOGDATAFMT_FLOAT:
1453 sp->tfunc = Luv24toXYZ;
1454 break;
1455 case SGILOGDATAFMT_16BIT:
1456 sp->tfunc = Luv24toLuv48;
1457 break;
1458 case SGILOGDATAFMT_8BIT:
1459 sp->tfunc = Luv24toRGB;
1460 break;
1461 }
1462 } else {
1463 tif->tif_decoderow = LogLuvDecode32;
1464 switch (sp->user_datafmt) {
1465 case SGILOGDATAFMT_FLOAT:
1466 sp->tfunc = Luv32toXYZ;
1467 break;
1468 case SGILOGDATAFMT_16BIT:
1469 sp->tfunc = Luv32toLuv48;
1470 break;
1471 case SGILOGDATAFMT_8BIT:
1472 sp->tfunc = Luv32toRGB;
1473 break;
1474 }
1475 }
1476 return (1);
1477 case PHOTOMETRIC_LOGL:
1478 if (!LogL16InitState(tif))
1479 break;
1480 tif->tif_decoderow = LogL16Decode;
1481 switch (sp->user_datafmt) {
1482 case SGILOGDATAFMT_FLOAT:
1483 sp->tfunc = L16toY;
1484 break;
1485 case SGILOGDATAFMT_8BIT:
1486 sp->tfunc = L16toGry;
1487 break;
1488 }
1489 return (1);
1490 default:
1491 TIFFErrorExt(tif->tif_clientdata, module,
1492 "Inappropriate photometric interpretation %d for SGILog compression; %s",
1493 td->td_photometric, "must be either LogLUV or LogL");
1494 break;
1495 }
1496 return (0);
1497 }
1498
1499 static int
LogLuvSetupEncode(TIFF * tif)1500 LogLuvSetupEncode(TIFF* tif)
1501 {
1502 static const char module[] = "LogLuvSetupEncode";
1503 LogLuvState* sp = EncoderState(tif);
1504 TIFFDirectory* td = &tif->tif_dir;
1505
1506 switch (td->td_photometric) {
1507 case PHOTOMETRIC_LOGLUV:
1508 if (!LogLuvInitState(tif))
1509 return (0);
1510 if (td->td_compression == COMPRESSION_SGILOG24) {
1511 tif->tif_encoderow = LogLuvEncode24;
1512 switch (sp->user_datafmt) {
1513 case SGILOGDATAFMT_FLOAT:
1514 sp->tfunc = Luv24fromXYZ;
1515 break;
1516 case SGILOGDATAFMT_16BIT:
1517 sp->tfunc = Luv24fromLuv48;
1518 break;
1519 case SGILOGDATAFMT_RAW:
1520 break;
1521 default:
1522 goto notsupported;
1523 }
1524 } else {
1525 tif->tif_encoderow = LogLuvEncode32;
1526 switch (sp->user_datafmt) {
1527 case SGILOGDATAFMT_FLOAT:
1528 sp->tfunc = Luv32fromXYZ;
1529 break;
1530 case SGILOGDATAFMT_16BIT:
1531 sp->tfunc = Luv32fromLuv48;
1532 break;
1533 case SGILOGDATAFMT_RAW:
1534 break;
1535 default:
1536 goto notsupported;
1537 }
1538 }
1539 break;
1540 case PHOTOMETRIC_LOGL:
1541 if (!LogL16InitState(tif))
1542 return (0);
1543 tif->tif_encoderow = LogL16Encode;
1544 switch (sp->user_datafmt) {
1545 case SGILOGDATAFMT_FLOAT:
1546 sp->tfunc = L16fromY;
1547 break;
1548 case SGILOGDATAFMT_16BIT:
1549 break;
1550 default:
1551 goto notsupported;
1552 }
1553 break;
1554 default:
1555 TIFFErrorExt(tif->tif_clientdata, module,
1556 "Inappropriate photometric interpretation %d for SGILog compression; %s",
1557 td->td_photometric, "must be either LogLUV or LogL");
1558 return (0);
1559 }
1560 sp->encoder_state = 1;
1561 return (1);
1562 notsupported:
1563 TIFFErrorExt(tif->tif_clientdata, module,
1564 "SGILog compression supported only for %s, or raw data",
1565 td->td_photometric == PHOTOMETRIC_LOGL ? "Y, L" : "XYZ, Luv");
1566 return (0);
1567 }
1568
1569 static void
LogLuvClose(TIFF * tif)1570 LogLuvClose(TIFF* tif)
1571 {
1572 LogLuvState* sp = (LogLuvState*) tif->tif_data;
1573 TIFFDirectory *td = &tif->tif_dir;
1574
1575 assert(sp != 0);
1576 /*
1577 * For consistency, we always want to write out the same
1578 * bitspersample and sampleformat for our TIFF file,
1579 * regardless of the data format being used by the application.
