1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/PointerIntPair.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32 #include "llvm/CodeGen/MachineCycleAnalysis.h"
33 #include "llvm/CodeGen/MachineDominators.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachinePostDominators.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/RegisterClassInfo.h"
42 #include "llvm/CodeGen/RegisterPressure.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/BranchProbability.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstdint>
59 #include <map>
60 #include <utility>
61 #include <vector>
62
63 using namespace llvm;
64
65 #define DEBUG_TYPE "machine-sink"
66
67 static cl::opt<bool>
68 SplitEdges("machine-sink-split",
69 cl::desc("Split critical edges during machine sinking"),
70 cl::init(true), cl::Hidden);
71
72 static cl::opt<bool>
73 UseBlockFreqInfo("machine-sink-bfi",
74 cl::desc("Use block frequency info to find successors to sink"),
75 cl::init(true), cl::Hidden);
76
77 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
78 "machine-sink-split-probability-threshold",
79 cl::desc(
80 "Percentage threshold for splitting single-instruction critical edge. "
81 "If the branch threshold is higher than this threshold, we allow "
82 "speculative execution of up to 1 instruction to avoid branching to "
83 "splitted critical edge"),
84 cl::init(40), cl::Hidden);
85
86 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold(
87 "machine-sink-load-instrs-threshold",
88 cl::desc("Do not try to find alias store for a load if there is a in-path "
89 "block whose instruction number is higher than this threshold."),
90 cl::init(2000), cl::Hidden);
91
92 static cl::opt<unsigned> SinkLoadBlocksThreshold(
93 "machine-sink-load-blocks-threshold",
94 cl::desc("Do not try to find alias store for a load if the block number in "
95 "the straight line is higher than this threshold."),
96 cl::init(20), cl::Hidden);
97
98 static cl::opt<bool>
99 SinkInstsIntoCycle("sink-insts-to-avoid-spills",
100 cl::desc("Sink instructions into cycles to avoid "
101 "register spills"),
102 cl::init(false), cl::Hidden);
103
104 static cl::opt<unsigned> SinkIntoCycleLimit(
105 "machine-sink-cycle-limit",
106 cl::desc("The maximum number of instructions considered for cycle sinking."),
107 cl::init(50), cl::Hidden);
108
109 STATISTIC(NumSunk, "Number of machine instructions sunk");
110 STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle");
111 STATISTIC(NumSplit, "Number of critical edges split");
112 STATISTIC(NumCoalesces, "Number of copies coalesced");
113 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
114
115 namespace {
116
117 class MachineSinking : public MachineFunctionPass {
118 const TargetInstrInfo *TII;
119 const TargetRegisterInfo *TRI;
120 MachineRegisterInfo *MRI; // Machine register information
121 MachineDominatorTree *DT; // Machine dominator tree
122 MachinePostDominatorTree *PDT; // Machine post dominator tree
123 MachineCycleInfo *CI;
124 MachineBlockFrequencyInfo *MBFI;
125 const MachineBranchProbabilityInfo *MBPI;
126 AliasAnalysis *AA;
127 RegisterClassInfo RegClassInfo;
128
129 // Remember which edges have been considered for breaking.
130 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
131 CEBCandidates;
132 // Remember which edges we are about to split.
133 // This is different from CEBCandidates since those edges
134 // will be split.
135 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
136
137 DenseSet<Register> RegsToClearKillFlags;
138
139 using AllSuccsCache =
140 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
141
142 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
143 /// post-dominated by another DBG_VALUE of the same variable location.
144 /// This is necessary to detect sequences such as:
145 /// %0 = someinst
146 /// DBG_VALUE %0, !123, !DIExpression()
147 /// %1 = anotherinst
148 /// DBG_VALUE %1, !123, !DIExpression()
149 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
150 /// would re-order assignments.
151 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
152
153 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
154 /// debug instructions to sink.
155 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
156
157 /// Record of debug variables that have had their locations set in the
158 /// current block.
159 DenseSet<DebugVariable> SeenDbgVars;
160
161 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool>
162 HasStoreCache;
163 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>,
164 std::vector<MachineInstr *>>
165 StoreInstrCache;
166
167 /// Cached BB's register pressure.
168 std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure;
169
170 public:
171 static char ID; // Pass identification
172
MachineSinking()173 MachineSinking() : MachineFunctionPass(ID) {
174 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
175 }
176
177 bool runOnMachineFunction(MachineFunction &MF) override;
178
getAnalysisUsage(AnalysisUsage & AU) const179 void getAnalysisUsage(AnalysisUsage &AU) const override {
180 MachineFunctionPass::getAnalysisUsage(AU);
181 AU.addRequired<AAResultsWrapperPass>();
182 AU.addRequired<MachineDominatorTree>();
183 AU.addRequired<MachinePostDominatorTree>();
184 AU.addRequired<MachineCycleInfoWrapperPass>();
185 AU.addRequired<MachineBranchProbabilityInfo>();
186 AU.addPreserved<MachineCycleInfoWrapperPass>();
187 AU.addPreserved<MachineLoopInfo>();
188 if (UseBlockFreqInfo)
189 AU.addRequired<MachineBlockFrequencyInfo>();
190 }
191
releaseMemory()192 void releaseMemory() override {
193 CEBCandidates.clear();
194 }
195
196 private:
197 bool ProcessBlock(MachineBasicBlock &MBB);
198 void ProcessDbgInst(MachineInstr &MI);
199 bool isWorthBreakingCriticalEdge(MachineInstr &MI,
200 MachineBasicBlock *From,
201 MachineBasicBlock *To);
202
203 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To,
204 MachineInstr &MI);
205
206 /// Postpone the splitting of the given critical
207 /// edge (\p From, \p To).
208 ///
209 /// We do not split the edges on the fly. Indeed, this invalidates
210 /// the dominance information and thus triggers a lot of updates
211 /// of that information underneath.
212 /// Instead, we postpone all the splits after each iteration of
213 /// the main loop. That way, the information is at least valid
214 /// for the lifetime of an iteration.
215 ///
216 /// \return True if the edge is marked as toSplit, false otherwise.
217 /// False can be returned if, for instance, this is not profitable.
218 bool PostponeSplitCriticalEdge(MachineInstr &MI,
219 MachineBasicBlock *From,
220 MachineBasicBlock *To,
221 bool BreakPHIEdge);
222 bool SinkInstruction(MachineInstr &MI, bool &SawStore,
223 AllSuccsCache &AllSuccessors);
224
225 /// If we sink a COPY inst, some debug users of it's destination may no
226 /// longer be dominated by the COPY, and will eventually be dropped.
227 /// This is easily rectified by forwarding the non-dominated debug uses
228 /// to the copy source.
229 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
230 MachineBasicBlock *TargetBlock);
231 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB,
232 MachineBasicBlock *DefMBB, bool &BreakPHIEdge,
233 bool &LocalUse) const;
234 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
235 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
236
237 void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB,
238 SmallVectorImpl<MachineInstr *> &Candidates);
239 bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I);
240
241 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI,
242 MachineBasicBlock *MBB,
243 MachineBasicBlock *SuccToSinkTo,
244 AllSuccsCache &AllSuccessors);
245
246 bool PerformTrivialForwardCoalescing(MachineInstr &MI,
247 MachineBasicBlock *MBB);
248
249 SmallVector<MachineBasicBlock *, 4> &
250 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
251 AllSuccsCache &AllSuccessors) const;
252
253 std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB);
254 };
255
256 } // end anonymous namespace
257
258 char MachineSinking::ID = 0;
259
260 char &llvm::MachineSinkingID = MachineSinking::ID;
261
262 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
263 "Machine code sinking", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)264 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
265 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
266 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass)
267 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
268 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
269 "Machine code sinking", false, false)
270
271 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
272 MachineBasicBlock *MBB) {
273 if (!MI.isCopy())
274 return false;
275
276 Register SrcReg = MI.getOperand(1).getReg();
277 Register DstReg = MI.getOperand(0).getReg();
278 if (!SrcReg.isVirtual() || !DstReg.isVirtual() ||
279 !MRI->hasOneNonDBGUse(SrcReg))
280 return false;
281
282 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
283 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
284 if (SRC != DRC)
285 return false;
286
287 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
288 if (DefMI->isCopyLike())
289 return false;
290 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
291 LLVM_DEBUG(dbgs() << "*** to: " << MI);
292 MRI->replaceRegWith(DstReg, SrcReg);
293 MI.eraseFromParent();
294
295 // Conservatively, clear any kill flags, since it's possible that they are no
296 // longer correct.
