1 /*
2  * © Copyright 2017-2018 Alyssa Rosenzweig
3  * © Copyright 2017-2018 Connor Abbott
4  * © Copyright 2017-2018 Lyude Paul
5  * © Copyright2019 Collabora, Ltd.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24  * SOFTWARE.
25  *
26  */
27 
28 #ifndef __PANFROST_JOB_H__
29 #define __PANFROST_JOB_H__
30 
31 #include <stdint.h>
32 #include <stdbool.h>
33 #include <panfrost-misc.h>
34 
35 enum mali_job_type {
36         JOB_NOT_STARTED	= 0,
37         JOB_TYPE_NULL = 1,
38         JOB_TYPE_WRITE_VALUE = 2,
39         JOB_TYPE_CACHE_FLUSH = 3,
40         JOB_TYPE_COMPUTE = 4,
41         JOB_TYPE_VERTEX = 5,
42         JOB_TYPE_GEOMETRY = 6,
43         JOB_TYPE_TILER = 7,
44         JOB_TYPE_FUSED = 8,
45         JOB_TYPE_FRAGMENT = 9,
46 };
47 
48 enum mali_draw_mode {
49         MALI_DRAW_NONE      = 0x0,
50         MALI_POINTS         = 0x1,
51         MALI_LINES          = 0x2,
52         MALI_LINE_STRIP     = 0x4,
53         MALI_LINE_LOOP      = 0x6,
54         MALI_TRIANGLES      = 0x8,
55         MALI_TRIANGLE_STRIP = 0xA,
56         MALI_TRIANGLE_FAN   = 0xC,
57         MALI_POLYGON        = 0xD,
58         MALI_QUADS          = 0xE,
59         MALI_QUAD_STRIP     = 0xF,
60 
61         /* All other modes invalid */
62 };
63 
64 /* Applies to tiler_gl_enables */
65 
66 #define MALI_OCCLUSION_QUERY    (1 << 3)
67 #define MALI_OCCLUSION_PRECISE  (1 << 4)
68 
69 /* Set for a glFrontFace(GL_CCW) in a Y=0=TOP coordinate system (like Gallium).
70  * In OpenGL, this would corresponds to glFrontFace(GL_CW). Mesa and the blob
71  * disagree about how to do viewport flipping, so the blob actually sets this
72  * for GL_CW but then has a negative viewport stride */
73 
74 #define MALI_FRONT_CCW_TOP      (1 << 5)
75 
76 #define MALI_CULL_FACE_FRONT    (1 << 6)
77 #define MALI_CULL_FACE_BACK     (1 << 7)
78 
79 /* Used in stencil and depth tests */
80 
81 enum mali_func {
82         MALI_FUNC_NEVER    = 0,
83         MALI_FUNC_LESS     = 1,
84         MALI_FUNC_EQUAL    = 2,
85         MALI_FUNC_LEQUAL   = 3,
86         MALI_FUNC_GREATER  = 4,
87         MALI_FUNC_NOTEQUAL = 5,
88         MALI_FUNC_GEQUAL   = 6,
89         MALI_FUNC_ALWAYS   = 7
90 };
91 
92 /* Flags apply to unknown2_3? */
93 
94 #define MALI_HAS_MSAA		(1 << 0)
95 
96 /* Execute fragment shader per-sample if set (e.g. to implement gl_SampleID
97  * reads) */
98 #define MALI_PER_SAMPLE         (1 << 2)
99 #define MALI_CAN_DISCARD 	(1 << 5)
100 
101 /* Applies on SFBD systems, specifying that programmable blending is in use */
102 #define MALI_HAS_BLEND_SHADER 	(1 << 6)
103 
104 /* func is mali_func */
105 #define MALI_DEPTH_FUNC(func)	   (func << 8)
106 #define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
107 #define MALI_DEPTH_FUNC_MASK	   MALI_DEPTH_FUNC(0x7)
108 
109 #define MALI_DEPTH_WRITEMASK    (1 << 11)
110 
111 #define MALI_DEPTH_CLIP_NEAR    (1 << 12)
112 #define MALI_DEPTH_CLIP_FAR     (1 << 13)
113 
114 /* Next flags to unknown2_4 */
115 #define MALI_STENCIL_TEST      	(1 << 0)
116 
117 #define MALI_ALPHA_TO_COVERAGE (1 << 1)
118 
119 #define MALI_NO_DITHER		(1 << 9)
120 #define MALI_DEPTH_RANGE_A	(1 << 12)
121 #define MALI_DEPTH_RANGE_B	(1 << 13)
122 #define MALI_NO_MSAA		(1 << 14)
123 
124 /* Stencil test state is all encoded in a single u32, just with a lot of
125  * enums... */
126 
127 enum mali_stencil_op {
128         MALI_STENCIL_KEEP 	= 0,
129         MALI_STENCIL_REPLACE 	= 1,
130         MALI_STENCIL_ZERO 	= 2,
131         MALI_STENCIL_INVERT 	= 3,
132         MALI_STENCIL_INCR_WRAP 	= 4,
133         MALI_STENCIL_DECR_WRAP 	= 5,
134         MALI_STENCIL_INCR 	= 6,
135         MALI_STENCIL_DECR 	= 7
136 };
137 
138 struct mali_stencil_test {
139         unsigned ref  			: 8;
140         unsigned mask 			: 8;
141         enum mali_func func 		: 3;
142         enum mali_stencil_op sfail 	: 3;
143         enum mali_stencil_op dpfail 	: 3;
144         enum mali_stencil_op dppass 	: 3;
145         unsigned zero			: 4;
146 } __attribute__((packed));
147 
148 #define MALI_MASK_R (1 << 0)
149 #define MALI_MASK_G (1 << 1)
150 #define MALI_MASK_B (1 << 2)
151 #define MALI_MASK_A (1 << 3)
152 
153 enum mali_nondominant_mode {
154         MALI_BLEND_NON_MIRROR = 0,
155         MALI_BLEND_NON_ZERO = 1
156 };
157 
158 enum mali_dominant_blend {
159         MALI_BLEND_DOM_SOURCE = 0,
160         MALI_BLEND_DOM_DESTINATION  = 1
161 };
162 
163 enum mali_dominant_factor {
164         MALI_DOMINANT_UNK0 = 0,
165         MALI_DOMINANT_ZERO = 1,
166         MALI_DOMINANT_SRC_COLOR = 2,
167         MALI_DOMINANT_DST_COLOR = 3,
168         MALI_DOMINANT_UNK4 = 4,
169         MALI_DOMINANT_SRC_ALPHA = 5,
170         MALI_DOMINANT_DST_ALPHA = 6,
171         MALI_DOMINANT_CONSTANT = 7,
172 };
173 
174 enum mali_blend_modifier {
175         MALI_BLEND_MOD_UNK0 = 0,
176         MALI_BLEND_MOD_NORMAL = 1,
177         MALI_BLEND_MOD_SOURCE_ONE = 2,
178         MALI_BLEND_MOD_DEST_ONE = 3,
179 };
180 
181 struct mali_blend_mode {
182         enum mali_blend_modifier clip_modifier : 2;
183         unsigned unused_0 : 1;
184         unsigned negate_source : 1;
185 
186         enum mali_dominant_blend dominant : 1;
187 
188         enum mali_nondominant_mode nondominant_mode : 1;
189 
190         unsigned unused_1 : 1;
191 
192         unsigned negate_dest : 1;
193 
194         enum mali_dominant_factor dominant_factor : 3;
195         unsigned complement_dominant : 1;
196 } __attribute__((packed));
197 
198 struct mali_blend_equation {
199         /* Of type mali_blend_mode */
200         unsigned rgb_mode : 12;
201         unsigned alpha_mode : 12;
202 
203         unsigned zero1 : 4;
204 
205         /* Corresponds to MALI_MASK_* above and glColorMask arguments */
206 
207         unsigned color_mask : 4;
208 } __attribute__((packed));
209 
210 /* Used with channel swizzling */
211 enum mali_channel {
212 	MALI_CHANNEL_RED = 0,
213 	MALI_CHANNEL_GREEN = 1,
214 	MALI_CHANNEL_BLUE = 2,
215 	MALI_CHANNEL_ALPHA = 3,
216 	MALI_CHANNEL_ZERO = 4,
217 	MALI_CHANNEL_ONE = 5,
218 	MALI_CHANNEL_RESERVED_0 = 6,
219 	MALI_CHANNEL_RESERVED_1 = 7,
220 };
221 
222 struct mali_channel_swizzle {
223 	enum mali_channel r : 3;
224 	enum mali_channel g : 3;
225 	enum mali_channel b : 3;
226 	enum mali_channel a : 3;
227 } __attribute__((packed));
228 
229 /* Compressed per-pixel formats. Each of these formats expands to one to four
230  * floating-point or integer numbers, as defined by the OpenGL specification.
231  * There are various places in OpenGL where the user can specify a compressed
232  * format in memory, which all use the same 8-bit enum in the various
233  * descriptors, although different hardware units support different formats.
