1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===//
7 //
8 // This file implements semantic analysis for C++ templates.
9 //===----------------------------------------------------------------------===//
10
11 #include "TreeTransform.h"
12 #include "clang/AST/ASTConsumer.h"
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TemplateName.h"
21 #include "clang/AST/TypeVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/LangOptions.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/Stack.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/Initialization.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/ParsedTemplate.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/SemaInternal.h"
35 #include "clang/Sema/Template.h"
36 #include "clang/Sema/TemplateDeduction.h"
37 #include "llvm/ADT/SmallBitVector.h"
38 #include "llvm/ADT/SmallString.h"
39 #include "llvm/ADT/StringExtras.h"
40
41 #include <iterator>
42 #include <optional>
43 using namespace clang;
44 using namespace sema;
45
46 // Exported for use by Parser.
47 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)48 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
49 unsigned N) {
50 if (!N) return SourceRange();
51 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
52 }
53
getTemplateDepth(Scope * S) const54 unsigned Sema::getTemplateDepth(Scope *S) const {
55 unsigned Depth = 0;
56
57 // Each template parameter scope represents one level of template parameter
58 // depth.
59 for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope;
60 TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
61 ++Depth;
62 }
63
64 // Note that there are template parameters with the given depth.
65 auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
66
67 // Look for parameters of an enclosing generic lambda. We don't create a
68 // template parameter scope for these.
69 for (FunctionScopeInfo *FSI : getFunctionScopes()) {
70 if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
71 if (!LSI->TemplateParams.empty()) {
72 ParamsAtDepth(LSI->AutoTemplateParameterDepth);
73 break;
74 }
75 if (LSI->GLTemplateParameterList) {
76 ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
77 break;
78 }
79 }
80 }
81
82 // Look for parameters of an enclosing terse function template. We don't
83 // create a template parameter scope for these either.
84 for (const InventedTemplateParameterInfo &Info :
85 getInventedParameterInfos()) {
86 if (!Info.TemplateParams.empty()) {
87 ParamsAtDepth(Info.AutoTemplateParameterDepth);
88 break;
89 }
90 }
91
92 return Depth;
93 }
94
95 /// \brief Determine whether the declaration found is acceptable as the name
96 /// of a template and, if so, return that template declaration. Otherwise,
97 /// returns null.
98 ///
99 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
100 /// is true. In all other cases it will return a TemplateDecl (or null).
getAsTemplateNameDecl(NamedDecl * D,bool AllowFunctionTemplates,bool AllowDependent)101 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
102 bool AllowFunctionTemplates,
103 bool AllowDependent) {
104 D = D->getUnderlyingDecl();
105
106 if (isa<TemplateDecl>(D)) {
107 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
108 return nullptr;
109
110 return D;
111 }
112
113 if (const auto *Record = dyn_cast<CXXRecordDecl>(D)) {
114 // C++ [temp.local]p1:
115 // Like normal (non-template) classes, class templates have an
116 // injected-class-name (Clause 9). The injected-class-name
117 // can be used with or without a template-argument-list. When
118 // it is used without a template-argument-list, it is
119 // equivalent to the injected-class-name followed by the
120 // template-parameters of the class template enclosed in
121 // <>. When it is used with a template-argument-list, it
122 // refers to the specified class template specialization,
123 // which could be the current specialization or another
124 // specialization.
125 if (Record->isInjectedClassName()) {
126 Record = cast<CXXRecordDecl>(Record->getDeclContext());
127 if (Record->getDescribedClassTemplate())
128 return Record->getDescribedClassTemplate();
129
130 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Record))
131 return Spec->getSpecializedTemplate();
132 }
133
134 return nullptr;
135 }
136
137 // 'using Dependent::foo;' can resolve to a template name.
138 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
139 // injected-class-name).