297 MRI->clearKillFlags(SrcReg);
298
299 ++NumCoalesces;
300 return true;
301 }
302
303 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
304 /// occur in blocks dominated by the specified block. If any use is in the
305 /// definition block, then return false since it is never legal to move def
306 /// after uses.
AllUsesDominatedByBlock(Register Reg,MachineBasicBlock * MBB,MachineBasicBlock * DefMBB,bool & BreakPHIEdge,bool & LocalUse) const307 bool MachineSinking::AllUsesDominatedByBlock(Register Reg,
308 MachineBasicBlock *MBB,
309 MachineBasicBlock *DefMBB,
310 bool &BreakPHIEdge,
311 bool &LocalUse) const {
312 assert(Reg.isVirtual() && "Only makes sense for vregs");
313
314 // Ignore debug uses because debug info doesn't affect the code.
315 if (MRI->use_nodbg_empty(Reg))
316 return true;
317
318 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
319 // into and they are all PHI nodes. In this case, machine-sink must break
320 // the critical edge first. e.g.
321 //
322 // %bb.1:
323 // Predecessors according to CFG: %bb.0
324 // ...
325 // %def = DEC64_32r %x, implicit-def dead %eflags
326 // ...
327 // JE_4 <%bb.37>, implicit %eflags
328 // Successors according to CFG: %bb.37 %bb.2
329 //
330 // %bb.2:
331 // %p = PHI %y, %bb.0, %def, %bb.1
332 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) {
333 MachineInstr *UseInst = MO.getParent();
334 unsigned OpNo = UseInst->getOperandNo(&MO);
335 MachineBasicBlock *UseBlock = UseInst->getParent();
336 return UseBlock == MBB && UseInst->isPHI() &&
337 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB;
338 })) {
339 BreakPHIEdge = true;
340 return true;
341 }
342
343 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
344 // Determine the block of the use.
345 MachineInstr *UseInst = MO.getParent();
346 unsigned OpNo = &MO - &UseInst->getOperand(0);
347 MachineBasicBlock *UseBlock = UseInst->getParent();
348 if (UseInst->isPHI()) {
349 // PHI nodes use the operand in the predecessor block, not the block with
350 // the PHI.
351 UseBlock = UseInst->getOperand(OpNo+1).getMBB();
352 } else if (UseBlock == DefMBB) {
353 LocalUse = true;
354 return false;
355 }
356
357 // Check that it dominates.
358 if (!DT->dominates(MBB, UseBlock))
359 return false;
360 }
361
362 return true;
363 }
364
365 /// Return true if this machine instruction loads from global offset table or
366 /// constant pool.
mayLoadFromGOTOrConstantPool(MachineInstr & MI)367 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
368 assert(MI.mayLoad() && "Expected MI that loads!");
369
370 // If we lost memory operands, conservatively assume that the instruction
371 // reads from everything..
372 if (MI.memoperands_empty())
373 return true;
374
375 for (MachineMemOperand *MemOp : MI.memoperands())
376 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
377 if (PSV->isGOT() || PSV->isConstantPool())
378 return true;
379
380 return false;
381 }
382
FindCycleSinkCandidates(MachineCycle * Cycle,MachineBasicBlock * BB,SmallVectorImpl<MachineInstr * > & Candidates)383 void MachineSinking::FindCycleSinkCandidates(
384 MachineCycle *Cycle, MachineBasicBlock *BB,
385 SmallVectorImpl<MachineInstr *> &Candidates) {
386 for (auto &MI : *BB) {
387 LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI);
388 if (!TII->shouldSink(MI)) {
389 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this "
390 "target\n");
391 continue;
392 }
393 if (!isCycleInvariant(Cycle, MI)) {
394 LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n");
395 continue;
396 }
397 bool DontMoveAcrossStore = true;
398 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) {
399 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n");
400 continue;
401 }
402 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) {
403 LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n");
404 continue;
405 }
406 if (MI.isConvergent())
407 continue;
408
409 const MachineOperand &MO = MI.getOperand(0);
410 if (!MO.isReg() || !MO.getReg() || !MO.isDef())
411 continue;
412 if (!MRI->hasOneDef(MO.getReg()))
413 continue;
414
415 LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n");
416 Candidates.push_back(&MI);
417 }
418 }
419
runOnMachineFunction(MachineFunction & MF)420 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
421 if (skipFunction(MF.getFunction()))
422 return false;
423
424 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
425
426 TII = MF.getSubtarget().getInstrInfo();
427 TRI = MF.getSubtarget().getRegisterInfo();
428 MRI = &MF.getRegInfo();
429 DT = &getAnalysis<MachineDominatorTree>();
430 PDT = &getAnalysis<MachinePostDominatorTree>();
431 CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo();
432 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
433 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
434 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
435 RegClassInfo.runOnMachineFunction(MF);
436
437 bool EverMadeChange = false;
438
439 while (true) {
440 bool MadeChange = false;
441
442 // Process all basic blocks.
443 CEBCandidates.clear();
444 ToSplit.clear();
445 for (auto &MBB: MF)
446 MadeChange |= ProcessBlock(MBB);
447
448 // If we have anything we marked as toSplit, split it now.
449 for (const auto &Pair : ToSplit) {
450 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
451 if (NewSucc != nullptr) {
452 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
453 << printMBBReference(*Pair.first) << " -- "
454 << printMBBReference(*NewSucc) << " -- "
455 << printMBBReference(*Pair.second) << '\n');
456 if (MBFI)
457 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI);
458
459 MadeChange = true;
460 ++NumSplit;
461 } else
462 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
463 }
464 // If this iteration over the code changed anything, keep iterating.
465 if (!MadeChange) break;
466 EverMadeChange = true;
467 }
468
469 if (SinkInstsIntoCycle) {
470 SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_begin(),
471 CI->toplevel_end());
472 for (auto *Cycle : Cycles) {
473 MachineBasicBlock *Preheader = Cycle->getCyclePreheader();
474 if (!Preheader) {
475 LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n");
476 continue;
477 }
478 SmallVector<MachineInstr *, 8> Candidates;
479 FindCycleSinkCandidates(Cycle, Preheader, Candidates);
480
481 // Walk the candidates in reverse order so that we start with the use
482 // of a def-use chain, if there is any.
483 // TODO: Sort the candidates using a cost-model.
484 unsigned i = 0;
485 for (MachineInstr *I : llvm::reverse(Candidates)) {
486 if (i++ == SinkIntoCycleLimit) {
487 LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to "
488 "be analysed.");
489 break;
490 }
491
492 if (!SinkIntoCycle(Cycle, *I))
493 break;
494 EverMadeChange = true;
495 ++NumCycleSunk;
496 }
497 }
498 }
499
500 HasStoreCache.clear();
501 StoreInstrCache.clear();
502
503 // Now clear any kill flags for recorded registers.
504 for (auto I : RegsToClearKillFlags)
505 MRI->clearKillFlags(I);
506 RegsToClearKillFlags.clear();
507
508 return EverMadeChange;
509 }
510
ProcessBlock(MachineBasicBlock & MBB)511 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
512 // Can't sink anything out of a block that has less than two successors.
513 if (MBB.succ_size() <= 1 || MBB.empty()) return false;
514
515 // Don't bother sinking code out of unreachable blocks. In addition to being
516 // unprofitable, it can also lead to infinite looping, because in an
517 // unreachable cycle there may be nowhere to stop.
518 if (!DT->isReachableFromEntry(&MBB)) return false;
519
520 bool MadeChange = false;
521
522 // Cache all successors, sorted by frequency info and cycle depth.
523 AllSuccsCache AllSuccessors;
524
525 // Walk the basic block bottom-up. Remember if we saw a store.
526 MachineBasicBlock::iterator I = MBB.end();
527 --I;
528 bool ProcessedBegin, SawStore = false;
529 do {
530 MachineInstr &MI = *I; // The instruction to sink.
531
532 // Predecrement I (if it's not begin) so that it isn't invalidated by
533 // sinking.