234  */
235 
236 /* The top 3 bits specify how the bits of each component are interpreted. */
237 
238 /* e.g. ETC2_RGB8 */
239 #define MALI_FORMAT_COMPRESSED (0 << 5)
240 
241 /* e.g. R11F_G11F_B10F */
242 #define MALI_FORMAT_SPECIAL (2 << 5)
243 
244 /* signed normalized, e.g. RGBA8_SNORM */
245 #define MALI_FORMAT_SNORM (3 << 5)
246 
247 /* e.g. RGBA8UI */
248 #define MALI_FORMAT_UINT (4 << 5)
249 
250 /* e.g. RGBA8 and RGBA32F */
251 #define MALI_FORMAT_UNORM (5 << 5)
252 
253 /* e.g. RGBA8I and RGBA16F */
254 #define MALI_FORMAT_SINT (6 << 5)
255 
256 /* These formats seem to largely duplicate the others. They're used at least
257  * for Bifrost framebuffer output.
258  */
259 #define MALI_FORMAT_SPECIAL2 (7 << 5)
260 #define MALI_EXTRACT_TYPE(fmt) ((fmt) & 0xe0)
261 
262 /* If the high 3 bits are 3 to 6 these two bits say how many components
263  * there are.
264  */
265 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
266 #define MALI_EXTRACT_CHANNELS(fmt) ((((fmt) >> 3) & 3) + 1)
267 
268 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
269  * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
270  * bits mean.
271  */
272 
273 #define MALI_CHANNEL_4 2
274 
275 #define MALI_CHANNEL_8 3
276 
277 #define MALI_CHANNEL_16 4
278 
279 #define MALI_CHANNEL_32 5
280 
281 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
282  * MALI_FORMAT_UNORM, it means a 32-bit float.
283  */
284 #define MALI_CHANNEL_FLOAT 7
285 #define MALI_EXTRACT_BITS(fmt) (fmt & 0x7)
286 
287 enum mali_format {
288         /* Not all formats are in fact available, need to query dynamically to
289          * check. Factory settings for Juno enables only ETC2 and ASTC, no
290          * DXT/RGTC formats.
291          * */
292 
293         /* 0x0 invalid */
294 	MALI_ETC2_RGB8       = MALI_FORMAT_COMPRESSED | 0x1,
295 	MALI_ETC2_R11_UNORM  = MALI_FORMAT_COMPRESSED | 0x2,
296 	MALI_ETC2_RGBA8      = MALI_FORMAT_COMPRESSED | 0x3,
297 	MALI_ETC2_RG11_UNORM = MALI_FORMAT_COMPRESSED | 0x4,
298         /* 0x5 reserved */
299         MALI_NXR             = MALI_FORMAT_COMPRESSED | 0x6, /* Nokia eXtended Range */
300         MALI_BC1_UNORM       = MALI_FORMAT_COMPRESSED | 0x7, /* DXT1 */
301         MALI_BC2_UNORM       = MALI_FORMAT_COMPRESSED | 0x8, /* DXT3 */
302         MALI_BC3_UNORM       = MALI_FORMAT_COMPRESSED | 0x9, /* DXT5 */
303         MALI_BC4_UNORM       = MALI_FORMAT_COMPRESSED | 0xA, /* RGTC1_UNORM */
304         MALI_BC4_SNORM       = MALI_FORMAT_COMPRESSED | 0xB, /* RGTC1_SNORM */
305         MALI_BC5_UNORM       = MALI_FORMAT_COMPRESSED | 0xC, /* RGTC2_UNORM */
306         MALI_BC5_SNORM       = MALI_FORMAT_COMPRESSED | 0xD, /* RGTC2_SNORM */
307         MALI_BC6H_UF16       = MALI_FORMAT_COMPRESSED | 0xE,
308         MALI_BC6H_SF16       = MALI_FORMAT_COMPRESSED | 0xF,
309         MALI_BC7_UNORM       = MALI_FORMAT_COMPRESSED | 0x10,
310 	MALI_ETC2_R11_SNORM  = MALI_FORMAT_COMPRESSED | 0x11, /* EAC_SNORM */
311 	MALI_ETC2_RG11_SNORM = MALI_FORMAT_COMPRESSED | 0x12, /* EAC_SNORM */
312 	MALI_ETC2_RGB8A1     = MALI_FORMAT_COMPRESSED | 0x13,
313 	MALI_ASTC_3D_LDR     = MALI_FORMAT_COMPRESSED | 0x14,
314 	MALI_ASTC_3D_HDR     = MALI_FORMAT_COMPRESSED | 0x15,
315 	MALI_ASTC_2D_LDR     = MALI_FORMAT_COMPRESSED | 0x16,
316 	MALI_ASTC_2D_HDR     = MALI_FORMAT_COMPRESSED | 0x17,
317 
318 	MALI_RGB565         = MALI_FORMAT_SPECIAL | 0x0,
319 	MALI_RGB5_X1_UNORM  = MALI_FORMAT_SPECIAL | 0x1,
320 	MALI_RGB5_A1_UNORM  = MALI_FORMAT_SPECIAL | 0x2,
321 	MALI_RGB10_A2_UNORM = MALI_FORMAT_SPECIAL | 0x3,
322 	MALI_RGB10_A2_SNORM = MALI_FORMAT_SPECIAL | 0x5,
323 	MALI_RGB10_A2UI     = MALI_FORMAT_SPECIAL | 0x7,
324 	MALI_RGB10_A2I      = MALI_FORMAT_SPECIAL | 0x9,
325 
326 	MALI_RGB332_UNORM   = MALI_FORMAT_SPECIAL | 0xb,
327 	MALI_RGB233_UNORM   = MALI_FORMAT_SPECIAL | 0xc,
328 
329 	MALI_Z24X8_UNORM    = MALI_FORMAT_SPECIAL | 0xd,
330 	MALI_R32_FIXED      = MALI_FORMAT_SPECIAL | 0x11,
331 	MALI_RG32_FIXED     = MALI_FORMAT_SPECIAL | 0x12,
332 	MALI_RGB32_FIXED    = MALI_FORMAT_SPECIAL | 0x13,
333 	MALI_RGBA32_FIXED   = MALI_FORMAT_SPECIAL | 0x14,
334 	MALI_R11F_G11F_B10F = MALI_FORMAT_SPECIAL | 0x19,
335         MALI_R9F_G9F_B9F_E5F = MALI_FORMAT_SPECIAL | 0x1b,
336 	/* Only used for varyings, to indicate the transformed gl_Position */
337 	MALI_VARYING_POS    = MALI_FORMAT_SPECIAL | 0x1e,
338 	/* Only used for varyings, to indicate that the write should be
339 	 * discarded.
340 	 */
341 	MALI_VARYING_DISCARD = MALI_FORMAT_SPECIAL | 0x1f,
342 
343 	MALI_R8_SNORM     = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
344 	MALI_R16_SNORM    = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
345 	MALI_R32_SNORM    = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
346 	MALI_RG8_SNORM    = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
347 	MALI_RG16_SNORM   = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
348 	MALI_RG32_SNORM   = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
349 	MALI_RGB8_SNORM   = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
350 	MALI_RGB16_SNORM  = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
351 	MALI_RGB32_SNORM  = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
352 	MALI_RGBA8_SNORM  = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
353 	MALI_RGBA16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
354 	MALI_RGBA32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
355 
356 	MALI_R8UI     = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
357 	MALI_R16UI    = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
358 	MALI_R32UI    = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
359 	MALI_RG8UI    = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
360 	MALI_RG16UI   = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
361 	MALI_RG32UI   = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
362 	MALI_RGB8UI   = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
363 	MALI_RGB16UI  = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
364 	MALI_RGB32UI  = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
365 	MALI_RGBA8UI  = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
366 	MALI_RGBA16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
367 	MALI_RGBA32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
368 
369 	MALI_R8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
370 	MALI_R16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
371 	MALI_R32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
372 	MALI_R32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
373 	MALI_RG8_UNORM    = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
374 	MALI_RG16_UNORM   = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
375 	MALI_RG32_UNORM   = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
376 	MALI_RG32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
377 	MALI_RGB8_UNORM   = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
378 	MALI_RGB16_UNORM  = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
379 	MALI_RGB32_UNORM  = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
380 	MALI_RGB32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
381 	MALI_RGBA4_UNORM  = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_4,
382 	MALI_RGBA8_UNORM  = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
383 	MALI_RGBA16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
384 	MALI_RGBA32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
385 	MALI_RGBA32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
386 
387 	MALI_R8I     = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
388 	MALI_R16I    = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
389 	MALI_R32I    = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
390 	MALI_R16F    = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
391 	MALI_RG8I    = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
392 	MALI_RG16I   = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
393 	MALI_RG32I   = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
394 	MALI_RG16F   = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
395 	MALI_RGB8I   = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
396 	MALI_RGB16I  = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
397 	MALI_RGB32I  = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
398 	MALI_RGB16F  = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
399 	MALI_RGBA8I  = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
400 	MALI_RGBA16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
401 	MALI_RGBA32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
402 	MALI_RGBA16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
403 
404 	MALI_RGBA4      = MALI_FORMAT_SPECIAL2 | 0x8,
405 	MALI_RGBA8_2    = MALI_FORMAT_SPECIAL2 | 0xd,
406 	MALI_RGB10_A2_2 = MALI_FORMAT_SPECIAL2 | 0xe,
407 };
408 
409 
410 /* Applies to midgard1.flags_lo */
411 
412 /* Should be set when the fragment shader updates the depth value. */
413 #define MALI_WRITES_Z (1 << 4)
414 
415 /* Should the hardware perform early-Z testing? Set if the shader does not use
416  * discard, alpha-to-coverage, shader depth writes, and if the shader has no
417  * side effects (writes to global memory or images) unless early-z testing is
418  * forced in the shader.
