1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that PPC uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
15 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16 
17 #include "PPCInstrInfo.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/SelectionDAGNodes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/MachineValueType.h"
32 #include <optional>
33 #include <utility>
34 
35 namespace llvm {
36 
37   namespace PPCISD {
38 
39     // When adding a NEW PPCISD node please add it to the correct position in
40     // the enum. The order of elements in this enum matters!
41     // Values that are added after this entry:
42     //     STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
43     // are considered memory opcodes and are treated differently than entries
44     // that come before it. For example, ADD or MUL should be placed before
45     // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
46     // after it.
47   enum NodeType : unsigned {
48     // Start the numbering where the builtin ops and target ops leave off.
49     FIRST_NUMBER = ISD::BUILTIN_OP_END,
50 
51     /// FSEL - Traditional three-operand fsel node.
52     ///
53     FSEL,
54 
55     /// XSMAXC[DQ]P, XSMINC[DQ]P - C-type min/max instructions.
56     XSMAXC,
57     XSMINC,
58 
59     /// FCFID - The FCFID instruction, taking an f64 operand and producing
60     /// and f64 value containing the FP representation of the integer that
61     /// was temporarily in the f64 operand.
62     FCFID,
63 
64     /// Newer FCFID[US] integer-to-floating-point conversion instructions for
65     /// unsigned integers and single-precision outputs.
66     FCFIDU,
67     FCFIDS,
68     FCFIDUS,
69 
70     /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
71     /// operand, producing an f64 value containing the integer representation
72     /// of that FP value.
73     FCTIDZ,
74     FCTIWZ,
75 
76     /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
77     /// unsigned integers with round toward zero.
78     FCTIDUZ,
79     FCTIWUZ,
80 
81     /// Floating-point-to-integer conversion instructions
82     FP_TO_UINT_IN_VSR,
83     FP_TO_SINT_IN_VSR,
84 
85     /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
86     /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
87     VEXTS,
88 
89     /// Reciprocal estimate instructions (unary FP ops).
90     FRE,
91     FRSQRTE,
92 
93     /// Test instruction for software square root.
94     FTSQRT,
95 
96     /// Square root instruction.
97     FSQRT,
98 
99     /// VPERM - The PPC VPERM Instruction.
100     ///
101     VPERM,
102 
103     /// XXSPLT - The PPC VSX splat instructions
104     ///
105     XXSPLT,
106 
107     /// XXSPLTI_SP_TO_DP - The PPC VSX splat instructions for immediates for
108     /// converting immediate single precision numbers to double precision
109     /// vector or scalar.
110     XXSPLTI_SP_TO_DP,
111 
112     /// XXSPLTI32DX - The PPC XXSPLTI32DX instruction.
113     ///
114     XXSPLTI32DX,
115 
116     /// VECINSERT - The PPC vector insert instruction
117     ///
118     VECINSERT,
119 
120     /// VECSHL - The PPC vector shift left instruction
121     ///
122     VECSHL,
123 
124     /// XXPERMDI - The PPC XXPERMDI instruction
125     ///
126     XXPERMDI,
127     XXPERM,
128 
129     /// The CMPB instruction (takes two operands of i32 or i64).
130     CMPB,
131 
132     /// Hi/Lo - These represent the high and low 16-bit parts of a global
133     /// address respectively.  These nodes have two operands, the first of
134     /// which must be a TargetGlobalAddress, and the second of which must be a
135     /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
136     /// though these are usually folded into other nodes.
137     Hi,
138     Lo,
139 
140     /// The following two target-specific nodes are used for calls through
141     /// function pointers in the 64-bit SVR4 ABI.
142 
143     /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
144     /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
145     /// compute an allocation on the stack.
146     DYNALLOC,
147 
148     /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
149     /// compute an offset from native SP to the address  of the most recent
150     /// dynamic alloca.
151     DYNAREAOFFSET,
152 
153     /// To avoid stack clash, allocation is performed by block and each block is
154     /// probed.
155     PROBED_ALLOCA,
156 
157     /// The result of the mflr at function entry, used for PIC code.
158     GlobalBaseReg,
159 
160     /// These nodes represent PPC shifts.
161     ///
162     /// For scalar types, only the last `n + 1` bits of the shift amounts
163     /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
164     /// for exact behaviors.
165     ///
166     /// For vector types, only the last n bits are used. See vsld.
167     SRL,
168     SRA,
169     SHL,
170 
171     /// FNMSUB - Negated multiply-subtract instruction.
172     FNMSUB,
173 
174     /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
175     /// word and shift left immediate.
176     EXTSWSLI,
177 
178     /// The combination of sra[wd]i and addze used to implemented signed
179     /// integer division by a power of 2. The first operand is the dividend,
180     /// and the second is the constant shift amount (representing the
181     /// divisor).
182     SRA_ADDZE,
183 
184     /// CALL - A direct function call.
185     /// CALL_NOP is a call with the special NOP which follows 64-bit
186     /// CALL_NOTOC the caller does not use the TOC.
187     /// SVR4 calls and 32-bit/64-bit AIX calls.
188     CALL,
189     CALL_NOP,
190     CALL_NOTOC,
191 
192     /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
193     /// MTCTR instruction.
194     MTCTR,
195 
196     /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
197     /// BCTRL instruction.
198     BCTRL,
199 
200     /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
201     /// instruction and the TOC reload required on 64-bit ELF, 32-bit AIX
202     /// and 64-bit AIX.
203     BCTRL_LOAD_TOC,
204 
205     /// The variants that implicitly define rounding mode for calls with
206     /// strictfp semantics.
207     CALL_RM,
208     CALL_NOP_RM,
209     CALL_NOTOC_RM,
210     BCTRL_RM,
211     BCTRL_LOAD_TOC_RM,
212 
213     /// Return with a flag operand, matched by 'blr'
214     RET_FLAG,
215 
216     /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
217     /// This copies the bits corresponding to the specified CRREG into the
218     /// resultant GPR.  Bits corresponding to other CR regs are undefined.
219     MFOCRF,
220 
221     /// Direct move from a VSX register to a GPR
222     MFVSR,
223 
224     /// Direct move from a GPR to a VSX register (algebraic)
225     MTVSRA,
226 
227     /// Direct move from a GPR to a VSX register (zero)
228     MTVSRZ,
229 
230     /// Direct move of 2 consecutive GPR to a VSX register.
231     BUILD_FP128,
232 
233     /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
234     /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
235     /// unsupported for this target.
236     /// Merge 2 GPRs to a single SPE register.
237     BUILD_SPE64,
238 
239     /// Extract SPE register component, second argument is high or low.
240     EXTRACT_SPE,
241 
242     /// Extract a subvector from signed integer vector and convert to FP.
243     /// It is primarily used to convert a (widened) illegal integer vector
244     /// type to a legal floating point vector type.
