1 /*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* for crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33 #include "target/arm/gtimer.h"
34
35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
36
37 static void switch_mode(CPUARMState *env, int mode);
38
raw_read(CPUARMState * env,const ARMCPRegInfo * ri)39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
40 {
41 assert(ri->fieldoffset);
42 if (cpreg_field_is_64bit(ri)) {
43 return CPREG_FIELD64(env, ri);
44 } else {
45 return CPREG_FIELD32(env, ri);
46 }
47 }
48
raw_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
50 {
51 assert(ri->fieldoffset);
52 if (cpreg_field_is_64bit(ri)) {
53 CPREG_FIELD64(env, ri) = value;
54 } else {
55 CPREG_FIELD32(env, ri) = value;
56 }
57 }
58
raw_ptr(CPUARMState * env,const ARMCPRegInfo * ri)59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
60 {
61 return (char *)env + ri->fieldoffset;
62 }
63
read_raw_cp_reg(CPUARMState * env,const ARMCPRegInfo * ri)64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
65 {
66 /* Raw read of a coprocessor register (as needed for migration, etc). */
67 if (ri->type & ARM_CP_CONST) {
68 return ri->resetvalue;
69 } else if (ri->raw_readfn) {
70 return ri->raw_readfn(env, ri);
71 } else if (ri->readfn) {
72 return ri->readfn(env, ri);
73 } else {
74 return raw_read(env, ri);
75 }
76 }
77
write_raw_cp_reg(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t v)78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
79 uint64_t v)
80 {
81 /*
82 * Raw write of a coprocessor register (as needed for migration, etc).
83 * Note that constant registers are treated as write-ignored; the
84 * caller should check for success by whether a readback gives the
85 * value written.
86 */
87 if (ri->type & ARM_CP_CONST) {
88 return;
89 } else if (ri->raw_writefn) {
90 ri->raw_writefn(env, ri, v);
91 } else if (ri->writefn) {
92 ri->writefn(env, ri, v);
93 } else {
94 raw_write(env, ri, v);
95 }
96 }
97
raw_accessors_invalid(const ARMCPRegInfo * ri)98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
99 {
100 /*
101 * Return true if the regdef would cause an assertion if you called
102 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
103 * program bug for it not to have the NO_RAW flag).
104 * NB that returning false here doesn't necessarily mean that calling
105 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
106 * read/write access functions which are safe for raw use" from "has
107 * read/write access functions which have side effects but has forgotten
108 * to provide raw access functions".
109 * The tests here line up with the conditions in read/write_raw_cp_reg()
110 * and assertions in raw_read()/raw_write().
111 */
112 if ((ri->type & ARM_CP_CONST) ||
113 ri->fieldoffset ||
114 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
115 return false;
116 }
117 return true;
118 }
119
write_cpustate_to_list(ARMCPU * cpu,bool kvm_sync)120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
121 {
122 /* Write the coprocessor state from cpu->env to the (index,value) list. */
123 int i;
124 bool ok = true;
125
126 for (i = 0; i < cpu->cpreg_array_len; i++) {
127 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
128 const ARMCPRegInfo *ri;
129 uint64_t newval;
130
131 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
132 if (!ri) {
133 ok = false;
134 continue;
135 }
136 if (ri->type & ARM_CP_NO_RAW) {
137 continue;
138 }
139
140 newval = read_raw_cp_reg(&cpu->env, ri);
141 if (kvm_sync) {
142 /*
143 * Only sync if the previous list->cpustate sync succeeded.
144 * Rather than tracking the success/failure state for every
145 * item in the list, we just recheck "does the raw write we must
146 * have made in write_list_to_cpustate() read back OK" here.
147 */
148 uint64_t oldval = cpu->cpreg_values[i];
149
150 if (oldval == newval) {
151 continue;
152 }
153
154 write_raw_cp_reg(&cpu->env, ri, oldval);
155 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
156 continue;
157 }
158
159 write_raw_cp_reg(&cpu->env, ri, newval);
160 }
161 cpu->cpreg_values[i] = newval;
162 }
163 return ok;
164 }
165
write_list_to_cpustate(ARMCPU * cpu)166 bool write_list_to_cpustate(ARMCPU *cpu)
167 {
168 int i;
169 bool ok = true;
170
171 for (i = 0; i < cpu->cpreg_array_len; i++) {
172 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
173 uint64_t v = cpu->cpreg_values[i];
174 const ARMCPRegInfo *ri;
175
176 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
177 if (!ri) {
178 ok = false;
179 continue;
180 }
181 if (ri->type & ARM_CP_NO_RAW) {
182 continue;
183 }
184 /*
185 * Write value and confirm it reads back as written
186 * (to catch read-only registers and partially read-only
187 * registers where the incoming migration value doesn't match)
188 */
189 write_raw_cp_reg(&cpu->env, ri, v);
190 if (read_raw_cp_reg(&cpu->env, ri) != v) {
191 ok = false;
192 }
193 }
194 return ok;
195 }
196
add_cpreg_to_list(gpointer key,gpointer opaque)197 static void add_cpreg_to_list(gpointer key, gpointer opaque)
198 {
199 ARMCPU *cpu = opaque;
200 uint32_t regidx = (uintptr_t)key;
201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
202
203 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
204 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
205 /* The value array need not be initialized at this point */
206 cpu->cpreg_array_len++;
207 }
208 }
209
count_cpreg(gpointer key,gpointer opaque)210 static void count_cpreg(gpointer key, gpointer opaque)
211 {
212 ARMCPU *cpu = opaque;
213 const ARMCPRegInfo *ri;
214
215 ri = g_hash_table_lookup(cpu->cp_regs, key);
216
217 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
218 cpu->cpreg_array_len++;
219 }
220 }
221
cpreg_key_compare(gconstpointer a,gconstpointer b)222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
223 {
224 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
225 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
226
227 if (aidx > bidx) {
228 return 1;
229 }
230 if (aidx < bidx) {
231 return -1;
232 }
233 return 0;
234 }
235
init_cpreg_list(ARMCPU * cpu)236 void init_cpreg_list(ARMCPU *cpu)
237 {
238 /*
239 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
240 * Note that we require cpreg_tuples[] to be sorted by key ID.
241 */
242 GList *keys;
243 int arraylen;
244
245 keys = g_hash_table_get_keys(cpu->cp_regs);
246 keys = g_list_sort(keys, cpreg_key_compare);
247
248 cpu->cpreg_array_len = 0;
249
250 g_list_foreach(keys, count_cpreg, cpu);
251
252 arraylen = cpu->cpreg_array_len;
253 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
254 cpu->cpreg_values = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
257 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
258 cpu->cpreg_array_len = 0;
259
260 g_list_foreach(keys, add_cpreg_to_list, cpu);
261
262 assert(cpu->cpreg_array_len == arraylen);
263
264 g_list_free(keys);
265 }
266
arm_pan_enabled(CPUARMState * env)267 static bool arm_pan_enabled(CPUARMState *env)
268 {
269 if (is_a64(env)) {
270 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
271 return false;
272 }
273 return env->pstate & PSTATE_PAN;
274 } else {
275 return env->uncached_cpsr & CPSR_PAN;
276 }
277 }
278
279 /*
280 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
281 */
access_el3_aa32ns(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)282 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
283 const ARMCPRegInfo *ri,
284 bool isread)
285 {
286 if (!is_a64(env) && arm_current_el(env) == 3 &&
287 arm_is_secure_below_el3(env)) {
288 return CP_ACCESS_TRAP_UNCATEGORIZED;
289 }
290 return CP_ACCESS_OK;
291 }
292
293 /*
294 * Some secure-only AArch32 registers trap to EL3 if used from
295 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
296 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
297 * We assume that the .access field is set to PL1_RW.
298 */
access_trap_aa32s_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
300 const ARMCPRegInfo *ri,
301 bool isread)
302 {
303 if (arm_current_el(env) == 3) {
304 return CP_ACCESS_OK;
305 }
306 if (arm_is_secure_below_el3(env)) {
307 if (env->cp15.scr_el3 & SCR_EEL2) {
308 return CP_ACCESS_TRAP_EL2;
309 }
310 return CP_ACCESS_TRAP_EL3;
311 }
312 /* This will be EL1 NS and EL2 NS, which just UNDEF */
313 return CP_ACCESS_TRAP_UNCATEGORIZED;
314 }
315
316 /*
317 * Check for traps to performance monitor registers, which are controlled
318 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
319 */
access_tpm(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
321 bool isread)
322 {
323 int el = arm_current_el(env);
324 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
325
326 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
327 return CP_ACCESS_TRAP_EL2;
328 }
329 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
330 return CP_ACCESS_TRAP_EL3;
331 }
332 return CP_ACCESS_OK;
333 }
334
335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
access_tvm_trvm(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
337 bool isread)
338 {
339 if (arm_current_el(env) == 1) {
340 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
341 if (arm_hcr_el2_eff(env) & trap) {
342 return CP_ACCESS_TRAP_EL2;
343 }
344 }
345 return CP_ACCESS_OK;
346 }
347
348 /* Check for traps from EL1 due to HCR_EL2.TSW. */
access_tsw(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
350 bool isread)
351 {
352 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
353 return CP_ACCESS_TRAP_EL2;
354 }
355 return CP_ACCESS_OK;
356 }
357
358 /* Check for traps from EL1 due to HCR_EL2.TACR. */
access_tacr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
360 bool isread)
361 {
362 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
363 return CP_ACCESS_TRAP_EL2;
364 }
365 return CP_ACCESS_OK;
366 }
367
368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
access_ttlb(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
370 bool isread)
371 {
372 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
373 return CP_ACCESS_TRAP_EL2;
374 }
375 return CP_ACCESS_OK;
376 }
377
378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
access_ttlbis(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
380 bool isread)
381 {
382 if (arm_current_el(env) == 1 &&
383 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
384 return CP_ACCESS_TRAP_EL2;
385 }
386 return CP_ACCESS_OK;
387 }
388
389 #ifdef TARGET_AARCH64
390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
access_ttlbos(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
392 bool isread)
393 {
394 if (arm_current_el(env) == 1 &&
395 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
396 return CP_ACCESS_TRAP_EL2;
397 }
398 return CP_ACCESS_OK;
399 }
400 #endif
401
dacr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
403 {
404 ARMCPU *cpu = env_archcpu(env);
405
406 raw_write(env, ri, value);
407 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
408 }
409
fcse_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
411 {
412 ARMCPU *cpu = env_archcpu(env);
413
414 if (raw_read(env, ri) != value) {
415 /*
416 * Unlike real hardware the qemu TLB uses virtual addresses,
417 * not modified virtual addresses, so this causes a TLB flush.
418 */
419 tlb_flush(CPU(cpu));
420 raw_write(env, ri, value);
421 }
422 }
423
contextidr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
425 uint64_t value)
426 {
427 ARMCPU *cpu = env_archcpu(env);
428
429 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
430 && !extended_addresses_enabled(env)) {
431 /*
432 * For VMSA (when not using the LPAE long descriptor page table
433 * format) this register includes the ASID, so do a TLB flush.
434 * For PMSA it is purely a process ID and no action is needed.
435 */
436 tlb_flush(CPU(cpu));
437 }
438 raw_write(env, ri, value);
439 }
440
alle1_tlbmask(CPUARMState * env)441 static int alle1_tlbmask(CPUARMState *env)
442 {
443 /*
444 * Note that the 'ALL' scope must invalidate both stage 1 and
445 * stage 2 translations, whereas most other scopes only invalidate
446 * stage 1 translations.
447 *
448 * For AArch32 this is only used for TLBIALLNSNH and VTTBR
449 * writes, so only needs to apply to NS PL1&0, not S PL1&0.
450 */
451 return (ARMMMUIdxBit_E10_1 |
452 ARMMMUIdxBit_E10_1_PAN |
453 ARMMMUIdxBit_E10_0 |
454 ARMMMUIdxBit_Stage2 |
455 ARMMMUIdxBit_Stage2_S);
456 }
457
458
459 /* IS variants of TLB operations must affect all cores */
tlbiall_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)460 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
461 uint64_t value)
462 {
463 CPUState *cs = env_cpu(env);
464
465 tlb_flush_all_cpus_synced(cs);
466 }
467
tlbiasid_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)468 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
469 uint64_t value)
470 {
471 CPUState *cs = env_cpu(env);
472
473 tlb_flush_all_cpus_synced(cs);
474 }
475
tlbimva_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)476 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
477 uint64_t value)
478 {
479 CPUState *cs = env_cpu(env);
480
481 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
482 }
483
tlbimvaa_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)484 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
485 uint64_t value)
486 {
487 CPUState *cs = env_cpu(env);
488
489 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
490 }
491
492 /*
493 * Non-IS variants of TLB operations are upgraded to
494 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
495 * force broadcast of these operations.
496 */
tlb_force_broadcast(CPUARMState * env)497 static bool tlb_force_broadcast(CPUARMState *env)
498 {
499 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
500 }
501
tlbiall_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)502 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
503 uint64_t value)
504 {
505 /* Invalidate all (TLBIALL) */
506 CPUState *cs = env_cpu(env);
507
508 if (tlb_force_broadcast(env)) {
509 tlb_flush_all_cpus_synced(cs);
510 } else {
511 tlb_flush(cs);
512 }
513 }
514
tlbimva_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)515 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
516 uint64_t value)
517 {
518 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
519 CPUState *cs = env_cpu(env);
520
521 value &= TARGET_PAGE_MASK;
522 if (tlb_force_broadcast(env)) {
523 tlb_flush_page_all_cpus_synced(cs, value);
524 } else {
525 tlb_flush_page(cs, value);
526 }
527 }
528
tlbiasid_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)529 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
530 uint64_t value)
531 {
532 /* Invalidate by ASID (TLBIASID) */
533 CPUState *cs = env_cpu(env);
534
535 if (tlb_force_broadcast(env)) {
536 tlb_flush_all_cpus_synced(cs);
537 } else {
538 tlb_flush(cs);
539 }
540 }
541
tlbimvaa_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)542 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
543 uint64_t value)
544 {
545 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
546 CPUState *cs = env_cpu(env);
547
548 value &= TARGET_PAGE_MASK;
549 if (tlb_force_broadcast(env)) {
550 tlb_flush_page_all_cpus_synced(cs, value);
551 } else {
552 tlb_flush_page(cs, value);
553 }
554 }
555
tlbiall_nsnh_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)556 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
557 uint64_t value)
558 {
559 CPUState *cs = env_cpu(env);
560
561 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
562 }
563
tlbiall_nsnh_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)564 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
566 {
567 CPUState *cs = env_cpu(env);
568
569 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
570 }
571
572
tlbiall_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)573 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
574 uint64_t value)
575 {
576 CPUState *cs = env_cpu(env);
577
578 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
579 }
580
tlbiall_hyp_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)581 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582 uint64_t value)
583 {
584 CPUState *cs = env_cpu(env);
585
586 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
587 }
588
tlbimva_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)589 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
590 uint64_t value)
591 {
592 CPUState *cs = env_cpu(env);
593 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
594
595 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
596 }
597
tlbimva_hyp_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)598 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
599 uint64_t value)
600 {
601 CPUState *cs = env_cpu(env);
602 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
603
604 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
605 ARMMMUIdxBit_E2);
606 }
607
tlbiipas2_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)608 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
609 uint64_t value)
610 {
611 CPUState *cs = env_cpu(env);
612 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
613
614 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
615 }
616
tlbiipas2is_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)617 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
618 uint64_t value)
619 {
620 CPUState *cs = env_cpu(env);
621 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
622
623 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
624 }
625
626 static const ARMCPRegInfo cp_reginfo[] = {
627 /*
628 * Define the secure and non-secure FCSE identifier CP registers
629 * separately because there is no secure bank in V8 (no _EL3). This allows
630 * the secure register to be properly reset and migrated. There is also no
631 * v8 EL1 version of the register so the non-secure instance stands alone.
632 */
633 { .name = "FCSEIDR",
634 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
635 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
636 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
637 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
638 { .name = "FCSEIDR_S",
639 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
640 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
641 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
642 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
643 /*
644 * Define the secure and non-secure context identifier CP registers
645 * separately because there is no secure bank in V8 (no _EL3). This allows
646 * the secure register to be properly reset and migrated. In the
647 * non-secure case, the 32-bit register will have reset and migration
648 * disabled during registration as it is handled by the 64-bit instance.
649 */
650 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
651 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
652 .access = PL1_RW, .accessfn = access_tvm_trvm,
653 .fgt = FGT_CONTEXTIDR_EL1,
654 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
655 .secure = ARM_CP_SECSTATE_NS,
656 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
657 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
658 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
659 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
660 .access = PL1_RW, .accessfn = access_tvm_trvm,
661 .secure = ARM_CP_SECSTATE_S,
662 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
663 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
664 };
665
666 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
667 /*
668 * NB: Some of these registers exist in v8 but with more precise
669 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
670 */
671 /* MMU Domain access control / MPU write buffer control */
672 { .name = "DACR",
673 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
674 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
675 .writefn = dacr_write, .raw_writefn = raw_write,
676 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
677 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
678 /*
679 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
680 * For v6 and v5, these mappings are overly broad.
681 */
682 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
683 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
684 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
685 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
686 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
687 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
688 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
689 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
690 /* Cache maintenance ops; some of this space may be overridden later. */
691 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
692 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
693 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
694 };
695
696 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
697 /*
698 * Not all pre-v6 cores implemented this WFI, so this is slightly
699 * over-broad.
700 */
701 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
702 .access = PL1_W, .type = ARM_CP_WFI },
703 };
704
705 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
706 /*
707 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
708 * is UNPREDICTABLE; we choose to NOP as most implementations do).
709 */
710 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
711 .access = PL1_W, .type = ARM_CP_WFI },
712 /*
713 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
714 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
715 * OMAPCP will override this space.
716 */
717 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
718 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
719 .resetvalue = 0 },
720 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
721 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
722 .resetvalue = 0 },
723 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
724 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
725 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
726 .resetvalue = 0 },
727 /*
728 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
729 * implementing it as RAZ means the "debug architecture version" bits
730 * will read as a reserved value, which should cause Linux to not try
731 * to use the debug hardware.
732 */
733 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
734 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
735 /*
736 * MMU TLB control. Note that the wildcarding means we cover not just
737 * the unified TLB ops but also the dside/iside/inner-shareable variants.
738 */
739 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
740 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
741 .type = ARM_CP_NO_RAW },
742 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
743 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
744 .type = ARM_CP_NO_RAW },
745 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
746 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
747 .type = ARM_CP_NO_RAW },
748 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
749 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
750 .type = ARM_CP_NO_RAW },
751 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
752 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
753 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
754 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
755 };
756
cpacr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)757 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
758 uint64_t value)
759 {
760 uint32_t mask = 0;
761
762 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
763 if (!arm_feature(env, ARM_FEATURE_V8)) {
764 /*
765 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
766 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
767 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
768 */
769 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
770 /* VFP coprocessor: cp10 & cp11 [23:20] */
771 mask |= R_CPACR_ASEDIS_MASK |
772 R_CPACR_D32DIS_MASK |
773 R_CPACR_CP11_MASK |
774 R_CPACR_CP10_MASK;
775
776 if (!arm_feature(env, ARM_FEATURE_NEON)) {
777 /* ASEDIS [31] bit is RAO/WI */
778 value |= R_CPACR_ASEDIS_MASK;
779 }
780
781 /*
782 * VFPv3 and upwards with NEON implement 32 double precision
783 * registers (D0-D31).
784 */
785 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
786 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
787 value |= R_CPACR_D32DIS_MASK;
788 }
789 }
790 value &= mask;
791 }
792
793 /*
794 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
795 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
796 */
797 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
798 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
799 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
800 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
801 }
802
803 env->cp15.cpacr_el1 = value;
804 }
805
cpacr_read(CPUARMState * env,const ARMCPRegInfo * ri)806 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
807 {
808 /*
809 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
810 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
811 */
812 uint64_t value = env->cp15.cpacr_el1;
813
814 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
815 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
816 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
817 }
818 return value;
819 }
820
821
cpacr_reset(CPUARMState * env,const ARMCPRegInfo * ri)822 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
823 {
824 /*
825 * Call cpacr_write() so that we reset with the correct RAO bits set
826 * for our CPU features.
827 */
828 cpacr_write(env, ri, 0);
829 }
830
cpacr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)831 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
832 bool isread)
833 {
834 if (arm_feature(env, ARM_FEATURE_V8)) {
835 /* Check if CPACR accesses are to be trapped to EL2 */
836 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
837 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
838 return CP_ACCESS_TRAP_EL2;
839 /* Check if CPACR accesses are to be trapped to EL3 */
840 } else if (arm_current_el(env) < 3 &&
841 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
842 return CP_ACCESS_TRAP_EL3;
843 }
844 }
845
846 return CP_ACCESS_OK;
847 }
848
cptr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)849 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
850 bool isread)
851 {
852 /* Check if CPTR accesses are set to trap to EL3 */
853 if (arm_current_el(env) == 2 &&
854 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
855 return CP_ACCESS_TRAP_EL3;
856 }
857
858 return CP_ACCESS_OK;
859 }
860
861 static const ARMCPRegInfo v6_cp_reginfo[] = {
862 /* prefetch by MVA in v6, NOP in v7 */
863 { .name = "MVA_prefetch",
864 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
865 .access = PL1_W, .type = ARM_CP_NOP },
866 /*
867 * We need to break the TB after ISB to execute self-modifying code
868 * correctly and also to take any pending interrupts immediately.
869 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
870 */
871 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
872 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
873 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
874 .access = PL0_W, .type = ARM_CP_NOP },
875 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
876 .access = PL0_W, .type = ARM_CP_NOP },
877 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
878 .access = PL1_RW, .accessfn = access_tvm_trvm,
879 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
880 offsetof(CPUARMState, cp15.ifar_ns) },
881 .resetvalue = 0, },
882 /*
883 * Watchpoint Fault Address Register : should actually only be present
884 * for 1136, 1176, 11MPCore.
885 */
886 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
887 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
888 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
889 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
890 .fgt = FGT_CPACR_EL1,
891 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
892 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
893 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
894 };
895
896 typedef struct pm_event {
897 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
898 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
899 bool (*supported)(CPUARMState *);
900 /*
901 * Retrieve the current count of the underlying event. The programmed
902 * counters hold a difference from the return value from this function
903 */
904 uint64_t (*get_count)(CPUARMState *);
905 /*
906 * Return how many nanoseconds it will take (at a minimum) for count events
907 * to occur. A negative value indicates the counter will never overflow, or
908 * that the counter has otherwise arranged for the overflow bit to be set
909 * and the PMU interrupt to be raised on overflow.
910 */
911 int64_t (*ns_per_count)(uint64_t);
912 } pm_event;
913
event_always_supported(CPUARMState * env)914 static bool event_always_supported(CPUARMState *env)
915 {
916 return true;
917 }
918
swinc_get_count(CPUARMState * env)919 static uint64_t swinc_get_count(CPUARMState *env)
920 {
921 /*
922 * SW_INCR events are written directly to the pmevcntr's by writes to
923 * PMSWINC, so there is no underlying count maintained by the PMU itself
924 */
925 return 0;
926 }
927
swinc_ns_per(uint64_t ignored)928 static int64_t swinc_ns_per(uint64_t ignored)
929 {
930 return -1;
931 }
932
933 /*
934 * Return the underlying cycle count for the PMU cycle counters. If we're in
935 * usermode, simply return 0.
936 */
cycles_get_count(CPUARMState * env)937 static uint64_t cycles_get_count(CPUARMState *env)
938 {
939 #ifndef CONFIG_USER_ONLY
940 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
941 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
942 #else
943 return cpu_get_host_ticks();
944 #endif
945 }
946
947 #ifndef CONFIG_USER_ONLY
cycles_ns_per(uint64_t cycles)948 static int64_t cycles_ns_per(uint64_t cycles)
949 {
950 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
951 }
952
instructions_supported(CPUARMState * env)953 static bool instructions_supported(CPUARMState *env)
954 {
955 /* Precise instruction counting */
956 return icount_enabled() == ICOUNT_PRECISE;
957 }
958
instructions_get_count(CPUARMState * env)959 static uint64_t instructions_get_count(CPUARMState *env)
960 {
961 assert(icount_enabled() == ICOUNT_PRECISE);
962 return (uint64_t)icount_get_raw();
963 }
964
instructions_ns_per(uint64_t icount)965 static int64_t instructions_ns_per(uint64_t icount)
966 {
967 assert(icount_enabled() == ICOUNT_PRECISE);
968 return icount_to_ns((int64_t)icount);
969 }
970 #endif
971
pmuv3p1_events_supported(CPUARMState * env)972 static bool pmuv3p1_events_supported(CPUARMState *env)
973 {
974 /* For events which are supported in any v8.1 PMU */
975 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
976 }
977
pmuv3p4_events_supported(CPUARMState * env)978 static bool pmuv3p4_events_supported(CPUARMState *env)
979 {
980 /* For events which are supported in any v8.1 PMU */
981 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
982 }
983
zero_event_get_count(CPUARMState * env)984 static uint64_t zero_event_get_count(CPUARMState *env)
985 {
986 /* For events which on QEMU never fire, so their count is always zero */
987 return 0;
988 }
989
zero_event_ns_per(uint64_t cycles)990 static int64_t zero_event_ns_per(uint64_t cycles)
991 {
992 /* An event which never fires can never overflow */
993 return -1;
994 }
995
996 static const pm_event pm_events[] = {
997 { .number = 0x000, /* SW_INCR */
998 .supported = event_always_supported,
999 .get_count = swinc_get_count,
1000 .ns_per_count = swinc_ns_per,
1001 },
1002 #ifndef CONFIG_USER_ONLY
1003 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1004 .supported = instructions_supported,
1005 .get_count = instructions_get_count,
1006 .ns_per_count = instructions_ns_per,
1007 },
1008 { .number = 0x011, /* CPU_CYCLES, Cycle */
1009 .supported = event_always_supported,
1010 .get_count = cycles_get_count,
1011 .ns_per_count = cycles_ns_per,
1012 },
1013 #endif
1014 { .number = 0x023, /* STALL_FRONTEND */
1015 .supported = pmuv3p1_events_supported,
1016 .get_count = zero_event_get_count,
1017 .ns_per_count = zero_event_ns_per,
1018 },
1019 { .number = 0x024, /* STALL_BACKEND */
1020 .supported = pmuv3p1_events_supported,
1021 .get_count = zero_event_get_count,
1022 .ns_per_count = zero_event_ns_per,
1023 },
1024 { .number = 0x03c, /* STALL */
1025 .supported = pmuv3p4_events_supported,
1026 .get_count = zero_event_get_count,
1027 .ns_per_count = zero_event_ns_per,
1028 },
1029 };
1030
1031 /*
1032 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1033 * events (i.e. the statistical profiling extension), this implementation
1034 * should first be updated to something sparse instead of the current
1035 * supported_event_map[] array.
1036 */
1037 #define MAX_EVENT_ID 0x3c
1038 #define UNSUPPORTED_EVENT UINT16_MAX
1039 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1040
1041 /*
1042 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1043 * of ARM event numbers to indices in our pm_events array.
1044 *
1045 * Note: Events in the 0x40XX range are not currently supported.
1046 */
pmu_init(ARMCPU * cpu)1047 void pmu_init(ARMCPU *cpu)
1048 {
1049 unsigned int i;
1050
1051 /*
1052 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1053 * events to them
1054 */
1055 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1056 supported_event_map[i] = UNSUPPORTED_EVENT;
1057 }
1058 cpu->pmceid0 = 0;
1059 cpu->pmceid1 = 0;
1060
1061 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1062 const pm_event *cnt = &pm_events[i];
1063 assert(cnt->number <= MAX_EVENT_ID);
1064 /* We do not currently support events in the 0x40xx range */
1065 assert(cnt->number <= 0x3f);
1066
1067 if (cnt->supported(&cpu->env)) {
1068 supported_event_map[cnt->number] = i;
1069 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1070 if (cnt->number & 0x20) {
1071 cpu->pmceid1 |= event_mask;
1072 } else {
1073 cpu->pmceid0 |= event_mask;
1074 }
1075 }
1076 }
1077 }
1078
1079 /*
1080 * Check at runtime whether a PMU event is supported for the current machine
1081 */
event_supported(uint16_t number)1082 static bool event_supported(uint16_t number)
1083 {
1084 if (number > MAX_EVENT_ID) {
1085 return false;
1086 }
1087 return supported_event_map[number] != UNSUPPORTED_EVENT;
1088 }
1089
pmreg_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1090 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1091 bool isread)
1092 {
1093 /*
1094 * Performance monitor registers user accessibility is controlled
1095 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1096 * trapping to EL2 or EL3 for other accesses.
1097 */
1098 int el = arm_current_el(env);
1099 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1100
1101 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1102 return CP_ACCESS_TRAP;
1103 }
1104 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1105 return CP_ACCESS_TRAP_EL2;
1106 }
1107 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1108 return CP_ACCESS_TRAP_EL3;
1109 }
1110
1111 return CP_ACCESS_OK;
1112 }
1113
pmreg_access_xevcntr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1114 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1115 const ARMCPRegInfo *ri,
1116 bool isread)
1117 {
1118 /* ER: event counter read trap control */
1119 if (arm_feature(env, ARM_FEATURE_V8)
1120 && arm_current_el(env) == 0
1121 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1122 && isread) {
1123 return CP_ACCESS_OK;
1124 }
1125
1126 return pmreg_access(env, ri, isread);
1127 }
1128
pmreg_access_swinc(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1129 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1130 const ARMCPRegInfo *ri,
1131 bool isread)
1132 {
1133 /* SW: software increment write trap control */
1134 if (arm_feature(env, ARM_FEATURE_V8)
1135 && arm_current_el(env) == 0
1136 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1137 && !isread) {
1138 return CP_ACCESS_OK;
1139 }
1140
1141 return pmreg_access(env, ri, isread);
1142 }
1143
pmreg_access_selr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1144 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1145 const ARMCPRegInfo *ri,
1146 bool isread)
1147 {
1148 /* ER: event counter read trap control */
1149 if (arm_feature(env, ARM_FEATURE_V8)
1150 && arm_current_el(env) == 0
1151 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1152 return CP_ACCESS_OK;
1153 }
1154
1155 return pmreg_access(env, ri, isread);
1156 }
1157
pmreg_access_ccntr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1158 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1159 const ARMCPRegInfo *ri,
1160 bool isread)
1161 {
1162 /* CR: cycle counter read trap control */
1163 if (arm_feature(env, ARM_FEATURE_V8)
1164 && arm_current_el(env) == 0
1165 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1166 && isread) {
1167 return CP_ACCESS_OK;
1168 }
1169
1170 return pmreg_access(env, ri, isread);
1171 }
1172
1173 /*
1174 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1175 * We use these to decide whether we need to wrap a write to MDCR_EL2
1176 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1177 */
1178 #define MDCR_EL2_PMU_ENABLE_BITS \
1179 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1180 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1181
1182 /*
1183 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1184 * the current EL, security state, and register configuration.
1185 */
pmu_counter_enabled(CPUARMState * env,uint8_t counter)1186 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1187 {
1188 uint64_t filter;
1189 bool e, p, u, nsk, nsu, nsh, m;
1190 bool enabled, prohibited = false, filtered;
1191 bool secure = arm_is_secure(env);
1192 int el = arm_current_el(env);
1193 uint64_t mdcr_el2;
1194 uint8_t hpmn;
1195
1196 /*
1197 * We might be called for M-profile cores where MDCR_EL2 doesn't
1198 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check
1199 * must be before we read that value.
1200 */
1201 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1202 return false;
1203 }
1204
1205 mdcr_el2 = arm_mdcr_el2_eff(env);
1206 hpmn = mdcr_el2 & MDCR_HPMN;
1207
1208 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1209 (counter < hpmn || counter == 31)) {
1210 e = env->cp15.c9_pmcr & PMCRE;
1211 } else {
1212 e = mdcr_el2 & MDCR_HPME;
1213 }
1214 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1215
1216 /* Is event counting prohibited? */
1217 if (el == 2 && (counter < hpmn || counter == 31)) {
1218 prohibited = mdcr_el2 & MDCR_HPMD;
1219 }
1220 if (secure) {
1221 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1222 }
1223
1224 if (counter == 31) {
1225 /*
1226 * The cycle counter defaults to running. PMCR.DP says "disable
1227 * the cycle counter when event counting is prohibited".
1228 * Some MDCR bits disable the cycle counter specifically.
1229 */
1230 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1231 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1232 if (secure) {
1233 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1234 }
1235 if (el == 2) {
1236 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1237 }
1238 }
1239 }
1240
1241 if (counter == 31) {
1242 filter = env->cp15.pmccfiltr_el0;
1243 } else {
1244 filter = env->cp15.c14_pmevtyper[counter];
1245 }
1246
1247 p = filter & PMXEVTYPER_P;
1248 u = filter & PMXEVTYPER_U;
1249 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1250 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1251 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1252 m = arm_el_is_aa64(env, 1) &&
1253 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1254
1255 if (el == 0) {
1256 filtered = secure ? u : u != nsu;
1257 } else if (el == 1) {
1258 filtered = secure ? p : p != nsk;
1259 } else if (el == 2) {
1260 filtered = !nsh;
1261 } else { /* EL3 */
1262 filtered = m != p;
1263 }
1264
1265 if (counter != 31) {
1266 /*
1267 * If not checking PMCCNTR, ensure the counter is setup to an event we
1268 * support
1269 */
1270 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1271 if (!event_supported(event)) {
1272 return false;
1273 }
1274 }
1275
1276 return enabled && !prohibited && !filtered;
1277 }
1278
pmu_update_irq(CPUARMState * env)1279 static void pmu_update_irq(CPUARMState *env)
1280 {
1281 ARMCPU *cpu = env_archcpu(env);
1282 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1283 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1284 }
1285
pmccntr_clockdiv_enabled(CPUARMState * env)1286 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1287 {
1288 /*
1289 * Return true if the clock divider is enabled and the cycle counter
1290 * is supposed to tick only once every 64 clock cycles. This is
1291 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1292 * (64-bit) cycle counter PMCR.D has no effect.
1293 */
1294 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1295 }
1296
pmevcntr_is_64_bit(CPUARMState * env,int counter)1297 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1298 {
1299 /* Return true if the specified event counter is configured to be 64 bit */
1300
1301 /* This isn't intended to be used with the cycle counter */
1302 assert(counter < 31);
1303
1304 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1305 return false;
1306 }
1307
1308 if (arm_feature(env, ARM_FEATURE_EL2)) {
1309 /*
1310 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1311 * current security state, so we don't use arm_mdcr_el2_eff() here.
1312 */
1313 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1314 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1315
1316 if (counter >= hpmn) {
1317 return hlp;
1318 }
1319 }
1320 return env->cp15.c9_pmcr & PMCRLP;
1321 }
1322
1323 /*
1324 * Ensure c15_ccnt is the guest-visible count so that operations such as
1325 * enabling/disabling the counter or filtering, modifying the count itself,
1326 * etc. can be done logically. This is essentially a no-op if the counter is
1327 * not enabled at the time of the call.
1328 */
pmccntr_op_start(CPUARMState * env)1329 static void pmccntr_op_start(CPUARMState *env)
1330 {
1331 uint64_t cycles = cycles_get_count(env);
1332
1333 if (pmu_counter_enabled(env, 31)) {
1334 uint64_t eff_cycles = cycles;
1335 if (pmccntr_clockdiv_enabled(env)) {
1336 eff_cycles /= 64;
1337 }
1338
1339 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1340
1341 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1342 1ull << 63 : 1ull << 31;
1343 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1344 env->cp15.c9_pmovsr |= (1ULL << 31);
1345 pmu_update_irq(env);
1346 }
1347
1348 env->cp15.c15_ccnt = new_pmccntr;
1349 }
1350 env->cp15.c15_ccnt_delta = cycles;
1351 }
1352
1353 /*
1354 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1355 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1356 * pmccntr_op_start.
1357 */
pmccntr_op_finish(CPUARMState * env)1358 static void pmccntr_op_finish(CPUARMState *env)
1359 {
1360 if (pmu_counter_enabled(env, 31)) {
1361 #ifndef CONFIG_USER_ONLY
1362 /* Calculate when the counter will next overflow */
1363 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1364 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1365 remaining_cycles = (uint32_t)remaining_cycles;
1366 }
1367 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1368
1369 if (overflow_in > 0) {
1370 int64_t overflow_at;
1371
1372 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1373 overflow_in, &overflow_at)) {
1374 ARMCPU *cpu = env_archcpu(env);
1375 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1376 }
1377 }
1378 #endif
1379
1380 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1381 if (pmccntr_clockdiv_enabled(env)) {
1382 prev_cycles /= 64;
1383 }
1384 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1385 }
1386 }
1387
pmevcntr_op_start(CPUARMState * env,uint8_t counter)1388 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1389 {
1390
1391 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1392 uint64_t count = 0;
1393 if (event_supported(event)) {
1394 uint16_t event_idx = supported_event_map[event];
1395 count = pm_events[event_idx].get_count(env);
1396 }
1397
1398 if (pmu_counter_enabled(env, counter)) {
1399 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1400 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1401 1ULL << 63 : 1ULL << 31;
1402
1403 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1404 env->cp15.c9_pmovsr |= (1 << counter);
1405 pmu_update_irq(env);
1406 }
1407 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1408 }
1409 env->cp15.c14_pmevcntr_delta[counter] = count;
1410 }
1411
pmevcntr_op_finish(CPUARMState * env,uint8_t counter)1412 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1413 {
1414 if (pmu_counter_enabled(env, counter)) {
1415 #ifndef CONFIG_USER_ONLY
1416 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1417 uint16_t event_idx = supported_event_map[event];
1418 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1419 int64_t overflow_in;
1420
1421 if (!pmevcntr_is_64_bit(env, counter)) {
1422 delta = (uint32_t)delta;
1423 }
1424 overflow_in = pm_events[event_idx].ns_per_count(delta);
1425
1426 if (overflow_in > 0) {
1427 int64_t overflow_at;
1428
1429 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1430 overflow_in, &overflow_at)) {
1431 ARMCPU *cpu = env_archcpu(env);
1432 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1433 }
1434 }
1435 #endif
1436
1437 env->cp15.c14_pmevcntr_delta[counter] -=
1438 env->cp15.c14_pmevcntr[counter];
1439 }
1440 }
1441
pmu_op_start(CPUARMState * env)1442 void pmu_op_start(CPUARMState *env)
1443 {
1444 unsigned int i;
1445 pmccntr_op_start(env);
1446 for (i = 0; i < pmu_num_counters(env); i++) {
1447 pmevcntr_op_start(env, i);
1448 }
1449 }
1450
pmu_op_finish(CPUARMState * env)1451 void pmu_op_finish(CPUARMState *env)
1452 {
1453 unsigned int i;
1454 pmccntr_op_finish(env);
1455 for (i = 0; i < pmu_num_counters(env); i++) {
1456 pmevcntr_op_finish(env, i);
1457 }
1458 }
1459
pmu_pre_el_change(ARMCPU * cpu,void * ignored)1460 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1461 {
1462 pmu_op_start(&cpu->env);
1463 }
1464
pmu_post_el_change(ARMCPU * cpu,void * ignored)1465 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1466 {
1467 pmu_op_finish(&cpu->env);
1468 }
1469
arm_pmu_timer_cb(void * opaque)1470 void arm_pmu_timer_cb(void *opaque)
1471 {
1472 ARMCPU *cpu = opaque;
1473
1474 /*
1475 * Update all the counter values based on the current underlying counts,
1476 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1477 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1478 * counter may expire.
1479 */
1480 pmu_op_start(&cpu->env);
1481 pmu_op_finish(&cpu->env);
1482 }
1483
pmcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1484 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1485 uint64_t value)
1486 {
1487 pmu_op_start(env);
1488
1489 if (value & PMCRC) {
1490 /* The counter has been reset */
1491 env->cp15.c15_ccnt = 0;
1492 }
1493
1494 if (value & PMCRP) {
1495 unsigned int i;
1496 for (i = 0; i < pmu_num_counters(env); i++) {
1497 env->cp15.c14_pmevcntr[i] = 0;
1498 }
1499 }
1500
1501 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1502 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1503
1504 pmu_op_finish(env);
1505 }
1506
pmcr_read(CPUARMState * env,const ARMCPRegInfo * ri)1507 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1508 {
1509 uint64_t pmcr = env->cp15.c9_pmcr;
1510
1511 /*
1512 * If EL2 is implemented and enabled for the current security state, reads
1513 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1514 */
1515 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1516 pmcr &= ~PMCRN_MASK;
1517 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1518 }
1519
1520 return pmcr;
1521 }
1522
pmswinc_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1523 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1524 uint64_t value)
1525 {
1526 unsigned int i;
1527 uint64_t overflow_mask, new_pmswinc;
1528
1529 for (i = 0; i < pmu_num_counters(env); i++) {
1530 /* Increment a counter's count iff: */
1531 if ((value & (1 << i)) && /* counter's bit is set */
1532 /* counter is enabled and not filtered */
1533 pmu_counter_enabled(env, i) &&
1534 /* counter is SW_INCR */
1535 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1536 pmevcntr_op_start(env, i);
1537
1538 /*
1539 * Detect if this write causes an overflow since we can't predict
1540 * PMSWINC overflows like we can for other events
1541 */
1542 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1543
1544 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1545 1ULL << 63 : 1ULL << 31;
1546
1547 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1548 env->cp15.c9_pmovsr |= (1 << i);
1549 pmu_update_irq(env);
1550 }
1551
1552 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1553
1554 pmevcntr_op_finish(env, i);
1555 }
1556 }
1557 }
1558
pmccntr_read(CPUARMState * env,const ARMCPRegInfo * ri)1559 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1560 {
1561 uint64_t ret;
1562 pmccntr_op_start(env);
1563 ret = env->cp15.c15_ccnt;
1564 pmccntr_op_finish(env);
1565 return ret;
1566 }
1567
pmselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1568 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1569 uint64_t value)
1570 {
1571 /*
1572 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1573 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1574 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1575 * accessed.
1576 */
1577 env->cp15.c9_pmselr = value & 0x1f;
1578 }
1579
pmccntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1580 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1581 uint64_t value)
1582 {
1583 pmccntr_op_start(env);
1584 env->cp15.c15_ccnt = value;
1585 pmccntr_op_finish(env);
1586 }
1587
pmccntr_write32(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1588 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1589 uint64_t value)
1590 {
1591 uint64_t cur_val = pmccntr_read(env, NULL);
1592
1593 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1594 }
1595
pmccfiltr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1596 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1597 uint64_t value)
1598 {
1599 pmccntr_op_start(env);
1600 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1601 pmccntr_op_finish(env);
1602 }
1603
pmccfiltr_write_a32(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1604 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1605 uint64_t value)
1606 {
1607 pmccntr_op_start(env);
1608 /* M is not accessible from AArch32 */
1609 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1610 (value & PMCCFILTR);
1611 pmccntr_op_finish(env);
1612 }
1613
pmccfiltr_read_a32(CPUARMState * env,const ARMCPRegInfo * ri)1614 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1615 {
1616 /* M is not visible in AArch32 */
1617 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1618 }
1619
pmcntenset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1620 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1621 uint64_t value)
1622 {
1623 pmu_op_start(env);
1624 value &= pmu_counter_mask(env);
1625 env->cp15.c9_pmcnten |= value;
1626 pmu_op_finish(env);
1627 }
1628
pmcntenclr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1629 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1630 uint64_t value)
1631 {
1632 pmu_op_start(env);
1633 value &= pmu_counter_mask(env);
1634 env->cp15.c9_pmcnten &= ~value;
1635 pmu_op_finish(env);
1636 }
1637
pmovsr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1638 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1639 uint64_t value)
1640 {
1641 value &= pmu_counter_mask(env);
1642 env->cp15.c9_pmovsr &= ~value;
1643 pmu_update_irq(env);
1644 }
1645
pmovsset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1646 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1647 uint64_t value)
1648 {
1649 value &= pmu_counter_mask(env);
1650 env->cp15.c9_pmovsr |= value;
1651 pmu_update_irq(env);
1652 }
1653
pmevtyper_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value,const uint8_t counter)1654 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1655 uint64_t value, const uint8_t counter)
1656 {
1657 if (counter == 31) {
1658 pmccfiltr_write(env, ri, value);
1659 } else if (counter < pmu_num_counters(env)) {
1660 pmevcntr_op_start(env, counter);
1661
1662 /*
1663 * If this counter's event type is changing, store the current
1664 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1665 * pmevcntr_op_finish has the correct baseline when it converts back to
1666 * a delta.
1667 */
1668 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1669 PMXEVTYPER_EVTCOUNT;
1670 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1671 if (old_event != new_event) {
1672 uint64_t count = 0;
1673 if (event_supported(new_event)) {
1674 uint16_t event_idx = supported_event_map[new_event];
1675 count = pm_events[event_idx].get_count(env);
1676 }
1677 env->cp15.c14_pmevcntr_delta[counter] = count;
1678 }
1679
1680 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1681 pmevcntr_op_finish(env, counter);
1682 }
1683 /*
1684 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1685 * PMSELR value is equal to or greater than the number of implemented
1686 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1687 */
1688 }
1689
pmevtyper_read(CPUARMState * env,const ARMCPRegInfo * ri,const uint8_t counter)1690 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1691 const uint8_t counter)
1692 {
1693 if (counter == 31) {
1694 return env->cp15.pmccfiltr_el0;
1695 } else if (counter < pmu_num_counters(env)) {
1696 return env->cp15.c14_pmevtyper[counter];
1697 } else {
1698 /*
1699 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1700 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1701 */
1702 return 0;
1703 }
1704 }
1705
pmevtyper_writefn(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1706 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1707 uint64_t value)
1708 {
1709 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1710 pmevtyper_write(env, ri, value, counter);
1711 }
1712
pmevtyper_rawwrite(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1713 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1714 uint64_t value)
1715 {
1716 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1717 env->cp15.c14_pmevtyper[counter] = value;
1718
1719 /*
1720 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1721 * pmu_op_finish calls when loading saved state for a migration. Because
1722 * we're potentially updating the type of event here, the value written to
1723 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1724 * different counter type. Therefore, we need to set this value to the
1725 * current count for the counter type we're writing so that pmu_op_finish
1726 * has the correct count for its calculation.
1727 */
1728 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1729 if (event_supported(event)) {
1730 uint16_t event_idx = supported_event_map[event];
1731 env->cp15.c14_pmevcntr_delta[counter] =
1732 pm_events[event_idx].get_count(env);
1733 }
1734 }
1735
pmevtyper_readfn(CPUARMState * env,const ARMCPRegInfo * ri)1736 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1737 {
1738 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1739 return pmevtyper_read(env, ri, counter);
1740 }
1741
pmxevtyper_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1742 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1743 uint64_t value)
1744 {
1745 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1746 }
1747
pmxevtyper_read(CPUARMState * env,const ARMCPRegInfo * ri)1748 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1749 {
1750 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1751 }
1752
pmevcntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value,uint8_t counter)1753 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1754 uint64_t value, uint8_t counter)
1755 {
1756 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1757 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1758 value &= MAKE_64BIT_MASK(0, 32);
1759 }
1760 if (counter < pmu_num_counters(env)) {
1761 pmevcntr_op_start(env, counter);
1762 env->cp15.c14_pmevcntr[counter] = value;
1763 pmevcntr_op_finish(env, counter);
1764 }
1765 /*
1766 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1767 * are CONSTRAINED UNPREDICTABLE.
