1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the XCoreTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "XCoreISelLowering.h"
14 #include "XCore.h"
15 #include "XCoreMachineFunctionInfo.h"
16 #include "XCoreSubtarget.h"
17 #include "XCoreTargetMachine.h"
18 #include "XCoreTargetObjectFile.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/IntrinsicsXCore.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "xcore-lower"
43 
44 const char *XCoreTargetLowering::
getTargetNodeName(unsigned Opcode) const45 getTargetNodeName(unsigned Opcode) const
46 {
47   switch ((XCoreISD::NodeType)Opcode)
48   {
49     case XCoreISD::FIRST_NUMBER      : break;
50     case XCoreISD::BL                : return "XCoreISD::BL";
51     case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
52     case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
53     case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
54     case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
55     case XCoreISD::STWSP             : return "XCoreISD::STWSP";
56     case XCoreISD::RETSP             : return "XCoreISD::RETSP";
57     case XCoreISD::LADD              : return "XCoreISD::LADD";
58     case XCoreISD::LSUB              : return "XCoreISD::LSUB";
59     case XCoreISD::LMUL              : return "XCoreISD::LMUL";
60     case XCoreISD::MACCU             : return "XCoreISD::MACCU";
61     case XCoreISD::MACCS             : return "XCoreISD::MACCS";
62     case XCoreISD::CRC8              : return "XCoreISD::CRC8";
63     case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
64     case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
65     case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
66     case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
67   }
68   return nullptr;
69 }
70 
XCoreTargetLowering(const TargetMachine & TM,const XCoreSubtarget & Subtarget)71 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
72                                          const XCoreSubtarget &Subtarget)
73     : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
74 
75   // Set up the register classes.
76   addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
77 
78   // Compute derived properties from the register classes
79   computeRegisterProperties(Subtarget.getRegisterInfo());
80 
81   setStackPointerRegisterToSaveRestore(XCore::SP);
82 
83   setSchedulingPreference(Sched::Source);
84 
85   // Use i32 for setcc operations results (slt, sgt, ...).
86   setBooleanContents(ZeroOrOneBooleanContent);
87   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
88 
89   // XCore does not have the NodeTypes below.
90   setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
91   setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
92 
93   // 64bit
94   setOperationAction(ISD::ADD, MVT::i64, Custom);
95   setOperationAction(ISD::SUB, MVT::i64, Custom);
96   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
97   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
98   setOperationAction(ISD::MULHS, MVT::i32, Expand);
99   setOperationAction(ISD::MULHU, MVT::i32, Expand);
100   setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
101   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
102   setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
103 
104   // Bit Manipulation
105   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
106   setOperationAction(ISD::ROTL , MVT::i32, Expand);
107   setOperationAction(ISD::ROTR , MVT::i32, Expand);
108   setOperationAction(ISD::BITREVERSE , MVT::i32, Legal);
109 
110   setOperationAction(ISD::TRAP, MVT::Other, Legal);
111 
112   // Jump tables.
113   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
114 
115   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
116   setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
117 
118   // Conversion of i64 -> double produces constantpool nodes
119   setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
120 
121   // Loads
122   for (MVT VT : MVT::integer_valuetypes()) {
123     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
124     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
125     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
126 
127     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
128     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
129   }
130 
131   // Custom expand misaligned loads / stores.
132   setOperationAction(ISD::LOAD, MVT::i32, Custom);
133   setOperationAction(ISD::STORE, MVT::i32, Custom);
134 
135   // Varargs
136   setOperationAction(ISD::VAEND, MVT::Other, Expand);
137   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
138   setOperationAction(ISD::VAARG, MVT::Other, Custom);
139   setOperationAction(ISD::VASTART, MVT::Other, Custom);
140 
141   // Dynamic stack
142   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
143   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
144   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
145 
146   // Exception handling
147   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
148   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
149 
150   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
151 
152   // TRAMPOLINE is custom lowered.
153   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
154   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
155 
156   // We want to custom lower some of our intrinsics.
157   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
158 
159   MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
160   MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
161     = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
162 
163   // We have target-specific dag combine patterns for the following nodes:
164   setTargetDAGCombine(
165       {ISD::STORE, ISD::ADD, ISD::INTRINSIC_VOID, ISD::INTRINSIC_W_CHAIN});
166 
167   setMinFunctionAlignment(Align(2));
168   setPrefFunctionAlignment(Align(4));
169 
170   // This target doesn't implement native atomics.
171   setMaxAtomicSizeInBitsSupported(0);
172 }
173 
isZExtFree(SDValue Val,EVT VT2) const174 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
175   if (Val.getOpcode() != ISD::LOAD)
176     return false;
177 
178   EVT VT1 = Val.getValueType();
179   if (!VT1.isSimple() || !VT1.isInteger() ||
180       !VT2.isSimple() || !VT2.isInteger())
181     return false;
182 
183   switch (VT1.getSimpleVT().SimpleTy) {
184   default: break;
185   case MVT::i8:
186     return true;
187   }
188 
189   return false;
190 }
191 
192 SDValue XCoreTargetLowering::
LowerOperation(SDValue Op,SelectionDAG & DAG) const193 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
194   switch (Op.getOpcode())
195   {
196   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
197   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
198   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
199   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
200   case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
201   case ISD::LOAD:               return LowerLOAD(Op, DAG);
202   case ISD::STORE:              return LowerSTORE(Op, DAG);
203   case ISD::VAARG:              return LowerVAARG(Op, DAG);
204   case ISD::VASTART:            return LowerVASTART(Op, DAG);
205   case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
206   case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
207   // FIXME: Remove these when LegalizeDAGTypes lands.
208   case ISD::ADD:
209   case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
210   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
211   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
212   case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
213   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
214   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
215   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
216   case ISD::ATOMIC_FENCE:
217     return LowerATOMIC_FENCE(Op, DAG);
218   default:
219     llvm_unreachable("unimplemented operand");
220   }
221 }
222 
223 /// ReplaceNodeResults - Replace the results of node with an illegal result
224 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const225 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
226                                              SmallVectorImpl<SDValue>&Results,
227                                              SelectionDAG &DAG) const {
228   switch (N->getOpcode()) {
229   default:
230     llvm_unreachable("Don't know how to custom expand this!");
231   case ISD::ADD:
232   case ISD::SUB:
233     Results.push_back(ExpandADDSUB(N, DAG));
234     return;
235   }
236 }
237 
238 //===----------------------------------------------------------------------===//
239 //  Misc Lower Operation implementation
240 //===----------------------------------------------------------------------===//
241 
getGlobalAddressWrapper(SDValue GA,const GlobalValue * GV,SelectionDAG & DAG) const242 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
243                                                      const GlobalValue *GV,
244                                                      SelectionDAG &DAG) const {
245   // FIXME there is no actual debug info here
246   SDLoc dl(GA);
247 
248   if (GV->getValueType()->isFunctionTy())
249     return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
250 
251   const auto *GVar = dyn_cast<GlobalVariable>(GV);
252   if ((GV->hasSection() && GV->getSection().starts_with(".cp.")) ||
253       (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
254     return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
255 
256   return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
257 }
258 
IsSmallObject(const GlobalValue * GV,const XCoreTargetLowering & XTL)259 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
260   if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
261     return true;
262 
263   Type *ObjType = GV->getValueType();
264   if (!ObjType->isSized())
265     return false;
266 
267   auto &DL = GV->getParent()->getDataLayout();
268   unsigned ObjSize = DL.getTypeAllocSize(ObjType);
269   return ObjSize < CodeModelLargeSize && ObjSize != 0;
270 }
271 
272 SDValue XCoreTargetLowering::
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const273 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
274 {
275   const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
276   const GlobalValue *GV = GN->getGlobal();
277   SDLoc DL(GN);
278   int64_t Offset = GN->getOffset();
279   if (IsSmallObject(GV, *this)) {
280     // We can only fold positive offsets that are a multiple of the word size.