534 ProcessedBegin = I == MBB.begin();
535 if (!ProcessedBegin)
536 --I;
537
538 if (MI.isDebugOrPseudoInstr()) {
539 if (MI.isDebugValue())
540 ProcessDbgInst(MI);
541 continue;
542 }
543
544 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
545 if (Joined) {
546 MadeChange = true;
547 continue;
548 }
549
550 if (SinkInstruction(MI, SawStore, AllSuccessors)) {
551 ++NumSunk;
552 MadeChange = true;
553 }
554
555 // If we just processed the first instruction in the block, we're done.
556 } while (!ProcessedBegin);
557
558 SeenDbgUsers.clear();
559 SeenDbgVars.clear();
560 // recalculate the bb register pressure after sinking one BB.
561 CachedRegisterPressure.clear();
562
563 return MadeChange;
564 }
565
ProcessDbgInst(MachineInstr & MI)566 void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
567 // When we see DBG_VALUEs for registers, record any vreg it reads, so that
568 // we know what to sink if the vreg def sinks.
569 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
570
571 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
572 MI.getDebugLoc()->getInlinedAt());
573 bool SeenBefore = SeenDbgVars.contains(Var);
574
575 for (MachineOperand &MO : MI.debug_operands()) {
576 if (MO.isReg() && MO.getReg().isVirtual())
577 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
578 }
579
580 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
581 SeenDbgVars.insert(Var);
582 }
583
isWorthBreakingCriticalEdge(MachineInstr & MI,MachineBasicBlock * From,MachineBasicBlock * To)584 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
585 MachineBasicBlock *From,
586 MachineBasicBlock *To) {
587 // FIXME: Need much better heuristics.
588
589 // If the pass has already considered breaking this edge (during this pass
590 // through the function), then let's go ahead and break it. This means
591 // sinking multiple "cheap" instructions into the same block.
592 if (!CEBCandidates.insert(std::make_pair(From, To)).second)
593 return true;
594
595 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
596 return true;
597
598 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
599 BranchProbability(SplitEdgeProbabilityThreshold, 100))
600 return true;
601
602 // MI is cheap, we probably don't want to break the critical edge for it.
603 // However, if this would allow some definitions of its source operands
604 // to be sunk then it's probably worth it.
605 for (const MachineOperand &MO : MI.operands()) {
606 if (!MO.isReg() || !MO.isUse())
607 continue;
608 Register Reg = MO.getReg();
609 if (Reg == 0)
610 continue;
611
612 // We don't move live definitions of physical registers,
613 // so sinking their uses won't enable any opportunities.
614 if (Reg.isPhysical())
615 continue;
616
617 // If this instruction is the only user of a virtual register,
618 // check if breaking the edge will enable sinking
619 // both this instruction and the defining instruction.
620 if (MRI->hasOneNonDBGUse(Reg)) {
621 // If the definition resides in same MBB,
622 // claim it's likely we can sink these together.
623 // If definition resides elsewhere, we aren't
624 // blocking it from being sunk so don't break the edge.
625 MachineInstr *DefMI = MRI->getVRegDef(Reg);
626 if (DefMI->getParent() == MI.getParent())
627 return true;
628 }
629 }
630
631 return false;
632 }
633
PostponeSplitCriticalEdge(MachineInstr & MI,MachineBasicBlock * FromBB,MachineBasicBlock * ToBB,bool BreakPHIEdge)634 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
635 MachineBasicBlock *FromBB,
636 MachineBasicBlock *ToBB,
637 bool BreakPHIEdge) {
638 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
639 return false;
640
641 // Avoid breaking back edge. From == To means backedge for single BB cycle.
642 if (!SplitEdges || FromBB == ToBB)
643 return false;
644
645 MachineCycle *FromCycle = CI->getCycle(FromBB);
646 MachineCycle *ToCycle = CI->getCycle(ToBB);
647
648 // Check for backedges of more "complex" cycles.
649 if (FromCycle == ToCycle && FromCycle &&
650 (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB))
651 return false;
652
653 // It's not always legal to break critical edges and sink the computation
654 // to the edge.
655 //
656 // %bb.1:
657 // v1024
658 // Beq %bb.3
659 // <fallthrough>
660 // %bb.2:
661 // ... no uses of v1024
662 // <fallthrough>
663 // %bb.3:
664 // ...
665 // = v1024
666 //
667 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
668 //
669 // %bb.1:
670 // ...
671 // Bne %bb.2
672 // %bb.4:
673 // v1024 =
674 // B %bb.3
675 // %bb.2:
676 // ... no uses of v1024
677 // <fallthrough>
678 // %bb.3:
679 // ...
680 // = v1024
681 //
682 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
683 // flow. We need to ensure the new basic block where the computation is
684 // sunk to dominates all the uses.
685 // It's only legal to break critical edge and sink the computation to the
686 // new block if all the predecessors of "To", except for "From", are
687 // not dominated by "From". Given SSA property, this means these
688 // predecessors are dominated by "To".
689 //
690 // There is no need to do this check if all the uses are PHI nodes. PHI
691 // sources are only defined on the specific predecessor edges.
692 if (!BreakPHIEdge) {
693 for (MachineBasicBlock *Pred : ToBB->predecessors())
694 if (Pred != FromBB && !DT->dominates(ToBB, Pred))
695 return false;
696 }
697
698 ToSplit.insert(std::make_pair(FromBB, ToBB));
699
700 return true;
701 }
702
703 std::vector<unsigned> &
getBBRegisterPressure(MachineBasicBlock & MBB)704 MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) {
705 // Currently to save compiling time, MBB's register pressure will not change
706 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's
707 // register pressure is changed after sinking any instructions into it.
708 // FIXME: need a accurate and cheap register pressure estiminate model here.
709 auto RP = CachedRegisterPressure.find(&MBB);
710 if (RP != CachedRegisterPressure.end())
711 return RP->second;
712
713 RegionPressure Pressure;
714 RegPressureTracker RPTracker(Pressure);
715
716 // Initialize the register pressure tracker.
717 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(),
718 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
719
720 for (MachineBasicBlock::iterator MII = MBB.instr_end(),
721 MIE = MBB.instr_begin();
722 MII != MIE; --MII) {
723 MachineInstr &MI = *std::prev(MII);
724 if (MI.isDebugInstr() || MI.isPseudoProbe())
725 continue;
726 RegisterOperands RegOpers;
727 RegOpers.collect(MI, *TRI, *MRI, false, false);
728 RPTracker.recedeSkipDebugValues();
729 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
730 RPTracker.recede(RegOpers);
731 }
732
733 RPTracker.closeRegion();
734 auto It = CachedRegisterPressure.insert(
735 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure));
736 return It.first->second;
737 }
738
739 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
isProfitableToSinkTo(Register Reg,MachineInstr & MI,MachineBasicBlock * MBB,MachineBasicBlock * SuccToSinkTo,AllSuccsCache & AllSuccessors)740 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI,
741 MachineBasicBlock *MBB,
742 MachineBasicBlock *SuccToSinkTo,
743 AllSuccsCache &AllSuccessors) {
744 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
745
746 if (MBB == SuccToSinkTo)
747 return false;
748
749 // It is profitable if SuccToSinkTo does not post dominate current block.
750 if (!PDT->dominates(SuccToSinkTo, MBB))
751 return true;
752
753 // It is profitable to sink an instruction from a deeper cycle to a shallower
754 // cycle, even if the latter post-dominates the former (PR21115).
755 if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo))
756 return true;
757
758 // Check if only use in post dominated block is PHI instruction.
759 bool NonPHIUse = false;
760 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
761 MachineBasicBlock *UseBlock = UseInst.getParent();
762 if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
763 NonPHIUse = true;
764 }
765 if (!NonPHIUse)
766 return true;
767
768 // If SuccToSinkTo post dominates then also it may be profitable if MI
769 // can further profitably sinked into another block in next round.
770 bool BreakPHIEdge = false;
771 // FIXME - If finding successor is compile time expensive then cache results.
772 if (MachineBasicBlock *MBB2 =
773 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
774 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
775
776 MachineCycle *MCycle = CI->getCycle(MBB);
777
778 // If the instruction is not inside a cycle, it is not profitable to sink MI to
779 // a post dominate block SuccToSinkTo.
780 if (!MCycle)
781 return false;
782
783 auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) {
784 unsigned Weight = TRI->getRegClassWeight(RC).RegWeight;
785 const int *PS = TRI->getRegClassPressureSets(RC);
786 // Get register pressure for block SuccToSinkTo.
