1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for inline asm statements.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/ExprCXX.h"
14 #include "clang/AST/GlobalDecl.h"
15 #include "clang/AST/RecordLayout.h"
16 #include "clang/AST/TypeLoc.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/Sema/Initialization.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/Scope.h"
22 #include "clang/Sema/ScopeInfo.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/MC/MCParser/MCAsmParser.h"
27 #include <optional>
28 using namespace clang;
29 using namespace sema;
30
31 /// Remove the upper-level LValueToRValue cast from an expression.
removeLValueToRValueCast(Expr * E)32 static void removeLValueToRValueCast(Expr *E) {
33 Expr *Parent = E;
34 Expr *ExprUnderCast = nullptr;
35 SmallVector<Expr *, 8> ParentsToUpdate;
36
37 while (true) {
38 ParentsToUpdate.push_back(Parent);
39 if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) {
40 Parent = ParenE->getSubExpr();
41 continue;
42 }
43
44 Expr *Child = nullptr;
45 CastExpr *ParentCast = dyn_cast<CastExpr>(Parent);
46 if (ParentCast)
47 Child = ParentCast->getSubExpr();
48 else
49 return;
50
51 if (auto *CastE = dyn_cast<CastExpr>(Child))
52 if (CastE->getCastKind() == CK_LValueToRValue) {
53 ExprUnderCast = CastE->getSubExpr();
54 // LValueToRValue cast inside GCCAsmStmt requires an explicit cast.
55 ParentCast->setSubExpr(ExprUnderCast);
56 break;
57 }
58 Parent = Child;
59 }
60
61 // Update parent expressions to have same ValueType as the underlying.
62 assert(ExprUnderCast &&
63 "Should be reachable only if LValueToRValue cast was found!");
64 auto ValueKind = ExprUnderCast->getValueKind();
65 for (Expr *E : ParentsToUpdate)
66 E->setValueKind(ValueKind);
67 }
68
69 /// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension)
70 /// and fix the argument with removing LValueToRValue cast from the expression.
emitAndFixInvalidAsmCastLValue(const Expr * LVal,Expr * BadArgument,Sema & S)71 static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument,
72 Sema &S) {
73 if (!S.getLangOpts().HeinousExtensions) {
74 S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue)
75 << BadArgument->getSourceRange();
76 } else {
77 S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue)
78 << BadArgument->getSourceRange();
79 }
80 removeLValueToRValueCast(BadArgument);
81 }
82
83 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
84 /// ignore "noop" casts in places where an lvalue is required by an inline asm.
85 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but
86 /// provide a strong guidance to not use it.
87 ///
88 /// This method checks to see if the argument is an acceptable l-value and
89 /// returns false if it is a case we can handle.
CheckAsmLValue(Expr * E,Sema & S)90 static bool CheckAsmLValue(Expr *E, Sema &S) {
91 // Type dependent expressions will be checked during instantiation.
92 if (E->isTypeDependent())
93 return false;
94
95 if (E->isLValue())
96 return false; // Cool, this is an lvalue.
97
98 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
99 // are supposed to allow.
100 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
101 if (E != E2 && E2->isLValue()) {
102 emitAndFixInvalidAsmCastLValue(E2, E, S);
103 // Accept, even if we emitted an error diagnostic.
104 return false;
105 }
106
107 // None of the above, just randomly invalid non-lvalue.
108 return true;
109 }
110
111 /// isOperandMentioned - Return true if the specified operand # is mentioned
112 /// anywhere in the decomposed asm string.
113 static bool
isOperandMentioned(unsigned OpNo,ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces)114 isOperandMentioned(unsigned OpNo,
115 ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
116 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
117 const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
118 if (!Piece.isOperand())
119 continue;
120
121 // If this is a reference to the input and if the input was the smaller
122 // one, then we have to reject this asm.
123 if (Piece.getOperandNo() == OpNo)
124 return true;
125 }
126 return false;
127 }
128
CheckNakedParmReference(Expr * E,Sema & S)129 static bool CheckNakedParmReference(Expr *E, Sema &S) {
130 FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext);
131 if (!Func)
132 return false;
133 if (!Func->hasAttr<NakedAttr>())
134 return false;
135
136 SmallVector<Expr*, 4> WorkList;
137 WorkList.push_back(E);
138 while (WorkList.size()) {
139 Expr *E = WorkList.pop_back_val();
140 if (isa<CXXThisExpr>(E)) {
141 S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref);
142 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
143 return true;
144 }
145 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
146 if (isa<ParmVarDecl>(DRE->getDecl())) {
147 S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref);
148 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
149 return true;
150 }
151 }
152 for (Stmt *Child : E->children()) {
153 if (Expr *E = dyn_cast_or_null<Expr>(Child))
154 WorkList.push_back(E);
155 }
156 }
157 return false;
158 }
159
160 /// Returns true if given expression is not compatible with inline
161 /// assembly's memory constraint; false otherwise.