281     int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
282     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
283     GA = getGlobalAddressWrapper(GA, GV, DAG);
284     // Handle the rest of the offset.
285     if (Offset != FoldedOffset) {
286       SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
287       GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
288     }
289     return GA;
290   } else {
291     // Ideally we would not fold in offset with an index <= 11.
292     Type *Ty = Type::getInt32Ty(*DAG.getContext());
293     Constant *Idx = ConstantInt::get(Ty, Offset);
294     Constant *GAI = ConstantExpr::getGetElementPtr(
295         Type::getInt8Ty(*DAG.getContext()), const_cast<GlobalValue *>(GV), Idx);
296     SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
297     return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
298                        DAG.getEntryNode(), CP, MachinePointerInfo());
299   }
300 }
301 
302 SDValue XCoreTargetLowering::
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const303 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
304 {
305   SDLoc DL(Op);
306   auto PtrVT = getPointerTy(DAG.getDataLayout());
307   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
308   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
309 
310   return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
311 }
312 
313 SDValue XCoreTargetLowering::
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const314 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
315 {
316   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
317   // FIXME there isn't really debug info here
318   SDLoc dl(CP);
319   EVT PtrVT = Op.getValueType();
320   SDValue Res;
321   if (CP->isMachineConstantPoolEntry()) {
322     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
323                                     CP->getAlign(), CP->getOffset());
324   } else {
325     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
326                                     CP->getOffset());
327   }
328   return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
329 }
330 
getJumpTableEncoding() const331 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
332   return MachineJumpTableInfo::EK_Inline;
333 }
334 
335 SDValue XCoreTargetLowering::
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const336 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
337 {
338   SDValue Chain = Op.getOperand(0);
339   SDValue Table = Op.getOperand(1);
340   SDValue Index = Op.getOperand(2);
341   SDLoc dl(Op);
342   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
343   unsigned JTI = JT->getIndex();
344   MachineFunction &MF = DAG.getMachineFunction();
345   const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
346   SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
347 
348   unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
349   if (NumEntries <= 32) {
350     return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
351   }
352   assert((NumEntries >> 31) == 0);
353   SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
354                                     DAG.getConstant(1, dl, MVT::i32));
355   return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
356                      ScaledIndex);
357 }
358 
lowerLoadWordFromAlignedBasePlusOffset(const SDLoc & DL,SDValue Chain,SDValue Base,int64_t Offset,SelectionDAG & DAG) const359 SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
360     const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
361     SelectionDAG &DAG) const {
362   auto PtrVT = getPointerTy(DAG.getDataLayout());
363   if ((Offset & 0x3) == 0) {
364     return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo());
365   }
366   // Lower to pair of consecutive word aligned loads plus some bit shifting.
367   int32_t HighOffset = alignTo(Offset, 4);
368   int32_t LowOffset = HighOffset - 4;
369   SDValue LowAddr, HighAddr;
370   if (GlobalAddressSDNode *GASD =
371         dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
372     LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
373                                    LowOffset);
374     HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
375                                     HighOffset);
376   } else {
377     LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
378                           DAG.getConstant(LowOffset, DL, MVT::i32));
379     HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
380                            DAG.getConstant(HighOffset, DL, MVT::i32));
381   }
382   SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
383   SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
384 
385   SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo());
386   SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo());
387   SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
388   SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
389   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
390   Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
391                       High.getValue(1));
392   SDValue Ops[] = { Result, Chain };
393   return DAG.getMergeValues(Ops, DL);
394 }
395 
isWordAligned(SDValue Value,SelectionDAG & DAG)396 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
397 {
398   KnownBits Known = DAG.computeKnownBits(Value);
399   return Known.countMinTrailingZeros() >= 2;
400 }
401 
LowerLOAD(SDValue Op,SelectionDAG & DAG) const402 SDValue XCoreTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
403   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
404   LLVMContext &Context = *DAG.getContext();
405   LoadSDNode *LD = cast<LoadSDNode>(Op);
406   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
407          "Unexpected extension type");
408   assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
409 
410   if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
411                                      LD->getMemoryVT(), *LD->getMemOperand()))
412     return SDValue();
413 
414   SDValue Chain = LD->getChain();
415   SDValue BasePtr = LD->getBasePtr();
416   SDLoc DL(Op);
417 
418   if (!LD->isVolatile()) {
419     const GlobalValue *GV;
420     int64_t Offset = 0;
421     if (DAG.isBaseWithConstantOffset(BasePtr) &&
422         isWordAligned(BasePtr->getOperand(0), DAG)) {
423       SDValue NewBasePtr = BasePtr->getOperand(0);
424       Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
425       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
426                                                     Offset, DAG);
427     }
428     if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
429         GV->getPointerAlignment(DAG.getDataLayout()) >= 4) {
430       SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
431                                                 BasePtr->getValueType(0));
432       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
433                                                     Offset, DAG);
434     }
435   }
436 
437   if (LD->getAlign() == Align(2)) {
438     SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, BasePtr,
439                                  LD->getPointerInfo(), MVT::i16, Align(2),
440                                  LD->getMemOperand()->getFlags());
441     SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
442                                    DAG.getConstant(2, DL, MVT::i32));
443     SDValue High =
444         DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, HighAddr,
445                        LD->getPointerInfo().getWithOffset(2), MVT::i16,
446                        Align(2), LD->getMemOperand()->getFlags());
447     SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
448                                       DAG.getConstant(16, DL, MVT::i32));
449     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
450     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
451                              High.getValue(1));
452     SDValue Ops[] = { Result, Chain };
453     return DAG.getMergeValues(Ops, DL);
454   }
455 
456   // Lower to a call to __misaligned_load(BasePtr).
457   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
458   TargetLowering::ArgListTy Args;
459   TargetLowering::ArgListEntry Entry;
460 
461   Entry.Ty = IntPtrTy;
462   Entry.Node = BasePtr;
463   Args.push_back(Entry);
464 
465   TargetLowering::CallLoweringInfo CLI(DAG);
466   CLI.setDebugLoc(DL).setChain(Chain).setLibCallee(
467       CallingConv::C, IntPtrTy,
468       DAG.getExternalSymbol("__misaligned_load",
469                             getPointerTy(DAG.getDataLayout())),
470       std::move(Args));
471 
472   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
473   SDValue Ops[] = { CallResult.first, CallResult.second };
474   return DAG.getMergeValues(Ops, DL);
475 }
476 
LowerSTORE(SDValue Op,SelectionDAG & DAG) const477 SDValue XCoreTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
478   LLVMContext &Context = *DAG.getContext();
479   StoreSDNode *ST = cast<StoreSDNode>(Op);
480   assert(!ST->isTruncatingStore() && "Unexpected store type");
481   assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
482 
483   if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
484                                      ST->getMemoryVT(), *ST->getMemOperand()))
485     return SDValue();
486 
487   SDValue Chain = ST->getChain();
488   SDValue BasePtr = ST->getBasePtr();
489   SDValue Value = ST->getValue();
490   SDLoc dl(Op);
491 
492   if (ST->getAlign() == Align(2)) {
493     SDValue Low = Value;
494     SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
495                                DAG.getConstant(16, dl, MVT::i32));
496     SDValue StoreLow =
497         DAG.getTruncStore(Chain, dl, Low, BasePtr, ST->getPointerInfo(),
498                           MVT::i16, Align(2), ST->getMemOperand()->getFlags());
499     SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
500                                    DAG.getConstant(2, dl, MVT::i32));
501     SDValue StoreHigh = DAG.getTruncStore(
502         Chain, dl, High, HighAddr, ST->getPointerInfo().getWithOffset(2),
503         MVT::i16, Align(2), ST->getMemOperand()->getFlags());
504     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
505   }
506 
507   // Lower to a call to __misaligned_store(BasePtr, Value).