245     /// For example v2i32 -> widened to v4i32 -> v2f64
246     SINT_VEC_TO_FP,
247 
248     /// Extract a subvector from unsigned integer vector and convert to FP.
249     /// As with SINT_VEC_TO_FP, used for converting illegal types.
250     UINT_VEC_TO_FP,
251 
252     /// PowerPC instructions that have SCALAR_TO_VECTOR semantics tend to
253     /// place the value into the least significant element of the most
254     /// significant doubleword in the vector. This is not element zero for
255     /// anything smaller than a doubleword on either endianness. This node has
256     /// the same semantics as SCALAR_TO_VECTOR except that the value remains in
257     /// the aforementioned location in the vector register.
258     SCALAR_TO_VECTOR_PERMUTED,
259 
260     // FIXME: Remove these once the ANDI glue bug is fixed:
261     /// i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
262     /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
263     /// implement truncation of i32 or i64 to i1.
264     ANDI_rec_1_EQ_BIT,
265     ANDI_rec_1_GT_BIT,
266 
267     // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
268     // target (returns (Lo, Hi)). It takes a chain operand.
269     READ_TIME_BASE,
270 
271     // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
272     EH_SJLJ_SETJMP,
273 
274     // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
275     EH_SJLJ_LONGJMP,
276 
277     /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
278     /// instructions.  For lack of better number, we use the opcode number
279     /// encoding for the OPC field to identify the compare.  For example, 838
280     /// is VCMPGTSH.
281     VCMP,
282 
283     /// RESVEC, OUTFLAG = VCMP_rec(LHS, RHS, OPC) - Represents one of the
284     /// altivec VCMP*_rec instructions.  For lack of better number, we use the
285     /// opcode number encoding for the OPC field to identify the compare.  For
286     /// example, 838 is VCMPGTSH.
287     VCMP_rec,
288 
289     /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
290     /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
291     /// condition register to branch on, OPC is the branch opcode to use (e.g.
292     /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
293     /// an optional input flag argument.
294     COND_BRANCH,
295 
296     /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
297     /// loops.
298     BDNZ,
299     BDZ,
300 
301     /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
302     /// towards zero.  Used only as part of the long double-to-int
303     /// conversion sequence.
304     FADDRTZ,
305 
306     /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
307     MFFS,
308 
309     /// TC_RETURN - A tail call return.
310     ///   operand #0 chain
311     ///   operand #1 callee (register or absolute)
312     ///   operand #2 stack adjustment
313     ///   operand #3 optional in flag
314     TC_RETURN,
315 
316     /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
317     CR6SET,
318     CR6UNSET,
319 
320     /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
321     /// for non-position independent code on PPC32.
322     PPC32_GOT,
323 
324     /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
325     /// local dynamic TLS and position indendepent code on PPC32.
326     PPC32_PICGOT,
327 
328     /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
329     /// TLS model, produces an ADDIS8 instruction that adds the GOT
330     /// base to sym\@got\@tprel\@ha.
331     ADDIS_GOT_TPREL_HA,
332 
333     /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
334     /// TLS model, produces a LD instruction with base register G8RReg
335     /// and offset sym\@got\@tprel\@l.  This completes the addition that
336     /// finds the offset of "sym" relative to the thread pointer.
337     LD_GOT_TPREL_L,
338 
339     /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
340     /// model, produces an ADD instruction that adds the contents of
341     /// G8RReg to the thread pointer.  Symbol contains a relocation
342     /// sym\@tls which is to be replaced by the thread pointer and
343     /// identifies to the linker that the instruction is part of a
344     /// TLS sequence.
345     ADD_TLS,
346 
347     /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
348     /// model, produces an ADDIS8 instruction that adds the GOT base
349     /// register to sym\@got\@tlsgd\@ha.
350     ADDIS_TLSGD_HA,
351 
352     /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
353     /// model, produces an ADDI8 instruction that adds G8RReg to
354     /// sym\@got\@tlsgd\@l and stores the result in X3.  Hidden by
355     /// ADDIS_TLSGD_L_ADDR until after register assignment.
356     ADDI_TLSGD_L,
357 
358     /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
359     /// model, produces a call to __tls_get_addr(sym\@tlsgd).  Hidden by
360     /// ADDIS_TLSGD_L_ADDR until after register assignment.
361     GET_TLS_ADDR,
362 
363     /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
364     /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
365     /// register assignment.
366     ADDI_TLSGD_L_ADDR,
367 
368     /// GPRC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY
369     /// G8RC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY
370     /// Op that combines two register copies of TOC entries
371     /// (region handle into R3 and variable offset into R4) followed by a
372     /// GET_TLS_ADDR node which will be expanded to a call to __get_tls_addr.
373     /// This node is used in 64-bit mode as well (in which case the result is
374     /// G8RC and inputs are X3/X4).
375     TLSGD_AIX,
376 
377     /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
378     /// model, produces an ADDIS8 instruction that adds the GOT base
379     /// register to sym\@got\@tlsld\@ha.
380     ADDIS_TLSLD_HA,
381 
382     /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
383     /// model, produces an ADDI8 instruction that adds G8RReg to
384     /// sym\@got\@tlsld\@l and stores the result in X3.  Hidden by
385     /// ADDIS_TLSLD_L_ADDR until after register assignment.
386     ADDI_TLSLD_L,
387 
388     /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
389     /// model, produces a call to __tls_get_addr(sym\@tlsld).  Hidden by
390     /// ADDIS_TLSLD_L_ADDR until after register assignment.
391     GET_TLSLD_ADDR,
392 
393     /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
394     /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
395     /// following register assignment.
396     ADDI_TLSLD_L_ADDR,
397 
398     /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
399     /// model, produces an ADDIS8 instruction that adds X3 to
400     /// sym\@dtprel\@ha.
401     ADDIS_DTPREL_HA,
402 
403     /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
404     /// model, produces an ADDI8 instruction that adds G8RReg to
405     /// sym\@got\@dtprel\@l.
406     ADDI_DTPREL_L,
407 
408     /// G8RC = PADDI_DTPREL %x3, Symbol - For the pc-rel based local-dynamic TLS
409     /// model, produces a PADDI8 instruction that adds X3 to sym\@dtprel.
410     PADDI_DTPREL,
411 
412     /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
413     /// during instruction selection to optimize a BUILD_VECTOR into
414     /// operations on splats.  This is necessary to avoid losing these
415     /// optimizations due to constant folding.
416     VADD_SPLAT,
417 
418     /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
419     /// operand identifies the operating system entry point.
420     SC,
421 
422     /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
423     CLRBHRB,
424 
425     /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
426     /// history rolling buffer entry.
427     MFBHRBE,
428 
429     /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
430     RFEBB,
431 
432     /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
433     /// endian.  Maps to an xxswapd instruction that corrects an lxvd2x
434     /// or stxvd2x instruction.  The chain is necessary because the
435     /// sequence replaces a load and needs to provide the same number
436     /// of outputs.