1768 */
1769 }
1770
pmevcntr_read(CPUARMState * env,const ARMCPRegInfo * ri,uint8_t counter)1771 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1772 uint8_t counter)
1773 {
1774 if (counter < pmu_num_counters(env)) {
1775 uint64_t ret;
1776 pmevcntr_op_start(env, counter);
1777 ret = env->cp15.c14_pmevcntr[counter];
1778 pmevcntr_op_finish(env, counter);
1779 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1780 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1781 ret &= MAKE_64BIT_MASK(0, 32);
1782 }
1783 return ret;
1784 } else {
1785 /*
1786 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1787 * are CONSTRAINED UNPREDICTABLE.
1788 */
1789 return 0;
1790 }
1791 }
1792
pmevcntr_writefn(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1793 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1794 uint64_t value)
1795 {
1796 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1797 pmevcntr_write(env, ri, value, counter);
1798 }
1799
pmevcntr_readfn(CPUARMState * env,const ARMCPRegInfo * ri)1800 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1801 {
1802 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1803 return pmevcntr_read(env, ri, counter);
1804 }
1805
pmevcntr_rawwrite(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1806 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1807 uint64_t value)
1808 {
1809 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1810 assert(counter < pmu_num_counters(env));
1811 env->cp15.c14_pmevcntr[counter] = value;
1812 pmevcntr_write(env, ri, value, counter);
1813 }
1814
pmevcntr_rawread(CPUARMState * env,const ARMCPRegInfo * ri)1815 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1816 {
1817 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1818 assert(counter < pmu_num_counters(env));
1819 return env->cp15.c14_pmevcntr[counter];
1820 }
1821
pmxevcntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1822 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823 uint64_t value)
1824 {
1825 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1826 }
1827
pmxevcntr_read(CPUARMState * env,const ARMCPRegInfo * ri)1828 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1829 {
1830 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1831 }
1832
pmuserenr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1833 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1834 uint64_t value)
1835 {
1836 if (arm_feature(env, ARM_FEATURE_V8)) {
1837 env->cp15.c9_pmuserenr = value & 0xf;
1838 } else {
1839 env->cp15.c9_pmuserenr = value & 1;
1840 }
1841 }
1842
pmintenset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1843 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1844 uint64_t value)
1845 {
1846 /* We have no event counters so only the C bit can be changed */
1847 value &= pmu_counter_mask(env);
1848 env->cp15.c9_pminten |= value;
1849 pmu_update_irq(env);
1850 }
1851
pmintenclr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1852 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1853 uint64_t value)
1854 {
1855 value &= pmu_counter_mask(env);
1856 env->cp15.c9_pminten &= ~value;
1857 pmu_update_irq(env);
1858 }
1859
vbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1860 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1861 uint64_t value)
1862 {
1863 /*
1864 * Note that even though the AArch64 view of this register has bits
1865 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1866 * architectural requirements for bits which are RES0 only in some
1867 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1868 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1869 */
1870 raw_write(env, ri, value & ~0x1FULL);
1871 }
1872
scr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1873 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1874 {
1875 /* Begin with base v8.0 state. */
1876 uint64_t valid_mask = 0x3fff;
1877 ARMCPU *cpu = env_archcpu(env);
1878 uint64_t changed;
1879
1880 /*
1881 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1882 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1883 * Instead, choose the format based on the mode of EL3.
1884 */
1885 if (arm_el_is_aa64(env, 3)) {
1886 value |= SCR_FW | SCR_AW; /* RES1 */
1887 valid_mask &= ~SCR_NET; /* RES0 */
1888
1889 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1890 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1891 value |= SCR_RW; /* RAO/WI */
1892 }
1893 if (cpu_isar_feature(aa64_ras, cpu)) {
1894 valid_mask |= SCR_TERR;
1895 }
1896 if (cpu_isar_feature(aa64_lor, cpu)) {
1897 valid_mask |= SCR_TLOR;
1898 }
1899 if (cpu_isar_feature(aa64_pauth, cpu)) {
1900 valid_mask |= SCR_API | SCR_APK;
1901 }
1902 if (cpu_isar_feature(aa64_sel2, cpu)) {
1903 valid_mask |= SCR_EEL2;
1904 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1905 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1906 value |= SCR_NS;
1907 }
1908 if (cpu_isar_feature(aa64_mte, cpu)) {
1909 valid_mask |= SCR_ATA;
1910 }
1911 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1912 valid_mask |= SCR_ENSCXT;
1913 }
1914 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1915 valid_mask |= SCR_EASE | SCR_NMEA;
1916 }
1917 if (cpu_isar_feature(aa64_sme, cpu)) {
1918 valid_mask |= SCR_ENTP2;
1919 }
1920 if (cpu_isar_feature(aa64_hcx, cpu)) {
1921 valid_mask |= SCR_HXEN;
1922 }
1923 if (cpu_isar_feature(aa64_fgt, cpu)) {
1924 valid_mask |= SCR_FGTEN;
1925 }
1926 if (cpu_isar_feature(aa64_rme, cpu)) {
1927 valid_mask |= SCR_NSE | SCR_GPF;
1928 }
1929 if (cpu_isar_feature(aa64_ecv, cpu)) {
1930 valid_mask |= SCR_ECVEN;
1931 }
1932 } else {
1933 valid_mask &= ~(SCR_RW | SCR_ST);
1934 if (cpu_isar_feature(aa32_ras, cpu)) {
1935 valid_mask |= SCR_TERR;
1936 }
1937 }
1938
1939 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1940 valid_mask &= ~SCR_HCE;
1941
1942 /*
1943 * On ARMv7, SMD (or SCD as it is called in v7) is only
1944 * supported if EL2 exists. The bit is UNK/SBZP when
1945 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1946 * when EL2 is unavailable.
1947 * On ARMv8, this bit is always available.
1948 */
1949 if (arm_feature(env, ARM_FEATURE_V7) &&
1950 !arm_feature(env, ARM_FEATURE_V8)) {
1951 valid_mask &= ~SCR_SMD;
1952 }
1953 }
1954
1955 /* Clear all-context RES0 bits. */
1956 value &= valid_mask;
1957 changed = env->cp15.scr_el3 ^ value;
1958 env->cp15.scr_el3 = value;
1959
1960 /*
1961 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1962 * we must invalidate all TLBs below EL3.
1963 */
1964 if (changed & (SCR_NS | SCR_NSE)) {
1965 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1966 ARMMMUIdxBit_E20_0 |
1967 ARMMMUIdxBit_E10_1 |
1968 ARMMMUIdxBit_E20_2 |
1969 ARMMMUIdxBit_E10_1_PAN |
1970 ARMMMUIdxBit_E20_2_PAN |
1971 ARMMMUIdxBit_E2));
1972 }
1973 }
1974
scr_reset(CPUARMState * env,const ARMCPRegInfo * ri)1975 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1976 {
1977 /*
1978 * scr_write will set the RES1 bits on an AArch64-only CPU.
1979 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1980 */
1981 scr_write(env, ri, 0);
1982 }
1983
access_tid4(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1984 static CPAccessResult access_tid4(CPUARMState *env,
1985 const ARMCPRegInfo *ri,
1986 bool isread)
1987 {
1988 if (arm_current_el(env) == 1 &&
1989 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1990 return CP_ACCESS_TRAP_EL2;
1991 }
1992
1993 return CP_ACCESS_OK;
1994 }
1995
ccsidr_read(CPUARMState * env,const ARMCPRegInfo * ri)1996 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1997 {
1998 ARMCPU *cpu = env_archcpu(env);
1999
2000 /*
2001 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
2002 * bank
2003 */
2004 uint32_t index = A32_BANKED_REG_GET(env, csselr,
2005 ri->secure & ARM_CP_SECSTATE_S);
2006
2007 return cpu->ccsidr[index];
2008 }
2009
csselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2010 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2011 uint64_t value)
2012 {
2013 raw_write(env, ri, value & 0xf);
2014 }
2015
isr_read(CPUARMState * env,const ARMCPRegInfo * ri)2016 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2017 {
2018 CPUState *cs = env_cpu(env);
2019 bool el1 = arm_current_el(env) == 1;
2020 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2021 uint64_t ret = 0;
2022
2023 if (hcr_el2 & HCR_IMO) {
2024 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2025 ret |= CPSR_I;
2026 }
2027 if (cs->interrupt_request & CPU_INTERRUPT_VINMI) {
2028 ret |= ISR_IS;
2029 ret |= CPSR_I;
2030 }
2031 } else {
2032 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2033 ret |= CPSR_I;
2034 }
2035
2036 if (cs->interrupt_request & CPU_INTERRUPT_NMI) {
2037 ret |= ISR_IS;
2038 ret |= CPSR_I;
2039 }
2040 }
2041
2042 if (hcr_el2 & HCR_FMO) {
2043 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2044 ret |= CPSR_F;
2045 }
2046 if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) {
2047 ret |= ISR_FS;
2048 ret |= CPSR_F;
2049 }
2050 } else {
2051 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2052 ret |= CPSR_F;
2053 }
2054 }
2055
2056 if (hcr_el2 & HCR_AMO) {
2057 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2058 ret |= CPSR_A;
2059 }
2060 }
2061
2062 return ret;
2063 }
2064
access_aa64_tid1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2065 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2066 bool isread)
2067 {
2068 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2069 return CP_ACCESS_TRAP_EL2;
2070 }
2071
2072 return CP_ACCESS_OK;
2073 }
2074
access_aa32_tid1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2075 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2076 bool isread)
2077 {
2078 if (arm_feature(env, ARM_FEATURE_V8)) {
2079 return access_aa64_tid1(env, ri, isread);
2080 }
2081
2082 return CP_ACCESS_OK;
2083 }
2084
2085 static const ARMCPRegInfo v7_cp_reginfo[] = {
2086 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2087 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2088 .access = PL1_W, .type = ARM_CP_NOP },
2089 /*
2090 * Performance monitors are implementation defined in v7,
2091 * but with an ARM recommended set of registers, which we
2092 * follow.
2093 *
2094 * Performance registers fall into three categories:
2095 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2096 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2097 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2098 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2099 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2100 */
2101 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2102 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2103 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2104 .writefn = pmcntenset_write,
2105 .accessfn = pmreg_access,
2106 .fgt = FGT_PMCNTEN,
2107 .raw_writefn = raw_write },
2108 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2109 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2110 .access = PL0_RW, .accessfn = pmreg_access,
2111 .fgt = FGT_PMCNTEN,
2112 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2113 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2114 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2115 .access = PL0_RW,
2116 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2117 .accessfn = pmreg_access,
2118 .fgt = FGT_PMCNTEN,
2119 .writefn = pmcntenclr_write,
2120 .type = ARM_CP_ALIAS | ARM_CP_IO },
2121 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2122 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2123 .access = PL0_RW, .accessfn = pmreg_access,
2124 .fgt = FGT_PMCNTEN,
2125 .type = ARM_CP_ALIAS | ARM_CP_IO,
2126 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2127 .writefn = pmcntenclr_write },
2128 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2129 .access = PL0_RW, .type = ARM_CP_IO,
2130 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2131 .accessfn = pmreg_access,
2132 .fgt = FGT_PMOVS,
2133 .writefn = pmovsr_write,
2134 .raw_writefn = raw_write },
2135 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2136 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2137 .access = PL0_RW, .accessfn = pmreg_access,
2138 .fgt = FGT_PMOVS,
2139 .type = ARM_CP_ALIAS | ARM_CP_IO,
2140 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2141 .writefn = pmovsr_write,
2142 .raw_writefn = raw_write },
2143 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2144 .access = PL0_W, .accessfn = pmreg_access_swinc,
2145 .fgt = FGT_PMSWINC_EL0,
2146 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2147 .writefn = pmswinc_write },
2148 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2149 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2150 .access = PL0_W, .accessfn = pmreg_access_swinc,
2151 .fgt = FGT_PMSWINC_EL0,
2152 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2153 .writefn = pmswinc_write },
2154 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2155 .access = PL0_RW, .type = ARM_CP_ALIAS,
2156 .fgt = FGT_PMSELR_EL0,
2157 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2158 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2159 .raw_writefn = raw_write},
2160 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2161 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2162 .access = PL0_RW, .accessfn = pmreg_access_selr,
2163 .fgt = FGT_PMSELR_EL0,
2164 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2165 .writefn = pmselr_write, .raw_writefn = raw_write, },
2166 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2167 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2168 .fgt = FGT_PMCCNTR_EL0,
2169 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2170 .accessfn = pmreg_access_ccntr },
2171 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2172 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2173 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2174 .fgt = FGT_PMCCNTR_EL0,
2175 .type = ARM_CP_IO,
2176 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2177 .readfn = pmccntr_read, .writefn = pmccntr_write,
2178 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2179 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2180 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2181 .access = PL0_RW, .accessfn = pmreg_access,
2182 .fgt = FGT_PMCCFILTR_EL0,
2183 .type = ARM_CP_ALIAS | ARM_CP_IO,
2184 .resetvalue = 0, },
2185 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2186 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2187 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2188 .access = PL0_RW, .accessfn = pmreg_access,
2189 .fgt = FGT_PMCCFILTR_EL0,
2190 .type = ARM_CP_IO,
2191 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2192 .resetvalue = 0, },
2193 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2194 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2195 .accessfn = pmreg_access,
2196 .fgt = FGT_PMEVTYPERN_EL0,
2197 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2198 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2199 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2200 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2201 .accessfn = pmreg_access,
2202 .fgt = FGT_PMEVTYPERN_EL0,
2203 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2204 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2205 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2206 .accessfn = pmreg_access_xevcntr,
2207 .fgt = FGT_PMEVCNTRN_EL0,
2208 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2209 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2210 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2211 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2212 .accessfn = pmreg_access_xevcntr,
2213 .fgt = FGT_PMEVCNTRN_EL0,
2214 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2215 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2216 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2217 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2218 .resetvalue = 0,
2219 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2220 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2221 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2222 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2223 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2224 .resetvalue = 0,
2225 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2226 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2227 .access = PL1_RW, .accessfn = access_tpm,
2228 .fgt = FGT_PMINTEN,
2229 .type = ARM_CP_ALIAS | ARM_CP_IO,
2230 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2231 .resetvalue = 0,
2232 .writefn = pmintenset_write, .raw_writefn = raw_write },
2233 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2234 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2235 .access = PL1_RW, .accessfn = access_tpm,
2236 .fgt = FGT_PMINTEN,
2237 .type = ARM_CP_IO,
2238 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2239 .writefn = pmintenset_write, .raw_writefn = raw_write,
2240 .resetvalue = 0x0 },
2241 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2242 .access = PL1_RW, .accessfn = access_tpm,
2243 .fgt = FGT_PMINTEN,
2244 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2245 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2246 .writefn = pmintenclr_write, },
2247 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2248 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2249 .access = PL1_RW, .accessfn = access_tpm,
2250 .fgt = FGT_PMINTEN,
2251 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2252 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2253 .writefn = pmintenclr_write },
2254 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2255 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2256 .access = PL1_R,
2257 .accessfn = access_tid4,
2258 .fgt = FGT_CCSIDR_EL1,
2259 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2260 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2261 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2262 .access = PL1_RW,
2263 .accessfn = access_tid4,
2264 .fgt = FGT_CSSELR_EL1,
2265 .writefn = csselr_write, .resetvalue = 0,
2266 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2267 offsetof(CPUARMState, cp15.csselr_ns) } },
2268 /*
2269 * Auxiliary ID register: this actually has an IMPDEF value but for now
2270 * just RAZ for all cores:
2271 */
2272 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2273 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2274 .access = PL1_R, .type = ARM_CP_CONST,
2275 .accessfn = access_aa64_tid1,
2276 .fgt = FGT_AIDR_EL1,
2277 .resetvalue = 0 },
2278 /*
2279 * Auxiliary fault status registers: these also are IMPDEF, and we
2280 * choose to RAZ/WI for all cores.
2281 */
2282 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2283 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2284 .access = PL1_RW, .accessfn = access_tvm_trvm,
2285 .fgt = FGT_AFSR0_EL1,
2286 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
2287 .type = ARM_CP_CONST, .resetvalue = 0 },
2288 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2289 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2290 .access = PL1_RW, .accessfn = access_tvm_trvm,
2291 .fgt = FGT_AFSR1_EL1,
2292 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
2293 .type = ARM_CP_CONST, .resetvalue = 0 },
2294 /*
2295 * MAIR can just read-as-written because we don't implement caches
2296 * and so don't need to care about memory attributes.
2297 */
2298 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2299 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2300 .access = PL1_RW, .accessfn = access_tvm_trvm,
2301 .fgt = FGT_MAIR_EL1,
2302 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
2303 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2304 .resetvalue = 0 },
2305 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2306 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2307 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2308 .resetvalue = 0 },
2309 /*
2310 * For non-long-descriptor page tables these are PRRR and NMRR;
2311 * regardless they still act as reads-as-written for QEMU.
2312 */
2313 /*
2314 * MAIR0/1 are defined separately from their 64-bit counterpart which
2315 * allows them to assign the correct fieldoffset based on the endianness
2316 * handled in the field definitions.
2317 */
2318 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2319 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2320 .access = PL1_RW, .accessfn = access_tvm_trvm,
2321 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2322 offsetof(CPUARMState, cp15.mair0_ns) },
2323 .resetfn = arm_cp_reset_ignore },
2324 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2325 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2326 .access = PL1_RW, .accessfn = access_tvm_trvm,
2327 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2328 offsetof(CPUARMState, cp15.mair1_ns) },
2329 .resetfn = arm_cp_reset_ignore },
2330 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2331 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2332 .fgt = FGT_ISR_EL1,
2333 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2334 /* 32 bit ITLB invalidates */
2335 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2336 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2337 .writefn = tlbiall_write },
2338 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2339 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2340 .writefn = tlbimva_write },
2341 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2342 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2343 .writefn = tlbiasid_write },
2344 /* 32 bit DTLB invalidates */
2345 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2346 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2347 .writefn = tlbiall_write },
2348 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2349 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2350 .writefn = tlbimva_write },
2351 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2352 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2353 .writefn = tlbiasid_write },
2354 /* 32 bit TLB invalidates */
2355 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2357 .writefn = tlbiall_write },
2358 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2360 .writefn = tlbimva_write },
2361 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2362 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2363 .writefn = tlbiasid_write },
2364 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2365 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2366 .writefn = tlbimvaa_write },
2367 };
2368
2369 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2370 /* 32 bit TLB invalidates, Inner Shareable */
2371 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2372 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2373 .writefn = tlbiall_is_write },
2374 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2375 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2376 .writefn = tlbimva_is_write },
2377 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2378 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2379 .writefn = tlbiasid_is_write },
2380 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2381 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2382 .writefn = tlbimvaa_is_write },
2383 };
2384
2385 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2386 /* PMOVSSET is not implemented in v7 before v7ve */
2387 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2388 .access = PL0_RW, .accessfn = pmreg_access,
2389 .fgt = FGT_PMOVS,
2390 .type = ARM_CP_ALIAS | ARM_CP_IO,
2391 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2392 .writefn = pmovsset_write,
2393 .raw_writefn = raw_write },
2394 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2395 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2396 .access = PL0_RW, .accessfn = pmreg_access,
2397 .fgt = FGT_PMOVS,
2398 .type = ARM_CP_ALIAS | ARM_CP_IO,
2399 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2400 .writefn = pmovsset_write,
2401 .raw_writefn = raw_write },
2402 };
2403
teecr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2404 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2405 uint64_t value)
2406 {
2407 value &= 1;
2408 env->teecr = value;
2409 }
2410
teecr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2411 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2412 bool isread)
2413 {
2414 /*
2415 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2416 * at all, so we don't need to check whether we're v8A.
2417 */
2418 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2419 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2420 return CP_ACCESS_TRAP_EL2;
2421 }
2422 return CP_ACCESS_OK;
2423 }
2424
teehbr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2425 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2426 bool isread)
2427 {
2428 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2429 return CP_ACCESS_TRAP;
2430 }
2431 return teecr_access(env, ri, isread);
2432 }
2433
2434 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2435 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2436 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2437 .resetvalue = 0,
2438 .writefn = teecr_write, .accessfn = teecr_access },
2439 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2440 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2441 .accessfn = teehbr_access, .resetvalue = 0 },
2442 };
2443
2444 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2445 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2446 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2447 .access = PL0_RW,
2448 .fgt = FGT_TPIDR_EL0,
2449 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2450 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2451 .access = PL0_RW,
2452 .fgt = FGT_TPIDR_EL0,
2453 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2454 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2455 .resetfn = arm_cp_reset_ignore },
2456 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2457 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2458 .access = PL0_R | PL1_W,
2459 .fgt = FGT_TPIDRRO_EL0,
2460 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2461 .resetvalue = 0},
2462 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2463 .access = PL0_R | PL1_W,
2464 .fgt = FGT_TPIDRRO_EL0,
2465 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2466 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2467 .resetfn = arm_cp_reset_ignore },
2468 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2469 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2470 .access = PL1_RW,
2471 .fgt = FGT_TPIDR_EL1,
2472 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2473 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2474 .access = PL1_RW,
2475 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2476 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2477 .resetvalue = 0 },
2478 };
2479
arm_gt_cntfrq_reset(CPUARMState * env,const ARMCPRegInfo * opaque)2480 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2481 {
2482 ARMCPU *cpu = env_archcpu(env);
2483
2484 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2485 }
2486
2487 #ifndef CONFIG_USER_ONLY
2488
gt_cntfrq_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2489 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2490 bool isread)
2491 {
2492 /*
2493 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2494 * Writable only at the highest implemented exception level.
2495 */
2496 int el = arm_current_el(env);
2497 uint64_t hcr;
2498 uint32_t cntkctl;
2499
2500 switch (el) {
2501 case 0:
2502 hcr = arm_hcr_el2_eff(env);
2503 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2504 cntkctl = env->cp15.cnthctl_el2;
2505 } else {
2506 cntkctl = env->cp15.c14_cntkctl;
2507 }
2508 if (!extract32(cntkctl, 0, 2)) {
2509 return CP_ACCESS_TRAP;
2510 }
2511 break;
2512 case 1:
2513 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2514 arm_is_secure_below_el3(env)) {
2515 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2516 return CP_ACCESS_TRAP_UNCATEGORIZED;
2517 }
2518 break;
2519 case 2:
2520 case 3:
2521 break;
2522 }
2523
2524 if (!isread && el < arm_highest_el(env)) {
2525 return CP_ACCESS_TRAP_UNCATEGORIZED;
2526 }
2527
2528 return CP_ACCESS_OK;
2529 }
2530
gt_counter_access(CPUARMState * env,int timeridx,bool isread)2531 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2532 bool isread)
2533 {
2534 unsigned int cur_el = arm_current_el(env);
2535 bool has_el2 = arm_is_el2_enabled(env);
2536 uint64_t hcr = arm_hcr_el2_eff(env);
2537
2538 switch (cur_el) {
2539 case 0:
2540 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2541 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2542 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2543 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2544 }
2545
2546 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2547 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2548 return CP_ACCESS_TRAP;
2549 }
2550 /* fall through */
2551 case 1:
2552 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2553 if (has_el2 && timeridx == GTIMER_PHYS &&
2554 (hcr & HCR_E2H
2555 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2556 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2557 return CP_ACCESS_TRAP_EL2;
2558 }
2559 if (has_el2 && timeridx == GTIMER_VIRT) {
2560 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) {
2561 return CP_ACCESS_TRAP_EL2;
2562 }
2563 }
2564 break;
2565 }
2566 return CP_ACCESS_OK;
2567 }
2568
gt_timer_access(CPUARMState * env,int timeridx,bool isread)2569 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2570 bool isread)
2571 {
2572 unsigned int cur_el = arm_current_el(env);
2573 bool has_el2 = arm_is_el2_enabled(env);
2574 uint64_t hcr = arm_hcr_el2_eff(env);
2575
2576 switch (cur_el) {
2577 case 0:
2578 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2579 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2580 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2581 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2582 }
2583
2584 /*
2585 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2586 * EL0 if EL0[PV]TEN is zero.
2587 */
2588 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2589 return CP_ACCESS_TRAP;
2590 }
2591 /* fall through */
2592
2593 case 1:
2594 if (has_el2 && timeridx == GTIMER_PHYS) {
2595 if (hcr & HCR_E2H) {
2596 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2597 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2598 return CP_ACCESS_TRAP_EL2;
2599 }
2600 } else {
2601 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2602 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2603 return CP_ACCESS_TRAP_EL2;
2604 }
2605 }
2606 }
2607 if (has_el2 && timeridx == GTIMER_VIRT) {
2608 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) {
2609 return CP_ACCESS_TRAP_EL2;
2610 }
2611 }
2612 break;
2613 }
2614 return CP_ACCESS_OK;
2615 }
2616
gt_pct_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2617 static CPAccessResult gt_pct_access(CPUARMState *env,
2618 const ARMCPRegInfo *ri,
2619 bool isread)
2620 {
2621 return gt_counter_access(env, GTIMER_PHYS, isread);
2622 }
2623
gt_vct_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2624 static CPAccessResult gt_vct_access(CPUARMState *env,
2625 const ARMCPRegInfo *ri,
2626 bool isread)
2627 {
2628 return gt_counter_access(env, GTIMER_VIRT, isread);
2629 }
2630
gt_ptimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2631 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2632 bool isread)
2633 {
2634 return gt_timer_access(env, GTIMER_PHYS, isread);
2635 }
2636
gt_vtimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2637 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2638 bool isread)
2639 {
2640 return gt_timer_access(env, GTIMER_VIRT, isread);
2641 }
2642
gt_stimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2643 static CPAccessResult gt_stimer_access(CPUARMState *env,
2644 const ARMCPRegInfo *ri,
2645 bool isread)
2646 {
2647 /*
2648 * The AArch64 register view of the secure physical timer is
2649 * always accessible from EL3, and configurably accessible from
2650 * Secure EL1.
2651 */
2652 switch (arm_current_el(env)) {
2653 case 1:
2654 if (!arm_is_secure(env)) {
2655 return CP_ACCESS_TRAP;
2656 }
2657 if (!(env->cp15.scr_el3 & SCR_ST)) {
2658 return CP_ACCESS_TRAP_EL3;
2659 }
2660 return CP_ACCESS_OK;
2661 case 0:
2662 case 2:
2663 return CP_ACCESS_TRAP;
2664 case 3:
2665 return CP_ACCESS_OK;
2666 default:
2667 g_assert_not_reached();
2668 }
2669 }
2670
gt_get_countervalue(CPUARMState * env)2671 uint64_t gt_get_countervalue(CPUARMState *env)
2672 {
2673 ARMCPU *cpu = env_archcpu(env);
2674
2675 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2676 }
2677
gt_update_irq(ARMCPU * cpu,int timeridx)2678 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2679 {
2680 CPUARMState *env = &cpu->env;
2681 uint64_t cnthctl = env->cp15.cnthctl_el2;
2682 ARMSecuritySpace ss = arm_security_space(env);
2683 /* ISTATUS && !IMASK */
2684 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2685
2686 /*
2687 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2688 * It is RES0 in Secure and NonSecure state.
2689 */
2690 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2691 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) ||
2692 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) {
2693 irqstate = 0;
2694 }
2695
2696 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2697 trace_arm_gt_update_irq(timeridx, irqstate);
2698 }
2699
gt_rme_post_el_change(ARMCPU * cpu,void * ignored)2700 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2701 {
2702 /*
2703 * Changing security state between Root and Secure/NonSecure, which may
2704 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2705 * mask bits. Update the IRQ state accordingly.
2706 */
2707 gt_update_irq(cpu, GTIMER_VIRT);
2708 gt_update_irq(cpu, GTIMER_PHYS);
2709 }
2710
gt_phys_raw_cnt_offset(CPUARMState * env)2711 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env)
2712 {
2713 if ((env->cp15.scr_el3 & SCR_ECVEN) &&
2714 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) &&
2715 arm_is_el2_enabled(env) &&
2716 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
2717 return env->cp15.cntpoff_el2;
2718 }
2719 return 0;
2720 }
2721
gt_phys_cnt_offset(CPUARMState * env)2722 static uint64_t gt_phys_cnt_offset(CPUARMState *env)
2723 {
2724 if (arm_current_el(env) >= 2) {
2725 return 0;
2726 }
2727 return gt_phys_raw_cnt_offset(env);
2728 }
2729
gt_recalc_timer(ARMCPU * cpu,int timeridx)2730 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2731 {
2732 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2733
2734 if (gt->ctl & 1) {
2735 /*
2736 * Timer enabled: calculate and set current ISTATUS, irq, and
2737 * reset timer to when ISTATUS next has to change
2738 */
2739 uint64_t offset = timeridx == GTIMER_VIRT ?
2740 cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env);
2741 uint64_t count = gt_get_countervalue(&cpu->env);
2742 /* Note that this must be unsigned 64 bit arithmetic: */
2743 int istatus = count - offset >= gt->cval;
2744 uint64_t nexttick;
2745
2746 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2747
2748 if (istatus) {
2749 /*
2750 * Next transition is when (count - offset) rolls back over to 0.
2751 * If offset > count then this is when count == offset;
2752 * if offset <= count then this is when count == offset + 2^64
2753 * For the latter case we set nexttick to an "as far in future
2754 * as possible" value and let the code below handle it.
2755 */
2756 if (offset > count) {
2757 nexttick = offset;
2758 } else {
2759 nexttick = UINT64_MAX;
2760 }
2761 } else {
2762 /*
2763 * Next transition is when (count - offset) == cval, i.e.
2764 * when count == (cval + offset).
2765 * If that would overflow, then again we set up the next interrupt
2766 * for "as far in the future as possible" for the code below.
2767 */
2768 if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2769 nexttick = UINT64_MAX;
2770 }
2771 }
2772 /*
2773 * Note that the desired next expiry time might be beyond the
2774 * signed-64-bit range of a QEMUTimer -- in this case we just
2775 * set the timer for as far in the future as possible. When the
2776 * timer expires we will reset the timer for any remaining period.
2777 */
2778 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2779 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2780 } else {
2781 timer_mod(cpu->gt_timer[timeridx], nexttick);
2782 }
2783 trace_arm_gt_recalc(timeridx, nexttick);
2784 } else {
2785 /* Timer disabled: ISTATUS and timer output always clear */
2786 gt->ctl &= ~4;
2787 timer_del(cpu->gt_timer[timeridx]);
2788 trace_arm_gt_recalc_disabled(timeridx);
2789 }
2790 gt_update_irq(cpu, timeridx);
2791 }
2792
gt_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx)2793 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2794 int timeridx)
2795 {
2796 ARMCPU *cpu = env_archcpu(env);
2797
2798 timer_del(cpu->gt_timer[timeridx]);
2799 }
2800
gt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)2801 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2802 {
2803 return gt_get_countervalue(env) - gt_phys_cnt_offset(env);
2804 }
2805
gt_virt_cnt_offset(CPUARMState * env)2806 uint64_t gt_virt_cnt_offset(CPUARMState *env)
2807 {
2808 uint64_t hcr;
2809
2810 switch (arm_current_el(env)) {
2811 case 2:
2812 hcr = arm_hcr_el2_eff(env);
2813 if (hcr & HCR_E2H) {
2814 return 0;
2815 }
2816 break;
2817 case 0:
2818 hcr = arm_hcr_el2_eff(env);
2819 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2820 return 0;
2821 }
2822 break;
2823 }
2824
2825 return env->cp15.cntvoff_el2;
2826 }
2827
gt_virt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)2828 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2829 {
2830 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2831 }
2832
gt_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2833 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2834 int timeridx,
2835 uint64_t value)
2836 {
2837 trace_arm_gt_cval_write(timeridx, value);
2838 env->cp15.c14_timer[timeridx].cval = value;
2839 gt_recalc_timer(env_archcpu(env), timeridx);
2840 }
2841
gt_tval_read(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx)2842 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2843 int timeridx)
2844 {
2845 uint64_t offset = 0;
2846
2847 switch (timeridx) {
2848 case GTIMER_VIRT:
2849 case GTIMER_HYPVIRT:
2850 offset = gt_virt_cnt_offset(env);
2851 break;
2852 case GTIMER_PHYS:
2853 offset = gt_phys_cnt_offset(env);
2854 break;
2855 }
2856
2857 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2858 (gt_get_countervalue(env) - offset));
2859 }
2860
gt_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2861 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2862 int timeridx,
2863 uint64_t value)
2864 {
2865 uint64_t offset = 0;
2866
2867 switch (timeridx) {
2868 case GTIMER_VIRT:
2869 case GTIMER_HYPVIRT:
2870 offset = gt_virt_cnt_offset(env);
2871 break;
2872 case GTIMER_PHYS:
2873 offset = gt_phys_cnt_offset(env);
2874 break;
2875 }
2876
2877 trace_arm_gt_tval_write(timeridx, value);
2878 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2879 sextract64(value, 0, 32);
2880 gt_recalc_timer(env_archcpu(env), timeridx);
2881 }
2882
gt_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2883 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2884 int timeridx,
2885 uint64_t value)
2886 {
2887 ARMCPU *cpu = env_archcpu(env);
2888 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2889
2890 trace_arm_gt_ctl_write(timeridx, value);
2891 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2892 if ((oldval ^ value) & 1) {
2893 /* Enable toggled */
2894 gt_recalc_timer(cpu, timeridx);
2895 } else if ((oldval ^ value) & 2) {
2896 /*
2897 * IMASK toggled: don't need to recalculate,
2898 * just set the interrupt line based on ISTATUS
2899 */
2900 trace_arm_gt_imask_toggle(timeridx);
2901 gt_update_irq(cpu, timeridx);
2902 }
2903 }
2904
gt_phys_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)2905 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2906 {
2907 gt_timer_reset(env, ri, GTIMER_PHYS);
2908 }
2909
gt_phys_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2910 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2911 uint64_t value)
2912 {
2913 gt_cval_write(env, ri, GTIMER_PHYS, value);
2914 }
2915
gt_phys_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2916 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2917 {
2918 return gt_tval_read(env, ri, GTIMER_PHYS);
2919 }
2920
gt_phys_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2921 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2922 uint64_t value)
2923 {
2924 gt_tval_write(env, ri, GTIMER_PHYS, value);
2925 }
2926
gt_phys_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2927 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2928 uint64_t value)
2929 {
2930 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2931 }
2932
gt_phys_redir_timeridx(CPUARMState * env)2933 static int gt_phys_redir_timeridx(CPUARMState *env)
2934 {
2935 switch (arm_mmu_idx(env)) {
2936 case ARMMMUIdx_E20_0:
2937 case ARMMMUIdx_E20_2:
2938 case ARMMMUIdx_E20_2_PAN:
2939 return GTIMER_HYP;
2940 default:
2941 return GTIMER_PHYS;
2942 }
2943 }
2944
gt_virt_redir_timeridx(CPUARMState * env)2945 static int gt_virt_redir_timeridx(CPUARMState *env)
2946 {
2947 switch (arm_mmu_idx(env)) {
2948 case ARMMMUIdx_E20_0:
2949 case ARMMMUIdx_E20_2:
2950 case ARMMMUIdx_E20_2_PAN:
2951 return GTIMER_HYPVIRT;
2952 default:
2953 return GTIMER_VIRT;
2954 }
2955 }
2956
gt_phys_redir_cval_read(CPUARMState * env,const ARMCPRegInfo * ri)2957 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2958 const ARMCPRegInfo *ri)
2959 {
2960 int timeridx = gt_phys_redir_timeridx(env);
2961 return env->cp15.c14_timer[timeridx].cval;
2962 }
2963
gt_phys_redir_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2964 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2965 uint64_t value)
2966 {
2967 int timeridx = gt_phys_redir_timeridx(env);
2968 gt_cval_write(env, ri, timeridx, value);
2969 }
2970
gt_phys_redir_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2971 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2972 const ARMCPRegInfo *ri)
2973 {
2974 int timeridx = gt_phys_redir_timeridx(env);
2975 return gt_tval_read(env, ri, timeridx);
2976 }
2977
gt_phys_redir_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2978 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2979 uint64_t value)
2980 {
2981 int timeridx = gt_phys_redir_timeridx(env);
2982 gt_tval_write(env, ri, timeridx, value);
2983 }
2984
gt_phys_redir_ctl_read(CPUARMState * env,const ARMCPRegInfo * ri)2985 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2986 const ARMCPRegInfo *ri)
2987 {
2988 int timeridx = gt_phys_redir_timeridx(env);
2989 return env->cp15.c14_timer[timeridx].ctl;
2990 }
2991
gt_phys_redir_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2992 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2993 uint64_t value)
2994 {
2995 int timeridx = gt_phys_redir_timeridx(env);
2996 gt_ctl_write(env, ri, timeridx, value);
2997 }
2998
gt_virt_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)2999 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3000 {
3001 gt_timer_reset(env, ri, GTIMER_VIRT);
3002 }
3003
gt_virt_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3004 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005 uint64_t value)
3006 {
3007 gt_cval_write(env, ri, GTIMER_VIRT, value);
3008 }
3009
gt_virt_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3010 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3011 {
3012 return gt_tval_read(env, ri, GTIMER_VIRT);
3013 }
3014
gt_virt_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3015 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016 uint64_t value)
3017 {
3018 gt_tval_write(env, ri, GTIMER_VIRT, value);
3019 }
3020
gt_virt_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3021 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3022 uint64_t value)
3023 {
3024 gt_ctl_write(env, ri, GTIMER_VIRT, value);
3025 }
3026
gt_cnthctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3027 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3028 uint64_t value)
3029 {
3030 ARMCPU *cpu = env_archcpu(env);
3031 uint32_t oldval = env->cp15.cnthctl_el2;
3032 uint32_t valid_mask =
3033 R_CNTHCTL_EL0PCTEN_E2H1_MASK |
3034 R_CNTHCTL_EL0VCTEN_E2H1_MASK |
3035 R_CNTHCTL_EVNTEN_MASK |
3036 R_CNTHCTL_EVNTDIR_MASK |
3037 R_CNTHCTL_EVNTI_MASK |
3038 R_CNTHCTL_EL0VTEN_MASK |
3039 R_CNTHCTL_EL0PTEN_MASK |
3040 R_CNTHCTL_EL1PCTEN_E2H1_MASK |
3041 R_CNTHCTL_EL1PTEN_MASK;
3042
3043 if (cpu_isar_feature(aa64_rme, cpu)) {
3044 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK;
3045 }
3046 if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
3047 valid_mask |=
3048 R_CNTHCTL_EL1TVT_MASK |
3049 R_CNTHCTL_EL1TVCT_MASK |
3050 R_CNTHCTL_EL1NVPCT_MASK |
3051 R_CNTHCTL_EL1NVVCT_MASK |
3052 R_CNTHCTL_EVNTIS_MASK;
3053 }
3054 if (cpu_isar_feature(aa64_ecv, cpu)) {
3055 valid_mask |= R_CNTHCTL_ECV_MASK;
3056 }
3057
3058 /* Clear RES0 bits */
3059 value &= valid_mask;
3060
3061 raw_write(env, ri, value);
3062
3063 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) {
3064 gt_update_irq(cpu, GTIMER_VIRT);
3065 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) {
3066 gt_update_irq(cpu, GTIMER_PHYS);
3067 }
3068 }
3069
gt_cntvoff_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3070 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3071 uint64_t value)
3072 {
3073 ARMCPU *cpu = env_archcpu(env);
3074
3075 trace_arm_gt_cntvoff_write(value);
3076 raw_write(env, ri, value);
3077 gt_recalc_timer(cpu, GTIMER_VIRT);
3078 }
3079
gt_virt_redir_cval_read(CPUARMState * env,const ARMCPRegInfo * ri)3080 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
3081 const ARMCPRegInfo *ri)
3082 {
3083 int timeridx = gt_virt_redir_timeridx(env);
3084 return env->cp15.c14_timer[timeridx].cval;
3085 }
3086
gt_virt_redir_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3087 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3088 uint64_t value)
3089 {
3090 int timeridx = gt_virt_redir_timeridx(env);
3091 gt_cval_write(env, ri, timeridx, value);
3092 }
3093
gt_virt_redir_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3094 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3095 const ARMCPRegInfo *ri)
3096 {
3097 int timeridx = gt_virt_redir_timeridx(env);
3098 return gt_tval_read(env, ri, timeridx);
3099 }
3100
gt_virt_redir_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3101 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3102 uint64_t value)
3103 {
3104 int timeridx = gt_virt_redir_timeridx(env);
3105 gt_tval_write(env, ri, timeridx, value);
3106 }
3107
gt_virt_redir_ctl_read(CPUARMState * env,const ARMCPRegInfo * ri)3108 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3109 const ARMCPRegInfo *ri)
3110 {
3111 int timeridx = gt_virt_redir_timeridx(env);
3112 return env->cp15.c14_timer[timeridx].ctl;
3113 }
3114
gt_virt_redir_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3115 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3116 uint64_t value)
3117 {
3118 int timeridx = gt_virt_redir_timeridx(env);
3119 gt_ctl_write(env, ri, timeridx, value);
3120 }
3121
gt_hyp_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3122 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3123 {
3124 gt_timer_reset(env, ri, GTIMER_HYP);
3125 }
3126
gt_hyp_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3127 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3128 uint64_t value)
3129 {
3130 gt_cval_write(env, ri, GTIMER_HYP, value);
3131 }
3132
gt_hyp_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3133 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3134 {
3135 return gt_tval_read(env, ri, GTIMER_HYP);
3136 }
3137
gt_hyp_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3138 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3139 uint64_t value)
3140 {
3141 gt_tval_write(env, ri, GTIMER_HYP, value);
3142 }
3143
gt_hyp_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3144 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3145 uint64_t value)
3146 {
3147 gt_ctl_write(env, ri, GTIMER_HYP, value);
3148 }
3149
gt_sec_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3150 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3151 {
3152 gt_timer_reset(env, ri, GTIMER_SEC);
3153 }
3154
gt_sec_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3155 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3156 uint64_t value)
3157 {
3158 gt_cval_write(env, ri, GTIMER_SEC, value);
3159 }
3160
gt_sec_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3161 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3162 {
3163 return gt_tval_read(env, ri, GTIMER_SEC);
3164 }
3165
gt_sec_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3166 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3167 uint64_t value)
3168 {
3169 gt_tval_write(env, ri, GTIMER_SEC, value);
3170 }
3171
gt_sec_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3172 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3173 uint64_t value)
3174 {
3175 gt_ctl_write(env, ri, GTIMER_SEC, value);
3176 }
3177
gt_hv_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3178 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3179 {
3180 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3181 }
3182
gt_hv_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3183 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3184 uint64_t value)
3185 {
3186 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3187 }
3188
gt_hv_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3189 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3190 {
3191 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3192 }
3193
gt_hv_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3194 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3195 uint64_t value)
3196 {
3197 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3198 }
3199
gt_hv_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3200 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3201 uint64_t value)
3202 {
3203 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3204 }
3205
arm_gt_ptimer_cb(void * opaque)3206 void arm_gt_ptimer_cb(void *opaque)
3207 {
3208 ARMCPU *cpu = opaque;
3209
3210 gt_recalc_timer(cpu, GTIMER_PHYS);
3211 }
3212
arm_gt_vtimer_cb(void * opaque)3213 void arm_gt_vtimer_cb(void *opaque)
3214 {
3215 ARMCPU *cpu = opaque;
3216
3217 gt_recalc_timer(cpu, GTIMER_VIRT);
3218 }
3219
arm_gt_htimer_cb(void * opaque)3220 void arm_gt_htimer_cb(void *opaque)
3221 {
3222 ARMCPU *cpu = opaque;
3223
3224 gt_recalc_timer(cpu, GTIMER_HYP);
3225 }
3226
arm_gt_stimer_cb(void * opaque)3227 void arm_gt_stimer_cb(void *opaque)
3228 {
3229 ARMCPU *cpu = opaque;
3230
3231 gt_recalc_timer(cpu, GTIMER_SEC);
3232 }
3233
arm_gt_hvtimer_cb(void * opaque)3234 void arm_gt_hvtimer_cb(void *opaque)
3235 {
3236 ARMCPU *cpu = opaque;
3237
3238 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3239 }
3240
3241 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3242 /*
3243 * Note that CNTFRQ is purely reads-as-written for the benefit
3244 * of software; writing it doesn't actually change the timer frequency.
3245 * Our reset value matches the fixed frequency we implement the timer at.
3246 */
3247 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3248 .type = ARM_CP_ALIAS,
3249 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3250 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3251 },
3252 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3253 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3254 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3255 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3256 .resetfn = arm_gt_cntfrq_reset,
3257 },
3258 /* overall control: mostly access permissions */
3259 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3260 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3261 .access = PL1_RW,
3262 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3263 .resetvalue = 0,
3264 },
3265 /* per-timer control */
3266 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3267 .secure = ARM_CP_SECSTATE_NS,
3268 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3269 .accessfn = gt_ptimer_access,
3270 .fieldoffset = offsetoflow32(CPUARMState,
3271 cp15.c14_timer[GTIMER_PHYS].ctl),
3272 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3273 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3274 },
3275 { .name = "CNTP_CTL_S",
3276 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3277 .secure = ARM_CP_SECSTATE_S,
3278 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3279 .accessfn = gt_ptimer_access,
3280 .fieldoffset = offsetoflow32(CPUARMState,
3281 cp15.c14_timer[GTIMER_SEC].ctl),
3282 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3283 },
3284 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3285 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3286 .type = ARM_CP_IO, .access = PL0_RW,
3287 .accessfn = gt_ptimer_access,
3288 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
3289 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3290 .resetvalue = 0,
3291 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3292 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3293 },
3294 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3295 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3296 .accessfn = gt_vtimer_access,
3297 .fieldoffset = offsetoflow32(CPUARMState,
3298 cp15.c14_timer[GTIMER_VIRT].ctl),
3299 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3300 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3301 },
3302 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3303 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3304 .type = ARM_CP_IO, .access = PL0_RW,
3305 .accessfn = gt_vtimer_access,
3306 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
3307 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3308 .resetvalue = 0,
3309 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3310 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3311 },
3312 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3313 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3314 .secure = ARM_CP_SECSTATE_NS,
3315 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3316 .accessfn = gt_ptimer_access,
3317 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3318 },
3319 { .name = "CNTP_TVAL_S",
3320 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3321 .secure = ARM_CP_SECSTATE_S,
3322 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3323 .accessfn = gt_ptimer_access,
3324 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3325 },
3326 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3327 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3328 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3329 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3330 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3331 },
3332 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3333 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3334 .accessfn = gt_vtimer_access,
3335 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3336 },
3337 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3338 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3339 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3340 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3341 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3342 },
3343 /* The counter itself */
3344 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3345 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3346 .accessfn = gt_pct_access,
3347 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3348 },
3349 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3350 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3351 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3352 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3353 },
3354 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3355 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3356 .accessfn = gt_vct_access,
3357 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3358 },
3359 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3360 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3361 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3362 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3363 },
3364 /* Comparison value, indicating when the timer goes off */
3365 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3366 .secure = ARM_CP_SECSTATE_NS,
3367 .access = PL0_RW,
3368 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3369 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3370 .accessfn = gt_ptimer_access,
3371 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3372 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3373 },
3374 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3375 .secure = ARM_CP_SECSTATE_S,
3376 .access = PL0_RW,
3377 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3378 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3379 .accessfn = gt_ptimer_access,
3380 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3381 },
3382 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3383 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3384 .access = PL0_RW,
3385 .type = ARM_CP_IO,
3386 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
3387 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3388 .resetvalue = 0, .accessfn = gt_ptimer_access,
3389 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3390 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3391 },
3392 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3393 .access = PL0_RW,
3394 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3395 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3396 .accessfn = gt_vtimer_access,
3397 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3398 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3399 },
3400 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3401 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3402 .access = PL0_RW,
3403 .type = ARM_CP_IO,
3404 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
3405 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3406 .resetvalue = 0, .accessfn = gt_vtimer_access,
3407 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3408 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3409 },
3410 /*
3411 * Secure timer -- this is actually restricted to only EL3
3412 * and configurably Secure-EL1 via the accessfn.