508   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
509   TargetLowering::ArgListTy Args;
510   TargetLowering::ArgListEntry Entry;
511 
512   Entry.Ty = IntPtrTy;
513   Entry.Node = BasePtr;
514   Args.push_back(Entry);
515 
516   Entry.Node = Value;
517   Args.push_back(Entry);
518 
519   TargetLowering::CallLoweringInfo CLI(DAG);
520   CLI.setDebugLoc(dl).setChain(Chain).setCallee(
521       CallingConv::C, Type::getVoidTy(Context),
522       DAG.getExternalSymbol("__misaligned_store",
523                             getPointerTy(DAG.getDataLayout())),
524       std::move(Args));
525 
526   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
527   return CallResult.second;
528 }
529 
530 SDValue XCoreTargetLowering::
LowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const531 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
532 {
533   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
534          "Unexpected operand to lower!");
535   SDLoc dl(Op);
536   SDValue LHS = Op.getOperand(0);
537   SDValue RHS = Op.getOperand(1);
538   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
539   SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
540                            DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
541                            LHS, RHS);
542   SDValue Lo(Hi.getNode(), 1);
543   SDValue Ops[] = { Lo, Hi };
544   return DAG.getMergeValues(Ops, dl);
545 }
546 
547 SDValue XCoreTargetLowering::
LowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const548 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
549 {
550   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
551          "Unexpected operand to lower!");
552   SDLoc dl(Op);
553   SDValue LHS = Op.getOperand(0);
554   SDValue RHS = Op.getOperand(1);
555   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
556   SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
557                            DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
558                            Zero, Zero);
559   SDValue Lo(Hi.getNode(), 1);
560   SDValue Ops[] = { Lo, Hi };
561   return DAG.getMergeValues(Ops, dl);
562 }
563 
564 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
565 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
566 /// each intermediate result in the calculation must also have a single use.
567 /// If the Op is in the correct form the constituent parts are written to Mul0,
568 /// Mul1, Addend0 and Addend1.
569 static bool
isADDADDMUL(SDValue Op,SDValue & Mul0,SDValue & Mul1,SDValue & Addend0,SDValue & Addend1,bool requireIntermediatesHaveOneUse)570 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
571             SDValue &Addend1, bool requireIntermediatesHaveOneUse)
572 {
573   if (Op.getOpcode() != ISD::ADD)
574     return false;
575   SDValue N0 = Op.getOperand(0);
576   SDValue N1 = Op.getOperand(1);
577   SDValue AddOp;
578   SDValue OtherOp;
579   if (N0.getOpcode() == ISD::ADD) {
580     AddOp = N0;
581     OtherOp = N1;
582   } else if (N1.getOpcode() == ISD::ADD) {
583     AddOp = N1;
584     OtherOp = N0;
585   } else {
586     return false;
587   }
588   if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
589     return false;
590   if (OtherOp.getOpcode() == ISD::MUL) {
591     // add(add(a,b),mul(x,y))
592     if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
593       return false;
594     Mul0 = OtherOp.getOperand(0);
595     Mul1 = OtherOp.getOperand(1);
596     Addend0 = AddOp.getOperand(0);
597     Addend1 = AddOp.getOperand(1);
598     return true;
599   }
600   if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
601     // add(add(mul(x,y),a),b)
602     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
603       return false;
604     Mul0 = AddOp.getOperand(0).getOperand(0);
605     Mul1 = AddOp.getOperand(0).getOperand(1);
606     Addend0 = AddOp.getOperand(1);
607     Addend1 = OtherOp;
608     return true;
609   }
610   if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
611     // add(add(a,mul(x,y)),b)
612     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
613       return false;
614     Mul0 = AddOp.getOperand(1).getOperand(0);
615     Mul1 = AddOp.getOperand(1).getOperand(1);
616     Addend0 = AddOp.getOperand(0);
617     Addend1 = OtherOp;
618     return true;
619   }
620   return false;
621 }
622 
623 SDValue XCoreTargetLowering::
TryExpandADDWithMul(SDNode * N,SelectionDAG & DAG) const624 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
625 {
626   SDValue Mul;
627   SDValue Other;
628   if (N->getOperand(0).getOpcode() == ISD::MUL) {
629     Mul = N->getOperand(0);
630     Other = N->getOperand(1);
631   } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
632     Mul = N->getOperand(1);
633     Other = N->getOperand(0);
634   } else {
635     return SDValue();
636   }
637   SDLoc dl(N);
638   SDValue LL, RL, AddendL, AddendH;
639   LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
640                    Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
641   RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
642                    Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
643   AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
644                         Other, DAG.getConstant(0, dl, MVT::i32));
645   AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
646                         Other, DAG.getConstant(1, dl, MVT::i32));
647   APInt HighMask = APInt::getHighBitsSet(64, 32);
648   unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
649   unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
650   if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
651       DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
652     // The inputs are both zero-extended.
653     SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
654                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
655                              AddendL, LL, RL);
656     SDValue Lo(Hi.getNode(), 1);
657     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
658   }
659   if (LHSSB > 32 && RHSSB > 32) {
660     // The inputs are both sign-extended.
661     SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
662                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
663                              AddendL, LL, RL);
664     SDValue Lo(Hi.getNode(), 1);
665     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
666   }
667   SDValue LH, RH;
668   LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
669                    Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
670   RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
671                    Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
672   SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
673                            DAG.getVTList(MVT::i32, MVT::i32), AddendH,
674                            AddendL, LL, RL);
675   SDValue Lo(Hi.getNode(), 1);
676   RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
677   LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
678   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
679   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
680   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
681 }
682 
683 SDValue XCoreTargetLowering::
ExpandADDSUB(SDNode * N,SelectionDAG & DAG) const684 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
685 {
686   assert(N->getValueType(0) == MVT::i64 &&
687          (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
688         "Unknown operand to lower!");
689 
690   if (N->getOpcode() == ISD::ADD)
691     if (SDValue Result = TryExpandADDWithMul(N, DAG))
692       return Result;
693 
694   SDLoc dl(N);
695 
696   // Extract components
697   SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
698                              N->getOperand(0),
699                              DAG.getConstant(0, dl, MVT::i32));
700   SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
701                              N->getOperand(0),
702                              DAG.getConstant(1, dl, MVT::i32));
703   SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
704                              N->getOperand(1),
705                              DAG.getConstant(0, dl, MVT::i32));
706   SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
707                              N->getOperand(1),
708                              DAG.getConstant(1, dl, MVT::i32));
709 
710   // Expand
711   unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
712                                                    XCoreISD::LSUB;
713   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
714   SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
715                            LHSL, RHSL, Zero);
716   SDValue Carry(Lo.getNode(), 1);
717 
718   SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
719                            LHSH, RHSH, Carry);
720   SDValue Ignored(Hi.getNode(), 1);
721   // Merge the pieces
722   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
723 }
724 
725 SDValue XCoreTargetLowering::
LowerVAARG(SDValue Op,SelectionDAG & DAG) const726 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
727 {
728   // Whist llvm does not support aggregate varargs we can ignore
729   // the possibility of the ValueType being an implicit byVal vararg.