419  */
420 
421 #define MALI_EARLY_Z (1 << 6)
422 
423 /* Should the hardware calculate derivatives (via helper invocations)? Set in a
424  * fragment shader that uses texturing or derivative functions */
425 
426 #define MALI_HELPER_INVOCATIONS (1 << 7)
427 
428 /* Flags denoting the fragment shader's use of tilebuffer readback. If the
429  * shader might read any part of the tilebuffer, set MALI_READS_TILEBUFFER. If
430  * it might read depth/stencil in particular, also set MALI_READS_ZS */
431 
432 #define MALI_READS_ZS (1 << 8)
433 
434 /* The shader might write to global memory (via OpenCL, SSBOs, or images).
435  * Reading is okay, as are ordinary writes to the tilebuffer/varyings. Setting
436  * incurs a performance penalty. On a fragment shader, this bit implies there
437  * are side effects, hence it interacts with early-z. */
438 #define MALI_WRITES_GLOBAL (1 << 9)
439 
440 #define MALI_READS_TILEBUFFER (1 << 10)
441 
442 /* Applies to midgard1.flags_hi */
443 
444 /* Should be set when the fragment shader updates the stencil value. */
445 #define MALI_WRITES_S (1 << 2)
446 
447 /* Mode to suppress generation of Infinity and NaN values by clamping inf
448  * (-inf) to MAX_FLOAT (-MIN_FLOAT) and flushing NaN to 0.0
449  *
450  * Compare suppress_inf/suppress_nan flags on the Bifrost clause header for the
451  * same functionality.
452  *
453  * This is not conformant on GLES3 or OpenCL, but is optional on GLES2, where
454  * it works around app bugs (e.g. in glmark2-es2 -bterrain with FP16).
455  */
456 #define MALI_SUPPRESS_INF_NAN (1 << 3)
457 
458 /* Flags for bifrost1.unk1 */
459 
460 /* Shader uses less than 32 registers, partitioned as [R0, R15] U [R48, R63],
461  * allowing for full thread count. If clear, the full [R0, R63] register set is
462  * available at half thread count */
463 #define MALI_BIFROST_FULL_THREAD (1 << 9)
464 
465 /* Enable early-z testing (presumably). This flag may not be set if the shader:
466  *
467  *  - Uses blending
468  *  - Uses discard
469  *  - Writes gl_FragDepth
470  *
471  * This differs from Midgard which sets the MALI_EARLY_Z flag even with
472  * blending, although I've begun to suspect that flag does not in fact enable
473  * EARLY_Z alone. */
474 #define MALI_BIFROST_EARLY_Z (1 << 15)
475 
476 /* First clause type is ATEST */
477 #define MALI_BIFROST_FIRST_ATEST (1 << 26)
478 
479 /* The raw Midgard blend payload can either be an equation or a shader
480  * address, depending on the context */
481 
482 union midgard_blend {
483         mali_ptr shader;
484 
485         struct {
486                 struct mali_blend_equation equation;
487                 float constant;
488         };
489 };
490 
491 /* We need to load the tilebuffer to blend (i.e. the destination factor is not
492  * ZERO) */
493 
494 #define MALI_BLEND_LOAD_TIB (0x1)
495 
496 /* A blend shader is used to blend this render target */
497 #define MALI_BLEND_MRT_SHADER (0x2)
498 
499 /* On MRT Midgard systems (using an MFBD), each render target gets its own
500  * blend descriptor */
501 
502 #define MALI_BLEND_SRGB (0x400)
503 
504 /* Dithering is specified here for MFBD, otherwise NO_DITHER for SFBD */
505 #define MALI_BLEND_NO_DITHER (0x800)
506 
507 struct midgard_blend_rt {
508         /* Flags base value of 0x200 to enable the render target.
509          * OR with 0x1 for blending (anything other than REPLACE).
510          * OR with 0x2 for programmable blending
511          * OR with MALI_BLEND_SRGB for implicit sRGB
512          */
513 
514         u64 flags;
515         union midgard_blend blend;
516 } __attribute__((packed));
517 
518 /* On Bifrost systems (all MRT), each render target gets one of these
519  * descriptors */
520 
521 enum bifrost_shader_type {
522         BIFROST_BLEND_F16 = 0,
523         BIFROST_BLEND_F32 = 1,
524         BIFROST_BLEND_I32 = 2,
525         BIFROST_BLEND_U32 = 3,
526         BIFROST_BLEND_I16 = 4,
527         BIFROST_BLEND_U16 = 5,
528 };
529 
530 #define BIFROST_MAX_RENDER_TARGET_COUNT 8
531 
532 struct bifrost_blend_rt {
533         /* This is likely an analogue of the flags on
534          * midgard_blend_rt */
535 
536         u16 flags; // = 0x200
537 
538         /* Single-channel blend constants are encoded in a sort of
539          * fixed-point. Basically, the float is mapped to a byte, becoming
540          * a high byte, and then the lower-byte is added for precision.
541          * For the original float f:
542          *
543          * f = (constant_hi / 255) + (constant_lo / 65535)
544          *
545          * constant_hi = int(f / 255)
546          * constant_lo = 65535*f - (65535/255) * constant_hi
547          */
548         u16 constant;
549 
550         struct mali_blend_equation equation;
551 
552         /*
553          * - 0x19 normally
554          * - 0x3 when this slot is unused (everything else is 0 except the index)
555          * - 0x11 when this is the fourth slot (and it's used)
556          * - 0 when there is a blend shader
557          */
558         u16 unk2;
559 
560         /* increments from 0 to 3 */
561         u16 index;
562 
563         union {
564                 struct {
565                         /* So far, I've only seen:
566                          * - R001 for 1-component formats
567                          * - RG01 for 2-component formats
568                          * - RGB1 for 3-component formats
569                          * - RGBA for 4-component formats
570                          */
571                         u32 swizzle : 12;
572                         enum mali_format format : 8;
573 
574                         /* Type of the shader output variable. Note, this can
575                           * be different from the format.
576                           * enum bifrost_shader_type
577                          */
578                         u32 zero1 : 4;
579                         u32 shader_type : 3;
580                         u32 zero2 : 5;
581                 };
582 
583                 /* Only the low 32 bits of the blend shader are stored, the
584                  * high 32 bits are implicitly the same as the original shader.
585                  * According to the kernel driver, the program counter for
586                  * shaders is actually only 24 bits, so shaders cannot cross
587                  * the 2^24-byte boundary, and neither can the blend shader.
588                  * The blob handles this by allocating a 2^24 byte pool for
589                  * shaders, and making sure that any blend shaders are stored
590                  * in the same pool as the original shader. The kernel will
591                  * make sure this allocation is aligned to 2^24 bytes.
592                  */
593                 u32 shader;
594         };
595 } __attribute__((packed));
596 
597 /* Descriptor for the shader. Following this is at least one, up to four blend
598  * descriptors for each active render target */
599 
600 struct mali_shader_meta {
601         mali_ptr shader;
602         u16 sampler_count;
603         u16 texture_count;
604         u16 attribute_count;
605         u16 varying_count;
606 
607         union {
608                 struct {
609                         u32 uniform_buffer_count : 4;
610                         u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler
611                 } bifrost1;
612                 struct {
613                         unsigned uniform_buffer_count : 4;
614                         unsigned flags_lo : 12;
615 
616                         /* vec4 units */
617                         unsigned work_count : 5;
618                         unsigned uniform_count : 5;
619                         unsigned flags_hi : 6;
620                 } midgard1;
621         };
622 
623         /* Same as glPolygoOffset() arguments */
624         float depth_units;
625         float depth_factor;
626 
627         u32 unknown2_2;
628 
629         /* Generated from SAMPLE_COVERAGE_VALUE and SAMPLE_COVERAGE_INVERT. See
630          * 13.8.3 ("Multisample Fragment Operations") in the OpenGL ES 3.2
631          * specification. Only matters when multisampling is enabled. */
632         u16 coverage_mask;
633 
634         u16 unknown2_3;
635 
636         u8 stencil_mask_front;
637         u8 stencil_mask_back;
638         u16 unknown2_4;
639 
640         struct mali_stencil_test stencil_front;
641         struct mali_stencil_test stencil_back;
642 
643         union {
644                 struct {
645                         u32 unk3 : 7;
646                         /* On Bifrost, some system values are preloaded in
647                          * registers R55-R62 by the thread dispatcher prior to
648                          * the start of shader execution. This is a bitfield
649                          * with one entry for each register saying which
650                          * registers need to be preloaded. Right now, the known
651                          * values are:
652                          *
653                          * Vertex/compute:
654                          * - R55 : gl_LocalInvocationID.xy
655                          * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
656                          * - R57 : gl_WorkGroupID.x
657                          * - R58 : gl_WorkGroupID.y
658                          * - R59 : gl_WorkGroupID.z
659                          * - R60 : gl_GlobalInvocationID.x
660                          * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
661                          * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
662                          *
663                          * Fragment:
664                          * - R55 : unknown, never seen (but the bit for this is
665                          *   always set?)
666                          * - R56 : unknown (bit always unset)
667                          * - R57 : gl_PrimitiveID
668                          * - R58 : gl_FrontFacing in low bit, potentially other stuff
669                          * - R59 : u16 fragment coordinates (used to compute
670                          *   gl_FragCoord.xy, together with sample positions)
671                          * - R60 : gl_SampleMask (used in epilog, so pretty
672                          *   much always used, but the bit is always 0 -- is
673                          *   this just always pushed?)