3413 */
3414 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3415 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3416 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3417 .accessfn = gt_stimer_access,
3418 .readfn = gt_sec_tval_read,
3419 .writefn = gt_sec_tval_write,
3420 .resetfn = gt_sec_timer_reset,
3421 },
3422 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3423 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3424 .type = ARM_CP_IO, .access = PL1_RW,
3425 .accessfn = gt_stimer_access,
3426 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3427 .resetvalue = 0,
3428 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3429 },
3430 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3431 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3432 .type = ARM_CP_IO, .access = PL1_RW,
3433 .accessfn = gt_stimer_access,
3434 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3435 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3436 },
3437 };
3438
3439 /*
3440 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which
3441 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing,
3442 * so our implementations here are identical to the normal registers.
3443 */
3444 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3445 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9,
3446 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3447 .accessfn = gt_vct_access,
3448 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3449 },
3450 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3451 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3452 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3453 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3454 },
3455 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8,
3456 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3457 .accessfn = gt_pct_access,
3458 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3459 },
3460 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64,
3461 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5,
3462 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3463 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3464 },
3465 };
3466
gt_cntpoff_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3467 static CPAccessResult gt_cntpoff_access(CPUARMState *env,
3468 const ARMCPRegInfo *ri,
3469 bool isread)
3470 {
3471 if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) &&
3472 !(env->cp15.scr_el3 & SCR_ECVEN)) {
3473 return CP_ACCESS_TRAP_EL3;
3474 }
3475 return CP_ACCESS_OK;
3476 }
3477
gt_cntpoff_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3478 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3479 uint64_t value)
3480 {
3481 ARMCPU *cpu = env_archcpu(env);
3482
3483 trace_arm_gt_cntpoff_write(value);
3484 raw_write(env, ri, value);
3485 gt_recalc_timer(cpu, GTIMER_PHYS);
3486 }
3487
3488 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = {
3489 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64,
3490 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6,
3491 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3492 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write,
3493 .nv2_redirect_offset = 0x1a8,
3494 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2),
3495 };
3496 #else
3497
3498 /*
3499 * In user-mode most of the generic timer registers are inaccessible
3500 * however modern kernels (4.12+) allow access to cntvct_el0
3501 */
3502
gt_virt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)3503 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3504 {
3505 ARMCPU *cpu = env_archcpu(env);
3506
3507 /*
3508 * Currently we have no support for QEMUTimer in linux-user so we
3509 * can't call gt_get_countervalue(env), instead we directly
3510 * call the lower level functions.
3511 */
3512 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3513 }
3514
3515 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3516 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3517 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3518 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3519 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3520 .resetfn = arm_gt_cntfrq_reset,
3521 },
3522 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3523 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3524 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3525 .readfn = gt_virt_cnt_read,
3526 },
3527 };
3528
3529 /*
3530 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also
3531 * is exposed to userspace by Linux.
3532 */
3533 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3534 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3535 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3536 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3537 .readfn = gt_virt_cnt_read,
3538 },
3539 };
3540
3541 #endif
3542
par_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3543 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3544 {
3545 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3546 raw_write(env, ri, value);
3547 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3548 raw_write(env, ri, value & 0xfffff6ff);
3549 } else {
3550 raw_write(env, ri, value & 0xfffff1ff);
3551 }
3552 }
3553
3554 #ifndef CONFIG_USER_ONLY
3555 /* get_phys_addr() isn't present for user-mode-only targets */
3556
ats_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3557 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3558 bool isread)
3559 {
3560 if (ri->opc2 & 4) {
3561 /*
3562 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3563 * Secure EL1 (which can only happen if EL3 is AArch64).
3564 * They are simply UNDEF if executed from NS EL1.
3565 * They function normally from EL2 or EL3.
3566 */
3567 if (arm_current_el(env) == 1) {
3568 if (arm_is_secure_below_el3(env)) {
3569 if (env->cp15.scr_el3 & SCR_EEL2) {
3570 return CP_ACCESS_TRAP_EL2;
3571 }
3572 return CP_ACCESS_TRAP_EL3;
3573 }
3574 return CP_ACCESS_TRAP_UNCATEGORIZED;
3575 }
3576 }
3577 return CP_ACCESS_OK;
3578 }
3579
3580 #ifdef CONFIG_TCG
par_el1_shareability(GetPhysAddrResult * res)3581 static int par_el1_shareability(GetPhysAddrResult *res)
3582 {
3583 /*
3584 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3585 * memory -- see pseudocode PAREncodeShareability().
3586 */
3587 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3588 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3589 return 2;
3590 }
3591 return res->cacheattrs.shareability;
3592 }
3593
do_ats_write(CPUARMState * env,uint64_t value,MMUAccessType access_type,ARMMMUIdx mmu_idx,ARMSecuritySpace ss)3594 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3595 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3596 ARMSecuritySpace ss)
3597 {
3598 bool ret;
3599 uint64_t par64;
3600 bool format64 = false;
3601 ARMMMUFaultInfo fi = {};
3602 GetPhysAddrResult res = {};
3603
3604 /*
3605 * I_MXTJT: Granule protection checks are not performed on the final
3606 * address of a successful translation. This is a translation not a
3607 * memory reference, so "memop = none = 0".
3608 */
3609 ret = get_phys_addr_with_space_nogpc(env, value, access_type, 0,
3610 mmu_idx, ss, &res, &fi);
3611
3612 /*
3613 * ATS operations only do S1 or S1+S2 translations, so we never
3614 * have to deal with the ARMCacheAttrs format for S2 only.
3615 */
3616 assert(!res.cacheattrs.is_s2_format);
3617
3618 if (ret) {
3619 /*
3620 * Some kinds of translation fault must cause exceptions rather
3621 * than being reported in the PAR.
3622 */
3623 int current_el = arm_current_el(env);
3624 int target_el;
3625 uint32_t syn, fsr, fsc;
3626 bool take_exc = false;
3627
3628 if (fi.s1ptw && current_el == 1
3629 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3630 /*
3631 * Synchronous stage 2 fault on an access made as part of the
3632 * translation table walk for AT S1E0* or AT S1E1* insn
3633 * executed from NS EL1. If this is a synchronous external abort
3634 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3635 * to EL3. Otherwise the fault is taken as an exception to EL2,
3636 * and HPFAR_EL2 holds the faulting IPA.
3637 */
3638 if (fi.type == ARMFault_SyncExternalOnWalk &&
3639 (env->cp15.scr_el3 & SCR_EA)) {
3640 target_el = 3;
3641 } else {
3642 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3643 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3644 env->cp15.hpfar_el2 |= HPFAR_NS;
3645 }
3646 target_el = 2;
3647 }
3648 take_exc = true;
3649 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3650 /*
3651 * Synchronous external aborts during a translation table walk
3652 * are taken as Data Abort exceptions.
3653 */
3654 if (fi.stage2) {
3655 if (current_el == 3) {
3656 target_el = 3;
3657 } else {
3658 target_el = 2;
3659 }
3660 } else {
3661 target_el = exception_target_el(env);
3662 }
3663 take_exc = true;
3664 }
3665
3666 if (take_exc) {
3667 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3668 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3669 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3670 fsr = arm_fi_to_lfsc(&fi);
3671 fsc = extract32(fsr, 0, 6);
3672 } else {
3673 fsr = arm_fi_to_sfsc(&fi);
3674 fsc = 0x3f;
3675 }
3676 /*
3677 * Report exception with ESR indicating a fault due to a
3678 * translation table walk for a cache maintenance instruction.
3679 */
3680 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3681 fi.ea, 1, fi.s1ptw, 1, fsc);
3682 env->exception.vaddress = value;
3683 env->exception.fsr = fsr;
3684 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3685 }
3686 }
3687
3688 if (is_a64(env)) {
3689 format64 = true;
3690 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3691 /*
3692 * ATS1Cxx:
3693 * * TTBCR.EAE determines whether the result is returned using the
3694 * 32-bit or the 64-bit PAR format
3695 * * Instructions executed in Hyp mode always use the 64bit format
3696 *
3697 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3698 * * The Non-secure TTBCR.EAE bit is set to 1
3699 * * The implementation includes EL2, and the value of HCR.VM is 1
3700 *
3701 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3702 *
3703 * ATS1Hx always uses the 64bit format.
3704 */
3705 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3706
3707 if (arm_feature(env, ARM_FEATURE_EL2)) {
3708 if (mmu_idx == ARMMMUIdx_E10_0 ||
3709 mmu_idx == ARMMMUIdx_E10_1 ||
3710 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3711 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3712 } else {
3713 format64 |= arm_current_el(env) == 2;
3714 }
3715 }
3716 }
3717
3718 if (format64) {
3719 /* Create a 64-bit PAR */
3720 par64 = (1 << 11); /* LPAE bit always set */
3721 if (!ret) {
3722 par64 |= res.f.phys_addr & ~0xfffULL;
3723 if (!res.f.attrs.secure) {
3724 par64 |= (1 << 9); /* NS */
3725 }
3726 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3727 par64 |= par_el1_shareability(&res) << 7; /* SH */
3728 } else {
3729 uint32_t fsr = arm_fi_to_lfsc(&fi);
3730
3731 par64 |= 1; /* F */
3732 par64 |= (fsr & 0x3f) << 1; /* FS */
3733 if (fi.stage2) {
3734 par64 |= (1 << 9); /* S */
3735 }
3736 if (fi.s1ptw) {
3737 par64 |= (1 << 8); /* PTW */
3738 }
3739 }
3740 } else {
3741 /*
3742 * fsr is a DFSR/IFSR value for the short descriptor
3743 * translation table format (with WnR always clear).
3744 * Convert it to a 32-bit PAR.
3745 */
3746 if (!ret) {
3747 /* We do not set any attribute bits in the PAR */
3748 if (res.f.lg_page_size == 24
3749 && arm_feature(env, ARM_FEATURE_V7)) {
3750 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3751 } else {
3752 par64 = res.f.phys_addr & 0xfffff000;
3753 }
3754 if (!res.f.attrs.secure) {
3755 par64 |= (1 << 9); /* NS */
3756 }
3757 } else {
3758 uint32_t fsr = arm_fi_to_sfsc(&fi);
3759
3760 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3761 ((fsr & 0xf) << 1) | 1;
3762 }
3763 }
3764 return par64;
3765 }
3766 #endif /* CONFIG_TCG */
3767
ats_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3768 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3769 {
3770 #ifdef CONFIG_TCG
3771 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3772 uint64_t par64;
3773 ARMMMUIdx mmu_idx;
3774 int el = arm_current_el(env);
3775 ARMSecuritySpace ss = arm_security_space(env);
3776
3777 switch (ri->opc2 & 6) {
3778 case 0:
3779 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3780 switch (el) {
3781 case 3:
3782 if (ri->crm == 9 && arm_pan_enabled(env)) {
3783 mmu_idx = ARMMMUIdx_E30_3_PAN;
3784 } else {
3785 mmu_idx = ARMMMUIdx_E3;
3786 }
3787 break;
3788 case 2:
3789 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3790 /* fall through */
3791 case 1:
3792 if (ri->crm == 9 && arm_pan_enabled(env)) {
3793 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3794 } else {
3795 mmu_idx = ARMMMUIdx_Stage1_E1;
3796 }
3797 break;
3798 default:
3799 g_assert_not_reached();
3800 }
3801 break;
3802 case 2:
3803 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3804 switch (el) {
3805 case 3:
3806 mmu_idx = ARMMMUIdx_E30_0;
3807 break;
3808 case 2:
3809 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3810 mmu_idx = ARMMMUIdx_Stage1_E0;
3811 break;
3812 case 1:
3813 mmu_idx = ARMMMUIdx_Stage1_E0;
3814 break;
3815 default:
3816 g_assert_not_reached();
3817 }
3818 break;
3819 case 4:
3820 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3821 mmu_idx = ARMMMUIdx_E10_1;
3822 ss = ARMSS_NonSecure;
3823 break;
3824 case 6:
3825 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3826 mmu_idx = ARMMMUIdx_E10_0;
3827 ss = ARMSS_NonSecure;
3828 break;
3829 default:
3830 g_assert_not_reached();
3831 }
3832
3833 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3834
3835 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3836 #else
3837 /* Handled by hardware accelerator. */
3838 g_assert_not_reached();
3839 #endif /* CONFIG_TCG */
3840 }
3841
ats1h_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3842 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3843 uint64_t value)
3844 {
3845 #ifdef CONFIG_TCG
3846 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3847 uint64_t par64;
3848
3849 /* There is no SecureEL2 for AArch32. */
3850 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3851 ARMSS_NonSecure);
3852
3853 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3854 #else
3855 /* Handled by hardware accelerator. */
3856 g_assert_not_reached();
3857 #endif /* CONFIG_TCG */
3858 }
3859
at_e012_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3860 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3861 bool isread)
3862 {
3863 /*
3864 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3865 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3866 * only happen when executing at EL3 because that combination also causes an
3867 * illegal exception return. We don't need to check FEAT_RME either, because
3868 * scr_write() ensures that the NSE bit is not set otherwise.
3869 */
3870 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3871 return CP_ACCESS_TRAP;
3872 }
3873 return CP_ACCESS_OK;
3874 }
3875
at_s1e2_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3876 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3877 bool isread)
3878 {
3879 if (arm_current_el(env) == 3 &&
3880 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3881 return CP_ACCESS_TRAP;
3882 }
3883 return at_e012_access(env, ri, isread);
3884 }
3885
at_s1e01_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3886 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
3887 bool isread)
3888 {
3889 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
3890 return CP_ACCESS_TRAP_EL2;
3891 }
3892 return at_e012_access(env, ri, isread);
3893 }
3894
ats_write64(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3895 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3896 uint64_t value)
3897 {
3898 #ifdef CONFIG_TCG
3899 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3900 ARMMMUIdx mmu_idx;
3901 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3902 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3903 bool for_el3 = false;
3904 ARMSecuritySpace ss;
3905
3906 switch (ri->opc2 & 6) {
3907 case 0:
3908 switch (ri->opc1) {
3909 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3910 if (ri->crm == 9 && arm_pan_enabled(env)) {
3911 mmu_idx = regime_e20 ?
3912 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3913 } else {
3914 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3915 }
3916 break;
3917 case 4: /* AT S1E2R, AT S1E2W */
3918 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3919 break;
3920 case 6: /* AT S1E3R, AT S1E3W */
3921 mmu_idx = ARMMMUIdx_E3;
3922 for_el3 = true;
3923 break;
3924 default:
3925 g_assert_not_reached();
3926 }
3927 break;
3928 case 2: /* AT S1E0R, AT S1E0W */
3929 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3930 break;
3931 case 4: /* AT S12E1R, AT S12E1W */
3932 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3933 break;
3934 case 6: /* AT S12E0R, AT S12E0W */
3935 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3936 break;
3937 default:
3938 g_assert_not_reached();
3939 }
3940
3941 ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env);
3942 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss);
3943 #else
3944 /* Handled by hardware accelerator. */
3945 g_assert_not_reached();
3946 #endif /* CONFIG_TCG */
3947 }
3948 #endif
3949
3950 /* Return basic MPU access permission bits. */
simple_mpu_ap_bits(uint32_t val)3951 static uint32_t simple_mpu_ap_bits(uint32_t val)
3952 {
3953 uint32_t ret;
3954 uint32_t mask;
3955 int i;
3956 ret = 0;
3957 mask = 3;
3958 for (i = 0; i < 16; i += 2) {
3959 ret |= (val >> i) & mask;
3960 mask <<= 2;
3961 }
3962 return ret;
3963 }
3964
3965 /* Pad basic MPU access permission bits to extended format. */
extended_mpu_ap_bits(uint32_t val)3966 static uint32_t extended_mpu_ap_bits(uint32_t val)
3967 {
3968 uint32_t ret;
3969 uint32_t mask;
3970 int i;
3971 ret = 0;
3972 mask = 3;
3973 for (i = 0; i < 16; i += 2) {
3974 ret |= (val & mask) << i;
3975 mask <<= 2;
3976 }
3977 return ret;
3978 }
3979
pmsav5_data_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3980 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3981 uint64_t value)
3982 {
3983 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3984 }
3985
pmsav5_data_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)3986 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3987 {
3988 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3989 }
3990
pmsav5_insn_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3991 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3992 uint64_t value)
3993 {
3994 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3995 }
3996
pmsav5_insn_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)3997 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3998 {
3999 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
4000 }
4001
pmsav7_read(CPUARMState * env,const ARMCPRegInfo * ri)4002 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
4003 {
4004 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
4005
4006 if (!u32p) {
4007 return 0;
4008 }
4009
4010 u32p += env->pmsav7.rnr[M_REG_NS];
4011 return *u32p;
4012 }
4013
pmsav7_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4014 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
4015 uint64_t value)
4016 {
4017 ARMCPU *cpu = env_archcpu(env);
4018 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
4019
4020 if (!u32p) {
4021 return;
4022 }
4023
4024 u32p += env->pmsav7.rnr[M_REG_NS];
4025 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4026 *u32p = value;
4027 }
4028
pmsav7_rgnr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4029 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4030 uint64_t value)
4031 {
4032 ARMCPU *cpu = env_archcpu(env);
4033 uint32_t nrgs = cpu->pmsav7_dregion;
4034
4035 if (value >= nrgs) {
4036 qemu_log_mask(LOG_GUEST_ERROR,
4037 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
4038 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
4039 return;
4040 }
4041
4042 raw_write(env, ri, value);
4043 }
4044
prbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4045 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4046 uint64_t value)
4047 {
4048 ARMCPU *cpu = env_archcpu(env);
4049
4050 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4051 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
4052 }
4053
prbar_read(CPUARMState * env,const ARMCPRegInfo * ri)4054 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4055 {
4056 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
4057 }
4058
prlar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4059 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4060 uint64_t value)
4061 {
4062 ARMCPU *cpu = env_archcpu(env);
4063
4064 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4065 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
4066 }
4067
prlar_read(CPUARMState * env,const ARMCPRegInfo * ri)4068 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4069 {
4070 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
4071 }
4072
prselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4073 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4074 uint64_t value)
4075 {
4076 ARMCPU *cpu = env_archcpu(env);
4077
4078 /*
4079 * Ignore writes that would select not implemented region.
4080 * This is architecturally UNPREDICTABLE.
4081 */
4082 if (value >= cpu->pmsav7_dregion) {
4083 return;
4084 }
4085
4086 env->pmsav7.rnr[M_REG_NS] = value;
4087 }
4088
hprbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4089 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4090 uint64_t value)
4091 {
4092 ARMCPU *cpu = env_archcpu(env);
4093
4094 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4095 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
4096 }
4097
hprbar_read(CPUARMState * env,const ARMCPRegInfo * ri)4098 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4099 {
4100 return env->pmsav8.hprbar[env->pmsav8.hprselr];
4101 }
4102
hprlar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4103 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4104 uint64_t value)
4105 {
4106 ARMCPU *cpu = env_archcpu(env);
4107
4108 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4109 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
4110 }
4111
hprlar_read(CPUARMState * env,const ARMCPRegInfo * ri)4112 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4113 {
4114 return env->pmsav8.hprlar[env->pmsav8.hprselr];
4115 }
4116
hprenr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4117 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4118 uint64_t value)
4119 {
4120 uint32_t n;
4121 uint32_t bit;
4122 ARMCPU *cpu = env_archcpu(env);
4123
4124 /* Ignore writes to unimplemented regions */
4125 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
4126 value &= MAKE_64BIT_MASK(0, rmax);
4127
4128 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4129
4130 /* Register alias is only valid for first 32 indexes */
4131 for (n = 0; n < rmax; ++n) {
4132 bit = extract32(value, n, 1);
4133 env->pmsav8.hprlar[n] = deposit32(
4134 env->pmsav8.hprlar[n], 0, 1, bit);
4135 }
4136 }
4137
hprenr_read(CPUARMState * env,const ARMCPRegInfo * ri)4138 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4139 {
4140 uint32_t n;
4141 uint32_t result = 0x0;
4142 ARMCPU *cpu = env_archcpu(env);
4143
4144 /* Register alias is only valid for first 32 indexes */
4145 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
4146 if (env->pmsav8.hprlar[n] & 0x1) {
4147 result |= (0x1 << n);
4148 }
4149 }
4150 return result;
4151 }
4152
hprselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4153 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4154 uint64_t value)
4155 {
4156 ARMCPU *cpu = env_archcpu(env);
4157
4158 /*
4159 * Ignore writes that would select not implemented region.
4160 * This is architecturally UNPREDICTABLE.
4161 */
4162 if (value >= cpu->pmsav8r_hdregion) {
4163 return;
4164 }
4165
4166 env->pmsav8.hprselr = value;
4167 }
4168
pmsav8r_regn_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4169 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
4170 uint64_t value)
4171 {
4172 ARMCPU *cpu = env_archcpu(env);
4173 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4174 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4175
4176 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4177
4178 if (ri->opc1 & 4) {
4179 if (index >= cpu->pmsav8r_hdregion) {
4180 return;
4181 }
4182 if (ri->opc2 & 0x1) {
4183 env->pmsav8.hprlar[index] = value;
4184 } else {
4185 env->pmsav8.hprbar[index] = value;
4186 }
4187 } else {
4188 if (index >= cpu->pmsav7_dregion) {
4189 return;
4190 }
4191 if (ri->opc2 & 0x1) {
4192 env->pmsav8.rlar[M_REG_NS][index] = value;
4193 } else {
4194 env->pmsav8.rbar[M_REG_NS][index] = value;
4195 }
4196 }
4197 }
4198
pmsav8r_regn_read(CPUARMState * env,const ARMCPRegInfo * ri)4199 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4200 {
4201 ARMCPU *cpu = env_archcpu(env);
4202 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4203 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4204
4205 if (ri->opc1 & 4) {
4206 if (index >= cpu->pmsav8r_hdregion) {
4207 return 0x0;
4208 }
4209 if (ri->opc2 & 0x1) {
4210 return env->pmsav8.hprlar[index];
4211 } else {
4212 return env->pmsav8.hprbar[index];
4213 }
4214 } else {
4215 if (index >= cpu->pmsav7_dregion) {
4216 return 0x0;
4217 }
4218 if (ri->opc2 & 0x1) {
4219 return env->pmsav8.rlar[M_REG_NS][index];
4220 } else {
4221 return env->pmsav8.rbar[M_REG_NS][index];
4222 }
4223 }
4224 }
4225
4226 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4227 { .name = "PRBAR",
4228 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4229 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4230 .accessfn = access_tvm_trvm,
4231 .readfn = prbar_read, .writefn = prbar_write },
4232 { .name = "PRLAR",
4233 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4234 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4235 .accessfn = access_tvm_trvm,
4236 .readfn = prlar_read, .writefn = prlar_write },
4237 { .name = "PRSELR", .resetvalue = 0,
4238 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4239 .access = PL1_RW, .accessfn = access_tvm_trvm,
4240 .writefn = prselr_write,
4241 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4242 { .name = "HPRBAR", .resetvalue = 0,
4243 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4244 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4245 .readfn = hprbar_read, .writefn = hprbar_write },
4246 { .name = "HPRLAR",
4247 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4248 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4249 .readfn = hprlar_read, .writefn = hprlar_write },
4250 { .name = "HPRSELR", .resetvalue = 0,
4251 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4252 .access = PL2_RW,
4253 .writefn = hprselr_write,
4254 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4255 { .name = "HPRENR",
4256 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4257 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4258 .readfn = hprenr_read, .writefn = hprenr_write },
4259 };
4260
4261 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4262 /*
4263 * Reset for all these registers is handled in arm_cpu_reset(),
4264 * because the PMSAv7 is also used by M-profile CPUs, which do
4265 * not register cpregs but still need the state to be reset.
4266 */
4267 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4268 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4269 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4270 .readfn = pmsav7_read, .writefn = pmsav7_write,
4271 .resetfn = arm_cp_reset_ignore },
4272 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4273 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4274 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4275 .readfn = pmsav7_read, .writefn = pmsav7_write,
4276 .resetfn = arm_cp_reset_ignore },
4277 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4278 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4279 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4280 .readfn = pmsav7_read, .writefn = pmsav7_write,
4281 .resetfn = arm_cp_reset_ignore },
4282 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4283 .access = PL1_RW,
4284 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4285 .writefn = pmsav7_rgnr_write,
4286 .resetfn = arm_cp_reset_ignore },
4287 };
4288
4289 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4290 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4291 .access = PL1_RW, .type = ARM_CP_ALIAS,
4292 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4293 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4294 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4295 .access = PL1_RW, .type = ARM_CP_ALIAS,
4296 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4297 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4298 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4299 .access = PL1_RW,
4300 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4301 .resetvalue = 0, },
4302 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4303 .access = PL1_RW,
4304 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4305 .resetvalue = 0, },
4306 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4307 .access = PL1_RW,
4308 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4309 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4310 .access = PL1_RW,
4311 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4312 /* Protection region base and size registers */
4313 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4314 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4315 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4316 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4317 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4318 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4319 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4320 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4321 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4322 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4323 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4324 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4325 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4326 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4327 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4328 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4329 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4330 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4331 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4332 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4333 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4334 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4335 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4336 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4337 };
4338
vmsa_ttbcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4339 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4340 uint64_t value)
4341 {
4342 ARMCPU *cpu = env_archcpu(env);
4343
4344 if (!arm_feature(env, ARM_FEATURE_V8)) {
4345 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4346 /*
4347 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4348 * using Long-descriptor translation table format
4349 */
4350 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4351 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4352 /*
4353 * In an implementation that includes the Security Extensions
4354 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4355 * Short-descriptor translation table format.
4356 */
4357 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4358 } else {
4359 value &= TTBCR_N;
4360 }
4361 }
4362
4363 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4364 /*
4365 * With LPAE the TTBCR could result in a change of ASID
4366 * via the TTBCR.A1 bit, so do a TLB flush.
4367 */
4368 tlb_flush(CPU(cpu));
4369 }
4370 raw_write(env, ri, value);
4371 }
4372
vmsa_tcr_el12_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4373 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4374 uint64_t value)
4375 {
4376 ARMCPU *cpu = env_archcpu(env);
4377
4378 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4379 tlb_flush(CPU(cpu));
4380 raw_write(env, ri, value);
4381 }
4382
vmsa_ttbr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4383 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4384 uint64_t value)
4385 {
4386 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4387 if (cpreg_field_is_64bit(ri) &&
4388 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4389 ARMCPU *cpu = env_archcpu(env);
4390 tlb_flush(CPU(cpu));
4391 }
4392 raw_write(env, ri, value);
4393 }
4394
vmsa_tcr_ttbr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4395 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4396 uint64_t value)
4397 {
4398 /*
4399 * If we are running with E2&0 regime, then an ASID is active.
4400 * Flush if that might be changing. Note we're not checking
4401 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4402 * holds the active ASID, only checking the field that might.
4403 */
4404 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4405 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4406 uint16_t mask = ARMMMUIdxBit_E20_2 |
4407 ARMMMUIdxBit_E20_2_PAN |
4408 ARMMMUIdxBit_E20_0;
4409 tlb_flush_by_mmuidx(env_cpu(env), mask);
4410 }
4411 raw_write(env, ri, value);
4412 }
4413
vttbr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4414 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4415 uint64_t value)
4416 {
4417 ARMCPU *cpu = env_archcpu(env);
4418 CPUState *cs = CPU(cpu);
4419
4420 /*
4421 * A change in VMID to the stage2 page table (Stage2) invalidates
4422 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4423 */
4424 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4425 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4426 }
4427 raw_write(env, ri, value);
4428 }
4429
4430 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4431 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4432 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4433 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4434 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4435 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4436 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4437 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4438 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4439 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4440 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4441 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4442 offsetof(CPUARMState, cp15.dfar_ns) } },
4443 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4444 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4445 .access = PL1_RW, .accessfn = access_tvm_trvm,
4446 .fgt = FGT_FAR_EL1,
4447 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
4448 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4449 .resetvalue = 0, },
4450 };
4451
4452 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4453 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4454 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4455 .access = PL1_RW, .accessfn = access_tvm_trvm,
4456 .fgt = FGT_ESR_EL1,
4457 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
4458 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4459 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4460 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4461 .access = PL1_RW, .accessfn = access_tvm_trvm,
4462 .fgt = FGT_TTBR0_EL1,
4463 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
4464 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4465 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4466 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4467 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4468 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4469 .access = PL1_RW, .accessfn = access_tvm_trvm,
4470 .fgt = FGT_TTBR1_EL1,
4471 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
4472 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4473 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4474 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4475 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4476 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4477 .access = PL1_RW, .accessfn = access_tvm_trvm,
4478 .fgt = FGT_TCR_EL1,
4479 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
4480 .writefn = vmsa_tcr_el12_write,
4481 .raw_writefn = raw_write,
4482 .resetvalue = 0,
4483 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4484 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4485 .access = PL1_RW, .accessfn = access_tvm_trvm,
4486 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4487 .raw_writefn = raw_write,
4488 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4489 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4490 };
4491
4492 /*
4493 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4494 * qemu tlbs nor adjusting cached masks.
4495 */
4496 static const ARMCPRegInfo ttbcr2_reginfo = {
4497 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4498 .access = PL1_RW, .accessfn = access_tvm_trvm,
4499 .type = ARM_CP_ALIAS,
4500 .bank_fieldoffsets = {
4501 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4502 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4503 },
4504 };
4505
omap_ticonfig_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4506 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4507 uint64_t value)
4508 {
4509 env->cp15.c15_ticonfig = value & 0xe7;
4510 /* The OS_TYPE bit in this register changes the reported CPUID! */
4511 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4512 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4513 }
4514
omap_threadid_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4515 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4516 uint64_t value)
4517 {
4518 env->cp15.c15_threadid = value & 0xffff;
4519 }
4520
omap_wfi_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4521 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4522 uint64_t value)
4523 {
4524 /* Wait-for-interrupt (deprecated) */
4525 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4526 }
4527
omap_cachemaint_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4528 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4529 uint64_t value)
4530 {
4531 /*
4532 * On OMAP there are registers indicating the max/min index of dcache lines
4533 * containing a dirty line; cache flush operations have to reset these.
4534 */
4535 env->cp15.c15_i_max = 0x000;
4536 env->cp15.c15_i_min = 0xff0;
4537 }
4538
4539 static const ARMCPRegInfo omap_cp_reginfo[] = {
4540 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4541 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4542 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4543 .resetvalue = 0, },
4544 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4545 .access = PL1_RW, .type = ARM_CP_NOP },
4546 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4547 .access = PL1_RW,
4548 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4549 .writefn = omap_ticonfig_write },
4550 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4551 .access = PL1_RW,
4552 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4553 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4554 .access = PL1_RW, .resetvalue = 0xff0,
4555 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4556 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4557 .access = PL1_RW,
4558 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4559 .writefn = omap_threadid_write },
4560 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4561 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4562 .type = ARM_CP_NO_RAW,
4563 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4564 /*
4565 * TODO: Peripheral port remap register:
4566 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4567 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4568 * when MMU is off.
4569 */
4570 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4571 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4572 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4573 .writefn = omap_cachemaint_write },
4574 { .name = "C9", .cp = 15, .crn = 9,
4575 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4576 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4577 };
4578
xscale_cpar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4579 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4580 uint64_t value)
4581 {
4582 env->cp15.c15_cpar = value & 0x3fff;
4583 }
4584
4585 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4586 { .name = "XSCALE_CPAR",
4587 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4588 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4589 .writefn = xscale_cpar_write, },
4590 { .name = "XSCALE_AUXCR",
4591 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4592 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4593 .resetvalue = 0, },
4594 /*
4595 * XScale specific cache-lockdown: since we have no cache we NOP these
4596 * and hope the guest does not really rely on cache behaviour.
4597 */
4598 { .name = "XSCALE_LOCK_ICACHE_LINE",
4599 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4600 .access = PL1_W, .type = ARM_CP_NOP },
4601 { .name = "XSCALE_UNLOCK_ICACHE",
4602 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4603 .access = PL1_W, .type = ARM_CP_NOP },
4604 { .name = "XSCALE_DCACHE_LOCK",
4605 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4606 .access = PL1_RW, .type = ARM_CP_NOP },
4607 { .name = "XSCALE_UNLOCK_DCACHE",
4608 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4609 .access = PL1_W, .type = ARM_CP_NOP },
4610 };
4611
4612 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4613 /*
4614 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4615 * implementation of this implementation-defined space.
4616 * Ideally this should eventually disappear in favour of actually
4617 * implementing the correct behaviour for all cores.
4618 */
4619 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4620 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4621 .access = PL1_RW,
4622 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4623 .resetvalue = 0 },
4624 };
4625
4626 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4627 /* Cache status: RAZ because we have no cache so it's always clean */
4628 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4629 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4630 .resetvalue = 0 },
4631 };
4632
4633 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4634 /* We never have a block transfer operation in progress */
4635 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4636 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4637 .resetvalue = 0 },
4638 /* The cache ops themselves: these all NOP for QEMU */
4639 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4640 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4641 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4642 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4643 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4644 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4645 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4646 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4647 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4648 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4649 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4650 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4651 };
4652
4653 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4654 /*
4655 * The cache test-and-clean instructions always return (1 << 30)
4656 * to indicate that there are no dirty cache lines.
4657 */
4658 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4659 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4660 .resetvalue = (1 << 30) },
4661 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4662 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4663 .resetvalue = (1 << 30) },
4664 };
4665
4666 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4667 /* Ignore ReadBuffer accesses */
4668 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4669 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4670 .access = PL1_RW, .resetvalue = 0,
4671 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4672 };
4673
midr_read(CPUARMState * env,const ARMCPRegInfo * ri)4674 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4675 {
4676 unsigned int cur_el = arm_current_el(env);
4677
4678 if (arm_is_el2_enabled(env) && cur_el == 1) {
4679 return env->cp15.vpidr_el2;
4680 }
4681 return raw_read(env, ri);
4682 }
4683
mpidr_read_val(CPUARMState * env)4684 static uint64_t mpidr_read_val(CPUARMState *env)
4685 {
4686 ARMCPU *cpu = env_archcpu(env);
4687 uint64_t mpidr = cpu->mp_affinity;
4688
4689 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4690 mpidr |= (1U << 31);
4691 /*
4692 * Cores which are uniprocessor (non-coherent)
4693 * but still implement the MP extensions set
4694 * bit 30. (For instance, Cortex-R5).
4695 */
4696 if (cpu->mp_is_up) {
4697 mpidr |= (1u << 30);
4698 }
4699 }
4700 return mpidr;
4701 }
4702
mpidr_read(CPUARMState * env,const ARMCPRegInfo * ri)4703 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4704 {
4705 unsigned int cur_el = arm_current_el(env);
4706
4707 if (arm_is_el2_enabled(env) && cur_el == 1) {
4708 return env->cp15.vmpidr_el2;
4709 }
4710 return mpidr_read_val(env);
4711 }
4712
4713 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4714 /* NOP AMAIR0/1 */
4715 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4716 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4717 .access = PL1_RW, .accessfn = access_tvm_trvm,
4718 .fgt = FGT_AMAIR_EL1,
4719 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
4720 .type = ARM_CP_CONST, .resetvalue = 0 },
4721 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4722 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4723 .access = PL1_RW, .accessfn = access_tvm_trvm,
4724 .type = ARM_CP_CONST, .resetvalue = 0 },
4725 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4726 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4727 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4728 offsetof(CPUARMState, cp15.par_ns)} },
4729 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4730 .access = PL1_RW, .accessfn = access_tvm_trvm,
4731 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4732 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4733 offsetof(CPUARMState, cp15.ttbr0_ns) },
4734 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4735 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4736 .access = PL1_RW, .accessfn = access_tvm_trvm,
4737 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4738 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4739 offsetof(CPUARMState, cp15.ttbr1_ns) },
4740 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4741 };
4742
aa64_fpcr_read(CPUARMState * env,const ARMCPRegInfo * ri)4743 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4744 {
4745 return vfp_get_fpcr(env);
4746 }
4747
aa64_fpcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4748 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4749 uint64_t value)
4750 {
4751 vfp_set_fpcr(env, value);
4752 }
4753
aa64_fpsr_read(CPUARMState * env,const ARMCPRegInfo * ri)4754 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4755 {
4756 return vfp_get_fpsr(env);
4757 }
4758
aa64_fpsr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4759 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4760 uint64_t value)
4761 {
4762 vfp_set_fpsr(env, value);
4763 }
4764
aa64_daif_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4765 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4766 bool isread)
4767 {
4768 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4769 return CP_ACCESS_TRAP;
4770 }
4771 return CP_ACCESS_OK;
4772 }
4773
aa64_daif_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4774 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4775 uint64_t value)
4776 {
4777 env->daif = value & PSTATE_DAIF;
4778 }
4779
aa64_pan_read(CPUARMState * env,const ARMCPRegInfo * ri)4780 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4781 {
4782 return env->pstate & PSTATE_PAN;
4783 }
4784
aa64_pan_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4785 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4786 uint64_t value)
4787 {
4788 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4789 }
4790
4791 static const ARMCPRegInfo pan_reginfo = {
4792 .name = "PAN", .state = ARM_CP_STATE_AA64,
4793 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4794 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4795 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4796 };
4797
aa64_uao_read(CPUARMState * env,const ARMCPRegInfo * ri)4798 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4799 {
4800 return env->pstate & PSTATE_UAO;
4801 }
4802
aa64_uao_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4803 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4804 uint64_t value)
4805 {
4806 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4807 }
4808
4809 static const ARMCPRegInfo uao_reginfo = {
4810 .name = "UAO", .state = ARM_CP_STATE_AA64,
4811 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4812 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4813 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4814 };
4815
aa64_dit_read(CPUARMState * env,const ARMCPRegInfo * ri)4816 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4817 {
4818 return env->pstate & PSTATE_DIT;
4819 }
4820
aa64_dit_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4821 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4822 uint64_t value)
4823 {
4824 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4825 }
4826
4827 static const ARMCPRegInfo dit_reginfo = {
4828 .name = "DIT", .state = ARM_CP_STATE_AA64,
4829 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4830 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4831 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4832 };
4833
aa64_ssbs_read(CPUARMState * env,const ARMCPRegInfo * ri)4834 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4835 {
4836 return env->pstate & PSTATE_SSBS;
4837 }
4838
aa64_ssbs_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4839 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4840 uint64_t value)
4841 {
4842 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4843 }
4844
4845 static const ARMCPRegInfo ssbs_reginfo = {
4846 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4847 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4848 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4849 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4850 };
4851
aa64_cacheop_poc_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4852 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4853 const ARMCPRegInfo *ri,
4854 bool isread)
4855 {
4856 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4857 switch (arm_current_el(env)) {
4858 case 0:
4859 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4860 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4861 return CP_ACCESS_TRAP;
4862 }
4863 /* fall through */
4864 case 1:
4865 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4866 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4867 return CP_ACCESS_TRAP_EL2;
4868 }
4869 break;
4870 }
4871 return CP_ACCESS_OK;
4872 }
4873
do_cacheop_pou_access(CPUARMState * env,uint64_t hcrflags)4874 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4875 {
4876 /* Cache invalidate/clean to Point of Unification... */
4877 switch (arm_current_el(env)) {
4878 case 0:
4879 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4880 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4881 return CP_ACCESS_TRAP;
4882 }
4883 /* fall through */
4884 case 1:
4885 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4886 if (arm_hcr_el2_eff(env) & hcrflags) {
4887 return CP_ACCESS_TRAP_EL2;
4888 }
4889 break;
4890 }
4891 return CP_ACCESS_OK;
4892 }
4893
access_ticab(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4894 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4895 bool isread)
4896 {
4897 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4898 }
4899
access_tocu(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4900 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4901 bool isread)
4902 {
4903 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4904 }
4905
4906 /*
4907 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4908 * Page D4-1736 (DDI0487A.b)
4909 */
4910
vae1_tlbmask(CPUARMState * env)4911 static int vae1_tlbmask(CPUARMState *env)
4912 {
4913 uint64_t hcr = arm_hcr_el2_eff(env);
4914 uint16_t mask;
4915
4916 assert(arm_feature(env, ARM_FEATURE_AARCH64));
4917
4918 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4919 mask = ARMMMUIdxBit_E20_2 |
4920 ARMMMUIdxBit_E20_2_PAN |
4921 ARMMMUIdxBit_E20_0;
4922 } else {
4923 /* This is AArch64 only, so we don't need to touch the EL30_x TLBs */
4924 mask = ARMMMUIdxBit_E10_1 |
4925 ARMMMUIdxBit_E10_1_PAN |
4926 ARMMMUIdxBit_E10_0;
4927 }
4928 return mask;
4929 }
4930
vae2_tlbmask(CPUARMState * env)4931 static int vae2_tlbmask(CPUARMState *env)
4932 {
4933 uint64_t hcr = arm_hcr_el2_eff(env);
4934 uint16_t mask;
4935
4936 if (hcr & HCR_E2H) {
4937 mask = ARMMMUIdxBit_E20_2 |
4938 ARMMMUIdxBit_E20_2_PAN |
4939 ARMMMUIdxBit_E20_0;
4940 } else {
4941 mask = ARMMMUIdxBit_E2;
4942 }
4943 return mask;
4944 }
4945
4946 /* Return 56 if TBI is enabled, 64 otherwise. */
tlbbits_for_regime(CPUARMState * env,ARMMMUIdx mmu_idx,uint64_t addr)4947 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4948 uint64_t addr)
4949 {
4950 uint64_t tcr = regime_tcr(env, mmu_idx);
4951 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4952 int select = extract64(addr, 55, 1);
4953
4954 return (tbi >> select) & 1 ? 56 : 64;
4955 }
4956
vae1_tlbbits(CPUARMState * env,uint64_t addr)4957 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4958 {
4959 uint64_t hcr = arm_hcr_el2_eff(env);
4960 ARMMMUIdx mmu_idx;
4961
4962 assert(arm_feature(env, ARM_FEATURE_AARCH64));
4963
4964 /* Only the regime of the mmu_idx below is significant. */
4965 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4966 mmu_idx = ARMMMUIdx_E20_0;
4967 } else {
4968 mmu_idx = ARMMMUIdx_E10_0;
4969 }
4970
4971 return tlbbits_for_regime(env, mmu_idx, addr);
4972 }
4973
vae2_tlbbits(CPUARMState * env,uint64_t addr)4974 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4975 {
4976 uint64_t hcr = arm_hcr_el2_eff(env);
4977 ARMMMUIdx mmu_idx;
4978
4979 /*
4980 * Only the regime of the mmu_idx below is significant.
4981 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4982 * only has one.
4983 */
4984 if (hcr & HCR_E2H) {
4985 mmu_idx = ARMMMUIdx_E20_2;
4986 } else {
4987 mmu_idx = ARMMMUIdx_E2;
4988 }
4989
4990 return tlbbits_for_regime(env, mmu_idx, addr);
4991 }
4992
tlbi_aa64_vmalle1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4993 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4994 uint64_t value)
4995 {
4996 CPUState *cs = env_cpu(env);
4997 int mask = vae1_tlbmask(env);
4998
4999 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5000 }
5001
tlbi_aa64_vmalle1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5002 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5003 uint64_t value)
5004 {
5005 CPUState *cs = env_cpu(env);
5006 int mask = vae1_tlbmask(env);
5007
5008 if (tlb_force_broadcast(env)) {
5009 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5010 } else {
5011 tlb_flush_by_mmuidx(cs, mask);
5012 }
5013 }
5014
e2_tlbmask(CPUARMState * env)5015 static int e2_tlbmask(CPUARMState *env)
5016 {
5017 return (ARMMMUIdxBit_E20_0 |
5018 ARMMMUIdxBit_E20_2 |
5019 ARMMMUIdxBit_E20_2_PAN |
5020 ARMMMUIdxBit_E2);
5021 }
5022
tlbi_aa64_alle1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5023 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5024 uint64_t value)
5025 {
5026 CPUState *cs = env_cpu(env);
5027 int mask = alle1_tlbmask(env);
5028
5029 tlb_flush_by_mmuidx(cs, mask);
5030 }
5031
tlbi_aa64_alle2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5032 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5033 uint64_t value)
5034 {
5035 CPUState *cs = env_cpu(env);
5036 int mask = e2_tlbmask(env);
5037
5038 tlb_flush_by_mmuidx(cs, mask);
5039 }
5040
tlbi_aa64_alle3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5041 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5042 uint64_t value)
5043 {
5044 ARMCPU *cpu = env_archcpu(env);
5045 CPUState *cs = CPU(cpu);
5046
5047 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
5048 }
5049
tlbi_aa64_alle1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5050 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5051 uint64_t value)
5052 {
5053 CPUState *cs = env_cpu(env);
5054 int mask = alle1_tlbmask(env);
5055
5056 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5057 }
5058
tlbi_aa64_alle2is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5059 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5060 uint64_t value)
5061 {
5062 CPUState *cs = env_cpu(env);
5063 int mask = e2_tlbmask(env);
5064
5065 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5066 }
5067
tlbi_aa64_alle3is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5068 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5069 uint64_t value)
5070 {
5071 CPUState *cs = env_cpu(env);
5072
5073 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
5074 }
5075
tlbi_aa64_vae2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5076 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5077 uint64_t value)
5078 {
5079 /*
5080 * Invalidate by VA, EL2
5081 * Currently handles both VAE2 and VALE2, since we don't support
5082 * flush-last-level-only.
5083 */
5084 CPUState *cs = env_cpu(env);
5085 int mask = vae2_tlbmask(env);
5086 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5087 int bits = vae2_tlbbits(env, pageaddr);
5088
5089 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5090 }
5091
tlbi_aa64_vae3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5092 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5093 uint64_t value)
5094 {
5095 /*
5096 * Invalidate by VA, EL3
5097 * Currently handles both VAE3 and VALE3, since we don't support
5098 * flush-last-level-only.
5099 */
5100 ARMCPU *cpu = env_archcpu(env);
5101 CPUState *cs = CPU(cpu);
5102 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5103
5104 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
5105 }
5106
tlbi_aa64_vae1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5107 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5108 uint64_t value)
5109 {
5110 CPUState *cs = env_cpu(env);
5111 int mask = vae1_tlbmask(env);
5112 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5113 int bits = vae1_tlbbits(env, pageaddr);
5114
5115 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5116 }
5117
tlbi_aa64_vae1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5118 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5119 uint64_t value)
5120 {
5121 /*
5122 * Invalidate by VA, EL1&0 (AArch64 version).
5123 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
5124 * since we don't support flush-for-specific-ASID-only or
5125 * flush-last-level-only.
