1 //===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the TargetMachine and LLVMTargetMachine classes.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_TARGET_TARGETMACHINE_H
14 #define LLVM_TARGET_TARGETMACHINE_H
15
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/PassManager.h"
20 #include "llvm/Support/Allocator.h"
21 #include "llvm/Support/CodeGen.h"
22 #include "llvm/Support/Error.h"
23 #include "llvm/Support/PGOOptions.h"
24 #include "llvm/Target/CGPassBuilderOption.h"
25 #include "llvm/Target/TargetOptions.h"
26 #include <optional>
27 #include <string>
28 #include <utility>
29
30 namespace llvm {
31
32 class AAManager;
33 using ModulePassManager = PassManager<Module>;
34
35 class Function;
36 class GlobalValue;
37 class MachineFunctionPassManager;
38 class MachineFunctionAnalysisManager;
39 class MachineModuleInfoWrapperPass;
40 class Mangler;
41 class MCAsmInfo;
42 class MCContext;
43 class MCInstrInfo;
44 class MCRegisterInfo;
45 class MCStreamer;
46 class MCSubtargetInfo;
47 class MCSymbol;
48 class raw_pwrite_stream;
49 class PassBuilder;
50 struct PerFunctionMIParsingState;
51 class SMDiagnostic;
52 class SMRange;
53 class Target;
54 class TargetIntrinsicInfo;
55 class TargetIRAnalysis;
56 class TargetTransformInfo;
57 class TargetLoweringObjectFile;
58 class TargetPassConfig;
59 class TargetSubtargetInfo;
60
61 // The old pass manager infrastructure is hidden in a legacy namespace now.
62 namespace legacy {
63 class PassManagerBase;
64 }
65 using legacy::PassManagerBase;
66
67 struct MachineFunctionInfo;
68 namespace yaml {
69 struct MachineFunctionInfo;
70 }
71
72 //===----------------------------------------------------------------------===//
73 ///
74 /// Primary interface to the complete machine description for the target
75 /// machine. All target-specific information should be accessible through this
76 /// interface.
77 ///
78 class TargetMachine {
79 protected: // Can only create subclasses.
80 TargetMachine(const Target &T, StringRef DataLayoutString,
81 const Triple &TargetTriple, StringRef CPU, StringRef FS,
82 const TargetOptions &Options);
83
84 /// The Target that this machine was created for.
85 const Target &TheTarget;
86
87 /// DataLayout for the target: keep ABI type size and alignment.
88 ///
89 /// The DataLayout is created based on the string representation provided
90 /// during construction. It is kept here only to avoid reparsing the string
91 /// but should not really be used during compilation, because it has an
92 /// internal cache that is context specific.
93 const DataLayout DL;
94
95 /// Triple string, CPU name, and target feature strings the TargetMachine
96 /// instance is created with.
97 Triple TargetTriple;
98 std::string TargetCPU;
99 std::string TargetFS;
100
101 Reloc::Model RM = Reloc::Static;
102 CodeModel::Model CMModel = CodeModel::Small;
103 CodeGenOpt::Level OptLevel = CodeGenOpt::Default;
104
105 /// Contains target specific asm information.
106 std::unique_ptr<const MCAsmInfo> AsmInfo;
107 std::unique_ptr<const MCRegisterInfo> MRI;
108 std::unique_ptr<const MCInstrInfo> MII;
109 std::unique_ptr<const MCSubtargetInfo> STI;
110
111 unsigned RequireStructuredCFG : 1;
112 unsigned O0WantsFastISel : 1;
113
114 // PGO related tunables.