730   SDNode *Node = Op.getNode();
731   EVT VT = Node->getValueType(0); // not an aggregate
732   SDValue InChain = Node->getOperand(0);
733   SDValue VAListPtr = Node->getOperand(1);
734   EVT PtrVT = VAListPtr.getValueType();
735   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
736   SDLoc dl(Node);
737   SDValue VAList =
738       DAG.getLoad(PtrVT, dl, InChain, VAListPtr, MachinePointerInfo(SV));
739   // Increment the pointer, VAList, to the next vararg
740   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
741                                 DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
742                                                       dl));
743   // Store the incremented VAList to the legalized pointer
744   InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
745                          MachinePointerInfo(SV));
746   // Load the actual argument out of the pointer VAList
747   return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo());
748 }
749 
750 SDValue XCoreTargetLowering::
LowerVASTART(SDValue Op,SelectionDAG & DAG) const751 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
752 {
753   SDLoc dl(Op);
754   // vastart stores the address of the VarArgsFrameIndex slot into the
755   // memory location argument
756   MachineFunction &MF = DAG.getMachineFunction();
757   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
758   SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
759   return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
760                       MachinePointerInfo());
761 }
762 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const763 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
764                                             SelectionDAG &DAG) const {
765   // This nodes represent llvm.frameaddress on the DAG.
766   // It takes one operand, the index of the frame address to return.
767   // An index of zero corresponds to the current function's frame address.
768   // An index of one to the parent's frame address, and so on.
769   // Depths > 0 not supported yet!
770   if (Op.getConstantOperandVal(0) > 0)
771     return SDValue();
772 
773   MachineFunction &MF = DAG.getMachineFunction();
774   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
775   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
776                             RegInfo->getFrameRegister(MF), MVT::i32);
777 }
778 
779 SDValue XCoreTargetLowering::
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const780 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
781   // This nodes represent llvm.returnaddress on the DAG.
782   // It takes one operand, the index of the return address to return.
783   // An index of zero corresponds to the current function's return address.
784   // An index of one to the parent's return address, and so on.
785   // Depths > 0 not supported yet!
786   if (Op.getConstantOperandVal(0) > 0)
787     return SDValue();
788 
789   MachineFunction &MF = DAG.getMachineFunction();
790   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
791   int FI = XFI->createLRSpillSlot(MF);
792   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
793   return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
794                      DAG.getEntryNode(), FIN,
795                      MachinePointerInfo::getFixedStack(MF, FI));
796 }
797 
798 SDValue XCoreTargetLowering::
LowerFRAME_TO_ARGS_OFFSET(SDValue Op,SelectionDAG & DAG) const799 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
800   // This node represents offset from frame pointer to first on-stack argument.
801   // This is needed for correct stack adjustment during unwind.
802   // However, we don't know the offset until after the frame has be finalised.
803   // This is done during the XCoreFTAOElim pass.
804   return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
805 }
806 
807 SDValue XCoreTargetLowering::
LowerEH_RETURN(SDValue Op,SelectionDAG & DAG) const808 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
809   // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
810   // This node represents 'eh_return' gcc dwarf builtin, which is used to
811   // return from exception. The general meaning is: adjust stack by OFFSET and
812   // pass execution to HANDLER.
813   MachineFunction &MF = DAG.getMachineFunction();
814   SDValue Chain     = Op.getOperand(0);
815   SDValue Offset    = Op.getOperand(1);
816   SDValue Handler   = Op.getOperand(2);
817   SDLoc dl(Op);
818 
819   // Absolute SP = (FP + FrameToArgs) + Offset
820   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
821   SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
822                             RegInfo->getFrameRegister(MF), MVT::i32);
823   SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
824                                     MVT::i32);
825   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
826   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
827 
828   // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
829   // which leaves 2 caller saved registers, R2 & R3 for us to use.
830   unsigned StackReg = XCore::R2;
831   unsigned HandlerReg = XCore::R3;
832 
833   SDValue OutChains[] = {
834     DAG.getCopyToReg(Chain, dl, StackReg, Stack),
835     DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
836   };
837 
838   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
839 
840   return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
841                      DAG.getRegister(StackReg, MVT::i32),
842                      DAG.getRegister(HandlerReg, MVT::i32));
843 
844 }
845 
846 SDValue XCoreTargetLowering::
LowerADJUST_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const847 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
848   return Op.getOperand(0);
849 }
850 
851 SDValue XCoreTargetLowering::
LowerINIT_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const852 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
853   SDValue Chain = Op.getOperand(0);
854   SDValue Trmp = Op.getOperand(1); // trampoline
855   SDValue FPtr = Op.getOperand(2); // nested function
856   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
857 
858   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
859 
860   // .align 4
861   // LDAPF_u10 r11, nest
862   // LDW_2rus r11, r11[0]
863   // STWSP_ru6 r11, sp[0]
864   // LDAPF_u10 r11, fptr
865   // LDW_2rus r11, r11[0]
866   // BAU_1r r11
867   // nest:
868   // .word nest
869   // fptr:
870   // .word fptr
871   SDValue OutChains[5];
872 
873   SDValue Addr = Trmp;
874 
875   SDLoc dl(Op);
876   OutChains[0] =
877       DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
878                    MachinePointerInfo(TrmpAddr));
879 
880   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
881                      DAG.getConstant(4, dl, MVT::i32));
882   OutChains[1] =
883       DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
884                    MachinePointerInfo(TrmpAddr, 4));
885 
886   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
887                      DAG.getConstant(8, dl, MVT::i32));
888   OutChains[2] =
889       DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
890                    MachinePointerInfo(TrmpAddr, 8));
891 
892   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
893                      DAG.getConstant(12, dl, MVT::i32));
894   OutChains[3] =
895       DAG.getStore(Chain, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12));
896 
897   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
898                      DAG.getConstant(16, dl, MVT::i32));
899   OutChains[4] =
900       DAG.getStore(Chain, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 16));
901 
902   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
903 }
904 
905 SDValue XCoreTargetLowering::
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const906 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
907   SDLoc DL(Op);
908   unsigned IntNo = Op.getConstantOperandVal(0);
909   switch (IntNo) {
910     case Intrinsic::xcore_crc8:
911       EVT VT = Op.getValueType();
912       SDValue Data =
913         DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
914                     Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
915       SDValue Crc(Data.getNode(), 1);
916       SDValue Results[] = { Crc, Data };
917       return DAG.getMergeValues(Results, DL);
918   }
919   return SDValue();
920 }
921 
922 SDValue XCoreTargetLowering::
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const923 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
924   SDLoc DL(Op);
925   return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
926 }
927 
928 //===----------------------------------------------------------------------===//
929 //                      Calling Convention Implementation
930 //===----------------------------------------------------------------------===//
931 
932 #include "XCoreGenCallingConv.inc"
933 
934 //===----------------------------------------------------------------------===//
935 //                  Call Calling Convention Implementation
936 //===----------------------------------------------------------------------===//
937 
938 /// XCore call implementation
939 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const940 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
941                                SmallVectorImpl<SDValue> &InVals) const {
942   SelectionDAG &DAG                     = CLI.DAG;
943   SDLoc &dl                             = CLI.DL;
944   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
945   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
946   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
947   SDValue Chain                         = CLI.Chain;
948   SDValue Callee                        = CLI.Callee;
949   bool &isTailCall                      = CLI.IsTailCall;
950   CallingConv::ID CallConv              = CLI.CallConv;
951   bool isVarArg                         = CLI.IsVarArg;
952 
953   // XCore target does not yet support tail call optimization.
954   isTailCall = false;
955 
956   // For now, only CallingConv::C implemented
957   switch (CallConv)
958   {
959     default:
960       report_fatal_error("Unsupported calling convention");
961     case CallingConv::Fast:
962     case CallingConv::C:
963       return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
964                             Outs, OutVals, Ins, dl, DAG, InVals);
965   }
966 }
967 
968 /// LowerCallResult - Lower the result values of a call into the
969 /// appropriate copies out of appropriate physical registers / memory locations.