437     XXSWAPD,
438 
439     /// An SDNode for swaps that are not associated with any loads/stores
440     /// and thereby have no chain.
441     SWAP_NO_CHAIN,
442 
443     /// An SDNode for Power9 vector absolute value difference.
444     /// operand #0 vector
445     /// operand #1 vector
446     /// operand #2 constant i32 0 or 1, to indicate whether needs to patch
447     /// the most significant bit for signed i32
448     ///
449     /// Power9 VABSD* instructions are designed to support unsigned integer
450     /// vectors (byte/halfword/word), if we want to make use of them for signed
451     /// integer vectors, we have to flip their sign bits first. To flip sign bit
452     /// for byte/halfword integer vector would become inefficient, but for word
453     /// integer vector, we can leverage XVNEGSP to make it efficiently. eg:
454     /// abs(sub(a,b)) => VABSDUW(a+0x80000000, b+0x80000000)
455     ///               => VABSDUW((XVNEGSP a), (XVNEGSP b))
456     VABSD,
457 
458     /// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or
459     /// lower (IDX=1) half of v4f32 to v2f64.
460     FP_EXTEND_HALF,
461 
462     /// MAT_PCREL_ADDR = Materialize a PC Relative address. This can be done
463     /// either through an add like PADDI or through a PC Relative load like
464     /// PLD.
465     MAT_PCREL_ADDR,
466 
467     /// TLS_DYNAMIC_MAT_PCREL_ADDR = Materialize a PC Relative address for
468     /// TLS global address when using dynamic access models. This can be done
469     /// through an add like PADDI.
470     TLS_DYNAMIC_MAT_PCREL_ADDR,
471 
472     /// TLS_LOCAL_EXEC_MAT_ADDR = Materialize an address for TLS global address
473     /// when using local exec access models, and when prefixed instructions are
474     /// available. This is used with ADD_TLS to produce an add like PADDI.
475     TLS_LOCAL_EXEC_MAT_ADDR,
476 
477     /// ACC_BUILD = Build an accumulator register from 4 VSX registers.
478     ACC_BUILD,
479 
480     /// PAIR_BUILD = Build a vector pair register from 2 VSX registers.
481     PAIR_BUILD,
482 
483     /// EXTRACT_VSX_REG = Extract one of the underlying vsx registers of
484     /// an accumulator or pair register. This node is needed because
485     /// EXTRACT_SUBVECTOR expects the input and output vectors to have the same
486     /// element type.
487     EXTRACT_VSX_REG,
488 
489     /// XXMFACC = This corresponds to the xxmfacc instruction.
490     XXMFACC,
491 
492     // Constrained conversion from floating point to int
493     STRICT_FCTIDZ = ISD::FIRST_TARGET_STRICTFP_OPCODE,
494     STRICT_FCTIWZ,
495     STRICT_FCTIDUZ,
496     STRICT_FCTIWUZ,
497 
498     /// Constrained integer-to-floating-point conversion instructions.
499     STRICT_FCFID,
500     STRICT_FCFIDU,
501     STRICT_FCFIDS,
502     STRICT_FCFIDUS,
503 
504     /// Constrained floating point add in round-to-zero mode.
505     STRICT_FADDRTZ,
506 
507     // NOTE: The nodes below may require PC-Rel specific patterns if the
508     // address could be PC-Relative. When adding new nodes below, consider
509     // whether or not the address can be PC-Relative and add the corresponding
510     // PC-relative patterns and tests.
511 
512     /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
513     /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
514     /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
515     /// i32.
516     STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
517 
518     /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
519     /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
520     /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
521     /// or i32.
522     LBRX,
523 
524     /// STFIWX - The STFIWX instruction.  The first operand is an input token
525     /// chain, then an f64 value to store, then an address to store it to.
526     STFIWX,
527 
528     /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
529     /// load which sign-extends from a 32-bit integer value into the
530     /// destination 64-bit register.
531     LFIWAX,
532 
533     /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
534     /// load which zero-extends from a 32-bit integer value into the
535     /// destination 64-bit register.
536     LFIWZX,
537 
538     /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
539     /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
540     /// This can be used for converting loaded integers to floating point.
541     LXSIZX,
542 
543     /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
544     /// chain, then an f64 value to store, then an address to store it to,
545     /// followed by a byte-width for the store.
546     STXSIX,
547 
548     /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
549     /// Maps directly to an lxvd2x instruction that will be followed by
550     /// an xxswapd.
551     LXVD2X,
552 
553     /// LXVRZX - Load VSX Vector Rightmost and Zero Extend
554     /// This node represents v1i128 BUILD_VECTOR of a zero extending load
555     /// instruction from <byte, halfword, word, or doubleword> to i128.
556     /// Allows utilization of the Load VSX Vector Rightmost Instructions.
557     LXVRZX,
558 
559     /// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
560     /// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on
561     /// the vector type to load vector in big-endian element order.
562     LOAD_VEC_BE,
563 
564     /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
565     /// v2f32 value into the lower half of a VSR register.
566     LD_VSX_LH,
567 
568     /// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory
569     /// instructions such as LXVDSX, LXVWSX.
570     LD_SPLAT,
571 
572     /// VSRC, CHAIN = ZEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory
573     /// that zero-extends.
574     ZEXT_LD_SPLAT,
575 
576     /// VSRC, CHAIN = SEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory
577     /// that sign-extends.
578     SEXT_LD_SPLAT,
579 
580     /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
581     /// Maps directly to an stxvd2x instruction that will be preceded by
582     /// an xxswapd.
583     STXVD2X,
584 
585     /// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
586     /// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on
587     /// the vector type to store vector in big-endian element order.
588     STORE_VEC_BE,
589 
590     /// Store scalar integers from VSR.
591     ST_VSR_SCAL_INT,
592 
593     /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
594     /// except they ensure that the compare input is zero-extended for
595     /// sub-word versions because the atomic loads zero-extend.
596     ATOMIC_CMP_SWAP_8,
597     ATOMIC_CMP_SWAP_16,
598 
599     /// CHAIN,Glue = STORE_COND CHAIN, GPR, Ptr
600     /// The store conditional instruction ST[BHWD]ARX that produces a glue
601     /// result to attach it to a conditional branch.
602     STORE_COND,
603 
604     /// GPRC = TOC_ENTRY GA, TOC
605     /// Loads the entry for GA from the TOC, where the TOC base is given by
606     /// the last operand.
607     TOC_ENTRY
608   };
609 
610   } // end namespace PPCISD
611 
612   /// Define some predicates that are used for node matching.
613   namespace PPC {
614 
615     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
616     /// VPKUHUM instruction.
617     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
618                               SelectionDAG &DAG);
619 
620     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
621     /// VPKUWUM instruction.
622     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
623                               SelectionDAG &DAG);
624 
625     /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
626     /// VPKUDUM instruction.