115 std::optional<PGOOptions> PGOOption;
116
117 public:
118 const TargetOptions DefaultOptions;
119 mutable TargetOptions Options;
120
121 TargetMachine(const TargetMachine &) = delete;
122 void operator=(const TargetMachine &) = delete;
123 virtual ~TargetMachine();
124
getTarget()125 const Target &getTarget() const { return TheTarget; }
126
getTargetTriple()127 const Triple &getTargetTriple() const { return TargetTriple; }
getTargetCPU()128 StringRef getTargetCPU() const { return TargetCPU; }
getTargetFeatureString()129 StringRef getTargetFeatureString() const { return TargetFS; }
setTargetFeatureString(StringRef FS)130 void setTargetFeatureString(StringRef FS) { TargetFS = std::string(FS); }
131
132 /// Virtual method implemented by subclasses that returns a reference to that
133 /// target's TargetSubtargetInfo-derived member variable.
getSubtargetImpl(const Function &)134 virtual const TargetSubtargetInfo *getSubtargetImpl(const Function &) const {
135 return nullptr;
136 }
getObjFileLowering()137 virtual TargetLoweringObjectFile *getObjFileLowering() const {
138 return nullptr;
139 }
140
141 /// Create the target's instance of MachineFunctionInfo
142 virtual MachineFunctionInfo *
createMachineFunctionInfo(BumpPtrAllocator & Allocator,const Function & F,const TargetSubtargetInfo * STI)143 createMachineFunctionInfo(BumpPtrAllocator &Allocator, const Function &F,
144 const TargetSubtargetInfo *STI) const {
145 return nullptr;
146 }
147
148 /// Allocate and return a default initialized instance of the YAML
149 /// representation for the MachineFunctionInfo.
createDefaultFuncInfoYAML()150 virtual yaml::MachineFunctionInfo *createDefaultFuncInfoYAML() const {
151 return nullptr;
152 }
153
154 /// Allocate and initialize an instance of the YAML representation of the
155 /// MachineFunctionInfo.
156 virtual yaml::MachineFunctionInfo *
convertFuncInfoToYAML(const MachineFunction & MF)157 convertFuncInfoToYAML(const MachineFunction &MF) const {
158 return nullptr;
159 }
160
161 /// Parse out the target's MachineFunctionInfo from the YAML reprsentation.
parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,PerFunctionMIParsingState & PFS,SMDiagnostic & Error,SMRange & SourceRange)162 virtual bool parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,
163 PerFunctionMIParsingState &PFS,
164 SMDiagnostic &Error,
165 SMRange &SourceRange) const {
166 return false;
167 }
168
169 /// This method returns a pointer to the specified type of
170 /// TargetSubtargetInfo. In debug builds, it verifies that the object being
171 /// returned is of the correct type.
getSubtarget(const Function & F)172 template <typename STC> const STC &getSubtarget(const Function &F) const {
173 return *static_cast<const STC*>(getSubtargetImpl(F));
174 }
175
176 /// Create a DataLayout.
createDataLayout()177 const DataLayout createDataLayout() const { return DL; }
178
179 /// Test if a DataLayout if compatible with the CodeGen for this target.
180 ///
181 /// The LLVM Module owns a DataLayout that is used for the target independent
182 /// optimizations and code generation. This hook provides a target specific
183 /// check on the validity of this DataLayout.
isCompatibleDataLayout(const DataLayout & Candidate)184 bool isCompatibleDataLayout(const DataLayout &Candidate) const {
185 return DL == Candidate;
186 }
187
188 /// Get the pointer size for this target.
189 ///
190 /// This is the only time the DataLayout in the TargetMachine is used.
getPointerSize(unsigned AS)191 unsigned getPointerSize(unsigned AS) const {
192 return DL.getPointerSize(AS);
193 }
194
getPointerSizeInBits(unsigned AS)195 unsigned getPointerSizeInBits(unsigned AS) const {
196 return DL.getPointerSizeInBits(AS);
197 }
198
getProgramPointerSize()199 unsigned getProgramPointerSize() const {
200 return DL.getPointerSize(DL.getProgramAddressSpace());
201 }
202
getAllocaPointerSize()203 unsigned getAllocaPointerSize() const {
204 return DL.getPointerSize(DL.getAllocaAddrSpace());
205 }
206
207 /// Reset the target options based on the function's attributes.