140 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
141 return D;
142
143 return nullptr;
144 }
145
FilterAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates,bool AllowDependent)146 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
147 bool AllowFunctionTemplates,
148 bool AllowDependent) {
149 LookupResult::Filter filter = R.makeFilter();
150 while (filter.hasNext()) {
151 NamedDecl *Orig = filter.next();
152 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
153 filter.erase();
154 }
155 filter.done();
156 }
157
hasAnyAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates,bool AllowDependent,bool AllowNonTemplateFunctions)158 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
159 bool AllowFunctionTemplates,
160 bool AllowDependent,
161 bool AllowNonTemplateFunctions) {
162 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
163 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
164 return true;
165 if (AllowNonTemplateFunctions &&
166 isa<FunctionDecl>((*I)->getUnderlyingDecl()))
167 return true;
168 }
169
170 return false;
171 }
172
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,const UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization,bool Disambiguation)173 TemplateNameKind Sema::isTemplateName(Scope *S,
174 CXXScopeSpec &SS,
175 bool hasTemplateKeyword,
176 const UnqualifiedId &Name,
177 ParsedType ObjectTypePtr,
178 bool EnteringContext,
179 TemplateTy &TemplateResult,
180 bool &MemberOfUnknownSpecialization,
181 bool Disambiguation) {
182 assert(getLangOpts().CPlusPlus && "No template names in C!");
183
184 DeclarationName TName;
185 MemberOfUnknownSpecialization = false;
186
187 switch (Name.getKind()) {
188 case UnqualifiedIdKind::IK_Identifier:
189 TName = DeclarationName(Name.Identifier);
190 break;
191
192 case UnqualifiedIdKind::IK_OperatorFunctionId:
193 TName = Context.DeclarationNames.getCXXOperatorName(
194 Name.OperatorFunctionId.Operator);
195 break;
196
197 case UnqualifiedIdKind::IK_LiteralOperatorId:
198 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
199 break;
200
201 default:
202 return TNK_Non_template;
203 }
204
205 QualType ObjectType = ObjectTypePtr.get();
206
207 AssumedTemplateKind AssumedTemplate;
208 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
209 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
210 MemberOfUnknownSpecialization, SourceLocation(),
211 &AssumedTemplate,
212 /*AllowTypoCorrection=*/!Disambiguation))
213 return TNK_Non_template;
214
215 if (AssumedTemplate != AssumedTemplateKind::None) {
216 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
217 // Let the parser know whether we found nothing or found functions; if we
218 // found nothing, we want to more carefully check whether this is actually
219 // a function template name versus some other kind of undeclared identifier.
220 return AssumedTemplate == AssumedTemplateKind::FoundNothing
221 ? TNK_Undeclared_template
222 : TNK_Function_template;
223 }
224
225 if (R.empty())
226 return TNK_Non_template;
227
228 NamedDecl *D = nullptr;
229 UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(*R.begin());
230 if (R.isAmbiguous()) {
231 // If we got an ambiguity involving a non-function template, treat this
232 // as a template name, and pick an arbitrary template for error recovery.
233 bool AnyFunctionTemplates = false;
234 for (NamedDecl *FoundD : R) {
235 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
236 if (isa<FunctionTemplateDecl>(FoundTemplate))
237 AnyFunctionTemplates = true;
238 else {
239 D = FoundTemplate;
240 FoundUsingShadow = dyn_cast<UsingShadowDecl>(FoundD);
241 break;
242 }
243 }
244 }
245
246 // If we didn't find any templates at all, this isn't a template name.
247 // Leave the ambiguity for a later lookup to diagnose.
248 if (!D && !AnyFunctionTemplates) {
249 R.suppressDiagnostics();
250 return TNK_Non_template;
251 }
252
253 // If the only templates were function templates, filter out the rest.
254 // We'll diagnose the ambiguity later.
255 if (!D)
256 FilterAcceptableTemplateNames(R);
257 }
258
259 // At this point, we have either picked a single template name declaration D
260 // or we have a non-empty set of results R containing either one template name
261 // declaration or a set of function templates.
262
263 TemplateName Template;
264 TemplateNameKind TemplateKind;
265
266 unsigned ResultCount = R.end() - R.begin();
267 if (!D && ResultCount > 1) {
268 // We assume that we'll preserve the qualifier from a function
269 // template name in other ways.
270 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
271 TemplateKind = TNK_Function_template;
272
273 // We'll do this lookup again later.
274 R.suppressDiagnostics();
275 } else {
276 if (!D) {
277 D = getAsTemplateNameDecl(*R.begin());
278 assert(D && "unambiguous result is not a template name");
279 }
280
281 if (isa<UnresolvedUsingValueDecl>(D)) {
282 // We don't yet know whether this is a template-name or not.
283 MemberOfUnknownSpecialization = true;
284 return TNK_Non_template;
285 }
286
287 TemplateDecl *TD = cast<TemplateDecl>(D);
288 Template =
289 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
290 assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD);
291 if (SS.isSet() && !SS.isInvalid()) {
292 NestedNameSpecifier *Qualifier = SS.getScopeRep();
293 Template = Context.getQualifiedTemplateName(Qualifier, hasTemplateKeyword,
294 Template);
295 }
296
297 if (isa<FunctionTemplateDecl>(TD)) {
298 TemplateKind = TNK_Function_template;
299
300 // We'll do this lookup again later.
301 R.suppressDiagnostics();
302 } else {
303 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
304 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
305 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD));
306 TemplateKind =
307 isa<VarTemplateDecl>(TD) ? TNK_Var_template :
308 isa<ConceptDecl>(TD) ? TNK_Concept_template :
309 TNK_Type_template;
310 }
311 }
312
313 TemplateResult = TemplateTy::make(Template);
314 return TemplateKind;
315 }
316
isDeductionGuideName(Scope * S,const IdentifierInfo & Name,SourceLocation NameLoc,ParsedTemplateTy * Template)317 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
318 SourceLocation NameLoc,
319 ParsedTemplateTy *Template) {
320 CXXScopeSpec SS;
321 bool MemberOfUnknownSpecialization = false;
322
323 // We could use redeclaration lookup here, but we don't need to: the
324 // syntactic form of a deduction guide is enough to identify it even
325 // if we can't look up the template name at all.