674                          * - R61 : gl_SampleMaskIn and gl_SampleID, used by
675                          *   varying interpolation.
676                          * - R62 : unknown (bit always unset).
677                          *
678                          * Later GPUs (starting with Mali-G52?) support
679                          * preloading float varyings into r0-r7. This is
680                          * indicated by setting 0x40. There is no distinction
681                          * here between 1 varying and 2.
682                          */
683                         u32 preload_regs : 8;
684                         /* In units of 8 bytes or 64 bits, since the
685                          * uniform/const port loads 64 bits at a time.
686                          */
687                         u32 uniform_count : 7;
688                         u32 unk4 : 10; // = 2
689                 } bifrost2;
690                 struct {
691                         u32 unknown2_7;
692                 } midgard2;
693         };
694 
695         u32 padding;
696 
697         /* Blending information for the older non-MRT Midgard HW. Check for
698          * MALI_HAS_BLEND_SHADER to decide how to interpret.
699          */
700 
701         union midgard_blend blend;
702 } __attribute__((packed));
703 
704 /* This only concerns hardware jobs */
705 
706 /* Possible values for job_descriptor_size */
707 
708 #define MALI_JOB_32 0
709 #define MALI_JOB_64 1
710 
711 struct mali_job_descriptor_header {
712         u32 exception_status;
713         u32 first_incomplete_task;
714         u64 fault_pointer;
715         u8 job_descriptor_size : 1;
716         enum mali_job_type job_type : 7;
717         u8 job_barrier : 1;
718         u8 unknown_flags : 7;
719         u16 job_index;
720         u16 job_dependency_index_1;
721         u16 job_dependency_index_2;
722         u64 next_job;
723 } __attribute__((packed));
724 
725 /* These concern exception_status */
726 
727 /* Access type causing a fault, paralleling AS_FAULTSTATUS_* entries in the
728  * kernel */
729 
730 enum mali_exception_access {
731         /* Atomic in the kernel for MMU, but that doesn't make sense for a job
732          * fault so it's just unused */
733         MALI_EXCEPTION_ACCESS_NONE    = 0,
734 
735         MALI_EXCEPTION_ACCESS_EXECUTE = 1,
736         MALI_EXCEPTION_ACCESS_READ    = 2,
737         MALI_EXCEPTION_ACCESS_WRITE   = 3
738 };
739 
740 /* Details about write_value from panfrost igt tests which use it as a generic
741  * dword write primitive */
742 
743 #define MALI_WRITE_VALUE_ZERO 3
744 
745 struct mali_payload_write_value {
746         u64 address;
747         u32 value_descriptor;
748         u32 reserved;
749         u64 immediate;
750 } __attribute__((packed));
751 
752 /*
753  * Mali Attributes
754  *
755  * This structure lets the attribute unit compute the address of an attribute
756  * given the vertex and instance ID. Unfortunately, the way this works is
757  * rather complicated when instancing is enabled.
758  *
759  * To explain this, first we need to explain how compute and vertex threads are
760  * dispatched. This is a guess (although a pretty firm guess!) since the
761  * details are mostly hidden from the driver, except for attribute instancing.
762  * When a quad is dispatched, it receives a single, linear index. However, we
763  * need to translate that index into a (vertex id, instance id) pair, or a
764  * (local id x, local id y, local id z) triple for compute shaders (although
765  * vertex shaders and compute shaders are handled almost identically).
766  * Focusing on vertex shaders, one option would be to do:
767  *
768  * vertex_id = linear_id % num_vertices
769  * instance_id = linear_id / num_vertices
770  *
771  * but this involves a costly division and modulus by an arbitrary number.
772  * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
773  * num_instances threads instead of num_vertices * num_instances, which results
774  * in some "extra" threads with vertex_id >= num_vertices, which we have to
775  * discard.  The more we pad num_vertices, the more "wasted" threads we
776  * dispatch, but the division is potentially easier.
777  *
778  * One straightforward choice is to pad num_vertices to the next power of two,
779  * which means that the division and modulus are just simple bit shifts and
780  * masking. But the actual algorithm is a bit more complicated. The thread
781  * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
782  * to dividing by a power of two. This is possibly using the technique
783  * described in patent US20170010862A1. As a result, padded_num_vertices can be
784  * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
785  * since we need less padding.
786  *
787  * padded_num_vertices is picked by the hardware. The driver just specifies the
788  * actual number of vertices. At least for Mali G71, the first few cases are
789  * given by:
790  *
791  * num_vertices	| padded_num_vertices
792  * 3		| 4
793  * 4-7		| 8
794  * 8-11		| 12 (3 * 4)
795  * 12-15	| 16
796  * 16-19	| 20 (5 * 4)
797  *
798  * Note that padded_num_vertices is a multiple of four (presumably because
799  * threads are dispatched in groups of 4). Also, padded_num_vertices is always
800  * at least one more than num_vertices, which seems like a quirk of the
801  * hardware. For larger num_vertices, the hardware uses the following
802  * algorithm: using the binary representation of num_vertices, we look at the
803  * most significant set bit as well as the following 3 bits. Let n be the
804  * number of bits after those 4 bits. Then we set padded_num_vertices according
805  * to the following table:
806  *
807  * high bits	| padded_num_vertices
808  * 1000		| 9 * 2^n
809  * 1001		| 5 * 2^(n+1)
810  * 101x		| 3 * 2^(n+2)
811  * 110x		| 7 * 2^(n+1)
812  * 111x		| 2^(n+4)
813  *
814  * For example, if num_vertices = 70 is passed to glDraw(), its binary
815  * representation is 1000110, so n = 3 and the high bits are 1000, and
816  * therefore padded_num_vertices = 9 * 2^3 = 72.
817  *
818  * The attribute unit works in terms of the original linear_id. if
819  * num_instances = 1, then they are the same, and everything is simple.
820  * However, with instancing things get more complicated. There are four
821  * possible modes, two of them we can group together:
822  *
823  * 1. Use the linear_id directly. Only used when there is no instancing.
824  *
825  * 2. Use the linear_id modulo a constant. This is used for per-vertex
826  * attributes with instancing enabled by making the constant equal
827  * padded_num_vertices. Because the modulus is always padded_num_vertices, this
828  * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
829  * The shift field specifies the power of two, while the extra_flags field
830  * specifies the odd number. If shift = n and extra_flags = m, then the modulus
831  * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
832  * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
833  * shift = 3. Note that we must exactly follow the hardware algorithm used to
834  * get padded_num_vertices in order to correctly implement per-vertex
835  * attributes.
836  *
837  * 3. Divide the linear_id by a constant. In order to correctly implement
838  * instance divisors, we have to divide linear_id by padded_num_vertices times
839  * to user-specified divisor. So first we compute padded_num_vertices, again
840  * following the exact same algorithm that the hardware uses, then multiply it
841  * by the GL-level divisor to get the hardware-level divisor. This case is
842  * further divided into two more cases. If the hardware-level divisor is a
843  * power of two, then we just need to shift. The shift amount is specified by
844  * the shift field, so that the hardware-level divisor is just 2^shift.
845  *
846  * If it isn't a power of two, then we have to divide by an arbitrary integer.
847  * For that, we use the well-known technique of multiplying by an approximation
848  * of the inverse. The driver must compute the magic multiplier and shift
849  * amount, and then the hardware does the multiplication and shift. The
850  * hardware and driver also use the "round-down" optimization as described in
851  * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
852  * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
853  * high bit is implicitly set to 1 even though it is set to 0 by the driver --
854  * presumably this simplifies the hardware multiplier a little. The hardware
855  * first multiplies linear_id by the multiplier and takes the high 32 bits,
856  * then applies the round-down correction if extra_flags = 1, then finally
857  * shifts right by the shift field.
858  *
859  * There are some differences between ridiculousfish's algorithm and the Mali
860  * hardware algorithm, which means that the reference code from ridiculousfish
861  * doesn't always produce the right constants. Mali does not use the pre-shift
862  * optimization, since that would make a hardware implementation slower (it
863  * would have to always do the pre-shift, multiply, and post-shift operations).
864  * It also forces the multplier to be at least 2^31, which means that the
865  * exponent is entirely fixed, so there is no trial-and-error. Altogether,
866  * given the divisor d, the algorithm the driver must follow is:
867  *
868  * 1. Set shift = floor(log2(d)).
869  * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
870  * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
871  * magic_divisor = m - 1 and extra_flags = 1.
872  * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
873  *
874  * Unrelated to instancing/actual attributes, images (the OpenCL kind) are
875  * implemented as special attributes, denoted by MALI_ATTR_IMAGE. For images,
876  * let shift=extra_flags=0. Stride is set to the image format's bytes-per-pixel
877  * (*NOT the row stride*). Size is set to the size of the image itself.
878  *
879  * Special internal attribtues and varyings (gl_VertexID, gl_FrontFacing, etc)
880  * use particular fixed addresses with modified structures.