208 // FIXME: Remove TargetOptions that affect per-function code generation
209 // from TargetMachine.
210 void resetTargetOptions(const Function &F) const;
211
212 /// Return target specific asm information.
getMCAsmInfo()213 const MCAsmInfo *getMCAsmInfo() const { return AsmInfo.get(); }
214
getMCRegisterInfo()215 const MCRegisterInfo *getMCRegisterInfo() const { return MRI.get(); }
getMCInstrInfo()216 const MCInstrInfo *getMCInstrInfo() const { return MII.get(); }
getMCSubtargetInfo()217 const MCSubtargetInfo *getMCSubtargetInfo() const { return STI.get(); }
218
219 /// If intrinsic information is available, return it. If not, return null.
getIntrinsicInfo()220 virtual const TargetIntrinsicInfo *getIntrinsicInfo() const {
221 return nullptr;
222 }
223
requiresStructuredCFG()224 bool requiresStructuredCFG() const { return RequireStructuredCFG; }
setRequiresStructuredCFG(bool Value)225 void setRequiresStructuredCFG(bool Value) { RequireStructuredCFG = Value; }
226
227 /// Returns the code generation relocation model. The choices are static, PIC,
228 /// and dynamic-no-pic, and target default.
229 Reloc::Model getRelocationModel() const;
230
231 /// Returns the code model. The choices are small, kernel, medium, large, and
232 /// target default.
getCodeModel()233 CodeModel::Model getCodeModel() const { return CMModel; }
234
235 /// Set the code model.
setCodeModel(CodeModel::Model CM)236 void setCodeModel(CodeModel::Model CM) { CMModel = CM; }
237
238 bool isPositionIndependent() const;
239
240 bool shouldAssumeDSOLocal(const Module &M, const GlobalValue *GV) const;
241
242 /// Returns true if this target uses emulated TLS.
243 bool useEmulatedTLS() const;
244
245 /// Returns the TLS model which should be used for the given global variable.
246 TLSModel::Model getTLSModel(const GlobalValue *GV) const;
247
248 /// Returns the optimization level: None, Less, Default, or Aggressive.
249 CodeGenOpt::Level getOptLevel() const;
250
251 /// Overrides the optimization level.
252 void setOptLevel(CodeGenOpt::Level Level);
253
setFastISel(bool Enable)254 void setFastISel(bool Enable) { Options.EnableFastISel = Enable; }
getO0WantsFastISel()255 bool getO0WantsFastISel() { return O0WantsFastISel; }
setO0WantsFastISel(bool Enable)256 void setO0WantsFastISel(bool Enable) { O0WantsFastISel = Enable; }
setGlobalISel(bool Enable)257 void setGlobalISel(bool Enable) { Options.EnableGlobalISel = Enable; }
setGlobalISelAbort(GlobalISelAbortMode Mode)258 void setGlobalISelAbort(GlobalISelAbortMode Mode) {
259 Options.GlobalISelAbort = Mode;
260 }
setMachineOutliner(bool Enable)261 void setMachineOutliner(bool Enable) {
262 Options.EnableMachineOutliner = Enable;
263 }
setSupportsDefaultOutlining(bool Enable)264 void setSupportsDefaultOutlining(bool Enable) {
265 Options.SupportsDefaultOutlining = Enable;
266 }
setSupportsDebugEntryValues(bool Enable)267 void setSupportsDebugEntryValues(bool Enable) {
268 Options.SupportsDebugEntryValues = Enable;
269 }
270
setCFIFixup(bool Enable)271 void setCFIFixup(bool Enable) { Options.EnableCFIFixup = Enable; }
272
getAIXExtendedAltivecABI()273 bool getAIXExtendedAltivecABI() const {
274 return Options.EnableAIXExtendedAltivecABI;
275 }
276
getUniqueSectionNames()277 bool getUniqueSectionNames() const { return Options.UniqueSectionNames; }
278
279 /// Return true if unique basic block section names must be generated.
