1 //===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that SystemZ uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
15 #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
16
17 #include "SystemZ.h"
18 #include "SystemZInstrInfo.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include <optional>
23
24 namespace llvm {
25 namespace SystemZISD {
26 enum NodeType : unsigned {
27 FIRST_NUMBER = ISD::BUILTIN_OP_END,
28
29 // Return with a flag operand. Operand 0 is the chain operand.
30 RET_FLAG,
31
32 // Calls a function. Operand 0 is the chain operand and operand 1
33 // is the target address. The arguments start at operand 2.
34 // There is an optional glue operand at the end.
35 CALL,
36 SIBCALL,
37
38 // TLS calls. Like regular calls, except operand 1 is the TLS symbol.
39 // (The call target is implicitly __tls_get_offset.)
40 TLS_GDCALL,
41 TLS_LDCALL,
42
43 // Wraps a TargetGlobalAddress that should be loaded using PC-relative
44 // accesses (LARL). Operand 0 is the address.
45 PCREL_WRAPPER,
46
47 // Used in cases where an offset is applied to a TargetGlobalAddress.
48 // Operand 0 is the full TargetGlobalAddress and operand 1 is a
49 // PCREL_WRAPPER for an anchor point. This is used so that we can
50 // cheaply refer to either the full address or the anchor point
51 // as a register base.
52 PCREL_OFFSET,
53
54 // Integer comparisons. There are three operands: the two values
55 // to compare, and an integer of type SystemZICMP.
56 ICMP,
57
58 // Floating-point comparisons. The two operands are the values to compare.
59 FCMP,
60
61 // Test under mask. The first operand is ANDed with the second operand
62 // and the condition codes are set on the result. The third operand is
63 // a boolean that is true if the condition codes need to distinguish
64 // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
65 // register forms do but the memory forms don't).
66 TM,
67
68 // Branches if a condition is true. Operand 0 is the chain operand;
69 // operand 1 is the 4-bit condition-code mask, with bit N in
70 // big-endian order meaning "branch if CC=N"; operand 2 is the
71 // target block and operand 3 is the flag operand.
72 BR_CCMASK,
73
74 // Selects between operand 0 and operand 1. Operand 2 is the
75 // mask of condition-code values for which operand 0 should be
76 // chosen over operand 1; it has the same form as BR_CCMASK.
77 // Operand 3 is the flag operand.
78 SELECT_CCMASK,
79
80 // Evaluates to the gap between the stack pointer and the
81 // base of the dynamically-allocatable area.
82 ADJDYNALLOC,
83
84 // For allocating stack space when using stack clash protector.
85 // Allocation is performed by block, and each block is probed.
86 PROBED_ALLOCA,
87
88 // Count number of bits set in operand 0 per byte.
89 POPCNT,
90
91 // Wrappers around the ISD opcodes of the same name. The output is GR128.
92 // Input operands may be GR64 or GR32, depending on the instruction.
93 SMUL_LOHI,
94 UMUL_LOHI,
95 SDIVREM,
96 UDIVREM,
97
98 // Add/subtract with overflow/carry. These have the same operands as
99 // the corresponding standard operations, except with the carry flag
100 // replaced by a condition code value.
101 SADDO, SSUBO, UADDO, USUBO, ADDCARRY, SUBCARRY,
102
103 // Set the condition code from a boolean value in operand 0.
104 // Operand 1 is a mask of all condition-code values that may result of this
105 // operation, operand 2 is a mask of condition-code values that may result
106 // if the boolean is true.
107 // Note that this operation is always optimized away, we will never
108 // generate any code for it.
109 GET_CCMASK,
110
111 // Use a series of MVCs to copy bytes from one memory location to another.
112 // The operands are:
113 // - the target address
114 // - the source address
115 // - the constant length
116 //
117 // This isn't a memory opcode because we'd need to attach two
118 // MachineMemOperands rather than one.
119 MVC,
120
121 // Similar to MVC, but for logic operations (AND, OR, XOR).
122 NC,
123 OC,
124 XC,
125
126 // Use CLC to compare two blocks of memory, with the same comments
127 // as for MVC.
128 CLC,
129
130 // Use MVC to set a block of memory after storing the first byte.