5126 */
5127 CPUState *cs = env_cpu(env);
5128 int mask = vae1_tlbmask(env);
5129 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5130 int bits = vae1_tlbbits(env, pageaddr);
5131
5132 if (tlb_force_broadcast(env)) {
5133 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5134 } else {
5135 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5136 }
5137 }
5138
tlbi_aa64_vae2is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5139 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5140 uint64_t value)
5141 {
5142 CPUState *cs = env_cpu(env);
5143 int mask = vae2_tlbmask(env);
5144 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5145 int bits = vae2_tlbbits(env, pageaddr);
5146
5147 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5148 }
5149
tlbi_aa64_vae3is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5150 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5151 uint64_t value)
5152 {
5153 CPUState *cs = env_cpu(env);
5154 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5155 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
5156
5157 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
5158 ARMMMUIdxBit_E3, bits);
5159 }
5160
ipas2e1_tlbmask(CPUARMState * env,int64_t value)5161 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
5162 {
5163 /*
5164 * The MSB of value is the NS field, which only applies if SEL2
5165 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
5166 */
5167 return (value >= 0
5168 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
5169 && arm_is_secure_below_el3(env)
5170 ? ARMMMUIdxBit_Stage2_S
5171 : ARMMMUIdxBit_Stage2);
5172 }
5173
tlbi_aa64_ipas2e1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5174 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5175 uint64_t value)
5176 {
5177 CPUState *cs = env_cpu(env);
5178 int mask = ipas2e1_tlbmask(env, value);
5179 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5180
5181 if (tlb_force_broadcast(env)) {
5182 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5183 } else {
5184 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
5185 }
5186 }
5187
tlbi_aa64_ipas2e1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5188 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5189 uint64_t value)
5190 {
5191 CPUState *cs = env_cpu(env);
5192 int mask = ipas2e1_tlbmask(env, value);
5193 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5194
5195 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5196 }
5197
5198 #ifdef TARGET_AARCH64
5199 typedef struct {
5200 uint64_t base;
5201 uint64_t length;
5202 } TLBIRange;
5203
tlbi_range_tg_to_gran_size(int tg)5204 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
5205 {
5206 /*
5207 * Note that the TLBI range TG field encoding differs from both
5208 * TG0 and TG1 encodings.
5209 */
5210 switch (tg) {
5211 case 1:
5212 return Gran4K;
5213 case 2:
5214 return Gran16K;
5215 case 3:
5216 return Gran64K;
5217 default:
5218 return GranInvalid;
5219 }
5220 }
5221
tlbi_aa64_get_range(CPUARMState * env,ARMMMUIdx mmuidx,uint64_t value)5222 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5223 uint64_t value)
5224 {
5225 unsigned int page_size_granule, page_shift, num, scale, exponent;
5226 /* Extract one bit to represent the va selector in use. */
5227 uint64_t select = sextract64(value, 36, 1);
5228 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5229 TLBIRange ret = { };
5230 ARMGranuleSize gran;
5231
5232 page_size_granule = extract64(value, 46, 2);
5233 gran = tlbi_range_tg_to_gran_size(page_size_granule);
5234
5235 /* The granule encoded in value must match the granule in use. */
5236 if (gran != param.gran) {
5237 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5238 page_size_granule);
5239 return ret;
5240 }
5241
5242 page_shift = arm_granule_bits(gran);
5243 num = extract64(value, 39, 5);
5244 scale = extract64(value, 44, 2);
5245 exponent = (5 * scale) + 1;
5246
5247 ret.length = (num + 1) << (exponent + page_shift);
5248
5249 if (param.select) {
5250 ret.base = sextract64(value, 0, 37);
5251 } else {
5252 ret.base = extract64(value, 0, 37);
5253 }
5254 if (param.ds) {
5255 /*
5256 * With DS=1, BaseADDR is always shifted 16 so that it is able
5257 * to address all 52 va bits. The input address is perforce
5258 * aligned on a 64k boundary regardless of translation granule.
5259 */
5260 page_shift = 16;
5261 }
5262 ret.base <<= page_shift;
5263
5264 return ret;
5265 }
5266
do_rvae_write(CPUARMState * env,uint64_t value,int idxmap,bool synced)5267 static void do_rvae_write(CPUARMState *env, uint64_t value,
5268 int idxmap, bool synced)
5269 {
5270 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5271 TLBIRange range;
5272 int bits;
5273
5274 range = tlbi_aa64_get_range(env, one_idx, value);
5275 bits = tlbbits_for_regime(env, one_idx, range.base);
5276
5277 if (synced) {
5278 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5279 range.base,
5280 range.length,
5281 idxmap,
5282 bits);
5283 } else {
5284 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5285 range.length, idxmap, bits);
5286 }
5287 }
5288
tlbi_aa64_rvae1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5289 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5290 const ARMCPRegInfo *ri,
5291 uint64_t value)
5292 {
5293 /*
5294 * Invalidate by VA range, EL1&0.
5295 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5296 * since we don't support flush-for-specific-ASID-only or
5297 * flush-last-level-only.
5298 */
5299
5300 do_rvae_write(env, value, vae1_tlbmask(env),
5301 tlb_force_broadcast(env));
5302 }
5303
tlbi_aa64_rvae1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5304 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5305 const ARMCPRegInfo *ri,
5306 uint64_t value)
5307 {
5308 /*
5309 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5310 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5311 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5312 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5313 * shareable specific flushes.
5314 */
5315
5316 do_rvae_write(env, value, vae1_tlbmask(env), true);
5317 }
5318
tlbi_aa64_rvae2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5319 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5320 const ARMCPRegInfo *ri,
5321 uint64_t value)
5322 {
5323 /*
5324 * Invalidate by VA range, EL2.
5325 * Currently handles all of RVAE2 and RVALE2,
5326 * since we don't support flush-for-specific-ASID-only or
5327 * flush-last-level-only.
5328 */
5329
5330 do_rvae_write(env, value, vae2_tlbmask(env),
5331 tlb_force_broadcast(env));
5332
5333
5334 }
5335
tlbi_aa64_rvae2is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5336 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5337 const ARMCPRegInfo *ri,
5338 uint64_t value)
5339 {
5340 /*
5341 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5342 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5343 * since we don't support flush-for-specific-ASID-only,
5344 * flush-last-level-only or inner/outer shareable specific flushes.
5345 */
5346
5347 do_rvae_write(env, value, vae2_tlbmask(env), true);
5348
5349 }
5350
tlbi_aa64_rvae3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5351 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5352 const ARMCPRegInfo *ri,
5353 uint64_t value)
5354 {
5355 /*
5356 * Invalidate by VA range, EL3.
5357 * Currently handles all of RVAE3 and RVALE3,
5358 * since we don't support flush-for-specific-ASID-only or
5359 * flush-last-level-only.
5360 */
5361
5362 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5363 }
5364
tlbi_aa64_rvae3is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5365 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5366 const ARMCPRegInfo *ri,
5367 uint64_t value)
5368 {
5369 /*
5370 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5371 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5372 * since we don't support flush-for-specific-ASID-only,
5373 * flush-last-level-only or inner/outer specific flushes.
5374 */
5375
5376 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5377 }
5378
tlbi_aa64_ripas2e1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5379 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5380 uint64_t value)
5381 {
5382 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5383 tlb_force_broadcast(env));
5384 }
5385
tlbi_aa64_ripas2e1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5386 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5387 const ARMCPRegInfo *ri,
5388 uint64_t value)
5389 {
5390 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5391 }
5392 #endif
5393
aa64_zva_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5394 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5395 bool isread)
5396 {
5397 int cur_el = arm_current_el(env);
5398
5399 if (cur_el < 2) {
5400 uint64_t hcr = arm_hcr_el2_eff(env);
5401
5402 if (cur_el == 0) {
5403 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5404 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5405 return CP_ACCESS_TRAP_EL2;
5406 }
5407 } else {
5408 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5409 return CP_ACCESS_TRAP;
5410 }
5411 if (hcr & HCR_TDZ) {
5412 return CP_ACCESS_TRAP_EL2;
5413 }
5414 }
5415 } else if (hcr & HCR_TDZ) {
5416 return CP_ACCESS_TRAP_EL2;
5417 }
5418 }
5419 return CP_ACCESS_OK;
5420 }
5421
aa64_dczid_read(CPUARMState * env,const ARMCPRegInfo * ri)5422 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5423 {
5424 ARMCPU *cpu = env_archcpu(env);
5425 int dzp_bit = 1 << 4;
5426
5427 /* DZP indicates whether DC ZVA access is allowed */
5428 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5429 dzp_bit = 0;
5430 }
5431 return cpu->dcz_blocksize | dzp_bit;
5432 }
5433
sp_el0_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5434 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5435 bool isread)
5436 {
5437 if (!(env->pstate & PSTATE_SP)) {
5438 /*
5439 * Access to SP_EL0 is undefined if it's being used as
5440 * the stack pointer.
5441 */
5442 return CP_ACCESS_TRAP_UNCATEGORIZED;
5443 }
5444 return CP_ACCESS_OK;
5445 }
5446
spsel_read(CPUARMState * env,const ARMCPRegInfo * ri)5447 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5448 {
5449 return env->pstate & PSTATE_SP;
5450 }
5451
spsel_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)5452 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5453 {
5454 update_spsel(env, val);
5455 }
5456
sctlr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5457 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5458 uint64_t value)
5459 {
5460 ARMCPU *cpu = env_archcpu(env);
5461
5462 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5463 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5464 value &= ~SCTLR_M;
5465 }
5466
5467 /* ??? Lots of these bits are not implemented. */
5468
5469 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5470 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5471 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5472 } else {
5473 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5474 SCTLR_ATA0 | SCTLR_ATA);
5475 }
5476 }
5477
5478 if (raw_read(env, ri) == value) {
5479 /*
5480 * Skip the TLB flush if nothing actually changed; Linux likes
5481 * to do a lot of pointless SCTLR writes.
5482 */
5483 return;
5484 }
5485
5486 raw_write(env, ri, value);
5487
5488 /* This may enable/disable the MMU, so do a TLB flush. */
5489 tlb_flush(CPU(cpu));
5490
5491 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5492 /*
5493 * Normally we would always end the TB on an SCTLR write; see the
5494 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5495 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5496 * of hflags from the translator, so do it here.
5497 */
5498 arm_rebuild_hflags(env);
5499 }
5500 }
5501
mdcr_el3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5502 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5503 uint64_t value)
5504 {
5505 /*
5506 * Some MDCR_EL3 bits affect whether PMU counters are running:
5507 * if we are trying to change any of those then we must
5508 * bracket this update with PMU start/finish calls.
5509 */
5510 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5511
5512 if (pmu_op) {
5513 pmu_op_start(env);
5514 }
5515 env->cp15.mdcr_el3 = value;
5516 if (pmu_op) {
5517 pmu_op_finish(env);
5518 }
5519 }
5520
sdcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5521 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5522 uint64_t value)
5523 {
5524 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5525 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5526 }
5527
mdcr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5528 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5529 uint64_t value)
5530 {
5531 /*
5532 * Some MDCR_EL2 bits affect whether PMU counters are running:
5533 * if we are trying to change any of those then we must
5534 * bracket this update with PMU start/finish calls.
5535 */
5536 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5537
5538 if (pmu_op) {
5539 pmu_op_start(env);
5540 }
5541 env->cp15.mdcr_el2 = value;
5542 if (pmu_op) {
5543 pmu_op_finish(env);
5544 }
5545 }
5546
access_nv1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5547 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
5548 bool isread)
5549 {
5550 if (arm_current_el(env) == 1) {
5551 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
5552
5553 if (hcr_nv == (HCR_NV | HCR_NV1)) {
5554 return CP_ACCESS_TRAP_EL2;
5555 }
5556 }
5557 return CP_ACCESS_OK;
5558 }
5559
5560 #ifdef CONFIG_USER_ONLY
5561 /*
5562 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5563 * code to get around W^X restrictions, where one region is writable and the
5564 * other is executable.
5565 *
5566 * Since the executable region is never written to we cannot detect code
5567 * changes when running in user mode, and rely on the emulated JIT telling us
5568 * that the code has changed by executing this instruction.
5569 */
ic_ivau_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5570 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5571 uint64_t value)
5572 {
5573 uint64_t icache_line_mask, start_address, end_address;
5574 const ARMCPU *cpu;
5575
5576 cpu = env_archcpu(env);
5577
5578 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5579 start_address = value & ~icache_line_mask;
5580 end_address = value | icache_line_mask;
5581
5582 mmap_lock();
5583
5584 tb_invalidate_phys_range(start_address, end_address);
5585
5586 mmap_unlock();
5587 }
5588 #endif
5589
5590 static const ARMCPRegInfo v8_cp_reginfo[] = {
5591 /*
5592 * Minimal set of EL0-visible registers. This will need to be expanded
5593 * significantly for system emulation of AArch64 CPUs.
5594 */
5595 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5596 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5597 .access = PL0_RW, .type = ARM_CP_NZCV },
5598 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5599 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5600 .type = ARM_CP_NO_RAW,
5601 .access = PL0_RW, .accessfn = aa64_daif_access,
5602 .fieldoffset = offsetof(CPUARMState, daif),
5603 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5604 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5605 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5606 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5607 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5608 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5609 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5610 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5611 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5612 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5613 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5614 .access = PL0_R, .type = ARM_CP_NO_RAW,
5615 .fgt = FGT_DCZID_EL0,
5616 .readfn = aa64_dczid_read },
5617 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5618 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5619 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5620 #ifndef CONFIG_USER_ONLY
5621 /* Avoid overhead of an access check that always passes in user-mode */
5622 .accessfn = aa64_zva_access,
5623 .fgt = FGT_DCZVA,
5624 #endif
5625 },
5626 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5627 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5628 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5629 /*
5630 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5631 * don't emulate caches.
5632 */
5633 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5634 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5635 .access = PL1_W, .type = ARM_CP_NOP,
5636 .fgt = FGT_ICIALLUIS,
5637 .accessfn = access_ticab },
5638 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5639 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5640 .access = PL1_W, .type = ARM_CP_NOP,
5641 .fgt = FGT_ICIALLU,
5642 .accessfn = access_tocu },
5643 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5644 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5645 .access = PL0_W,
5646 .fgt = FGT_ICIVAU,
5647 .accessfn = access_tocu,
5648 #ifdef CONFIG_USER_ONLY
5649 .type = ARM_CP_NO_RAW,
5650 .writefn = ic_ivau_write
5651 #else
5652 .type = ARM_CP_NOP
5653 #endif
5654 },
5655 /* Cache ops: all NOPs since we don't emulate caches */
5656 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5657 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5658 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5659 .fgt = FGT_DCIVAC,
5660 .type = ARM_CP_NOP },
5661 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5662 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5663 .fgt = FGT_DCISW,
5664 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5665 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5666 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5667 .access = PL0_W, .type = ARM_CP_NOP,
5668 .fgt = FGT_DCCVAC,
5669 .accessfn = aa64_cacheop_poc_access },
5670 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5671 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5672 .fgt = FGT_DCCSW,
5673 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5674 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5675 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5676 .access = PL0_W, .type = ARM_CP_NOP,
5677 .fgt = FGT_DCCVAU,
5678 .accessfn = access_tocu },
5679 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5680 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5681 .access = PL0_W, .type = ARM_CP_NOP,
5682 .fgt = FGT_DCCIVAC,
5683 .accessfn = aa64_cacheop_poc_access },
5684 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5685 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5686 .fgt = FGT_DCCISW,
5687 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5688 /* TLBI operations */
5689 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5690 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5691 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5692 .fgt = FGT_TLBIVMALLE1IS,
5693 .writefn = tlbi_aa64_vmalle1is_write },
5694 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5695 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5696 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5697 .fgt = FGT_TLBIVAE1IS,
5698 .writefn = tlbi_aa64_vae1is_write },
5699 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5700 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5701 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5702 .fgt = FGT_TLBIASIDE1IS,
5703 .writefn = tlbi_aa64_vmalle1is_write },
5704 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5705 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5706 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5707 .fgt = FGT_TLBIVAAE1IS,
5708 .writefn = tlbi_aa64_vae1is_write },
5709 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5710 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5711 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5712 .fgt = FGT_TLBIVALE1IS,
5713 .writefn = tlbi_aa64_vae1is_write },
5714 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5715 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5716 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5717 .fgt = FGT_TLBIVAALE1IS,
5718 .writefn = tlbi_aa64_vae1is_write },
5719 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5720 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5721 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5722 .fgt = FGT_TLBIVMALLE1,
5723 .writefn = tlbi_aa64_vmalle1_write },
5724 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5725 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5726 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5727 .fgt = FGT_TLBIVAE1,
5728 .writefn = tlbi_aa64_vae1_write },
5729 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5730 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5731 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5732 .fgt = FGT_TLBIASIDE1,
5733 .writefn = tlbi_aa64_vmalle1_write },
5734 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5735 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5736 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5737 .fgt = FGT_TLBIVAAE1,
5738 .writefn = tlbi_aa64_vae1_write },
5739 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5740 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5741 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5742 .fgt = FGT_TLBIVALE1,
5743 .writefn = tlbi_aa64_vae1_write },
5744 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5745 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5746 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5747 .fgt = FGT_TLBIVAALE1,
5748 .writefn = tlbi_aa64_vae1_write },
5749 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5750 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5751 .access = PL2_W, .type = ARM_CP_NO_RAW,
5752 .writefn = tlbi_aa64_ipas2e1is_write },
5753 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5754 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5755 .access = PL2_W, .type = ARM_CP_NO_RAW,
5756 .writefn = tlbi_aa64_ipas2e1is_write },
5757 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5758 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5759 .access = PL2_W, .type = ARM_CP_NO_RAW,
5760 .writefn = tlbi_aa64_alle1is_write },
5761 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5762 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5763 .access = PL2_W, .type = ARM_CP_NO_RAW,
5764 .writefn = tlbi_aa64_alle1is_write },
5765 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5766 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5767 .access = PL2_W, .type = ARM_CP_NO_RAW,
5768 .writefn = tlbi_aa64_ipas2e1_write },
5769 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5770 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5771 .access = PL2_W, .type = ARM_CP_NO_RAW,
5772 .writefn = tlbi_aa64_ipas2e1_write },
5773 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5774 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5775 .access = PL2_W, .type = ARM_CP_NO_RAW,
5776 .writefn = tlbi_aa64_alle1_write },
5777 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5778 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5779 .access = PL2_W, .type = ARM_CP_NO_RAW,
5780 .writefn = tlbi_aa64_alle1is_write },
5781 #ifndef CONFIG_USER_ONLY
5782 /* 64 bit address translation operations */
5783 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5784 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5785 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5786 .fgt = FGT_ATS1E1R,
5787 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5788 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5789 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5790 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5791 .fgt = FGT_ATS1E1W,
5792 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5793 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5794 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5795 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5796 .fgt = FGT_ATS1E0R,
5797 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5798 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5799 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5800 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5801 .fgt = FGT_ATS1E0W,
5802 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5803 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5804 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5805 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5806 .accessfn = at_e012_access, .writefn = ats_write64 },
5807 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5808 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5809 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5810 .accessfn = at_e012_access, .writefn = ats_write64 },
5811 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5812 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5813 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5814 .accessfn = at_e012_access, .writefn = ats_write64 },
5815 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5816 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5817 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5818 .accessfn = at_e012_access, .writefn = ats_write64 },
5819 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5820 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5821 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5822 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5823 .writefn = ats_write64 },
5824 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5825 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5826 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5827 .writefn = ats_write64 },
5828 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5829 .type = ARM_CP_ALIAS,
5830 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5831 .access = PL1_RW, .resetvalue = 0,
5832 .fgt = FGT_PAR_EL1,
5833 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5834 .writefn = par_write },
5835 #endif
5836 /* TLB invalidate last level of translation table walk */
5837 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5838 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5839 .writefn = tlbimva_is_write },
5840 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5841 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5842 .writefn = tlbimvaa_is_write },
5843 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5844 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5845 .writefn = tlbimva_write },
5846 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5847 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5848 .writefn = tlbimvaa_write },
5849 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5850 .type = ARM_CP_NO_RAW, .access = PL2_W,
5851 .writefn = tlbimva_hyp_write },
5852 { .name = "TLBIMVALHIS",
5853 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5854 .type = ARM_CP_NO_RAW, .access = PL2_W,
5855 .writefn = tlbimva_hyp_is_write },
5856 { .name = "TLBIIPAS2",
5857 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5858 .type = ARM_CP_NO_RAW, .access = PL2_W,
5859 .writefn = tlbiipas2_hyp_write },
5860 { .name = "TLBIIPAS2IS",
5861 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5862 .type = ARM_CP_NO_RAW, .access = PL2_W,
5863 .writefn = tlbiipas2is_hyp_write },
5864 { .name = "TLBIIPAS2L",
5865 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5866 .type = ARM_CP_NO_RAW, .access = PL2_W,
5867 .writefn = tlbiipas2_hyp_write },
5868 { .name = "TLBIIPAS2LIS",
5869 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5870 .type = ARM_CP_NO_RAW, .access = PL2_W,
5871 .writefn = tlbiipas2is_hyp_write },
5872 /* 32 bit cache operations */
5873 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5874 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5875 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5876 .type = ARM_CP_NOP, .access = PL1_W },
5877 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5878 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5879 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5880 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5881 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5882 .type = ARM_CP_NOP, .access = PL1_W },
5883 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5884 .type = ARM_CP_NOP, .access = PL1_W },
5885 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5886 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5887 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5888 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5889 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5890 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5891 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5892 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5893 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5894 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5895 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5896 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5897 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5898 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5899 /* MMU Domain access control / MPU write buffer control */
5900 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5901 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5902 .writefn = dacr_write, .raw_writefn = raw_write,
5903 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5904 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5905 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5906 .type = ARM_CP_ALIAS,
5907 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5908 .access = PL1_RW, .accessfn = access_nv1,
5909 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
5910 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5911 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5912 .type = ARM_CP_ALIAS,
5913 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5914 .access = PL1_RW, .accessfn = access_nv1,
5915 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
5916 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5917 /*
5918 * We rely on the access checks not allowing the guest to write to the
5919 * state field when SPSel indicates that it's being used as the stack
5920 * pointer.
5921 */
5922 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5923 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5924 .access = PL1_RW, .accessfn = sp_el0_access,
5925 .type = ARM_CP_ALIAS,
5926 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5927 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5928 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5929 .nv2_redirect_offset = 0x240,
5930 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5931 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5932 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5933 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5934 .type = ARM_CP_NO_RAW,
5935 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5936 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5937 .type = ARM_CP_ALIAS,
5938 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5939 .access = PL2_RW,
5940 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5941 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5942 .type = ARM_CP_ALIAS,
5943 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5944 .access = PL2_RW,
5945 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5946 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5947 .type = ARM_CP_ALIAS,
5948 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5949 .access = PL2_RW,
5950 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5951 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5952 .type = ARM_CP_ALIAS,
5953 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5954 .access = PL2_RW,
5955 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5956 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5957 .type = ARM_CP_IO,
5958 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5959 .resetvalue = 0,
5960 .access = PL3_RW,
5961 .writefn = mdcr_el3_write,
5962 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5963 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5964 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5965 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5966 .writefn = sdcr_write,
5967 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5968 };
5969
5970 /* These are present only when EL1 supports AArch32 */
5971 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5972 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5973 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5974 .access = PL2_RW,
5975 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5976 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5977 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5978 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5979 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5980 .writefn = dacr_write, .raw_writefn = raw_write,
5981 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5982 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5983 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5984 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5985 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5986 };
5987
do_hcr_write(CPUARMState * env,uint64_t value,uint64_t valid_mask)5988 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5989 {
5990 ARMCPU *cpu = env_archcpu(env);
5991
5992 if (arm_feature(env, ARM_FEATURE_V8)) {
5993 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5994 } else {
5995 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5996 }
5997
5998 if (arm_feature(env, ARM_FEATURE_EL3)) {
5999 valid_mask &= ~HCR_HCD;
6000 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
6001 /*
6002 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
6003 * However, if we're using the SMC PSCI conduit then QEMU is
6004 * effectively acting like EL3 firmware and so the guest at
6005 * EL2 should retain the ability to prevent EL1 from being
6006 * able to make SMC calls into the ersatz firmware, so in
6007 * that case HCR.TSC should be read/write.
6008 */
6009 valid_mask &= ~HCR_TSC;
6010 }
6011
6012 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6013 if (cpu_isar_feature(aa64_vh, cpu)) {
6014 valid_mask |= HCR_E2H;
6015 }
6016 if (cpu_isar_feature(aa64_ras, cpu)) {
6017 valid_mask |= HCR_TERR | HCR_TEA;
6018 }
6019 if (cpu_isar_feature(aa64_lor, cpu)) {
6020 valid_mask |= HCR_TLOR;
6021 }
6022 if (cpu_isar_feature(aa64_pauth, cpu)) {
6023 valid_mask |= HCR_API | HCR_APK;
6024 }
6025 if (cpu_isar_feature(aa64_mte, cpu)) {
6026 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
6027 }
6028 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
6029 valid_mask |= HCR_ENSCXT;
6030 }
6031 if (cpu_isar_feature(aa64_fwb, cpu)) {
6032 valid_mask |= HCR_FWB;
6033 }
6034 if (cpu_isar_feature(aa64_rme, cpu)) {
6035 valid_mask |= HCR_GPF;
6036 }
6037 if (cpu_isar_feature(aa64_nv, cpu)) {
6038 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
6039 }
6040 if (cpu_isar_feature(aa64_nv2, cpu)) {
6041 valid_mask |= HCR_NV2;
6042 }
6043 }
6044
6045 if (cpu_isar_feature(any_evt, cpu)) {
6046 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
6047 } else if (cpu_isar_feature(any_half_evt, cpu)) {
6048 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
6049 }
6050
6051 /* Clear RES0 bits. */
6052 value &= valid_mask;
6053
6054 /*
6055 * These bits change the MMU setup:
6056 * HCR_VM enables stage 2 translation
6057 * HCR_PTW forbids certain page-table setups
6058 * HCR_DC disables stage1 and enables stage2 translation
6059 * HCR_DCT enables tagging on (disabled) stage1 translation
6060 * HCR_FWB changes the interpretation of stage2 descriptor bits
6061 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
6062 */
6063 if ((env->cp15.hcr_el2 ^ value) &
6064 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
6065 tlb_flush(CPU(cpu));
6066 }
6067 env->cp15.hcr_el2 = value;
6068
6069 /*
6070 * Updates to VI and VF require us to update the status of
6071 * virtual interrupts, which are the logical OR of these bits
6072 * and the state of the input lines from the GIC. (This requires
6073 * that we have the BQL, which is done by marking the
6074 * reginfo structs as ARM_CP_IO.)
6075 * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or
6076 * VFNMI, it is never possible for it to be taken immediately
6077 * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running
6078 * at EL0 or EL1, and HCR can only be written at EL2.
6079 */
6080 g_assert(bql_locked());
6081 arm_cpu_update_virq(cpu);
6082 arm_cpu_update_vfiq(cpu);
6083 arm_cpu_update_vserr(cpu);
6084 if (cpu_isar_feature(aa64_nmi, cpu)) {
6085 arm_cpu_update_vinmi(cpu);
6086 arm_cpu_update_vfnmi(cpu);
6087 }
6088 }
6089
hcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6090 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
6091 {
6092 do_hcr_write(env, value, 0);
6093 }
6094
hcr_writehigh(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6095 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
6096 uint64_t value)
6097 {
6098 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
6099 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
6100 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
6101 }
6102
hcr_writelow(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6103 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
6104 uint64_t value)
6105 {
6106 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
6107 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
6108 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
6109 }
6110
6111 /*
6112 * Return the effective value of HCR_EL2, at the given security state.
6113 * Bits that are not included here:
6114 * RW (read from SCR_EL3.RW as needed)
6115 */
arm_hcr_el2_eff_secstate(CPUARMState * env,ARMSecuritySpace space)6116 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
6117 {
6118 uint64_t ret = env->cp15.hcr_el2;
6119
6120 assert(space != ARMSS_Root);
6121
6122 if (!arm_is_el2_enabled_secstate(env, space)) {
6123 /*
6124 * "This register has no effect if EL2 is not enabled in the
6125 * current Security state". This is ARMv8.4-SecEL2 speak for
6126 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
6127 *
6128 * Prior to that, the language was "In an implementation that
6129 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
6130 * as if this field is 0 for all purposes other than a direct
6131 * read or write access of HCR_EL2". With lots of enumeration
6132 * on a per-field basis. In current QEMU, this is condition
6133 * is arm_is_secure_below_el3.
6134 *
6135 * Since the v8.4 language applies to the entire register, and
6136 * appears to be backward compatible, use that.
6137 */
6138 return 0;
6139 }
6140
6141 /*
6142 * For a cpu that supports both aarch64 and aarch32, we can set bits
6143 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
6144 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
6145 */
6146 if (!arm_el_is_aa64(env, 2)) {
6147 uint64_t aa32_valid;
6148
6149 /*
6150 * These bits are up-to-date as of ARMv8.6.
6151 * For HCR, it's easiest to list just the 2 bits that are invalid.
6152 * For HCR2, list those that are valid.
6153 */
6154 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
6155 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
6156 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
6157 ret &= aa32_valid;
6158 }
6159
6160 if (ret & HCR_TGE) {
6161 /* These bits are up-to-date as of ARMv8.6. */
6162 if (ret & HCR_E2H) {
6163 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
6164 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
6165 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
6166 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
6167 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
6168 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
6169 } else {
6170 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
6171 }
6172 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
6173 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
6174 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
6175 HCR_TLOR);
6176 }
6177
6178 return ret;
6179 }
6180
arm_hcr_el2_eff(CPUARMState * env)6181 uint64_t arm_hcr_el2_eff(CPUARMState *env)
6182 {
6183 if (arm_feature(env, ARM_FEATURE_M)) {
6184 return 0;
6185 }
6186 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
6187 }
6188
6189 /*
6190 * Corresponds to ARM pseudocode function ELIsInHost().
6191 */
el_is_in_host(CPUARMState * env,int el)6192 bool el_is_in_host(CPUARMState *env, int el)
6193 {
6194 uint64_t mask;
6195
6196 /*
6197 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
6198 * Perform the simplest bit tests first, and validate EL2 afterward.
6199 */
6200 if (el & 1) {
6201 return false; /* EL1 or EL3 */
6202 }
6203
6204 /*
6205 * Note that hcr_write() checks isar_feature_aa64_vh(),
6206 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
6207 */
6208 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
6209 if ((env->cp15.hcr_el2 & mask) != mask) {
6210 return false;
6211 }
6212
6213 /* TGE and/or E2H set: double check those bits are currently legal. */
6214 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
6215 }
6216
hcrx_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6217 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
6218 uint64_t value)
6219 {
6220 ARMCPU *cpu = env_archcpu(env);
6221 uint64_t valid_mask = 0;
6222
6223 /* FEAT_MOPS adds MSCEn and MCE2 */
6224 if (cpu_isar_feature(aa64_mops, cpu)) {
6225 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
6226 }
6227
6228 /* FEAT_NMI adds TALLINT, VINMI and VFNMI */
6229 if (cpu_isar_feature(aa64_nmi, cpu)) {
6230 valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI;
6231 }
6232 /* FEAT_CMOW adds CMOW */
6233
6234 if (cpu_isar_feature(aa64_cmow, cpu)) {
6235 valid_mask |= HCRX_CMOW;
6236 }
6237
6238 /* Clear RES0 bits. */
6239 env->cp15.hcrx_el2 = value & valid_mask;
6240
6241 /*
6242 * Updates to VINMI and VFNMI require us to update the status of
6243 * virtual NMI, which are the logical OR of these bits
6244 * and the state of the input lines from the GIC. (This requires
6245 * that we have the BQL, which is done by marking the
6246 * reginfo structs as ARM_CP_IO.)
6247 * Note that if a write to HCRX pends a VINMI or VFNMI it is never
6248 * possible for it to be taken immediately, because VINMI and
6249 * VFNMI are masked unless running at EL0 or EL1, and HCRX
6250 * can only be written at EL2.
6251 */
6252 if (cpu_isar_feature(aa64_nmi, cpu)) {
6253 g_assert(bql_locked());
6254 arm_cpu_update_vinmi(cpu);
6255 arm_cpu_update_vfnmi(cpu);
6256 }
6257 }
6258
access_hxen(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6259 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
6260 bool isread)
6261 {
6262 if (arm_current_el(env) == 2
6263 && arm_feature(env, ARM_FEATURE_EL3)
6264 && !(env->cp15.scr_el3 & SCR_HXEN)) {
6265 return CP_ACCESS_TRAP_EL3;
6266 }
6267 return CP_ACCESS_OK;
6268 }
6269
6270 static const ARMCPRegInfo hcrx_el2_reginfo = {
6271 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6272 .type = ARM_CP_IO,
6273 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6274 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6275 .nv2_redirect_offset = 0xa0,
6276 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6277 };
6278
6279 /* Return the effective value of HCRX_EL2. */
arm_hcrx_el2_eff(CPUARMState * env)6280 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6281 {
6282 /*
6283 * The bits in this register behave as 0 for all purposes other than
6284 * direct reads of the register if SCR_EL3.HXEn is 0.
6285 * If EL2 is not enabled in the current security state, then the
6286 * bit may behave as if 0, or as if 1, depending on the bit.
6287 * For the moment, we treat the EL2-disabled case as taking
6288 * priority over the HXEn-disabled case. This is true for the only
6289 * bit for a feature which we implement where the answer is different
6290 * for the two cases (MSCEn for FEAT_MOPS).
6291 * This may need to be revisited for future bits.
6292 */
6293 if (!arm_is_el2_enabled(env)) {
6294 uint64_t hcrx = 0;
6295 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6296 /* MSCEn behaves as 1 if EL2 is not enabled */
6297 hcrx |= HCRX_MSCEN;
6298 }
6299 return hcrx;
6300 }
6301 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6302 return 0;
6303 }
6304 return env->cp15.hcrx_el2;
6305 }
6306
cptr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6307 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6308 uint64_t value)
6309 {
6310 /*
6311 * For A-profile AArch32 EL3, if NSACR.CP10
6312 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6313 */
6314 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6315 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6316 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6317 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6318 }
6319 env->cp15.cptr_el[2] = value;
6320 }
6321
cptr_el2_read(CPUARMState * env,const ARMCPRegInfo * ri)6322 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6323 {
6324 /*
6325 * For A-profile AArch32 EL3, if NSACR.CP10
6326 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6327 */
6328 uint64_t value = env->cp15.cptr_el[2];
6329
6330 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6331 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6332 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6333 }
6334 return value;
6335 }
6336
6337 static const ARMCPRegInfo el2_cp_reginfo[] = {
6338 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6339 .type = ARM_CP_IO,
6340 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6341 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6342 .nv2_redirect_offset = 0x78,
6343 .writefn = hcr_write, .raw_writefn = raw_write },
6344 { .name = "HCR", .state = ARM_CP_STATE_AA32,
6345 .type = ARM_CP_ALIAS | ARM_CP_IO,
6346 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6347 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6348 .writefn = hcr_writelow },
6349 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6350 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6351 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6352 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6353 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6354 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6355 .access = PL2_RW,
6356 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6357 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6358 .type = ARM_CP_NV2_REDIRECT,
6359 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6360 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6361 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6362 .type = ARM_CP_NV2_REDIRECT,
6363 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6364 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6365 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6366 .type = ARM_CP_ALIAS,
6367 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6368 .access = PL2_RW,
6369 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6370 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6371 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6372 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6373 .access = PL2_RW,
6374 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6375 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6376 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6377 .access = PL2_RW, .writefn = vbar_write,
6378 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6379 .resetvalue = 0 },
6380 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6381 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6382 .access = PL3_RW, .type = ARM_CP_ALIAS,
6383 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6384 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6385 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6386 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6387 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6388 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6389 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6390 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6391 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6392 .resetvalue = 0 },
6393 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6394 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6395 .access = PL2_RW, .type = ARM_CP_ALIAS,
6396 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6397 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6398 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6399 .access = PL2_RW, .type = ARM_CP_CONST,
6400 .resetvalue = 0 },
6401 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6402 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6403 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6404 .access = PL2_RW, .type = ARM_CP_CONST,
6405 .resetvalue = 0 },
6406 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6407 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6408 .access = PL2_RW, .type = ARM_CP_CONST,
6409 .resetvalue = 0 },
6410 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6411 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6412 .access = PL2_RW, .type = ARM_CP_CONST,
6413 .resetvalue = 0 },
6414 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6415 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6416 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6417 .raw_writefn = raw_write,
6418 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6419 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6420 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6421 .type = ARM_CP_ALIAS,
6422 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6423 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6424 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6425 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6426 .access = PL2_RW,
6427 .nv2_redirect_offset = 0x40,
6428 /* no .writefn needed as this can't cause an ASID change */
6429 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6430 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6431 .cp = 15, .opc1 = 6, .crm = 2,
6432 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6433 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6434 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6435 .writefn = vttbr_write, .raw_writefn = raw_write },
6436 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6437 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6438 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6439 .nv2_redirect_offset = 0x20,
6440 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6441 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6442 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6443 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6444 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6445 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6446 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6447 .access = PL2_RW, .resetvalue = 0,
6448 .nv2_redirect_offset = 0x90,
6449 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6450 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6451 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6452 .access = PL2_RW, .resetvalue = 0,
6453 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6454 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6455 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6456 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6457 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6458 { .name = "TLBIALLNSNH",
6459 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6460 .type = ARM_CP_NO_RAW, .access = PL2_W,
6461 .writefn = tlbiall_nsnh_write },
6462 { .name = "TLBIALLNSNHIS",
6463 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6464 .type = ARM_CP_NO_RAW, .access = PL2_W,
6465 .writefn = tlbiall_nsnh_is_write },
6466 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6467 .type = ARM_CP_NO_RAW, .access = PL2_W,
6468 .writefn = tlbiall_hyp_write },
6469 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6470 .type = ARM_CP_NO_RAW, .access = PL2_W,
6471 .writefn = tlbiall_hyp_is_write },
6472 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6473 .type = ARM_CP_NO_RAW, .access = PL2_W,
6474 .writefn = tlbimva_hyp_write },
6475 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6476 .type = ARM_CP_NO_RAW, .access = PL2_W,
6477 .writefn = tlbimva_hyp_is_write },
6478 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6479 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6480 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6481 .writefn = tlbi_aa64_alle2_write },
6482 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6483 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6484 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6485 .writefn = tlbi_aa64_vae2_write },
6486 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6487 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6488 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6489 .writefn = tlbi_aa64_vae2_write },
6490 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6491 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6492 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6493 .writefn = tlbi_aa64_alle2is_write },
6494 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6495 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6496 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6497 .writefn = tlbi_aa64_vae2is_write },
6498 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6499 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6500 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6501 .writefn = tlbi_aa64_vae2is_write },
6502 #ifndef CONFIG_USER_ONLY
6503 /*
6504 * Unlike the other EL2-related AT operations, these must
6505 * UNDEF from EL3 if EL2 is not implemented, which is why we
6506 * define them here rather than with the rest of the AT ops.
6507 */
6508 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6509 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6510 .access = PL2_W, .accessfn = at_s1e2_access,
6511 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6512 .writefn = ats_write64 },
6513 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6514 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6515 .access = PL2_W, .accessfn = at_s1e2_access,
6516 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6517 .writefn = ats_write64 },
6518 /*
6519 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6520 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6521 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6522 * to behave as if SCR.NS was 1.
6523 */
6524 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6525 .access = PL2_W,
6526 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6527 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6528 .access = PL2_W,
6529 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6530 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6531 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6532 /*
6533 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6534 * reset values as IMPDEF. We choose to reset to 3 to comply with
6535 * both ARMv7 and ARMv8.
6536 */
6537 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6538 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6539 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6540 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6541 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6542 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6543 .writefn = gt_cntvoff_write,
6544 .nv2_redirect_offset = 0x60,
6545 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6546 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6547 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6548 .writefn = gt_cntvoff_write,
6549 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6550 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6551 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6552 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6553 .type = ARM_CP_IO, .access = PL2_RW,
6554 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6555 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6556 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6557 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6558 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6559 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6560 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6561 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6562 .resetfn = gt_hyp_timer_reset,
6563 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6564 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6565 .type = ARM_CP_IO,
6566 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6567 .access = PL2_RW,
6568 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6569 .resetvalue = 0,
6570 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6571 #endif
6572 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6573 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6574 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6575 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6576 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6577 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6578 .access = PL2_RW,
6579 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6580 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6581 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6582 .access = PL2_RW,
6583 .nv2_redirect_offset = 0x80,
6584 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6585 };
6586
6587 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6588 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6589 .type = ARM_CP_ALIAS | ARM_CP_IO,
6590 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6591 .access = PL2_RW,
6592 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6593 .writefn = hcr_writehigh },
6594 };
6595
sel2_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6596 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6597 bool isread)
6598 {
6599 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6600 return CP_ACCESS_OK;
6601 }
6602 return CP_ACCESS_TRAP_UNCATEGORIZED;
6603 }
6604
6605 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6606 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6607 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6608 .access = PL2_RW, .accessfn = sel2_access,
6609 .nv2_redirect_offset = 0x30,
6610 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6611 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6612 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6613 .access = PL2_RW, .accessfn = sel2_access,
6614 .nv2_redirect_offset = 0x48,
6615 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6616 };
6617
nsacr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6618 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6619 bool isread)
6620 {
6621 /*
6622 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6623 * At Secure EL1 it traps to EL3 or EL2.
6624 */
6625 if (arm_current_el(env) == 3) {
6626 return CP_ACCESS_OK;
6627 }
6628 if (arm_is_secure_below_el3(env)) {
6629 if (env->cp15.scr_el3 & SCR_EEL2) {
6630 return CP_ACCESS_TRAP_EL2;
6631 }
6632 return CP_ACCESS_TRAP_EL3;
6633 }
6634 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6635 if (isread) {
6636 return CP_ACCESS_OK;
6637 }
6638 return CP_ACCESS_TRAP_UNCATEGORIZED;
6639 }
6640
6641 static const ARMCPRegInfo el3_cp_reginfo[] = {
6642 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6643 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6644 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6645 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6646 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6647 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6648 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6649 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6650 .writefn = scr_write, .raw_writefn = raw_write },
6651 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6652 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6653 .access = PL3_RW, .resetvalue = 0,
6654 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6655 { .name = "SDER",
6656 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6657 .access = PL3_RW, .resetvalue = 0,
6658 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6659 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6660 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6661 .writefn = vbar_write, .resetvalue = 0,
6662 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6663 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6664 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6665 .access = PL3_RW, .resetvalue = 0,
6666 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6667 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6668 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6669 .access = PL3_RW,
6670 /* no .writefn needed as this can't cause an ASID change */
6671 .resetvalue = 0,
6672 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6673 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6674 .type = ARM_CP_ALIAS,
6675 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6676 .access = PL3_RW,
6677 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6678 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6679 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6680 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6681 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6682 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6683 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6684 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6685 .type = ARM_CP_ALIAS,
6686 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6687 .access = PL3_RW,
6688 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6689 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6690 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6691 .access = PL3_RW, .writefn = vbar_write,
6692 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6693 .resetvalue = 0 },
6694 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6695 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6696 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6697 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6698 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6699 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6700 .access = PL3_RW, .resetvalue = 0,
6701 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6702 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6703 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6704 .access = PL3_RW, .type = ARM_CP_CONST,
6705 .resetvalue = 0 },
6706 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6707 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6708 .access = PL3_RW, .type = ARM_CP_CONST,
6709 .resetvalue = 0 },
6710 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6711 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6712 .access = PL3_RW, .type = ARM_CP_CONST,
6713 .resetvalue = 0 },
6714 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6715 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6716 .access = PL3_W, .type = ARM_CP_NO_RAW,
6717 .writefn = tlbi_aa64_alle3is_write },
6718 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6719 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6720 .access = PL3_W, .type = ARM_CP_NO_RAW,
6721 .writefn = tlbi_aa64_vae3is_write },
6722 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6723 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6724 .access = PL3_W, .type = ARM_CP_NO_RAW,
6725 .writefn = tlbi_aa64_vae3is_write },
6726 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6727 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6728 .access = PL3_W, .type = ARM_CP_NO_RAW,
6729 .writefn = tlbi_aa64_alle3_write },
6730 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6731 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6732 .access = PL3_W, .type = ARM_CP_NO_RAW,
6733 .writefn = tlbi_aa64_vae3_write },
6734 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6735 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6736 .access = PL3_W, .type = ARM_CP_NO_RAW,
6737 .writefn = tlbi_aa64_vae3_write },
6738 };
6739
6740 #ifndef CONFIG_USER_ONLY
6741
e2h_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6742 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
6743 bool isread)
6744 {
6745 if (arm_current_el(env) == 1) {
6746 /* This must be a FEAT_NV access */
6747 return CP_ACCESS_OK;
6748 }
6749 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6750 return CP_ACCESS_TRAP_UNCATEGORIZED;
6751 }
6752 return CP_ACCESS_OK;
6753 }
6754
access_el1nvpct(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6755 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri,
6756 bool isread)
6757 {
6758 if (arm_current_el(env) == 1) {
6759 /* This must be a FEAT_NV access with NVx == 101 */
6760 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) {
6761 return CP_ACCESS_TRAP_EL2;
6762 }
6763 }
6764 return e2h_access(env, ri, isread);
6765 }
6766
access_el1nvvct(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6767 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri,
6768 bool isread)
6769 {
6770 if (arm_current_el(env) == 1) {
6771 /* This must be a FEAT_NV access with NVx == 101 */
6772 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) {
6773 return CP_ACCESS_TRAP_EL2;
6774 }
6775 }
6776 return e2h_access(env, ri, isread);
6777 }
6778
6779 /* Test if system register redirection is to occur in the current state. */
redirect_for_e2h(CPUARMState * env)6780 static bool redirect_for_e2h(CPUARMState *env)
6781 {
6782 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6783 }
6784
el2_e2h_read(CPUARMState * env,const ARMCPRegInfo * ri)6785 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6786 {
6787 CPReadFn *readfn;
6788
6789 if (redirect_for_e2h(env)) {
6790 /* Switch to the saved EL2 version of the register. */
6791 ri = ri->opaque;
6792 readfn = ri->readfn;
6793 } else {
6794 readfn = ri->orig_readfn;
6795 }
6796 if (readfn == NULL) {
6797 readfn = raw_read;
6798 }
6799 return readfn(env, ri);
6800 }
6801
el2_e2h_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6802 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6803 uint64_t value)
6804 {
6805 CPWriteFn *writefn;
6806
6807 if (redirect_for_e2h(env)) {
6808 /* Switch to the saved EL2 version of the register. */
6809 ri = ri->opaque;
6810 writefn = ri->writefn;
6811 } else {
6812 writefn = ri->orig_writefn;
6813 }
6814 if (writefn == NULL) {
6815 writefn = raw_write;
6816 }
6817 writefn(env, ri, value);
6818 }
6819
el2_e2h_e12_read(CPUARMState * env,const ARMCPRegInfo * ri)6820 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
6821 {
6822 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6823 return ri->orig_readfn(env, ri->opaque);
6824 }
6825
el2_e2h_e12_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6826 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
6827 uint64_t value)
6828 {
6829 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6830 return ri->orig_writefn(env, ri->opaque, value);
6831 }
6832
el2_e2h_e12_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6833 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
6834 const ARMCPRegInfo *ri,
6835 bool isread)
6836 {
6837 if (arm_current_el(env) == 1) {
6838 /*
6839 * This must be a FEAT_NV access (will either trap or redirect
6840 * to memory). None of the registers with _EL12 aliases want to
6841 * apply their trap controls for this kind of access, so don't
6842 * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
6843 */
6844 return CP_ACCESS_OK;
6845 }
6846 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
6847 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6848 return CP_ACCESS_TRAP_UNCATEGORIZED;
6849 }
6850 if (ri->orig_accessfn) {
6851 return ri->orig_accessfn(env, ri->opaque, isread);
6852 }
6853 return CP_ACCESS_OK;
6854 }
6855
define_arm_vh_e2h_redirects_aliases(ARMCPU * cpu)6856 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6857 {
6858 struct E2HAlias {
6859 uint32_t src_key, dst_key, new_key;
6860 const char *src_name, *dst_name, *new_name;
6861 bool (*feature)(const ARMISARegisters *id);
6862 };
6863
6864 #define K(op0, op1, crn, crm, op2) \
6865 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6866
6867 static const struct E2HAlias aliases[] = {
6868 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6869 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6870 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6871 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6872 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6873 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6874 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6875 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6876 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6877 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6878 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6879 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6880 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6881 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6882 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6883 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6884 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6885 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6886 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6887 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6888 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6889 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6890 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6891 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6892 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6893 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6894 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6895 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6896 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6897 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6898 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6899 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6900
6901 /*
6902 * Note that redirection of ZCR is mentioned in the description
6903 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6904 * not in the summary table.