1580 * Since this routine is called after tags have been set but
1581 * before they have been recorded in the file, we reset them here.
1582 * Note: this is really a nasty approach. See PixarLogClose
1583 */
1584 if( sp->encoder_state )
1585 {
1586 /* See PixarLogClose. Might avoid issues with tags whose size depends
1587 * on those below, but not completely sure this is enough. */
1588 td->td_samplesperpixel =
1589 (td->td_photometric == PHOTOMETRIC_LOGL) ? 1 : 3;
1590 td->td_bitspersample = 16;
1591 td->td_sampleformat = SAMPLEFORMAT_INT;
1592 }
1593 }
1594
1595 static void
LogLuvCleanup(TIFF * tif)1596 LogLuvCleanup(TIFF* tif)
1597 {
1598 LogLuvState* sp = (LogLuvState *)tif->tif_data;
1599
1600 assert(sp != 0);
1601
1602 tif->tif_tagmethods.vgetfield = sp->vgetparent;
1603 tif->tif_tagmethods.vsetfield = sp->vsetparent;
1604
1605 if (sp->tbuf)
1606 _TIFFfree(sp->tbuf);
1607 _TIFFfree(sp);
1608 tif->tif_data = NULL;
1609
1610 _TIFFSetDefaultCompressionState(tif);
1611 }
1612
1613 static int
LogLuvVSetField(TIFF * tif,uint32 tag,va_list ap)1614 LogLuvVSetField(TIFF* tif, uint32 tag, va_list ap)
1615 {
1616 static const char module[] = "LogLuvVSetField";
1617 LogLuvState* sp = DecoderState(tif);
1618 int bps, fmt;
1619
1620 switch (tag) {
1621 case TIFFTAG_SGILOGDATAFMT:
1622 sp->user_datafmt = (int) va_arg(ap, int);
1623 /*
1624 * Tweak the TIFF header so that the rest of libtiff knows what
1625 * size of data will be passed between app and library, and
1626 * assume that the app knows what it is doing and is not
1627 * confused by these header manipulations...
1628 */
1629 switch (sp->user_datafmt) {
1630 case SGILOGDATAFMT_FLOAT:
1631 bps = 32;
1632 fmt = SAMPLEFORMAT_IEEEFP;
1633 break;
1634 case SGILOGDATAFMT_16BIT:
1635 bps = 16;
1636 fmt = SAMPLEFORMAT_INT;
1637 break;
1638 case SGILOGDATAFMT_RAW:
1639 bps = 32;
1640 fmt = SAMPLEFORMAT_UINT;
1641 TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 1);
1642 break;
1643 case SGILOGDATAFMT_8BIT:
1644 bps = 8;
1645 fmt = SAMPLEFORMAT_UINT;
1646 break;
1647 default:
1648 TIFFErrorExt(tif->tif_clientdata, tif->tif_name,
1649 "Unknown data format %d for LogLuv compression",
1650 sp->user_datafmt);
1651 return (0);
1652 }
1653 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, bps);
1654 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, fmt);
1655 /*
1656 * Must recalculate sizes should bits/sample change.