checkExprMemoryConstraintCompat(Sema & S,Expr * E,TargetInfo::ConstraintInfo & Info,bool is_input_expr)162 static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E,
163 TargetInfo::ConstraintInfo &Info,
164 bool is_input_expr) {
165 enum {
166 ExprBitfield = 0,
167 ExprVectorElt,
168 ExprGlobalRegVar,
169 ExprSafeType
170 } EType = ExprSafeType;
171
172 // Bitfields, vector elements and global register variables are not
173 // compatible.
174 if (E->refersToBitField())
175 EType = ExprBitfield;
176 else if (E->refersToVectorElement())
177 EType = ExprVectorElt;
178 else if (E->refersToGlobalRegisterVar())
179 EType = ExprGlobalRegVar;
180
181 if (EType != ExprSafeType) {
182 S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint)
183 << EType << is_input_expr << Info.getConstraintStr()
184 << E->getSourceRange();
185 return true;
186 }
187
188 return false;
189 }
190
191 // Extracting the register name from the Expression value,
192 // if there is no register name to extract, returns ""
extractRegisterName(const Expr * Expression,const TargetInfo & Target)193 static StringRef extractRegisterName(const Expr *Expression,
194 const TargetInfo &Target) {
195 Expression = Expression->IgnoreImpCasts();
196 if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) {
197 // Handle cases where the expression is a variable
198 const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl());
199 if (Variable && Variable->getStorageClass() == SC_Register) {
200 if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>())
201 if (Target.isValidGCCRegisterName(Attr->getLabel()))
202 return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true);
203 }
204 }
205 return "";
206 }
207
208 // Checks if there is a conflict between the input and output lists with the
209 // clobbers list. If there's a conflict, returns the location of the
210 // conflicted clobber, else returns nullptr
211 static SourceLocation
getClobberConflictLocation(MultiExprArg Exprs,StringLiteral ** Constraints,StringLiteral ** Clobbers,int NumClobbers,unsigned NumLabels,const TargetInfo & Target,ASTContext & Cont)212 getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints,
213 StringLiteral **Clobbers, int NumClobbers,
214 unsigned NumLabels,
215 const TargetInfo &Target, ASTContext &Cont) {
216 llvm::StringSet<> InOutVars;
217 // Collect all the input and output registers from the extended asm
218 // statement in order to check for conflicts with the clobber list
219 for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) {
220 StringRef Constraint = Constraints[i]->getString();
221 StringRef InOutReg = Target.getConstraintRegister(
222 Constraint, extractRegisterName(Exprs[i], Target));
223 if (InOutReg != "")
224 InOutVars.insert(InOutReg);
225 }
226 // Check for each item in the clobber list if it conflicts with the input
227 // or output
228 for (int i = 0; i < NumClobbers; ++i) {
229 StringRef Clobber = Clobbers[i]->getString();
230 // We only check registers, therefore we don't check cc and memory
231 // clobbers
232 if (Clobber == "cc" || Clobber == "memory" || Clobber == "unwind")
233 continue;
234 Clobber = Target.getNormalizedGCCRegisterName(Clobber, true);
235 // Go over the output's registers we collected
236 if (InOutVars.count(Clobber))
237 return Clobbers[i]->getBeginLoc();
238 }
239 return SourceLocation();
240 }
241
ActOnGCCAsmStmt(SourceLocation AsmLoc,bool IsSimple,bool IsVolatile,unsigned NumOutputs,unsigned NumInputs,IdentifierInfo ** Names,MultiExprArg constraints,MultiExprArg Exprs,Expr * asmString,MultiExprArg clobbers,unsigned NumLabels,SourceLocation RParenLoc)242 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
243 bool IsVolatile, unsigned NumOutputs,
244 unsigned NumInputs, IdentifierInfo **Names,
245 MultiExprArg constraints, MultiExprArg Exprs,
246 Expr *asmString, MultiExprArg clobbers,
247 unsigned NumLabels,
248 SourceLocation RParenLoc) {
249 unsigned NumClobbers = clobbers.size();
250 StringLiteral **Constraints =
251 reinterpret_cast<StringLiteral**>(constraints.data());
252 StringLiteral *AsmString = cast<StringLiteral>(asmString);
253 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
254
255 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
256
257 // The parser verifies that there is a string literal here.