6905 */
6906 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6907 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6908 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6909 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6910
6911 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6912 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6913
6914 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6915 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6916 isar_feature_aa64_scxtnum },
6917
6918 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6919 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6920 };
6921 #undef K
6922
6923 size_t i;
6924
6925 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6926 const struct E2HAlias *a = &aliases[i];
6927 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6928 bool ok;
6929
6930 if (a->feature && !a->feature(&cpu->isar)) {
6931 continue;
6932 }
6933
6934 src_reg = g_hash_table_lookup(cpu->cp_regs,
6935 (gpointer)(uintptr_t)a->src_key);
6936 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6937 (gpointer)(uintptr_t)a->dst_key);
6938 g_assert(src_reg != NULL);
6939 g_assert(dst_reg != NULL);
6940
6941 /* Cross-compare names to detect typos in the keys. */
6942 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6943 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6944
6945 /* None of the core system registers use opaque; we will. */
6946 g_assert(src_reg->opaque == NULL);
6947
6948 /* Create alias before redirection so we dup the right data. */
6949 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6950
6951 new_reg->name = a->new_name;
6952 new_reg->type |= ARM_CP_ALIAS;
6953 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6954 new_reg->access &= PL2_RW | PL3_RW;
6955 /* The new_reg op fields are as per new_key, not the target reg */
6956 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
6957 >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
6958 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
6959 >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
6960 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
6961 >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
6962 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
6963 >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
6964 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
6965 >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
6966 new_reg->opaque = src_reg;
6967 new_reg->orig_readfn = src_reg->readfn ?: raw_read;
6968 new_reg->orig_writefn = src_reg->writefn ?: raw_write;
6969 new_reg->orig_accessfn = src_reg->accessfn;
6970 if (!new_reg->raw_readfn) {
6971 new_reg->raw_readfn = raw_read;
6972 }
6973 if (!new_reg->raw_writefn) {
6974 new_reg->raw_writefn = raw_write;
6975 }
6976 new_reg->readfn = el2_e2h_e12_read;
6977 new_reg->writefn = el2_e2h_e12_write;
6978 new_reg->accessfn = el2_e2h_e12_access;
6979
6980 /*
6981 * If the _EL1 register is redirected to memory by FEAT_NV2,
6982 * then it shares the offset with the _EL12 register,
6983 * and which one is redirected depends on HCR_EL2.NV1.
6984 */
6985 if (new_reg->nv2_redirect_offset) {
6986 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
6987 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
6988 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
6989 }
6990
6991 ok = g_hash_table_insert(cpu->cp_regs,
6992 (gpointer)(uintptr_t)a->new_key, new_reg);
6993 g_assert(ok);
6994
6995 src_reg->opaque = dst_reg;
6996 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6997 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6998 if (!src_reg->raw_readfn) {
6999 src_reg->raw_readfn = raw_read;
7000 }
7001 if (!src_reg->raw_writefn) {
7002 src_reg->raw_writefn = raw_write;
7003 }
7004 src_reg->readfn = el2_e2h_read;
7005 src_reg->writefn = el2_e2h_write;
7006 }
7007 }
7008 #endif
7009
ctr_el0_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7010 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
7011 bool isread)
7012 {
7013 int cur_el = arm_current_el(env);
7014
7015 if (cur_el < 2) {
7016 uint64_t hcr = arm_hcr_el2_eff(env);
7017
7018 if (cur_el == 0) {
7019 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
7020 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
7021 return CP_ACCESS_TRAP_EL2;
7022 }
7023 } else {
7024 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7025 return CP_ACCESS_TRAP;
7026 }
7027 if (hcr & HCR_TID2) {
7028 return CP_ACCESS_TRAP_EL2;
7029 }
7030 }
7031 } else if (hcr & HCR_TID2) {
7032 return CP_ACCESS_TRAP_EL2;
7033 }
7034 }
7035
7036 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
7037 return CP_ACCESS_TRAP_EL2;
7038 }
7039
7040 return CP_ACCESS_OK;
7041 }
7042
7043 /*
7044 * Check for traps to RAS registers, which are controlled
7045 * by HCR_EL2.TERR and SCR_EL3.TERR.
7046 */
access_terr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7047 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
7048 bool isread)
7049 {
7050 int el = arm_current_el(env);
7051
7052 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
7053 return CP_ACCESS_TRAP_EL2;
7054 }
7055 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
7056 return CP_ACCESS_TRAP_EL3;
7057 }
7058 return CP_ACCESS_OK;
7059 }
7060
disr_read(CPUARMState * env,const ARMCPRegInfo * ri)7061 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
7062 {
7063 int el = arm_current_el(env);
7064
7065 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
7066 return env->cp15.vdisr_el2;
7067 }
7068 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
7069 return 0; /* RAZ/WI */
7070 }
7071 return env->cp15.disr_el1;
7072 }
7073
disr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)7074 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7075 {
7076 int el = arm_current_el(env);
7077
7078 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
7079 env->cp15.vdisr_el2 = val;
7080 return;
7081 }
7082 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
7083 return; /* RAZ/WI */
7084 }
7085 env->cp15.disr_el1 = val;
7086 }
7087
7088 /*
7089 * Minimal RAS implementation with no Error Records.
7090 * Which means that all of the Error Record registers:
7091 * ERXADDR_EL1
7092 * ERXCTLR_EL1
7093 * ERXFR_EL1
7094 * ERXMISC0_EL1
7095 * ERXMISC1_EL1
7096 * ERXMISC2_EL1
7097 * ERXMISC3_EL1
7098 * ERXPFGCDN_EL1 (RASv1p1)
7099 * ERXPFGCTL_EL1 (RASv1p1)
7100 * ERXPFGF_EL1 (RASv1p1)
7101 * ERXSTATUS_EL1
7102 * and
7103 * ERRSELR_EL1
7104 * may generate UNDEFINED, which is the effect we get by not
7105 * listing them at all.
7106 *
7107 * These registers have fine-grained trap bits, but UNDEF-to-EL1
7108 * is higher priority than FGT-to-EL2 so we do not need to list them
7109 * in order to check for an FGT.
7110 */
7111 static const ARMCPRegInfo minimal_ras_reginfo[] = {
7112 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
7113 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
7114 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
7115 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
7116 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
7117 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
7118 .access = PL1_R, .accessfn = access_terr,
7119 .fgt = FGT_ERRIDR_EL1,
7120 .type = ARM_CP_CONST, .resetvalue = 0 },
7121 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
7122 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
7123 .nv2_redirect_offset = 0x500,
7124 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
7125 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
7126 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
7127 .nv2_redirect_offset = 0x508,
7128 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
7129 };
7130
7131 /*
7132 * Return the exception level to which exceptions should be taken
7133 * via SVEAccessTrap. This excludes the check for whether the exception
7134 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
7135 * be found by testing 0 < fp_exception_el < sve_exception_el.
7136 *
7137 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
7138 * pseudocode does *not* separate out the FP trap checks, but has them
7139 * all in one function.
7140 */
sve_exception_el(CPUARMState * env,int el)7141 int sve_exception_el(CPUARMState *env, int el)
7142 {
7143 #ifndef CONFIG_USER_ONLY
7144 if (el <= 1 && !el_is_in_host(env, el)) {
7145 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
7146 case 1:
7147 if (el != 0) {
7148 break;
7149 }
7150 /* fall through */
7151 case 0:
7152 case 2:
7153 return 1;
7154 }
7155 }
7156
7157 if (el <= 2 && arm_is_el2_enabled(env)) {
7158 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7159 if (env->cp15.hcr_el2 & HCR_E2H) {
7160 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
7161 case 1:
7162 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7163 break;
7164 }
7165 /* fall through */
7166 case 0:
7167 case 2:
7168 return 2;
7169 }
7170 } else {
7171 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
7172 return 2;
7173 }
7174 }
7175 }
7176
7177 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
7178 if (arm_feature(env, ARM_FEATURE_EL3)
7179 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
7180 return 3;
7181 }
7182 #endif
7183 return 0;
7184 }
7185
7186 /*
7187 * Return the exception level to which exceptions should be taken for SME.
7188 * C.f. the ARM pseudocode function CheckSMEAccess.
7189 */
sme_exception_el(CPUARMState * env,int el)7190 int sme_exception_el(CPUARMState *env, int el)
7191 {
7192 #ifndef CONFIG_USER_ONLY
7193 if (el <= 1 && !el_is_in_host(env, el)) {
7194 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
7195 case 1:
7196 if (el != 0) {
7197 break;
7198 }
7199 /* fall through */
7200 case 0:
7201 case 2:
7202 return 1;
7203 }
7204 }
7205
7206 if (el <= 2 && arm_is_el2_enabled(env)) {
7207 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7208 if (env->cp15.hcr_el2 & HCR_E2H) {
7209 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
7210 case 1:
7211 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7212 break;
7213 }
7214 /* fall through */
7215 case 0:
7216 case 2:
7217 return 2;
7218 }
7219 } else {
7220 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
7221 return 2;
7222 }
7223 }
7224 }
7225
7226 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
7227 if (arm_feature(env, ARM_FEATURE_EL3)
7228 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7229 return 3;
7230 }
7231 #endif
7232 return 0;
7233 }
7234
7235 /*
7236 * Given that SVE is enabled, return the vector length for EL.
7237 */
sve_vqm1_for_el_sm(CPUARMState * env,int el,bool sm)7238 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
7239 {
7240 ARMCPU *cpu = env_archcpu(env);
7241 uint64_t *cr = env->vfp.zcr_el;
7242 uint32_t map = cpu->sve_vq.map;
7243 uint32_t len = ARM_MAX_VQ - 1;
7244
7245 if (sm) {
7246 cr = env->vfp.smcr_el;
7247 map = cpu->sme_vq.map;
7248 }
7249
7250 if (el <= 1 && !el_is_in_host(env, el)) {
7251 len = MIN(len, 0xf & (uint32_t)cr[1]);
7252 }
7253 if (el <= 2 && arm_is_el2_enabled(env)) {
7254 len = MIN(len, 0xf & (uint32_t)cr[2]);
7255 }
7256 if (arm_feature(env, ARM_FEATURE_EL3)) {
7257 len = MIN(len, 0xf & (uint32_t)cr[3]);
7258 }
7259
7260 map &= MAKE_64BIT_MASK(0, len + 1);
7261 if (map != 0) {
7262 return 31 - clz32(map);
7263 }
7264
7265 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
7266 assert(sm);
7267 return ctz32(cpu->sme_vq.map);
7268 }
7269
sve_vqm1_for_el(CPUARMState * env,int el)7270 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
7271 {
7272 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
7273 }
7274
zcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7275 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7276 uint64_t value)
7277 {
7278 int cur_el = arm_current_el(env);
7279 int old_len = sve_vqm1_for_el(env, cur_el);
7280 int new_len;
7281
7282 /* Bits other than [3:0] are RAZ/WI. */
7283 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
7284 raw_write(env, ri, value & 0xf);
7285
7286 /*
7287 * Because we arrived here, we know both FP and SVE are enabled;
7288 * otherwise we would have trapped access to the ZCR_ELn register.
7289 */
7290 new_len = sve_vqm1_for_el(env, cur_el);
7291 if (new_len < old_len) {
7292 aarch64_sve_narrow_vq(env, new_len + 1);
7293 }
7294 }
7295
7296 static const ARMCPRegInfo zcr_reginfo[] = {
7297 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
7298 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
7299 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
7300 .access = PL1_RW, .type = ARM_CP_SVE,
7301 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
7302 .writefn = zcr_write, .raw_writefn = raw_write },
7303 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
7304 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
7305 .access = PL2_RW, .type = ARM_CP_SVE,
7306 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
7307 .writefn = zcr_write, .raw_writefn = raw_write },
7308 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
7309 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
7310 .access = PL3_RW, .type = ARM_CP_SVE,
7311 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
7312 .writefn = zcr_write, .raw_writefn = raw_write },
7313 };
7314
7315 #ifdef TARGET_AARCH64
access_tpidr2(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7316 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
7317 bool isread)
7318 {
7319 int el = arm_current_el(env);
7320
7321 if (el == 0) {
7322 uint64_t sctlr = arm_sctlr(env, el);
7323 if (!(sctlr & SCTLR_EnTP2)) {
7324 return CP_ACCESS_TRAP;
7325 }
7326 }
7327 /* TODO: FEAT_FGT */
7328 if (el < 3
7329 && arm_feature(env, ARM_FEATURE_EL3)
7330 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
7331 return CP_ACCESS_TRAP_EL3;
7332 }
7333 return CP_ACCESS_OK;
7334 }
7335
access_smprimap(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7336 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
7337 bool isread)
7338 {
7339 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
7340 if (arm_current_el(env) == 2
7341 && arm_feature(env, ARM_FEATURE_EL3)
7342 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7343 return CP_ACCESS_TRAP_EL3;
7344 }
7345 return CP_ACCESS_OK;
7346 }
7347
access_smpri(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7348 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
7349 bool isread)
7350 {
7351 if (arm_current_el(env) < 3
7352 && arm_feature(env, ARM_FEATURE_EL3)
7353 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7354 return CP_ACCESS_TRAP_EL3;
7355 }
7356 return CP_ACCESS_OK;
7357 }
7358
7359 /* ResetSVEState */
arm_reset_sve_state(CPUARMState * env)7360 static void arm_reset_sve_state(CPUARMState *env)
7361 {
7362 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
7363 /* Recall that FFR is stored as pregs[16]. */
7364 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
7365 vfp_set_fpcr(env, 0x0800009f);
7366 }
7367
aarch64_set_svcr(CPUARMState * env,uint64_t new,uint64_t mask)7368 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
7369 {
7370 uint64_t change = (env->svcr ^ new) & mask;
7371
7372 if (change == 0) {
7373 return;
7374 }
7375 env->svcr ^= change;
7376
7377 if (change & R_SVCR_SM_MASK) {
7378 arm_reset_sve_state(env);
7379 }
7380
7381 /*
7382 * ResetSMEState.
7383 *
7384 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
7385 * on enable: while disabled, the storage is inaccessible and the
7386 * value does not matter. We're not saving the storage in vmstate
7387 * when disabled either.
7388 */
7389 if (change & new & R_SVCR_ZA_MASK) {
7390 memset(env->zarray, 0, sizeof(env->zarray));
7391 }
7392
7393 if (tcg_enabled()) {
7394 arm_rebuild_hflags(env);
7395 }
7396 }
7397
svcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7398 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7399 uint64_t value)
7400 {
7401 aarch64_set_svcr(env, value, -1);
7402 }
7403
smcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7404 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7405 uint64_t value)
7406 {
7407 int cur_el = arm_current_el(env);
7408 int old_len = sve_vqm1_for_el(env, cur_el);
7409 int new_len;
7410
7411 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7412 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7413 raw_write(env, ri, value);
7414
7415 /*
7416 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7417 * when SVL is widened (old values kept, or zeros). Choose to keep the
7418 * current values for simplicity. But for QEMU internals, we must still
7419 * apply the narrower SVL to the Zregs and Pregs -- see the comment
7420 * above aarch64_sve_narrow_vq.
7421 */
7422 new_len = sve_vqm1_for_el(env, cur_el);
7423 if (new_len < old_len) {
7424 aarch64_sve_narrow_vq(env, new_len + 1);
7425 }
7426 }
7427
7428 static const ARMCPRegInfo sme_reginfo[] = {
7429 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7430 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7431 .access = PL0_RW, .accessfn = access_tpidr2,
7432 .fgt = FGT_NTPIDR2_EL0,
7433 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7434 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7435 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7436 .access = PL0_RW, .type = ARM_CP_SME,
7437 .fieldoffset = offsetof(CPUARMState, svcr),
7438 .writefn = svcr_write, .raw_writefn = raw_write },
7439 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7440 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7441 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
7442 .access = PL1_RW, .type = ARM_CP_SME,
7443 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7444 .writefn = smcr_write, .raw_writefn = raw_write },
7445 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7446 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7447 .access = PL2_RW, .type = ARM_CP_SME,
7448 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7449 .writefn = smcr_write, .raw_writefn = raw_write },
7450 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7451 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7452 .access = PL3_RW, .type = ARM_CP_SME,
7453 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7454 .writefn = smcr_write, .raw_writefn = raw_write },
7455 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7456 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7457 .access = PL1_R, .accessfn = access_aa64_tid1,
7458 /*
7459 * IMPLEMENTOR = 0 (software)
7460 * REVISION = 0 (implementation defined)
7461 * SMPS = 0 (no streaming execution priority in QEMU)
7462 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
7463 */
7464 .type = ARM_CP_CONST, .resetvalue = 0, },
7465 /*
7466 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7467 */
7468 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7469 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7470 .access = PL1_RW, .accessfn = access_smpri,
7471 .fgt = FGT_NSMPRI_EL1,
7472 .type = ARM_CP_CONST, .resetvalue = 0 },
7473 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7474 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7475 .nv2_redirect_offset = 0x1f8,
7476 .access = PL2_RW, .accessfn = access_smprimap,
7477 .type = ARM_CP_CONST, .resetvalue = 0 },
7478 };
7479
tlbi_aa64_paall_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7480 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7481 uint64_t value)
7482 {
7483 CPUState *cs = env_cpu(env);
7484
7485 tlb_flush(cs);
7486 }
7487
gpccr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7488 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7489 uint64_t value)
7490 {
7491 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7492 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7493 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7494 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7495
7496 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7497 }
7498
gpccr_reset(CPUARMState * env,const ARMCPRegInfo * ri)7499 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7500 {
7501 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7502 env_archcpu(env)->reset_l0gptsz);
7503 }
7504
tlbi_aa64_paallos_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7505 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7506 uint64_t value)
7507 {
7508 CPUState *cs = env_cpu(env);
7509
7510 tlb_flush_all_cpus_synced(cs);
7511 }
7512
7513 static const ARMCPRegInfo rme_reginfo[] = {
7514 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7515 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7516 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7517 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7518 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7519 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7520 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7521 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7522 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7523 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7524 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7525 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7526 .access = PL3_W, .type = ARM_CP_NO_RAW,
7527 .writefn = tlbi_aa64_paall_write },
7528 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7529 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7530 .access = PL3_W, .type = ARM_CP_NO_RAW,
7531 .writefn = tlbi_aa64_paallos_write },
7532 /*
7533 * QEMU does not have a way to invalidate by physical address, thus
7534 * invalidating a range of physical addresses is accomplished by
7535 * flushing all tlb entries in the outer shareable domain,
7536 * just like PAALLOS.
7537 */
7538 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7539 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7540 .access = PL3_W, .type = ARM_CP_NO_RAW,
7541 .writefn = tlbi_aa64_paallos_write },
7542 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7543 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7544 .access = PL3_W, .type = ARM_CP_NO_RAW,
7545 .writefn = tlbi_aa64_paallos_write },
7546 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7547 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7548 .access = PL3_W, .type = ARM_CP_NOP },
7549 };
7550
7551 static const ARMCPRegInfo rme_mte_reginfo[] = {
7552 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7553 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7554 .access = PL3_W, .type = ARM_CP_NOP },
7555 };
7556
aa64_allint_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7557 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri,
7558 uint64_t value)
7559 {
7560 env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT);
7561 }
7562
aa64_allint_read(CPUARMState * env,const ARMCPRegInfo * ri)7563 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri)
7564 {
7565 return env->pstate & PSTATE_ALLINT;
7566 }
7567
aa64_allint_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7568 static CPAccessResult aa64_allint_access(CPUARMState *env,
7569 const ARMCPRegInfo *ri, bool isread)
7570 {
7571 if (!isread && arm_current_el(env) == 1 &&
7572 (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) {
7573 return CP_ACCESS_TRAP_EL2;
7574 }
7575 return CP_ACCESS_OK;
7576 }
7577
7578 static const ARMCPRegInfo nmi_reginfo[] = {
7579 { .name = "ALLINT", .state = ARM_CP_STATE_AA64,
7580 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3,
7581 .type = ARM_CP_NO_RAW,
7582 .access = PL1_RW, .accessfn = aa64_allint_access,
7583 .fieldoffset = offsetof(CPUARMState, pstate),
7584 .writefn = aa64_allint_write, .readfn = aa64_allint_read,
7585 .resetfn = arm_cp_reset_ignore },
7586 };
7587 #endif /* TARGET_AARCH64 */
7588
define_pmu_regs(ARMCPU * cpu)7589 static void define_pmu_regs(ARMCPU *cpu)
7590 {
7591 /*
7592 * v7 performance monitor control register: same implementor
7593 * field as main ID register, and we implement four counters in
7594 * addition to the cycle count register.
7595 */
7596 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7597 ARMCPRegInfo pmcr = {
7598 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7599 .access = PL0_RW,
7600 .fgt = FGT_PMCR_EL0,
7601 .type = ARM_CP_IO | ARM_CP_ALIAS,
7602 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7603 .accessfn = pmreg_access,
7604 .readfn = pmcr_read, .raw_readfn = raw_read,
7605 .writefn = pmcr_write, .raw_writefn = raw_write,
7606 };
7607 ARMCPRegInfo pmcr64 = {
7608 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7609 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7610 .access = PL0_RW, .accessfn = pmreg_access,
7611 .fgt = FGT_PMCR_EL0,
7612 .type = ARM_CP_IO,
7613 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7614 .resetvalue = cpu->isar.reset_pmcr_el0,
7615 .readfn = pmcr_read, .raw_readfn = raw_read,
7616 .writefn = pmcr_write, .raw_writefn = raw_write,
7617 };
7618
7619 define_one_arm_cp_reg(cpu, &pmcr);
7620 define_one_arm_cp_reg(cpu, &pmcr64);
7621 for (i = 0; i < pmcrn; i++) {
7622 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7623 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7624 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7625 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7626 ARMCPRegInfo pmev_regs[] = {
7627 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7628 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7629 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7630 .fgt = FGT_PMEVCNTRN_EL0,
7631 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7632 .accessfn = pmreg_access_xevcntr },
7633 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7634 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7635 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7636 .type = ARM_CP_IO,
7637 .fgt = FGT_PMEVCNTRN_EL0,
7638 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7639 .raw_readfn = pmevcntr_rawread,
7640 .raw_writefn = pmevcntr_rawwrite },
7641 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7642 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7643 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7644 .fgt = FGT_PMEVTYPERN_EL0,
7645 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7646 .accessfn = pmreg_access },
7647 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7648 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7649 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7650 .fgt = FGT_PMEVTYPERN_EL0,
7651 .type = ARM_CP_IO,
7652 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7653 .raw_writefn = pmevtyper_rawwrite },
7654 };
7655 define_arm_cp_regs(cpu, pmev_regs);
7656 g_free(pmevcntr_name);
7657 g_free(pmevcntr_el0_name);
7658 g_free(pmevtyper_name);
7659 g_free(pmevtyper_el0_name);
7660 }
7661 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7662 ARMCPRegInfo v81_pmu_regs[] = {
7663 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7664 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7665 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7666 .fgt = FGT_PMCEIDN_EL0,
7667 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7668 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7669 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7670 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7671 .fgt = FGT_PMCEIDN_EL0,
7672 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7673 };
7674 define_arm_cp_regs(cpu, v81_pmu_regs);
7675 }
7676 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7677 static const ARMCPRegInfo v84_pmmir = {
7678 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7679 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7680 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7681 .fgt = FGT_PMMIR_EL1,
7682 .resetvalue = 0
7683 };
7684 define_one_arm_cp_reg(cpu, &v84_pmmir);
7685 }
7686 }
7687
7688 #ifndef CONFIG_USER_ONLY
7689 /*
7690 * We don't know until after realize whether there's a GICv3
7691 * attached, and that is what registers the gicv3 sysregs.
7692 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7693 * at runtime.
7694 */
id_pfr1_read(CPUARMState * env,const ARMCPRegInfo * ri)7695 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7696 {
7697 ARMCPU *cpu = env_archcpu(env);
7698 uint64_t pfr1 = cpu->isar.id_pfr1;
7699
7700 if (env->gicv3state) {
7701 pfr1 |= 1 << 28;
7702 }
7703 return pfr1;
7704 }
7705
id_aa64pfr0_read(CPUARMState * env,const ARMCPRegInfo * ri)7706 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7707 {
7708 ARMCPU *cpu = env_archcpu(env);
7709 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7710
7711 if (env->gicv3state) {
7712 pfr0 |= 1 << 24;
7713 }
7714 return pfr0;
7715 }
7716 #endif
7717
7718 /*
7719 * Shared logic between LORID and the rest of the LOR* registers.
7720 * Secure state exclusion has already been dealt with.
7721 */
access_lor_ns(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7722 static CPAccessResult access_lor_ns(CPUARMState *env,
7723 const ARMCPRegInfo *ri, bool isread)
7724 {
7725 int el = arm_current_el(env);
7726
7727 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7728 return CP_ACCESS_TRAP_EL2;
7729 }
7730 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7731 return CP_ACCESS_TRAP_EL3;
7732 }
7733 return CP_ACCESS_OK;
7734 }
7735
access_lor_other(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7736 static CPAccessResult access_lor_other(CPUARMState *env,
7737 const ARMCPRegInfo *ri, bool isread)
7738 {
7739 if (arm_is_secure_below_el3(env)) {
7740 /* Access denied in secure mode. */
7741 return CP_ACCESS_TRAP;
7742 }
7743 return access_lor_ns(env, ri, isread);
7744 }
7745
7746 /*
7747 * A trivial implementation of ARMv8.1-LOR leaves all of these
7748 * registers fixed at 0, which indicates that there are zero
7749 * supported Limited Ordering regions.
7750 */
7751 static const ARMCPRegInfo lor_reginfo[] = {
7752 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7753 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7754 .access = PL1_RW, .accessfn = access_lor_other,
7755 .fgt = FGT_LORSA_EL1,
7756 .type = ARM_CP_CONST, .resetvalue = 0 },
7757 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7758 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7759 .access = PL1_RW, .accessfn = access_lor_other,
7760 .fgt = FGT_LOREA_EL1,
7761 .type = ARM_CP_CONST, .resetvalue = 0 },
7762 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7763 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7764 .access = PL1_RW, .accessfn = access_lor_other,
7765 .fgt = FGT_LORN_EL1,
7766 .type = ARM_CP_CONST, .resetvalue = 0 },
7767 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7768 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7769 .access = PL1_RW, .accessfn = access_lor_other,
7770 .fgt = FGT_LORC_EL1,
7771 .type = ARM_CP_CONST, .resetvalue = 0 },
7772 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7773 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7774 .access = PL1_R, .accessfn = access_lor_ns,
7775 .fgt = FGT_LORID_EL1,
7776 .type = ARM_CP_CONST, .resetvalue = 0 },
7777 };
7778
7779 #ifdef TARGET_AARCH64
access_pauth(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7780 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7781 bool isread)
7782 {
7783 int el = arm_current_el(env);
7784
7785 if (el < 2 &&
7786 arm_is_el2_enabled(env) &&
7787 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7788 return CP_ACCESS_TRAP_EL2;
7789 }
7790 if (el < 3 &&
7791 arm_feature(env, ARM_FEATURE_EL3) &&
7792 !(env->cp15.scr_el3 & SCR_APK)) {
7793 return CP_ACCESS_TRAP_EL3;
7794 }
7795 return CP_ACCESS_OK;
7796 }
7797
7798 static const ARMCPRegInfo pauth_reginfo[] = {
7799 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7800 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7801 .access = PL1_RW, .accessfn = access_pauth,
7802 .fgt = FGT_APDAKEY,
7803 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7804 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7805 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7806 .access = PL1_RW, .accessfn = access_pauth,
7807 .fgt = FGT_APDAKEY,
7808 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7809 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7810 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7811 .access = PL1_RW, .accessfn = access_pauth,
7812 .fgt = FGT_APDBKEY,
7813 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7814 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7815 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7816 .access = PL1_RW, .accessfn = access_pauth,
7817 .fgt = FGT_APDBKEY,
7818 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7819 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7820 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7821 .access = PL1_RW, .accessfn = access_pauth,
7822 .fgt = FGT_APGAKEY,
7823 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7824 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7825 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7826 .access = PL1_RW, .accessfn = access_pauth,
7827 .fgt = FGT_APGAKEY,
7828 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7829 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7830 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7831 .access = PL1_RW, .accessfn = access_pauth,
7832 .fgt = FGT_APIAKEY,
7833 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7834 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7835 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7836 .access = PL1_RW, .accessfn = access_pauth,
7837 .fgt = FGT_APIAKEY,
7838 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7839 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7840 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7841 .access = PL1_RW, .accessfn = access_pauth,
7842 .fgt = FGT_APIBKEY,
7843 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7844 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7845 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7846 .access = PL1_RW, .accessfn = access_pauth,
7847 .fgt = FGT_APIBKEY,
7848 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7849 };
7850
7851 static const ARMCPRegInfo tlbirange_reginfo[] = {
7852 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7853 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7854 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7855 .fgt = FGT_TLBIRVAE1IS,
7856 .writefn = tlbi_aa64_rvae1is_write },
7857 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7858 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7859 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7860 .fgt = FGT_TLBIRVAAE1IS,
7861 .writefn = tlbi_aa64_rvae1is_write },
7862 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7863 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7864 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7865 .fgt = FGT_TLBIRVALE1IS,
7866 .writefn = tlbi_aa64_rvae1is_write },
7867 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7868 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7869 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7870 .fgt = FGT_TLBIRVAALE1IS,
7871 .writefn = tlbi_aa64_rvae1is_write },
7872 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7873 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7874 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7875 .fgt = FGT_TLBIRVAE1OS,
7876 .writefn = tlbi_aa64_rvae1is_write },
7877 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7878 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7879 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7880 .fgt = FGT_TLBIRVAAE1OS,
7881 .writefn = tlbi_aa64_rvae1is_write },
7882 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7884 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7885 .fgt = FGT_TLBIRVALE1OS,
7886 .writefn = tlbi_aa64_rvae1is_write },
7887 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7888 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7889 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7890 .fgt = FGT_TLBIRVAALE1OS,
7891 .writefn = tlbi_aa64_rvae1is_write },
7892 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7893 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7894 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7895 .fgt = FGT_TLBIRVAE1,
7896 .writefn = tlbi_aa64_rvae1_write },
7897 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7898 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7899 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7900 .fgt = FGT_TLBIRVAAE1,
7901 .writefn = tlbi_aa64_rvae1_write },
7902 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7903 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7904 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7905 .fgt = FGT_TLBIRVALE1,
7906 .writefn = tlbi_aa64_rvae1_write },
7907 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7908 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7909 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7910 .fgt = FGT_TLBIRVAALE1,
7911 .writefn = tlbi_aa64_rvae1_write },
7912 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7913 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7914 .access = PL2_W, .type = ARM_CP_NO_RAW,
7915 .writefn = tlbi_aa64_ripas2e1is_write },
7916 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7917 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7918 .access = PL2_W, .type = ARM_CP_NO_RAW,
7919 .writefn = tlbi_aa64_ripas2e1is_write },
7920 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7921 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7922 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7923 .writefn = tlbi_aa64_rvae2is_write },
7924 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7925 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7926 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7927 .writefn = tlbi_aa64_rvae2is_write },
7928 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7929 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7930 .access = PL2_W, .type = ARM_CP_NO_RAW,
7931 .writefn = tlbi_aa64_ripas2e1_write },
7932 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7933 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7934 .access = PL2_W, .type = ARM_CP_NO_RAW,
7935 .writefn = tlbi_aa64_ripas2e1_write },
7936 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7937 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7938 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7939 .writefn = tlbi_aa64_rvae2is_write },
7940 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7941 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7942 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7943 .writefn = tlbi_aa64_rvae2is_write },
7944 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7945 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7946 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7947 .writefn = tlbi_aa64_rvae2_write },
7948 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7949 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7950 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7951 .writefn = tlbi_aa64_rvae2_write },
7952 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7953 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7954 .access = PL3_W, .type = ARM_CP_NO_RAW,
7955 .writefn = tlbi_aa64_rvae3is_write },
7956 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7957 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7958 .access = PL3_W, .type = ARM_CP_NO_RAW,
7959 .writefn = tlbi_aa64_rvae3is_write },
7960 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7961 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7962 .access = PL3_W, .type = ARM_CP_NO_RAW,
7963 .writefn = tlbi_aa64_rvae3is_write },
7964 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7965 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7966 .access = PL3_W, .type = ARM_CP_NO_RAW,
7967 .writefn = tlbi_aa64_rvae3is_write },
7968 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7969 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7970 .access = PL3_W, .type = ARM_CP_NO_RAW,
7971 .writefn = tlbi_aa64_rvae3_write },
7972 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7973 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7974 .access = PL3_W, .type = ARM_CP_NO_RAW,
7975 .writefn = tlbi_aa64_rvae3_write },
7976 };
7977
7978 static const ARMCPRegInfo tlbios_reginfo[] = {
7979 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7980 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7981 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7982 .fgt = FGT_TLBIVMALLE1OS,
7983 .writefn = tlbi_aa64_vmalle1is_write },
7984 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7985 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7986 .fgt = FGT_TLBIVAE1OS,
7987 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7988 .writefn = tlbi_aa64_vae1is_write },
7989 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7990 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7991 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7992 .fgt = FGT_TLBIASIDE1OS,
7993 .writefn = tlbi_aa64_vmalle1is_write },
7994 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7995 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7996 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7997 .fgt = FGT_TLBIVAAE1OS,
7998 .writefn = tlbi_aa64_vae1is_write },
7999 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
8000 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
8001 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
8002 .fgt = FGT_TLBIVALE1OS,
8003 .writefn = tlbi_aa64_vae1is_write },
8004 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
8005 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
8006 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
8007 .fgt = FGT_TLBIVAALE1OS,
8008 .writefn = tlbi_aa64_vae1is_write },
8009 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
8010 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
8011 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8012 .writefn = tlbi_aa64_alle2is_write },
8013 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
8014 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
8015 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8016 .writefn = tlbi_aa64_vae2is_write },
8017 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
8018 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
8019 .access = PL2_W, .type = ARM_CP_NO_RAW,
8020 .writefn = tlbi_aa64_alle1is_write },
8021 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
8022 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
8023 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8024 .writefn = tlbi_aa64_vae2is_write },
8025 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
8026 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
8027 .access = PL2_W, .type = ARM_CP_NO_RAW,
8028 .writefn = tlbi_aa64_alle1is_write },
8029 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
8030 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
8031 .access = PL2_W, .type = ARM_CP_NOP },
8032 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
8033 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
8034 .access = PL2_W, .type = ARM_CP_NOP },
8035 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
8036 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
8037 .access = PL2_W, .type = ARM_CP_NOP },
8038 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
8039 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
8040 .access = PL2_W, .type = ARM_CP_NOP },
8041 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
8042 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
8043 .access = PL3_W, .type = ARM_CP_NO_RAW,
8044 .writefn = tlbi_aa64_alle3is_write },
8045 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
8046 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
8047 .access = PL3_W, .type = ARM_CP_NO_RAW,
8048 .writefn = tlbi_aa64_vae3is_write },
8049 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
8050 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
8051 .access = PL3_W, .type = ARM_CP_NO_RAW,
8052 .writefn = tlbi_aa64_vae3is_write },
8053 };
8054
rndr_readfn(CPUARMState * env,const ARMCPRegInfo * ri)8055 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
8056 {
8057 Error *err = NULL;
8058 uint64_t ret;
8059
8060 /* Success sets NZCV = 0000. */
8061 env->NF = env->CF = env->VF = 0, env->ZF = 1;
8062
8063 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
8064 /*
8065 * ??? Failed, for unknown reasons in the crypto subsystem.
8066 * The best we can do is log the reason and return the
8067 * timed-out indication to the guest. There is no reason
8068 * we know to expect this failure to be transitory, so the
8069 * guest may well hang retrying the operation.
8070 */
8071 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
8072 ri->name, error_get_pretty(err));
8073 error_free(err);
8074
8075 env->ZF = 0; /* NZCF = 0100 */
8076 return 0;
8077 }
8078 return ret;
8079 }
8080
8081 /* We do not support re-seeding, so the two registers operate the same. */
8082 static const ARMCPRegInfo rndr_reginfo[] = {
8083 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
8084 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
8085 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
8086 .access = PL0_R, .readfn = rndr_readfn },
8087 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
8088 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
8089 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
8090 .access = PL0_R, .readfn = rndr_readfn },
8091 };
8092
dccvap_writefn(CPUARMState * env,const ARMCPRegInfo * opaque,uint64_t value)8093 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
8094 uint64_t value)
8095 {
8096 #ifdef CONFIG_TCG
8097 ARMCPU *cpu = env_archcpu(env);
8098 /* CTR_EL0 System register -> DminLine, bits [19:16] */
8099 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
8100 uint64_t vaddr_in = (uint64_t) value;
8101 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
8102 void *haddr;
8103 int mem_idx = arm_env_mmu_index(env);
8104
8105 /* This won't be crossing page boundaries */
8106 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
8107 if (haddr) {
8108 #ifndef CONFIG_USER_ONLY
8109
8110 ram_addr_t offset;
8111 MemoryRegion *mr;
8112
8113 /* RCU lock is already being held */
8114 mr = memory_region_from_host(haddr, &offset);
8115
8116 if (mr) {
8117 memory_region_writeback(mr, offset, dline_size);
8118 }
8119 #endif /*CONFIG_USER_ONLY*/
8120 }
8121 #else
8122 /* Handled by hardware accelerator. */
8123 g_assert_not_reached();
8124 #endif /* CONFIG_TCG */
8125 }
8126
8127 static const ARMCPRegInfo dcpop_reg[] = {
8128 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
8129 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
8130 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
8131 .fgt = FGT_DCCVAP,
8132 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
8133 };
8134
8135 static const ARMCPRegInfo dcpodp_reg[] = {
8136 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
8137 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
8138 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
8139 .fgt = FGT_DCCVADP,
8140 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
8141 };
8142
access_aa64_tid5(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8143 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
8144 bool isread)
8145 {
8146 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
8147 return CP_ACCESS_TRAP_EL2;
8148 }
8149
8150 return CP_ACCESS_OK;
8151 }
8152
access_mte(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8153 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
8154 bool isread)
8155 {
8156 int el = arm_current_el(env);
8157 if (el < 2 && arm_is_el2_enabled(env)) {
8158 uint64_t hcr = arm_hcr_el2_eff(env);
8159 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8160 return CP_ACCESS_TRAP_EL2;
8161 }
8162 }
8163 if (el < 3 &&
8164 arm_feature(env, ARM_FEATURE_EL3) &&
8165 !(env->cp15.scr_el3 & SCR_ATA)) {
8166 return CP_ACCESS_TRAP_EL3;
8167 }
8168 return CP_ACCESS_OK;
8169 }
8170
access_tfsr_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8171 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
8172 bool isread)
8173 {
8174 CPAccessResult nv1 = access_nv1(env, ri, isread);
8175
8176 if (nv1 != CP_ACCESS_OK) {
8177 return nv1;
8178 }
8179 return access_mte(env, ri, isread);
8180 }
8181
access_tfsr_el2(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8182 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
8183 bool isread)
8184 {
8185 /*
8186 * TFSR_EL2: similar to generic access_mte(), but we need to
8187 * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
8188 * if NV2 is enabled then we will redirect this to TFSR_EL1
8189 * after doing the HCR and SCR ATA traps; otherwise this will
8190 * be a trap to EL2 and the HCR/SCR traps do not apply.
8191 */
8192 int el = arm_current_el(env);
8193
8194 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
8195 return CP_ACCESS_OK;
8196 }
8197 if (el < 2 && arm_is_el2_enabled(env)) {
8198 uint64_t hcr = arm_hcr_el2_eff(env);
8199 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8200 return CP_ACCESS_TRAP_EL2;
8201 }
8202 }
8203 if (el < 3 &&
8204 arm_feature(env, ARM_FEATURE_EL3) &&
8205 !(env->cp15.scr_el3 & SCR_ATA)) {
8206 return CP_ACCESS_TRAP_EL3;
8207 }
8208 return CP_ACCESS_OK;
8209 }
8210
tco_read(CPUARMState * env,const ARMCPRegInfo * ri)8211 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
8212 {
8213 return env->pstate & PSTATE_TCO;
8214 }
8215
tco_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)8216 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
8217 {
8218 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
8219 }
8220
8221 static const ARMCPRegInfo mte_reginfo[] = {
8222 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
8223 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
8224 .access = PL1_RW, .accessfn = access_mte,
8225 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
8226 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
8227 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
8228 .access = PL1_RW, .accessfn = access_tfsr_el1,
8229 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
8230 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
8231 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
8232 .type = ARM_CP_NV2_REDIRECT,
8233 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
8234 .access = PL2_RW, .accessfn = access_tfsr_el2,
8235 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
8236 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
8237 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
8238 .access = PL3_RW,
8239 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
8240 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
8241 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
8242 .access = PL1_RW, .accessfn = access_mte,
8243 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
8244 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
8245 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
8246 .access = PL1_RW, .accessfn = access_mte,
8247 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
8248 { .name = "TCO", .state = ARM_CP_STATE_AA64,
8249 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8250 .type = ARM_CP_NO_RAW,
8251 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
8252 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
8253 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
8254 .type = ARM_CP_NOP, .access = PL1_W,
8255 .fgt = FGT_DCIVAC,
8256 .accessfn = aa64_cacheop_poc_access },
8257 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
8258 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
8259 .fgt = FGT_DCISW,
8260 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8261 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
8262 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
8263 .type = ARM_CP_NOP, .access = PL1_W,
8264 .fgt = FGT_DCIVAC,
8265 .accessfn = aa64_cacheop_poc_access },
8266 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
8267 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
8268 .fgt = FGT_DCISW,
8269 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8270 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
8271 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
8272 .fgt = FGT_DCCSW,
8273 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8274 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
8275 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
8276 .fgt = FGT_DCCSW,
8277 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8278 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
8279 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
8280 .fgt = FGT_DCCISW,
8281 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8282 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
8283 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
8284 .fgt = FGT_DCCISW,
8285 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8286 };
8287
8288 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
8289 { .name = "TCO", .state = ARM_CP_STATE_AA64,
8290 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8291 .type = ARM_CP_CONST, .access = PL0_RW, },
8292 };
8293
8294 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
8295 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
8296 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
8297 .type = ARM_CP_NOP, .access = PL0_W,
8298 .fgt = FGT_DCCVAC,
8299 .accessfn = aa64_cacheop_poc_access },
8300 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
8301 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
8302 .type = ARM_CP_NOP, .access = PL0_W,
8303 .fgt = FGT_DCCVAC,
8304 .accessfn = aa64_cacheop_poc_access },
8305 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
8306 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
8307 .type = ARM_CP_NOP, .access = PL0_W,
8308 .fgt = FGT_DCCVAP,
8309 .accessfn = aa64_cacheop_poc_access },
8310 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
8311 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
8312 .type = ARM_CP_NOP, .access = PL0_W,
8313 .fgt = FGT_DCCVAP,
8314 .accessfn = aa64_cacheop_poc_access },
8315 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
8316 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
8317 .type = ARM_CP_NOP, .access = PL0_W,
8318 .fgt = FGT_DCCVADP,
8319 .accessfn = aa64_cacheop_poc_access },
8320 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
8321 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
8322 .type = ARM_CP_NOP, .access = PL0_W,
8323 .fgt = FGT_DCCVADP,
8324 .accessfn = aa64_cacheop_poc_access },
8325 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
8326 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
8327 .type = ARM_CP_NOP, .access = PL0_W,
8328 .fgt = FGT_DCCIVAC,
8329 .accessfn = aa64_cacheop_poc_access },
8330 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
8331 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
8332 .type = ARM_CP_NOP, .access = PL0_W,
8333 .fgt = FGT_DCCIVAC,
8334 .accessfn = aa64_cacheop_poc_access },
8335 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
8336 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
8337 .access = PL0_W, .type = ARM_CP_DC_GVA,
8338 #ifndef CONFIG_USER_ONLY
8339 /* Avoid overhead of an access check that always passes in user-mode */
8340 .accessfn = aa64_zva_access,
8341 .fgt = FGT_DCZVA,
8342 #endif
8343 },
8344 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
8345 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
8346 .access = PL0_W, .type = ARM_CP_DC_GZVA,
8347 #ifndef CONFIG_USER_ONLY
8348 /* Avoid overhead of an access check that always passes in user-mode */
8349 .accessfn = aa64_zva_access,
8350 .fgt = FGT_DCZVA,
8351 #endif
8352 },
8353 };
8354
access_scxtnum(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8355 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
8356 bool isread)
8357 {
8358 uint64_t hcr = arm_hcr_el2_eff(env);
8359 int el = arm_current_el(env);
8360
8361 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
8362 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
8363 if (hcr & HCR_TGE) {
8364 return CP_ACCESS_TRAP_EL2;
8365 }
8366 return CP_ACCESS_TRAP;
8367 }
8368 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
8369 return CP_ACCESS_TRAP_EL2;
8370 }
8371 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
8372 return CP_ACCESS_TRAP_EL2;
8373 }
8374 if (el < 3
8375 && arm_feature(env, ARM_FEATURE_EL3)
8376 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
8377 return CP_ACCESS_TRAP_EL3;
8378 }
8379 return CP_ACCESS_OK;
8380 }
8381
access_scxtnum_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8382 static CPAccessResult access_scxtnum_el1(CPUARMState *env,
8383 const ARMCPRegInfo *ri,
8384 bool isread)
8385 {
8386 CPAccessResult nv1 = access_nv1(env, ri, isread);
8387
8388 if (nv1 != CP_ACCESS_OK) {
8389 return nv1;
8390 }
8391 return access_scxtnum(env, ri, isread);
8392 }
8393
8394 static const ARMCPRegInfo scxtnum_reginfo[] = {
8395 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
8396 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
8397 .access = PL0_RW, .accessfn = access_scxtnum,
8398 .fgt = FGT_SCXTNUM_EL0,
8399 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
8400 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
8401 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
8402 .access = PL1_RW, .accessfn = access_scxtnum_el1,
8403 .fgt = FGT_SCXTNUM_EL1,
8404 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
8405 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
8406 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
8407 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
8408 .access = PL2_RW, .accessfn = access_scxtnum,
8409 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
8410 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
8411 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
8412 .access = PL3_RW,
8413 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
8414 };
8415
access_fgt(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8416 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
8417 bool isread)
8418 {
8419 if (arm_current_el(env) == 2 &&
8420 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
8421 return CP_ACCESS_TRAP_EL3;
8422 }
8423 return CP_ACCESS_OK;
8424 }
8425
8426 static const ARMCPRegInfo fgt_reginfo[] = {
8427 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8428 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
8429 .nv2_redirect_offset = 0x1b8,
8430 .access = PL2_RW, .accessfn = access_fgt,
8431 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
8432 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8433 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
8434 .nv2_redirect_offset = 0x1c0,
8435 .access = PL2_RW, .accessfn = access_fgt,
8436 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
8437 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8438 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
8439 .nv2_redirect_offset = 0x1d0,
8440 .access = PL2_RW, .accessfn = access_fgt,
8441 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
8442 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8443 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
8444 .nv2_redirect_offset = 0x1d8,
8445 .access = PL2_RW, .accessfn = access_fgt,
8446 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
8447 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
8448 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
8449 .nv2_redirect_offset = 0x1c8,
8450 .access = PL2_RW, .accessfn = access_fgt,
8451 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
8452 };
8453
vncr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)8454 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
8455 uint64_t value)
8456 {
8457 /*
8458 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
8459 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
8460 * about the RESS bits at the top -- we choose the "generate an EL2
8461 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
8462 * the ptw.c code detect the resulting invalid address).