getUniqueBasicBlockSectionNames()280 bool getUniqueBasicBlockSectionNames() const {
281 return Options.UniqueBasicBlockSectionNames;
282 }
283
284 /// Return true if data objects should be emitted into their own section,
285 /// corresponds to -fdata-sections.
getDataSections()286 bool getDataSections() const {
287 return Options.DataSections;
288 }
289
290 /// Return true if functions should be emitted into their own section,
291 /// corresponding to -ffunction-sections.
getFunctionSections()292 bool getFunctionSections() const {
293 return Options.FunctionSections;
294 }
295
296 /// Return true if visibility attribute should not be emitted in XCOFF,
297 /// corresponding to -mignore-xcoff-visibility.
getIgnoreXCOFFVisibility()298 bool getIgnoreXCOFFVisibility() const {
299 return Options.IgnoreXCOFFVisibility;
300 }
301
302 /// Return true if XCOFF traceback table should be emitted,
303 /// corresponding to -xcoff-traceback-table.
getXCOFFTracebackTable()304 bool getXCOFFTracebackTable() const { return Options.XCOFFTracebackTable; }
305
306 /// If basic blocks should be emitted into their own section,
307 /// corresponding to -fbasic-block-sections.
getBBSectionsType()308 llvm::BasicBlockSection getBBSectionsType() const {
309 return Options.BBSections;
310 }
311
312 /// Get the list of functions and basic block ids that need unique sections.
getBBSectionsFuncListBuf()313 const MemoryBuffer *getBBSectionsFuncListBuf() const {
314 return Options.BBSectionsFuncListBuf.get();
315 }
316
317 /// Returns true if a cast between SrcAS and DestAS is a noop.
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS)318 virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
319 return false;
320 }
321
setPGOOption(std::optional<PGOOptions> PGOOpt)322 void setPGOOption(std::optional<PGOOptions> PGOOpt) { PGOOption = PGOOpt; }
getPGOOption()323 const std::optional<PGOOptions> &getPGOOption() const { return PGOOption; }
324
325 /// If the specified generic pointer could be assumed as a pointer to a
326 /// specific address space, return that address space.
327 ///
328 /// Under offloading programming, the offloading target may be passed with
329 /// values only prepared on the host side and could assume certain
330 /// properties.
getAssumedAddrSpace(const Value * V)331 virtual unsigned getAssumedAddrSpace(const Value *V) const { return -1; }
332
333 /// If the specified predicate checks whether a generic pointer falls within
334 /// a specified address space, return that generic pointer and the address
335 /// space being queried.
336 ///
337 /// Such predicates could be specified in @llvm.assume intrinsics for the
338 /// optimizer to assume that the given generic pointer always falls within
339 /// the address space based on that predicate.
340 virtual std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value * V)341 getPredicatedAddrSpace(const Value *V) const {
342 return std::make_pair(nullptr, -1);
343 }
344
345 /// Get a \c TargetIRAnalysis appropriate for the target.
346 ///
347 /// This is used to construct the new pass manager's target IR analysis pass,
348 /// set up appropriately for this target machine. Even the old pass manager
349 /// uses this to answer queries about the IR.
350 TargetIRAnalysis getTargetIRAnalysis() const;
351
352 /// Return a TargetTransformInfo for a given function.
353 ///
354 /// The returned TargetTransformInfo is specialized to the subtarget
355 /// corresponding to \p F.
356 virtual TargetTransformInfo getTargetTransformInfo(const Function &F) const;
357
358 /// Allow the target to modify the pass pipeline.
registerPassBuilderCallbacks(PassBuilder &)359 virtual void registerPassBuilderCallbacks(PassBuilder &) {}
360
361 /// Allow the target to register alias analyses with the AAManager for use
362 /// with the new pass manager. Only affects the "default" AAManager.
registerDefaultAliasAnalyses(AAManager &)363 virtual void registerDefaultAliasAnalyses(AAManager &) {}
364
365 /// Add passes to the specified pass manager to get the specified file
366 /// emitted. Typically this will involve several steps of code generation.