627     bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
628                               SelectionDAG &DAG);
629 
630     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
631     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
632     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
633                             unsigned ShuffleKind, SelectionDAG &DAG);
634 
635     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
636     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
637     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
638                             unsigned ShuffleKind, SelectionDAG &DAG);
639 
640     /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
641     /// a VMRGEW or VMRGOW instruction
642     bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
643                              unsigned ShuffleKind, SelectionDAG &DAG);
644     /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
645     /// for a XXSLDWI instruction.
646     bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
647                               bool &Swap, bool IsLE);
648 
649     /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
650     /// for a XXBRH instruction.
651     bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);
652 
653     /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
654     /// for a XXBRW instruction.
655     bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);
656 
657     /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
658     /// for a XXBRD instruction.
659     bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);
660 
661     /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
662     /// for a XXBRQ instruction.
663     bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);
664 
665     /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
666     /// for a XXPERMDI instruction.
667     bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
668                               bool &Swap, bool IsLE);
669 
670     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
671     /// shift amount, otherwise return -1.
672     int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
673                             SelectionDAG &DAG);
674 
675     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
676     /// specifies a splat of a single element that is suitable for input to
677     /// VSPLTB/VSPLTH/VSPLTW.
678     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
679 
680     /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
681     /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
682     /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
683     /// vector into the other. This function will also set a couple of
684     /// output parameters for how much the source vector needs to be shifted and
685     /// what byte number needs to be specified for the instruction to put the
686     /// element in the desired location of the target vector.
687     bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
688                          unsigned &InsertAtByte, bool &Swap, bool IsLE);
689 
690     /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
691     /// appropriate for PPC mnemonics (which have a big endian bias - namely
692     /// elements are counted from the left of the vector register).
693     unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
694                                         SelectionDAG &DAG);
695 
696     /// get_VSPLTI_elt - If this is a build_vector of constants which can be
697     /// formed by using a vspltis[bhw] instruction of the specified element
698     /// size, return the constant being splatted.  The ByteSize field indicates
699     /// the number of bytes of each element [124] -> [bhw].
700     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
701 
702     // Flags for computing the optimal addressing mode for loads and stores.
703     enum MemOpFlags {
704       MOF_None = 0,
705 
706       // Extension mode for integer loads.
707       MOF_SExt = 1,
708       MOF_ZExt = 1 << 1,
709       MOF_NoExt = 1 << 2,
710 
711       // Address computation flags.
712       MOF_NotAddNorCst = 1 << 5,      // Not const. or sum of ptr and scalar.
713       MOF_RPlusSImm16 = 1 << 6,       // Reg plus signed 16-bit constant.
714       MOF_RPlusLo = 1 << 7,           // Reg plus signed 16-bit relocation
715       MOF_RPlusSImm16Mult4 = 1 << 8,  // Reg plus 16-bit signed multiple of 4.
716       MOF_RPlusSImm16Mult16 = 1 << 9, // Reg plus 16-bit signed multiple of 16.
717       MOF_RPlusSImm34 = 1 << 10,      // Reg plus 34-bit signed constant.
718       MOF_RPlusR = 1 << 11,           // Sum of two variables.
719       MOF_PCRel = 1 << 12,            // PC-Relative relocation.
720       MOF_AddrIsSImm32 = 1 << 13,     // A simple 32-bit constant.
721 
722       // The in-memory type.
723       MOF_SubWordInt = 1 << 15,
724       MOF_WordInt = 1 << 16,
725       MOF_DoubleWordInt = 1 << 17,
726       MOF_ScalarFloat = 1 << 18, // Scalar single or double precision.
727       MOF_Vector = 1 << 19,      // Vector types and quad precision scalars.
728       MOF_Vector256 = 1 << 20,
729 
730       // Subtarget features.
731       MOF_SubtargetBeforeP9 = 1 << 22,
732       MOF_SubtargetP9 = 1 << 23,
733       MOF_SubtargetP10 = 1 << 24,
734       MOF_SubtargetSPE = 1 << 25
735     };
736 
737     // The addressing modes for loads and stores.
738     enum AddrMode {
739       AM_None,
740       AM_DForm,
741       AM_DSForm,
742       AM_DQForm,
743       AM_PrefixDForm,
744       AM_XForm,
745       AM_PCRel
746     };
747   } // end namespace PPC
748 
749   class PPCTargetLowering : public TargetLowering {
750     const PPCSubtarget &Subtarget;
751 
752   public:
753     explicit PPCTargetLowering(const PPCTargetMachine &TM,
754                                const PPCSubtarget &STI);
755 
756     /// getTargetNodeName() - This method returns the name of a target specific
757     /// DAG node.
758     const char *getTargetNodeName(unsigned Opcode) const override;
759 
isSelectSupported(SelectSupportKind Kind)760     bool isSelectSupported(SelectSupportKind Kind) const override {
761       // PowerPC does not support scalar condition selects on vectors.
762       return (Kind != SelectSupportKind::ScalarCondVectorVal);
763     }
764 
765     /// getPreferredVectorAction - The code we generate when vector types are
766     /// legalized by promoting the integer element type is often much worse
767     /// than code we generate if we widen the type for applicable vector types.
768     /// The issue with promoting is that the vector is scalaraized, individual
769     /// elements promoted and then the vector is rebuilt. So say we load a pair
770     /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
771     /// loads, moves back into VSR's (or memory ops if we don't have moves) and
772     /// then the VPERM for the shuffle. All in all a very slow sequence.
getPreferredVectorAction(MVT VT)773     TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
774       const override {
775       // Default handling for scalable and single-element vectors.
776       if (VT.isScalableVector() || VT.getVectorNumElements() == 1)
777         return TargetLoweringBase::getPreferredVectorAction(VT);
778 
779       // Split and promote vNi1 vectors so we don't produce v256i1/v512i1
780       // types as those are only for MMA instructions.
781       if (VT.getScalarSizeInBits() == 1 && VT.getSizeInBits() > 16)
782         return TypeSplitVector;
783       if (VT.getScalarSizeInBits() == 1)
784         return TypePromoteInteger;
785 
786       // Widen vectors that have reasonably sized elements.