8463 */
8464 env->cp15.vncr_el2 = value & ~0xfffULL;
8465 }
8466
8467 static const ARMCPRegInfo nv2_reginfo[] = {
8468 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
8469 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
8470 .access = PL2_RW,
8471 .writefn = vncr_write,
8472 .nv2_redirect_offset = 0xb0,
8473 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
8474 };
8475
8476 #endif /* TARGET_AARCH64 */
8477
access_predinv(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8478 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
8479 bool isread)
8480 {
8481 int el = arm_current_el(env);
8482
8483 if (el == 0) {
8484 uint64_t sctlr = arm_sctlr(env, el);
8485 if (!(sctlr & SCTLR_EnRCTX)) {
8486 return CP_ACCESS_TRAP;
8487 }
8488 } else if (el == 1) {
8489 uint64_t hcr = arm_hcr_el2_eff(env);
8490 if (hcr & HCR_NV) {
8491 return CP_ACCESS_TRAP_EL2;
8492 }
8493 }
8494 return CP_ACCESS_OK;
8495 }
8496
8497 static const ARMCPRegInfo predinv_reginfo[] = {
8498 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
8499 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
8500 .fgt = FGT_CFPRCTX,
8501 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8502 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
8503 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
8504 .fgt = FGT_DVPRCTX,
8505 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8506 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
8507 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
8508 .fgt = FGT_CPPRCTX,
8509 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8510 /*
8511 * Note the AArch32 opcodes have a different OPC1.
8512 */
8513 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
8514 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
8515 .fgt = FGT_CFPRCTX,
8516 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8517 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
8518 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
8519 .fgt = FGT_DVPRCTX,
8520 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8521 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
8522 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
8523 .fgt = FGT_CPPRCTX,
8524 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8525 };
8526
ccsidr2_read(CPUARMState * env,const ARMCPRegInfo * ri)8527 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8528 {
8529 /* Read the high 32 bits of the current CCSIDR */
8530 return extract64(ccsidr_read(env, ri), 32, 32);
8531 }
8532
8533 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8534 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8535 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8536 .access = PL1_R,
8537 .accessfn = access_tid4,
8538 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8539 };
8540
access_aa64_tid3(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8541 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8542 bool isread)
8543 {
8544 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8545 return CP_ACCESS_TRAP_EL2;
8546 }
8547
8548 return CP_ACCESS_OK;
8549 }
8550
access_aa32_tid3(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8551 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8552 bool isread)
8553 {
8554 if (arm_feature(env, ARM_FEATURE_V8)) {
8555 return access_aa64_tid3(env, ri, isread);
8556 }
8557
8558 return CP_ACCESS_OK;
8559 }
8560
access_jazelle(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8561 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8562 bool isread)
8563 {
8564 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8565 return CP_ACCESS_TRAP_EL2;
8566 }
8567
8568 return CP_ACCESS_OK;
8569 }
8570
access_joscr_jmcr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8571 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8572 const ARMCPRegInfo *ri, bool isread)
8573 {
8574 /*
8575 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8576 * in v7A, not in v8A.
8577 */
8578 if (!arm_feature(env, ARM_FEATURE_V8) &&
8579 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8580 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8581 return CP_ACCESS_TRAP_EL2;
8582 }
8583 return CP_ACCESS_OK;
8584 }
8585
8586 static const ARMCPRegInfo jazelle_regs[] = {
8587 { .name = "JIDR",
8588 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8589 .access = PL1_R, .accessfn = access_jazelle,
8590 .type = ARM_CP_CONST, .resetvalue = 0 },
8591 { .name = "JOSCR",
8592 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8593 .accessfn = access_joscr_jmcr,
8594 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8595 { .name = "JMCR",
8596 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8597 .accessfn = access_joscr_jmcr,
8598 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8599 };
8600
8601 static const ARMCPRegInfo contextidr_el2 = {
8602 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8603 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8604 .access = PL2_RW,
8605 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8606 };
8607
8608 static const ARMCPRegInfo vhe_reginfo[] = {
8609 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8610 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8611 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8612 .raw_writefn = raw_write,
8613 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8614 #ifndef CONFIG_USER_ONLY
8615 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8616 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8617 .fieldoffset =
8618 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8619 .type = ARM_CP_IO, .access = PL2_RW,
8620 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8621 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8622 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8623 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8624 .resetfn = gt_hv_timer_reset,
8625 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8626 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8627 .type = ARM_CP_IO,
8628 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8629 .access = PL2_RW,
8630 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8631 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8632 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8633 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8634 .type = ARM_CP_IO | ARM_CP_ALIAS,
8635 .access = PL2_RW, .accessfn = access_el1nvpct,
8636 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
8637 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8638 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8639 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8640 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8641 .type = ARM_CP_IO | ARM_CP_ALIAS,
8642 .access = PL2_RW, .accessfn = access_el1nvvct,
8643 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
8644 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8645 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8646 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8647 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8648 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8649 .access = PL2_RW, .accessfn = e2h_access,
8650 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8651 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8652 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8653 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8654 .access = PL2_RW, .accessfn = e2h_access,
8655 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8656 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8657 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8658 .type = ARM_CP_IO | ARM_CP_ALIAS,
8659 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8660 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
8661 .access = PL2_RW, .accessfn = access_el1nvpct,
8662 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8663 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8664 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8665 .type = ARM_CP_IO | ARM_CP_ALIAS,
8666 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
8667 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8668 .access = PL2_RW, .accessfn = access_el1nvvct,
8669 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8670 #endif
8671 };
8672
8673 #ifndef CONFIG_USER_ONLY
8674 static const ARMCPRegInfo ats1e1_reginfo[] = {
8675 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8676 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8677 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8678 .fgt = FGT_ATS1E1RP,
8679 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8680 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8681 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8682 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8683 .fgt = FGT_ATS1E1WP,
8684 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8685 };
8686
8687 static const ARMCPRegInfo ats1cp_reginfo[] = {
8688 { .name = "ATS1CPRP",
8689 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8690 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8691 .writefn = ats_write },
8692 { .name = "ATS1CPWP",
8693 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8694 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8695 .writefn = ats_write },
8696 };
8697 #endif
8698
8699 /*
8700 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8701 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8702 * is non-zero, which is never for ARMv7, optionally in ARMv8
8703 * and mandatorily for ARMv8.2 and up.
8704 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8705 * implementation is RAZ/WI we can ignore this detail, as we
8706 * do for ACTLR.
8707 */
8708 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8709 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8710 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8711 .access = PL1_RW, .accessfn = access_tacr,
8712 .type = ARM_CP_CONST, .resetvalue = 0 },
8713 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8714 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8715 .access = PL2_RW, .type = ARM_CP_CONST,
8716 .resetvalue = 0 },
8717 };
8718
register_cp_regs_for_features(ARMCPU * cpu)8719 void register_cp_regs_for_features(ARMCPU *cpu)
8720 {
8721 /* Register all the coprocessor registers based on feature bits */
8722 CPUARMState *env = &cpu->env;
8723 if (arm_feature(env, ARM_FEATURE_M)) {
8724 /* M profile has no coprocessor registers */
8725 return;
8726 }
8727
8728 define_arm_cp_regs(cpu, cp_reginfo);
8729 if (!arm_feature(env, ARM_FEATURE_V8)) {
8730 /*
8731 * Must go early as it is full of wildcards that may be
8732 * overridden by later definitions.
8733 */
8734 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8735 }
8736
8737 if (arm_feature(env, ARM_FEATURE_V6)) {
8738 /* The ID registers all have impdef reset values */
8739 ARMCPRegInfo v6_idregs[] = {
8740 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8741 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8742 .access = PL1_R, .type = ARM_CP_CONST,
8743 .accessfn = access_aa32_tid3,
8744 .resetvalue = cpu->isar.id_pfr0 },
8745 /*
8746 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8747 * the value of the GIC field until after we define these regs.
8748 */
8749 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8751 .access = PL1_R, .type = ARM_CP_NO_RAW,
8752 .accessfn = access_aa32_tid3,
8753 #ifdef CONFIG_USER_ONLY
8754 .type = ARM_CP_CONST,
8755 .resetvalue = cpu->isar.id_pfr1,
8756 #else
8757 .type = ARM_CP_NO_RAW,
8758 .accessfn = access_aa32_tid3,
8759 .readfn = id_pfr1_read,
8760 .writefn = arm_cp_write_ignore
8761 #endif
8762 },
8763 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8765 .access = PL1_R, .type = ARM_CP_CONST,
8766 .accessfn = access_aa32_tid3,
8767 .resetvalue = cpu->isar.id_dfr0 },
8768 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8769 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8770 .access = PL1_R, .type = ARM_CP_CONST,
8771 .accessfn = access_aa32_tid3,
8772 .resetvalue = cpu->id_afr0 },
8773 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8774 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8775 .access = PL1_R, .type = ARM_CP_CONST,
8776 .accessfn = access_aa32_tid3,
8777 .resetvalue = cpu->isar.id_mmfr0 },
8778 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8780 .access = PL1_R, .type = ARM_CP_CONST,
8781 .accessfn = access_aa32_tid3,
8782 .resetvalue = cpu->isar.id_mmfr1 },
8783 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8785 .access = PL1_R, .type = ARM_CP_CONST,
8786 .accessfn = access_aa32_tid3,
8787 .resetvalue = cpu->isar.id_mmfr2 },
8788 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8790 .access = PL1_R, .type = ARM_CP_CONST,
8791 .accessfn = access_aa32_tid3,
8792 .resetvalue = cpu->isar.id_mmfr3 },
8793 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8795 .access = PL1_R, .type = ARM_CP_CONST,
8796 .accessfn = access_aa32_tid3,
8797 .resetvalue = cpu->isar.id_isar0 },
8798 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8800 .access = PL1_R, .type = ARM_CP_CONST,
8801 .accessfn = access_aa32_tid3,
8802 .resetvalue = cpu->isar.id_isar1 },
8803 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8805 .access = PL1_R, .type = ARM_CP_CONST,
8806 .accessfn = access_aa32_tid3,
8807 .resetvalue = cpu->isar.id_isar2 },
8808 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8809 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8810 .access = PL1_R, .type = ARM_CP_CONST,
8811 .accessfn = access_aa32_tid3,
8812 .resetvalue = cpu->isar.id_isar3 },
8813 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8814 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8815 .access = PL1_R, .type = ARM_CP_CONST,
8816 .accessfn = access_aa32_tid3,
8817 .resetvalue = cpu->isar.id_isar4 },
8818 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8819 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8820 .access = PL1_R, .type = ARM_CP_CONST,
8821 .accessfn = access_aa32_tid3,
8822 .resetvalue = cpu->isar.id_isar5 },
8823 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8825 .access = PL1_R, .type = ARM_CP_CONST,
8826 .accessfn = access_aa32_tid3,
8827 .resetvalue = cpu->isar.id_mmfr4 },
8828 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8829 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8830 .access = PL1_R, .type = ARM_CP_CONST,
8831 .accessfn = access_aa32_tid3,
8832 .resetvalue = cpu->isar.id_isar6 },
8833 };
8834 define_arm_cp_regs(cpu, v6_idregs);
8835 define_arm_cp_regs(cpu, v6_cp_reginfo);
8836 } else {
8837 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8838 }
8839 if (arm_feature(env, ARM_FEATURE_V6K)) {
8840 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8841 }
8842 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8843 !arm_feature(env, ARM_FEATURE_PMSA)) {
8844 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8845 }
8846 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8847 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8848 }
8849 if (arm_feature(env, ARM_FEATURE_V7)) {
8850 ARMCPRegInfo clidr = {
8851 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8852 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8853 .access = PL1_R, .type = ARM_CP_CONST,
8854 .accessfn = access_tid4,
8855 .fgt = FGT_CLIDR_EL1,
8856 .resetvalue = cpu->clidr
8857 };
8858 define_one_arm_cp_reg(cpu, &clidr);
8859 define_arm_cp_regs(cpu, v7_cp_reginfo);
8860 define_debug_regs(cpu);
8861 define_pmu_regs(cpu);
8862 } else {
8863 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8864 }
8865 if (arm_feature(env, ARM_FEATURE_V8)) {
8866 /*
8867 * v8 ID registers, which all have impdef reset values.
8868 * Note that within the ID register ranges the unused slots
8869 * must all RAZ, not UNDEF; future architecture versions may
8870 * define new registers here.
8871 * ID registers which are AArch64 views of the AArch32 ID registers
8872 * which already existed in v6 and v7 are handled elsewhere,
8873 * in v6_idregs[].
8874 */
8875 int i;
8876 ARMCPRegInfo v8_idregs[] = {
8877 /*
8878 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8879 * emulation because we don't know the right value for the
8880 * GIC field until after we define these regs.
8881 */
8882 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8883 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8884 .access = PL1_R,
8885 #ifdef CONFIG_USER_ONLY
8886 .type = ARM_CP_CONST,
8887 .resetvalue = cpu->isar.id_aa64pfr0
8888 #else
8889 .type = ARM_CP_NO_RAW,
8890 .accessfn = access_aa64_tid3,
8891 .readfn = id_aa64pfr0_read,
8892 .writefn = arm_cp_write_ignore
8893 #endif
8894 },
8895 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8896 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8897 .access = PL1_R, .type = ARM_CP_CONST,
8898 .accessfn = access_aa64_tid3,
8899 .resetvalue = cpu->isar.id_aa64pfr1},
8900 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8901 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8902 .access = PL1_R, .type = ARM_CP_CONST,
8903 .accessfn = access_aa64_tid3,
8904 .resetvalue = 0 },
8905 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8906 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8907 .access = PL1_R, .type = ARM_CP_CONST,
8908 .accessfn = access_aa64_tid3,
8909 .resetvalue = 0 },
8910 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8911 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8912 .access = PL1_R, .type = ARM_CP_CONST,
8913 .accessfn = access_aa64_tid3,
8914 .resetvalue = cpu->isar.id_aa64zfr0 },
8915 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8916 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8917 .access = PL1_R, .type = ARM_CP_CONST,
8918 .accessfn = access_aa64_tid3,
8919 .resetvalue = cpu->isar.id_aa64smfr0 },
8920 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8921 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8922 .access = PL1_R, .type = ARM_CP_CONST,
8923 .accessfn = access_aa64_tid3,
8924 .resetvalue = 0 },
8925 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8926 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8927 .access = PL1_R, .type = ARM_CP_CONST,
8928 .accessfn = access_aa64_tid3,
8929 .resetvalue = 0 },
8930 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8931 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8932 .access = PL1_R, .type = ARM_CP_CONST,
8933 .accessfn = access_aa64_tid3,
8934 .resetvalue = cpu->isar.id_aa64dfr0 },
8935 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8936 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8937 .access = PL1_R, .type = ARM_CP_CONST,
8938 .accessfn = access_aa64_tid3,
8939 .resetvalue = cpu->isar.id_aa64dfr1 },
8940 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8941 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8942 .access = PL1_R, .type = ARM_CP_CONST,
8943 .accessfn = access_aa64_tid3,
8944 .resetvalue = 0 },
8945 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8946 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8947 .access = PL1_R, .type = ARM_CP_CONST,
8948 .accessfn = access_aa64_tid3,
8949 .resetvalue = 0 },
8950 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8951 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8952 .access = PL1_R, .type = ARM_CP_CONST,
8953 .accessfn = access_aa64_tid3,
8954 .resetvalue = cpu->id_aa64afr0 },
8955 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8956 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8957 .access = PL1_R, .type = ARM_CP_CONST,
8958 .accessfn = access_aa64_tid3,
8959 .resetvalue = cpu->id_aa64afr1 },
8960 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8961 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8962 .access = PL1_R, .type = ARM_CP_CONST,
8963 .accessfn = access_aa64_tid3,
8964 .resetvalue = 0 },
8965 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8967 .access = PL1_R, .type = ARM_CP_CONST,
8968 .accessfn = access_aa64_tid3,
8969 .resetvalue = 0 },
8970 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8971 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8972 .access = PL1_R, .type = ARM_CP_CONST,
8973 .accessfn = access_aa64_tid3,
8974 .resetvalue = cpu->isar.id_aa64isar0 },
8975 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8976 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8977 .access = PL1_R, .type = ARM_CP_CONST,
8978 .accessfn = access_aa64_tid3,
8979 .resetvalue = cpu->isar.id_aa64isar1 },
8980 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8981 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8982 .access = PL1_R, .type = ARM_CP_CONST,
8983 .accessfn = access_aa64_tid3,
8984 .resetvalue = cpu->isar.id_aa64isar2 },
8985 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8986 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8987 .access = PL1_R, .type = ARM_CP_CONST,
8988 .accessfn = access_aa64_tid3,
8989 .resetvalue = 0 },
8990 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8991 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8992 .access = PL1_R, .type = ARM_CP_CONST,
8993 .accessfn = access_aa64_tid3,
8994 .resetvalue = 0 },
8995 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8997 .access = PL1_R, .type = ARM_CP_CONST,
8998 .accessfn = access_aa64_tid3,
8999 .resetvalue = 0 },
9000 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9001 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
9002 .access = PL1_R, .type = ARM_CP_CONST,
9003 .accessfn = access_aa64_tid3,
9004 .resetvalue = 0 },
9005 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
9007 .access = PL1_R, .type = ARM_CP_CONST,
9008 .accessfn = access_aa64_tid3,
9009 .resetvalue = 0 },
9010 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
9011 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
9012 .access = PL1_R, .type = ARM_CP_CONST,
9013 .accessfn = access_aa64_tid3,
9014 .resetvalue = cpu->isar.id_aa64mmfr0 },
9015 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
9016 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
9017 .access = PL1_R, .type = ARM_CP_CONST,
9018 .accessfn = access_aa64_tid3,
9019 .resetvalue = cpu->isar.id_aa64mmfr1 },
9020 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
9021 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
9022 .access = PL1_R, .type = ARM_CP_CONST,
9023 .accessfn = access_aa64_tid3,
9024 .resetvalue = cpu->isar.id_aa64mmfr2 },
9025 { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64,
9026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
9027 .access = PL1_R, .type = ARM_CP_CONST,
9028 .accessfn = access_aa64_tid3,
9029 .resetvalue = cpu->isar.id_aa64mmfr3 },
9030 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9031 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
9032 .access = PL1_R, .type = ARM_CP_CONST,
9033 .accessfn = access_aa64_tid3,
9034 .resetvalue = 0 },
9035 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9036 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
9037 .access = PL1_R, .type = ARM_CP_CONST,
9038 .accessfn = access_aa64_tid3,
9039 .resetvalue = 0 },
9040 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
9042 .access = PL1_R, .type = ARM_CP_CONST,
9043 .accessfn = access_aa64_tid3,
9044 .resetvalue = 0 },
9045 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
9047 .access = PL1_R, .type = ARM_CP_CONST,
9048 .accessfn = access_aa64_tid3,
9049 .resetvalue = 0 },
9050 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
9051 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
9052 .access = PL1_R, .type = ARM_CP_CONST,
9053 .accessfn = access_aa64_tid3,
9054 .resetvalue = cpu->isar.mvfr0 },
9055 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
9056 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
9057 .access = PL1_R, .type = ARM_CP_CONST,
9058 .accessfn = access_aa64_tid3,
9059 .resetvalue = cpu->isar.mvfr1 },
9060 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
9061 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
9062 .access = PL1_R, .type = ARM_CP_CONST,
9063 .accessfn = access_aa64_tid3,
9064 .resetvalue = cpu->isar.mvfr2 },
9065 /*
9066 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
9067 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
9068 * as RAZ, since it is in the "reserved for future ID
9069 * registers, RAZ" part of the AArch32 encoding space.
9070 */
9071 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
9072 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
9073 .access = PL1_R, .type = ARM_CP_CONST,
9074 .accessfn = access_aa64_tid3,
9075 .resetvalue = 0 },
9076 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
9077 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
9078 .access = PL1_R, .type = ARM_CP_CONST,
9079 .accessfn = access_aa64_tid3,
9080 .resetvalue = 0 },
9081 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
9082 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
9083 .access = PL1_R, .type = ARM_CP_CONST,
9084 .accessfn = access_aa64_tid3,
9085 .resetvalue = 0 },
9086 /*
9087 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
9088 * they're also RAZ for AArch64, and in v8 are gradually
9089 * being filled with AArch64-view-of-AArch32-ID-register
9090 * for new ID registers.
9091 */
9092 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
9093 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
9094 .access = PL1_R, .type = ARM_CP_CONST,
9095 .accessfn = access_aa64_tid3,
9096 .resetvalue = 0 },
9097 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
9098 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
9099 .access = PL1_R, .type = ARM_CP_CONST,
9100 .accessfn = access_aa64_tid3,
9101 .resetvalue = cpu->isar.id_pfr2 },
9102 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
9103 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
9104 .access = PL1_R, .type = ARM_CP_CONST,
9105 .accessfn = access_aa64_tid3,
9106 .resetvalue = cpu->isar.id_dfr1 },
9107 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
9108 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
9109 .access = PL1_R, .type = ARM_CP_CONST,
9110 .accessfn = access_aa64_tid3,
9111 .resetvalue = cpu->isar.id_mmfr5 },
9112 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
9113 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
9114 .access = PL1_R, .type = ARM_CP_CONST,
9115 .accessfn = access_aa64_tid3,
9116 .resetvalue = 0 },
9117 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
9118 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
9119 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9120 .fgt = FGT_PMCEIDN_EL0,
9121 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
9122 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
9123 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
9124 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9125 .fgt = FGT_PMCEIDN_EL0,
9126 .resetvalue = cpu->pmceid0 },
9127 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
9128 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
9129 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9130 .fgt = FGT_PMCEIDN_EL0,
9131 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
9132 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
9133 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
9134 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9135 .fgt = FGT_PMCEIDN_EL0,
9136 .resetvalue = cpu->pmceid1 },
9137 };
9138 #ifdef CONFIG_USER_ONLY
9139 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
9140 { .name = "ID_AA64PFR0_EL1",
9141 .exported_bits = R_ID_AA64PFR0_FP_MASK |
9142 R_ID_AA64PFR0_ADVSIMD_MASK |
9143 R_ID_AA64PFR0_SVE_MASK |
9144 R_ID_AA64PFR0_DIT_MASK,
9145 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
9146 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
9147 { .name = "ID_AA64PFR1_EL1",
9148 .exported_bits = R_ID_AA64PFR1_BT_MASK |
9149 R_ID_AA64PFR1_SSBS_MASK |
9150 R_ID_AA64PFR1_MTE_MASK |
9151 R_ID_AA64PFR1_SME_MASK },
9152 { .name = "ID_AA64PFR*_EL1_RESERVED",
9153 .is_glob = true },
9154 { .name = "ID_AA64ZFR0_EL1",
9155 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
9156 R_ID_AA64ZFR0_AES_MASK |
9157 R_ID_AA64ZFR0_BITPERM_MASK |
9158 R_ID_AA64ZFR0_BFLOAT16_MASK |
9159 R_ID_AA64ZFR0_B16B16_MASK |
9160 R_ID_AA64ZFR0_SHA3_MASK |
9161 R_ID_AA64ZFR0_SM4_MASK |
9162 R_ID_AA64ZFR0_I8MM_MASK |
9163 R_ID_AA64ZFR0_F32MM_MASK |
9164 R_ID_AA64ZFR0_F64MM_MASK },
9165 { .name = "ID_AA64SMFR0_EL1",
9166 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
9167 R_ID_AA64SMFR0_BI32I32_MASK |
9168 R_ID_AA64SMFR0_B16F32_MASK |
9169 R_ID_AA64SMFR0_F16F32_MASK |
9170 R_ID_AA64SMFR0_I8I32_MASK |
9171 R_ID_AA64SMFR0_F16F16_MASK |
9172 R_ID_AA64SMFR0_B16B16_MASK |
9173 R_ID_AA64SMFR0_I16I32_MASK |
9174 R_ID_AA64SMFR0_F64F64_MASK |
9175 R_ID_AA64SMFR0_I16I64_MASK |
9176 R_ID_AA64SMFR0_SMEVER_MASK |
9177 R_ID_AA64SMFR0_FA64_MASK },
9178 { .name = "ID_AA64MMFR0_EL1",
9179 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
9180 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
9181 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
9182 { .name = "ID_AA64MMFR1_EL1",
9183 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
9184 { .name = "ID_AA64MMFR2_EL1",
9185 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
9186 { .name = "ID_AA64MMFR3_EL1",
9187 .exported_bits = 0 },
9188 { .name = "ID_AA64MMFR*_EL1_RESERVED",
9189 .is_glob = true },
9190 { .name = "ID_AA64DFR0_EL1",
9191 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
9192 { .name = "ID_AA64DFR1_EL1" },
9193 { .name = "ID_AA64DFR*_EL1_RESERVED",
9194 .is_glob = true },
9195 { .name = "ID_AA64AFR*",
9196 .is_glob = true },
9197 { .name = "ID_AA64ISAR0_EL1",
9198 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
9199 R_ID_AA64ISAR0_SHA1_MASK |
9200 R_ID_AA64ISAR0_SHA2_MASK |
9201 R_ID_AA64ISAR0_CRC32_MASK |
9202 R_ID_AA64ISAR0_ATOMIC_MASK |
9203 R_ID_AA64ISAR0_RDM_MASK |
9204 R_ID_AA64ISAR0_SHA3_MASK |
9205 R_ID_AA64ISAR0_SM3_MASK |
9206 R_ID_AA64ISAR0_SM4_MASK |
9207 R_ID_AA64ISAR0_DP_MASK |
9208 R_ID_AA64ISAR0_FHM_MASK |
9209 R_ID_AA64ISAR0_TS_MASK |
9210 R_ID_AA64ISAR0_RNDR_MASK },
9211 { .name = "ID_AA64ISAR1_EL1",
9212 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
9213 R_ID_AA64ISAR1_APA_MASK |
9214 R_ID_AA64ISAR1_API_MASK |
9215 R_ID_AA64ISAR1_JSCVT_MASK |
9216 R_ID_AA64ISAR1_FCMA_MASK |
9217 R_ID_AA64ISAR1_LRCPC_MASK |
9218 R_ID_AA64ISAR1_GPA_MASK |
9219 R_ID_AA64ISAR1_GPI_MASK |
9220 R_ID_AA64ISAR1_FRINTTS_MASK |
9221 R_ID_AA64ISAR1_SB_MASK |
9222 R_ID_AA64ISAR1_BF16_MASK |
9223 R_ID_AA64ISAR1_DGH_MASK |
9224 R_ID_AA64ISAR1_I8MM_MASK },
9225 { .name = "ID_AA64ISAR2_EL1",
9226 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
9227 R_ID_AA64ISAR2_RPRES_MASK |
9228 R_ID_AA64ISAR2_GPA3_MASK |
9229 R_ID_AA64ISAR2_APA3_MASK |
9230 R_ID_AA64ISAR2_MOPS_MASK |
9231 R_ID_AA64ISAR2_BC_MASK |
9232 R_ID_AA64ISAR2_RPRFM_MASK |
9233 R_ID_AA64ISAR2_CSSC_MASK },
9234 { .name = "ID_AA64ISAR*_EL1_RESERVED",
9235 .is_glob = true },
9236 };
9237 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
9238 #endif
9239 /*
9240 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
9241 * TODO: For RMR, a write with bit 1 set should do something with
9242 * cpu_reset(). In the meantime, "the bit is strictly a request",
9243 * so we are in spec just ignoring writes.
9244 */
9245 if (!arm_feature(env, ARM_FEATURE_EL3) &&
9246 !arm_feature(env, ARM_FEATURE_EL2)) {
9247 ARMCPRegInfo el1_reset_regs[] = {
9248 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
9249 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9250 .access = PL1_R,
9251 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9252 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
9253 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9254 .access = PL1_RW, .type = ARM_CP_CONST,
9255 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
9256 };
9257 define_arm_cp_regs(cpu, el1_reset_regs);
9258 }
9259 define_arm_cp_regs(cpu, v8_idregs);
9260 define_arm_cp_regs(cpu, v8_cp_reginfo);
9261 if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
9262 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
9263 }
9264
9265 for (i = 4; i < 16; i++) {
9266 /*
9267 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
9268 * For pre-v8 cores there are RAZ patterns for these in
9269 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
9270 * v8 extends the "must RAZ" part of the ID register space
9271 * to also cover c0, 0, c{8-15}, {0-7}.
9272 * These are STATE_AA32 because in the AArch64 sysreg space
9273 * c4-c7 is where the AArch64 ID registers live (and we've
9274 * already defined those in v8_idregs[]), and c8-c15 are not
9275 * "must RAZ" for AArch64.
9276 */
9277 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
9278 ARMCPRegInfo v8_aa32_raz_idregs = {
9279 .name = name,
9280 .state = ARM_CP_STATE_AA32,
9281 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
9282 .access = PL1_R, .type = ARM_CP_CONST,
9283 .accessfn = access_aa64_tid3,
9284 .resetvalue = 0 };
9285 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
9286 }
9287 }
9288
9289 /*
9290 * Register the base EL2 cpregs.
9291 * Pre v8, these registers are implemented only as part of the
9292 * Virtualization Extensions (EL2 present). Beginning with v8,
9293 * if EL2 is missing but EL3 is enabled, mostly these become
9294 * RES0 from EL3, with some specific exceptions.
9295 */
9296 if (arm_feature(env, ARM_FEATURE_EL2)
9297 || (arm_feature(env, ARM_FEATURE_EL3)
9298 && arm_feature(env, ARM_FEATURE_V8))) {
9299 uint64_t vmpidr_def = mpidr_read_val(env);
9300 ARMCPRegInfo vpidr_regs[] = {
9301 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
9302 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9303 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9304 .resetvalue = cpu->midr,
9305 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9306 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
9307 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
9308 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9309 .access = PL2_RW, .resetvalue = cpu->midr,
9310 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9311 .nv2_redirect_offset = 0x88,
9312 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
9313 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
9314 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9315 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9316 .resetvalue = vmpidr_def,
9317 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9318 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
9319 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
9320 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9321 .access = PL2_RW, .resetvalue = vmpidr_def,
9322 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9323 .nv2_redirect_offset = 0x50,
9324 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
9325 };
9326 /*
9327 * The only field of MDCR_EL2 that has a defined architectural reset
9328 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
9329 */
9330 ARMCPRegInfo mdcr_el2 = {
9331 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
9332 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
9333 .writefn = mdcr_el2_write,
9334 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
9335 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
9336 };
9337 define_one_arm_cp_reg(cpu, &mdcr_el2);
9338 define_arm_cp_regs(cpu, vpidr_regs);
9339 define_arm_cp_regs(cpu, el2_cp_reginfo);
9340 if (arm_feature(env, ARM_FEATURE_V8)) {
9341 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
9342 }
9343 if (cpu_isar_feature(aa64_sel2, cpu)) {
9344 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
9345 }
9346 /*
9347 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
9348 * See commentary near RMR_EL1.
9349 */
9350 if (!arm_feature(env, ARM_FEATURE_EL3)) {
9351 static const ARMCPRegInfo el2_reset_regs[] = {
9352 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
9353 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
9354 .access = PL2_R,
9355 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9356 { .name = "RVBAR", .type = ARM_CP_ALIAS,
9357 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9358 .access = PL2_R,
9359 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9360 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
9361 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
9362 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9363 };
9364 define_arm_cp_regs(cpu, el2_reset_regs);
9365 }
9366 }
9367
9368 /* Register the base EL3 cpregs. */
9369 if (arm_feature(env, ARM_FEATURE_EL3)) {
9370 define_arm_cp_regs(cpu, el3_cp_reginfo);
9371 ARMCPRegInfo el3_regs[] = {
9372 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
9373 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
9374 .access = PL3_R,
9375 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
9376 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
9377 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
9378 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9379 { .name = "RMR", .state = ARM_CP_STATE_AA32,
9380 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9381 .access = PL3_RW, .type = ARM_CP_CONST,
9382 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
9383 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
9384 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
9385 .access = PL3_RW,
9386 .raw_writefn = raw_write, .writefn = sctlr_write,
9387 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
9388 .resetvalue = cpu->reset_sctlr },
9389 };
9390
9391 define_arm_cp_regs(cpu, el3_regs);
9392 }
9393 /*
9394 * The behaviour of NSACR is sufficiently various that we don't
9395 * try to describe it in a single reginfo:
9396 * if EL3 is 64 bit, then trap to EL3 from S EL1,
9397 * reads as constant 0xc00 from NS EL1 and NS EL2
9398 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
9399 * if v7 without EL3, register doesn't exist
9400 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
9401 */
9402 if (arm_feature(env, ARM_FEATURE_EL3)) {
9403 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9404 static const ARMCPRegInfo nsacr = {
9405 .name = "NSACR", .type = ARM_CP_CONST,
9406 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9407 .access = PL1_RW, .accessfn = nsacr_access,
9408 .resetvalue = 0xc00
9409 };
9410 define_one_arm_cp_reg(cpu, &nsacr);
9411 } else {
9412 static const ARMCPRegInfo nsacr = {
9413 .name = "NSACR",
9414 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9415 .access = PL3_RW | PL1_R,
9416 .resetvalue = 0,
9417 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
9418 };
9419 define_one_arm_cp_reg(cpu, &nsacr);
9420 }
9421 } else {
9422 if (arm_feature(env, ARM_FEATURE_V8)) {
9423 static const ARMCPRegInfo nsacr = {
9424 .name = "NSACR", .type = ARM_CP_CONST,
9425 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9426 .access = PL1_R,
9427 .resetvalue = 0xc00
9428 };
9429 define_one_arm_cp_reg(cpu, &nsacr);
9430 }
9431 }
9432
9433 if (arm_feature(env, ARM_FEATURE_PMSA)) {
9434 if (arm_feature(env, ARM_FEATURE_V6)) {
9435 /* PMSAv6 not implemented */
9436 assert(arm_feature(env, ARM_FEATURE_V7));
9437 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9438 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
9439 } else {
9440 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
9441 }
9442 } else {
9443 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9444 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
9445 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
9446 if (cpu_isar_feature(aa32_hpd, cpu)) {
9447 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
9448 }
9449 }
9450 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
9451 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
9452 }
9453 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
9454 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
9455 }
9456 if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
9457 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo);
9458 }
9459 #ifndef CONFIG_USER_ONLY
9460 if (cpu_isar_feature(aa64_ecv, cpu)) {
9461 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo);
9462 }
9463 #endif
9464 if (arm_feature(env, ARM_FEATURE_VAPA)) {
9465 ARMCPRegInfo vapa_cp_reginfo[] = {
9466 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
9467 .access = PL1_RW, .resetvalue = 0,
9468 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
9469 offsetoflow32(CPUARMState, cp15.par_ns) },
9470 .writefn = par_write},
9471 #ifndef CONFIG_USER_ONLY
9472 /* This underdecoding is safe because the reginfo is NO_RAW. */
9473 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
9474 .access = PL1_W, .accessfn = ats_access,
9475 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
9476 #endif
9477 };
9478
9479 /*
9480 * When LPAE exists this 32-bit PAR register is an alias of the
9481 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
9482 */
9483 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9484 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
9485 }
9486 define_arm_cp_regs(cpu, vapa_cp_reginfo);
9487 }
9488 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
9489 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
9490 }
9491 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
9492 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
9493 }
9494 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
9495 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
9496 }
9497 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
9498 define_arm_cp_regs(cpu, omap_cp_reginfo);
9499 }
9500 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
9501 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
9502 }
9503 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9504 define_arm_cp_regs(cpu, xscale_cp_reginfo);
9505 }
9506 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
9507 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
9508 }
9509 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9510 define_arm_cp_regs(cpu, lpae_cp_reginfo);
9511 }
9512 if (cpu_isar_feature(aa32_jazelle, cpu)) {
9513 define_arm_cp_regs(cpu, jazelle_regs);
9514 }
9515 /*
9516 * Slightly awkwardly, the OMAP and StrongARM cores need all of
9517 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
9518 * be read-only (ie write causes UNDEF exception).
9519 */
9520 {
9521 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9522 /*
9523 * Pre-v8 MIDR space.
9524 * Note that the MIDR isn't a simple constant register because
9525 * of the TI925 behaviour where writes to another register can
9526 * cause the MIDR value to change.
9527 *
9528 * Unimplemented registers in the c15 0 0 0 space default to
9529 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
9530 * and friends override accordingly.
9531 */
9532 { .name = "MIDR",
9533 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
9534 .access = PL1_R, .resetvalue = cpu->midr,
9535 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
9536 .readfn = midr_read,
9537 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9538 .type = ARM_CP_OVERRIDE },
9539 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
9540 { .name = "DUMMY",
9541 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
9542 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9543 { .name = "DUMMY",
9544 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9545 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9546 { .name = "DUMMY",
9547 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9548 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9549 { .name = "DUMMY",
9550 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9551 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9552 { .name = "DUMMY",
9553 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9554 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9555 };
9556 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9557 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9558 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9559 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9560 .fgt = FGT_MIDR_EL1,
9561 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9562 .readfn = midr_read },
9563 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9564 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9565 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9566 .access = PL1_R, .resetvalue = cpu->midr },
9567 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9568 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9569 .access = PL1_R,
9570 .accessfn = access_aa64_tid1,
9571 .fgt = FGT_REVIDR_EL1,
9572 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9573 };
9574 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9575 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9576 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9577 .access = PL1_R, .resetvalue = cpu->midr
9578 };
9579 ARMCPRegInfo id_cp_reginfo[] = {
9580 /* These are common to v8 and pre-v8 */
9581 { .name = "CTR",
9582 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9583 .access = PL1_R, .accessfn = ctr_el0_access,
9584 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9585 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9586 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9587 .access = PL0_R, .accessfn = ctr_el0_access,
9588 .fgt = FGT_CTR_EL0,
9589 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9590 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9591 { .name = "TCMTR",
9592 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9593 .access = PL1_R,
9594 .accessfn = access_aa32_tid1,
9595 .type = ARM_CP_CONST, .resetvalue = 0 },
9596 };
9597 /* TLBTR is specific to VMSA */
9598 ARMCPRegInfo id_tlbtr_reginfo = {
9599 .name = "TLBTR",
9600 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9601 .access = PL1_R,
9602 .accessfn = access_aa32_tid1,
9603 .type = ARM_CP_CONST, .resetvalue = 0,
9604 };
9605 /* MPUIR is specific to PMSA V6+ */
9606 ARMCPRegInfo id_mpuir_reginfo = {
9607 .name = "MPUIR",
9608 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9609 .access = PL1_R, .type = ARM_CP_CONST,
9610 .resetvalue = cpu->pmsav7_dregion << 8
9611 };
9612 /* HMPUIR is specific to PMSA V8 */
9613 ARMCPRegInfo id_hmpuir_reginfo = {
9614 .name = "HMPUIR",
9615 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9616 .access = PL2_R, .type = ARM_CP_CONST,
9617 .resetvalue = cpu->pmsav8r_hdregion
9618 };
9619 static const ARMCPRegInfo crn0_wi_reginfo = {
9620 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9621 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9622 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9623 };
9624 #ifdef CONFIG_USER_ONLY
9625 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9626 { .name = "MIDR_EL1",
9627 .exported_bits = R_MIDR_EL1_REVISION_MASK |
9628 R_MIDR_EL1_PARTNUM_MASK |
9629 R_MIDR_EL1_ARCHITECTURE_MASK |
9630 R_MIDR_EL1_VARIANT_MASK |
9631 R_MIDR_EL1_IMPLEMENTER_MASK },
9632 { .name = "REVIDR_EL1" },
9633 };
9634 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9635 #endif
9636 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9637 arm_feature(env, ARM_FEATURE_STRONGARM)) {
9638 size_t i;
9639 /*
9640 * Register the blanket "writes ignored" value first to cover the
9641 * whole space. Then update the specific ID registers to allow write
9642 * access, so that they ignore writes rather than causing them to
9643 * UNDEF.
9644 */
9645 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9646 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9647 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9648 }
9649 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9650 id_cp_reginfo[i].access = PL1_RW;
9651 }
9652 id_mpuir_reginfo.access = PL1_RW;
9653 id_tlbtr_reginfo.access = PL1_RW;
9654 }
9655 if (arm_feature(env, ARM_FEATURE_V8)) {
9656 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9657 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9658 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9659 }
9660 } else {
9661 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9662 }
9663 define_arm_cp_regs(cpu, id_cp_reginfo);
9664 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9665 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9666 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9667 arm_feature(env, ARM_FEATURE_V8)) {
9668 uint32_t i = 0;
9669 char *tmp_string;
9670
9671 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9672 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9673 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9674
9675 /* Register alias is only valid for first 32 indexes */
9676 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9677 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9678 uint8_t opc1 = extract32(i, 4, 1);
9679 uint8_t opc2 = extract32(i, 0, 1) << 2;
9680
9681 tmp_string = g_strdup_printf("PRBAR%u", i);
9682 ARMCPRegInfo tmp_prbarn_reginfo = {
9683 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9684 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9685 .access = PL1_RW, .resetvalue = 0,
9686 .accessfn = access_tvm_trvm,
9687 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9688 };
9689 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9690 g_free(tmp_string);
9691
9692 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9693 tmp_string = g_strdup_printf("PRLAR%u", i);
9694 ARMCPRegInfo tmp_prlarn_reginfo = {
9695 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9696 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9697 .access = PL1_RW, .resetvalue = 0,
9698 .accessfn = access_tvm_trvm,
9699 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9700 };
9701 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9702 g_free(tmp_string);
9703 }
9704
9705 /* Register alias is only valid for first 32 indexes */
9706 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9707 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9708 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9709 uint8_t opc2 = extract32(i, 0, 1) << 2;
9710
9711 tmp_string = g_strdup_printf("HPRBAR%u", i);
9712 ARMCPRegInfo tmp_hprbarn_reginfo = {
9713 .name = tmp_string,
9714 .type = ARM_CP_NO_RAW,
9715 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9716 .access = PL2_RW, .resetvalue = 0,
9717 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9718 };
9719 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9720 g_free(tmp_string);
9721
9722 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9723 tmp_string = g_strdup_printf("HPRLAR%u", i);
9724 ARMCPRegInfo tmp_hprlarn_reginfo = {
9725 .name = tmp_string,
9726 .type = ARM_CP_NO_RAW,
9727 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9728 .access = PL2_RW, .resetvalue = 0,
9729 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9730 };
9731 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9732 g_free(tmp_string);
9733 }
9734 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9735 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9736 }
9737 }
9738
9739 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9740 ARMCPRegInfo mpidr_cp_reginfo[] = {
9741 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9742 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9743 .fgt = FGT_MPIDR_EL1,
9744 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9745 };
9746 #ifdef CONFIG_USER_ONLY
9747 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9748 { .name = "MPIDR_EL1",
9749 .fixed_bits = 0x0000000080000000 },
9750 };
9751 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9752 #endif
9753 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9754 }
9755
9756 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9757 ARMCPRegInfo auxcr_reginfo[] = {
9758 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9759 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9760 .access = PL1_RW, .accessfn = access_tacr,
9761 .nv2_redirect_offset = 0x118,
9762 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9763 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9764 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9765 .access = PL2_RW, .type = ARM_CP_CONST,
9766 .resetvalue = 0 },
9767 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9768 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9769 .access = PL3_RW, .type = ARM_CP_CONST,
9770 .resetvalue = 0 },
9771 };
9772 define_arm_cp_regs(cpu, auxcr_reginfo);
9773 if (cpu_isar_feature(aa32_ac2, cpu)) {
9774 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9775 }
9776 }
9777
9778 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9779 /*
9780 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9781 * There are two flavours:
9782 * (1) older 32-bit only cores have a simple 32-bit CBAR
9783 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9784 * 32-bit register visible to AArch32 at a different encoding
9785 * to the "flavour 1" register and with the bits rearranged to
9786 * be able to squash a 64-bit address into the 32-bit view.
9787 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9788 * in future if we support AArch32-only configs of some of the
9789 * AArch64 cores we might need to add a specific feature flag
9790 * to indicate cores with "flavour 2" CBAR.
9791 */
9792 if (arm_feature(env, ARM_FEATURE_V8)) {
9793 /* 32 bit view is [31:18] 0...0 [43:32]. */
9794 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9795 | extract64(cpu->reset_cbar, 32, 12);
9796 ARMCPRegInfo cbar_reginfo[] = {
9797 { .name = "CBAR",
9798 .type = ARM_CP_CONST,
9799 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9800 .access = PL1_R, .resetvalue = cbar32 },
9801 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9802 .type = ARM_CP_CONST,
9803 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9804 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9805 };
9806 /* We don't implement a r/w 64 bit CBAR currently */
9807 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9808 define_arm_cp_regs(cpu, cbar_reginfo);
9809 } else {
9810 ARMCPRegInfo cbar = {
9811 .name = "CBAR",
9812 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9813 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9814 .fieldoffset = offsetof(CPUARMState,
9815 cp15.c15_config_base_address)
9816 };
9817 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9818 cbar.access = PL1_R;
9819 cbar.fieldoffset = 0;
9820 cbar.type = ARM_CP_CONST;
9821 }
9822 define_one_arm_cp_reg(cpu, &cbar);
9823 }
9824 }
9825
9826 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9827 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9828 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9829 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9830 .access = PL1_RW, .writefn = vbar_write,
9831 .accessfn = access_nv1,
9832 .fgt = FGT_VBAR_EL1,
9833 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
9834 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9835 offsetof(CPUARMState, cp15.vbar_ns) },
9836 .resetvalue = 0 },
9837 };
9838 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9839 }
9840
9841 /* Generic registers whose values depend on the implementation */
9842 {
9843 ARMCPRegInfo sctlr = {
9844 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9845 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9846 .access = PL1_RW, .accessfn = access_tvm_trvm,
9847 .fgt = FGT_SCTLR_EL1,
9848 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
9849 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9850 offsetof(CPUARMState, cp15.sctlr_ns) },
9851 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9852 .raw_writefn = raw_write,
9853 };
9854 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9855 /*
9856 * Normally we would always end the TB on an SCTLR write, but Linux
9857 * arch/arm/mach-pxa/sleep.S expects two instructions following
9858 * an MMU enable to execute from cache. Imitate this behaviour.