LowerCallResult(SDValue Chain,SDValue InGlue,const SmallVectorImpl<CCValAssign> & RVLocs,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals)970 static SDValue LowerCallResult(SDValue Chain, SDValue InGlue,
971                                const SmallVectorImpl<CCValAssign> &RVLocs,
972                                const SDLoc &dl, SelectionDAG &DAG,
973                                SmallVectorImpl<SDValue> &InVals) {
974   SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
975   // Copy results out of physical registers.
976   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
977     const CCValAssign &VA = RVLocs[i];
978     if (VA.isRegLoc()) {
979       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
980                                  InGlue).getValue(1);
981       InGlue = Chain.getValue(2);
982       InVals.push_back(Chain.getValue(0));
983     } else {
984       assert(VA.isMemLoc());
985       ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
986                                              InVals.size()));
987       // Reserve space for this result.
988       InVals.push_back(SDValue());
989     }
990   }
991 
992   // Copy results out of memory.
993   SmallVector<SDValue, 4> MemOpChains;
994   for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
995     int offset = ResultMemLocs[i].first;
996     unsigned index = ResultMemLocs[i].second;
997     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
998     SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
999     SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1000     InVals[index] = load;
1001     MemOpChains.push_back(load.getValue(1));
1002   }
1003 
1004   // Transform all loads nodes into one single node because
1005   // all load nodes are independent of each other.
1006   if (!MemOpChains.empty())
1007     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1008 
1009   return Chain;
1010 }
1011 
1012 /// LowerCCCCallTo - functions arguments are copied from virtual
1013 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
1014 /// CALLSEQ_END are emitted.
1015 /// TODO: isTailCall, sret.
LowerCCCCallTo(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1016 SDValue XCoreTargetLowering::LowerCCCCallTo(
1017     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
1018     bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
1019     const SmallVectorImpl<SDValue> &OutVals,
1020     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1021     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1022 
1023   // Analyze operands of the call, assigning locations to each operand.
1024   SmallVector<CCValAssign, 16> ArgLocs;
1025   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1026                  *DAG.getContext());
1027 
1028   // The ABI dictates there should be one stack slot available to the callee
1029   // on function entry (for saving lr).
1030   CCInfo.AllocateStack(4, Align(4));
1031 
1032   CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1033 
1034   SmallVector<CCValAssign, 16> RVLocs;
1035   // Analyze return values to determine the number of bytes of stack required.
1036   CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1037                     *DAG.getContext());
1038   RetCCInfo.AllocateStack(CCInfo.getStackSize(), Align(4));
1039   RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1040 
1041   // Get a count of how many bytes are to be pushed on the stack.
1042   unsigned NumBytes = RetCCInfo.getStackSize();
1043 
1044   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1045 
1046   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1047   SmallVector<SDValue, 12> MemOpChains;
1048 
1049   // Walk the register/memloc assignments, inserting copies/loads.
1050   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1051     CCValAssign &VA = ArgLocs[i];
1052     SDValue Arg = OutVals[i];
1053 
1054     // Promote the value if needed.
1055     switch (VA.getLocInfo()) {
1056       default: llvm_unreachable("Unknown loc info!");
1057       case CCValAssign::Full: break;
1058       case CCValAssign::SExt:
1059         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1060         break;
1061       case CCValAssign::ZExt:
1062         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1063         break;
1064       case CCValAssign::AExt:
1065         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1066         break;
1067     }
1068 
1069     // Arguments that can be passed on register must be kept at
1070     // RegsToPass vector
1071     if (VA.isRegLoc()) {
1072       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1073     } else {
1074       assert(VA.isMemLoc());
1075 
1076       int Offset = VA.getLocMemOffset();
1077 
1078       MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1079                                         Chain, Arg,
1080                                         DAG.getConstant(Offset/4, dl,
1081                                                         MVT::i32)));
1082     }
1083   }
1084 
1085   // Transform all store nodes into one single node because
1086   // all store nodes are independent of each other.
1087   if (!MemOpChains.empty())
1088     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1089 
1090   // Build a sequence of copy-to-reg nodes chained together with token
1091   // chain and flag operands which copy the outgoing args into registers.
1092   // The InGlue in necessary since all emitted instructions must be
1093   // stuck together.
1094   SDValue InGlue;
1095   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1096     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1097                              RegsToPass[i].second, InGlue);
1098     InGlue = Chain.getValue(1);
1099   }
1100 
1101   // If the callee is a GlobalAddress node (quite common, every direct call is)
1102   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1103   // Likewise ExternalSymbol -> TargetExternalSymbol.
1104   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1105     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1106   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1107     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1108 
1109   // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1110   //             = Chain, Callee, Reg#1, Reg#2, ...
1111   //
1112   // Returns a chain & a flag for retval copy to use.
1113   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1114   SmallVector<SDValue, 8> Ops;
1115   Ops.push_back(Chain);
1116   Ops.push_back(Callee);
1117 
1118   // Add argument registers to the end of the list so that they are
1119   // known live into the call.
1120   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1121     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1122                                   RegsToPass[i].second.getValueType()));
1123 
1124   if (InGlue.getNode())
1125     Ops.push_back(InGlue);
1126 
1127   Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1128   InGlue = Chain.getValue(1);
1129 
1130   // Create the CALLSEQ_END node.
1131   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, dl);
1132   InGlue = Chain.getValue(1);
1133 
1134   // Handle result values, copying them out of physregs into vregs that we
1135   // return.
1136   return LowerCallResult(Chain, InGlue, RVLocs, dl, DAG, InVals);
1137 }
1138 
1139 //===----------------------------------------------------------------------===//
1140 //             Formal Arguments Calling Convention Implementation
1141 //===----------------------------------------------------------------------===//
1142 
1143 namespace {
1144   struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1145 }
1146 
1147 /// XCore formal arguments implementation
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1148 SDValue XCoreTargetLowering::LowerFormalArguments(
1149     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1150     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1151     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1152   switch (CallConv)
1153   {
1154     default:
1155       report_fatal_error("Unsupported calling convention");
1156     case CallingConv::C:
1157     case CallingConv::Fast:
1158       return LowerCCCArguments(Chain, CallConv, isVarArg,
1159                                Ins, dl, DAG, InVals);
1160   }
1161 }
1162 
1163 /// LowerCCCArguments - transform physical registers into
1164 /// virtual registers and generate load operations for
1165 /// arguments places on the stack.
1166 /// TODO: sret
LowerCCCArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1167 SDValue XCoreTargetLowering::LowerCCCArguments(
1168     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1169     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1170     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1171   MachineFunction &MF = DAG.getMachineFunction();
1172   MachineFrameInfo &MFI = MF.getFrameInfo();
1173   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1174   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1175 
1176   // Assign locations to all of the incoming arguments.
1177   SmallVector<CCValAssign, 16> ArgLocs;
1178   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1179                  *DAG.getContext());
1180 
1181   CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1182 
1183   unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1184 
1185   unsigned LRSaveSize = StackSlotSize;
1186 
1187   if (!isVarArg)
1188     XFI->setReturnStackOffset(CCInfo.getStackSize() + LRSaveSize);
1189 
1190   // All getCopyFromReg ops must precede any getMemcpys to prevent the
1191   // scheduler clobbering a register before it has been copied.
1192   // The stages are:
1193   // 1. CopyFromReg (and load) arg & vararg registers.
1194   // 2. Chain CopyFromReg nodes into a TokenFactor.
1195   // 3. Memcpy 'byVal' args & push final InVals.
1196   // 4. Chain mem ops nodes into a TokenFactor.
1197   SmallVector<SDValue, 4> CFRegNode;
1198   SmallVector<ArgDataPair, 4> ArgData;
1199   SmallVector<SDValue, 4> MemOps;
1200 
1201   // 1a. CopyFromReg (and load) arg registers.