881  */
882 
883 enum mali_attr_mode {
884 	MALI_ATTR_UNUSED = 0,
885 	MALI_ATTR_LINEAR = 1,
886 	MALI_ATTR_POT_DIVIDE = 2,
887 	MALI_ATTR_MODULO = 3,
888 	MALI_ATTR_NPOT_DIVIDE = 4,
889         MALI_ATTR_IMAGE = 5,
890 };
891 
892 /* Pseudo-address for gl_VertexID, gl_FragCoord, gl_FrontFacing */
893 
894 #define MALI_ATTR_VERTEXID (0x22)
895 #define MALI_ATTR_INSTANCEID (0x24)
896 #define MALI_VARYING_FRAG_COORD (0x25)
897 #define MALI_VARYING_FRONT_FACING (0x26)
898 
899 /* This magic "pseudo-address" is used as `elements` to implement
900  * gl_PointCoord. When read from a fragment shader, it generates a point
901  * coordinate per the OpenGL ES 2.0 specification. Flipped coordinate spaces
902  * require an affine transformation in the shader. */
903 
904 #define MALI_VARYING_POINT_COORD (0x61)
905 
906 /* Used for comparison to check if an address is special. Mostly a guess, but
907  * it doesn't really matter. */
908 
909 #define MALI_RECORD_SPECIAL (0x100)
910 
911 union mali_attr {
912 	/* This is used for actual attributes. */
913 	struct {
914 		/* The bottom 3 bits are the mode */
915 		mali_ptr elements : 64 - 8;
916 		u32 shift : 5;
917 		u32 extra_flags : 3;
918 		u32 stride;
919 		u32 size;
920 	};
921 	/* The entry after an NPOT_DIVIDE entry has this format. It stores
922 	 * extra information that wouldn't fit in a normal entry.
923 	 */
924 	struct {
925 		u32 unk; /* = 0x20 */
926 		u32 magic_divisor;
927 		u32 zero;
928 		/* This is the original, GL-level divisor. */
929 		u32 divisor;
930 	};
931 } __attribute__((packed));
932 
933 struct mali_attr_meta {
934         /* Vertex buffer index */
935         u8 index;
936 
937         unsigned unknown1 : 2;
938         unsigned swizzle : 12;
939         enum mali_format format : 8;
940 
941         /* Always observed to be zero at the moment */
942         unsigned unknown3 : 2;
943 
944         /* When packing multiple attributes in a buffer, offset addresses by
945          * this value. Obscurely, this is signed. */
946         int32_t src_offset;
947 } __attribute__((packed));
948 
949 #define FBD_MASK (~0x3f)
950 
951 /* MFBD, rather than SFBD */
952 #define MALI_MFBD (0x1)
953 
954 /* ORed into an MFBD address to specify the fbx section is included */
955 #define MALI_MFBD_TAG_EXTRA (0x2)
956 
957 /* Uniform buffer objects are 64-bit fields divided as:
958  *
959  *      u64 size : 10;
960  *      mali_ptr ptr : 64 - 10;
961  *
962  * The size is actually the size minus 1 (MALI_POSITIVE), in units of 16 bytes.
963  * This gives a maximum of 2^14 bytes, which just so happens to be the GL
964  * minimum-maximum for GL_MAX_UNIFORM_BLOCK_SIZE.
965  *
966  * The pointer is missing the bottom 2 bits and top 8 bits. The top 8 bits
967  * should be 0 for userspace pointers, according to
968  * https://lwn.net/Articles/718895/. By reusing these bits, we can make each
969  * entry in the table only 64 bits.
970  */
971 
972 #define MALI_MAKE_UBO(elements, ptr) \
973         (MALI_POSITIVE((elements)) | (((ptr) >> 2) << 10))
974 
975 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
976  * They also seem to be the same between Bifrost and Midgard. They're shared in
977  * fused payloads.
978  */
979 
980 /* Applies to unknown_draw */
981 
982 #define MALI_DRAW_INDEXED_UINT8  (0x10)
983 #define MALI_DRAW_INDEXED_UINT16 (0x20)
984 #define MALI_DRAW_INDEXED_UINT32 (0x30)
985 #define MALI_DRAW_INDEXED_SIZE   (0x30)
986 #define MALI_DRAW_INDEXED_SHIFT  (4)
987 
988 #define MALI_DRAW_VARYING_SIZE   (0x100)
989 
990 /* Set to use first vertex as the provoking vertex for flatshading. Clear to
991  * use the last vertex. This is the default in DX and VK, but not in GL. */
992 
993 #define MALI_DRAW_FLATSHADE_FIRST (0x800)
994 
995 #define MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX (0x10000)
996 
997 struct mali_vertex_tiler_prefix {
998         /* This is a dynamic bitfield containing the following things in this order:
999          *
1000          * - gl_WorkGroupSize.x
1001          * - gl_WorkGroupSize.y
1002          * - gl_WorkGroupSize.z
1003          * - gl_NumWorkGroups.x
1004          * - gl_NumWorkGroups.y
1005          * - gl_NumWorkGroups.z
1006          *
1007          * The number of bits allocated for each number is based on the *_shift
1008          * fields below. For example, workgroups_y_shift gives the bit that
1009          * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
1010          * that gl_NumWorkGroups.z starts at (and therefore one after the bit
1011          * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
1012          * value is one more than the stored value, since if any of the values
1013          * are zero, then there would be no invocations (and hence no job). If
1014          * there were 0 bits allocated to a given field, then it must be zero,
1015          * and hence the real value is one.
1016          *
1017          * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
1018          * effectively doing glDispatchCompute(1, vertex_count, instance_count)
1019          * where vertex count is the number of vertices.
1020          */
1021         u32 invocation_count;
1022 
1023         /* Bitfield for shifts:
1024          *
1025          * size_y_shift : 5
1026          * size_z_shift : 5
1027          * workgroups_x_shift : 6
1028          * workgroups_y_shift : 6
1029          * workgroups_z_shift : 6
1030          * workgroups_x_shift_2 : 4
1031          */
1032         u32 invocation_shifts;
1033 
1034         u32 draw_mode : 4;
1035         u32 unknown_draw : 22;
1036 
1037         /* This is the the same as workgroups_x_shift_2 in compute shaders, but
1038          * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
1039          * something to do with how many quads get put in the same execution
1040          * engine, which is a balance (you don't want to starve the engine, but
1041          * you also want to distribute work evenly).
1042          */
1043         u32 workgroups_x_shift_3 : 6;
1044 
1045 
1046         /* Negative of min_index. This is used to compute
1047          * the unbiased index in tiler/fragment shader runs.
1048          *
1049          * The hardware adds offset_bias_correction in each run,
1050          * so that absent an index bias, the first vertex processed is
1051          * genuinely the first vertex (0). But with an index bias,
1052          * the first vertex process is numbered the same as the bias.
1053          *
1054          * To represent this more conviniently:
1055          * unbiased_index = lower_bound_index +
1056          *                  index_bias +
1057          *                  offset_bias_correction
1058          *
1059          * This is done since the hardware doesn't accept a index_bias
1060          * and this allows it to recover the unbiased index.
1061          */
1062         int32_t offset_bias_correction;
1063         u32 zero1;
1064 
1065         /* Like many other strictly nonzero quantities, index_count is
1066          * subtracted by one. For an indexed cube, this is equal to 35 = 6
1067          * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
1068          * for an indexed draw, index_count is the number of actual vertices
1069          * rendered whereas invocation_count is the number of unique vertices
1070          * rendered (the number of times the vertex shader must be invoked).
1071          * For non-indexed draws, this is just equal to invocation_count. */
1072 
1073         u32 index_count;
1074 
1075         /* No hidden structure; literally just a pointer to an array of uint
1076          * indices (width depends on flags). Thanks, guys, for not making my
1077          * life insane for once! NULL for non-indexed draws. */
1078 
1079         u64 indices;
1080 } __attribute__((packed));
1081 
1082 /* Point size / line width can either be specified as a 32-bit float (for
1083  * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
1084  * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
1085  * payload, the contents of varying_pointer will be intepreted as an array of
1086  * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
1087  * creating a special MALI_R16F varying writing to varying_pointer. */
1088 
1089 union midgard_primitive_size {
1090         float constant;
1091         u64 pointer;
1092 };
1093 
1094 struct bifrost_tiler_heap_meta {
1095         u32 zero;
1096         u32 heap_size;
1097         /* note: these are just guesses! */
1098         mali_ptr tiler_heap_start;
1099         mali_ptr tiler_heap_free;
1100         mali_ptr tiler_heap_end;
1101 
1102         /* hierarchy weights? but they're still 0 after the job has run... */
1103         u32 zeros[10];
1104         u32 unk1;
1105         u32 unk7e007e;
1106 } __attribute__((packed));
1107 
1108 struct bifrost_tiler_meta {
1109         u32 tiler_heap_next_start;  /* To be written by the GPU */
1110         u32 used_hierarchy_mask;  /* To be written by the GPU */
1111         u16 hierarchy_mask; /* Five values observed: 0xa, 0x14, 0x28, 0x50, 0xa0 */
1112         u16 flags;
1113         u16 width;
1114         u16 height;
1115         u64 zero0;
1116         mali_ptr tiler_heap_meta;
1117         /* TODO what is this used for? */
1118         u64 zeros[20];
1119 } __attribute__((packed));
1120 
1121 struct bifrost_tiler_only {
1122         /* 0x20 */
1123         union midgard_primitive_size primitive_size;
1124 
1125         mali_ptr tiler_meta;
1126 
1127         u64 zero1, zero2, zero3, zero4, zero5, zero6;
1128 } __attribute__((packed));
1129 
1130 struct mali_vertex_tiler_postfix {
1131         u16 gl_enables; // 0x6 on Midgard, 0x2 on Bifrost
1132 
1133         /* Both zero for non-instanced draws. For instanced draws, a
1134          * decomposition of padded_num_vertices. See the comments about the
1135          * corresponding fields in mali_attr for context. */
1136 
1137         unsigned instance_shift : 5;
1138         unsigned instance_odd : 3;
1139 
1140         u8 zero4;
1141 
1142         /* Offset for first vertex in buffer */
1143         u32 offset_start;
1144 
1145 	u64 zero5;
1146 
1147         /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
1148          * output from the vertex shader for tiler jobs.