258 assert(AsmString->isOrdinary());
259
260 FunctionDecl *FD = dyn_cast<FunctionDecl>(getCurLexicalContext());
261 llvm::StringMap<bool> FeatureMap;
262 Context.getFunctionFeatureMap(FeatureMap, FD);
263
264 for (unsigned i = 0; i != NumOutputs; i++) {
265 StringLiteral *Literal = Constraints[i];
266 assert(Literal->isOrdinary());
267
268 StringRef OutputName;
269 if (Names[i])
270 OutputName = Names[i]->getName();
271
272 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
273 if (!Context.getTargetInfo().validateOutputConstraint(Info)) {
274 targetDiag(Literal->getBeginLoc(),
275 diag::err_asm_invalid_output_constraint)
276 << Info.getConstraintStr();
277 return new (Context)
278 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
279 NumInputs, Names, Constraints, Exprs.data(), AsmString,
280 NumClobbers, Clobbers, NumLabels, RParenLoc);
281 }
282
283 ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
284 if (ER.isInvalid())
285 return StmtError();
286 Exprs[i] = ER.get();
287
288 // Check that the output exprs are valid lvalues.
289 Expr *OutputExpr = Exprs[i];
290
291 // Referring to parameters is not allowed in naked functions.
292 if (CheckNakedParmReference(OutputExpr, *this))
293 return StmtError();
294
295 // Check that the output expression is compatible with memory constraint.
296 if (Info.allowsMemory() &&
297 checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false))
298 return StmtError();
299
300 // Disallow bit-precise integer types, since the backends tend to have
301 // difficulties with abnormal sizes.
302 if (OutputExpr->getType()->isBitIntType())
303 return StmtError(
304 Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_type)
305 << OutputExpr->getType() << 0 /*Input*/
306 << OutputExpr->getSourceRange());
307
308 OutputConstraintInfos.push_back(Info);
309
310 // If this is dependent, just continue.
311 if (OutputExpr->isTypeDependent())
312 continue;
313
314 Expr::isModifiableLvalueResult IsLV =
315 OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
316 switch (IsLV) {
317 case Expr::MLV_Valid:
318 // Cool, this is an lvalue.
319 break;
320 case Expr::MLV_ArrayType:
321 // This is OK too.
322 break;
323 case Expr::MLV_LValueCast: {
324 const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
325 emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this);
326 // Accept, even if we emitted an error diagnostic.
327 break;
328 }
329 case Expr::MLV_IncompleteType:
330 case Expr::MLV_IncompleteVoidType:
331 if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(),
332 diag::err_dereference_incomplete_type))
333 return StmtError();
334 [[fallthrough]];
335 default:
336 return StmtError(Diag(OutputExpr->getBeginLoc(),
337 diag::err_asm_invalid_lvalue_in_output)
338 << OutputExpr->getSourceRange());
339 }
340
341 unsigned Size = Context.getTypeSize(OutputExpr->getType());
342 if (!Context.getTargetInfo().validateOutputSize(
343 FeatureMap, Literal->getString(), Size)) {
344 targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size)
345 << Info.getConstraintStr();
346 return new (Context)
347 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
348 NumInputs, Names, Constraints, Exprs.data(), AsmString,
349 NumClobbers, Clobbers, NumLabels, RParenLoc);
350 }
351 }
352
353 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
354
355 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
356 StringLiteral *Literal = Constraints[i];
357 assert(Literal->isOrdinary());
358
359 StringRef InputName;
360 if (Names[i])
361 InputName = Names[i]->getName();
362
363 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
364 if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos,
365 Info)) {
366 targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint)
367 << Info.getConstraintStr();
368 return new (Context)
369 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
370 NumInputs, Names, Constraints, Exprs.data(), AsmString,
371 NumClobbers, Clobbers, NumLabels, RParenLoc);
372 }
373
374 ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
375 if (ER.isInvalid())
376 return StmtError();
377 Exprs[i] = ER.get();
378
379 Expr *InputExpr = Exprs[i];
380
381 if (InputExpr->getType()->isMemberPointerType())
382 return StmtError(Diag(InputExpr->getBeginLoc(),
383 diag::err_asm_pmf_through_constraint_not_permitted)
384 << InputExpr->getSourceRange());
385
386 // Referring to parameters is not allowed in naked functions.
387 if (CheckNakedParmReference(InputExpr, *this))
388 return StmtError();
389
390 // Check that the input expression is compatible with memory constraint.