9859 */
9860 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9861 }
9862 define_one_arm_cp_reg(cpu, &sctlr);
9863
9864 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9865 arm_feature(env, ARM_FEATURE_V8)) {
9866 ARMCPRegInfo vsctlr = {
9867 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9868 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9869 .access = PL2_RW, .resetvalue = 0x0,
9870 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9871 };
9872 define_one_arm_cp_reg(cpu, &vsctlr);
9873 }
9874 }
9875
9876 if (cpu_isar_feature(aa64_lor, cpu)) {
9877 define_arm_cp_regs(cpu, lor_reginfo);
9878 }
9879 if (cpu_isar_feature(aa64_pan, cpu)) {
9880 define_one_arm_cp_reg(cpu, &pan_reginfo);
9881 }
9882 #ifndef CONFIG_USER_ONLY
9883 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9884 define_arm_cp_regs(cpu, ats1e1_reginfo);
9885 }
9886 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9887 define_arm_cp_regs(cpu, ats1cp_reginfo);
9888 }
9889 #endif
9890 if (cpu_isar_feature(aa64_uao, cpu)) {
9891 define_one_arm_cp_reg(cpu, &uao_reginfo);
9892 }
9893
9894 if (cpu_isar_feature(aa64_dit, cpu)) {
9895 define_one_arm_cp_reg(cpu, &dit_reginfo);
9896 }
9897 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9898 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9899 }
9900 if (cpu_isar_feature(any_ras, cpu)) {
9901 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9902 }
9903
9904 if (cpu_isar_feature(aa64_vh, cpu) ||
9905 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9906 define_one_arm_cp_reg(cpu, &contextidr_el2);
9907 }
9908 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9909 define_arm_cp_regs(cpu, vhe_reginfo);
9910 }
9911
9912 if (cpu_isar_feature(aa64_sve, cpu)) {
9913 define_arm_cp_regs(cpu, zcr_reginfo);
9914 }
9915
9916 if (cpu_isar_feature(aa64_hcx, cpu)) {
9917 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9918 }
9919
9920 #ifdef TARGET_AARCH64
9921 if (cpu_isar_feature(aa64_sme, cpu)) {
9922 define_arm_cp_regs(cpu, sme_reginfo);
9923 }
9924 if (cpu_isar_feature(aa64_pauth, cpu)) {
9925 define_arm_cp_regs(cpu, pauth_reginfo);
9926 }
9927 if (cpu_isar_feature(aa64_rndr, cpu)) {
9928 define_arm_cp_regs(cpu, rndr_reginfo);
9929 }
9930 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9931 define_arm_cp_regs(cpu, tlbirange_reginfo);
9932 }
9933 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9934 define_arm_cp_regs(cpu, tlbios_reginfo);
9935 }
9936 /* Data Cache clean instructions up to PoP */
9937 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9938 define_one_arm_cp_reg(cpu, dcpop_reg);
9939
9940 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9941 define_one_arm_cp_reg(cpu, dcpodp_reg);
9942 }
9943 }
9944
9945 /*
9946 * If full MTE is enabled, add all of the system registers.
9947 * If only "instructions available at EL0" are enabled,
9948 * then define only a RAZ/WI version of PSTATE.TCO.
9949 */
9950 if (cpu_isar_feature(aa64_mte, cpu)) {
9951 ARMCPRegInfo gmid_reginfo = {
9952 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9953 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9954 .access = PL1_R, .accessfn = access_aa64_tid5,
9955 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9956 };
9957 define_one_arm_cp_reg(cpu, &gmid_reginfo);
9958 define_arm_cp_regs(cpu, mte_reginfo);
9959 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9960 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9961 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9962 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9963 }
9964
9965 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9966 define_arm_cp_regs(cpu, scxtnum_reginfo);
9967 }
9968
9969 if (cpu_isar_feature(aa64_fgt, cpu)) {
9970 define_arm_cp_regs(cpu, fgt_reginfo);
9971 }
9972
9973 if (cpu_isar_feature(aa64_rme, cpu)) {
9974 define_arm_cp_regs(cpu, rme_reginfo);
9975 if (cpu_isar_feature(aa64_mte, cpu)) {
9976 define_arm_cp_regs(cpu, rme_mte_reginfo);
9977 }
9978 }
9979
9980 if (cpu_isar_feature(aa64_nv2, cpu)) {
9981 define_arm_cp_regs(cpu, nv2_reginfo);
9982 }
9983
9984 if (cpu_isar_feature(aa64_nmi, cpu)) {
9985 define_arm_cp_regs(cpu, nmi_reginfo);
9986 }
9987 #endif
9988
9989 if (cpu_isar_feature(any_predinv, cpu)) {
9990 define_arm_cp_regs(cpu, predinv_reginfo);
9991 }
9992
9993 if (cpu_isar_feature(any_ccidx, cpu)) {
9994 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9995 }
9996
9997 #ifndef CONFIG_USER_ONLY
9998 /*
9999 * Register redirections and aliases must be done last,
10000 * after the registers from the other extensions have been defined.
10001 */
10002 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
10003 define_arm_vh_e2h_redirects_aliases(cpu);
10004 }
10005 #endif
10006 }
10007
10008 /*
10009 * Private utility function for define_one_arm_cp_reg_with_opaque():
10010 * add a single reginfo struct to the hash table.
10011 */
add_cpreg_to_hashtable(ARMCPU * cpu,const ARMCPRegInfo * r,void * opaque,CPState state,CPSecureState secstate,int crm,int opc1,int opc2,const char * name)10012 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
10013 void *opaque, CPState state,
10014 CPSecureState secstate,
10015 int crm, int opc1, int opc2,
10016 const char *name)
10017 {
10018 CPUARMState *env = &cpu->env;
10019 uint32_t key;
10020 ARMCPRegInfo *r2;
10021 bool is64 = r->type & ARM_CP_64BIT;
10022 bool ns = secstate & ARM_CP_SECSTATE_NS;
10023 int cp = r->cp;
10024 size_t name_len;
10025 bool make_const;
10026
10027 switch (state) {
10028 case ARM_CP_STATE_AA32:
10029 /* We assume it is a cp15 register if the .cp field is left unset. */
10030 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
10031 cp = 15;
10032 }
10033 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
10034 break;
10035 case ARM_CP_STATE_AA64:
10036 /*
10037 * To allow abbreviation of ARMCPRegInfo definitions, we treat
10038 * cp == 0 as equivalent to the value for "standard guest-visible
10039 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
10040 * in their AArch64 view (the .cp value may be non-zero for the
10041 * benefit of the AArch32 view).
10042 */
10043 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
10044 cp = CP_REG_ARM64_SYSREG_CP;
10045 }
10046 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
10047 break;
10048 default:
10049 g_assert_not_reached();
10050 }
10051
10052 /* Overriding of an existing definition must be explicitly requested. */
10053 if (!(r->type & ARM_CP_OVERRIDE)) {
10054 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
10055 if (oldreg) {
10056 assert(oldreg->type & ARM_CP_OVERRIDE);
10057 }
10058 }
10059
10060 /*
10061 * Eliminate registers that are not present because the EL is missing.
10062 * Doing this here makes it easier to put all registers for a given
10063 * feature into the same ARMCPRegInfo array and define them all at once.
10064 */
10065 make_const = false;
10066 if (arm_feature(env, ARM_FEATURE_EL3)) {
10067 /*
10068 * An EL2 register without EL2 but with EL3 is (usually) RES0.
10069 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
10070 */
10071 int min_el = ctz32(r->access) / 2;
10072 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
10073 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
10074 return;
10075 }
10076 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
10077 }
10078 } else {
10079 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
10080 ? PL2_RW : PL1_RW);
10081 if ((r->access & max_el) == 0) {
10082 return;
10083 }
10084 }
10085
10086 /* Combine cpreg and name into one allocation. */
10087 name_len = strlen(name) + 1;
10088 r2 = g_malloc(sizeof(*r2) + name_len);
10089 *r2 = *r;
10090 r2->name = memcpy(r2 + 1, name, name_len);
10091
10092 /*
10093 * Update fields to match the instantiation, overwiting wildcards
10094 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
10095 */
10096 r2->cp = cp;
10097 r2->crm = crm;
10098 r2->opc1 = opc1;
10099 r2->opc2 = opc2;
10100 r2->state = state;
10101 r2->secure = secstate;
10102 if (opaque) {
10103 r2->opaque = opaque;
10104 }
10105
10106 if (make_const) {
10107 /* This should not have been a very special register to begin. */
10108 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
10109 assert(old_special == 0 || old_special == ARM_CP_NOP);
10110 /*
10111 * Set the special function to CONST, retaining the other flags.
10112 * This is important for e.g. ARM_CP_SVE so that we still
10113 * take the SVE trap if CPTR_EL3.EZ == 0.
10114 */
10115 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
10116 /*
10117 * Usually, these registers become RES0, but there are a few
10118 * special cases like VPIDR_EL2 which have a constant non-zero
10119 * value with writes ignored.
10120 */
10121 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
10122 r2->resetvalue = 0;
10123 }
10124 /*
10125 * ARM_CP_CONST has precedence, so removing the callbacks and
10126 * offsets are not strictly necessary, but it is potentially
10127 * less confusing to debug later.
10128 */
10129 r2->readfn = NULL;
10130 r2->writefn = NULL;
10131 r2->raw_readfn = NULL;
10132 r2->raw_writefn = NULL;
10133 r2->resetfn = NULL;
10134 r2->fieldoffset = 0;
10135 r2->bank_fieldoffsets[0] = 0;
10136 r2->bank_fieldoffsets[1] = 0;
10137 } else {
10138 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
10139
10140 if (isbanked) {
10141 /*
10142 * Register is banked (using both entries in array).
10143 * Overwriting fieldoffset as the array is only used to define
10144 * banked registers but later only fieldoffset is used.
10145 */
10146 r2->fieldoffset = r->bank_fieldoffsets[ns];
10147 }
10148 if (state == ARM_CP_STATE_AA32) {
10149 if (isbanked) {
10150 /*
10151 * If the register is banked then we don't need to migrate or
10152 * reset the 32-bit instance in certain cases:
10153 *
10154 * 1) If the register has both 32-bit and 64-bit instances
10155 * then we can count on the 64-bit instance taking care
10156 * of the non-secure bank.
10157 * 2) If ARMv8 is enabled then we can count on a 64-bit
10158 * version taking care of the secure bank. This requires
10159 * that separate 32 and 64-bit definitions are provided.
10160 */
10161 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
10162 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
10163 r2->type |= ARM_CP_ALIAS;
10164 }
10165 } else if ((secstate != r->secure) && !ns) {
10166 /*
10167 * The register is not banked so we only want to allow
10168 * migration of the non-secure instance.
10169 */
10170 r2->type |= ARM_CP_ALIAS;
10171 }
10172
10173 if (HOST_BIG_ENDIAN &&
10174 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
10175 r2->fieldoffset += sizeof(uint32_t);
10176 }
10177 }
10178 }
10179
10180 /*
10181 * By convention, for wildcarded registers only the first
10182 * entry is used for migration; the others are marked as
10183 * ALIAS so we don't try to transfer the register
10184 * multiple times. Special registers (ie NOP/WFI) are
10185 * never migratable and not even raw-accessible.
10186 */
10187 if (r2->type & ARM_CP_SPECIAL_MASK) {
10188 r2->type |= ARM_CP_NO_RAW;
10189 }
10190 if (((r->crm == CP_ANY) && crm != 0) ||
10191 ((r->opc1 == CP_ANY) && opc1 != 0) ||
10192 ((r->opc2 == CP_ANY) && opc2 != 0)) {
10193 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
10194 }
10195
10196 /*
10197 * Check that raw accesses are either forbidden or handled. Note that
10198 * we can't assert this earlier because the setup of fieldoffset for
10199 * banked registers has to be done first.
10200 */
10201 if (!(r2->type & ARM_CP_NO_RAW)) {
10202 assert(!raw_accessors_invalid(r2));
10203 }
10204
10205 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
10206 }
10207
10208
define_one_arm_cp_reg_with_opaque(ARMCPU * cpu,const ARMCPRegInfo * r,void * opaque)10209 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
10210 const ARMCPRegInfo *r, void *opaque)
10211 {
10212 /*
10213 * Define implementations of coprocessor registers.
10214 * We store these in a hashtable because typically
10215 * there are less than 150 registers in a space which
10216 * is 16*16*16*8*8 = 262144 in size.
10217 * Wildcarding is supported for the crm, opc1 and opc2 fields.
10218 * If a register is defined twice then the second definition is
10219 * used, so this can be used to define some generic registers and
10220 * then override them with implementation specific variations.
10221 * At least one of the original and the second definition should
10222 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
10223 * against accidental use.
10224 *
10225 * The state field defines whether the register is to be
10226 * visible in the AArch32 or AArch64 execution state. If the
10227 * state is set to ARM_CP_STATE_BOTH then we synthesise a
10228 * reginfo structure for the AArch32 view, which sees the lower
10229 * 32 bits of the 64 bit register.
10230 *
10231 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
10232 * be wildcarded. AArch64 registers are always considered to be 64
10233 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
10234 * the register, if any.
10235 */
10236 int crm, opc1, opc2;
10237 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
10238 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
10239 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
10240 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
10241 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
10242 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
10243 CPState state;
10244
10245 /* 64 bit registers have only CRm and Opc1 fields */
10246 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
10247 /* op0 only exists in the AArch64 encodings */
10248 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
10249 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
10250 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
10251 /*
10252 * This API is only for Arm's system coprocessors (14 and 15) or
10253 * (M-profile or v7A-and-earlier only) for implementation defined
10254 * coprocessors in the range 0..7. Our decode assumes this, since
10255 * 8..13 can be used for other insns including VFP and Neon. See
10256 * valid_cp() in translate.c. Assert here that we haven't tried
10257 * to use an invalid coprocessor number.
10258 */
10259 switch (r->state) {
10260 case ARM_CP_STATE_BOTH:
10261 /* 0 has a special meaning, but otherwise the same rules as AA32. */
10262 if (r->cp == 0) {
10263 break;
10264 }
10265 /* fall through */
10266 case ARM_CP_STATE_AA32:
10267 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
10268 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
10269 assert(r->cp >= 14 && r->cp <= 15);
10270 } else {
10271 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
10272 }
10273 break;
10274 case ARM_CP_STATE_AA64:
10275 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
10276 break;
10277 default:
10278 g_assert_not_reached();
10279 }
10280 /*
10281 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
10282 * encodes a minimum access level for the register. We roll this
10283 * runtime check into our general permission check code, so check
10284 * here that the reginfo's specified permissions are strict enough
10285 * to encompass the generic architectural permission check.
10286 */
10287 if (r->state != ARM_CP_STATE_AA32) {
10288 CPAccessRights mask;
10289 switch (r->opc1) {
10290 case 0:
10291 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
10292 mask = PL0U_R | PL1_RW;
10293 break;
10294 case 1: case 2:
10295 /* min_EL EL1 */
10296 mask = PL1_RW;
10297 break;
10298 case 3:
10299 /* min_EL EL0 */
10300 mask = PL0_RW;
10301 break;
10302 case 4:
10303 case 5:
10304 /* min_EL EL2 */
10305 mask = PL2_RW;
10306 break;
10307 case 6:
10308 /* min_EL EL3 */
10309 mask = PL3_RW;
10310 break;
10311 case 7:
10312 /* min_EL EL1, secure mode only (we don't check the latter) */
10313 mask = PL1_RW;
10314 break;
10315 default:
10316 /* broken reginfo with out-of-range opc1 */
10317 g_assert_not_reached();
10318 }
10319 /* assert our permissions are not too lax (stricter is fine) */
10320 assert((r->access & ~mask) == 0);
10321 }
10322
10323 /*
10324 * Check that the register definition has enough info to handle
10325 * reads and writes if they are permitted.
10326 */
10327 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
10328 if (r->access & PL3_R) {
10329 assert((r->fieldoffset ||
10330 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10331 r->readfn);
10332 }
10333 if (r->access & PL3_W) {
10334 assert((r->fieldoffset ||
10335 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10336 r->writefn);
10337 }
10338 }
10339
10340 for (crm = crmmin; crm <= crmmax; crm++) {
10341 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
10342 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
10343 for (state = ARM_CP_STATE_AA32;
10344 state <= ARM_CP_STATE_AA64; state++) {
10345 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
10346 continue;
10347 }
10348 if (state == ARM_CP_STATE_AA32) {
10349 /*
10350 * Under AArch32 CP registers can be common
10351 * (same for secure and non-secure world) or banked.
10352 */
10353 char *name;
10354
10355 switch (r->secure) {
10356 case ARM_CP_SECSTATE_S:
10357 case ARM_CP_SECSTATE_NS:
10358 add_cpreg_to_hashtable(cpu, r, opaque, state,
10359 r->secure, crm, opc1, opc2,
10360 r->name);
10361 break;
10362 case ARM_CP_SECSTATE_BOTH:
10363 name = g_strdup_printf("%s_S", r->name);
10364 add_cpreg_to_hashtable(cpu, r, opaque, state,
10365 ARM_CP_SECSTATE_S,
10366 crm, opc1, opc2, name);
10367 g_free(name);
10368 add_cpreg_to_hashtable(cpu, r, opaque, state,
10369 ARM_CP_SECSTATE_NS,
10370 crm, opc1, opc2, r->name);
10371 break;
10372 default:
10373 g_assert_not_reached();
10374 }
10375 } else {
10376 /*
10377 * AArch64 registers get mapped to non-secure instance
10378 * of AArch32
10379 */
10380 add_cpreg_to_hashtable(cpu, r, opaque, state,
10381 ARM_CP_SECSTATE_NS,
10382 crm, opc1, opc2, r->name);
10383 }
10384 }
10385 }
10386 }
10387 }
10388 }
10389
10390 /* Define a whole list of registers */
define_arm_cp_regs_with_opaque_len(ARMCPU * cpu,const ARMCPRegInfo * regs,void * opaque,size_t len)10391 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
10392 void *opaque, size_t len)
10393 {
10394 size_t i;
10395 for (i = 0; i < len; ++i) {
10396 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
10397 }
10398 }
10399
10400 /*
10401 * Modify ARMCPRegInfo for access from userspace.
10402 *
10403 * This is a data driven modification directed by
10404 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
10405 * user-space cannot alter any values and dynamic values pertaining to
10406 * execution state are hidden from user space view anyway.
10407 */
modify_arm_cp_regs_with_len(ARMCPRegInfo * regs,size_t regs_len,const ARMCPRegUserSpaceInfo * mods,size_t mods_len)10408 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
10409 const ARMCPRegUserSpaceInfo *mods,
10410 size_t mods_len)
10411 {
10412 for (size_t mi = 0; mi < mods_len; ++mi) {
10413 const ARMCPRegUserSpaceInfo *m = mods + mi;
10414 GPatternSpec *pat = NULL;
10415
10416 if (m->is_glob) {
10417 pat = g_pattern_spec_new(m->name);
10418 }
10419 for (size_t ri = 0; ri < regs_len; ++ri) {
10420 ARMCPRegInfo *r = regs + ri;
10421
10422 if (pat && g_pattern_match_string(pat, r->name)) {
10423 r->type = ARM_CP_CONST;
10424 r->access = PL0U_R;
10425 r->resetvalue = 0;
10426 /* continue */
10427 } else if (strcmp(r->name, m->name) == 0) {
10428 r->type = ARM_CP_CONST;
10429 r->access = PL0U_R;
10430 r->resetvalue &= m->exported_bits;
10431 r->resetvalue |= m->fixed_bits;
10432 break;
10433 }
10434 }
10435 if (pat) {
10436 g_pattern_spec_free(pat);
10437 }
10438 }
10439 }
10440
get_arm_cp_reginfo(GHashTable * cpregs,uint32_t encoded_cp)10441 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
10442 {
10443 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
10444 }
10445
arm_cp_write_ignore(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)10446 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
10447 uint64_t value)
10448 {
10449 /* Helper coprocessor write function for write-ignore registers */
10450 }
10451
arm_cp_read_zero(CPUARMState * env,const ARMCPRegInfo * ri)10452 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
10453 {
10454 /* Helper coprocessor write function for read-as-zero registers */
10455 return 0;
10456 }
10457
arm_cp_reset_ignore(CPUARMState * env,const ARMCPRegInfo * opaque)10458 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
10459 {
10460 /* Helper coprocessor reset function for do-nothing-on-reset registers */
10461 }
10462
bad_mode_switch(CPUARMState * env,int mode,CPSRWriteType write_type)10463 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
10464 {
10465 /*
10466 * Return true if it is not valid for us to switch to
10467 * this CPU mode (ie all the UNPREDICTABLE cases in
10468 * the ARM ARM CPSRWriteByInstr pseudocode).
10469 */
10470
10471 /* Changes to or from Hyp via MSR and CPS are illegal. */
10472 if (write_type == CPSRWriteByInstr &&
10473 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
10474 mode == ARM_CPU_MODE_HYP)) {
10475 return 1;
10476 }
10477
10478 switch (mode) {
10479 case ARM_CPU_MODE_USR:
10480 return 0;
10481 case ARM_CPU_MODE_SYS:
10482 case ARM_CPU_MODE_SVC:
10483 case ARM_CPU_MODE_ABT:
10484 case ARM_CPU_MODE_UND:
10485 case ARM_CPU_MODE_IRQ:
10486 case ARM_CPU_MODE_FIQ:
10487 /*
10488 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
10489 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
10490 */
10491 /*
10492 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10493 * and CPS are treated as illegal mode changes.
10494 */
10495 if (write_type == CPSRWriteByInstr &&
10496 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
10497 (arm_hcr_el2_eff(env) & HCR_TGE)) {
10498 return 1;
10499 }
10500 return 0;
10501 case ARM_CPU_MODE_HYP:
10502 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
10503 case ARM_CPU_MODE_MON:
10504 return arm_current_el(env) < 3;
10505 default:
10506 return 1;
10507 }
10508 }
10509
cpsr_read(CPUARMState * env)10510 uint32_t cpsr_read(CPUARMState *env)
10511 {
10512 int ZF;
10513 ZF = (env->ZF == 0);
10514 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10515 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10516 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10517 | ((env->condexec_bits & 0xfc) << 8)
10518 | (env->GE << 16) | (env->daif & CPSR_AIF);
10519 }
10520
cpsr_write(CPUARMState * env,uint32_t val,uint32_t mask,CPSRWriteType write_type)10521 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10522 CPSRWriteType write_type)
10523 {
10524 uint32_t changed_daif;
10525 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10526 (mask & (CPSR_M | CPSR_E | CPSR_IL));
10527
10528 if (mask & CPSR_NZCV) {
10529 env->ZF = (~val) & CPSR_Z;
10530 env->NF = val;
10531 env->CF = (val >> 29) & 1;
10532 env->VF = (val << 3) & 0x80000000;
10533 }
10534 if (mask & CPSR_Q) {
10535 env->QF = ((val & CPSR_Q) != 0);
10536 }
10537 if (mask & CPSR_T) {
10538 env->thumb = ((val & CPSR_T) != 0);
10539 }
10540 if (mask & CPSR_IT_0_1) {
10541 env->condexec_bits &= ~3;
10542 env->condexec_bits |= (val >> 25) & 3;
10543 }
10544 if (mask & CPSR_IT_2_7) {
10545 env->condexec_bits &= 3;
10546 env->condexec_bits |= (val >> 8) & 0xfc;
10547 }
10548 if (mask & CPSR_GE) {
10549 env->GE = (val >> 16) & 0xf;
10550 }
10551
10552 /*
10553 * In a V7 implementation that includes the security extensions but does
10554 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10555 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10556 * bits respectively.
10557 *
10558 * In a V8 implementation, it is permitted for privileged software to
10559 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10560 */
10561 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10562 arm_feature(env, ARM_FEATURE_EL3) &&
10563 !arm_feature(env, ARM_FEATURE_EL2) &&
10564 !arm_is_secure(env)) {
10565
10566 changed_daif = (env->daif ^ val) & mask;
10567
10568 if (changed_daif & CPSR_A) {
10569 /*
10570 * Check to see if we are allowed to change the masking of async
10571 * abort exceptions from a non-secure state.
10572 */
10573 if (!(env->cp15.scr_el3 & SCR_AW)) {
10574 qemu_log_mask(LOG_GUEST_ERROR,
10575 "Ignoring attempt to switch CPSR_A flag from "
10576 "non-secure world with SCR.AW bit clear\n");
10577 mask &= ~CPSR_A;
10578 }
10579 }
10580
10581 if (changed_daif & CPSR_F) {
10582 /*
10583 * Check to see if we are allowed to change the masking of FIQ
10584 * exceptions from a non-secure state.
10585 */
10586 if (!(env->cp15.scr_el3 & SCR_FW)) {
10587 qemu_log_mask(LOG_GUEST_ERROR,
10588 "Ignoring attempt to switch CPSR_F flag from "
10589 "non-secure world with SCR.FW bit clear\n");
10590 mask &= ~CPSR_F;
10591 }
10592
10593 /*
10594 * Check whether non-maskable FIQ (NMFI) support is enabled.
10595 * If this bit is set software is not allowed to mask
10596 * FIQs, but is allowed to set CPSR_F to 0.
10597 */
10598 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10599 (val & CPSR_F)) {
10600 qemu_log_mask(LOG_GUEST_ERROR,
10601 "Ignoring attempt to enable CPSR_F flag "
10602 "(non-maskable FIQ [NMFI] support enabled)\n");
10603 mask &= ~CPSR_F;
10604 }
10605 }
10606 }
10607
10608 env->daif &= ~(CPSR_AIF & mask);
10609 env->daif |= val & CPSR_AIF & mask;
10610
10611 if (write_type != CPSRWriteRaw &&
10612 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10613 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10614 /*
10615 * Note that we can only get here in USR mode if this is a
10616 * gdb stub write; for this case we follow the architectural
10617 * behaviour for guest writes in USR mode of ignoring an attempt
10618 * to switch mode. (Those are caught by translate.c for writes
10619 * triggered by guest instructions.)
10620 */
10621 mask &= ~CPSR_M;
10622 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10623 /*
10624 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10625 * v7, and has defined behaviour in v8:
10626 * + leave CPSR.M untouched
10627 * + allow changes to the other CPSR fields
10628 * + set PSTATE.IL
10629 * For user changes via the GDB stub, we don't set PSTATE.IL,
10630 * as this would be unnecessarily harsh for a user error.
10631 */
10632 mask &= ~CPSR_M;
10633 if (write_type != CPSRWriteByGDBStub &&
10634 arm_feature(env, ARM_FEATURE_V8)) {
10635 mask |= CPSR_IL;
10636 val |= CPSR_IL;
10637 }
10638 qemu_log_mask(LOG_GUEST_ERROR,
10639 "Illegal AArch32 mode switch attempt from %s to %s\n",
10640 aarch32_mode_name(env->uncached_cpsr),
10641 aarch32_mode_name(val));
10642 } else {
10643 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10644 write_type == CPSRWriteExceptionReturn ?
10645 "Exception return from AArch32" :
10646 "AArch32 mode switch from",
10647 aarch32_mode_name(env->uncached_cpsr),
10648 aarch32_mode_name(val), env->regs[15]);
10649 switch_mode(env, val & CPSR_M);
10650 }
10651 }
10652 mask &= ~CACHED_CPSR_BITS;
10653 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10654 if (tcg_enabled() && rebuild_hflags) {
10655 arm_rebuild_hflags(env);
10656 }
10657 }
10658
10659 #ifdef CONFIG_USER_ONLY
10660
switch_mode(CPUARMState * env,int mode)10661 static void switch_mode(CPUARMState *env, int mode)
10662 {
10663 ARMCPU *cpu = env_archcpu(env);
10664
10665 if (mode != ARM_CPU_MODE_USR) {
10666 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10667 }
10668 }
10669
arm_phys_excp_target_el(CPUState * cs,uint32_t excp_idx,uint32_t cur_el,bool secure)10670 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10671 uint32_t cur_el, bool secure)
10672 {
10673 return 1;
10674 }
10675
aarch64_sync_64_to_32(CPUARMState * env)10676 void aarch64_sync_64_to_32(CPUARMState *env)
10677 {
10678 g_assert_not_reached();
10679 }
10680
10681 #else
10682
switch_mode(CPUARMState * env,int mode)10683 static void switch_mode(CPUARMState *env, int mode)
10684 {
10685 int old_mode;
10686 int i;
10687
10688 old_mode = env->uncached_cpsr & CPSR_M;
10689 if (mode == old_mode) {
10690 return;
10691 }
10692
10693 if (old_mode == ARM_CPU_MODE_FIQ) {
10694 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10695 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10696 } else if (mode == ARM_CPU_MODE_FIQ) {
10697 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10698 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10699 }
10700
10701 i = bank_number(old_mode);
10702 env->banked_r13[i] = env->regs[13];
10703 env->banked_spsr[i] = env->spsr;
10704
10705 i = bank_number(mode);
10706 env->regs[13] = env->banked_r13[i];
10707 env->spsr = env->banked_spsr[i];
10708
10709 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10710 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10711 }
10712
10713 /*
10714 * Physical Interrupt Target EL Lookup Table
10715 *
10716 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10717 *
10718 * The below multi-dimensional table is used for looking up the target
10719 * exception level given numerous condition criteria. Specifically, the
10720 * target EL is based on SCR and HCR routing controls as well as the
10721 * currently executing EL and secure state.
10722 *
10723 * Dimensions:
10724 * target_el_table[2][2][2][2][2][4]
10725 * | | | | | +--- Current EL
10726 * | | | | +------ Non-secure(0)/Secure(1)
10727 * | | | +--------- HCR mask override
10728 * | | +------------ SCR exec state control
10729 * | +--------------- SCR mask override
10730 * +------------------ 32-bit(0)/64-bit(1) EL3
10731 *
10732 * The table values are as such:
10733 * 0-3 = EL0-EL3
10734 * -1 = Cannot occur
10735 *
10736 * The ARM ARM target EL table includes entries indicating that an "exception
10737 * is not taken". The two cases where this is applicable are:
10738 * 1) An exception is taken from EL3 but the SCR does not have the exception
10739 * routed to EL3.
10740 * 2) An exception is taken from EL2 but the HCR does not have the exception
10741 * routed to EL2.
10742 * In these two cases, the below table contain a target of EL1. This value is
10743 * returned as it is expected that the consumer of the table data will check
10744 * for "target EL >= current EL" to ensure the exception is not taken.
10745 *
10746 * SCR HCR
10747 * 64 EA AMO From
10748 * BIT IRQ IMO Non-secure Secure
10749 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10750 */
10751 static const int8_t target_el_table[2][2][2][2][2][4] = {
10752 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10753 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10754 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10755 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10756 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10757 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10758 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10759 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10760 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10761 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10762 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10763 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10764 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10765 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10766 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10767 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10768 };
10769
10770 /*
10771 * Determine the target EL for physical exceptions
10772 */
arm_phys_excp_target_el(CPUState * cs,uint32_t excp_idx,uint32_t cur_el,bool secure)10773 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10774 uint32_t cur_el, bool secure)
10775 {
10776 CPUARMState *env = cpu_env(cs);
10777 bool rw;
10778 bool scr;
10779 bool hcr;
10780 int target_el;
10781 /* Is the highest EL AArch64? */
10782 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10783 uint64_t hcr_el2;
10784
10785 if (arm_feature(env, ARM_FEATURE_EL3)) {
10786 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10787 } else {
10788 /*
10789 * Either EL2 is the highest EL (and so the EL2 register width
10790 * is given by is64); or there is no EL2 or EL3, in which case
10791 * the value of 'rw' does not affect the table lookup anyway.
10792 */
10793 rw = is64;
10794 }
10795
10796 hcr_el2 = arm_hcr_el2_eff(env);
10797 switch (excp_idx) {
10798 case EXCP_IRQ:
10799 case EXCP_NMI:
10800 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10801 hcr = hcr_el2 & HCR_IMO;
10802 break;
10803 case EXCP_FIQ:
10804 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10805 hcr = hcr_el2 & HCR_FMO;
10806 break;
10807 default:
10808 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10809 hcr = hcr_el2 & HCR_AMO;
10810 break;
10811 };
10812
10813 /*
10814 * For these purposes, TGE and AMO/IMO/FMO both force the
10815 * interrupt to EL2. Fold TGE into the bit extracted above.
10816 */
10817 hcr |= (hcr_el2 & HCR_TGE) != 0;
10818
10819 /* Perform a table-lookup for the target EL given the current state */
10820 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10821
10822 assert(target_el > 0);
10823
10824 return target_el;
10825 }
10826
arm_log_exception(CPUState * cs)10827 void arm_log_exception(CPUState *cs)
10828 {
10829 int idx = cs->exception_index;
10830
10831 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10832 const char *exc = NULL;
10833 static const char * const excnames[] = {
10834 [EXCP_UDEF] = "Undefined Instruction",
10835 [EXCP_SWI] = "SVC",
10836 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10837 [EXCP_DATA_ABORT] = "Data Abort",
10838 [EXCP_IRQ] = "IRQ",
10839 [EXCP_FIQ] = "FIQ",
10840 [EXCP_BKPT] = "Breakpoint",
10841 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10842 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10843 [EXCP_HVC] = "Hypervisor Call",
10844 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10845 [EXCP_SMC] = "Secure Monitor Call",
10846 [EXCP_VIRQ] = "Virtual IRQ",
10847 [EXCP_VFIQ] = "Virtual FIQ",
10848 [EXCP_SEMIHOST] = "Semihosting call",
10849 [EXCP_NOCP] = "v7M NOCP UsageFault",
10850 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10851 [EXCP_STKOF] = "v8M STKOF UsageFault",
10852 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10853 [EXCP_LSERR] = "v8M LSERR UsageFault",
10854 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10855 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10856 [EXCP_VSERR] = "Virtual SERR",
10857 [EXCP_GPC] = "Granule Protection Check",
10858 [EXCP_NMI] = "NMI",
10859 [EXCP_VINMI] = "Virtual IRQ NMI",
10860 [EXCP_VFNMI] = "Virtual FIQ NMI",
10861 };
10862
10863 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10864 exc = excnames[idx];
10865 }
10866 if (!exc) {
10867 exc = "unknown";
10868 }
10869 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10870 idx, exc, cs->cpu_index);
10871 }
10872 }
10873
10874 /*
10875 * Function used to synchronize QEMU's AArch64 register set with AArch32
10876 * register set. This is necessary when switching between AArch32 and AArch64
10877 * execution state.
10878 */
aarch64_sync_32_to_64(CPUARMState * env)10879 void aarch64_sync_32_to_64(CPUARMState *env)
10880 {
10881 int i;
10882 uint32_t mode = env->uncached_cpsr & CPSR_M;
10883
10884 /* We can blanket copy R[0:7] to X[0:7] */
10885 for (i = 0; i < 8; i++) {
10886 env->xregs[i] = env->regs[i];
10887 }
10888
10889 /*
10890 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10891 * Otherwise, they come from the banked user regs.
10892 */
10893 if (mode == ARM_CPU_MODE_FIQ) {
10894 for (i = 8; i < 13; i++) {
10895 env->xregs[i] = env->usr_regs[i - 8];
10896 }
10897 } else {
10898 for (i = 8; i < 13; i++) {
10899 env->xregs[i] = env->regs[i];
10900 }
10901 }
10902
10903 /*
10904 * Registers x13-x23 are the various mode SP and FP registers. Registers
10905 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10906 * from the mode banked register.
10907 */
10908 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10909 env->xregs[13] = env->regs[13];
10910 env->xregs[14] = env->regs[14];
10911 } else {
10912 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10913 /* HYP is an exception in that it is copied from r14 */
10914 if (mode == ARM_CPU_MODE_HYP) {
10915 env->xregs[14] = env->regs[14];
10916 } else {
10917 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10918 }
10919 }
10920
10921 if (mode == ARM_CPU_MODE_HYP) {
10922 env->xregs[15] = env->regs[13];
10923 } else {
10924 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10925 }
10926
10927 if (mode == ARM_CPU_MODE_IRQ) {
10928 env->xregs[16] = env->regs[14];
10929 env->xregs[17] = env->regs[13];
10930 } else {
10931 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10932 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10933 }
10934
10935 if (mode == ARM_CPU_MODE_SVC) {
10936 env->xregs[18] = env->regs[14];
10937 env->xregs[19] = env->regs[13];
10938 } else {
10939 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10940 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10941 }
10942
10943 if (mode == ARM_CPU_MODE_ABT) {
10944 env->xregs[20] = env->regs[14];
10945 env->xregs[21] = env->regs[13];
10946 } else {
10947 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10948 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10949 }
10950
10951 if (mode == ARM_CPU_MODE_UND) {
10952 env->xregs[22] = env->regs[14];
10953 env->xregs[23] = env->regs[13];
10954 } else {
10955 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10956 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10957 }
10958
10959 /*
10960 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10961 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10962 * FIQ bank for r8-r14.
10963 */
10964 if (mode == ARM_CPU_MODE_FIQ) {
10965 for (i = 24; i < 31; i++) {
10966 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10967 }
10968 } else {
10969 for (i = 24; i < 29; i++) {
10970 env->xregs[i] = env->fiq_regs[i - 24];
10971 }
10972 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10973 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10974 }
10975
10976 env->pc = env->regs[15];
10977 }
10978
10979 /*
10980 * Function used to synchronize QEMU's AArch32 register set with AArch64
10981 * register set. This is necessary when switching between AArch32 and AArch64
10982 * execution state.
10983 */
aarch64_sync_64_to_32(CPUARMState * env)10984 void aarch64_sync_64_to_32(CPUARMState *env)
10985 {
10986 int i;
10987 uint32_t mode = env->uncached_cpsr & CPSR_M;
10988
10989 /* We can blanket copy X[0:7] to R[0:7] */
10990 for (i = 0; i < 8; i++) {
10991 env->regs[i] = env->xregs[i];
10992 }
10993
10994 /*
10995 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10996 * Otherwise, we copy x8-x12 into the banked user regs.
10997 */
10998 if (mode == ARM_CPU_MODE_FIQ) {
10999 for (i = 8; i < 13; i++) {
11000 env->usr_regs[i - 8] = env->xregs[i];
11001 }
11002 } else {
11003 for (i = 8; i < 13; i++) {
11004 env->regs[i] = env->xregs[i];
11005 }
11006 }
11007
11008 /*
11009 * Registers r13 & r14 depend on the current mode.
11010 * If we are in a given mode, we copy the corresponding x registers to r13
11011 * and r14. Otherwise, we copy the x register to the banked r13 and r14
11012 * for the mode.
11013 */
11014 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
11015 env->regs[13] = env->xregs[13];
11016 env->regs[14] = env->xregs[14];
11017 } else {
11018 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
11019
11020 /*
11021 * HYP is an exception in that it does not have its own banked r14 but
11022 * shares the USR r14
11023 */
11024 if (mode == ARM_CPU_MODE_HYP) {
11025 env->regs[14] = env->xregs[14];
11026 } else {
11027 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
11028 }
11029 }
11030
11031 if (mode == ARM_CPU_MODE_HYP) {
11032 env->regs[13] = env->xregs[15];
11033 } else {
11034 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
11035 }
11036
11037 if (mode == ARM_CPU_MODE_IRQ) {
11038 env->regs[14] = env->xregs[16];
11039 env->regs[13] = env->xregs[17];
11040 } else {
11041 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
11042 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
11043 }
11044
11045 if (mode == ARM_CPU_MODE_SVC) {
11046 env->regs[14] = env->xregs[18];
11047 env->regs[13] = env->xregs[19];
11048 } else {
11049 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
11050 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
11051 }
11052
11053 if (mode == ARM_CPU_MODE_ABT) {
11054 env->regs[14] = env->xregs[20];
11055 env->regs[13] = env->xregs[21];
11056 } else {
11057 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
11058 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
11059 }
11060
11061 if (mode == ARM_CPU_MODE_UND) {
11062 env->regs[14] = env->xregs[22];
11063 env->regs[13] = env->xregs[23];
11064 } else {
11065 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
11066 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
11067 }
11068
11069 /*
11070 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
11071 * mode, then we can copy to r8-r14. Otherwise, we copy to the
11072 * FIQ bank for r8-r14.
11073 */
11074 if (mode == ARM_CPU_MODE_FIQ) {
11075 for (i = 24; i < 31; i++) {
11076 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
11077 }
11078 } else {
11079 for (i = 24; i < 29; i++) {
11080 env->fiq_regs[i - 24] = env->xregs[i];
11081 }
11082 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
11083 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
11084 }
11085
11086 env->regs[15] = env->pc;
11087 }
11088
take_aarch32_exception(CPUARMState * env,int new_mode,uint32_t mask,uint32_t offset,uint32_t newpc)11089 static void take_aarch32_exception(CPUARMState *env, int new_mode,
11090 uint32_t mask, uint32_t offset,
11091 uint32_t newpc)
11092 {
11093 int new_el;
11094
11095 /* Change the CPU state so as to actually take the exception. */
11096 switch_mode(env, new_mode);
11097
11098 /*
11099 * For exceptions taken to AArch32 we must clear the SS bit in both
11100 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
11101 */
11102 env->pstate &= ~PSTATE_SS;
11103 env->spsr = cpsr_read(env);
11104 /* Clear IT bits. */
11105 env->condexec_bits = 0;
11106 /* Switch to the new mode, and to the correct instruction set. */
11107 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
11108
11109 /* This must be after mode switching. */
11110 new_el = arm_current_el(env);
11111
11112 /* Set new mode endianness */
11113 env->uncached_cpsr &= ~CPSR_E;
11114 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
11115 env->uncached_cpsr |= CPSR_E;
11116 }
11117 /* J and IL must always be cleared for exception entry */
11118 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
11119 env->daif |= mask;
11120
11121 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
11122 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
11123 env->uncached_cpsr |= CPSR_SSBS;
11124 } else {
11125 env->uncached_cpsr &= ~CPSR_SSBS;
11126 }
11127 }
11128
11129 if (new_mode == ARM_CPU_MODE_HYP) {
11130 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
11131 env->elr_el[2] = env->regs[15];
11132 } else {
11133 /* CPSR.PAN is normally preserved preserved unless... */
11134 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
11135 switch (new_el) {
11136 case 3:
11137 if (!arm_is_secure_below_el3(env)) {
11138 /* ... the target is EL3, from non-secure state. */
11139 env->uncached_cpsr &= ~CPSR_PAN;
11140 break;
11141 }
11142 /* ... the target is EL3, from secure state ... */
11143 /* fall through */
11144 case 1:
11145 /* ... the target is EL1 and SCTLR.SPAN is 0. */
11146 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
11147 env->uncached_cpsr |= CPSR_PAN;
11148 }
11149 break;
11150 }
11151 }
11152 /*
11153 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
11154 * and we should just guard the thumb mode on V4
11155 */
11156 if (arm_feature(env, ARM_FEATURE_V4T)) {
11157 env->thumb =
11158 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
11159 }
11160 env->regs[14] = env->regs[15] + offset;
11161 }
11162 env->regs[15] = newpc;
11163
11164 if (tcg_enabled()) {
11165 arm_rebuild_hflags(env);
11166 }
11167 }
11168
arm_cpu_do_interrupt_aarch32_hyp(CPUState * cs)11169 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
11170 {
11171 /*
11172 * Handle exception entry to Hyp mode; this is sufficiently
11173 * different to entry to other AArch32 modes that we handle it
11174 * separately here.
11175 *
11176 * The vector table entry used is always the 0x14 Hyp mode entry point,
11177 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
11178 * The offset applied to the preferred return address is always zero
11179 * (see DDI0487C.a section G1.12.3).
11180 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
11181 */
11182 uint32_t addr, mask;
11183 ARMCPU *cpu = ARM_CPU(cs);
11184 CPUARMState *env = &cpu->env;
11185
11186 switch (cs->exception_index) {
11187 case EXCP_UDEF:
11188 addr = 0x04;
11189 break;
11190 case EXCP_SWI:
11191 addr = 0x08;
11192 break;
11193 case EXCP_BKPT:
11194 /* Fall through to prefetch abort. */
11195 case EXCP_PREFETCH_ABORT:
11196 env->cp15.ifar_s = env->exception.vaddress;
11197 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
11198 (uint32_t)env->exception.vaddress);
11199 addr = 0x0c;
11200 break;
11201 case EXCP_DATA_ABORT:
11202 env->cp15.dfar_s = env->exception.vaddress;
11203 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
11204 (uint32_t)env->exception.vaddress);
11205 addr = 0x10;
11206 break;
11207 case EXCP_IRQ:
11208 addr = 0x18;
11209 break;
11210 case EXCP_FIQ:
11211 addr = 0x1c;
11212 break;
11213 case EXCP_HVC:
11214 addr = 0x08;
11215 break;
11216 case EXCP_HYP_TRAP:
11217 addr = 0x14;
11218 break;
11219 default:
11220 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11221 }
11222
11223 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
11224 if (!arm_feature(env, ARM_FEATURE_V8)) {
11225 /*
11226 * QEMU syndrome values are v8-style. v7 has the IL bit
11227 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
11228 * If this is a v7 CPU, squash the IL bit in those cases.
11229 */
11230 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
11231 (cs->exception_index == EXCP_DATA_ABORT &&
11232 !(env->exception.syndrome & ARM_EL_ISV)) ||
11233 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
11234 env->exception.syndrome &= ~ARM_EL_IL;
11235 }
11236 }
11237 env->cp15.esr_el[2] = env->exception.syndrome;
11238 }
11239
11240 if (arm_current_el(env) != 2 && addr < 0x14) {
11241 addr = 0x14;
11242 }
11243
11244 mask = 0;
11245 if (!(env->cp15.scr_el3 & SCR_EA)) {
11246 mask |= CPSR_A;
11247 }
11248 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
11249 mask |= CPSR_I;
11250 }
11251 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
11252 mask |= CPSR_F;
11253 }
11254
11255 addr += env->cp15.hvbar;
11256
11257 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
11258 }
11259
arm_cpu_do_interrupt_aarch32(CPUState * cs)11260 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
11261 {
11262 ARMCPU *cpu = ARM_CPU(cs);
11263 CPUARMState *env = &cpu->env;
11264 uint32_t addr;
11265 uint32_t mask;
11266 int new_mode;
11267 uint32_t offset;
11268 uint32_t moe;
11269
11270 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
11271 switch (syn_get_ec(env->exception.syndrome)) {
11272 case EC_BREAKPOINT:
11273 case EC_BREAKPOINT_SAME_EL:
11274 moe = 1;
11275 break;
11276 case EC_WATCHPOINT:
11277 case EC_WATCHPOINT_SAME_EL:
11278 moe = 10;
11279 break;
11280 case EC_AA32_BKPT:
11281 moe = 3;
11282 break;
11283 case EC_VECTORCATCH:
11284 moe = 5;
11285 break;
11286 default:
11287 moe = 0;
11288 break;
11289 }
11290
11291 if (moe) {
11292 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
11293 }
11294
11295 if (env->exception.target_el == 2) {
11296 /* Debug exceptions are reported differently on AArch32 */
11297 switch (syn_get_ec(env->exception.syndrome)) {
11298 case EC_BREAKPOINT:
11299 case EC_BREAKPOINT_SAME_EL:
11300 case EC_AA32_BKPT:
11301 case EC_VECTORCATCH:
11302 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2,
11303 0, 0, 0x22);
11304 break;
11305 case EC_WATCHPOINT:
11306 env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11307 EC_DATAABORT);
11308 break;
11309 case EC_WATCHPOINT_SAME_EL:
11310 env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11311 EC_DATAABORT_SAME_EL);
11312 break;
11313 }
11314 arm_cpu_do_interrupt_aarch32_hyp(cs);
11315 return;
11316 }
11317
11318 switch (cs->exception_index) {
11319 case EXCP_UDEF:
11320 new_mode = ARM_CPU_MODE_UND;
11321 addr = 0x04;
11322 mask = CPSR_I;
11323 if (env->thumb) {
11324 offset = 2;
11325 } else {
11326 offset = 4;
11327 }
11328 break;
11329 case EXCP_SWI:
11330 new_mode = ARM_CPU_MODE_SVC;
11331 addr = 0x08;
11332 mask = CPSR_I;
11333 /* The PC already points to the next instruction. */
11334 offset = 0;
11335 break;
11336 case EXCP_BKPT:
11337 /* Fall through to prefetch abort. */
11338 case EXCP_PREFETCH_ABORT:
11339 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
11340 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
11341 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
11342 env->exception.fsr, (uint32_t)env->exception.vaddress);
11343 new_mode = ARM_CPU_MODE_ABT;
11344 addr = 0x0c;
11345 mask = CPSR_A | CPSR_I;
11346 offset = 4;
11347 break;
11348 case EXCP_DATA_ABORT:
11349 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11350 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
11351 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
11352 env->exception.fsr,
11353 (uint32_t)env->exception.vaddress);
11354 new_mode = ARM_CPU_MODE_ABT;
11355 addr = 0x10;
11356 mask = CPSR_A | CPSR_I;
11357 offset = 8;
11358 break;
11359 case EXCP_IRQ:
11360 new_mode = ARM_CPU_MODE_IRQ;
11361 addr = 0x18;
11362 /* Disable IRQ and imprecise data aborts. */
11363 mask = CPSR_A | CPSR_I;
11364 offset = 4;
11365 if (env->cp15.scr_el3 & SCR_IRQ) {
11366 /* IRQ routed to monitor mode */
11367 new_mode = ARM_CPU_MODE_MON;
11368 mask |= CPSR_F;
11369 }
11370 break;
11371 case EXCP_FIQ:
11372 new_mode = ARM_CPU_MODE_FIQ;
11373 addr = 0x1c;
11374 /* Disable FIQ, IRQ and imprecise data aborts. */
11375 mask = CPSR_A | CPSR_I | CPSR_F;
11376 if (env->cp15.scr_el3 & SCR_FIQ) {
11377 /* FIQ routed to monitor mode */
11378 new_mode = ARM_CPU_MODE_MON;
11379 }
11380 offset = 4;
11381 break;
11382 case EXCP_VIRQ:
11383 new_mode = ARM_CPU_MODE_IRQ;
11384 addr = 0x18;
11385 /* Disable IRQ and imprecise data aborts. */
11386 mask = CPSR_A | CPSR_I;
11387 offset = 4;
11388 break;
11389 case EXCP_VFIQ:
11390 new_mode = ARM_CPU_MODE_FIQ;
11391 addr = 0x1c;
11392 /* Disable FIQ, IRQ and imprecise data aborts. */
11393 mask = CPSR_A | CPSR_I | CPSR_F;
11394 offset = 4;
11395 break;
11396 case EXCP_VSERR:
11397 {
11398 /*
11399 * Note that this is reported as a data abort, but the DFAR
11400 * has an UNKNOWN value. Construct the SError syndrome from
11401 * AET and ExT fields.