1149          */
1150 
1151         u64 position_varying;
1152 
1153         /* An array of mali_uniform_buffer_meta's. The size is given by the
1154          * shader_meta.
1155          */
1156         u64 uniform_buffers;
1157 
1158         /* On Bifrost, this is a pointer to an array of bifrost_texture_descriptor.
1159          * On Midgard, this is a pointer to an array of pointers to the texture
1160          * descriptors, number of pointers bounded by number of textures. The
1161          * indirection is needed to accomodate varying numbers and sizes of
1162          * texture descriptors */
1163         u64 textures;
1164 
1165         /* For OpenGL, from what I've seen, this is intimately connected to
1166          * texture_meta. cwabbott says this is not the case under Vulkan, hence
1167          * why this field is seperate (Midgard is Vulkan capable). Pointer to
1168          * array of sampler descriptors (which are uniform in size) */
1169         u64 sampler_descriptor;
1170 
1171         u64 uniforms;
1172         u64 shader;
1173         u64 attributes; /* struct attribute_buffer[] */
1174         u64 attribute_meta; /* attribute_meta[] */
1175         u64 varyings; /* struct attr */
1176         u64 varying_meta; /* pointer */
1177         u64 viewport;
1178         u64 occlusion_counter; /* A single bit as far as I can tell */
1179 
1180         /* On Bifrost, this points directly to a mali_shared_memory structure.
1181          * On Midgard, this points to a framebuffer (either SFBD or MFBD as
1182          * tagged), which embeds a mali_shared_memory structure */
1183         mali_ptr shared_memory;
1184 } __attribute__((packed));
1185 
1186 struct midgard_payload_vertex_tiler {
1187         struct mali_vertex_tiler_prefix prefix;
1188         struct mali_vertex_tiler_postfix postfix;
1189 
1190         union midgard_primitive_size primitive_size;
1191 } __attribute__((packed));
1192 
1193 struct bifrost_payload_vertex {
1194         struct mali_vertex_tiler_prefix prefix;
1195         struct mali_vertex_tiler_postfix postfix;
1196 } __attribute__((packed));
1197 
1198 struct bifrost_payload_tiler {
1199         struct mali_vertex_tiler_prefix prefix;
1200         struct bifrost_tiler_only tiler;
1201         struct mali_vertex_tiler_postfix postfix;
1202 } __attribute__((packed));
1203 
1204 struct bifrost_payload_fused {
1205         struct mali_vertex_tiler_prefix prefix;
1206         struct bifrost_tiler_only tiler;
1207         struct mali_vertex_tiler_postfix tiler_postfix;
1208         u64 padding; /* zero */
1209         struct mali_vertex_tiler_postfix vertex_postfix;
1210 } __attribute__((packed));
1211 
1212 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
1213  * texture is stored as (63, 63) in these fields. This adjusts for that.
1214  * There's an identical pattern in the framebuffer descriptor. Even vertex
1215  * count fields work this way, hence the generic name -- integral fields that
1216  * are strictly positive generally need this adjustment. */
1217 
1218 #define MALI_POSITIVE(dim) (dim - 1)
1219 
1220 /* Used with wrapping. Unclear what top bit conveys */
1221 
1222 enum mali_wrap_mode {
1223         MALI_WRAP_REPEAT                   = 0x8 |       0x0,
1224         MALI_WRAP_CLAMP_TO_EDGE            = 0x8 |       0x1,
1225         MALI_WRAP_CLAMP                    = 0x8 |       0x2,
1226         MALI_WRAP_CLAMP_TO_BORDER          = 0x8 |       0x3,
1227         MALI_WRAP_MIRRORED_REPEAT          = 0x8 | 0x4 | 0x0,
1228         MALI_WRAP_MIRRORED_CLAMP_TO_EDGE   = 0x8 | 0x4 | 0x1,
1229         MALI_WRAP_MIRRORED_CLAMP           = 0x8 | 0x4 | 0x2,
1230         MALI_WRAP_MIRRORED_CLAMP_TO_BORDER = 0x8 | 0x4 | 0x3,
1231 };
1232 
1233 /* Shared across both command stream and Midgard, and even with Bifrost */
1234 
1235 enum mali_texture_type {
1236         MALI_TEX_CUBE = 0x0,
1237         MALI_TEX_1D = 0x1,
1238         MALI_TEX_2D = 0x2,
1239         MALI_TEX_3D = 0x3
1240 };
1241 
1242 /* 8192x8192 */
1243 #define MAX_MIP_LEVELS (13)
1244 
1245 /* Cubemap bloats everything up */
1246 #define MAX_CUBE_FACES (6)
1247 
1248 /* For each pointer, there is an address and optionally also a stride */
1249 #define MAX_ELEMENTS (2)
1250 
1251 /* It's not known why there are 4-bits allocated -- this enum is almost
1252  * certainly incomplete */
1253 
1254 enum mali_texture_layout {
1255         /* For a Z/S texture, this is linear */
1256         MALI_TEXTURE_TILED = 0x1,
1257 
1258         /* Z/S textures cannot be tiled */
1259         MALI_TEXTURE_LINEAR = 0x2,
1260 
1261         /* 16x16 sparse */
1262         MALI_TEXTURE_AFBC = 0xC
1263 };
1264 
1265 /* Corresponds to the type passed to glTexImage2D and so forth */
1266 
1267 struct mali_texture_format {
1268         unsigned swizzle : 12;
1269         enum mali_format format : 8;
1270 
1271         unsigned srgb : 1;
1272         unsigned unknown1 : 1;
1273 
1274         enum mali_texture_type type : 2;
1275         enum mali_texture_layout layout : 4;
1276 
1277         /* Always set */
1278         unsigned unknown2 : 1;
1279 
1280         /* Set to allow packing an explicit stride */
1281         unsigned manual_stride : 1;
1282 
1283         unsigned zero : 2;
1284 } __attribute__((packed));
1285 
1286 struct mali_texture_descriptor {
1287         uint16_t width;
1288         uint16_t height;
1289         uint16_t depth;
1290         uint16_t array_size;
1291 
1292         struct mali_texture_format format;
1293 
1294         uint16_t unknown3;
1295 
1296         /* One for non-mipmapped, zero for mipmapped */
1297         uint8_t unknown3A;
1298 
1299         /* Zero for non-mipmapped, (number of levels - 1) for mipmapped */
1300         uint8_t levels;
1301 
1302         /* Swizzling is a single 32-bit word, broken up here for convenience.
1303          * Here, swizzling refers to the ES 3.0 texture parameters for channel
1304          * level swizzling, not the internal pixel-level swizzling which is
1305          * below OpenGL's reach */
1306 
1307         unsigned swizzle : 12;
1308         unsigned swizzle_zero       : 20;
1309 
1310         uint32_t unknown5;
1311         uint32_t unknown6;
1312         uint32_t unknown7;
1313 } __attribute__((packed));
1314 
1315 /* While Midgard texture descriptors are variable length, Bifrost descriptors
1316  * are fixed like samplers with more pointers to expand if necessary */
1317 
1318 struct bifrost_texture_descriptor {
1319         unsigned format_unk : 4; /* 2 */
1320         enum mali_texture_type type : 2;
1321         unsigned zero : 4;
1322         unsigned format_swizzle : 12;
1323         enum mali_format format : 8;
1324         unsigned srgb : 1;
1325         unsigned format_unk3 : 1; /* 0 */
1326 
1327         uint16_t width; /* MALI_POSITIVE */
1328         uint16_t height; /* MALI_POSITIVE */
1329 
1330         /* OpenGL swizzle */
1331         unsigned swizzle : 12;
1332         enum mali_texture_layout layout : 4;
1333         uint8_t levels : 8; /* Number of levels-1 if mipmapped, 0 if not */
1334         unsigned unk1 : 8;
1335 
1336         unsigned levels_unk : 24; /* 0 */
1337         unsigned level_2 : 8; /* Number of levels, again? */
1338 
1339         mali_ptr payload;
1340 
1341         uint16_t array_size;
1342         uint16_t unk4;
1343 
1344         uint16_t depth;
1345         uint16_t unk5;
1346 } __attribute__((packed));
1347 
1348 /* filter_mode */
1349 
1350 #define MALI_SAMP_MAG_NEAREST (1 << 0)
1351 #define MALI_SAMP_MIN_NEAREST (1 << 1)
1352 
1353 /* TODO: What do these bits mean individually? Only seen set together */
1354 
1355 #define MALI_SAMP_MIP_LINEAR_1 (1 << 3)
1356 #define MALI_SAMP_MIP_LINEAR_2 (1 << 4)
1357 
1358 /* Flag in filter_mode, corresponding to OpenCL's NORMALIZED_COORDS_TRUE
1359  * sampler_t flag. For typical OpenGL textures, this is always set. */
1360 
1361 #define MALI_SAMP_NORM_COORDS (1 << 5)
1362 
1363 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
1364  * be cleaned up a lot. */
1365 
1366 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
1367 
1368 static inline int16_t
FIXED_16(float x,bool allow_negative)1369 FIXED_16(float x, bool allow_negative)
1370 {
1371         /* Clamp inputs, accounting for float error */
1372         float max_lod = (32.0 - (1.0 / 512.0));
1373         float min_lod = allow_negative ? -max_lod : 0.0;
1374 
1375         x = ((x > max_lod) ? max_lod : ((x < min_lod) ? min_lod : x));
1376 
1377         return (int) (x * 256.0);
1378 }
1379 
1380 struct mali_sampler_descriptor {
1381         uint16_t filter_mode;
1382 
1383         /* Fixed point, signed.