787 std::vector<unsigned> BBRegisterPressure =
788 getBBRegisterPressure(*SuccToSinkTo);
789 for (; *PS != -1; PS++)
790 // check if any register pressure set exceeds limit in block SuccToSinkTo
791 // after sinking.
792 if (Weight + BBRegisterPressure[*PS] >=
793 TRI->getRegPressureSetLimit(*MBB->getParent(), *PS))
794 return true;
795 return false;
796 };
797
798 // If this instruction is inside a Cycle and sinking this instruction can make
799 // more registers live range shorten, it is still prifitable.
800 for (const MachineOperand &MO : MI.operands()) {
801 // Ignore non-register operands.
802 if (!MO.isReg())
803 continue;
804 Register Reg = MO.getReg();
805 if (Reg == 0)
806 continue;
807
808 if (Reg.isPhysical()) {
809 if (MO.isUse() &&
810 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO)))
811 continue;
812
813 // Don't handle non-constant and non-ignorable physical register.
814 return false;
815 }
816
817 // Users for the defs are all dominated by SuccToSinkTo.
818 if (MO.isDef()) {
819 // This def register's live range is shortened after sinking.
820 bool LocalUse = false;
821 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge,
822 LocalUse))
823 return false;
824 } else {
825 MachineInstr *DefMI = MRI->getVRegDef(Reg);
826 if (!DefMI)
827 continue;
828 MachineCycle *Cycle = CI->getCycle(DefMI->getParent());
829 // DefMI is defined outside of cycle. There should be no live range
830 // impact for this operand. Defination outside of cycle means:
831 // 1: defination is outside of cycle.
832 // 2: defination is in this cycle, but it is a PHI in the cycle header.
833 if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() &&
834 Cycle->getHeader() == DefMI->getParent()))
835 continue;
836 // The DefMI is defined inside the cycle.
837 // If sinking this operand makes some register pressure set exceed limit,
838 // it is not profitable.
839 if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) {
840 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable.");
841 return false;
842 }
843 }
844 }
845
846 // If MI is in cycle and all its operands are alive across the whole cycle or
847 // if no operand sinking make register pressure set exceed limit, it is
848 // profitable to sink MI.
849 return true;
850 }
851
852 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
853 /// computing it if it was not already cached.
854 SmallVector<MachineBasicBlock *, 4> &
GetAllSortedSuccessors(MachineInstr & MI,MachineBasicBlock * MBB,AllSuccsCache & AllSuccessors) const855 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
856 AllSuccsCache &AllSuccessors) const {
857 // Do we have the sorted successors in cache ?
858 auto Succs = AllSuccessors.find(MBB);
859 if (Succs != AllSuccessors.end())
860 return Succs->second;
861
862 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors());
863
864 // Handle cases where sinking can happen but where the sink point isn't a
865 // successor. For example:
866 //
867 // x = computation
868 // if () {} else {}
869 // use x
870 //
871 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) {
872 // DomTree children of MBB that have MBB as immediate dominator are added.
873 if (DTChild->getIDom()->getBlock() == MI.getParent() &&
874 // Skip MBBs already added to the AllSuccs vector above.
875 !MBB->isSuccessor(DTChild->getBlock()))
876 AllSuccs.push_back(DTChild->getBlock());
877 }
878
879 // Sort Successors according to their cycle depth or block frequency info.
880 llvm::stable_sort(
881 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
882 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
883 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
884 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
885 return HasBlockFreq ? LHSFreq < RHSFreq
886 : CI->getCycleDepth(L) < CI->getCycleDepth(R);
887 });
888
889 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
890
891 return it.first->second;
892 }
893
894 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
895 MachineBasicBlock *
FindSuccToSinkTo(MachineInstr & MI,MachineBasicBlock * MBB,bool & BreakPHIEdge,AllSuccsCache & AllSuccessors)896 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
897 bool &BreakPHIEdge,
898 AllSuccsCache &AllSuccessors) {
899 assert (MBB && "Invalid MachineBasicBlock!");
900
901 // loop over all the operands of the specified instruction. If there is
902 // anything we can't handle, bail out.
903
904 // SuccToSinkTo - This is the successor to sink this instruction to, once we
905 // decide.
906 MachineBasicBlock *SuccToSinkTo = nullptr;
907 for (const MachineOperand &MO : MI.operands()) {
908 if (!MO.isReg()) continue; // Ignore non-register operands.
909
910 Register Reg = MO.getReg();
911 if (Reg == 0) continue;
912
913 if (Reg.isPhysical()) {
914 if (MO.isUse()) {
915 // If the physreg has no defs anywhere, it's just an ambient register
916 // and we can freely move its uses. Alternatively, if it's allocatable,
917 // it could get allocated to something with a def during allocation.
918 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO))
919 return nullptr;
920 } else if (!MO.isDead()) {
921 // A def that isn't dead. We can't move it.
922 return nullptr;
923 }
924 } else {
925 // Virtual register uses are always safe to sink.
926 if (MO.isUse()) continue;
927
928 // If it's not safe to move defs of the register class, then abort.
929 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
930 return nullptr;
931
932 // Virtual register defs can only be sunk if all their uses are in blocks
933 // dominated by one of the successors.
934 if (SuccToSinkTo) {
935 // If a previous operand picked a block to sink to, then this operand
936 // must be sinkable to the same block.
937 bool LocalUse = false;
938 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
939 BreakPHIEdge, LocalUse))
940 return nullptr;
941
942 continue;
943 }
944
945 // Otherwise, we should look at all the successors and decide which one
946 // we should sink to. If we have reliable block frequency information
947 // (frequency != 0) available, give successors with smaller frequencies
948 // higher priority, otherwise prioritize smaller cycle depths.
949 for (MachineBasicBlock *SuccBlock :
950 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
951 bool LocalUse = false;
952 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
953 BreakPHIEdge, LocalUse)) {
954 SuccToSinkTo = SuccBlock;
955 break;
956 }
957 if (LocalUse)
958 // Def is used locally, it's never safe to move this def.
959 return nullptr;
960 }
961
962 // If we couldn't find a block to sink to, ignore this instruction.
963 if (!SuccToSinkTo)
964 return nullptr;
965 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
966 return nullptr;
967 }
968 }
969
970 // It is not possible to sink an instruction into its own block. This can
971 // happen with cycles.
972 if (MBB == SuccToSinkTo)
973 return nullptr;
974
975 // It's not safe to sink instructions to EH landing pad. Control flow into
976 // landing pad is implicitly defined.
977 if (SuccToSinkTo && SuccToSinkTo->isEHPad())
978 return nullptr;
979
980 // It ought to be okay to sink instructions into an INLINEASM_BR target, but
981 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
982 // the source block (which this code does not yet do). So for now, forbid
983 // doing so.
984 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget())
985 return nullptr;
986
987 return SuccToSinkTo;
988 }
989
990 /// Return true if MI is likely to be usable as a memory operation by the
991 /// implicit null check optimization.
992 ///
993 /// This is a "best effort" heuristic, and should not be relied upon for
994 /// correctness. This returning true does not guarantee that the implicit null
995 /// check optimization is legal over MI, and this returning false does not
996 /// guarantee MI cannot possibly be used to do a null check.
SinkingPreventsImplicitNullCheck(MachineInstr & MI,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI)997 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
998 const TargetInstrInfo *TII,
999 const TargetRegisterInfo *TRI) {
1000 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
1001
1002 auto *MBB = MI.getParent();
1003 if (MBB->pred_size() != 1)
1004 return false;
1005
1006 auto *PredMBB = *MBB->pred_begin();
1007 auto *PredBB = PredMBB->getBasicBlock();
1008
1009 // Frontends that don't use implicit null checks have no reason to emit
1010 // branches with make.implicit metadata, and this function should always
1011 // return false for them.