391 if (Info.allowsMemory() &&
392 checkExprMemoryConstraintCompat(*this, InputExpr, Info, true))
393 return StmtError();
394
395 // Only allow void types for memory constraints.
396 if (Info.allowsMemory() && !Info.allowsRegister()) {
397 if (CheckAsmLValue(InputExpr, *this))
398 return StmtError(Diag(InputExpr->getBeginLoc(),
399 diag::err_asm_invalid_lvalue_in_input)
400 << Info.getConstraintStr()
401 << InputExpr->getSourceRange());
402 } else {
403 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
404 if (Result.isInvalid())
405 return StmtError();
406
407 InputExpr = Exprs[i] = Result.get();
408
409 if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
410 if (!InputExpr->isValueDependent()) {
411 Expr::EvalResult EVResult;
412 if (InputExpr->EvaluateAsRValue(EVResult, Context, true)) {
413 // For compatibility with GCC, we also allow pointers that would be
414 // integral constant expressions if they were cast to int.
415 llvm::APSInt IntResult;
416 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
417 Context))
418 if (!Info.isValidAsmImmediate(IntResult))
419 return StmtError(
420 Diag(InputExpr->getBeginLoc(),
421 diag::err_invalid_asm_value_for_constraint)
422 << toString(IntResult, 10) << Info.getConstraintStr()
423 << InputExpr->getSourceRange());
424 }
425 }
426 }
427 }
428
429 if (Info.allowsRegister()) {
430 if (InputExpr->getType()->isVoidType()) {
431 return StmtError(
432 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input)
433 << InputExpr->getType() << Info.getConstraintStr()
434 << InputExpr->getSourceRange());
435 }
436 }
437
438 if (InputExpr->getType()->isBitIntType())
439 return StmtError(
440 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type)
441 << InputExpr->getType() << 1 /*Output*/
442 << InputExpr->getSourceRange());
443
444 InputConstraintInfos.push_back(Info);
445
446 const Type *Ty = Exprs[i]->getType().getTypePtr();
447 if (Ty->isDependentType())
448 continue;
449
450 if (!Ty->isVoidType() || !Info.allowsMemory())
451 if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(),
452 diag::err_dereference_incomplete_type))
453 return StmtError();
454
455 unsigned Size = Context.getTypeSize(Ty);
456 if (!Context.getTargetInfo().validateInputSize(FeatureMap,
457 Literal->getString(), Size))
458 return targetDiag(InputExpr->getBeginLoc(),
459 diag::err_asm_invalid_input_size)
460 << Info.getConstraintStr();
461 }
462
463 std::optional<SourceLocation> UnwindClobberLoc;
464
465 // Check that the clobbers are valid.
466 for (unsigned i = 0; i != NumClobbers; i++) {
467 StringLiteral *Literal = Clobbers[i];
468 assert(Literal->isOrdinary());
469
470 StringRef Clobber = Literal->getString();
471
472 if (!Context.getTargetInfo().isValidClobber(Clobber)) {
473 targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name)
474 << Clobber;
475 return new (Context)
476 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
477 NumInputs, Names, Constraints, Exprs.data(), AsmString,
478 NumClobbers, Clobbers, NumLabels, RParenLoc);
479 }
480
481 if (Clobber == "unwind") {
482 UnwindClobberLoc = Literal->getBeginLoc();
483 }
484 }
485
486 // Using unwind clobber and asm-goto together is not supported right now.
487 if (UnwindClobberLoc && NumLabels > 0) {
488 targetDiag(*UnwindClobberLoc, diag::err_asm_unwind_and_goto);
489 return new (Context)
490 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
491 Names, Constraints, Exprs.data(), AsmString, NumClobbers,
492 Clobbers, NumLabels, RParenLoc);
493 }
494
495 GCCAsmStmt *NS =
496 new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
497 NumInputs, Names, Constraints, Exprs.data(),
498 AsmString, NumClobbers, Clobbers, NumLabels,
499 RParenLoc);
500 // Validate the asm string, ensuring it makes sense given the operands we
501 // have.
502 SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
503 unsigned DiagOffs;
504 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
505 targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
506 << AsmString->getSourceRange();
507 return NS;
508 }
509
510 // Validate constraints and modifiers.
511 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
512 GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
513 if (!Piece.isOperand()) continue;
514
515 // Look for the correct constraint index.
516 unsigned ConstraintIdx = Piece.getOperandNo();
517 unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();
518 // Labels are the last in the Exprs list.
519 if (NS->isAsmGoto() && ConstraintIdx >= NumOperands)
520 continue;
521 // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
522 // modifier '+'.