367 /// This method should return true if emission of this file type is not
368 /// supported, or false on success.
369 /// \p MMIWP is an optional parameter that, if set to non-nullptr,
370 /// will be used to set the MachineModuloInfo for this PM.
371 virtual bool
372 addPassesToEmitFile(PassManagerBase &, raw_pwrite_stream &,
373 raw_pwrite_stream *, CodeGenFileType,
374 bool /*DisableVerify*/ = true,
375 MachineModuleInfoWrapperPass *MMIWP = nullptr) {
376 return true;
377 }
378
379 /// Add passes to the specified pass manager to get machine code emitted with
380 /// the MCJIT. This method returns true if machine code is not supported. It
381 /// fills the MCContext Ctx pointer which can be used to build custom
382 /// MCStreamer.
383 ///
384 virtual bool addPassesToEmitMC(PassManagerBase &, MCContext *&,
385 raw_pwrite_stream &,
386 bool /*DisableVerify*/ = true) {
387 return true;
388 }
389
390 /// True if subtarget inserts the final scheduling pass on its own.
391 ///
392 /// Branch relaxation, which must happen after block placement, can
393 /// on some targets (e.g. SystemZ) expose additional post-RA
394 /// scheduling opportunities.
targetSchedulesPostRAScheduling()395 virtual bool targetSchedulesPostRAScheduling() const { return false; };
396
397 void getNameWithPrefix(SmallVectorImpl<char> &Name, const GlobalValue *GV,
398 Mangler &Mang, bool MayAlwaysUsePrivate = false) const;
399 MCSymbol *getSymbol(const GlobalValue *GV) const;
400
401 /// The integer bit size to use for SjLj based exception handling.
402 static constexpr unsigned DefaultSjLjDataSize = 32;
getSjLjDataSize()403 virtual unsigned getSjLjDataSize() const { return DefaultSjLjDataSize; }
404
405 static std::pair<int, int> parseBinutilsVersion(StringRef Version);
406
407 /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
408 /// (e.g. stack) the target returns the corresponding address space.
getAddressSpaceForPseudoSourceKind(unsigned Kind)409 virtual unsigned getAddressSpaceForPseudoSourceKind(unsigned Kind) const {
410 return 0;
411 }
412 };
413
414 /// This class describes a target machine that is implemented with the LLVM
415 /// target-independent code generator.
416 ///
417 class LLVMTargetMachine : public TargetMachine {
418 protected: // Can only create subclasses.
419 LLVMTargetMachine(const Target &T, StringRef DataLayoutString,
420 const Triple &TT, StringRef CPU, StringRef FS,
421 const TargetOptions &Options, Reloc::Model RM,
422 CodeModel::Model CM, CodeGenOpt::Level OL);
423
424 void initAsmInfo();
425
426 public:
427 /// Get a TargetTransformInfo implementation for the target.
428 ///
429 /// The TTI returned uses the common code generator to answer queries about
430 /// the IR.
431 TargetTransformInfo getTargetTransformInfo(const Function &F) const override;
432
433 /// Create a pass configuration object to be used by addPassToEmitX methods
434 /// for generating a pipeline of CodeGen passes.
435 virtual TargetPassConfig *createPassConfig(PassManagerBase &PM);
436
437 /// Add passes to the specified pass manager to get the specified file
438 /// emitted. Typically this will involve several steps of code generation.
439 /// \p MMIWP is an optional parameter that, if set to non-nullptr,
440 /// will be used to set the MachineModuloInfo for this PM.