1202   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1203 
1204     CCValAssign &VA = ArgLocs[i];
1205     SDValue ArgIn;
1206 
1207     if (VA.isRegLoc()) {
1208       // Arguments passed in registers
1209       EVT RegVT = VA.getLocVT();
1210       switch (RegVT.getSimpleVT().SimpleTy) {
1211       default:
1212         {
1213 #ifndef NDEBUG
1214           errs() << "LowerFormalArguments Unhandled argument type: "
1215                  << RegVT << "\n";
1216 #endif
1217           llvm_unreachable(nullptr);
1218         }
1219       case MVT::i32:
1220         Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1221         RegInfo.addLiveIn(VA.getLocReg(), VReg);
1222         ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1223         CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1224       }
1225     } else {
1226       // Only arguments passed on the stack should make it here.
1227       assert(VA.isMemLoc());
1228       // Load the argument to a virtual register
1229       unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1230       if (ObjSize > StackSlotSize) {
1231         errs() << "LowerFormalArguments Unhandled argument type: "
1232                << VA.getLocVT() << "\n";
1233       }
1234       // Create the frame index object for this incoming parameter...
1235       int FI = MFI.CreateFixedObject(ObjSize,
1236                                      LRSaveSize + VA.getLocMemOffset(),
1237                                      true);
1238 
1239       // Create the SelectionDAG nodes corresponding to a load
1240       //from this parameter
1241       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1242       ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1243                           MachinePointerInfo::getFixedStack(MF, FI));
1244     }
1245     const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1246     ArgData.push_back(ADP);
1247   }
1248 
1249   // 1b. CopyFromReg vararg registers.
1250   if (isVarArg) {
1251     // Argument registers
1252     static const MCPhysReg ArgRegs[] = {
1253       XCore::R0, XCore::R1, XCore::R2, XCore::R3
1254     };
1255     XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1256     unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1257     if (FirstVAReg < std::size(ArgRegs)) {
1258       int offset = 0;
1259       // Save remaining registers, storing higher register numbers at a higher
1260       // address
1261       for (int i = std::size(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1262         // Create a stack slot
1263         int FI = MFI.CreateFixedObject(4, offset, true);
1264         if (i == (int)FirstVAReg) {
1265           XFI->setVarArgsFrameIndex(FI);
1266         }
1267         offset -= StackSlotSize;
1268         SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1269         // Move argument from phys reg -> virt reg
1270         Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1271         RegInfo.addLiveIn(ArgRegs[i], VReg);
1272         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1273         CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1274         // Move argument from virt reg -> stack
1275         SDValue Store =
1276             DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
1277         MemOps.push_back(Store);
1278       }
1279     } else {
1280       // This will point to the next argument passed via stack.
1281       XFI->setVarArgsFrameIndex(
1282           MFI.CreateFixedObject(4, LRSaveSize + CCInfo.getStackSize(), true));
1283     }
1284   }
1285 
1286   // 2. chain CopyFromReg nodes into a TokenFactor.
1287   if (!CFRegNode.empty())
1288     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1289 
1290   // 3. Memcpy 'byVal' args & push final InVals.
1291   // Aggregates passed "byVal" need to be copied by the callee.
1292   // The callee will use a pointer to this copy, rather than the original
1293   // pointer.
1294   for (const ArgDataPair &ArgDI : ArgData) {
1295     if (ArgDI.Flags.isByVal() && ArgDI.Flags.getByValSize()) {
1296       unsigned Size = ArgDI.Flags.getByValSize();
1297       Align Alignment =
1298           std::max(Align(StackSlotSize), ArgDI.Flags.getNonZeroByValAlign());
1299       // Create a new object on the stack and copy the pointee into it.
1300       int FI = MFI.CreateStackObject(Size, Alignment, false);
1301       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1302       InVals.push_back(FIN);
1303       MemOps.push_back(DAG.getMemcpy(
1304           Chain, dl, FIN, ArgDI.SDV, DAG.getConstant(Size, dl, MVT::i32),
1305           Alignment, false, false, false, MachinePointerInfo(),
1306           MachinePointerInfo()));
1307     } else {
1308       InVals.push_back(ArgDI.SDV);
1309     }
1310   }
1311 
1312   // 4, chain mem ops nodes into a TokenFactor.
1313   if (!MemOps.empty()) {
1314     MemOps.push_back(Chain);
1315     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1316   }
1317 
1318   return Chain;
1319 }
1320 
1321 //===----------------------------------------------------------------------===//
1322 //               Return Value Calling Convention Implementation
1323 //===----------------------------------------------------------------------===//
1324 
1325 bool XCoreTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1326 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1327                bool isVarArg,
1328                const SmallVectorImpl<ISD::OutputArg> &Outs,
1329                LLVMContext &Context) const {
1330   SmallVector<CCValAssign, 16> RVLocs;
1331   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1332   if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1333     return false;
1334   if (CCInfo.getStackSize() != 0 && isVarArg)
1335     return false;
1336   return true;
1337 }
1338 
1339 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const1340 XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1341                                  bool isVarArg,
1342                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
1343                                  const SmallVectorImpl<SDValue> &OutVals,
1344                                  const SDLoc &dl, SelectionDAG &DAG) const {
1345 
1346   XCoreFunctionInfo *XFI =
1347     DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1348   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1349 
1350   // CCValAssign - represent the assignment of
1351   // the return value to a location
1352   SmallVector<CCValAssign, 16> RVLocs;
1353 
1354   // CCState - Info about the registers and stack slot.
1355   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1356                  *DAG.getContext());
1357 
1358   // Analyze return values.
1359   if (!isVarArg)
1360     CCInfo.AllocateStack(XFI->getReturnStackOffset(), Align(4));
1361 
1362   CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1363 
1364   SDValue Glue;
1365   SmallVector<SDValue, 4> RetOps(1, Chain);
1366 
1367   // Return on XCore is always a "retsp 0"
1368   RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
1369 
1370   SmallVector<SDValue, 4> MemOpChains;
1371   // Handle return values that must be copied to memory.
1372   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1373     CCValAssign &VA = RVLocs[i];
1374     if (VA.isRegLoc())
1375       continue;
1376     assert(VA.isMemLoc());
1377     if (isVarArg) {
1378       report_fatal_error("Can't return value from vararg function in memory");
1379     }
1380 
1381     int Offset = VA.getLocMemOffset();
1382     unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1383     // Create the frame index object for the memory location.
1384     int FI = MFI.CreateFixedObject(ObjSize, Offset, false);
1385 
1386     // Create a SelectionDAG node corresponding to a store
1387     // to this memory location.
1388     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1389     MemOpChains.push_back(DAG.getStore(
1390         Chain, dl, OutVals[i], FIN,
1391         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
1392   }
1393 
1394   // Transform all store nodes into one single node because
1395   // all stores are independent of each other.
1396   if (!MemOpChains.empty())
1397     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1398 
1399   // Now handle return values copied to registers.
1400   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1401     CCValAssign &VA = RVLocs[i];
1402     if (!VA.isRegLoc())
1403       continue;
1404     // Copy the result values into the output registers.
1405     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Glue);
1406 
1407     // guarantee that all emitted copies are
1408     // stuck together, avoiding something bad
1409     Glue = Chain.getValue(1);
1410     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1411   }
1412 
1413   RetOps[0] = Chain;  // Update chain.
1414 
1415   // Add the glue if we have it.