1012 if (!PredBB ||
1013 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
1014 return false;
1015
1016 const MachineOperand *BaseOp;
1017 int64_t Offset;
1018 bool OffsetIsScalable;
1019 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
1020 return false;
1021
1022 if (!BaseOp->isReg())
1023 return false;
1024
1025 if (!(MI.mayLoad() && !MI.isPredicable()))
1026 return false;
1027
1028 MachineBranchPredicate MBP;
1029 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
1030 return false;
1031
1032 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
1033 (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
1034 MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
1035 MBP.LHS.getReg() == BaseOp->getReg();
1036 }
1037
1038 /// If the sunk instruction is a copy, try to forward the copy instead of
1039 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
1040 /// there's any subregister weirdness involved. Returns true if copy
1041 /// propagation occurred.
attemptDebugCopyProp(MachineInstr & SinkInst,MachineInstr & DbgMI,Register Reg)1042 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI,
1043 Register Reg) {
1044 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
1045 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
1046
1047 // Copy DBG_VALUE operand and set the original to undef. We then check to
1048 // see whether this is something that can be copy-forwarded. If it isn't,
1049 // continue around the loop.
1050
1051 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
1052 auto CopyOperands = TII.isCopyInstr(SinkInst);
1053 if (!CopyOperands)
1054 return false;
1055 SrcMO = CopyOperands->Source;
1056 DstMO = CopyOperands->Destination;
1057
1058 // Check validity of forwarding this copy.
1059 bool PostRA = MRI.getNumVirtRegs() == 0;
1060
1061 // Trying to forward between physical and virtual registers is too hard.
1062 if (Reg.isVirtual() != SrcMO->getReg().isVirtual())
1063 return false;
1064
1065 // Only try virtual register copy-forwarding before regalloc, and physical
1066 // register copy-forwarding after regalloc.
1067 bool arePhysRegs = !Reg.isVirtual();
1068 if (arePhysRegs != PostRA)
1069 return false;
1070
1071 // Pre-regalloc, only forward if all subregisters agree (or there are no
1072 // subregs at all). More analysis might recover some forwardable copies.
1073 if (!PostRA)
1074 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg))
1075 if (DbgMO.getSubReg() != SrcMO->getSubReg() ||
1076 DbgMO.getSubReg() != DstMO->getSubReg())
1077 return false;
1078
1079 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
1080 // of this copy. Only forward the copy if the DBG_VALUE operand exactly
1081 // matches the copy destination.
1082 if (PostRA && Reg != DstMO->getReg())
1083 return false;
1084
1085 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) {
1086 DbgMO.setReg(SrcMO->getReg());
1087 DbgMO.setSubReg(SrcMO->getSubReg());
1088 }
1089 return true;
1090 }
1091
1092 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>;
1093 /// Sink an instruction and its associated debug instructions.
performSink(MachineInstr & MI,MachineBasicBlock & SuccToSinkTo,MachineBasicBlock::iterator InsertPos,ArrayRef<MIRegs> DbgValuesToSink)1094 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
1095 MachineBasicBlock::iterator InsertPos,
1096 ArrayRef<MIRegs> DbgValuesToSink) {
1097 // If we cannot find a location to use (merge with), then we erase the debug
1098 // location to prevent debug-info driven tools from potentially reporting
1099 // wrong location information.
1100 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
1101 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
1102 InsertPos->getDebugLoc()));
1103 else
1104 MI.setDebugLoc(DebugLoc());
1105
1106 // Move the instruction.
1107 MachineBasicBlock *ParentBlock = MI.getParent();
1108 SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
1109 ++MachineBasicBlock::iterator(MI));
1110
1111 // Sink a copy of debug users to the insert position. Mark the original
1112 // DBG_VALUE location as 'undef', indicating that any earlier variable
1113 // location should be terminated as we've optimised away the value at this
1114 // point.
1115 for (const auto &DbgValueToSink : DbgValuesToSink) {
1116 MachineInstr *DbgMI = DbgValueToSink.first;
1117 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI);
1118 SuccToSinkTo.insert(InsertPos, NewDbgMI);
1119
1120 bool PropagatedAllSunkOps = true;
1121 for (unsigned Reg : DbgValueToSink.second) {
1122 if (DbgMI->hasDebugOperandForReg(Reg)) {
1123 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) {
1124 PropagatedAllSunkOps = false;
1125 break;
1126 }
1127 }
1128 }
1129 if (!PropagatedAllSunkOps)
1130 DbgMI->setDebugValueUndef();
1131 }
1132 }
1133
1134 /// hasStoreBetween - check if there is store betweeen straight line blocks From
1135 /// and To.
hasStoreBetween(MachineBasicBlock * From,MachineBasicBlock * To,MachineInstr & MI)1136 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From,
1137 MachineBasicBlock *To, MachineInstr &MI) {
1138 // Make sure From and To are in straight line which means From dominates To
1139 // and To post dominates From.
1140 if (!DT->dominates(From, To) || !PDT->dominates(To, From))
1141 return true;
1142
1143 auto BlockPair = std::make_pair(From, To);
1144
1145 // Does these two blocks pair be queried before and have a definite cached
1146 // result?
1147 if (HasStoreCache.find(BlockPair) != HasStoreCache.end())
1148 return HasStoreCache[BlockPair];
1149
1150 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end())
1151 return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) {
1152 return I->mayAlias(AA, MI, false);
1153 });
1154
1155 bool SawStore = false;
1156 bool HasAliasedStore = false;
1157 DenseSet<MachineBasicBlock *> HandledBlocks;
1158 DenseSet<MachineBasicBlock *> HandledDomBlocks;
1159 // Go through all reachable blocks from From.
1160 for (MachineBasicBlock *BB : depth_first(From)) {
1161 // We insert the instruction at the start of block To, so no need to worry
1162 // about stores inside To.
1163 // Store in block From should be already considered when just enter function
1164 // SinkInstruction.
1165 if (BB == To || BB == From)
1166 continue;
1167
1168 // We already handle this BB in previous iteration.
1169 if (HandledBlocks.count(BB))
1170 continue;
1171
1172 HandledBlocks.insert(BB);
1173 // To post dominates BB, it must be a path from block From.
1174 if (PDT->dominates(To, BB)) {
1175 if (!HandledDomBlocks.count(BB))
1176 HandledDomBlocks.insert(BB);
1177
1178 // If this BB is too big or the block number in straight line between From
1179 // and To is too big, stop searching to save compiling time.
1180 if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) ||
1181 HandledDomBlocks.size() > SinkLoadBlocksThreshold) {
1182 for (auto *DomBB : HandledDomBlocks) {
1183 if (DomBB != BB && DT->dominates(DomBB, BB))
1184 HasStoreCache[std::make_pair(DomBB, To)] = true;
1185 else if(DomBB != BB && DT->dominates(BB, DomBB))
1186 HasStoreCache[std::make_pair(From, DomBB)] = true;
1187 }
1188 HasStoreCache[BlockPair] = true;
1189 return true;
1190 }
1191
1192 for (MachineInstr &I : *BB) {
1193 // Treat as alias conservatively for a call or an ordered memory
1194 // operation.
1195 if (I.isCall() || I.hasOrderedMemoryRef()) {
1196 for (auto *DomBB : HandledDomBlocks) {
1197 if (DomBB != BB && DT->dominates(DomBB, BB))
1198 HasStoreCache[std::make_pair(DomBB, To)] = true;
1199 else if(DomBB != BB && DT->dominates(BB, DomBB))
1200 HasStoreCache[std::make_pair(From, DomBB)] = true;
1201 }
1202 HasStoreCache[BlockPair] = true;
1203 return true;
1204 }
1205
1206 if (I.mayStore()) {
1207 SawStore = true;
1208 // We still have chance to sink MI if all stores between are not
1209 // aliased to MI.
1210 // Cache all store instructions, so that we don't need to go through
1211 // all From reachable blocks for next load instruction.
1212 if (I.mayAlias(AA, MI, false))
1213 HasAliasedStore = true;
1214 StoreInstrCache[BlockPair].push_back(&I);
1215 }
1216 }
1217 }
1218 }
1219 // If there is no store at all, cache the result.
1220 if (!SawStore)
1221 HasStoreCache[BlockPair] = false;
1222 return HasAliasedStore;
1223 }
1224
1225 /// Sink instructions into cycles if profitable. This especially tries to
1226 /// prevent register spills caused by register pressure if there is little to no
1227 /// overhead moving instructions into cycles.