523 if (ConstraintIdx >= NumOperands) {
524 unsigned I = 0, E = NS->getNumOutputs();
525
526 for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
527 if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
528 ConstraintIdx = I;
529 break;
530 }
531
532 assert(I != E && "Invalid operand number should have been caught in "
533 " AnalyzeAsmString");
534 }
535
536 // Now that we have the right indexes go ahead and check.
537 StringLiteral *Literal = Constraints[ConstraintIdx];
538 const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
539 if (Ty->isDependentType() || Ty->isIncompleteType())
540 continue;
541
542 unsigned Size = Context.getTypeSize(Ty);
543 std::string SuggestedModifier;
544 if (!Context.getTargetInfo().validateConstraintModifier(
545 Literal->getString(), Piece.getModifier(), Size,
546 SuggestedModifier)) {
547 targetDiag(Exprs[ConstraintIdx]->getBeginLoc(),
548 diag::warn_asm_mismatched_size_modifier);
549
550 if (!SuggestedModifier.empty()) {
551 auto B = targetDiag(Piece.getRange().getBegin(),
552 diag::note_asm_missing_constraint_modifier)
553 << SuggestedModifier;
554 SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
555 B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier);
556 }
557 }
558 }
559
560 // Validate tied input operands for type mismatches.
561 unsigned NumAlternatives = ~0U;
562 for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
563 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
564 StringRef ConstraintStr = Info.getConstraintStr();
565 unsigned AltCount = ConstraintStr.count(',') + 1;
566 if (NumAlternatives == ~0U) {
567 NumAlternatives = AltCount;
568 } else if (NumAlternatives != AltCount) {
569 targetDiag(NS->getOutputExpr(i)->getBeginLoc(),
570 diag::err_asm_unexpected_constraint_alternatives)
571 << NumAlternatives << AltCount;
572 return NS;
573 }
574 }
575 SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(),
576 ~0U);
577 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
578 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
579 StringRef ConstraintStr = Info.getConstraintStr();
580 unsigned AltCount = ConstraintStr.count(',') + 1;
581 if (NumAlternatives == ~0U) {
582 NumAlternatives = AltCount;
583 } else if (NumAlternatives != AltCount) {
584 targetDiag(NS->getInputExpr(i)->getBeginLoc(),
585 diag::err_asm_unexpected_constraint_alternatives)
586 << NumAlternatives << AltCount;
587 return NS;
588 }
589
590 // If this is a tied constraint, verify that the output and input have
591 // either exactly the same type, or that they are int/ptr operands with the
592 // same size (int/long, int*/long, are ok etc).
593 if (!Info.hasTiedOperand()) continue;
594
595 unsigned TiedTo = Info.getTiedOperand();
596 unsigned InputOpNo = i+NumOutputs;
597 Expr *OutputExpr = Exprs[TiedTo];
598 Expr *InputExpr = Exprs[InputOpNo];
599
600 // Make sure no more than one input constraint matches each output.
601 assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range");
602 if (InputMatchedToOutput[TiedTo] != ~0U) {
603 targetDiag(NS->getInputExpr(i)->getBeginLoc(),
604 diag::err_asm_input_duplicate_match)
605 << TiedTo;
606 targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(),
607 diag::note_asm_input_duplicate_first)
608 << TiedTo;
609 return NS;
610 }
611 InputMatchedToOutput[TiedTo] = i;
612
613 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
614 continue;
615
616 QualType InTy = InputExpr->getType();
617 QualType OutTy = OutputExpr->getType();
618 if (Context.hasSameType(InTy, OutTy))
619 continue; // All types can be tied to themselves.
620
621 // Decide if the input and output are in the same domain (integer/ptr or
622 // floating point.
623 enum AsmDomain {
624 AD_Int, AD_FP, AD_Other
625 } InputDomain, OutputDomain;
626
627 if (InTy->isIntegerType() || InTy->isPointerType())
628 InputDomain = AD_Int;
629 else if (InTy->isRealFloatingType())
630 InputDomain = AD_FP;
631 else
632 InputDomain = AD_Other;
633
634 if (OutTy->isIntegerType() || OutTy->isPointerType())
635 OutputDomain = AD_Int;
636 else if (OutTy->isRealFloatingType())
637 OutputDomain = AD_FP;
638 else
639 OutputDomain = AD_Other;
640
641 // They are ok if they are the same size and in the same domain. This
642 // allows tying things like:
643 // void* to int*
644 // void* to int if they are the same size.
645 // double to long double if they are the same size.