1657 */
1658 tif->tif_tilesize = isTiled(tif) ? TIFFTileSize(tif) : (tmsize_t) -1;
1659 tif->tif_scanlinesize = TIFFScanlineSize(tif);
1660 return (1);
1661 case TIFFTAG_SGILOGENCODE:
1662 sp->encode_meth = (int) va_arg(ap, int);
1663 if (sp->encode_meth != SGILOGENCODE_NODITHER &&
1664 sp->encode_meth != SGILOGENCODE_RANDITHER) {
1665 TIFFErrorExt(tif->tif_clientdata, module,
1666 "Unknown encoding %d for LogLuv compression",
1667 sp->encode_meth);
1668 return (0);
1669 }
1670 return (1);
1671 default:
1672 return (*sp->vsetparent)(tif, tag, ap);
1673 }
1674 }
1675
1676 static int
LogLuvVGetField(TIFF * tif,uint32 tag,va_list ap)1677 LogLuvVGetField(TIFF* tif, uint32 tag, va_list ap)
1678 {
1679 LogLuvState *sp = (LogLuvState *)tif->tif_data;
1680
1681 switch (tag) {
1682 case TIFFTAG_SGILOGDATAFMT:
1683 *va_arg(ap, int*) = sp->user_datafmt;
1684 return (1);
1685 default:
1686 return (*sp->vgetparent)(tif, tag, ap);
1687 }
1688 }
1689
1690 static const TIFFField LogLuvFields[] = {
1691 { TIFFTAG_SGILOGDATAFMT, 0, 0, TIFF_SHORT, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, TRUE, FALSE, "SGILogDataFmt", NULL},
1692 { TIFFTAG_SGILOGENCODE, 0, 0, TIFF_SHORT, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, TRUE, FALSE, "SGILogEncode", NULL}
1693 };
1694
1695 int
TIFFInitSGILog(TIFF * tif,int scheme)1696 TIFFInitSGILog(TIFF* tif, int scheme)
1697 {
1698 static const char module[] = "TIFFInitSGILog";
1699 LogLuvState* sp;
1700
1701 assert(scheme == COMPRESSION_SGILOG24 || scheme == COMPRESSION_SGILOG);
1702
1703 /*
1704 * Merge codec-specific tag information.
1705 */
1706 if (!_TIFFMergeFields(tif, LogLuvFields,
1707 TIFFArrayCount(LogLuvFields))) {
1708 TIFFErrorExt(tif->tif_clientdata, module,
1709 "Merging SGILog codec-specific tags failed");
1710 return 0;
1711 }
1712
1713 /*
1714 * Allocate state block so tag methods have storage to record values.
1715 */
1716 tif->tif_data = (uint8*) _TIFFmalloc(sizeof (LogLuvState));
1717 if (tif->tif_data == NULL)
1718 goto bad;
1719 sp = (LogLuvState*) tif->tif_data;
1720 _TIFFmemset((void*)sp, 0, sizeof (*sp));
1721 sp->user_datafmt = SGILOGDATAFMT_UNKNOWN;
1722 sp->encode_meth = (scheme == COMPRESSION_SGILOG24) ?
1723 SGILOGENCODE_RANDITHER : SGILOGENCODE_NODITHER;
1724 sp->tfunc = _logLuvNop;
1725
1726 /*
1727 * Install codec methods.
1728 * NB: tif_decoderow & tif_encoderow are filled
1729 * in at setup time.
1730 */
1731 tif->tif_fixuptags = LogLuvFixupTags;
1732 tif->tif_setupdecode = LogLuvSetupDecode;
1733 tif->tif_decodestrip = LogLuvDecodeStrip;
1734 tif->tif_decodetile = LogLuvDecodeTile;
1735 tif->tif_setupencode = LogLuvSetupEncode;
1736 tif->tif_encodestrip = LogLuvEncodeStrip;
1737 tif->tif_encodetile = LogLuvEncodeTile;
1738 tif->tif_close = LogLuvClose;
1739 tif->tif_cleanup = LogLuvCleanup;
1740
1741 /*
1742 * Override parent get/set field methods.
1743 */
1744 sp->vgetparent = tif->tif_tagmethods.vgetfield;
1745 tif->tif_tagmethods.vgetfield = LogLuvVGetField; /* hook for codec tags */
1746 sp->vsetparent = tif->tif_tagmethods.vsetfield;
1747 tif->tif_tagmethods.vsetfield = LogLuvVSetField; /* hook for codec tags */
1748
1749 return (1);
1750 bad:
1751 TIFFErrorExt(tif->tif_clientdata, module,
1752 "%s: No space for LogLuv state block", tif->tif_name);
1753 return (0);
1754 }
1755 #endif /* LOGLUV_SUPPORT */
1756
1757 /* vim: set ts=8 sts=8 sw=8 noet: */
1758 /*
1759 * Local Variables:
1760 * mode: c
1761 * c-basic-offset: 8
1762 * fill-column: 78
1763 * End:
1764 */
1765