131 MEMSET_MVC,
132
133 // Use an MVST-based sequence to implement stpcpy().
134 STPCPY,
135
136 // Use a CLST-based sequence to implement strcmp(). The two input operands
137 // are the addresses of the strings to compare.
138 STRCMP,
139
140 // Use an SRST-based sequence to search a block of memory. The first
141 // operand is the end address, the second is the start, and the third
142 // is the character to search for. CC is set to 1 on success and 2
143 // on failure.
144 SEARCH_STRING,
145
146 // Store the CC value in bits 29 and 28 of an integer.
147 IPM,
148
149 // Transaction begin. The first operand is the chain, the second
150 // the TDB pointer, and the third the immediate control field.
151 // Returns CC value and chain.
152 TBEGIN,
153 TBEGIN_NOFLOAT,
154
155 // Transaction end. Just the chain operand. Returns CC value and chain.
156 TEND,
157
158 // Create a vector constant by filling byte N of the result with bit
159 // 15-N of the single operand.
160 BYTE_MASK,
161
162 // Create a vector constant by replicating an element-sized RISBG-style mask.
163 // The first operand specifies the starting set bit and the second operand
164 // specifies the ending set bit. Both operands count from the MSB of the
165 // element.
166 ROTATE_MASK,
167
168 // Replicate a GPR scalar value into all elements of a vector.
169 REPLICATE,
170
171 // Create a vector from two i64 GPRs.
172 JOIN_DWORDS,
173
174 // Replicate one element of a vector into all elements. The first operand
175 // is the vector and the second is the index of the element to replicate.
176 SPLAT,
177
178 // Interleave elements from the high half of operand 0 and the high half
179 // of operand 1.
180 MERGE_HIGH,
181
182 // Likewise for the low halves.
183 MERGE_LOW,
184
185 // Concatenate the vectors in the first two operands, shift them left
186 // by the third operand, and take the first half of the result.
187 SHL_DOUBLE,
188
189 // Take one element of the first v2i64 operand and the one element of
190 // the second v2i64 operand and concatenate them to form a v2i64 result.
191 // The third operand is a 4-bit value of the form 0A0B, where A and B
192 // are the element selectors for the first operand and second operands
193 // respectively.
194 PERMUTE_DWORDS,
195
196 // Perform a general vector permute on vector operands 0 and 1.
197 // Each byte of operand 2 controls the corresponding byte of the result,
198 // in the same way as a byte-level VECTOR_SHUFFLE mask.
199 PERMUTE,
200
201 // Pack vector operands 0 and 1 into a single vector with half-sized elements.
202 PACK,
203
204 // Likewise, but saturate the result and set CC. PACKS_CC does signed
205 // saturation and PACKLS_CC does unsigned saturation.
206 PACKS_CC,
207 PACKLS_CC,
208
209 // Unpack the first half of vector operand 0 into double-sized elements.
210 // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
211 UNPACK_HIGH,
212 UNPACKL_HIGH,
213
214 // Likewise for the second half.
215 UNPACK_LOW,
216 UNPACKL_LOW,
217
218 // Shift each element of vector operand 0 by the number of bits specified
219 // by scalar operand 1.
220 VSHL_BY_SCALAR,
221 VSRL_BY_SCALAR,
222 VSRA_BY_SCALAR,
223
224 // For each element of the output type, sum across all sub-elements of
225 // operand 0 belonging to the corresponding element, and add in the
226 // rightmost sub-element of the corresponding element of operand 1.
227 VSUM,
228
229 // Compare integer vector operands 0 and 1 to produce the usual 0/-1
230 // vector result. VICMPE is for equality, VICMPH for "signed greater than"
231 // and VICMPHL for "unsigned greater than".
232 VICMPE,
233 VICMPH,
234 VICMPHL,
235
236 // Likewise, but also set the condition codes on the result.
237 VICMPES,
238 VICMPHS,
239 VICMPHLS,
240
241 // Compare floating-point vector operands 0 and 1 to produce the usual 0/-1
242 // vector result. VFCMPE is for "ordered and equal", VFCMPH for "ordered and
243 // greater than" and VFCMPHE for "ordered and greater than or equal to".
244 VFCMPE,
245 VFCMPH,
246 VFCMPHE,
247
248 // Likewise, but also set the condition codes on the result.