787       if (VT.getScalarSizeInBits() % 8 == 0)
788         return TypeWidenVector;
789       return TargetLoweringBase::getPreferredVectorAction(VT);
790     }
791 
792     bool useSoftFloat() const override;
793 
794     bool hasSPE() const;
795 
getScalarShiftAmountTy(const DataLayout &,EVT)796     MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
797       return MVT::i32;
798     }
799 
isCheapToSpeculateCttz(Type * Ty)800     bool isCheapToSpeculateCttz(Type *Ty) const override {
801       return true;
802     }
803 
isCheapToSpeculateCtlz(Type * Ty)804     bool isCheapToSpeculateCtlz(Type *Ty) const override {
805       return true;
806     }
807 
isCtlzFast()808     bool isCtlzFast() const override {
809       return true;
810     }
811 
isEqualityCmpFoldedWithSignedCmp()812     bool isEqualityCmpFoldedWithSignedCmp() const override {
813       return false;
814     }
815 
hasAndNotCompare(SDValue)816     bool hasAndNotCompare(SDValue) const override {
817       return true;
818     }
819 
820     bool preferIncOfAddToSubOfNot(EVT VT) const override;
821 
convertSetCCLogicToBitwiseLogic(EVT VT)822     bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
823       return VT.isScalarInteger();
824     }
825 
826     SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps,
827                                  bool OptForSize, NegatibleCost &Cost,
828                                  unsigned Depth = 0) const override;
829 
830     /// getSetCCResultType - Return the ISD::SETCC ValueType
831     EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
832                            EVT VT) const override;
833 
834     /// Return true if target always benefits from combining into FMA for a
835     /// given value type. This must typically return false on targets where FMA
836     /// takes more cycles to execute than FADD.
837     bool enableAggressiveFMAFusion(EVT VT) const override;
838 
839     /// getPreIndexedAddressParts - returns true by value, base pointer and
840     /// offset pointer and addressing mode by reference if the node's address
841     /// can be legally represented as pre-indexed load / store address.
842     bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
843                                    SDValue &Offset,
844                                    ISD::MemIndexedMode &AM,
845                                    SelectionDAG &DAG) const override;
846 
847     /// SelectAddressEVXRegReg - Given the specified addressed, check to see if
848     /// it can be more efficiently represented as [r+imm].
849     bool SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index,
850                                 SelectionDAG &DAG) const;
851 
852     /// SelectAddressRegReg - Given the specified addressed, check to see if it
853     /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment
854     /// is non-zero, only accept displacement which is not suitable for [r+imm].
855     /// Returns false if it can be represented by [r+imm], which are preferred.
856     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
857                              SelectionDAG &DAG,
858                              MaybeAlign EncodingAlignment = std::nullopt) const;
859 
860     /// SelectAddressRegImm - Returns true if the address N can be represented
861     /// by a base register plus a signed 16-bit displacement [r+imm], and if it
862     /// is not better represented as reg+reg. If \p EncodingAlignment is
863     /// non-zero, only accept displacements suitable for instruction encoding
864     /// requirement, i.e. multiples of 4 for DS form.
865     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
866                              SelectionDAG &DAG,
867                              MaybeAlign EncodingAlignment) const;
868     bool SelectAddressRegImm34(SDValue N, SDValue &Disp, SDValue &Base,
869                                SelectionDAG &DAG) const;
870 
871     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
872     /// represented as an indexed [r+r] operation.
873     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
874                                  SelectionDAG &DAG) const;
875 
876     /// SelectAddressPCRel - Represent the specified address as pc relative to
877     /// be represented as [pc+imm]
878     bool SelectAddressPCRel(SDValue N, SDValue &Base) const;
879 
880     Sched::Preference getSchedulingPreference(SDNode *N) const override;
881 
882     /// LowerOperation - Provide custom lowering hooks for some operations.
883     ///
884     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
885 
886     /// ReplaceNodeResults - Replace the results of node with an illegal result
887     /// type with new values built out of custom code.
888     ///
889     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
890                             SelectionDAG &DAG) const override;
891 
892     SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
893     SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
894 
895     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
896 
897     SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
898                           SmallVectorImpl<SDNode *> &Created) const override;
899 
900     Register getRegisterByName(const char* RegName, LLT VT,
901                                const MachineFunction &MF) const override;
902 
903     void computeKnownBitsForTargetNode(const SDValue Op,
904                                        KnownBits &Known,
905                                        const APInt &DemandedElts,
906                                        const SelectionDAG &DAG,
907                                        unsigned Depth = 0) const override;
908 
909     Align getPrefLoopAlignment(MachineLoop *ML) const override;
910 
shouldInsertFencesForAtomic(const Instruction * I)911     bool shouldInsertFencesForAtomic(const Instruction *I) const override {
912       return true;
913     }
914 
915     Instruction *emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst,
916                                   AtomicOrdering Ord) const override;
917     Instruction *emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst,
918                                    AtomicOrdering Ord) const override;
919 
920     bool shouldInlineQuadwordAtomics() const;
921 
922     TargetLowering::AtomicExpansionKind
923     shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
924 
925     TargetLowering::AtomicExpansionKind
926     shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override;
927 
928     Value *emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder,
929                                         AtomicRMWInst *AI, Value *AlignedAddr,
930                                         Value *Incr, Value *Mask,
931                                         Value *ShiftAmt,
932                                         AtomicOrdering Ord) const override;
933     Value *emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder,
934                                             AtomicCmpXchgInst *CI,
935                                             Value *AlignedAddr, Value *CmpVal,
936                                             Value *NewVal, Value *Mask,
937                                             AtomicOrdering Ord) const override;
938 
939     MachineBasicBlock *
940     EmitInstrWithCustomInserter(MachineInstr &MI,
941                                 MachineBasicBlock *MBB) const override;
942     MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
943                                         MachineBasicBlock *MBB,
944                                         unsigned AtomicSize,
945                                         unsigned BinOpcode,
946                                         unsigned CmpOpcode = 0,
947                                         unsigned CmpPred = 0) const;
948     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
949                                                 MachineBasicBlock *MBB,
950                                                 bool is8bit,
951                                                 unsigned Opcode,
952                                                 unsigned CmpOpcode = 0,
953                                                 unsigned CmpPred = 0) const;
954 
955     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
956                                         MachineBasicBlock *MBB) const;
957 
958     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
959                                          MachineBasicBlock *MBB) const;
960 
961     MachineBasicBlock *emitProbedAlloca(MachineInstr &MI,
962                                         MachineBasicBlock *MBB) const;
963 
964     bool hasInlineStackProbe(const MachineFunction &MF) const override;
965 
966     unsigned getStackProbeSize(const MachineFunction &MF) const;
967 
968     ConstraintType getConstraintType(StringRef Constraint) const override;
969 
970     /// Examine constraint string and operand type and determine a weight value.
971     /// The operand object must already have been set up with the operand type.
972     ConstraintWeight getSingleConstraintMatchWeight(
973       AsmOperandInfo &info, const char *constraint) const override;
974 
975     std::pair<unsigned, const TargetRegisterClass *>
976     getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
977                                  StringRef Constraint, MVT VT) const override;
978 
979     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
980     /// function arguments in the caller parameter area.  This is the actual
981     /// alignment, not its logarithm.
982     uint64_t getByValTypeAlignment(Type *Ty,
983                                    const DataLayout &DL) const override;
984 
985     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
986     /// vector.  If it is invalid, don't add anything to Ops.
