1 /*
2 * MIPS internal definitions and helpers
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
6 */
7
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
10
11 #include "exec/memattrs.h"
12 #ifdef CONFIG_TCG
13 #include "tcg/tcg-internal.h"
14 #endif
15 #include "cpu.h"
16
17 /*
18 * MMU types, the first four entries have the same layout as the
19 * CP0C0_MT field.
20 */
21 enum mips_mmu_types {
22 MMU_TYPE_NONE = 0,
23 MMU_TYPE_R4000 = 1, /* Standard TLB */
24 MMU_TYPE_BAT = 2, /* Block Address Translation */
25 MMU_TYPE_FMT = 3, /* Fixed Mapping */
26 MMU_TYPE_DVF = 4, /* Dual VTLB and FTLB */
27 MMU_TYPE_R3000,
28 MMU_TYPE_R6000,
29 MMU_TYPE_R8000
30 };
31
32 struct mips_def_t {
33 const char *name;
34 int32_t CP0_PRid;
35 int32_t CP0_Config0;
36 int32_t CP0_Config1;
37 int32_t CP0_Config2;
38 int32_t CP0_Config3;
39 int32_t CP0_Config4;
40 int32_t CP0_Config4_rw_bitmask;
41 int32_t CP0_Config5;
42 int32_t CP0_Config5_rw_bitmask;
43 int32_t CP0_Config6;
44 int32_t CP0_Config6_rw_bitmask;
45 int32_t CP0_Config7;
46 int32_t CP0_Config7_rw_bitmask;
47 target_ulong CP0_LLAddr_rw_bitmask;
48 int CP0_LLAddr_shift;
49 int32_t SYNCI_Step;
50 /*
51 * @CCRes: rate at which the coprocessor 0 counter increments
52 *
53 * The Count register acts as a timer, incrementing at a constant rate,
54 * whether or not an instruction is executed, retired, or any forward
55 * progress is made through the pipeline. The rate at which the counter
56 * increments is implementation dependent, and is a function of the
57 * pipeline clock of the processor, not the issue width of the processor.
58 */
59 int32_t CCRes;
60 int32_t CP0_Status_rw_bitmask;
61 int32_t CP0_TCStatus_rw_bitmask;
62 int32_t CP0_SRSCtl;
63 int32_t CP1_fcr0;
64 int32_t CP1_fcr31_rw_bitmask;
65 int32_t CP1_fcr31;
66 int32_t MSAIR;
67 int32_t SEGBITS;
68 int32_t PABITS;
69 int32_t CP0_SRSConf0_rw_bitmask;
70 int32_t CP0_SRSConf0;
71 int32_t CP0_SRSConf1_rw_bitmask;
72 int32_t CP0_SRSConf1;
73 int32_t CP0_SRSConf2_rw_bitmask;
74 int32_t CP0_SRSConf2;
75 int32_t CP0_SRSConf3_rw_bitmask;
76 int32_t CP0_SRSConf3;
77 int32_t CP0_SRSConf4_rw_bitmask;
78 int32_t CP0_SRSConf4;
79 int32_t CP0_PageGrain_rw_bitmask;
80 int32_t CP0_PageGrain;
81 target_ulong CP0_EBaseWG_rw_bitmask;
82 uint32_t lcsr_cpucfg1;
83 uint32_t lcsr_cpucfg2;
84 uint64_t insn_flags;
85 enum mips_mmu_types mmu_type;
86 };
87
88 extern const char regnames[32][3];
89 extern const char fregnames[32][4];
90
91 extern const struct mips_def_t mips_defs[];
92 extern const int mips_defs_number;
93
94 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
95 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
96
97 #define USEG_LIMIT ((target_ulong)(int32_t)0x7FFFFFFFUL)
98 #define KSEG0_BASE ((target_ulong)(int32_t)0x80000000UL)
99 #define KSEG1_BASE ((target_ulong)(int32_t)0xA0000000UL)
100 #define KSEG2_BASE ((target_ulong)(int32_t)0xC0000000UL)
101 #define KSEG3_BASE ((target_ulong)(int32_t)0xE0000000UL)
102
103 #if !defined(CONFIG_USER_ONLY)
104
105 enum {
106 TLBRET_XI = -6,
107 TLBRET_RI = -5,
108 TLBRET_DIRTY = -4,
109 TLBRET_INVALID = -3,
110 TLBRET_NOMATCH = -2,
111 TLBRET_BADADDR = -1,
112 TLBRET_MATCH = 0
113 };
114
115 int get_physical_address(CPUMIPSState *env, hwaddr *physical,
116 int *prot, target_ulong real_address,
117 MMUAccessType access_type, int mmu_idx);
118 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
119
120 typedef struct r4k_tlb_t r4k_tlb_t;
121 struct r4k_tlb_t {
122 target_ulong VPN;
123 uint32_t PageMask;
124 uint16_t ASID;
125 uint32_t MMID;
126 unsigned int G:1;
127 unsigned int C0:3;
128 unsigned int C1:3;
129 unsigned int V0:1;
130 unsigned int V1:1;
131 unsigned int D0:1;
132 unsigned int D1:1;
133 unsigned int XI0:1;
134 unsigned int XI1:1;
135 unsigned int RI0:1;
136 unsigned int RI1:1;
137 unsigned int EHINV:1;
138 uint64_t PFN[2];
139 };
140
141 struct CPUMIPSTLBContext {
142 uint32_t nb_tlb;
143 uint32_t tlb_in_use;
144 int (*map_address)(CPUMIPSState *env, hwaddr *physical, int *prot,