326 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
327 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
328 /*EnteringContext*/ false,
329 MemberOfUnknownSpecialization))
330 return false;
331
332 if (R.empty()) return false;
333 if (R.isAmbiguous()) {
334 // FIXME: Diagnose an ambiguity if we find at least one template.
335 R.suppressDiagnostics();
336 return false;
337 }
338
339 // We only treat template-names that name type templates as valid deduction
340 // guide names.
341 TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
342 if (!TD || !getAsTypeTemplateDecl(TD))
343 return false;
344
345 if (Template)
346 *Template = TemplateTy::make(TemplateName(TD));
347 return true;
348 }
349
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)350 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
351 SourceLocation IILoc,
352 Scope *S,
353 const CXXScopeSpec *SS,
354 TemplateTy &SuggestedTemplate,
355 TemplateNameKind &SuggestedKind) {
356 // We can't recover unless there's a dependent scope specifier preceding the
357 // template name.
358 // FIXME: Typo correction?
359 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
360 computeDeclContext(*SS))
361 return false;
362
363 // The code is missing a 'template' keyword prior to the dependent template
364 // name.
365 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
366 Diag(IILoc, diag::err_template_kw_missing)
367 << Qualifier << II.getName()
368 << FixItHint::CreateInsertion(IILoc, "template ");
369 SuggestedTemplate
370 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
371 SuggestedKind = TNK_Dependent_template_name;
372 return true;
373 }
374
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,bool & MemberOfUnknownSpecialization,RequiredTemplateKind RequiredTemplate,AssumedTemplateKind * ATK,bool AllowTypoCorrection)375 bool Sema::LookupTemplateName(LookupResult &Found,
376 Scope *S, CXXScopeSpec &SS,
377 QualType ObjectType,
378 bool EnteringContext,
379 bool &MemberOfUnknownSpecialization,
380 RequiredTemplateKind RequiredTemplate,
381 AssumedTemplateKind *ATK,
382 bool AllowTypoCorrection) {
383 if (ATK)
384 *ATK = AssumedTemplateKind::None;
385
386 if (SS.isInvalid())
387 return true;
388
389 Found.setTemplateNameLookup(true);
390
391 // Determine where to perform name lookup
392 MemberOfUnknownSpecialization = false;
393 DeclContext *LookupCtx = nullptr;
394 bool IsDependent = false;
395 if (!ObjectType.isNull()) {
396 // This nested-name-specifier occurs in a member access expression, e.g.,
397 // x->B::f, and we are looking into the type of the object.
398 assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist");
399 LookupCtx = computeDeclContext(ObjectType);
400 IsDependent = !LookupCtx && ObjectType->isDependentType();
401 assert((IsDependent || !ObjectType->isIncompleteType() ||
402 !ObjectType->getAs<TagType>() ||
403 ObjectType->castAs<TagType>()->isBeingDefined()) &&
404 "Caller should have completed object type");
405
406 // Template names cannot appear inside an Objective-C class or object type
407 // or a vector type.
408 //
409 // FIXME: This is wrong. For example:
410 //
411 // template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
412 // Vec<int> vi;
413 // vi.Vec<int>::~Vec<int>();
414 //
415 // ... should be accepted but we will not treat 'Vec' as a template name
416 // here. The right thing to do would be to check if the name is a valid
417 // vector component name, and look up a template name if not. And similarly
418 // for lookups into Objective-C class and object types, where the same
419 // problem can arise.
420 if (ObjectType->isObjCObjectOrInterfaceType() ||
421 ObjectType->isVectorType()) {
422 Found.clear();
423 return false;
424 }
425 } else if (SS.isNotEmpty()) {
426 // This nested-name-specifier occurs after another nested-name-specifier,
427 // so long into the context associated with the prior nested-name-specifier.
428 LookupCtx = computeDeclContext(SS, EnteringContext);
429 IsDependent = !LookupCtx && isDependentScopeSpecifier(SS);
430
431 // The declaration context must be complete.
432 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
433 return true;
434 }
435
436 bool ObjectTypeSearchedInScope = false;
437 bool AllowFunctionTemplatesInLookup = true;
438 if (LookupCtx) {
439 // Perform "qualified" name lookup into the declaration context we
440 // computed, which is either the type of the base of a member access
441 // expression or the declaration context associated with a prior
442 // nested-name-specifier.
443 LookupQualifiedName(Found, LookupCtx);
444
445 // FIXME: The C++ standard does not clearly specify what happens in the
446 // case where the object type is dependent, and implementations vary. In
447 // Clang, we treat a name after a . or -> as a template-name if lookup
448 // finds a non-dependent member or member of the current instantiation that
449 // is a type template, or finds no such members and lookup in the context
450 // of the postfix-expression finds a type template. In the latter case, the
451 // name is nonetheless dependent, and we may resolve it to a member of an
452 // unknown specialization when we come to instantiate the template.