987     void LowerAsmOperandForConstraint(SDValue Op,
988                                       std::string &Constraint,
989                                       std::vector<SDValue> &Ops,
990                                       SelectionDAG &DAG) const override;
991 
992     unsigned
getInlineAsmMemConstraint(StringRef ConstraintCode)993     getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
994       if (ConstraintCode == "es")
995         return InlineAsm::Constraint_es;
996       else if (ConstraintCode == "Q")
997         return InlineAsm::Constraint_Q;
998       else if (ConstraintCode == "Z")
999         return InlineAsm::Constraint_Z;
1000       else if (ConstraintCode == "Zy")
1001         return InlineAsm::Constraint_Zy;
1002       return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1003     }
1004 
1005     void CollectTargetIntrinsicOperands(const CallInst &I,
1006                                  SmallVectorImpl<SDValue> &Ops,
1007                                  SelectionDAG &DAG) const override;
1008 
1009     /// isLegalAddressingMode - Return true if the addressing mode represented
1010     /// by AM is legal for this target, for a load/store of the specified type.
1011     bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
1012                                Type *Ty, unsigned AS,
1013                                Instruction *I = nullptr) const override;
1014 
1015     /// isLegalICmpImmediate - Return true if the specified immediate is legal
1016     /// icmp immediate, that is the target has icmp instructions which can
1017     /// compare a register against the immediate without having to materialize
1018     /// the immediate into a register.
1019     bool isLegalICmpImmediate(int64_t Imm) const override;
1020 
1021     /// isLegalAddImmediate - Return true if the specified immediate is legal
1022     /// add immediate, that is the target has add instructions which can
1023     /// add a register and the immediate without having to materialize
1024     /// the immediate into a register.
1025     bool isLegalAddImmediate(int64_t Imm) const override;
1026 
1027     /// isTruncateFree - Return true if it's free to truncate a value of
1028     /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
1029     /// register X1 to i32 by referencing its sub-register R1.
1030     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
1031     bool isTruncateFree(EVT VT1, EVT VT2) const override;
1032 
1033     bool isZExtFree(SDValue Val, EVT VT2) const override;
1034 
1035     bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;
1036 
1037     /// Returns true if it is beneficial to convert a load of a constant
1038     /// to just the constant itself.
1039     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
1040                                            Type *Ty) const override;
1041 
convertSelectOfConstantsToMath(EVT VT)1042     bool convertSelectOfConstantsToMath(EVT VT) const override {
1043       return true;
1044     }
1045 
1046     bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
1047                                 SDValue C) const override;
1048 
isDesirableToTransformToIntegerOp(unsigned Opc,EVT VT)1049     bool isDesirableToTransformToIntegerOp(unsigned Opc,
1050                                            EVT VT) const override {
1051       // Only handle float load/store pair because float(fpr) load/store
1052       // instruction has more cycles than integer(gpr) load/store in PPC.
1053       if (Opc != ISD::LOAD && Opc != ISD::STORE)
1054         return false;
1055       if (VT != MVT::f32 && VT != MVT::f64)
1056         return false;
1057 
1058       return true;
1059     }
1060 
1061     // Returns true if the address of the global is stored in TOC entry.
1062     bool isAccessedAsGotIndirect(SDValue N) const;
1063 
1064     bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
1065 
1066     bool getTgtMemIntrinsic(IntrinsicInfo &Info,
1067                             const CallInst &I,
1068                             MachineFunction &MF,
1069                             unsigned Intrinsic) const override;
1070 
1071     /// It returns EVT::Other if the type should be determined using generic
1072     /// target-independent logic.
1073     EVT getOptimalMemOpType(const MemOp &Op,
1074                             const AttributeList &FuncAttributes) const override;
1075 
1076     /// Is unaligned memory access allowed for the given type, and is it fast
1077     /// relative to software emulation.
1078     bool allowsMisalignedMemoryAccesses(
1079         EVT VT, unsigned AddrSpace, Align Alignment = Align(1),
1080         MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1081         unsigned *Fast = nullptr) const override;
1082 
1083     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
1084     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
1085     /// expanded to FMAs when this method returns true, otherwise fmuladd is
1086     /// expanded to fmul + fadd.
1087     bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
1088                                     EVT VT) const override;
1089 
1090     bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const override;
1091 
1092     /// isProfitableToHoist - Check if it is profitable to hoist instruction
1093     /// \p I to its dominator block.
1094     /// For example, it is not profitable if \p I and it's only user can form a
1095     /// FMA instruction, because Powerpc prefers FMADD.
1096     bool isProfitableToHoist(Instruction *I) const override;
1097 
1098     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
1099 
1100     // Should we expand the build vector with shuffles?
1101     bool
1102     shouldExpandBuildVectorWithShuffles(EVT VT,
1103                                         unsigned DefinedValues) const override;
1104 
1105     // Keep the zero-extensions for arguments to libcalls.
shouldKeepZExtForFP16Conv()1106     bool shouldKeepZExtForFP16Conv() const override { return true; }
1107 
1108     /// createFastISel - This method returns a target-specific FastISel object,
1109     /// or null if the target does not support "fast" instruction selection.
1110     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
1111                              const TargetLibraryInfo *LibInfo) const override;
1112 
1113     /// Returns true if an argument of type Ty needs to be passed in a
1114     /// contiguous block of registers in calling convention CallConv.
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg,const DataLayout & DL)1115     bool functionArgumentNeedsConsecutiveRegisters(
1116         Type *Ty, CallingConv::ID CallConv, bool isVarArg,
1117         const DataLayout &DL) const override {
1118       // We support any array type as "consecutive" block in the parameter
1119       // save area.  The element type defines the alignment requirement and
1120       // whether the argument should go in GPRs, FPRs, or VRs if available.
1121       //
1122       // Note that clang uses this capability both to implement the ELFv2
1123       // homogeneous float/vector aggregate ABI, and to avoid having to use
1124       // "byval" when passing aggregates that might fully fit in registers.
1125       return Ty->isArrayTy();
1126     }
1127 
1128     /// If a physical register, this returns the register that receives the
1129     /// exception address on entry to an EH pad.
1130     Register
1131     getExceptionPointerRegister(const Constant *PersonalityFn) const override;
1132 
1133     /// If a physical register, this returns the register that receives the
1134     /// exception typeid on entry to a landing pad.
1135     Register
1136     getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
1137 
1138     /// Override to support customized stack guard loading.
1139     bool useLoadStackGuardNode() const override;
1140     void insertSSPDeclarations(Module &M) const override;
1141     Value *getSDagStackGuard(const Module &M) const override;
1142 
1143     bool isFPImmLegal(const APFloat &Imm, EVT VT,
1144                       bool ForCodeSize) const override;
1145 
1146     unsigned getJumpTableEncoding() const override;
1147     bool isJumpTableRelative() const override;
1148     SDValue getPICJumpTableRelocBase(SDValue Table,
1149                                      SelectionDAG &DAG) const override;
1150     const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1151                                                unsigned JTI,
1152                                                MCContext &Ctx) const override;
1153 
1154     /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
1155     /// compute the address flags of the node, get the optimal address mode
1156     /// based on the flags, and set the Base and Disp based on the address mode.