SinkIntoCycle(MachineCycle * Cycle,MachineInstr & I)1228 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) {
1229 LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I);
1230 MachineBasicBlock *Preheader = Cycle->getCyclePreheader();
1231 assert(Preheader && "Cycle sink needs a preheader block");
1232 MachineBasicBlock *SinkBlock = nullptr;
1233 bool CanSink = true;
1234 const MachineOperand &MO = I.getOperand(0);
1235
1236 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
1237 LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI);
1238 if (!Cycle->contains(MI.getParent())) {
1239 LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n");
1240 CanSink = false;
1241 break;
1242 }
1243
1244 // FIXME: Come up with a proper cost model that estimates whether sinking
1245 // the instruction (and thus possibly executing it on every cycle
1246 // iteration) is more expensive than a register.
1247 // For now assumes that copies are cheap and thus almost always worth it.
1248 if (!MI.isCopy()) {
1249 LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n");
1250 CanSink = false;
1251 break;
1252 }
1253 if (!SinkBlock) {
1254 SinkBlock = MI.getParent();
1255 LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: "
1256 << printMBBReference(*SinkBlock) << "\n");
1257 continue;
1258 }
1259 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent());
1260 if (!SinkBlock) {
1261 LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n");
1262 CanSink = false;
1263 break;
1264 }
1265 LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " <<
1266 printMBBReference(*SinkBlock) << "\n");
1267 }
1268
1269 if (!CanSink) {
1270 LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n");
1271 return false;
1272 }
1273 if (!SinkBlock) {
1274 LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n");
1275 return false;
1276 }
1277 if (SinkBlock == Preheader) {
1278 LLVM_DEBUG(
1279 dbgs() << "CycleSink: Not sinking, sink block is the preheader\n");
1280 return false;
1281 }
1282 if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) {
1283 LLVM_DEBUG(
1284 dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n");
1285 return false;
1286 }
1287
1288 LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n");
1289 SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader,
1290 I);
1291
1292 // Conservatively clear any kill flags on uses of sunk instruction
1293 for (MachineOperand &MO : I.operands()) {
1294 if (MO.isReg() && MO.readsReg())
1295 RegsToClearKillFlags.insert(MO.getReg());
1296 }
1297
1298 // The instruction is moved from its basic block, so do not retain the
1299 // debug information.
1300 assert(!I.isDebugInstr() && "Should not sink debug inst");
1301 I.setDebugLoc(DebugLoc());
1302 return true;
1303 }
1304
1305 /// Return true if a target defined block prologue instruction interferes
1306 /// with a sink candidate.
blockPrologueInterferes(MachineBasicBlock * BB,MachineBasicBlock::iterator End,MachineInstr & MI,const TargetRegisterInfo * TRI,const TargetInstrInfo * TII,const MachineRegisterInfo * MRI)1307 static bool blockPrologueInterferes(MachineBasicBlock *BB,
1308 MachineBasicBlock::iterator End,
1309 MachineInstr &MI,
1310 const TargetRegisterInfo *TRI,
1311 const TargetInstrInfo *TII,
1312 const MachineRegisterInfo *MRI) {
1313 if (BB->begin() == End)
1314 return false; // no prologue
1315 for (MachineBasicBlock::iterator PI = BB->getFirstNonPHI(); PI != End; ++PI) {
1316 // Only check target defined prologue instructions
1317 if (!TII->isBasicBlockPrologue(*PI))
1318 continue;
1319 for (auto &MO : MI.operands()) {
1320 if (!MO.isReg())
1321 continue;
1322 Register Reg = MO.getReg();
1323 if (!Reg)
1324 continue;
1325 if (MO.isUse()) {
1326 if (Reg.isPhysical() &&
1327 (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg))))
1328 continue;
1329 if (PI->modifiesRegister(Reg, TRI))
1330 return true;
1331 } else {
1332 if (PI->readsRegister(Reg, TRI))
1333 return true;
1334 // Check for interference with non-dead defs
1335 auto *DefOp = PI->findRegisterDefOperand(Reg, false, true, TRI);
1336 if (DefOp && !DefOp->isDead())
1337 return true;
1338 }
1339 }
1340 }
1341 return false;
1342 }
1343
1344 /// SinkInstruction - Determine whether it is safe to sink the specified machine
1345 /// instruction out of its current block into a successor.
SinkInstruction(MachineInstr & MI,bool & SawStore,AllSuccsCache & AllSuccessors)1346 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
1347 AllSuccsCache &AllSuccessors) {
1348 // Don't sink instructions that the target prefers not to sink.
1349 if (!TII->shouldSink(MI))
1350 return false;
1351
1352 // Check if it's safe to move the instruction.
1353 if (!MI.isSafeToMove(AA, SawStore))
1354 return false;
1355
1356 // Convergent operations may not be made control-dependent on additional
1357 // values.
1358 if (MI.isConvergent())
1359 return false;
1360
1361 // Don't break implicit null checks. This is a performance heuristic, and not
1362 // required for correctness.
1363 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
1364 return false;
1365
1366 // FIXME: This should include support for sinking instructions within the
1367 // block they are currently in to shorten the live ranges. We often get
1368 // instructions sunk into the top of a large block, but it would be better to
1369 // also sink them down before their first use in the block. This xform has to
1370 // be careful not to *increase* register pressure though, e.g. sinking
1371 // "x = y + z" down if it kills y and z would increase the live ranges of y
1372 // and z and only shrink the live range of x.
1373
1374 bool BreakPHIEdge = false;
1375 MachineBasicBlock *ParentBlock = MI.getParent();
1376 MachineBasicBlock *SuccToSinkTo =
1377 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
1378
1379 // If there are no outputs, it must have side-effects.
1380 if (!SuccToSinkTo)
1381 return false;
1382
1383 // If the instruction to move defines a dead physical register which is live
1384 // when leaving the basic block, don't move it because it could turn into a
1385 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
1386 for (const MachineOperand &MO : MI.operands()) {
1387 if (!MO.isReg() || MO.isUse())
1388 continue;
1389 Register Reg = MO.getReg();
1390 if (Reg == 0 || !Reg.isPhysical())
1391 continue;
1392 if (SuccToSinkTo->isLiveIn(Reg))
1393 return false;
1394 }
1395
1396 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
1397
1398 // If the block has multiple predecessors, this is a critical edge.
1399 // Decide if we can sink along it or need to break the edge.
1400 if (SuccToSinkTo->pred_size() > 1) {
1401 // We cannot sink a load across a critical edge - there may be stores in
1402 // other code paths.
1403 bool TryBreak = false;
1404 bool Store =
1405 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true;
1406 if (!MI.isSafeToMove(AA, Store)) {
1407 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
1408 TryBreak = true;
1409 }
1410
1411 // We don't want to sink across a critical edge if we don't dominate the
1412 // successor. We could be introducing calculations to new code paths.
1413 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
1414 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
1415 TryBreak = true;
1416 }
1417
1418 // Don't sink instructions into a cycle.
1419 if (!TryBreak && CI->getCycle(SuccToSinkTo) &&
1420 (!CI->getCycle(SuccToSinkTo)->isReducible() ||
1421 CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) {
1422 LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n");
1423 TryBreak = true;
1424 }
1425
1426 // Otherwise we are OK with sinking along a critical edge.
1427 if (!TryBreak)
1428 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
1429 else {
1430 // Mark this edge as to be split.
1431 // If the edge can actually be split, the next iteration of the main loop
1432 // will sink MI in the newly created block.
1433 bool Status =
1434 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
1435 if (!Status)
1436 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1437 "break critical edge\n");
1438 // The instruction will not be sunk this time.
1439 return false;
1440 }
1441 }
1442
1443 if (BreakPHIEdge) {
1444 // BreakPHIEdge is true if all the uses are in the successor MBB being
1445 // sunken into and they are all PHI nodes. In this case, machine-sink must
1446 // break the critical edge first.
1447 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
1448 SuccToSinkTo, BreakPHIEdge);
1449 if (!Status)
1450 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1451 "break critical edge\n");
1452 // The instruction will not be sunk this time.
1453 return false;
1454 }
1455
1456 // Determine where to insert into. Skip phi nodes.
1457 MachineBasicBlock::iterator InsertPos =
1458 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin());
1459 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) {
1460 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n");
1461 return false;
1462 }
1463
1464 // Collect debug users of any vreg that this inst defines.
1465 SmallVector<MIRegs, 4> DbgUsersToSink;
1466 for (auto &MO : MI.operands()) {
1467 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1468 continue;
1469 if (!SeenDbgUsers.count(MO.getReg()))
1470 continue;
1471
1472 // Sink any users that don't pass any other DBG_VALUEs for this variable.