646 //
647 uint64_t OutSize = Context.getTypeSize(OutTy);
648 uint64_t InSize = Context.getTypeSize(InTy);
649 if (OutSize == InSize && InputDomain == OutputDomain &&
650 InputDomain != AD_Other)
651 continue;
652
653 // If the smaller input/output operand is not mentioned in the asm string,
654 // then we can promote the smaller one to a larger input and the asm string
655 // won't notice.
656 bool SmallerValueMentioned = false;
657
658 // If this is a reference to the input and if the input was the smaller
659 // one, then we have to reject this asm.
660 if (isOperandMentioned(InputOpNo, Pieces)) {
661 // This is a use in the asm string of the smaller operand. Since we
662 // codegen this by promoting to a wider value, the asm will get printed
663 // "wrong".
664 SmallerValueMentioned |= InSize < OutSize;
665 }
666 if (isOperandMentioned(TiedTo, Pieces)) {
667 // If this is a reference to the output, and if the output is the larger
668 // value, then it's ok because we'll promote the input to the larger type.
669 SmallerValueMentioned |= OutSize < InSize;
670 }
671
672 // If the smaller value wasn't mentioned in the asm string, and if the
673 // output was a register, just extend the shorter one to the size of the
674 // larger one.
675 if (!SmallerValueMentioned && InputDomain != AD_Other &&
676 OutputConstraintInfos[TiedTo].allowsRegister()) {
677 // FIXME: GCC supports the OutSize to be 128 at maximum. Currently codegen
678 // crash when the size larger than the register size. So we limit it here.
679 if (OutTy->isStructureType() &&
680 Context.getIntTypeForBitwidth(OutSize, /*Signed*/ false).isNull()) {
681 targetDiag(OutputExpr->getExprLoc(), diag::err_store_value_to_reg);
682 return NS;
683 }
684
685 continue;
686 }
687
688 // Either both of the operands were mentioned or the smaller one was
689 // mentioned. One more special case that we'll allow: if the tied input is
690 // integer, unmentioned, and is a constant, then we'll allow truncating it
691 // down to the size of the destination.
692 if (InputDomain == AD_Int && OutputDomain == AD_Int &&
693 !isOperandMentioned(InputOpNo, Pieces) &&
694 InputExpr->isEvaluatable(Context)) {
695 CastKind castKind =
696 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
697 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
698 Exprs[InputOpNo] = InputExpr;
699 NS->setInputExpr(i, InputExpr);
700 continue;
701 }
702
703 targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types)
704 << InTy << OutTy << OutputExpr->getSourceRange()
705 << InputExpr->getSourceRange();
706 return NS;
707 }
708
709 // Check for conflicts between clobber list and input or output lists
710 SourceLocation ConstraintLoc =
711 getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers,
712 NumLabels,
713 Context.getTargetInfo(), Context);
714 if (ConstraintLoc.isValid())
715 targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber);
716
717 // Check for duplicate asm operand name between input, output and label lists.
718 typedef std::pair<StringRef , Expr *> NamedOperand;
719 SmallVector<NamedOperand, 4> NamedOperandList;
720 for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i)
721 if (Names[i])
722 NamedOperandList.emplace_back(
723 std::make_pair(Names[i]->getName(), Exprs[i]));
724 // Sort NamedOperandList.
725 llvm::stable_sort(NamedOperandList, llvm::less_first());
726 // Find adjacent duplicate operand.