453 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
454 }
455
456 if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) {
457 // C++ [basic.lookup.classref]p1:
458 // In a class member access expression (5.2.5), if the . or -> token is
459 // immediately followed by an identifier followed by a <, the
460 // identifier must be looked up to determine whether the < is the
461 // beginning of a template argument list (14.2) or a less-than operator.
462 // The identifier is first looked up in the class of the object
463 // expression. If the identifier is not found, it is then looked up in
464 // the context of the entire postfix-expression and shall name a class
465 // template.
466 if (S)
467 LookupName(Found, S);
468
469 if (!ObjectType.isNull()) {
470 // FIXME: We should filter out all non-type templates here, particularly
471 // variable templates and concepts. But the exclusion of alias templates
472 // and template template parameters is a wording defect.
473 AllowFunctionTemplatesInLookup = false;
474 ObjectTypeSearchedInScope = true;
475 }
476
477 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
478 }
479
480 if (Found.isAmbiguous())
481 return false;
482
483 if (ATK && SS.isEmpty() && ObjectType.isNull() &&
484 !RequiredTemplate.hasTemplateKeyword()) {
485 // C++2a [temp.names]p2:
486 // A name is also considered to refer to a template if it is an
487 // unqualified-id followed by a < and name lookup finds either one or more
488 // functions or finds nothing.
489 //
490 // To keep our behavior consistent, we apply the "finds nothing" part in
491 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
492 // successfully form a call to an undeclared template-id.
493 bool AllFunctions =
494 getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) {
495 return isa<FunctionDecl>(ND->getUnderlyingDecl());
496 });
497 if (AllFunctions || (Found.empty() && !IsDependent)) {
498 // If lookup found any functions, or if this is a name that can only be
499 // used for a function, then strongly assume this is a function
500 // template-id.
501 *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
502 ? AssumedTemplateKind::FoundNothing
503 : AssumedTemplateKind::FoundFunctions;
504 Found.clear();
505 return false;
506 }
507 }
508
509 if (Found.empty() && !IsDependent && AllowTypoCorrection) {
510 // If we did not find any names, and this is not a disambiguation, attempt
511 // to correct any typos.
512 DeclarationName Name = Found.getLookupName();
513 Found.clear();
514 // Simple filter callback that, for keywords, only accepts the C++ *_cast
515 DefaultFilterCCC FilterCCC{};
516 FilterCCC.WantTypeSpecifiers = false;
517 FilterCCC.WantExpressionKeywords = false;
518 FilterCCC.WantRemainingKeywords = false;
519 FilterCCC.WantCXXNamedCasts = true;
520 if (TypoCorrection Corrected =
521 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
522 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
523 if (auto *ND = Corrected.getFoundDecl())
524 Found.addDecl(ND);
525 FilterAcceptableTemplateNames(Found);
526 if (Found.isAmbiguous()) {
527 Found.clear();
528 } else if (!Found.empty()) {
529 Found.setLookupName(Corrected.getCorrection());
530 if (LookupCtx) {
531 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
532 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
533 Name.getAsString() == CorrectedStr;
534 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
535 << Name << LookupCtx << DroppedSpecifier
536 << SS.getRange());
537 } else {
538 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
539 }
540 }
541 }
542 }
543
544 NamedDecl *ExampleLookupResult =
545 Found.empty() ? nullptr : Found.getRepresentativeDecl();
546 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
547 if (Found.empty()) {
548 if (IsDependent) {
549 MemberOfUnknownSpecialization = true;
550 return false;
551 }
552
553 // If a 'template' keyword was used, a lookup that finds only non-template
554 // names is an error.
555 if (ExampleLookupResult && RequiredTemplate) {
556 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
557 << Found.getLookupName() << SS.getRange()
558 << RequiredTemplate.hasTemplateKeyword()
559 << RequiredTemplate.getTemplateKeywordLoc();
560 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
561 diag::note_template_kw_refers_to_non_template)
562 << Found.getLookupName();
563 return true;
564 }
565
566 return false;
567 }
568
569 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
570 !getLangOpts().CPlusPlus11) {
571 // C++03 [basic.lookup.classref]p1:
572 // [...] If the lookup in the class of the object expression finds a
573 // template, the name is also looked up in the context of the entire
574 // postfix-expression and [...]
575 //
576 // Note: C++11 does not perform this second lookup.
577 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
578 LookupOrdinaryName);
579 FoundOuter.setTemplateNameLookup(true);
580 LookupName(FoundOuter, S);
581 // FIXME: We silently accept an ambiguous lookup here, in violation of
582 // [basic.lookup]/1.
583 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
584
585 NamedDecl *OuterTemplate;
586 if (FoundOuter.empty()) {
587 // - if the name is not found, the name found in the class of the
588 // object expression is used, otherwise
589 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
590 !(OuterTemplate =
591 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
592 // - if the name is found in the context of the entire
593 // postfix-expression and does not name a class template, the name
594 // found in the class of the object expression is used, otherwise
595 FoundOuter.clear();
596 } else if (!Found.isSuppressingDiagnostics()) {
597 // - if the name found is a class template, it must refer to the same
598 // entity as the one found in the class of the object expression,
599 // otherwise the program is ill-formed.