1157     PPC::AddrMode SelectOptimalAddrMode(const SDNode *Parent, SDValue N,
1158                                         SDValue &Disp, SDValue &Base,
1159                                         SelectionDAG &DAG,
1160                                         MaybeAlign Align) const;
1161     /// SelectForceXFormMode - Given the specified address, force it to be
1162     /// represented as an indexed [r+r] operation (an XForm instruction).
1163     PPC::AddrMode SelectForceXFormMode(SDValue N, SDValue &Disp, SDValue &Base,
1164                                        SelectionDAG &DAG) const;
1165 
1166     bool splitValueIntoRegisterParts(
1167         SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1168         unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC)
1169         const override;
1170     /// Structure that collects some common arguments that get passed around
1171     /// between the functions for call lowering.
1172     struct CallFlags {
1173       const CallingConv::ID CallConv;
1174       const bool IsTailCall : 1;
1175       const bool IsVarArg : 1;
1176       const bool IsPatchPoint : 1;
1177       const bool IsIndirect : 1;
1178       const bool HasNest : 1;
1179       const bool NoMerge : 1;
1180 
CallFlagsCallFlags1181       CallFlags(CallingConv::ID CC, bool IsTailCall, bool IsVarArg,
1182                 bool IsPatchPoint, bool IsIndirect, bool HasNest, bool NoMerge)
1183           : CallConv(CC), IsTailCall(IsTailCall), IsVarArg(IsVarArg),
1184             IsPatchPoint(IsPatchPoint), IsIndirect(IsIndirect),
1185             HasNest(HasNest), NoMerge(NoMerge) {}
1186     };
1187 
1188     CCAssignFn *ccAssignFnForCall(CallingConv::ID CC, bool Return,
1189                                   bool IsVarArg) const;
1190 
1191   private:
1192     struct ReuseLoadInfo {
1193       SDValue Ptr;
1194       SDValue Chain;
1195       SDValue ResChain;
1196       MachinePointerInfo MPI;
1197       bool IsDereferenceable = false;
1198       bool IsInvariant = false;
1199       Align Alignment;
1200       AAMDNodes AAInfo;
1201       const MDNode *Ranges = nullptr;
1202 
1203       ReuseLoadInfo() = default;
1204 
MMOFlagsReuseLoadInfo1205       MachineMemOperand::Flags MMOFlags() const {
1206         MachineMemOperand::Flags F = MachineMemOperand::MONone;
1207         if (IsDereferenceable)
1208           F |= MachineMemOperand::MODereferenceable;
1209         if (IsInvariant)
1210           F |= MachineMemOperand::MOInvariant;
1211         return F;
1212       }
1213     };
1214 
1215     // Map that relates a set of common address flags to PPC addressing modes.
1216     std::map<PPC::AddrMode, SmallVector<unsigned, 16>> AddrModesMap;
1217     void initializeAddrModeMap();
1218 
1219     bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
1220                              SelectionDAG &DAG,
1221                              ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
1222     void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
1223                          SelectionDAG &DAG) const;
1224 
1225     void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
1226                                 SelectionDAG &DAG, const SDLoc &dl) const;
1227     SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
1228                                      const SDLoc &dl) const;
1229 
1230     bool directMoveIsProfitable(const SDValue &Op) const;
1231     SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
1232                                      const SDLoc &dl) const;
1233 
1234     SDValue LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
1235                                  const SDLoc &dl) const;
1236 
1237     SDValue LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const;
1238 
1239     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
1240     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
1241 
1242     bool
1243     IsEligibleForTailCallOptimization(SDValue Callee,
1244                                       CallingConv::ID CalleeCC,
1245                                       bool isVarArg,
1246                                       const SmallVectorImpl<ISD::InputArg> &Ins,
1247                                       SelectionDAG& DAG) const;
1248 
1249     bool IsEligibleForTailCallOptimization_64SVR4(
1250         SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB,
1251         bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs,
1252         const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const;
1253 
1254     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
1255                                          SDValue Chain, SDValue &LROpOut,
1256                                          SDValue &FPOpOut,
1257                                          const SDLoc &dl) const;
1258 
1259     SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, SDValue GA) const;
1260 
1261     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1262     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
1263     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
1264     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
1265     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
1266     SDValue LowerGlobalTLSAddressAIX(SDValue Op, SelectionDAG &DAG) const;
1267     SDValue LowerGlobalTLSAddressLinux(SDValue Op, SelectionDAG &DAG) const;
1268     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
1269     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
1270     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
1271     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1272     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1273     SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const;
1274     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
1275     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
1276     SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
1277     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
1278     SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
1279     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
1280     SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
1281     SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
1282     SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
1283     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
1284     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
1285     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
1286                            const SDLoc &dl) const;
1287     SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1288     SDValue LowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
1289     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1290     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1291     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
1292     SDValue LowerFunnelShift(SDValue Op, SelectionDAG &DAG) const;
1293     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1294     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
1295     SDValue LowerVPERM(SDValue Op, SelectionDAG &DAG, ArrayRef<int> PermMask,
1296                        EVT VT, SDValue V1, SDValue V2) const;
1297     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1298     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
1299     SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
1300     SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
1301     SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
1302     SDValue lowerToLibCall(const char *LibCallName, SDValue Op,
1303                            SelectionDAG &DAG) const;
1304     SDValue lowerLibCallBasedOnType(const char *LibCallFloatName,
1305                                     const char *LibCallDoubleName, SDValue Op,
1306                                     SelectionDAG &DAG) const;
1307     bool isLowringToMASSFiniteSafe(SDValue Op) const;
1308     bool isLowringToMASSSafe(SDValue Op) const;
1309     bool isScalarMASSConversionEnabled() const;
1310     SDValue lowerLibCallBase(const char *LibCallDoubleName,
1311                              const char *LibCallFloatName,
1312                              const char *LibCallDoubleNameFinite,
1313                              const char *LibCallFloatNameFinite, SDValue Op,
1314                              SelectionDAG &DAG) const;
1315     SDValue lowerPow(SDValue Op, SelectionDAG &DAG) const;
1316     SDValue lowerSin(SDValue Op, SelectionDAG &DAG) const;
1317     SDValue lowerCos(SDValue Op, SelectionDAG &DAG) const;
1318     SDValue lowerLog(SDValue Op, SelectionDAG &DAG) const;
1319     SDValue lowerLog10(SDValue Op, SelectionDAG &DAG) const;
1320     SDValue lowerExp(SDValue Op, SelectionDAG &DAG) const;
1321     SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) const;
1322     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1323     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
1324     SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
1325     SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
1326     SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const;
1327 
1328     SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
1329     SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
1330 
1331     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1332                             CallingConv::ID CallConv, bool isVarArg,
1333                             const SmallVectorImpl<ISD::InputArg> &Ins,
1334                             const SDLoc &dl, SelectionDAG &DAG,