1416   if (Glue.getNode())
1417     RetOps.push_back(Glue);
1418 
1419   return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1420 }
1421 
1422 //===----------------------------------------------------------------------===//
1423 //  Other Lowering Code
1424 //===----------------------------------------------------------------------===//
1425 
1426 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const1427 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1428                                                  MachineBasicBlock *BB) const {
1429   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1430   DebugLoc dl = MI.getDebugLoc();
1431   assert((MI.getOpcode() == XCore::SELECT_CC) &&
1432          "Unexpected instr type to insert");
1433 
1434   // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1435   // control-flow pattern.  The incoming instruction knows the destination vreg
1436   // to set, the condition code register to branch on, the true/false values to
1437   // select between, and a branch opcode to use.
1438   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1439   MachineFunction::iterator It = ++BB->getIterator();
1440 
1441   //  thisMBB:
1442   //  ...
1443   //   TrueVal = ...
1444   //   cmpTY ccX, r1, r2
1445   //   bCC copy1MBB
1446   //   fallthrough --> copy0MBB
1447   MachineBasicBlock *thisMBB = BB;
1448   MachineFunction *F = BB->getParent();
1449   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1450   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1451   F->insert(It, copy0MBB);
1452   F->insert(It, sinkMBB);
1453 
1454   // Transfer the remainder of BB and its successor edges to sinkMBB.
1455   sinkMBB->splice(sinkMBB->begin(), BB,
1456                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1457   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1458 
1459   // Next, add the true and fallthrough blocks as its successors.
1460   BB->addSuccessor(copy0MBB);
1461   BB->addSuccessor(sinkMBB);
1462 
1463   BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1464       .addReg(MI.getOperand(1).getReg())
1465       .addMBB(sinkMBB);
1466 
1467   //  copy0MBB:
1468   //   %FalseValue = ...
1469   //   # fallthrough to sinkMBB
1470   BB = copy0MBB;
1471 
1472   // Update machine-CFG edges
1473   BB->addSuccessor(sinkMBB);
1474 
1475   //  sinkMBB:
1476   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1477   //  ...
1478   BB = sinkMBB;
1479   BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
1480       .addReg(MI.getOperand(3).getReg())
1481       .addMBB(copy0MBB)
1482       .addReg(MI.getOperand(2).getReg())
1483       .addMBB(thisMBB);
1484 
1485   MI.eraseFromParent(); // The pseudo instruction is gone now.
1486   return BB;
1487 }
1488 
1489 //===----------------------------------------------------------------------===//
1490 // Target Optimization Hooks
1491 //===----------------------------------------------------------------------===//
1492 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1493 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1494                                              DAGCombinerInfo &DCI) const {
1495   SelectionDAG &DAG = DCI.DAG;
1496   SDLoc dl(N);
1497   switch (N->getOpcode()) {
1498   default: break;
1499   case ISD::INTRINSIC_VOID:
1500     switch (N->getConstantOperandVal(1)) {
1501     case Intrinsic::xcore_outt:
1502     case Intrinsic::xcore_outct:
1503     case Intrinsic::xcore_chkct: {
1504       SDValue OutVal = N->getOperand(3);
1505       // These instructions ignore the high bits.
1506       if (OutVal.hasOneUse()) {
1507         unsigned BitWidth = OutVal.getValueSizeInBits();
1508         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1509         KnownBits Known;
1510         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1511                                               !DCI.isBeforeLegalizeOps());
1512         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1513         if (TLI.ShrinkDemandedConstant(OutVal, DemandedMask, TLO) ||
1514             TLI.SimplifyDemandedBits(OutVal, DemandedMask, Known, TLO))
1515           DCI.CommitTargetLoweringOpt(TLO);
1516       }
1517       break;
1518     }
1519     case Intrinsic::xcore_setpt: {
1520       SDValue Time = N->getOperand(3);
1521       // This instruction ignores the high bits.
1522       if (Time.hasOneUse()) {
1523         unsigned BitWidth = Time.getValueSizeInBits();
1524         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1525         KnownBits Known;
1526         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1527                                               !DCI.isBeforeLegalizeOps());
1528         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1529         if (TLI.ShrinkDemandedConstant(Time, DemandedMask, TLO) ||
1530             TLI.SimplifyDemandedBits(Time, DemandedMask, Known, TLO))
1531           DCI.CommitTargetLoweringOpt(TLO);
1532       }
1533       break;
1534     }
1535     }
1536     break;
1537   case XCoreISD::LADD: {
1538     SDValue N0 = N->getOperand(0);
1539     SDValue N1 = N->getOperand(1);
1540     SDValue N2 = N->getOperand(2);
1541     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1542     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1543     EVT VT = N0.getValueType();
1544 
1545     // canonicalize constant to RHS
1546     if (N0C && !N1C)
1547       return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1548 
1549     // fold (ladd 0, 0, x) -> 0, x & 1
1550     if (N0C && N0C->isZero() && N1C && N1C->isZero()) {
1551       SDValue Carry = DAG.getConstant(0, dl, VT);
1552       SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1553                                    DAG.getConstant(1, dl, VT));
1554       SDValue Ops[] = { Result, Carry };
1555       return DAG.getMergeValues(Ops, dl);
1556     }
1557 
1558     // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1559     // low bit set
1560     if (N1C && N1C->isZero() && N->hasNUsesOfValue(0, 1)) {
1561       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1562                                          VT.getSizeInBits() - 1);
1563       KnownBits Known = DAG.computeKnownBits(N2);
1564       if ((Known.Zero & Mask) == Mask) {
1565         SDValue Carry = DAG.getConstant(0, dl, VT);
1566         SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1567         SDValue Ops[] = { Result, Carry };
1568         return DAG.getMergeValues(Ops, dl);
1569       }
1570     }
1571   }
1572   break;
1573   case XCoreISD::LSUB: {
1574     SDValue N0 = N->getOperand(0);
1575     SDValue N1 = N->getOperand(1);
1576     SDValue N2 = N->getOperand(2);
1577     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1578     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1579     EVT VT = N0.getValueType();
1580 
1581     // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1582     if (N0C && N0C->isZero() && N1C && N1C->isZero()) {
1583       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1584                                          VT.getSizeInBits() - 1);
1585       KnownBits Known = DAG.computeKnownBits(N2);
1586       if ((Known.Zero & Mask) == Mask) {
1587         SDValue Borrow = N2;
1588         SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1589                                      DAG.getConstant(0, dl, VT), N2);
1590         SDValue Ops[] = { Result, Borrow };
1591         return DAG.getMergeValues(Ops, dl);
1592       }
1593     }
1594 
1595     // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1596     // low bit set
1597     if (N1C && N1C->isZero() && N->hasNUsesOfValue(0, 1)) {
1598       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1599                                          VT.getSizeInBits() - 1);
1600       KnownBits Known = DAG.computeKnownBits(N2);
1601       if ((Known.Zero & Mask) == Mask) {
1602         SDValue Borrow = DAG.getConstant(0, dl, VT);
1603         SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1604         SDValue Ops[] = { Result, Borrow };
1605         return DAG.getMergeValues(Ops, dl);
1606       }
1607     }
1608   }
1609   break;
1610   case XCoreISD::LMUL: {
1611     SDValue N0 = N->getOperand(0);
1612     SDValue N1 = N->getOperand(1);
1613     SDValue N2 = N->getOperand(2);
1614     SDValue N3 = N->getOperand(3);
1615     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1616     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1617     EVT VT = N0.getValueType();
1618     // Canonicalize multiplicative constant to RHS. If both multiplicative
1619     // operands are constant canonicalize smallest to RHS.
1620     if ((N0C && !N1C) ||
1621         (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1622       return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1623                          N1, N0, N2, N3);
1624 
1625     // lmul(x, 0, a, b)
1626     if (N1C && N1C->isZero()) {
1627       // If the high result is unused fold to add(a, b)
1628       if (N->hasNUsesOfValue(0, 0)) {
1629         SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1630         SDValue Ops[] = { Lo, Lo };
1631         return DAG.getMergeValues(Ops, dl);
1632       }
1633       // Otherwise fold to ladd(a, b, 0)
1634       SDValue Result =
1635         DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1636       SDValue Carry(Result.getNode(), 1);
1637       SDValue Ops[] = { Carry, Result };
1638       return DAG.getMergeValues(Ops, dl);
1639     }
1640   }
1641   break;
1642   case ISD::ADD: {
1643     // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1644     // lmul(x, y, a, b). The high result of lmul will be ignored.