727 SmallVector<NamedOperand, 4>::iterator Found =
728 std::adjacent_find(begin(NamedOperandList), end(NamedOperandList),
729 [](const NamedOperand &LHS, const NamedOperand &RHS) {
730 return LHS.first == RHS.first;
731 });
732 if (Found != NamedOperandList.end()) {
733 Diag((Found + 1)->second->getBeginLoc(),
734 diag::error_duplicate_asm_operand_name)
735 << (Found + 1)->first;
736 Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name)
737 << Found->first;
738 return StmtError();
739 }
740 if (NS->isAsmGoto())
741 setFunctionHasBranchIntoScope();
742
743 CleanupVarDeclMarking();
744 DiscardCleanupsInEvaluationContext();
745 return NS;
746 }
747
FillInlineAsmIdentifierInfo(Expr * Res,llvm::InlineAsmIdentifierInfo & Info)748 void Sema::FillInlineAsmIdentifierInfo(Expr *Res,
749 llvm::InlineAsmIdentifierInfo &Info) {
750 QualType T = Res->getType();
751 Expr::EvalResult Eval;
752 if (T->isFunctionType() || T->isDependentType())
753 return Info.setLabel(Res);
754 if (Res->isPRValue()) {
755 bool IsEnum = isa<clang::EnumType>(T);
756 if (DeclRefExpr *DRE = dyn_cast<clang::DeclRefExpr>(Res))
757 if (DRE->getDecl()->getKind() == Decl::EnumConstant)
758 IsEnum = true;
759 if (IsEnum && Res->EvaluateAsRValue(Eval, Context))
760 return Info.setEnum(Eval.Val.getInt().getSExtValue());
761
762 return Info.setLabel(Res);
763 }
764 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
765 unsigned Type = Size;
766 if (const auto *ATy = Context.getAsArrayType(T))
767 Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity();
768 bool IsGlobalLV = false;
769 if (Res->EvaluateAsLValue(Eval, Context))
770 IsGlobalLV = Eval.isGlobalLValue();
771 Info.setVar(Res, IsGlobalLV, Size, Type);
772 }
773
LookupInlineAsmIdentifier(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,bool IsUnevaluatedContext)774 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
775 SourceLocation TemplateKWLoc,
776 UnqualifiedId &Id,
777 bool IsUnevaluatedContext) {
778
779 if (IsUnevaluatedContext)
780 PushExpressionEvaluationContext(
781 ExpressionEvaluationContext::UnevaluatedAbstract,
782 ReuseLambdaContextDecl);
783
784 ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id,
785 /*trailing lparen*/ false,
786 /*is & operand*/ false,
787 /*CorrectionCandidateCallback=*/nullptr,
788 /*IsInlineAsmIdentifier=*/ true);
789
790 if (IsUnevaluatedContext)
791 PopExpressionEvaluationContext();
792
793 if (!Result.isUsable()) return Result;
794
795 Result = CheckPlaceholderExpr(Result.get());
796 if (!Result.isUsable()) return Result;
797
798 // Referring to parameters is not allowed in naked functions.
799 if (CheckNakedParmReference(Result.get(), *this))
800 return ExprError();
801
802 QualType T = Result.get()->getType();
803
804 if (T->isDependentType()) {
805 return Result;
806 }
807
808 // Any sort of function type is fine.
809 if (T->isFunctionType()) {
810 return Result;
811 }
812
813 // Otherwise, it needs to be a complete type.
814 if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
815 return ExprError();
816 }
817
818 return Result;
819 }
820
LookupInlineAsmField(StringRef Base,StringRef Member,unsigned & Offset,SourceLocation AsmLoc)821 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
822 unsigned &Offset, SourceLocation AsmLoc) {
823 Offset = 0;
824 SmallVector<StringRef, 2> Members;
825 Member.split(Members, ".");
826
827 NamedDecl *FoundDecl = nullptr;
828
829 // MS InlineAsm uses 'this' as a base
830 if (getLangOpts().CPlusPlus && Base.equals("this")) {
831 if (const Type *PT = getCurrentThisType().getTypePtrOrNull())
832 FoundDecl = PT->getPointeeType()->getAsTagDecl();
833 } else {
834 LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
835 LookupOrdinaryName);
836 if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult())
837 FoundDecl = BaseResult.getFoundDecl();
838 }
839
840 if (!FoundDecl)
841 return true;
842
843 for (StringRef NextMember : Members) {
844 const RecordType *RT = nullptr;
845 if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl))
846 RT = VD->getType()->getAs<RecordType>();
847 else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) {
848 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
849 // MS InlineAsm often uses struct pointer aliases as a base
850 QualType QT = TD->getUnderlyingType();
851 if (const auto *PT = QT->getAs<PointerType>())
852 QT = PT->getPointeeType();
853 RT = QT->getAs<RecordType>();
854 } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl))
855 RT = TD->getTypeForDecl()->getAs<RecordType>();
856 else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl))
857 RT = TD->getType()->getAs<RecordType>();
858 if (!RT)
859 return true;
860
861 if (RequireCompleteType(AsmLoc, QualType(RT, 0),
862 diag::err_asm_incomplete_type))
863 return true;
864
865 LookupResult FieldResult(*this, &Context.Idents.get(NextMember),
866 SourceLocation(), LookupMemberName);
867
868 if (!LookupQualifiedName(FieldResult, RT->getDecl()))
869 return true;
870
871 if (!FieldResult.isSingleResult())
872 return true;
873 FoundDecl = FieldResult.getFoundDecl();
874
875 // FIXME: Handle IndirectFieldDecl?