1473 auto &Users = SeenDbgUsers[MO.getReg()];
1474 for (auto &User : Users) {
1475 MachineInstr *DbgMI = User.getPointer();
1476 if (User.getInt()) {
1477 // This DBG_VALUE would re-order assignments. If we can't copy-propagate
1478 // it, it can't be recovered. Set it undef.
1479 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg()))
1480 DbgMI->setDebugValueUndef();
1481 } else {
1482 DbgUsersToSink.push_back(
1483 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())});
1484 }
1485 }
1486 }
1487
1488 // After sinking, some debug users may not be dominated any more. If possible,
1489 // copy-propagate their operands. As it's expensive, don't do this if there's
1490 // no debuginfo in the program.
1491 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
1492 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
1493
1494 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
1495
1496 // Conservatively, clear any kill flags, since it's possible that they are no
1497 // longer correct.
1498 // Note that we have to clear the kill flags for any register this instruction
1499 // uses as we may sink over another instruction which currently kills the
1500 // used registers.
1501 for (MachineOperand &MO : MI.operands()) {
1502 if (MO.isReg() && MO.isUse())
1503 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags.
1504 }
1505
1506 return true;
1507 }
1508
SalvageUnsunkDebugUsersOfCopy(MachineInstr & MI,MachineBasicBlock * TargetBlock)1509 void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
1510 MachineInstr &MI, MachineBasicBlock *TargetBlock) {
1511 assert(MI.isCopy());
1512 assert(MI.getOperand(1).isReg());
1513
1514 // Enumerate all users of vreg operands that are def'd. Skip those that will
1515 // be sunk. For the rest, if they are not dominated by the block we will sink
1516 // MI into, propagate the copy source to them.
1517 SmallVector<MachineInstr *, 4> DbgDefUsers;
1518 SmallVector<Register, 4> DbgUseRegs;
1519 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1520 for (auto &MO : MI.operands()) {
1521 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1522 continue;
1523 DbgUseRegs.push_back(MO.getReg());
1524 for (auto &User : MRI.use_instructions(MO.getReg())) {
1525 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
1526 continue;
1527
1528 // If is in same block, will either sink or be use-before-def.
1529 if (User.getParent() == MI.getParent())
1530 continue;
1531
1532 assert(User.hasDebugOperandForReg(MO.getReg()) &&
1533 "DBG_VALUE user of vreg, but has no operand for it?");
1534 DbgDefUsers.push_back(&User);
1535 }
1536 }
1537
1538 // Point the users of this copy that are no longer dominated, at the source
1539 // of the copy.
1540 for (auto *User : DbgDefUsers) {
1541 for (auto &Reg : DbgUseRegs) {
1542 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) {
1543 DbgOp.setReg(MI.getOperand(1).getReg());
1544 DbgOp.setSubReg(MI.getOperand(1).getSubReg());
1545 }
1546 }
1547 }
1548 }
1549
1550 //===----------------------------------------------------------------------===//
1551 // This pass is not intended to be a replacement or a complete alternative
1552 // for the pre-ra machine sink pass. It is only designed to sink COPY
1553 // instructions which should be handled after RA.
1554 //
1555 // This pass sinks COPY instructions into a successor block, if the COPY is not
1556 // used in the current block and the COPY is live-in to a single successor
1557 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the
1558 // copy on paths where their results aren't needed. This also exposes
1559 // additional opportunites for dead copy elimination and shrink wrapping.
1560 //
1561 // These copies were either not handled by or are inserted after the MachineSink
1562 // pass. As an example of the former case, the MachineSink pass cannot sink
1563 // COPY instructions with allocatable source registers; for AArch64 these type
1564 // of copy instructions are frequently used to move function parameters (PhyReg)
1565 // into virtual registers in the entry block.
1566 //
1567 // For the machine IR below, this pass will sink %w19 in the entry into its
1568 // successor (%bb.1) because %w19 is only live-in in %bb.1.
1569 // %bb.0:
1570 // %wzr = SUBSWri %w1, 1
1571 // %w19 = COPY %w0
1572 // Bcc 11, %bb.2
1573 // %bb.1:
1574 // Live Ins: %w19
1575 // BL @fun
1576 // %w0 = ADDWrr %w0, %w19
1577 // RET %w0
1578 // %bb.2:
1579 // %w0 = COPY %wzr
1580 // RET %w0
1581 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
1582 // able to see %bb.0 as a candidate.
1583 //===----------------------------------------------------------------------===//
1584 namespace {
1585
1586 class PostRAMachineSinking : public MachineFunctionPass {
1587 public:
1588 bool runOnMachineFunction(MachineFunction &MF) override;
1589
1590 static char ID;
PostRAMachineSinking()1591 PostRAMachineSinking() : MachineFunctionPass(ID) {}
getPassName() const1592 StringRef getPassName() const override { return "PostRA Machine Sink"; }
1593
getAnalysisUsage(AnalysisUsage & AU) const1594 void getAnalysisUsage(AnalysisUsage &AU) const override {
1595 AU.setPreservesCFG();
1596 MachineFunctionPass::getAnalysisUsage(AU);
1597 }
1598
getRequiredProperties() const1599 MachineFunctionProperties getRequiredProperties() const override {
1600 return MachineFunctionProperties().set(
1601 MachineFunctionProperties::Property::NoVRegs);
1602 }
1603
1604 private:
1605 /// Track which register units have been modified and used.
1606 LiveRegUnits ModifiedRegUnits, UsedRegUnits;
1607
1608 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
1609 /// entry in this map for each unit it touches. The DBG_VALUE's entry
1610 /// consists of a pointer to the instruction itself, and a vector of registers
1611 /// referred to by the instruction that overlap the key register unit.
1612 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs;
1613
1614 /// Sink Copy instructions unused in the same block close to their uses in
1615 /// successors.
1616 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
1617 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
1618 };
1619 } // namespace
1620
1621 char PostRAMachineSinking::ID = 0;
1622 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
1623
1624 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
1625 "PostRA Machine Sink", false, false)
1626
aliasWithRegsInLiveIn(MachineBasicBlock & MBB,unsigned Reg,const TargetRegisterInfo * TRI)1627 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
1628 const TargetRegisterInfo *TRI) {
1629 LiveRegUnits LiveInRegUnits(*TRI);
1630 LiveInRegUnits.addLiveIns(MBB);
1631 return !LiveInRegUnits.available(Reg);
1632 }
1633
1634 static MachineBasicBlock *
getSingleLiveInSuccBB(MachineBasicBlock & CurBB,const SmallPtrSetImpl<MachineBasicBlock * > & SinkableBBs,unsigned Reg,const TargetRegisterInfo * TRI)1635 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1636 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1637 unsigned Reg, const TargetRegisterInfo *TRI) {
1638 // Try to find a single sinkable successor in which Reg is live-in.
1639 MachineBasicBlock *BB = nullptr;
1640 for (auto *SI : SinkableBBs) {
1641 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
1642 // If BB is set here, Reg is live-in to at least two sinkable successors,
1643 // so quit.
1644 if (BB)
1645 return nullptr;
1646 BB = SI;
1647 }
1648 }
1649 // Reg is not live-in to any sinkable successors.
1650 if (!BB)
1651 return nullptr;
1652
1653 // Check if any register aliased with Reg is live-in in other successors.