600 if (!Found.isSingleResult() ||
601 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
602 OuterTemplate->getCanonicalDecl()) {
603 Diag(Found.getNameLoc(),
604 diag::ext_nested_name_member_ref_lookup_ambiguous)
605 << Found.getLookupName()
606 << ObjectType;
607 Diag(Found.getRepresentativeDecl()->getLocation(),
608 diag::note_ambig_member_ref_object_type)
609 << ObjectType;
610 Diag(FoundOuter.getFoundDecl()->getLocation(),
611 diag::note_ambig_member_ref_scope);
612
613 // Recover by taking the template that we found in the object
614 // expression's type.
615 }
616 }
617 }
618
619 return false;
620 }
621
diagnoseExprIntendedAsTemplateName(Scope * S,ExprResult TemplateName,SourceLocation Less,SourceLocation Greater)622 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
623 SourceLocation Less,
624 SourceLocation Greater) {
625 if (TemplateName.isInvalid())
626 return;
627
628 DeclarationNameInfo NameInfo;
629 CXXScopeSpec SS;
630 LookupNameKind LookupKind;
631
632 DeclContext *LookupCtx = nullptr;
633 NamedDecl *Found = nullptr;
634 bool MissingTemplateKeyword = false;
635
636 // Figure out what name we looked up.
637 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
638 NameInfo = DRE->getNameInfo();
639 SS.Adopt(DRE->getQualifierLoc());
640 LookupKind = LookupOrdinaryName;
641 Found = DRE->getFoundDecl();
642 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
643 NameInfo = ME->getMemberNameInfo();
644 SS.Adopt(ME->getQualifierLoc());
645 LookupKind = LookupMemberName;
646 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
647 Found = ME->getMemberDecl();
648 } else if (auto *DSDRE =
649 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
650 NameInfo = DSDRE->getNameInfo();
651 SS.Adopt(DSDRE->getQualifierLoc());
652 MissingTemplateKeyword = true;
653 } else if (auto *DSME =
654 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
655 NameInfo = DSME->getMemberNameInfo();
656 SS.Adopt(DSME->getQualifierLoc());
657 MissingTemplateKeyword = true;
658 } else {
659 llvm_unreachable("unexpected kind of potential template name");
660 }
661
662 // If this is a dependent-scope lookup, diagnose that the 'template' keyword
663 // was missing.
664 if (MissingTemplateKeyword) {
665 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
666 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
667 return;
668 }
669
670 // Try to correct the name by looking for templates and C++ named casts.
671 struct TemplateCandidateFilter : CorrectionCandidateCallback {
672 Sema &S;
673 TemplateCandidateFilter(Sema &S) : S(S) {
674 WantTypeSpecifiers = false;
675 WantExpressionKeywords = false;
676 WantRemainingKeywords = false;
677 WantCXXNamedCasts = true;
678 };
679 bool ValidateCandidate(const TypoCorrection &Candidate) override {
680 if (auto *ND = Candidate.getCorrectionDecl())
681 return S.getAsTemplateNameDecl(ND);
682 return Candidate.isKeyword();
683 }
684
685 std::unique_ptr<CorrectionCandidateCallback> clone() override {
686 return std::make_unique<TemplateCandidateFilter>(*this);
687 }
688 };
689
690 DeclarationName Name = NameInfo.getName();
691 TemplateCandidateFilter CCC(*this);
692 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
693 CTK_ErrorRecovery, LookupCtx)) {
694 auto *ND = Corrected.getFoundDecl();
695 if (ND)
696 ND = getAsTemplateNameDecl(ND);
697 if (ND || Corrected.isKeyword()) {
698 if (LookupCtx) {
699 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
700 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
701 Name.getAsString() == CorrectedStr;
702 diagnoseTypo(Corrected,
703 PDiag(diag::err_non_template_in_member_template_id_suggest)
704 << Name << LookupCtx << DroppedSpecifier
705 << SS.getRange(), false);
706 } else {
707 diagnoseTypo(Corrected,
708 PDiag(diag::err_non_template_in_template_id_suggest)
709 << Name, false);
710 }
711 if (Found)
712 Diag(Found->getLocation(),
713 diag::note_non_template_in_template_id_found);
714 return;
715 }
716 }
717
718 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
719 << Name << SourceRange(Less, Greater);
720 if (Found)
721 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
722 }
723
724 /// ActOnDependentIdExpression - Handle a dependent id-expression that
725 /// was just parsed. This is only possible with an explicit scope
726 /// specifier naming a dependent type.
727 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)728 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
729 SourceLocation TemplateKWLoc,
730 const DeclarationNameInfo &NameInfo,
731 bool isAddressOfOperand,
732 const TemplateArgumentListInfo *TemplateArgs) {
733 DeclContext *DC = getFunctionLevelDeclContext();
734
735 // C++11 [expr.prim.general]p12:
736 // An id-expression that denotes a non-static data member or non-static
737 // member function of a class can only be used:
738 // (...)