249 VFCMPES,
250 VFCMPHS,
251 VFCMPHES,
252
253 // Test floating-point data class for vectors.
254 VFTCI,
255
256 // Extend the even f32 elements of vector operand 0 to produce a vector
257 // of f64 elements.
258 VEXTEND,
259
260 // Round the f64 elements of vector operand 0 to f32s and store them in the
261 // even elements of the result.
262 VROUND,
263
264 // AND the two vector operands together and set CC based on the result.
265 VTM,
266
267 // String operations that set CC as a side-effect.
268 VFAE_CC,
269 VFAEZ_CC,
270 VFEE_CC,
271 VFEEZ_CC,
272 VFENE_CC,
273 VFENEZ_CC,
274 VISTR_CC,
275 VSTRC_CC,
276 VSTRCZ_CC,
277 VSTRS_CC,
278 VSTRSZ_CC,
279
280 // Test Data Class.
281 //
282 // Operand 0: the value to test
283 // Operand 1: the bit mask
284 TDC,
285
286 // Strict variants of scalar floating-point comparisons.
287 // Quiet and signaling versions.
288 STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE,
289 STRICT_FCMPS,
290
291 // Strict variants of vector floating-point comparisons.
292 // Quiet and signaling versions.
293 STRICT_VFCMPE,
294 STRICT_VFCMPH,
295 STRICT_VFCMPHE,
296 STRICT_VFCMPES,
297 STRICT_VFCMPHS,
298 STRICT_VFCMPHES,
299
300 // Strict variants of VEXTEND and VROUND.
301 STRICT_VEXTEND,
302 STRICT_VROUND,
303
304 // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
305 // ATOMIC_LOAD_<op>.
306 //
307 // Operand 0: the address of the containing 32-bit-aligned field
308 // Operand 1: the second operand of <op>, in the high bits of an i32
309 // for everything except ATOMIC_SWAPW
310 // Operand 2: how many bits to rotate the i32 left to bring the first
311 // operand into the high bits
312 // Operand 3: the negative of operand 2, for rotating the other way
313 // Operand 4: the width of the field in bits (8 or 16)
314 ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
315 ATOMIC_LOADW_ADD,
316 ATOMIC_LOADW_SUB,
317 ATOMIC_LOADW_AND,
318 ATOMIC_LOADW_OR,
319 ATOMIC_LOADW_XOR,
320 ATOMIC_LOADW_NAND,
321 ATOMIC_LOADW_MIN,
322 ATOMIC_LOADW_MAX,
323 ATOMIC_LOADW_UMIN,
324 ATOMIC_LOADW_UMAX,
325
326 // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
327 //
328 // Operand 0: the address of the containing 32-bit-aligned field
329 // Operand 1: the compare value, in the low bits of an i32
330 // Operand 2: the swap value, in the low bits of an i32
331 // Operand 3: how many bits to rotate the i32 left to bring the first
332 // operand into the high bits
333 // Operand 4: the negative of operand 2, for rotating the other way
334 // Operand 5: the width of the field in bits (8 or 16)
335 ATOMIC_CMP_SWAPW,
336
337 // Atomic compare-and-swap returning CC value.
338 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
339 ATOMIC_CMP_SWAP,
340
341 // 128-bit atomic load.
342 // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
343 ATOMIC_LOAD_128,
344
345 // 128-bit atomic store.
346 // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
347 ATOMIC_STORE_128,
348
349 // 128-bit atomic compare-and-swap.
350 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
351 ATOMIC_CMP_SWAP_128,
352
353 // Byte swapping load/store. Same operands as regular load/store.
354 LRV, STRV,
355
356 // Element swapping load/store. Same operands as regular load/store.
357 VLER, VSTER,
358
359 // Prefetch from the second operand using the 4-bit control code in
360 // the first operand. The code is 1 for a load prefetch and 2 for
361 // a store prefetch.
362 PREFETCH
363 };
364
365 // Return true if OPCODE is some kind of PC-relative address.
isPCREL(unsigned Opcode)366 inline bool isPCREL(unsigned Opcode) {
367 return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
368 }
369 } // end namespace SystemZISD
370
371 namespace SystemZICMP {
372 // Describes whether an integer comparison needs to be signed or unsigned,
373 // or whether either type is OK.