876 FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl);
877 if (!FD)
878 return true;
879
880 const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
881 unsigned i = FD->getFieldIndex();
882 CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
883 Offset += (unsigned)Result.getQuantity();
884 }
885
886 return false;
887 }
888
889 ExprResult
LookupInlineAsmVarDeclField(Expr * E,StringRef Member,SourceLocation AsmLoc)890 Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member,
891 SourceLocation AsmLoc) {
892
893 QualType T = E->getType();
894 if (T->isDependentType()) {
895 DeclarationNameInfo NameInfo;
896 NameInfo.setLoc(AsmLoc);
897 NameInfo.setName(&Context.Idents.get(Member));
898 return CXXDependentScopeMemberExpr::Create(
899 Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(),
900 SourceLocation(),
901 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr);
902 }
903
904 const RecordType *RT = T->getAs<RecordType>();
905 // FIXME: Diagnose this as field access into a scalar type.
906 if (!RT)
907 return ExprResult();
908
909 LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc,
910 LookupMemberName);
911
912 if (!LookupQualifiedName(FieldResult, RT->getDecl()))
913 return ExprResult();
914
915 // Only normal and indirect field results will work.
916 ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
917 if (!FD)
918 FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl());
919 if (!FD)
920 return ExprResult();
921
922 // Make an Expr to thread through OpDecl.
923 ExprResult Result = BuildMemberReferenceExpr(
924 E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(),
925 SourceLocation(), nullptr, FieldResult, nullptr, nullptr);
926
927 return Result;
928 }
929
ActOnMSAsmStmt(SourceLocation AsmLoc,SourceLocation LBraceLoc,ArrayRef<Token> AsmToks,StringRef AsmString,unsigned NumOutputs,unsigned NumInputs,ArrayRef<StringRef> Constraints,ArrayRef<StringRef> Clobbers,ArrayRef<Expr * > Exprs,SourceLocation EndLoc)930 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
931 ArrayRef<Token> AsmToks,
932 StringRef AsmString,
933 unsigned NumOutputs, unsigned NumInputs,
934 ArrayRef<StringRef> Constraints,
935 ArrayRef<StringRef> Clobbers,
936 ArrayRef<Expr*> Exprs,
937 SourceLocation EndLoc) {
938 bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
939 setFunctionHasBranchProtectedScope();
940
941 bool InvalidOperand = false;
942 for (uint64_t I = 0; I < NumOutputs + NumInputs; ++I) {
943 Expr *E = Exprs[I];
944 if (E->getType()->isBitIntType()) {
945 InvalidOperand = true;
946 Diag(E->getBeginLoc(), diag::err_asm_invalid_type)
947 << E->getType() << (I < NumOutputs)
948 << E->getSourceRange();
949 } else if (E->refersToBitField()) {
950 InvalidOperand = true;
951 FieldDecl *BitField = E->getSourceBitField();
952 Diag(E->getBeginLoc(), diag::err_ms_asm_bitfield_unsupported)
953 << E->getSourceRange();
954 Diag(BitField->getLocation(), diag::note_bitfield_decl);
955 }
956 }
957 if (InvalidOperand)
958 return StmtError();
959
960 MSAsmStmt *NS =
961 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
962 /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
963 Constraints, Exprs, AsmString,
964 Clobbers, EndLoc);
965 return NS;
966 }
967
GetOrCreateMSAsmLabel(StringRef ExternalLabelName,SourceLocation Location,bool AlwaysCreate)968 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
969 SourceLocation Location,
970 bool AlwaysCreate) {
971 LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName),
972 Location);
973
974 if (Label->isMSAsmLabel()) {
975 // If we have previously created this label implicitly, mark it as used.
976 Label->markUsed(Context);
977 } else {
978 // Otherwise, insert it, but only resolve it if we have seen the label itself.
979 std::string InternalName;
980 llvm::raw_string_ostream OS(InternalName);
981 // Create an internal name for the label. The name should not be a valid
982 // mangled name, and should be unique. We use a dot to make the name an
983 // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a
984 // unique label is generated each time this blob is emitted, even after
985 // inlining or LTO.
986 OS << "__MSASMLABEL_.${:uid}__";
987 for (char C : ExternalLabelName) {
988 OS << C;
989 // We escape '$' in asm strings by replacing it with "$$"
990 if (C == '$')
991 OS << '$';
992 }
993 Label->setMSAsmLabel(OS.str());
994 }
995 if (AlwaysCreate) {
996 // The label might have been created implicitly from a previously encountered
997 // goto statement. So, for both newly created and looked up labels, we mark
998 // them as resolved.
999 Label->setMSAsmLabelResolved();
1000 }
1001 // Adjust their location for being able to generate accurate diagnostics.
1002 Label->setLocation(Location);
1003
1004 return Label;
1005 }
1006