11402 */
11403 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
11404
11405 if (extended_addresses_enabled(env)) {
11406 env->exception.fsr = arm_fi_to_lfsc(&fi);
11407 } else {
11408 env->exception.fsr = arm_fi_to_sfsc(&fi);
11409 }
11410 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
11411 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11412 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
11413 env->exception.fsr);
11414
11415 new_mode = ARM_CPU_MODE_ABT;
11416 addr = 0x10;
11417 mask = CPSR_A | CPSR_I;
11418 offset = 8;
11419 }
11420 break;
11421 case EXCP_SMC:
11422 new_mode = ARM_CPU_MODE_MON;
11423 addr = 0x08;
11424 mask = CPSR_A | CPSR_I | CPSR_F;
11425 offset = 0;
11426 break;
11427 default:
11428 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11429 return; /* Never happens. Keep compiler happy. */
11430 }
11431
11432 if (new_mode == ARM_CPU_MODE_MON) {
11433 addr += env->cp15.mvbar;
11434 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
11435 /* High vectors. When enabled, base address cannot be remapped. */
11436 addr += 0xffff0000;
11437 } else {
11438 /*
11439 * ARM v7 architectures provide a vector base address register to remap
11440 * the interrupt vector table.
11441 * This register is only followed in non-monitor mode, and is banked.
11442 * Note: only bits 31:5 are valid.
11443 */
11444 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
11445 }
11446
11447 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
11448 env->cp15.scr_el3 &= ~SCR_NS;
11449 }
11450
11451 take_aarch32_exception(env, new_mode, mask, offset, addr);
11452 }
11453
aarch64_regnum(CPUARMState * env,int aarch32_reg)11454 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
11455 {
11456 /*
11457 * Return the register number of the AArch64 view of the AArch32
11458 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
11459 * be that of the AArch32 mode the exception came from.
11460 */
11461 int mode = env->uncached_cpsr & CPSR_M;
11462
11463 switch (aarch32_reg) {
11464 case 0 ... 7:
11465 return aarch32_reg;
11466 case 8 ... 12:
11467 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
11468 case 13:
11469 switch (mode) {
11470 case ARM_CPU_MODE_USR:
11471 case ARM_CPU_MODE_SYS:
11472 return 13;
11473 case ARM_CPU_MODE_HYP:
11474 return 15;
11475 case ARM_CPU_MODE_IRQ:
11476 return 17;
11477 case ARM_CPU_MODE_SVC:
11478 return 19;
11479 case ARM_CPU_MODE_ABT:
11480 return 21;
11481 case ARM_CPU_MODE_UND:
11482 return 23;
11483 case ARM_CPU_MODE_FIQ:
11484 return 29;
11485 default:
11486 g_assert_not_reached();
11487 }
11488 case 14:
11489 switch (mode) {
11490 case ARM_CPU_MODE_USR:
11491 case ARM_CPU_MODE_SYS:
11492 case ARM_CPU_MODE_HYP:
11493 return 14;
11494 case ARM_CPU_MODE_IRQ:
11495 return 16;
11496 case ARM_CPU_MODE_SVC:
11497 return 18;
11498 case ARM_CPU_MODE_ABT:
11499 return 20;
11500 case ARM_CPU_MODE_UND:
11501 return 22;
11502 case ARM_CPU_MODE_FIQ:
11503 return 30;
11504 default:
11505 g_assert_not_reached();
11506 }
11507 case 15:
11508 return 31;
11509 default:
11510 g_assert_not_reached();
11511 }
11512 }
11513
cpsr_read_for_spsr_elx(CPUARMState * env)11514 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11515 {
11516 uint32_t ret = cpsr_read(env);
11517
11518 /* Move DIT to the correct location for SPSR_ELx */
11519 if (ret & CPSR_DIT) {
11520 ret &= ~CPSR_DIT;
11521 ret |= PSTATE_DIT;
11522 }
11523 /* Merge PSTATE.SS into SPSR_ELx */
11524 ret |= env->pstate & PSTATE_SS;
11525
11526 return ret;
11527 }
11528
syndrome_is_sync_extabt(uint32_t syndrome)11529 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11530 {
11531 /* Return true if this syndrome value is a synchronous external abort */
11532 switch (syn_get_ec(syndrome)) {
11533 case EC_INSNABORT:
11534 case EC_INSNABORT_SAME_EL:
11535 case EC_DATAABORT:
11536 case EC_DATAABORT_SAME_EL:
11537 /* Look at fault status code for all the synchronous ext abort cases */
11538 switch (syndrome & 0x3f) {
11539 case 0x10:
11540 case 0x13:
11541 case 0x14:
11542 case 0x15:
11543 case 0x16:
11544 case 0x17:
11545 return true;
11546 default:
11547 return false;
11548 }
11549 default:
11550 return false;
11551 }
11552 }
11553
11554 /* Handle exception entry to a target EL which is using AArch64 */
arm_cpu_do_interrupt_aarch64(CPUState * cs)11555 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11556 {
11557 ARMCPU *cpu = ARM_CPU(cs);
11558 CPUARMState *env = &cpu->env;
11559 unsigned int new_el = env->exception.target_el;
11560 target_ulong addr = env->cp15.vbar_el[new_el];
11561 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11562 unsigned int old_mode;
11563 unsigned int cur_el = arm_current_el(env);
11564 int rt;
11565
11566 if (tcg_enabled()) {
11567 /*
11568 * Note that new_el can never be 0. If cur_el is 0, then
11569 * el0_a64 is is_a64(), else el0_a64 is ignored.
11570 */
11571 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11572 }
11573
11574 if (cur_el < new_el) {
11575 /*
11576 * Entry vector offset depends on whether the implemented EL
11577 * immediately lower than the target level is using AArch32 or AArch64
11578 */
11579 bool is_aa64;
11580 uint64_t hcr;
11581
11582 switch (new_el) {
11583 case 3:
11584 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11585 break;
11586 case 2:
11587 hcr = arm_hcr_el2_eff(env);
11588 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11589 is_aa64 = (hcr & HCR_RW) != 0;
11590 break;
11591 }
11592 /* fall through */
11593 case 1:
11594 is_aa64 = is_a64(env);
11595 break;
11596 default:
11597 g_assert_not_reached();
11598 }
11599
11600 if (is_aa64) {
11601 addr += 0x400;
11602 } else {
11603 addr += 0x600;
11604 }
11605 } else if (pstate_read(env) & PSTATE_SP) {
11606 addr += 0x200;
11607 }
11608
11609 switch (cs->exception_index) {
11610 case EXCP_GPC:
11611 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11612 env->cp15.mfar_el3);
11613 /* fall through */
11614 case EXCP_PREFETCH_ABORT:
11615 case EXCP_DATA_ABORT:
11616 /*
11617 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11618 * to be taken to the SError vector entrypoint.
11619 */
11620 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11621 syndrome_is_sync_extabt(env->exception.syndrome)) {
11622 addr += 0x180;
11623 }
11624 env->cp15.far_el[new_el] = env->exception.vaddress;
11625 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11626 env->cp15.far_el[new_el]);
11627 /* fall through */
11628 case EXCP_BKPT:
11629 case EXCP_UDEF:
11630 case EXCP_SWI:
11631 case EXCP_HVC:
11632 case EXCP_HYP_TRAP:
11633 case EXCP_SMC:
11634 switch (syn_get_ec(env->exception.syndrome)) {
11635 case EC_ADVSIMDFPACCESSTRAP:
11636 /*
11637 * QEMU internal FP/SIMD syndromes from AArch32 include the
11638 * TA and coproc fields which are only exposed if the exception
11639 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11640 * AArch64 format syndrome.
11641 */
11642 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11643 break;
11644 case EC_CP14RTTRAP:
11645 case EC_CP15RTTRAP:
11646 case EC_CP14DTTRAP:
11647 /*
11648 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11649 * the raw register field from the insn; when taking this to
11650 * AArch64 we must convert it to the AArch64 view of the register
11651 * number. Notice that we read a 4-bit AArch32 register number and
11652 * write back a 5-bit AArch64 one.
11653 */
11654 rt = extract32(env->exception.syndrome, 5, 4);
11655 rt = aarch64_regnum(env, rt);
11656 env->exception.syndrome = deposit32(env->exception.syndrome,
11657 5, 5, rt);
11658 break;
11659 case EC_CP15RRTTRAP:
11660 case EC_CP14RRTTRAP:
11661 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11662 rt = extract32(env->exception.syndrome, 5, 4);
11663 rt = aarch64_regnum(env, rt);
11664 env->exception.syndrome = deposit32(env->exception.syndrome,
11665 5, 5, rt);
11666 rt = extract32(env->exception.syndrome, 10, 4);
11667 rt = aarch64_regnum(env, rt);
11668 env->exception.syndrome = deposit32(env->exception.syndrome,
11669 10, 5, rt);
11670 break;
11671 }
11672 env->cp15.esr_el[new_el] = env->exception.syndrome;
11673 break;
11674 case EXCP_IRQ:
11675 case EXCP_VIRQ:
11676 case EXCP_NMI:
11677 case EXCP_VINMI:
11678 addr += 0x80;
11679 break;
11680 case EXCP_FIQ:
11681 case EXCP_VFIQ:
11682 case EXCP_VFNMI:
11683 addr += 0x100;
11684 break;
11685 case EXCP_VSERR:
11686 addr += 0x180;
11687 /* Construct the SError syndrome from IDS and ISS fields. */
11688 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11689 env->cp15.esr_el[new_el] = env->exception.syndrome;
11690 break;
11691 default:
11692 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11693 }
11694
11695 if (is_a64(env)) {
11696 old_mode = pstate_read(env);
11697 aarch64_save_sp(env, arm_current_el(env));
11698 env->elr_el[new_el] = env->pc;
11699
11700 if (cur_el == 1 && new_el == 1) {
11701 uint64_t hcr = arm_hcr_el2_eff(env);
11702 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
11703 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
11704 /*
11705 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
11706 * by setting M[3:2] to 0b10.
11707 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
11708 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
11709 */
11710 old_mode = deposit32(old_mode, 2, 2, 2);
11711 }
11712 }
11713 } else {
11714 old_mode = cpsr_read_for_spsr_elx(env);
11715 env->elr_el[new_el] = env->regs[15];
11716
11717 aarch64_sync_32_to_64(env);
11718
11719 env->condexec_bits = 0;
11720 }
11721 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11722
11723 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
11724 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11725 env->elr_el[new_el]);
11726
11727 if (cpu_isar_feature(aa64_pan, cpu)) {
11728 /* The value of PSTATE.PAN is normally preserved, except when ... */
11729 new_mode |= old_mode & PSTATE_PAN;
11730 switch (new_el) {
11731 case 2:
11732 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11733 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11734 != (HCR_E2H | HCR_TGE)) {
11735 break;
11736 }
11737 /* fall through */
11738 case 1:
11739 /* ... the target is EL1 ... */
11740 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11741 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11742 new_mode |= PSTATE_PAN;
11743 }
11744 break;
11745 }
11746 }
11747 if (cpu_isar_feature(aa64_mte, cpu)) {
11748 new_mode |= PSTATE_TCO;
11749 }
11750
11751 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11752 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11753 new_mode |= PSTATE_SSBS;
11754 } else {
11755 new_mode &= ~PSTATE_SSBS;
11756 }
11757 }
11758
11759 if (cpu_isar_feature(aa64_nmi, cpu)) {
11760 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) {
11761 new_mode |= PSTATE_ALLINT;
11762 } else {
11763 new_mode &= ~PSTATE_ALLINT;
11764 }
11765 }
11766
11767 pstate_write(env, PSTATE_DAIF | new_mode);
11768 env->aarch64 = true;
11769 aarch64_restore_sp(env, new_el);
11770
11771 if (tcg_enabled()) {
11772 helper_rebuild_hflags_a64(env, new_el);
11773 }
11774
11775 env->pc = addr;
11776
11777 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11778 new_el, env->pc, pstate_read(env));
11779 }
11780
11781 /*
11782 * Do semihosting call and set the appropriate return value. All the
11783 * permission and validity checks have been done at translate time.
11784 *
11785 * We only see semihosting exceptions in TCG only as they are not
11786 * trapped to the hypervisor in KVM.
11787 */
11788 #ifdef CONFIG_TCG
tcg_handle_semihosting(CPUState * cs)11789 static void tcg_handle_semihosting(CPUState *cs)
11790 {
11791 ARMCPU *cpu = ARM_CPU(cs);
11792 CPUARMState *env = &cpu->env;
11793
11794 if (is_a64(env)) {
11795 qemu_log_mask(CPU_LOG_INT,
11796 "...handling as semihosting call 0x%" PRIx64 "\n",
11797 env->xregs[0]);
11798 do_common_semihosting(cs);
11799 env->pc += 4;
11800 } else {
11801 qemu_log_mask(CPU_LOG_INT,
11802 "...handling as semihosting call 0x%x\n",
11803 env->regs[0]);
11804 do_common_semihosting(cs);
11805 env->regs[15] += env->thumb ? 2 : 4;
11806 }
11807 }
11808 #endif
11809
11810 /*
11811 * Handle a CPU exception for A and R profile CPUs.
11812 * Do any appropriate logging, handle PSCI calls, and then hand off
11813 * to the AArch64-entry or AArch32-entry function depending on the
11814 * target exception level's register width.
11815 *
11816 * Note: this is used for both TCG (as the do_interrupt tcg op),
11817 * and KVM to re-inject guest debug exceptions, and to
11818 * inject a Synchronous-External-Abort.
11819 */
arm_cpu_do_interrupt(CPUState * cs)11820 void arm_cpu_do_interrupt(CPUState *cs)
11821 {
11822 ARMCPU *cpu = ARM_CPU(cs);
11823 CPUARMState *env = &cpu->env;
11824 unsigned int new_el = env->exception.target_el;
11825
11826 assert(!arm_feature(env, ARM_FEATURE_M));
11827
11828 arm_log_exception(cs);
11829 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11830 new_el);
11831 if (qemu_loglevel_mask(CPU_LOG_INT)
11832 && !excp_is_internal(cs->exception_index)) {
11833 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11834 syn_get_ec(env->exception.syndrome),
11835 env->exception.syndrome);
11836 }
11837
11838 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11839 arm_handle_psci_call(cpu);
11840 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11841 return;
11842 }
11843
11844 /*
11845 * Semihosting semantics depend on the register width of the code
11846 * that caused the exception, not the target exception level, so
11847 * must be handled here.
11848 */
11849 #ifdef CONFIG_TCG
11850 if (cs->exception_index == EXCP_SEMIHOST) {
11851 tcg_handle_semihosting(cs);
11852 return;
11853 }
11854 #endif
11855
11856 /*
11857 * Hooks may change global state so BQL should be held, also the
11858 * BQL needs to be held for any modification of
11859 * cs->interrupt_request.
11860 */
11861 g_assert(bql_locked());
11862
11863 arm_call_pre_el_change_hook(cpu);
11864
11865 assert(!excp_is_internal(cs->exception_index));
11866 if (arm_el_is_aa64(env, new_el)) {
11867 arm_cpu_do_interrupt_aarch64(cs);
11868 } else {
11869 arm_cpu_do_interrupt_aarch32(cs);
11870 }
11871
11872 arm_call_el_change_hook(cpu);
11873
11874 if (!kvm_enabled()) {
11875 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11876 }
11877 }
11878 #endif /* !CONFIG_USER_ONLY */
11879
arm_sctlr(CPUARMState * env,int el)11880 uint64_t arm_sctlr(CPUARMState *env, int el)
11881 {
11882 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0 or EL3&0 */
11883 if (el == 0) {
11884 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11885 switch (mmu_idx) {
11886 case ARMMMUIdx_E20_0:
11887 el = 2;
11888 break;
11889 case ARMMMUIdx_E30_0:
11890 el = 3;
11891 break;
11892 default:
11893 el = 1;
11894 break;
11895 }
11896 }
11897 return env->cp15.sctlr_el[el];
11898 }
11899
aa64_va_parameter_tbi(uint64_t tcr,ARMMMUIdx mmu_idx)11900 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11901 {
11902 if (regime_has_2_ranges(mmu_idx)) {
11903 return extract64(tcr, 37, 2);
11904 } else if (regime_is_stage2(mmu_idx)) {
11905 return 0; /* VTCR_EL2 */
11906 } else {
11907 /* Replicate the single TBI bit so we always have 2 bits. */
11908 return extract32(tcr, 20, 1) * 3;
11909 }
11910 }
11911
aa64_va_parameter_tbid(uint64_t tcr,ARMMMUIdx mmu_idx)11912 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11913 {
11914 if (regime_has_2_ranges(mmu_idx)) {
11915 return extract64(tcr, 51, 2);
11916 } else if (regime_is_stage2(mmu_idx)) {
11917 return 0; /* VTCR_EL2 */
11918 } else {
11919 /* Replicate the single TBID bit so we always have 2 bits. */
11920 return extract32(tcr, 29, 1) * 3;
11921 }
11922 }
11923
aa64_va_parameter_tcma(uint64_t tcr,ARMMMUIdx mmu_idx)11924 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11925 {
11926 if (regime_has_2_ranges(mmu_idx)) {
11927 return extract64(tcr, 57, 2);
11928 } else {
11929 /* Replicate the single TCMA bit so we always have 2 bits. */
11930 return extract32(tcr, 30, 1) * 3;
11931 }
11932 }
11933
tg0_to_gran_size(int tg)11934 static ARMGranuleSize tg0_to_gran_size(int tg)
11935 {
11936 switch (tg) {
11937 case 0:
11938 return Gran4K;
11939 case 1:
11940 return Gran64K;
11941 case 2:
11942 return Gran16K;
11943 default:
11944 return GranInvalid;
11945 }
11946 }
11947
tg1_to_gran_size(int tg)11948 static ARMGranuleSize tg1_to_gran_size(int tg)
11949 {
11950 switch (tg) {
11951 case 1:
11952 return Gran16K;
11953 case 2:
11954 return Gran4K;
11955 case 3:
11956 return Gran64K;
11957 default:
11958 return GranInvalid;
11959 }
11960 }
11961
have4k(ARMCPU * cpu,bool stage2)11962 static inline bool have4k(ARMCPU *cpu, bool stage2)
11963 {
11964 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11965 : cpu_isar_feature(aa64_tgran4, cpu);
11966 }
11967
have16k(ARMCPU * cpu,bool stage2)11968 static inline bool have16k(ARMCPU *cpu, bool stage2)
11969 {
11970 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11971 : cpu_isar_feature(aa64_tgran16, cpu);
11972 }
11973
have64k(ARMCPU * cpu,bool stage2)11974 static inline bool have64k(ARMCPU *cpu, bool stage2)
11975 {
11976 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11977 : cpu_isar_feature(aa64_tgran64, cpu);
11978 }
11979
sanitize_gran_size(ARMCPU * cpu,ARMGranuleSize gran,bool stage2)11980 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11981 bool stage2)
11982 {
11983 switch (gran) {
11984 case Gran4K:
11985 if (have4k(cpu, stage2)) {
11986 return gran;
11987 }
11988 break;
11989 case Gran16K:
11990 if (have16k(cpu, stage2)) {
11991 return gran;
11992 }
11993 break;
11994 case Gran64K:
11995 if (have64k(cpu, stage2)) {
11996 return gran;
11997 }
11998 break;
11999 case GranInvalid:
12000 break;
12001 }
12002 /*
12003 * If the guest selects a granule size that isn't implemented,
12004 * the architecture requires that we behave as if it selected one
12005 * that is (with an IMPDEF choice of which one to pick). We choose
12006 * to implement the smallest supported granule size.
12007 */
12008 if (have4k(cpu, stage2)) {
12009 return Gran4K;
12010 }
12011 if (have16k(cpu, stage2)) {
12012 return Gran16K;
12013 }
12014 assert(have64k(cpu, stage2));
12015 return Gran64K;
12016 }
12017
aa64_va_parameters(CPUARMState * env,uint64_t va,ARMMMUIdx mmu_idx,bool data,bool el1_is_aa32)12018 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
12019 ARMMMUIdx mmu_idx, bool data,
12020 bool el1_is_aa32)
12021 {
12022 uint64_t tcr = regime_tcr(env, mmu_idx);
12023 bool epd, hpd, tsz_oob, ds, ha, hd;
12024 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
12025 ARMGranuleSize gran;
12026 ARMCPU *cpu = env_archcpu(env);
12027 bool stage2 = regime_is_stage2(mmu_idx);
12028
12029 if (!regime_has_2_ranges(mmu_idx)) {
12030 select = 0;
12031 tsz = extract32(tcr, 0, 6);
12032 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
12033 if (stage2) {
12034 /* VTCR_EL2 */
12035 hpd = false;
12036 } else {
12037 hpd = extract32(tcr, 24, 1);
12038 }
12039 epd = false;
12040 sh = extract32(tcr, 12, 2);
12041 ps = extract32(tcr, 16, 3);
12042 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
12043 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
12044 ds = extract64(tcr, 32, 1);
12045 } else {
12046 bool e0pd;
12047
12048 /*
12049 * Bit 55 is always between the two regions, and is canonical for
12050 * determining if address tagging is enabled.
12051 */
12052 select = extract64(va, 55, 1);
12053 if (!select) {
12054 tsz = extract32(tcr, 0, 6);
12055 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
12056 epd = extract32(tcr, 7, 1);
12057 sh = extract32(tcr, 12, 2);
12058 hpd = extract64(tcr, 41, 1);
12059 e0pd = extract64(tcr, 55, 1);
12060 } else {
12061 tsz = extract32(tcr, 16, 6);
12062 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
12063 epd = extract32(tcr, 23, 1);
12064 sh = extract32(tcr, 28, 2);
12065 hpd = extract64(tcr, 42, 1);
12066 e0pd = extract64(tcr, 56, 1);
12067 }
12068 ps = extract64(tcr, 32, 3);
12069 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
12070 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
12071 ds = extract64(tcr, 59, 1);
12072
12073 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
12074 regime_is_user(env, mmu_idx)) {
12075 epd = true;
12076 }
12077 }
12078
12079 gran = sanitize_gran_size(cpu, gran, stage2);
12080
12081 if (cpu_isar_feature(aa64_st, cpu)) {
12082 max_tsz = 48 - (gran == Gran64K);
12083 } else {
12084 max_tsz = 39;
12085 }
12086
12087 /*
12088 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
12089 * adjust the effective value of DS, as documented.
12090 */
12091 min_tsz = 16;
12092 if (gran == Gran64K) {
12093 if (cpu_isar_feature(aa64_lva, cpu)) {
12094 min_tsz = 12;
12095 }
12096 ds = false;
12097 } else if (ds) {
12098 if (regime_is_stage2(mmu_idx)) {
12099 if (gran == Gran16K) {
12100 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
12101 } else {
12102 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
12103 }
12104 } else {
12105 if (gran == Gran16K) {
12106 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
12107 } else {
12108 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
12109 }
12110 }
12111 if (ds) {
12112 min_tsz = 12;
12113 }
12114 }
12115
12116 if (stage2 && el1_is_aa32) {
12117 /*
12118 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
12119 * are loosened: a configured IPA of 40 bits is permitted even if
12120 * the implemented PA is less than that (and so a 40 bit IPA would
12121 * fault for an AArch64 EL1). See R_DTLMN.
12122 */
12123 min_tsz = MIN(min_tsz, 24);
12124 }
12125
12126 if (tsz > max_tsz) {
12127 tsz = max_tsz;
12128 tsz_oob = true;
12129 } else if (tsz < min_tsz) {
12130 tsz = min_tsz;
12131 tsz_oob = true;
12132 } else {
12133 tsz_oob = false;
12134 }
12135
12136 /* Present TBI as a composite with TBID. */
12137 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12138 if (!data) {
12139 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12140 }
12141 tbi = (tbi >> select) & 1;
12142
12143 return (ARMVAParameters) {
12144 .tsz = tsz,
12145 .ps = ps,
12146 .sh = sh,
12147 .select = select,
12148 .tbi = tbi,
12149 .epd = epd,
12150 .hpd = hpd,
12151 .tsz_oob = tsz_oob,
12152 .ds = ds,
12153 .ha = ha,
12154 .hd = ha && hd,
12155 .gran = gran,
12156 };
12157 }
12158
12159 /*
12160 * Note that signed overflow is undefined in C. The following routines are
12161 * careful to use unsigned types where modulo arithmetic is required.
12162 * Failure to do so _will_ break on newer gcc.
12163 */
12164
12165 /* Signed saturating arithmetic. */
12166
12167 /* Perform 16-bit signed saturating addition. */
add16_sat(uint16_t a,uint16_t b)12168 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12169 {
12170 uint16_t res;
12171
12172 res = a + b;
12173 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12174 if (a & 0x8000) {
12175 res = 0x8000;
12176 } else {
12177 res = 0x7fff;
12178 }
12179 }
12180 return res;
12181 }
12182
12183 /* Perform 8-bit signed saturating addition. */
add8_sat(uint8_t a,uint8_t b)12184 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12185 {
12186 uint8_t res;
12187
12188 res = a + b;
12189 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12190 if (a & 0x80) {
12191 res = 0x80;
12192 } else {
12193 res = 0x7f;
12194 }
12195 }
12196 return res;
12197 }
12198
12199 /* Perform 16-bit signed saturating subtraction. */
sub16_sat(uint16_t a,uint16_t b)12200 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12201 {
12202 uint16_t res;
12203
12204 res = a - b;
12205 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12206 if (a & 0x8000) {
12207 res = 0x8000;
12208 } else {
12209 res = 0x7fff;
12210 }
12211 }
12212 return res;
12213 }
12214
12215 /* Perform 8-bit signed saturating subtraction. */
sub8_sat(uint8_t a,uint8_t b)12216 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12217 {
12218 uint8_t res;
12219
12220 res = a - b;
12221 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12222 if (a & 0x80) {
12223 res = 0x80;
12224 } else {
12225 res = 0x7f;
12226 }
12227 }
12228 return res;
12229 }
12230
12231 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12232 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12233 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12234 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12235 #define PFX q
12236
12237 #include "op_addsub.h"
12238
12239 /* Unsigned saturating arithmetic. */
add16_usat(uint16_t a,uint16_t b)12240 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12241 {
12242 uint16_t res;
12243 res = a + b;
12244 if (res < a) {
12245 res = 0xffff;
12246 }
12247 return res;
12248 }
12249
sub16_usat(uint16_t a,uint16_t b)12250 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12251 {
12252 if (a > b) {
12253 return a - b;
12254 } else {
12255 return 0;
12256 }
12257 }
12258
add8_usat(uint8_t a,uint8_t b)12259 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12260 {
12261 uint8_t res;
12262 res = a + b;
12263 if (res < a) {
12264 res = 0xff;
12265 }
12266 return res;
12267 }
12268
sub8_usat(uint8_t a,uint8_t b)12269 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12270 {
12271 if (a > b) {
12272 return a - b;
12273 } else {
12274 return 0;
12275 }
12276 }
12277
12278 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12279 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12280 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12281 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12282 #define PFX uq
12283
12284 #include "op_addsub.h"
12285
12286 /* Signed modulo arithmetic. */
12287 #define SARITH16(a, b, n, op) do { \
12288 int32_t sum; \
12289 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12290 RESULT(sum, n, 16); \
12291 if (sum >= 0) \
12292 ge |= 3 << (n * 2); \
12293 } while (0)
12294
12295 #define SARITH8(a, b, n, op) do { \
12296 int32_t sum; \
12297 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12298 RESULT(sum, n, 8); \
12299 if (sum >= 0) \
12300 ge |= 1 << n; \
12301 } while (0)
12302
12303
12304 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12305 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12306 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12307 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12308 #define PFX s
12309 #define ARITH_GE
12310
12311 #include "op_addsub.h"
12312
12313 /* Unsigned modulo arithmetic. */
12314 #define ADD16(a, b, n) do { \
12315 uint32_t sum; \
12316 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12317 RESULT(sum, n, 16); \
12318 if ((sum >> 16) == 1) \
12319 ge |= 3 << (n * 2); \
12320 } while (0)
12321
12322 #define ADD8(a, b, n) do { \
12323 uint32_t sum; \
12324 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12325 RESULT(sum, n, 8); \
12326 if ((sum >> 8) == 1) \
12327 ge |= 1 << n; \
12328 } while (0)
12329
12330 #define SUB16(a, b, n) do { \
12331 uint32_t sum; \
12332 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12333 RESULT(sum, n, 16); \
12334 if ((sum >> 16) == 0) \
12335 ge |= 3 << (n * 2); \
12336 } while (0)
12337
12338 #define SUB8(a, b, n) do { \
12339 uint32_t sum; \
12340 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12341 RESULT(sum, n, 8); \
12342 if ((sum >> 8) == 0) \
12343 ge |= 1 << n; \
12344 } while (0)
12345
12346 #define PFX u
12347 #define ARITH_GE
12348
12349 #include "op_addsub.h"
12350
12351 /* Halved signed arithmetic. */
12352 #define ADD16(a, b, n) \
12353 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12354 #define SUB16(a, b, n) \
12355 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12356 #define ADD8(a, b, n) \
12357 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12358 #define SUB8(a, b, n) \
12359 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12360 #define PFX sh
12361
12362 #include "op_addsub.h"
12363
12364 /* Halved unsigned arithmetic. */
12365 #define ADD16(a, b, n) \
12366 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12367 #define SUB16(a, b, n) \
12368 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12369 #define ADD8(a, b, n) \
12370 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12371 #define SUB8(a, b, n) \
12372 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12373 #define PFX uh
12374
12375 #include "op_addsub.h"
12376
do_usad(uint8_t a,uint8_t b)12377 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12378 {
12379 if (a > b) {
12380 return a - b;
12381 } else {
12382 return b - a;
12383 }
12384 }
12385
12386 /* Unsigned sum of absolute byte differences. */
HELPER(usad8)12387 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12388 {
12389 uint32_t sum;
12390 sum = do_usad(a, b);
12391 sum += do_usad(a >> 8, b >> 8);
12392 sum += do_usad(a >> 16, b >> 16);
12393 sum += do_usad(a >> 24, b >> 24);
12394 return sum;
12395 }
12396
12397 /* For ARMv6 SEL instruction. */
HELPER(sel_flags)12398 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12399 {
12400 uint32_t mask;
12401
12402 mask = 0;
12403 if (flags & 1) {
12404 mask |= 0xff;
12405 }
12406 if (flags & 2) {
12407 mask |= 0xff00;
12408 }
12409 if (flags & 4) {
12410 mask |= 0xff0000;
12411 }
12412 if (flags & 8) {
12413 mask |= 0xff000000;
12414 }
12415 return (a & mask) | (b & ~mask);
12416 }
12417
12418 /*
12419 * CRC helpers.
12420 * The upper bytes of val (above the number specified by 'bytes') must have
12421 * been zeroed out by the caller.
12422 */
HELPER(crc32)12423 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12424 {
12425 uint8_t buf[4];
12426
12427 stl_le_p(buf, val);
12428
12429 /* zlib crc32 converts the accumulator and output to one's complement. */
12430 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12431 }
12432
HELPER(crc32c)12433 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12434 {
12435 uint8_t buf[4];
12436
12437 stl_le_p(buf, val);
12438
12439 /* Linux crc32c converts the output to one's complement. */
12440 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12441 }
12442
12443 /*
12444 * Return the exception level to which FP-disabled exceptions should
12445 * be taken, or 0 if FP is enabled.
12446 */
fp_exception_el(CPUARMState * env,int cur_el)12447 int fp_exception_el(CPUARMState *env, int cur_el)
12448 {
12449 #ifndef CONFIG_USER_ONLY
12450 uint64_t hcr_el2;
12451
12452 /*
12453 * CPACR and the CPTR registers don't exist before v6, so FP is
12454 * always accessible
12455 */
12456 if (!arm_feature(env, ARM_FEATURE_V6)) {
12457 return 0;
12458 }
12459
12460 if (arm_feature(env, ARM_FEATURE_M)) {
12461 /* CPACR can cause a NOCP UsageFault taken to current security state */
12462 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12463 return 1;
12464 }
12465
12466 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12467 if (!extract32(env->v7m.nsacr, 10, 1)) {
12468 /* FP insns cause a NOCP UsageFault taken to Secure */
12469 return 3;
12470 }
12471 }
12472
12473 return 0;
12474 }
12475
12476 hcr_el2 = arm_hcr_el2_eff(env);
12477
12478 /*
12479 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12480 * 0, 2 : trap EL0 and EL1/PL1 accesses
12481 * 1 : trap only EL0 accesses
12482 * 3 : trap no accesses
12483 * This register is ignored if E2H+TGE are both set.
12484 */
12485 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12486 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
12487
12488 switch (fpen) {
12489 case 1:
12490 if (cur_el != 0) {
12491 break;
12492 }
12493 /* fall through */
12494 case 0:
12495 case 2:
12496 /* Trap from Secure PL0 or PL1 to Secure PL1. */
12497 if (!arm_el_is_aa64(env, 3)
12498 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
12499 return 3;
12500 }
12501 if (cur_el <= 1) {
12502 return 1;
12503 }
12504 break;
12505 }
12506 }
12507
12508 /*
12509 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12510 * to control non-secure access to the FPU. It doesn't have any
12511 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12512 */
12513 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12514 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12515 if (!extract32(env->cp15.nsacr, 10, 1)) {
12516 /* FP insns act as UNDEF */
12517 return cur_el == 2 ? 2 : 1;
12518 }
12519 }
12520
12521 /*
12522 * CPTR_EL2 is present in v7VE or v8, and changes format
12523 * with HCR_EL2.E2H (regardless of TGE).
12524 */
12525 if (cur_el <= 2) {
12526 if (hcr_el2 & HCR_E2H) {
12527 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12528 case 1:
12529 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12530 break;
12531 }
12532 /* fall through */
12533 case 0:
12534 case 2:
12535 return 2;
12536 }
12537 } else if (arm_is_el2_enabled(env)) {
12538 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12539 return 2;
12540 }
12541 }
12542 }
12543
12544 /* CPTR_EL3 : present in v8 */
12545 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12546 /* Trap all FP ops to EL3 */
12547 return 3;
12548 }
12549 #endif
12550 return 0;
12551 }
12552
12553 /* Return the exception level we're running at if this is our mmu_idx */
arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)12554 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12555 {
12556 if (mmu_idx & ARM_MMU_IDX_M) {
12557 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12558 }
12559
12560 switch (mmu_idx) {
12561 case ARMMMUIdx_E10_0:
12562 case ARMMMUIdx_E20_0:
12563 case ARMMMUIdx_E30_0:
12564 return 0;
12565 case ARMMMUIdx_E10_1:
12566 case ARMMMUIdx_E10_1_PAN:
12567 return 1;
12568 case ARMMMUIdx_E2:
12569 case ARMMMUIdx_E20_2:
12570 case ARMMMUIdx_E20_2_PAN:
12571 return 2;
12572 case ARMMMUIdx_E3:
12573 case ARMMMUIdx_E30_3_PAN:
12574 return 3;
12575 default:
12576 g_assert_not_reached();
12577 }
12578 }
12579
12580 #ifndef CONFIG_TCG
arm_v7m_mmu_idx_for_secstate(CPUARMState * env,bool secstate)12581 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12582 {
12583 g_assert_not_reached();
12584 }
12585 #endif
12586
arm_mmu_idx_el(CPUARMState * env,int el)12587 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12588 {
12589 ARMMMUIdx idx;
12590 uint64_t hcr;
12591
12592 if (arm_feature(env, ARM_FEATURE_M)) {
12593 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12594 }
12595
12596 /* See ARM pseudo-function ELIsInHost. */
12597 switch (el) {
12598 case 0:
12599 hcr = arm_hcr_el2_eff(env);
12600 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12601 idx = ARMMMUIdx_E20_0;
12602 } else if (arm_is_secure_below_el3(env) &&
12603 !arm_el_is_aa64(env, 3)) {
12604 idx = ARMMMUIdx_E30_0;
12605 } else {
12606 idx = ARMMMUIdx_E10_0;
12607 }
12608 break;
12609 case 1:
12610 if (arm_pan_enabled(env)) {
12611 idx = ARMMMUIdx_E10_1_PAN;
12612 } else {
12613 idx = ARMMMUIdx_E10_1;
12614 }
12615 break;
12616 case 2:
12617 /* Note that TGE does not apply at EL2. */
12618 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12619 if (arm_pan_enabled(env)) {
12620 idx = ARMMMUIdx_E20_2_PAN;
12621 } else {
12622 idx = ARMMMUIdx_E20_2;
12623 }
12624 } else {
12625 idx = ARMMMUIdx_E2;
12626 }
12627 break;
12628 case 3:
12629 if (!arm_el_is_aa64(env, 3) && arm_pan_enabled(env)) {
12630 return ARMMMUIdx_E30_3_PAN;
12631 }
12632 return ARMMMUIdx_E3;
12633 default:
12634 g_assert_not_reached();
12635 }
12636
12637 return idx;
12638 }
12639
arm_mmu_idx(CPUARMState * env)12640 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12641 {
12642 return arm_mmu_idx_el(env, arm_current_el(env));
12643 }
12644
mve_no_pred(CPUARMState * env)12645 static bool mve_no_pred(CPUARMState *env)
12646 {
12647 /*
12648 * Return true if there is definitely no predication of MVE
12649 * instructions by VPR or LTPSIZE. (Returning false even if there
12650 * isn't any predication is OK; generated code will just be
12651 * a little worse.)
12652 * If the CPU does not implement MVE then this TB flag is always 0.
12653 *
12654 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12655 * logic in gen_update_fp_context() needs to be updated to match.
12656 *
12657 * We do not include the effect of the ECI bits here -- they are
12658 * tracked in other TB flags. This simplifies the logic for
12659 * "when did we emit code that changes the MVE_NO_PRED TB flag
12660 * and thus need to end the TB?".
12661 */
12662 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12663 return false;
12664 }
12665 if (env->v7m.vpr) {
12666 return false;
12667 }
12668 if (env->v7m.ltpsize < 4) {
12669 return false;
12670 }
12671 return true;
12672 }
12673
cpu_get_tb_cpu_state(CPUARMState * env,vaddr * pc,uint64_t * cs_base,uint32_t * pflags)12674 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12675 uint64_t *cs_base, uint32_t *pflags)
12676 {
12677 CPUARMTBFlags flags;
12678
12679 assert_hflags_rebuild_correctly(env);
12680 flags = env->hflags;
12681
12682 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12683 *pc = env->pc;
12684 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12685 DP_TBFLAG_A64(flags, BTYPE, env->btype);
12686 }
12687 } else {
12688 *pc = env->regs[15];
12689
12690 if (arm_feature(env, ARM_FEATURE_M)) {
12691 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12692 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12693 != env->v7m.secure) {
12694 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12695 }
12696
12697 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12698 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12699 (env->v7m.secure &&
12700 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12701 /*
12702 * ASPEN is set, but FPCA/SFPA indicate that there is no
12703 * active FP context; we must create a new FP context before
12704 * executing any FP insn.
12705 */
12706 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12707 }
12708
12709 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12710 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12711 DP_TBFLAG_M32(flags, LSPACT, 1);
12712 }
12713
12714 if (mve_no_pred(env)) {
12715 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12716 }
12717 } else {
12718 /*
12719 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12720 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12721 */
12722 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12723 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12724 } else {
12725 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12726 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12727 }
12728 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12729 DP_TBFLAG_A32(flags, VFPEN, 1);
12730 }
12731 }
12732
12733 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12734 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12735 }
12736
12737 /*
12738 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12739 * states defined in the ARM ARM for software singlestep:
12740 * SS_ACTIVE PSTATE.SS State
12741 * 0 x Inactive (the TB flag for SS is always 0)
12742 * 1 0 Active-pending
12743 * 1 1 Active-not-pending
12744 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12745 */
12746 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12747 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12748 }
12749
12750 *pflags = flags.flags;
12751 *cs_base = flags.flags2;
12752 }
12753
12754 #ifdef TARGET_AARCH64
12755 /*
12756 * The manual says that when SVE is enabled and VQ is widened the
12757 * implementation is allowed to zero the previously inaccessible
12758 * portion of the registers. The corollary to that is that when
12759 * SVE is enabled and VQ is narrowed we are also allowed to zero
12760 * the now inaccessible portion of the registers.
12761 *
12762 * The intent of this is that no predicate bit beyond VQ is ever set.
12763 * Which means that some operations on predicate registers themselves
12764 * may operate on full uint64_t or even unrolled across the maximum
12765 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12766 * may well be cheaper than conditionals to restrict the operation
12767 * to the relevant portion of a uint16_t[16].
12768 */
aarch64_sve_narrow_vq(CPUARMState * env,unsigned vq)12769 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12770 {
12771 int i, j;
12772 uint64_t pmask;
12773
12774 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12775 assert(vq <= env_archcpu(env)->sve_max_vq);
12776
12777 /* Zap the high bits of the zregs. */
12778 for (i = 0; i < 32; i++) {
12779 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12780 }
12781
12782 /* Zap the high bits of the pregs and ffr. */
12783 pmask = 0;
12784 if (vq & 3) {
12785 pmask = ~(-1ULL << (16 * (vq & 3)));
12786 }
12787 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12788 for (i = 0; i < 17; ++i) {
12789 env->vfp.pregs[i].p[j] &= pmask;
12790 }
12791 pmask = 0;
12792 }
12793 }
12794
sve_vqm1_for_el_sm_ena(CPUARMState * env,int el,bool sm)12795 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12796 {
12797 int exc_el;
12798
12799 if (sm) {
12800 exc_el = sme_exception_el(env, el);
12801 } else {
12802 exc_el = sve_exception_el(env, el);
12803 }
12804 if (exc_el) {
12805 return 0; /* disabled */
12806 }
12807 return sve_vqm1_for_el_sm(env, el, sm);
12808 }
12809
12810 /*
12811 * Notice a change in SVE vector size when changing EL.
12812 */
aarch64_sve_change_el(CPUARMState * env,int old_el,int new_el,bool el0_a64)12813 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12814 int new_el, bool el0_a64)
12815 {
12816 ARMCPU *cpu = env_archcpu(env);
12817 int old_len, new_len;
12818 bool old_a64, new_a64, sm;
12819
12820 /* Nothing to do if no SVE. */
12821 if (!cpu_isar_feature(aa64_sve, cpu)) {
12822 return;
12823 }
12824
12825 /* Nothing to do if FP is disabled in either EL. */
12826 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12827 return;
12828 }
12829
12830 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12831 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12832
12833 /*
12834 * Both AArch64.TakeException and AArch64.ExceptionReturn
12835 * invoke ResetSVEState when taking an exception from, or
12836 * returning to, AArch32 state when PSTATE.SM is enabled.
12837 */
12838 sm = FIELD_EX64(env->svcr, SVCR, SM);
12839 if (old_a64 != new_a64 && sm) {
12840 arm_reset_sve_state(env);
12841 return;
12842 }
12843
12844 /*
12845 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12846 * at ELx, or not available because the EL is in AArch32 state, then
12847 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12848 * has an effective value of 0".
12849 *
12850 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12851 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12852 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12853 * we already have the correct register contents when encountering the
12854 * vq0->vq0 transition between EL0->EL1.
12855 */
12856 old_len = new_len = 0;
12857 if (old_a64) {
12858 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12859 }
12860 if (new_a64) {
12861 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12862 }
12863
12864 /* When changing vector length, clear inaccessible state. */
12865 if (new_len < old_len) {
12866 aarch64_sve_narrow_vq(env, new_len + 1);
12867 }
12868 }
12869 #endif
12870
12871 #ifndef CONFIG_USER_ONLY
arm_security_space(CPUARMState * env)12872 ARMSecuritySpace arm_security_space(CPUARMState *env)
12873 {
12874 if (arm_feature(env, ARM_FEATURE_M)) {
12875 return arm_secure_to_space(env->v7m.secure);
12876 }
12877
12878 /*
12879 * If EL3 is not supported then the secure state is implementation
12880 * defined, in which case QEMU defaults to non-secure.
12881 */
12882 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12883 return ARMSS_NonSecure;
12884 }
12885
12886 /* Check for AArch64 EL3 or AArch32 Mon. */
12887 if (is_a64(env)) {
12888 if (extract32(env->pstate, 2, 2) == 3) {
12889 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12890 return ARMSS_Root;
12891 } else {
12892 return ARMSS_Secure;
12893 }
12894 }
12895 } else {
12896 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12897 return ARMSS_Secure;
12898 }
12899 }
12900
12901 return arm_security_space_below_el3(env);
12902 }
12903
arm_security_space_below_el3(CPUARMState * env)12904 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12905 {
12906 assert(!arm_feature(env, ARM_FEATURE_M));
12907
12908 /*
12909 * If EL3 is not supported then the secure state is implementation
12910 * defined, in which case QEMU defaults to non-secure.
12911 */
12912 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12913 return ARMSS_NonSecure;
12914 }
12915
12916 /*
12917 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12918 * Ignoring NSE when !NS retains consistency without having to
12919 * modify other predicates.
12920 */
12921 if (!(env->cp15.scr_el3 & SCR_NS)) {
12922 return ARMSS_Secure;
12923 } else if (env->cp15.scr_el3 & SCR_NSE) {
12924 return ARMSS_Realm;
12925 } else {
12926 return ARMSS_NonSecure;
12927 }
12928 }
12929 #endif /* !CONFIG_USER_ONLY */
12930