1384          * Upper 7 bits before the decimal point, although it caps [0-31].
1385          * Lower 8 bits after the decimal point: int(round(x * 256)) */
1386 
1387         int16_t lod_bias;
1388         int16_t min_lod;
1389         int16_t max_lod;
1390 
1391         /* All one word in reality, but packed a bit. Comparisons are flipped
1392          * from OpenGL. */
1393 
1394         enum mali_wrap_mode wrap_s : 4;
1395         enum mali_wrap_mode wrap_t : 4;
1396         enum mali_wrap_mode wrap_r : 4;
1397         enum mali_func compare_func : 3;
1398 
1399         /* No effect on 2D textures. For cubemaps, set for ES3 and clear for
1400          * ES2, controlling seamless cubemapping */
1401         unsigned seamless_cube_map : 1;
1402 
1403         unsigned zero : 16;
1404 
1405         uint32_t zero2;
1406         float border_color[4];
1407 } __attribute__((packed));
1408 
1409 /* Bifrost sampler descriptors look pretty similar */
1410 
1411 #define BIFROST_SAMP_MIN_NEAREST        (1)
1412 #define BIFROST_SAMP_MAG_LINEAR         (1)
1413 
1414 struct bifrost_sampler_descriptor {
1415         uint8_t unk1;
1416 
1417         enum mali_wrap_mode wrap_r : 4;
1418         enum mali_wrap_mode wrap_t : 4;
1419         enum mali_wrap_mode wrap_s : 4;
1420         uint8_t unk8 : 4;
1421 
1422         uint8_t unk2 : 1;
1423         uint8_t norm_coords : 1;
1424         uint8_t unk3 : 1;
1425         uint8_t min_filter : 1;
1426         uint8_t zero1 : 1;
1427         uint8_t mag_filter : 1;
1428         uint8_t mip_filter : 1;
1429 
1430         int16_t min_lod;
1431         int16_t max_lod;
1432 
1433         uint64_t zero2;
1434         uint64_t zero3;
1435         uint64_t zero4;
1436 } __attribute__((packed));
1437 
1438 /* viewport0/viewport1 form the arguments to glViewport. viewport1 is
1439  * modified by MALI_POSITIVE; viewport0 is as-is.
1440  */
1441 
1442 struct mali_viewport {
1443         /* XY clipping planes */
1444         float clip_minx;
1445         float clip_miny;
1446         float clip_maxx;
1447         float clip_maxy;
1448 
1449         /* Depth clipping planes */
1450         float clip_minz;
1451         float clip_maxz;
1452 
1453         u16 viewport0[2];
1454         u16 viewport1[2];
1455 } __attribute__((packed));
1456 
1457 /* From presentations, 16x16 tiles externally. Use shift for fast computation
1458  * of tile numbers. */
1459 
1460 #define MALI_TILE_SHIFT 4
1461 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
1462 
1463 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
1464  * each component. Notice that this provides a theoretical upper bound of (1 <<
1465  * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
1466  * 65536x65536. Multiplying that together, times another four given that Mali
1467  * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
1468  * gigabytes of RAM just to store the uncompressed framebuffer itself, let
1469  * alone rendering in real-time to such a buffer.
1470  *
1471  * Nice job, guys.*/
1472 
1473 /* From mali_kbase_10969_workaround.c */
1474 #define MALI_X_COORD_MASK 0x00000FFF
1475 #define MALI_Y_COORD_MASK 0x0FFF0000
1476 
1477 /* Extract parts of a tile coordinate */
1478 
1479 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
1480 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
1481 
1482 /* Helpers to generate tile coordinates based on the boundary coordinates in
1483  * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
1484  * functions would convert it to the bounding tiles (0, 0) to (7, 7).
1485  * Intentional "off-by-one"; finding the tile number is a form of fencepost
1486  * problem. */
1487 
1488 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
1489 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
1490 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
1491 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
1492 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
1493 
1494 struct mali_payload_fragment {
1495         u32 min_tile_coord;
1496         u32 max_tile_coord;
1497         mali_ptr framebuffer;
1498 } __attribute__((packed));
1499 
1500 /* Single Framebuffer Descriptor */
1501 
1502 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
1503  * configured for 4x. With MSAA_8, it is configured for 8x. */
1504 
1505 #define MALI_SFBD_FORMAT_MSAA_8 (1 << 3)
1506 #define MALI_SFBD_FORMAT_MSAA_A (1 << 4)
1507 #define MALI_SFBD_FORMAT_MSAA_B (1 << 4)
1508 #define MALI_SFBD_FORMAT_SRGB 	(1 << 5)
1509 
1510 /* Fast/slow based on whether all three buffers are cleared at once */
1511 
1512 #define MALI_CLEAR_FAST         (1 << 18)
1513 #define MALI_CLEAR_SLOW         (1 << 28)
1514 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
1515 
1516 /* Configures hierarchical tiling on Midgard for both SFBD/MFBD (embedded
1517  * within the larget framebuffer descriptor). Analogous to
1518  * bifrost_tiler_heap_meta and bifrost_tiler_meta*/
1519 
1520 /* See pan_tiler.c for derivation */
1521 #define MALI_HIERARCHY_MASK ((1 << 9) - 1)
1522 
1523 /* Flag disabling the tiler for clear-only jobs, with
1524    hierarchical tiling */
1525 #define MALI_TILER_DISABLED (1 << 12)
1526 
1527 /* Flag selecting userspace-generated polygon list, for clear-only jobs without
1528  * hierarhical tiling. */
1529 #define MALI_TILER_USER 0xFFF
1530 
1531 /* Absent any geometry, the minimum size of the polygon list header */
1532 #define MALI_TILER_MINIMUM_HEADER_SIZE 0x200
1533 
1534 struct midgard_tiler_descriptor {
1535         /* Size of the entire polygon list; see pan_tiler.c for the
1536          * computation. It's based on hierarchical tiling */
1537 
1538         u32 polygon_list_size;
1539 
1540         /* Name known from the replay workaround in the kernel. What exactly is
1541          * flagged here is less known. We do that (tiler_hierarchy_mask & 0x1ff)
1542          * specifies a mask of hierarchy weights, which explains some of the
1543          * performance mysteries around setting it. We also see the bottom bit
1544          * of tiler_flags set in the kernel, but no comment why.
1545          *
1546          * hierarchy_mask can have the TILER_DISABLED flag */
1547 
1548         u16 hierarchy_mask;
1549         u16 flags;
1550 
1551         /* See mali_tiler.c for an explanation */
1552         mali_ptr polygon_list;
1553         mali_ptr polygon_list_body;
1554 
1555         /* Names based on we see symmetry with replay jobs which name these
1556          * explicitly */
1557 
1558         mali_ptr heap_start; /* tiler heap_free_address */
1559         mali_ptr heap_end;
1560 
1561         /* Hierarchy weights. We know these are weights based on the kernel,
1562          * but I've never seen them be anything other than zero */
1563         u32 weights[8];
1564 };
1565 
1566 enum mali_block_format {
1567         MALI_BLOCK_TILED   = 0x0,
1568         MALI_BLOCK_UNKNOWN = 0x1,
1569         MALI_BLOCK_LINEAR  = 0x2,
1570         MALI_BLOCK_AFBC    = 0x3,
1571 };
1572 
1573 struct mali_sfbd_format {
1574         /* 0x1 */
1575         unsigned unk1 : 6;
1576 
1577         /* mali_channel_swizzle */
1578         unsigned swizzle : 12;
1579 
1580         /* MALI_POSITIVE */
1581         unsigned nr_channels : 2;
1582 
1583         /* 0x4 */
1584         unsigned unk2 : 6;
1585 
1586         enum mali_block_format block : 2;
1587 
1588         /* 0xb */
1589         unsigned unk3 : 4;
1590 };
1591 
1592 /* Shared structure at the start of framebuffer descriptors, or used bare for
1593  * compute jobs, configuring stack and shared memory */
1594 
1595 struct mali_shared_memory {
1596         u32 stack_shift : 4;
1597         u32 unk0 : 28;
1598 
1599         /* Configuration for shared memory for compute shaders.