374 enum {
375 Any,
376 UnsignedOnly,
377 SignedOnly
378 };
379 } // end namespace SystemZICMP
380
381 class SystemZSubtarget;
382
383 class SystemZTargetLowering : public TargetLowering {
384 public:
385 explicit SystemZTargetLowering(const TargetMachine &TM,
386 const SystemZSubtarget &STI);
387
388 bool useSoftFloat() const override;
389
390 // Override TargetLowering.
getScalarShiftAmountTy(const DataLayout &,EVT)391 MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
392 return MVT::i32;
393 }
getVectorIdxTy(const DataLayout & DL)394 MVT getVectorIdxTy(const DataLayout &DL) const override {
395 // Only the lower 12 bits of an element index are used, so we don't
396 // want to clobber the upper 32 bits of a GPR unnecessarily.
397 return MVT::i32;
398 }
getPreferredVectorAction(MVT VT)399 TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
400 const override {
401 // Widen subvectors to the full width rather than promoting integer
402 // elements. This is better because:
403 //
404 // (a) it means that we can handle the ABI for passing and returning
405 // sub-128 vectors without having to handle them as legal types.
406 //
407 // (b) we don't have instructions to extend on load and truncate on store,
408 // so promoting the integers is less efficient.
409 //
410 // (c) there are no multiplication instructions for the widest integer
411 // type (v2i64).
412 if (VT.getScalarSizeInBits() % 8 == 0)
413 return TypeWidenVector;
414 return TargetLoweringBase::getPreferredVectorAction(VT);
415 }
416 unsigned
getNumRegisters(LLVMContext & Context,EVT VT,std::optional<MVT> RegisterVT)417 getNumRegisters(LLVMContext &Context, EVT VT,
418 std::optional<MVT> RegisterVT) const override {
419 // i128 inline assembly operand.
420 if (VT == MVT::i128 && RegisterVT && *RegisterVT == MVT::Untyped)
421 return 1;
422 return TargetLowering::getNumRegisters(Context, VT);
423 }
isCheapToSpeculateCtlz(Type *)424 bool isCheapToSpeculateCtlz(Type *) const override { return true; }
preferZeroCompareBranch()425 bool preferZeroCompareBranch() const override { return true; }
hasBitPreservingFPLogic(EVT VT)426 bool hasBitPreservingFPLogic(EVT VT) const override {
427 EVT ScVT = VT.getScalarType();
428 return ScVT == MVT::f32 || ScVT == MVT::f64 || ScVT == MVT::f128;
429 }
isMaskAndCmp0FoldingBeneficial(const Instruction & AndI)430 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override {
431 ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
432 return Mask && Mask->getValue().isIntN(16);
433 }
convertSetCCLogicToBitwiseLogic(EVT VT)434 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
435 return VT.isScalarInteger();
436 }
437 EVT getSetCCResultType(const DataLayout &DL, LLVMContext &,
438 EVT) const override;
439 bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
440 EVT VT) const override;
441 bool isFPImmLegal(const APFloat &Imm, EVT VT,
442 bool ForCodeSize) const override;
ShouldShrinkFPConstant(EVT VT)443 bool ShouldShrinkFPConstant(EVT VT) const override {
444 // Do not shrink 64-bit FP constpool entries since LDEB is slower than
445 // LD, and having the full constant in memory enables reg/mem opcodes.
446 return VT != MVT::f64;
447 }
448 bool hasInlineStackProbe(const MachineFunction &MF) const override;
449 bool isLegalICmpImmediate(int64_t Imm) const override;
450 bool isLegalAddImmediate(int64_t Imm) const override;
451 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
452 unsigned AS,
453 Instruction *I = nullptr) const override;
454 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment,
455 MachineMemOperand::Flags Flags,
456 unsigned *Fast) const override;
457 bool
458 findOptimalMemOpLowering(std::vector<EVT> &MemOps, unsigned Limit,
459 const MemOp &Op, unsigned DstAS, unsigned SrcAS,
460 const AttributeList &FuncAttributes) const override;
461 EVT getOptimalMemOpType(const MemOp &Op,
462 const AttributeList &FuncAttributes) const override;
463 bool isTruncateFree(Type *, Type *) const override;
isTruncateFree(EVT,EVT)464 bool isTruncateFree(EVT, EVT) const override;
465
466 bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
467 bool MathUsed) const override {
468 // Form add and sub with overflow intrinsics regardless of any extra
469 // users of the math result.