739 // - if that id-expression denotes a non-static data member and it
740 // appears in an unevaluated operand.
741 //
742 // If this might be the case, form a DependentScopeDeclRefExpr instead of a
743 // CXXDependentScopeMemberExpr. The former can instantiate to either
744 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
745 // always a MemberExpr.
746 bool MightBeCxx11UnevalField =
747 getLangOpts().CPlusPlus11 && isUnevaluatedContext();
748
749 // Check if the nested name specifier is an enum type.
750 bool IsEnum = false;
751 if (NestedNameSpecifier *NNS = SS.getScopeRep())
752 IsEnum = isa_and_nonnull<EnumType>(NNS->getAsType());
753
754 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
755 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
756 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType();
757
758 // Since the 'this' expression is synthesized, we don't need to
759 // perform the double-lookup check.
760 NamedDecl *FirstQualifierInScope = nullptr;
761
762 return CXXDependentScopeMemberExpr::Create(
763 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
764 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
765 FirstQualifierInScope, NameInfo, TemplateArgs);
766 }
767
768 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
769 }
770
771 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)772 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
773 SourceLocation TemplateKWLoc,
774 const DeclarationNameInfo &NameInfo,
775 const TemplateArgumentListInfo *TemplateArgs) {
776 // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
777 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
778 if (!QualifierLoc)
779 return ExprError();
780
781 return DependentScopeDeclRefExpr::Create(
782 Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
783 }
784
785
786 /// Determine whether we would be unable to instantiate this template (because
787 /// it either has no definition, or is in the process of being instantiated).
DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,NamedDecl * Instantiation,bool InstantiatedFromMember,const NamedDecl * Pattern,const NamedDecl * PatternDef,TemplateSpecializationKind TSK,bool Complain)788 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
789 NamedDecl *Instantiation,
790 bool InstantiatedFromMember,
791 const NamedDecl *Pattern,
792 const NamedDecl *PatternDef,
793 TemplateSpecializationKind TSK,
794 bool Complain /*= true*/) {
795 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
796 isa<VarDecl>(Instantiation));
797
798 bool IsEntityBeingDefined = false;
799 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
800 IsEntityBeingDefined = TD->isBeingDefined();
801
802 if (PatternDef && !IsEntityBeingDefined) {
803 NamedDecl *SuggestedDef = nullptr;
804 if (!hasReachableDefinition(const_cast<NamedDecl *>(PatternDef),
805 &SuggestedDef,
806 /*OnlyNeedComplete*/ false)) {
807 // If we're allowed to diagnose this and recover, do so.
808 bool Recover = Complain && !isSFINAEContext();
809 if (Complain)
810 diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
811 Sema::MissingImportKind::Definition, Recover);
812 return !Recover;
813 }
814 return false;
815 }
816
817 if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
818 return true;
819
820 std::optional<unsigned> Note;
821 QualType InstantiationTy;
822 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
823 InstantiationTy = Context.getTypeDeclType(TD);
824 if (PatternDef) {
825 Diag(PointOfInstantiation,
826 diag::err_template_instantiate_within_definition)
827 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
828 << InstantiationTy;
829 // Not much point in noting the template declaration here, since
830 // we're lexically inside it.
831 Instantiation->setInvalidDecl();
832 } else if (InstantiatedFromMember) {
833 if (isa<FunctionDecl>(Instantiation)) {
834 Diag(PointOfInstantiation,
835 diag::err_explicit_instantiation_undefined_member)
836 << /*member function*/ 1 << Instantiation->getDeclName()
837 << Instantiation->getDeclContext();
838 Note = diag::note_explicit_instantiation_here;
839 } else {
840 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
841 Diag(PointOfInstantiation,
842 diag::err_implicit_instantiate_member_undefined)
843 << InstantiationTy;
844 Note = diag::note_member_declared_at;
845 }
846 } else {
847 if (isa<FunctionDecl>(Instantiation)) {
848 Diag(PointOfInstantiation,
849 diag::err_explicit_instantiation_undefined_func_template)
850 << Pattern;
851 Note = diag::note_explicit_instantiation_here;
852 } else if (isa<TagDecl>(Instantiation)) {
853 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
854 << (TSK != TSK_ImplicitInstantiation)
855 << InstantiationTy;
856 Note = diag::note_template_decl_here;
857 } else {
858 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
859 if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
860 Diag(PointOfInstantiation,
861 diag::err_explicit_instantiation_undefined_var_template)
862 << Instantiation;
863 Instantiation->setInvalidDecl();
864 } else
865 Diag(PointOfInstantiation,
866 diag::err_explicit_instantiation_undefined_member)
867 << /*static data member*/ 2 << Instantiation->getDeclName()
868 << Instantiation->getDeclContext();
869 Note = diag::note_explicit_instantiation_here;
870 }
871 }
872 if (Note) // Diagnostics were emitted.