1600          * shared_workgroup_count is logarithmic and may be computed for a
1601          * compute shader using shared memory as:
1602          *
1603          *  shared_workgroup_count = MAX2(ceil(log2(count_x)) + ... + ceil(log2(count_z), 10)
1604          *
1605          * For compute shaders that don't use shared memory, or non-compute
1606          * shaders, this is set to ~0
1607          */
1608 
1609         u32 shared_workgroup_count : 5;
1610         u32 shared_unk1 : 3;
1611         u32 shared_shift : 4;
1612         u32 shared_zero : 20;
1613 
1614         mali_ptr scratchpad;
1615 
1616         /* For compute shaders, the RAM backing of workgroup-shared memory. For
1617          * fragment shaders on Bifrost, apparently multisampling locations */
1618 
1619         mali_ptr shared_memory;
1620         mali_ptr unknown1;
1621 } __attribute__((packed));
1622 
1623 /* Configures multisampling on Bifrost fragment jobs */
1624 
1625 struct bifrost_multisampling {
1626         u64 zero1;
1627         u64 zero2;
1628         mali_ptr sample_locations;
1629         u64 zero4;
1630 } __attribute__((packed));
1631 
1632 struct mali_single_framebuffer {
1633         struct mali_shared_memory shared_memory;
1634         struct mali_sfbd_format format;
1635 
1636         u32 clear_flags;
1637         u32 zero2;
1638 
1639         /* Purposeful off-by-one in these fields should be accounted for by the
1640          * MALI_DIMENSION macro */
1641 
1642         u16 width;
1643         u16 height;
1644 
1645         u32 zero3[4];
1646         mali_ptr checksum;
1647         u32 checksum_stride;
1648         u32 zero5;
1649 
1650         /* By default, the framebuffer is upside down from OpenGL's
1651          * perspective. Set framebuffer to the end and negate the stride to
1652          * flip in the Y direction */
1653 
1654         mali_ptr framebuffer;
1655         int32_t stride;
1656 
1657         u32 zero4;
1658 
1659         /* Depth and stencil buffers are interleaved, it appears, as they are
1660          * set to the same address in captures. Both fields set to zero if the
1661          * buffer is not being cleared. Depending on GL_ENABLE magic, you might
1662          * get a zero enable despite the buffer being present; that still is
1663          * disabled. */
1664 
1665         mali_ptr depth_buffer; // not SAME_VA
1666         u32 depth_stride_zero : 4;
1667         u32 depth_stride : 28;
1668         u32 zero7;
1669 
1670         mali_ptr stencil_buffer; // not SAME_VA
1671         u32 stencil_stride_zero : 4;
1672         u32 stencil_stride : 28;
1673         u32 zero8;
1674 
1675         u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1676         u32 clear_color_2; // always equal, but unclear function?
1677         u32 clear_color_3; // always equal, but unclear function?
1678         u32 clear_color_4; // always equal, but unclear function?
1679 
1680         /* Set to zero if not cleared */
1681 
1682         float clear_depth_1; // float32, ditto
1683         float clear_depth_2; // float32, ditto
1684         float clear_depth_3; // float32, ditto
1685         float clear_depth_4; // float32, ditto
1686 
1687         u32 clear_stencil; // Exactly as it appears in OpenGL
1688 
1689         u32 zero6[7];
1690 
1691         struct midgard_tiler_descriptor tiler;
1692 
1693         /* More below this, maybe */
1694 } __attribute__((packed));
1695 
1696 
1697 /* SINGLE to disable multisampling, AVERAGE for
1698  * EXT_multisampled_render_to_texture operation where multiple tilebuffer
1699  * samples are implicitly resolved before writeout, MULTIPLE to write multiple
1700  * samples inline, and LAYERED for ES3-style multisampling with each sample in
1701  * a different buffer.
1702  */
1703 
1704 enum mali_msaa_mode {
1705         MALI_MSAA_SINGLE = 0,
1706         MALI_MSAA_AVERAGE = 1,
1707         MALI_MSAA_MULTIPLE = 2,
1708         MALI_MSAA_LAYERED = 3,
1709 };
1710 
1711 #define MALI_MFBD_FORMAT_SRGB 	  (1 << 0)
1712 
1713 struct mali_rt_format {
1714         unsigned unk1 : 32;
1715         unsigned unk2 : 3;
1716 
1717         unsigned nr_channels : 2; /* MALI_POSITIVE */
1718 
1719         unsigned unk3 : 4;
1720         unsigned unk4 : 1;
1721         enum mali_block_format block : 2;
1722         enum mali_msaa_mode msaa : 2;
1723         unsigned flags : 2;
1724 
1725         unsigned swizzle : 12;
1726 
1727         unsigned zero : 3;
1728 
1729         /* Disables MFBD preload. When this bit is set, the render target will
1730          * be cleared every frame. When this bit is clear, the hardware will
1731          * automatically wallpaper the render target back from main memory.
1732          * Unfortunately, MFBD preload is very broken on Midgard, so in
1733          * practice, this is a chicken bit that should always be set.
1734          * Discovered by accident, as all good chicken bits are. */
1735 
1736         unsigned no_preload : 1;
1737 } __attribute__((packed));
1738 
1739 /* Flags for afbc.flags and ds_afbc.flags */
1740 
1741 #define MALI_AFBC_FLAGS 0x10009
1742 
1743 /* Lossless RGB and RGBA colorspace transform */
1744 #define MALI_AFBC_YTR (1 << 17)
1745 
1746 struct mali_render_target {
1747         struct mali_rt_format format;
1748 
1749         u64 zero1;
1750 
1751         struct {
1752                 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
1753                  * there is an extra metadata buffer that contains 16 bytes per tile.
1754                  * The framebuffer needs to be the same size as before, since we don't
1755                  * know ahead of time how much space it will take up. The
1756                  * framebuffer_stride is set to 0, since the data isn't stored linearly
1757                  * anymore.
1758                  *
1759                  * When AFBC is disabled, these fields are zero.
1760                  */
1761 
1762                 mali_ptr metadata;
1763                 u32 stride; // stride in units of tiles
1764                 u32 flags; // = 0x20000
1765         } afbc;
1766 
1767         mali_ptr framebuffer;
1768 
1769         u32 zero2 : 4;
1770         u32 framebuffer_stride : 28; // in units of bytes, row to next
1771         u32 layer_stride; /* For multisample rendering */
1772 
1773         u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1774         u32 clear_color_2; // always equal, but unclear function?
1775         u32 clear_color_3; // always equal, but unclear function?
1776         u32 clear_color_4; // always equal, but unclear function?
1777 } __attribute__((packed));
1778 
1779 /* An optional part of mali_framebuffer. It comes between the main structure
1780  * and the array of render targets. It must be included if any of these are
1781  * enabled:
1782  *
1783  * - Transaction Elimination
1784  * - Depth/stencil
1785  * - TODO: Anything else?
1786  */
1787 
1788 /* flags_hi */
1789 #define MALI_EXTRA_PRESENT      (0x1)
1790 
1791 /* flags_lo */
1792 #define MALI_EXTRA_ZS           (0x4)
1793 
1794 struct mali_framebuffer_extra  {
1795         mali_ptr checksum;
1796         /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
1797         u32 checksum_stride;
1798 
1799         unsigned flags_lo : 4;
1800         enum mali_block_format zs_block : 2;
1801 
1802         /* Number of samples in Z/S attachment, MALI_POSITIVE. So zero for
1803          * 1-sample (non-MSAA), 0x3 for MSAA 4x, etc */
1804         unsigned zs_samples : 4;
1805         unsigned flags_hi : 22;
1806 
1807         union {
1808                 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
1809                 struct {
1810                         mali_ptr depth_stencil_afbc_metadata;
1811                         u32 depth_stencil_afbc_stride; // in units of tiles
1812                         u32 flags;
1813 
1814                         mali_ptr depth_stencil;
1815 
1816                         u64 padding;
1817                 } ds_afbc;
1818 
1819                 struct {
1820                         /* Depth becomes depth/stencil in case of combined D/S */
1821                         mali_ptr depth;
1822                         u32 depth_stride_zero : 4;
1823                         u32 depth_stride : 28;
1824                         u32 depth_layer_stride;
1825 
1826                         mali_ptr stencil;
1827                         u32 stencil_stride_zero : 4;
1828                         u32 stencil_stride : 28;
1829                         u32 stencil_layer_stride;
1830                 } ds_linear;
1831         };
1832 
1833 
1834         u32 clear_color_1;
1835         u32 clear_color_2;
1836         u64 zero3;
1837 } __attribute__((packed));
1838 
1839 /* Flags for mfbd_flags */
1840 
1841 /* Enables writing depth results back to main memory (rather than keeping them
1842  * on-chip in the tile buffer and then discarding) */
1843 
1844 #define MALI_MFBD_DEPTH_WRITE (1 << 10)
1845 
1846 /* The MFBD contains the extra mali_framebuffer_extra  section */
1847 
1848 #define MALI_MFBD_EXTRA (1 << 13)
1849 
1850 struct mali_framebuffer {
1851         union {
1852                 struct mali_shared_memory shared_memory;
1853                 struct bifrost_multisampling msaa;
1854         };
1855 
1856         /* 0x20 */
1857         u16 width1, height1;
1858         u32 zero3;
1859         u16 width2, height2;
1860         u32 unk1 : 19; // = 0x01000
1861         u32 rt_count_1 : 3; // off-by-one (use MALI_POSITIVE)
1862         u32 unk2 : 2; // = 0
1863         u32 rt_count_2 : 3; // no off-by-one
1864         u32 zero4 : 5;
1865         /* 0x30 */
1866         u32 clear_stencil : 8;
1867         u32 mfbd_flags : 24; // = 0x100
1868         float clear_depth;
1869 
1870         union {
1871                 struct midgard_tiler_descriptor tiler;
1872                 struct {
1873                         mali_ptr tiler_meta;
1874                         u32 zeros[16];
1875                 };
1876         };
1877 
1878         /* optional: struct mali_framebuffer_extra  extra */
1879         /* struct mali_render_target rts[] */
1880 } __attribute__((packed));
1881 
1882 #endif /* __PANFROST_JOB_H__ */
1883