470 return VT == MVT::i32 || VT == MVT::i64;
471 }
472
shouldConsiderGEPOffsetSplit()473 bool shouldConsiderGEPOffsetSplit() const override { return true; }
474
475 const char *getTargetNodeName(unsigned Opcode) const override;
476 std::pair<unsigned, const TargetRegisterClass *>
477 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
478 StringRef Constraint, MVT VT) const override;
479 TargetLowering::ConstraintType
480 getConstraintType(StringRef Constraint) const override;
481 TargetLowering::ConstraintWeight
482 getSingleConstraintMatchWeight(AsmOperandInfo &info,
483 const char *constraint) const override;
484 void LowerAsmOperandForConstraint(SDValue Op,
485 std::string &Constraint,
486 std::vector<SDValue> &Ops,
487 SelectionDAG &DAG) const override;
488
getInlineAsmMemConstraint(StringRef ConstraintCode)489 unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
490 if (ConstraintCode.size() == 1) {
491 switch(ConstraintCode[0]) {
492 default:
493 break;
494 case 'o':
495 return InlineAsm::Constraint_o;
496 case 'Q':
497 return InlineAsm::Constraint_Q;
498 case 'R':
499 return InlineAsm::Constraint_R;
500 case 'S':
501 return InlineAsm::Constraint_S;
502 case 'T':
503 return InlineAsm::Constraint_T;
504 }
505 } else if (ConstraintCode.size() == 2 && ConstraintCode[0] == 'Z') {
506 switch (ConstraintCode[1]) {
507 default:
508 break;
509 case 'Q':
510 return InlineAsm::Constraint_ZQ;
511 case 'R':
512 return InlineAsm::Constraint_ZR;
513 case 'S':
514 return InlineAsm::Constraint_ZS;
515 case 'T':
516 return InlineAsm::Constraint_ZT;
517 }
518 }
519 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
520 }
521
522 Register getRegisterByName(const char *RegName, LLT VT,
523 const MachineFunction &MF) const override;
524
525 /// If a physical register, this returns the register that receives the
526 /// exception address on entry to an EH pad.
527 Register
getExceptionPointerRegister(const Constant * PersonalityFn)528 getExceptionPointerRegister(const Constant *PersonalityFn) const override {
529 return SystemZ::R6D;
530 }
531
532 /// If a physical register, this returns the register that receives the
533 /// exception typeid on entry to a landing pad.
534 Register
getExceptionSelectorRegister(const Constant * PersonalityFn)535 getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
536 return SystemZ::R7D;
537 }
538
539 /// Override to support customized stack guard loading.
useLoadStackGuardNode()540 bool useLoadStackGuardNode() const override {
541 return true;
542 }
insertSSPDeclarations(Module & M)543 void insertSSPDeclarations(Module &M) const override {
544 }
545
546 MachineBasicBlock *
547 EmitInstrWithCustomInserter(MachineInstr &MI,
548 MachineBasicBlock *BB) const override;
549 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
550 void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
551 SelectionDAG &DAG) const override;
552 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
553 SelectionDAG &DAG) const override;
554 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
555 bool allowTruncateForTailCall(Type *, Type *) const override;
556 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
557 bool splitValueIntoRegisterParts(
558 SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
559 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC)
560 const override;
561 SDValue joinRegisterPartsIntoValue(
562 SelectionDAG & DAG, const SDLoc &DL, const SDValue *Parts,
563 unsigned NumParts, MVT PartVT, EVT ValueVT,
564 std::optional<CallingConv::ID> CC) const override;
565 SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
566 bool isVarArg,
567 const SmallVectorImpl<ISD::InputArg> &Ins,
568 const SDLoc &DL, SelectionDAG &DAG,
569 SmallVectorImpl<SDValue> &InVals) const override;
570 SDValue LowerCall(CallLoweringInfo &CLI,
571 SmallVectorImpl<SDValue> &InVals) const override;
572
573 std::pair<SDValue, SDValue>
574 makeExternalCall(SDValue Chain, SelectionDAG &DAG, const char *CalleeName,
575 EVT RetVT, ArrayRef<SDValue> Ops, CallingConv::ID CallConv,
576 bool IsSigned, SDLoc DL, bool DoesNotReturn,
577 bool IsReturnValueUsed) const;
578
579 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
580 bool isVarArg,
581 const SmallVectorImpl<ISD::OutputArg> &Outs,
582 LLVMContext &Context) const override;
583 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
584 const SmallVectorImpl<ISD::OutputArg> &Outs,
585 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
586 SelectionDAG &DAG) const override;
587 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
588
589 /// Determine which of the bits specified in Mask are known to be either
590 /// zero or one and return them in the KnownZero/KnownOne bitsets.