145 target_ulong address, MMUAccessType access_type);
146 void (*helper_tlbwi)(CPUMIPSState *env);
147 void (*helper_tlbwr)(CPUMIPSState *env);
148 void (*helper_tlbp)(CPUMIPSState *env);
149 void (*helper_tlbr)(CPUMIPSState *env);
150 void (*helper_tlbinv)(CPUMIPSState *env);
151 void (*helper_tlbinvf)(CPUMIPSState *env);
152 union {
153 struct {
154 r4k_tlb_t tlb[MIPS_TLB_MAX];
155 } r4k;
156 } mmu;
157 };
158
159 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
160 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
161 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
162
163 extern const VMStateDescription vmstate_mips_cpu;
164
165 #endif /* !CONFIG_USER_ONLY */
166
cpu_mips_hw_interrupts_enabled(CPUMIPSState * env)167 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
168 {
169 return (env->CP0_Status & (1 << CP0St_IE)) &&
170 !(env->CP0_Status & (1 << CP0St_EXL)) &&
171 !(env->CP0_Status & (1 << CP0St_ERL)) &&
172 !(env->hflags & MIPS_HFLAG_DM) &&
173 /*
174 * Note that the TCStatus IXMT field is initialized to zero,
175 * and only MT capable cores can set it to one. So we don't
176 * need to check for MT capabilities here.
177 */
178 !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
179 }
180
181 /* Check if there is pending and not masked out interrupt */
cpu_mips_hw_interrupts_pending(CPUMIPSState * env)182 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
183 {
184 int32_t pending;
185 int32_t status;
186 bool r;
187
188 pending = env->CP0_Cause & CP0Ca_IP_mask;
189 status = env->CP0_Status & CP0Ca_IP_mask;
190
191 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
192 /*
193 * A MIPS configured with a vectorizing external interrupt controller
194 * will feed a vector into the Cause pending lines. The core treats
195 * the status lines as a vector level, not as individual masks.
196 */
197 r = pending > status;
198 } else {
199 /*
200 * A MIPS configured with compatibility or VInt (Vectored Interrupts)
201 * treats the pending lines as individual interrupt lines, the status
202 * lines are individual masks.
203 */
204 r = (pending & status) != 0;
205 }
206 return r;
207 }
208
209 void msa_reset(CPUMIPSState *env);
210
211 /* cp0_timer.c */
212 uint32_t cpu_mips_get_count(CPUMIPSState *env);
213 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
214 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
215 void cpu_mips_start_count(CPUMIPSState *env);
216 void cpu_mips_stop_count(CPUMIPSState *env);
217
mips_env_set_pc(CPUMIPSState * env,target_ulong value)218 static inline void mips_env_set_pc(CPUMIPSState *env, target_ulong value)
219 {
220 env->active_tc.PC = value & ~(target_ulong)1;
221 if (value & 1) {
222 env->hflags |= MIPS_HFLAG_M16;
223 } else {
224 env->hflags &= ~(MIPS_HFLAG_M16);
225 }
226 }
227
mips_env_is_bigendian(CPUMIPSState * env)228 static inline bool mips_env_is_bigendian(CPUMIPSState *env)
229 {
230 return extract32(env->CP0_Config0, CP0C0_BE, 1);
231 }
232
mo_endian_env(CPUMIPSState * env)233 static inline MemOp mo_endian_env(CPUMIPSState *env)
234 {
235 return mips_env_is_bigendian(env) ? MO_BE : MO_LE;
236 }
237
restore_pamask(CPUMIPSState * env)238 static inline void restore_pamask(CPUMIPSState *env)
239 {
240 if (env->hflags & MIPS_HFLAG_ELPA) {
241 env->PAMask = (1ULL << env->PABITS) - 1;
242 } else {
243 env->PAMask = PAMASK_BASE;
244 }
245 }
246
mips_vpe_active(CPUMIPSState * env)247 static inline int mips_vpe_active(CPUMIPSState *env)
248 {
249 int active = 1;
250
251 /* Check that the VPE is enabled. */
252 if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
253 active = 0;
254 }
255 /* Check that the VPE is activated. */
256 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
257 active = 0;
258 }
259
260 /*
261 * Now verify that there are active thread contexts in the VPE.
262 *
263 * This assumes the CPU model will internally reschedule threads
264 * if the active one goes to sleep. If there are no threads available
265 * the active one will be in a sleeping state, and we can turn off
266 * the entire VPE.