1645     // This is only profitable if the intermediate results are unused
1646     // elsewhere.
1647     SDValue Mul0, Mul1, Addend0, Addend1;
1648     if (N->getValueType(0) == MVT::i32 &&
1649         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1650       SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1651                                     DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1652                                     Mul1, Addend0, Addend1);
1653       SDValue Result(Ignored.getNode(), 1);
1654       return Result;
1655     }
1656     APInt HighMask = APInt::getHighBitsSet(64, 32);
1657     // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1658     // lmul(x, y, a, b) if all operands are zero-extended. We do this
1659     // before type legalization as it is messy to match the operands after
1660     // that.
1661     if (N->getValueType(0) == MVT::i64 &&
1662         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1663         DAG.MaskedValueIsZero(Mul0, HighMask) &&
1664         DAG.MaskedValueIsZero(Mul1, HighMask) &&
1665         DAG.MaskedValueIsZero(Addend0, HighMask) &&
1666         DAG.MaskedValueIsZero(Addend1, HighMask)) {
1667       SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1668                                   Mul0, DAG.getConstant(0, dl, MVT::i32));
1669       SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1670                                   Mul1, DAG.getConstant(0, dl, MVT::i32));
1671       SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1672                                      Addend0, DAG.getConstant(0, dl, MVT::i32));
1673       SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1674                                      Addend1, DAG.getConstant(0, dl, MVT::i32));
1675       SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1676                                DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1677                                Addend0L, Addend1L);
1678       SDValue Lo(Hi.getNode(), 1);
1679       return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1680     }
1681   }
1682   break;
1683   case ISD::STORE: {
1684     // Replace unaligned store of unaligned load with memmove.
1685     StoreSDNode *ST = cast<StoreSDNode>(N);
1686     if (!DCI.isBeforeLegalize() ||
1687         allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
1688                                        ST->getMemoryVT(),
1689                                        *ST->getMemOperand()) ||
1690         ST->isVolatile() || ST->isIndexed()) {
1691       break;
1692     }
1693     SDValue Chain = ST->getChain();
1694 
1695     unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1696     assert((StoreBits % 8) == 0 &&
1697            "Store size in bits must be a multiple of 8");
1698     Align Alignment = ST->getAlign();
1699 
1700     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1701       if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1702         LD->getAlign() == Alignment &&
1703         !LD->isVolatile() && !LD->isIndexed() &&
1704         Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1705         bool isTail = isInTailCallPosition(DAG, ST, Chain);
1706         return DAG.getMemmove(Chain, dl, ST->getBasePtr(), LD->getBasePtr(),
1707                               DAG.getConstant(StoreBits / 8, dl, MVT::i32),
1708                               Alignment, false, isTail,
1709                               ST->getPointerInfo(), LD->getPointerInfo());
1710       }
1711     }
1712     break;
1713   }
1714   }
1715   return SDValue();
1716 }
1717 
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const1718 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1719                                                         KnownBits &Known,
1720                                                         const APInt &DemandedElts,
1721                                                         const SelectionDAG &DAG,
1722                                                         unsigned Depth) const {
1723   Known.resetAll();
1724   switch (Op.getOpcode()) {
1725   default: break;
1726   case XCoreISD::LADD:
1727   case XCoreISD::LSUB:
1728     if (Op.getResNo() == 1) {
1729       // Top bits of carry / borrow are clear.
1730       Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1731                                          Known.getBitWidth() - 1);
1732     }
1733     break;
1734   case ISD::INTRINSIC_W_CHAIN:
1735     {
1736     unsigned IntNo = Op.getConstantOperandVal(1);
1737     switch (IntNo) {
1738     case Intrinsic::xcore_getts:
1739       // High bits are known to be zero.
1740       Known.Zero =
1741           APInt::getHighBitsSet(Known.getBitWidth(), Known.getBitWidth() - 16);
1742       break;
1743     case Intrinsic::xcore_int:
1744     case Intrinsic::xcore_inct:
1745       // High bits are known to be zero.
1746       Known.Zero =
1747           APInt::getHighBitsSet(Known.getBitWidth(), Known.getBitWidth() - 8);
1748       break;
1749     case Intrinsic::xcore_testct:
1750       // Result is either 0 or 1.
1751       Known.Zero =
1752           APInt::getHighBitsSet(Known.getBitWidth(), Known.getBitWidth() - 1);
1753       break;
1754     case Intrinsic::xcore_testwct:
1755       // Result is in the range 0 - 4.
1756       Known.Zero =
1757           APInt::getHighBitsSet(Known.getBitWidth(), Known.getBitWidth() - 3);
1758       break;
1759     }
1760     }
1761     break;
1762   }
1763 }
1764 
1765 //===----------------------------------------------------------------------===//
1766 //  Addressing mode description hooks
1767 //===----------------------------------------------------------------------===//
1768 
isImmUs(int64_t val)1769 static inline bool isImmUs(int64_t val)
1770 {
1771   return (val >= 0 && val <= 11);
1772 }
1773 
isImmUs2(int64_t val)1774 static inline bool isImmUs2(int64_t val)
1775 {
1776   return (val%2 == 0 && isImmUs(val/2));
1777 }
1778 
isImmUs4(int64_t val)1779 static inline bool isImmUs4(int64_t val)
1780 {
1781   return (val%4 == 0 && isImmUs(val/4));
1782 }
1783 
1784 /// isLegalAddressingMode - Return true if the addressing mode represented
1785 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const1786 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1787                                                 const AddrMode &AM, Type *Ty,
1788                                                 unsigned AS,
1789                                                 Instruction *I) const {
1790   if (Ty->getTypeID() == Type::VoidTyID)
1791     return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1792 
1793   unsigned Size = DL.getTypeAllocSize(Ty);
1794   if (AM.BaseGV) {
1795     return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1796                  AM.BaseOffs%4 == 0;
1797   }
1798 
1799   switch (Size) {
1800   case 1:
1801     // reg + imm
1802     if (AM.Scale == 0) {
1803       return isImmUs(AM.BaseOffs);
1804     }
1805     // reg + reg
1806     return AM.Scale == 1 && AM.BaseOffs == 0;
1807   case 2:
1808   case 3:
1809     // reg + imm
1810     if (AM.Scale == 0) {
1811       return isImmUs2(AM.BaseOffs);
1812     }
1813     // reg + reg<<1
1814     return AM.Scale == 2 && AM.BaseOffs == 0;
1815   default:
1816     // reg + imm
1817     if (AM.Scale == 0) {
1818       return isImmUs4(AM.BaseOffs);
1819     }
1820     // reg + reg<<2
1821     return AM.Scale == 4 && AM.BaseOffs == 0;
1822   }
1823 }
1824 
1825 //===----------------------------------------------------------------------===//
1826 //                           XCore Inline Assembly Support
1827 //===----------------------------------------------------------------------===//
1828 
1829 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const1830 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1831                                                   StringRef Constraint,
1832                                                   MVT VT) const {
1833   if (Constraint.size() == 1) {
1834     switch (Constraint[0]) {
1835     default : break;
1836     case 'r':
1837       return std::make_pair(0U, &XCore::GRRegsRegClass);
1838     }
1839   }
1840   // Use the default implementation in TargetLowering to convert the register
1841   // constraint into a member of a register class.
1842   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1843 }
1844