591 void computeKnownBitsForTargetNode(const SDValue Op,
592 KnownBits &Known,
593 const APInt &DemandedElts,
594 const SelectionDAG &DAG,
595 unsigned Depth = 0) const override;
596
597 /// Determine the number of bits in the operation that are sign bits.
598 unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
599 const APInt &DemandedElts,
600 const SelectionDAG &DAG,
601 unsigned Depth) const override;
602
getExtendForAtomicOps()603 ISD::NodeType getExtendForAtomicOps() const override {
604 return ISD::ANY_EXTEND;
605 }
getExtendForAtomicCmpSwapArg()606 ISD::NodeType getExtendForAtomicCmpSwapArg() const override {
607 return ISD::ZERO_EXTEND;
608 }
609
supportSwiftError()610 bool supportSwiftError() const override {
611 return true;
612 }
613
614 unsigned getStackProbeSize(const MachineFunction &MF) const;
615
616 private:
617 const SystemZSubtarget &Subtarget;
618
619 // Implement LowerOperation for individual opcodes.
620 SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
621 const SDLoc &DL, EVT VT,
622 SDValue CmpOp0, SDValue CmpOp1, SDValue Chain) const;
623 SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL,
624 EVT VT, ISD::CondCode CC,
625 SDValue CmpOp0, SDValue CmpOp1,
626 SDValue Chain = SDValue(),
627 bool IsSignaling = false) const;
628 SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
629 SDValue lowerSTRICT_FSETCC(SDValue Op, SelectionDAG &DAG,
630 bool IsSignaling) const;
631 SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
632 SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
633 SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
634 SelectionDAG &DAG) const;
635 SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node,
636 SelectionDAG &DAG, unsigned Opcode,
637 SDValue GOTOffset) const;
638 SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const;
639 SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
640 SelectionDAG &DAG) const;
641 SDValue lowerBlockAddress(BlockAddressSDNode *Node,
642 SelectionDAG &DAG) const;
643 SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
644 SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
645 SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
646 SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
647 SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
648 SDValue lowerVASTART_ELF(SDValue Op, SelectionDAG &DAG) const;
649 SDValue lowerVASTART_XPLINK(SDValue Op, SelectionDAG &DAG) const;
650 SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
651 SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
652 SDValue lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, SelectionDAG &DAG) const;
653 SDValue lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, SelectionDAG &DAG) const;
654 SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
655 SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
656 SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
657 SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
658 SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
659 SDValue lowerXALUO(SDValue Op, SelectionDAG &DAG) const;
660 SDValue lowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) const;
661 SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
662 SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
663 SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
664 SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
665 SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const;
666 SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
667 SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
668 unsigned Opcode) const;
669 SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
670 SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
671 SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
672 SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
673 SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
674 SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
675 SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
676 bool isVectorElementLoad(SDValue Op) const;
677 SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
678 SmallVectorImpl<SDValue> &Elems) const;
679 SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
680 SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
681 SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
682 SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
683 SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
684 SDValue lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
685 SDValue lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
686 SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const;
687 SDValue lowerIS_FPCLASS(SDValue Op, SelectionDAG &DAG) const;
688 SDValue lowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
689
690 bool canTreatAsByteVector(EVT VT) const;
691 SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp,
692 unsigned Index, DAGCombinerInfo &DCI,
693 bool Force) const;
694 SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op,
695 DAGCombinerInfo &DCI) const;
696 SDValue combineZERO_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
697 SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
698 SDValue combineSIGN_EXTEND_INREG(SDNode *N, DAGCombinerInfo &DCI) const;
699 SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const;
700 bool canLoadStoreByteSwapped(EVT VT) const;
701 SDValue combineLOAD(SDNode *N, DAGCombinerInfo &DCI) const;
702 SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const;
703 SDValue combineVECTOR_SHUFFLE(SDNode *N, DAGCombinerInfo &DCI) const;
704 SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const;
705 SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const;
706 SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const;
707 SDValue combineFP_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
708 SDValue combineINT_TO_FP(SDNode *N, DAGCombinerInfo &DCI) const;
709 SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const;
710 SDValue combineBR_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
711 SDValue combineSELECT_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
712 SDValue combineGET_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
713 SDValue combineIntDIVREM(SDNode *N, DAGCombinerInfo &DCI) const;
714 SDValue combineINTRINSIC(SDNode *N, DAGCombinerInfo &DCI) const;
715
716 SDValue unwrapAddress(SDValue N) const override;
717
718 // If the last instruction before MBBI in MBB was some form of COMPARE,
719 // try to replace it with a COMPARE AND BRANCH just before MBBI.