873 Diag(Pattern->getLocation(), *Note);
874
875 // In general, Instantiation isn't marked invalid to get more than one
876 // error for multiple undefined instantiations. But the code that does
877 // explicit declaration -> explicit definition conversion can't handle
878 // invalid declarations, so mark as invalid in that case.
879 if (TSK == TSK_ExplicitInstantiationDeclaration)
880 Instantiation->setInvalidDecl();
881 return true;
882 }
883
884 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
885 /// that the template parameter 'PrevDecl' is being shadowed by a new
886 /// declaration at location Loc. Returns true to indicate that this is
887 /// an error, and false otherwise.
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl)888 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
889 assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
890
891 // C++ [temp.local]p4:
892 // A template-parameter shall not be redeclared within its
893 // scope (including nested scopes).
894 //
895 // Make this a warning when MSVC compatibility is requested.
896 unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
897 : diag::err_template_param_shadow;
898 Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName();
899 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
900 }
901
902 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
903 /// the parameter D to reference the templated declaration and return a pointer
904 /// to the template declaration. Otherwise, do nothing to D and return null.
AdjustDeclIfTemplate(Decl * & D)905 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
906 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
907 D = Temp->getTemplatedDecl();
908 return Temp;
909 }
910 return nullptr;
911 }
912
getTemplatePackExpansion(SourceLocation EllipsisLoc) const913 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
914 SourceLocation EllipsisLoc) const {
915 assert(Kind == Template &&
916 "Only template template arguments can be pack expansions here");
917 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
918 "Template template argument pack expansion without packs");
919 ParsedTemplateArgument Result(*this);
920 Result.EllipsisLoc = EllipsisLoc;
921 return Result;
922 }
923
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)924 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
925 const ParsedTemplateArgument &Arg) {
926
927 switch (Arg.getKind()) {
928 case ParsedTemplateArgument::Type: {
929 TypeSourceInfo *DI;
930 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
931 if (!DI)
932 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
933 return TemplateArgumentLoc(TemplateArgument(T), DI);
934 }
935
936 case ParsedTemplateArgument::NonType: {
937 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
938 return TemplateArgumentLoc(TemplateArgument(E), E);
939 }
940
941 case ParsedTemplateArgument::Template: {
942 TemplateName Template = Arg.getAsTemplate().get();
943 TemplateArgument TArg;
944 if (Arg.getEllipsisLoc().isValid())
945 TArg = TemplateArgument(Template, std::optional<unsigned int>());
946 else
947 TArg = Template;
948 return TemplateArgumentLoc(
949 SemaRef.Context, TArg,
950 Arg.getScopeSpec().getWithLocInContext(SemaRef.Context),
951 Arg.getLocation(), Arg.getEllipsisLoc());
952 }
953 }
954
955 llvm_unreachable("Unhandled parsed template argument");
956 }
957
958 /// Translates template arguments as provided by the parser
959 /// into template arguments used by semantic analysis.
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)960 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
961 TemplateArgumentListInfo &TemplateArgs) {
962 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
963 TemplateArgs.addArgument(translateTemplateArgument(*this,
964 TemplateArgsIn[I]));
965 }
966
maybeDiagnoseTemplateParameterShadow(Sema & SemaRef,Scope * S,SourceLocation Loc,IdentifierInfo * Name)967 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
968 SourceLocation Loc,
969 IdentifierInfo *Name) {
970 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
971 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
972 if (PrevDecl && PrevDecl->isTemplateParameter())
973 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
974 }
975
976 /// Convert a parsed type into a parsed template argument. This is mostly
977 /// trivial, except that we may have parsed a C++17 deduced class template
978 /// specialization type, in which case we should form a template template
979 /// argument instead of a type template argument.
ActOnTemplateTypeArgument(TypeResult ParsedType)980 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
981 TypeSourceInfo *TInfo;
982 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
983 if (T.isNull())
984 return ParsedTemplateArgument();
985 assert(TInfo && "template argument with no location");
986
987 // If we might have formed a deduced template specialization type, convert
988 // it to a template template argument.
989 if (getLangOpts().CPlusPlus17) {
990 TypeLoc TL = TInfo->getTypeLoc();
991 SourceLocation EllipsisLoc;
992 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
993 EllipsisLoc = PET.getEllipsisLoc();
994 TL = PET.getPatternLoc();
995 }
996
997 CXXScopeSpec SS;
998 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
999 SS.Adopt(ET.getQualifierLoc());
1000 TL = ET.getNamedTypeLoc();
1001 }
1002
1003 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
1004 TemplateName Name = DTST.getTypePtr()->getTemplateName();
1005 if (SS.isSet())
1006 Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
1007 /*HasTemplateKeyword=*/false,
1008 Name);
1009 ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
1010 DTST.getTemplateNameLoc());
1011 if (EllipsisLoc.isValid())
1012 Result = Result.getTemplatePackExpansion(EllipsisLoc);
1013 return Result;
1014 }
1015 }
1016
1017 // This is a normal type template argument. Note, if the type template
1018 // argument is an injected-class-name for a template, it has a dual nature
1019 // and can be used as either a type or a template. We handle that in
1020 // convertTypeTemplateArgumentToTemplate.