267 */
268 if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
269 /* TC is not activated. */
270 active = 0;
271 }
272 if (env->active_tc.CP0_TCHalt & 1) {
273 /* TC is in halt state. */
274 active = 0;
275 }
276
277 return active;
278 }
279
mips_vp_active(CPUMIPSState * env)280 static inline int mips_vp_active(CPUMIPSState *env)
281 {
282 CPUState *other_cs = first_cpu;
283
284 /* Check if the VP disabled other VPs (which means the VP is enabled) */
285 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
286 return 1;
287 }
288
289 /* Check if the virtual processor is disabled due to a DVP */
290 CPU_FOREACH(other_cs) {
291 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
292 if ((&other_cpu->env != env) &&
293 ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
294 return 0;
295 }
296 }
297 return 1;
298 }
299
compute_hflags(CPUMIPSState * env)300 static inline void compute_hflags(CPUMIPSState *env)
301 {
302 env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
303 MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
304 MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
305 MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
306 MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
307 if (env->CP0_Status & (1 << CP0St_ERL)) {
308 env->hflags |= MIPS_HFLAG_ERL;
309 }
310 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
311 !(env->CP0_Status & (1 << CP0St_ERL)) &&
312 !(env->hflags & MIPS_HFLAG_DM)) {
313 env->hflags |= (env->CP0_Status >> CP0St_KSU) &
314 MIPS_HFLAG_KSU;
315 }
316 #if defined(TARGET_MIPS64)
317 if ((env->insn_flags & ISA_MIPS3) &&
318 (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
319 (env->CP0_Status & (1 << CP0St_PX)) ||
320 (env->CP0_Status & (1 << CP0St_UX)))) {
321 env->hflags |= MIPS_HFLAG_64;
322 }
323
324 if (!(env->insn_flags & ISA_MIPS3)) {
325 env->hflags |= MIPS_HFLAG_AWRAP;
326 } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
327 !(env->CP0_Status & (1 << CP0St_UX))) {
328 env->hflags |= MIPS_HFLAG_AWRAP;
329 } else if (env->insn_flags & ISA_MIPS_R6) {
330 /* Address wrapping for Supervisor and Kernel is specified in R6 */
331 if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
332 !(env->CP0_Status & (1 << CP0St_SX))) ||
333 (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
334 !(env->CP0_Status & (1 << CP0St_KX)))) {
335 env->hflags |= MIPS_HFLAG_AWRAP;
336 }
337 }
338 #endif
339 if (((env->CP0_Status & (1 << CP0St_CU0)) &&
340 !(env->insn_flags & ISA_MIPS_R6)) ||
341 !(env->hflags & MIPS_HFLAG_KSU)) {
342 env->hflags |= MIPS_HFLAG_CP0;
343 }
344 if (env->CP0_Status & (1 << CP0St_CU1)) {
345 env->hflags |= MIPS_HFLAG_FPU;
346 }
347 if (env->CP0_Status & (1 << CP0St_FR)) {
348 env->hflags |= MIPS_HFLAG_F64;
349 }
350 if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
351 (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
352 env->hflags |= MIPS_HFLAG_SBRI;
353 }
354 if (env->insn_flags & ASE_DSP_R3) {
355 /*
356 * Our cpu supports DSP R3 ASE, so enable
357 * access to DSP R3 resources.
358 */
359 if (env->CP0_Status & (1 << CP0St_MX)) {
360 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
361 MIPS_HFLAG_DSP_R3;
362 }
363 } else if (env->insn_flags & ASE_DSP_R2) {
364 /*
365 * Our cpu supports DSP R2 ASE, so enable
366 * access to DSP R2 resources.
367 */
368 if (env->CP0_Status & (1 << CP0St_MX)) {
369 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
370 }
371
372 } else if (env->insn_flags & ASE_DSP) {
373 /*
374 * Our cpu supports DSP ASE, so enable
375 * access to DSP resources.
376 */
377 if (env->CP0_Status & (1 << CP0St_MX)) {
378 env->hflags |= MIPS_HFLAG_DSP;
379 }
380
381 }
382 if (env->insn_flags & ISA_MIPS_R2) {
383 if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
384 env->hflags |= MIPS_HFLAG_COP1X;
385 }
386 } else if (env->insn_flags & ISA_MIPS_R1) {
387 if (env->hflags & MIPS_HFLAG_64) {
388 env->hflags |= MIPS_HFLAG_COP1X;
389 }
390 } else if (env->insn_flags & ISA_MIPS4) {
391 /*
392 * All supported MIPS IV CPUs use the XX (CU3) to enable
393 * and disable the MIPS IV extensions to the MIPS III ISA.
394 * Some other MIPS IV CPUs ignore the bit, so the check here
395 * would be too restrictive for them.
396 */
397 if (env->CP0_Status & (1U << CP0St_CU3)) {
398 env->hflags |= MIPS_HFLAG_COP1X;
399 }
400 }
401 if (ase_msa_available(env)) {
402 if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
403 env->hflags |= MIPS_HFLAG_MSA;
404 }
405 }
406 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
407 if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
408 env->hflags |= MIPS_HFLAG_FRE;
409 }
410 }
411 if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
412 if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
413 env->hflags |= MIPS_HFLAG_ELPA;
414 }
415 }
416 }
417
418 #endif
419