720 // CCMask and Target are the BRC-like operands for the branch.
721 // Return true if the change was made.
722 bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
723 MachineBasicBlock::iterator MBBI,
724 unsigned CCMask,
725 MachineBasicBlock *Target) const;
726
727 // Implement EmitInstrWithCustomInserter for individual operation types.
728 MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB) const;
729 MachineBasicBlock *emitCondStore(MachineInstr &MI, MachineBasicBlock *BB,
730 unsigned StoreOpcode, unsigned STOCOpcode,
731 bool Invert) const;
732 MachineBasicBlock *emitPair128(MachineInstr &MI,
733 MachineBasicBlock *MBB) const;
734 MachineBasicBlock *emitExt128(MachineInstr &MI, MachineBasicBlock *MBB,
735 bool ClearEven) const;
736 MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI,
737 MachineBasicBlock *BB,
738 unsigned BinOpcode, unsigned BitSize,
739 bool Invert = false) const;
740 MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI,
741 MachineBasicBlock *MBB,
742 unsigned CompareOpcode,
743 unsigned KeepOldMask,
744 unsigned BitSize) const;
745 MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI,
746 MachineBasicBlock *BB) const;
747 MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB,
748 unsigned Opcode,
749 bool IsMemset = false) const;
750 MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB,
751 unsigned Opcode) const;
752 MachineBasicBlock *emitTransactionBegin(MachineInstr &MI,
753 MachineBasicBlock *MBB,
754 unsigned Opcode, bool NoFloat) const;
755 MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI,
756 MachineBasicBlock *MBB,
757 unsigned Opcode) const;
758 MachineBasicBlock *emitProbedAlloca(MachineInstr &MI,
759 MachineBasicBlock *MBB) const;
760
761 SDValue getBackchainAddress(SDValue SP, SelectionDAG &DAG) const;
762
763 MachineMemOperand::Flags
764 getTargetMMOFlags(const Instruction &I) const override;
765 const TargetRegisterClass *getRepRegClassFor(MVT VT) const override;
766 };
767
768 struct SystemZVectorConstantInfo {
769 private:
770 APInt IntBits; // The 128 bits as an integer.
771 APInt SplatBits; // Smallest splat value.
772 APInt SplatUndef; // Bits correspoding to undef operands of the BVN.
773 unsigned SplatBitSize = 0;
774 bool isFP128 = false;
775 public:
776 unsigned Opcode = 0;
777 SmallVector<unsigned, 2> OpVals;
778 MVT VecVT;
779 SystemZVectorConstantInfo(APInt IntImm);
SystemZVectorConstantInfoSystemZVectorConstantInfo780 SystemZVectorConstantInfo(APFloat FPImm)
781 : SystemZVectorConstantInfo(FPImm.bitcastToAPInt()) {
782 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
783 }
784 SystemZVectorConstantInfo(BuildVectorSDNode *BVN);
785 bool isVectorConstantLegal(const SystemZSubtarget &Subtarget);
786 };
787
788 } // end namespace llvm
789
790 #endif
791