1654 for (auto *SI : CurBB.successors()) {
1655 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1656 return nullptr;
1657 }
1658 return BB;
1659 }
1660
1661 static MachineBasicBlock *
getSingleLiveInSuccBB(MachineBasicBlock & CurBB,const SmallPtrSetImpl<MachineBasicBlock * > & SinkableBBs,ArrayRef<unsigned> DefedRegsInCopy,const TargetRegisterInfo * TRI)1662 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1663 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1664 ArrayRef<unsigned> DefedRegsInCopy,
1665 const TargetRegisterInfo *TRI) {
1666 MachineBasicBlock *SingleBB = nullptr;
1667 for (auto DefReg : DefedRegsInCopy) {
1668 MachineBasicBlock *BB =
1669 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1670 if (!BB || (SingleBB && SingleBB != BB))
1671 return nullptr;
1672 SingleBB = BB;
1673 }
1674 return SingleBB;
1675 }
1676
clearKillFlags(MachineInstr * MI,MachineBasicBlock & CurBB,SmallVectorImpl<unsigned> & UsedOpsInCopy,LiveRegUnits & UsedRegUnits,const TargetRegisterInfo * TRI)1677 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1678 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1679 LiveRegUnits &UsedRegUnits,
1680 const TargetRegisterInfo *TRI) {
1681 for (auto U : UsedOpsInCopy) {
1682 MachineOperand &MO = MI->getOperand(U);
1683 Register SrcReg = MO.getReg();
1684 if (!UsedRegUnits.available(SrcReg)) {
1685 MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1686 for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1687 if (UI.killsRegister(SrcReg, TRI)) {
1688 UI.clearRegisterKills(SrcReg, TRI);
1689 MO.setIsKill(true);
1690 break;
1691 }
1692 }
1693 }
1694 }
1695 }
1696
updateLiveIn(MachineInstr * MI,MachineBasicBlock * SuccBB,SmallVectorImpl<unsigned> & UsedOpsInCopy,SmallVectorImpl<unsigned> & DefedRegsInCopy)1697 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1698 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1699 SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1700 MachineFunction &MF = *SuccBB->getParent();
1701 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1702 for (unsigned DefReg : DefedRegsInCopy)
1703 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1704 SuccBB->removeLiveIn(*S);
1705 for (auto U : UsedOpsInCopy) {
1706 Register SrcReg = MI->getOperand(U).getReg();
1707 LaneBitmask Mask;
1708 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) {
1709 Mask |= (*S).second;
1710 }
1711 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll());
1712 }
1713 SuccBB->sortUniqueLiveIns();
1714 }
1715
hasRegisterDependency(MachineInstr * MI,SmallVectorImpl<unsigned> & UsedOpsInCopy,SmallVectorImpl<unsigned> & DefedRegsInCopy,LiveRegUnits & ModifiedRegUnits,LiveRegUnits & UsedRegUnits)1716 static bool hasRegisterDependency(MachineInstr *MI,
1717 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1718 SmallVectorImpl<unsigned> &DefedRegsInCopy,
1719 LiveRegUnits &ModifiedRegUnits,
1720 LiveRegUnits &UsedRegUnits) {
1721 bool HasRegDependency = false;
1722 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1723 MachineOperand &MO = MI->getOperand(i);
1724 if (!MO.isReg())
1725 continue;
1726 Register Reg = MO.getReg();
1727 if (!Reg)
1728 continue;
1729 if (MO.isDef()) {
1730 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1731 HasRegDependency = true;
1732 break;
1733 }
1734 DefedRegsInCopy.push_back(Reg);
1735
1736 // FIXME: instead of isUse(), readsReg() would be a better fix here,
1737 // For example, we can ignore modifications in reg with undef. However,
1738 // it's not perfectly clear if skipping the internal read is safe in all
1739 // other targets.
1740 } else if (MO.isUse()) {
1741 if (!ModifiedRegUnits.available(Reg)) {
1742 HasRegDependency = true;
1743 break;
1744 }
1745 UsedOpsInCopy.push_back(i);
1746 }
1747 }
1748 return HasRegDependency;
1749 }
1750
tryToSinkCopy(MachineBasicBlock & CurBB,MachineFunction & MF,const TargetRegisterInfo * TRI,const TargetInstrInfo * TII)1751 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1752 MachineFunction &MF,
1753 const TargetRegisterInfo *TRI,
1754 const TargetInstrInfo *TII) {
1755 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1756 // FIXME: For now, we sink only to a successor which has a single predecessor
1757 // so that we can directly sink COPY instructions to the successor without
1758 // adding any new block or branch instruction.
1759 for (MachineBasicBlock *SI : CurBB.successors())
1760 if (!SI->livein_empty() && SI->pred_size() == 1)
1761 SinkableBBs.insert(SI);
1762
1763 if (SinkableBBs.empty())
1764 return false;
1765
1766 bool Changed = false;
1767
1768 // Track which registers have been modified and used between the end of the
1769 // block and the current instruction.
1770 ModifiedRegUnits.clear();
1771 UsedRegUnits.clear();
1772 SeenDbgInstrs.clear();
1773
1774 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) {
1775 // Track the operand index for use in Copy.
1776 SmallVector<unsigned, 2> UsedOpsInCopy;
1777 // Track the register number defed in Copy.
1778 SmallVector<unsigned, 2> DefedRegsInCopy;
1779
1780 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1781 // for DBG_VALUEs later, record them when they're encountered.
1782 if (MI.isDebugValue() && !MI.isDebugRef()) {
1783 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits;
1784 bool IsValid = true;
1785 for (MachineOperand &MO : MI.debug_operands()) {
1786 if (MO.isReg() && MO.getReg().isPhysical()) {
1787 // Bail if we can already tell the sink would be rejected, rather
1788 // than needlessly accumulating lots of DBG_VALUEs.
1789 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy,
1790 ModifiedRegUnits, UsedRegUnits)) {
1791 IsValid = false;
1792 break;
1793 }
1794
1795 // Record debug use of each reg unit.
1796 for (auto RI = MCRegUnitIterator(MO.getReg(), TRI); RI.isValid();
1797 ++RI)
1798 MIUnits[*RI].push_back(MO.getReg());
1799 }
1800 }
1801 if (IsValid) {
1802 for (auto &RegOps : MIUnits)
1803 SeenDbgInstrs[RegOps.first].emplace_back(&MI,
1804 std::move(RegOps.second));
1805 }
1806 continue;
1807 }
1808
1809 if (MI.isDebugOrPseudoInstr())
1810 continue;
1811
1812 // Do not move any instruction across function call.
1813 if (MI.isCall())
1814 return false;
1815
1816 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) {
1817 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
1818 TRI);
1819 continue;
1820 }
1821
1822 // Don't sink the COPY if it would violate a register dependency.
1823 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy,
1824 ModifiedRegUnits, UsedRegUnits)) {
1825 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
1826 TRI);
1827 continue;
1828 }
1829 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1830 "Unexpect SrcReg or DefReg");
1831 MachineBasicBlock *SuccBB =
1832 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1833 // Don't sink if we cannot find a single sinkable successor in which Reg
1834 // is live-in.
1835 if (!SuccBB) {
1836 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
1837 TRI);
1838 continue;
1839 }
1840 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1841 "Unexpected predecessor");
1842
1843 // Collect DBG_VALUEs that must sink with this copy. We've previously
1844 // recorded which reg units that DBG_VALUEs read, if this instruction
1845 // writes any of those units then the corresponding DBG_VALUEs must sink.
1846 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap;
1847 for (auto &MO : MI.operands()) {
1848 if (!MO.isReg() || !MO.isDef())
1849 continue;
1850
1851 for (auto RI = MCRegUnitIterator(MO.getReg(), TRI); RI.isValid(); ++RI) {
1852 for (const auto &MIRegs : SeenDbgInstrs.lookup(*RI)) {
1853 auto &Regs = DbgValsToSinkMap[MIRegs.first];
1854 for (unsigned Reg : MIRegs.second)
1855 Regs.push_back(Reg);
1856 }
1857 }
1858 }
1859 auto DbgValsToSink = DbgValsToSinkMap.takeVector();
1860
1861 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB);
1862
1863 MachineBasicBlock::iterator InsertPos =
1864 SuccBB->SkipPHIsAndLabels(SuccBB->begin());
1865 if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) {
1866 LLVM_DEBUG(
1867 dbgs() << " *** Not sinking: prologue interference\n");
1868 continue;
1869 }
1870
1871 // Clear the kill flag if SrcReg is killed between MI and the end of the
1872 // block.
1873 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1874 performSink(MI, *SuccBB, InsertPos, DbgValsToSink);
1875 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1876
1877 Changed = true;
1878 ++NumPostRACopySink;
1879 }
1880 return Changed;
1881 }
1882
runOnMachineFunction(MachineFunction & MF)1883 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1884 if (skipFunction(MF.getFunction()))
1885 return false;
1886
1887 bool Changed = false;
1888 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1889 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1890
1891 ModifiedRegUnits.init(*TRI);
1892 UsedRegUnits.init(*TRI);
1893 for (auto &BB : MF)
1894 Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1895
1896 return Changed;
1897 }
1898