1335                             SmallVectorImpl<SDValue> &InVals) const;
1336 
1337     SDValue FinishCall(CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
1338                        SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
1339                        SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
1340                        SDValue &Callee, int SPDiff, unsigned NumBytes,
1341                        const SmallVectorImpl<ISD::InputArg> &Ins,
1342                        SmallVectorImpl<SDValue> &InVals,
1343                        const CallBase *CB) const;
1344 
1345     SDValue
1346     LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1347                          const SmallVectorImpl<ISD::InputArg> &Ins,
1348                          const SDLoc &dl, SelectionDAG &DAG,
1349                          SmallVectorImpl<SDValue> &InVals) const override;
1350 
1351     SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
1352                       SmallVectorImpl<SDValue> &InVals) const override;
1353 
1354     bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1355                         bool isVarArg,
1356                         const SmallVectorImpl<ISD::OutputArg> &Outs,
1357                         LLVMContext &Context) const override;
1358 
1359     SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1360                         const SmallVectorImpl<ISD::OutputArg> &Outs,
1361                         const SmallVectorImpl<SDValue> &OutVals,
1362                         const SDLoc &dl, SelectionDAG &DAG) const override;
1363 
1364     SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
1365                               SelectionDAG &DAG, SDValue ArgVal,
1366                               const SDLoc &dl) const;
1367 
1368     SDValue LowerFormalArguments_AIX(
1369         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1370         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1371         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1372     SDValue LowerFormalArguments_64SVR4(
1373         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1374         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1375         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1376     SDValue LowerFormalArguments_32SVR4(
1377         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1378         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1379         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1380 
1381     SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
1382                                        SDValue CallSeqStart,
1383                                        ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1384                                        const SDLoc &dl) const;
1385 
1386     SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
1387                              const SmallVectorImpl<ISD::OutputArg> &Outs,
1388                              const SmallVectorImpl<SDValue> &OutVals,
1389                              const SmallVectorImpl<ISD::InputArg> &Ins,
1390                              const SDLoc &dl, SelectionDAG &DAG,
1391                              SmallVectorImpl<SDValue> &InVals,
1392                              const CallBase *CB) const;
1393     SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
1394                              const SmallVectorImpl<ISD::OutputArg> &Outs,
1395                              const SmallVectorImpl<SDValue> &OutVals,
1396                              const SmallVectorImpl<ISD::InputArg> &Ins,
1397                              const SDLoc &dl, SelectionDAG &DAG,
1398                              SmallVectorImpl<SDValue> &InVals,
1399                              const CallBase *CB) const;
1400     SDValue LowerCall_AIX(SDValue Chain, SDValue Callee, CallFlags CFlags,
1401                           const SmallVectorImpl<ISD::OutputArg> &Outs,
1402                           const SmallVectorImpl<SDValue> &OutVals,
1403                           const SmallVectorImpl<ISD::InputArg> &Ins,
1404                           const SDLoc &dl, SelectionDAG &DAG,
1405                           SmallVectorImpl<SDValue> &InVals,
1406                           const CallBase *CB) const;
1407 
1408     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1409     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1410     SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
1411 
1412     SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
1413     SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
1414     SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
1415     SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const;
1416     SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
1417     SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
1418     SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
1419     SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
1420     SDValue combineMUL(SDNode *N, DAGCombinerInfo &DCI) const;
1421     SDValue combineADD(SDNode *N, DAGCombinerInfo &DCI) const;
1422     SDValue combineFMALike(SDNode *N, DAGCombinerInfo &DCI) const;
1423     SDValue combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const;
1424     SDValue combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const;
1425     SDValue combineABS(SDNode *N, DAGCombinerInfo &DCI) const;
1426     SDValue combineVSelect(SDNode *N, DAGCombinerInfo &DCI) const;
1427     SDValue combineVectorShuffle(ShuffleVectorSDNode *SVN,
1428                                  SelectionDAG &DAG) const;
1429     SDValue combineVReverseMemOP(ShuffleVectorSDNode *SVN, LSBaseSDNode *LSBase,
1430                                  DAGCombinerInfo &DCI) const;
1431 
1432     /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1433     /// SETCC with integer subtraction when (1) there is a legal way of doing it
1434     /// (2) keeping the result of comparison in GPR has performance benefit.
1435     SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;
1436 
1437     SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1438                             int &RefinementSteps, bool &UseOneConstNR,
1439                             bool Reciprocal) const override;
1440     SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1441                              int &RefinementSteps) const override;
1442     SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
1443                              const DenormalMode &Mode) const override;
1444     SDValue getSqrtResultForDenormInput(SDValue Operand,
1445                                         SelectionDAG &DAG) const override;
1446     unsigned combineRepeatedFPDivisors() const override;
1447 
1448     SDValue
1449     combineElementTruncationToVectorTruncation(SDNode *N,
1450                                                DAGCombinerInfo &DCI) const;
1451 
1452     /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1453     /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1454     /// essentially any shuffle of v8i16 vectors that just inserts one element
1455     /// from one vector into the other.
1456     SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1457 
1458     /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1459     /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1460     /// essentially v16i8 vector version of VINSERTH.
1461     SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1462 
1463     /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
1464     /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1.
1465     SDValue lowerToXXSPLTI32DX(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1466 
1467     // Return whether the call instruction can potentially be optimized to a
1468     // tail call. This will cause the optimizers to attempt to move, or
1469     // duplicate return instructions to help enable tail call optimizations.
1470     bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1471     bool hasBitPreservingFPLogic(EVT VT) const override;
1472     bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
1473 
1474     /// getAddrModeForFlags - Based on the set of address flags, select the most
1475     /// optimal instruction format to match by.
1476     PPC::AddrMode getAddrModeForFlags(unsigned Flags) const;
1477 
1478     /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
1479     /// the address flags of the load/store instruction that is to be matched.
1480     /// The address flags are stored in a map, which is then searched
1481     /// through to determine the optimal load/store instruction format.
1482     unsigned computeMOFlags(const SDNode *Parent, SDValue N,
1483                             SelectionDAG &DAG) const;
1484   }; // end class PPCTargetLowering
1485 
1486   namespace PPC {
1487 
1488     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
1489                              const TargetLibraryInfo *LibInfo);
1490 
1491   } // end namespace PPC
1492 
1493   bool isIntS16Immediate(SDNode *N, int16_t &Imm);
1494   bool isIntS16Immediate(SDValue Op, int16_t &Imm);
1495   bool isIntS34Immediate(SDNode *N, int64_t &Imm);
1496   bool isIntS34Immediate(SDValue Op, int64_t &Imm);
1497 
1498   bool convertToNonDenormSingle(APInt &ArgAPInt);
1499   bool convertToNonDenormSingle(APFloat &ArgAPFloat);
1500   bool checkConvertToNonDenormSingle(APFloat &ArgAPFloat);
1501 
1502 } // end namespace llvm
1503 
1504 #endif // LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
1505