441 bool
442 addPassesToEmitFile(PassManagerBase &PM, raw_pwrite_stream &Out,
443 raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
444 bool DisableVerify = true,
445 MachineModuleInfoWrapperPass *MMIWP = nullptr) override;
446
buildCodeGenPipeline(ModulePassManager &,MachineFunctionPassManager &,MachineFunctionAnalysisManager &,raw_pwrite_stream &,raw_pwrite_stream *,CodeGenFileType,CGPassBuilderOption,PassInstrumentationCallbacks *)447 virtual Error buildCodeGenPipeline(ModulePassManager &,
448 MachineFunctionPassManager &,
449 MachineFunctionAnalysisManager &,
450 raw_pwrite_stream &, raw_pwrite_stream *,
451 CodeGenFileType, CGPassBuilderOption,
452 PassInstrumentationCallbacks *) {
453 return make_error<StringError>("buildCodeGenPipeline is not overridden",
454 inconvertibleErrorCode());
455 }
456
getPassNameFromLegacyName(StringRef)457 virtual std::pair<StringRef, bool> getPassNameFromLegacyName(StringRef) {
458 llvm_unreachable(
459 "getPassNameFromLegacyName parseMIRPipeline is not overridden");
460 }
461
462 /// Add passes to the specified pass manager to get machine code emitted with
463 /// the MCJIT. This method returns true if machine code is not supported. It
464 /// fills the MCContext Ctx pointer which can be used to build custom
465 /// MCStreamer.
466 bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
467 raw_pwrite_stream &Out,
468 bool DisableVerify = true) override;
469
470 /// Returns true if the target is expected to pass all machine verifier
471 /// checks. This is a stopgap measure to fix targets one by one. We will
472 /// remove this at some point and always enable the verifier when
473 /// EXPENSIVE_CHECKS is enabled.
isMachineVerifierClean()474 virtual bool isMachineVerifierClean() const { return true; }
475
476 /// Adds an AsmPrinter pass to the pipeline that prints assembly or
477 /// machine code from the MI representation.
478 bool addAsmPrinter(PassManagerBase &PM, raw_pwrite_stream &Out,
479 raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
480 MCContext &Context);
481
482 Expected<std::unique_ptr<MCStreamer>>
483 createMCStreamer(raw_pwrite_stream &Out, raw_pwrite_stream *DwoOut,
484 CodeGenFileType FileType, MCContext &Ctx);
485
486 /// True if the target uses physical regs (as nearly all targets do). False
487 /// for stack machines such as WebAssembly and other virtual-register
488 /// machines. If true, all vregs must be allocated before PEI. If false, then
489 /// callee-save register spilling and scavenging are not needed or used. If
490 /// false, implicitly defined registers will still be assumed to be physical
491 /// registers, except that variadic defs will be allocated vregs.
usesPhysRegsForValues()492 virtual bool usesPhysRegsForValues() const { return true; }
493
494 /// True if the target wants to use interprocedural register allocation by
495 /// default. The -enable-ipra flag can be used to override this.
useIPRA()496 virtual bool useIPRA() const {
497 return false;
498 }
499
500 /// The default variant to use in unqualified `asm` instructions.
501 /// If this returns 0, `asm "$(foo$|bar$)"` will evaluate to `asm "foo"`.
unqualifiedInlineAsmVariant()502 virtual int unqualifiedInlineAsmVariant() const { return 0; }
503 };
504
505 /// Helper method for getting the code model, returning Default if
506 /// CM does not have a value. The tiny and kernel models will produce
507 /// an error, so targets that support them or require more complex codemodel
508 /// selection logic should implement and call their own getEffectiveCodeModel.
509 inline CodeModel::Model
getEffectiveCodeModel(std::optional<CodeModel::Model> CM,CodeModel::Model Default)510 getEffectiveCodeModel(std::optional<CodeModel::Model> CM,
511 CodeModel::Model Default) {
512 if (CM) {
513 // By default, targets do not support the tiny and kernel models.
514 if (*CM == CodeModel::Tiny)
515 report_fatal_error("Target does not support the tiny CodeModel", false);
516 if (*CM == CodeModel::Kernel)
517 report_fatal_error("Target does not support the kernel CodeModel", false);
518 return *CM;
519 }
520 return Default;
521 }
522
523 } // end namespace llvm
524
525 #endif // LLVM_TARGET_TARGETMACHINE_H
526