1021 return ParsedTemplateArgument(ParsedTemplateArgument::Type,
1022 ParsedType.get().getAsOpaquePtr(),
1023 TInfo->getTypeLoc().getBeginLoc());
1024 }
1025
1026 /// ActOnTypeParameter - Called when a C++ template type parameter
1027 /// (e.g., "typename T") has been parsed. Typename specifies whether
1028 /// the keyword "typename" was used to declare the type parameter
1029 /// (otherwise, "class" was used), and KeyLoc is the location of the
1030 /// "class" or "typename" keyword. ParamName is the name of the
1031 /// parameter (NULL indicates an unnamed template parameter) and
1032 /// ParamNameLoc is the location of the parameter name (if any).
1033 /// If the type parameter has a default argument, it will be added
1034 /// later via ActOnTypeParameterDefault.
ActOnTypeParameter(Scope * S,bool Typename,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg,bool HasTypeConstraint)1035 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
1036 SourceLocation EllipsisLoc,
1037 SourceLocation KeyLoc,
1038 IdentifierInfo *ParamName,
1039 SourceLocation ParamNameLoc,
1040 unsigned Depth, unsigned Position,
1041 SourceLocation EqualLoc,
1042 ParsedType DefaultArg,
1043 bool HasTypeConstraint) {
1044 assert(S->isTemplateParamScope() &&
1045 "Template type parameter not in template parameter scope!");
1046
1047 bool IsParameterPack = EllipsisLoc.isValid();
1048 TemplateTypeParmDecl *Param
1049 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1050 KeyLoc, ParamNameLoc, Depth, Position,
1051 ParamName, Typename, IsParameterPack,
1052 HasTypeConstraint);
1053 Param->setAccess(AS_public);
1054
1055 if (Param->isParameterPack())
1056 if (auto *LSI = getEnclosingLambda())
1057 LSI->LocalPacks.push_back(Param);
1058
1059 if (ParamName) {
1060 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
1061
1062 // Add the template parameter into the current scope.
1063 S->AddDecl(Param);
1064 IdResolver.AddDecl(Param);
1065 }
1066
1067 // C++0x [temp.param]p9:
1068 // A default template-argument may be specified for any kind of
1069 // template-parameter that is not a template parameter pack.
1070 if (DefaultArg && IsParameterPack) {
1071 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1072 DefaultArg = nullptr;
1073 }
1074
1075 // Handle the default argument, if provided.
1076 if (DefaultArg) {
1077 TypeSourceInfo *DefaultTInfo;
1078 GetTypeFromParser(DefaultArg, &DefaultTInfo);
1079
1080 assert(DefaultTInfo && "expected source information for type");
1081
1082 // Check for unexpanded parameter packs.
1083 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
1084 UPPC_DefaultArgument))
1085 return Param;
1086
1087 // Check the template argument itself.
1088 if (CheckTemplateArgument(DefaultTInfo)) {
1089 Param->setInvalidDecl();
1090 return Param;
1091 }
1092
1093 Param->setDefaultArgument(DefaultTInfo);
1094 }
1095
1096 return Param;
1097 }
1098
1099 /// Convert the parser's template argument list representation into our form.
1100 static TemplateArgumentListInfo
makeTemplateArgumentListInfo(Sema & S,TemplateIdAnnotation & TemplateId)1101 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
1102 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
1103 TemplateId.RAngleLoc);
1104 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
1105 TemplateId.NumArgs);
1106 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
1107 return TemplateArgs;
1108 }
1109
ActOnTypeConstraint(const CXXScopeSpec & SS,TemplateIdAnnotation * TypeConstr,TemplateTypeParmDecl * ConstrainedParameter,SourceLocation EllipsisLoc)1110 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
1111 TemplateIdAnnotation *TypeConstr,
1112 TemplateTypeParmDecl *ConstrainedParameter,
1113 SourceLocation EllipsisLoc) {
1114 return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc,
1115 false);
1116 }
1117
BuildTypeConstraint(const CXXScopeSpec & SS,TemplateIdAnnotation * TypeConstr,TemplateTypeParmDecl * ConstrainedParameter,SourceLocation EllipsisLoc,bool AllowUnexpandedPack)1118 bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS,
1119 TemplateIdAnnotation *TypeConstr,
1120 TemplateTypeParmDecl *ConstrainedParameter,
1121 SourceLocation EllipsisLoc,
1122 bool AllowUnexpandedPack) {
1123 TemplateName TN = TypeConstr->Template.get();
1124 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
1125
1126 // C++2a [temp.param]p4:
1127 // [...] The concept designated by a type-constraint shall be a type
1128 // concept ([temp.concept]).
1129 if (!CD->isTypeConcept()) {
1130 Diag(TypeConstr->TemplateNameLoc,
1131 diag::err_type_constraint_non_type_concept);
1132 return true;
1133 }
1134
1135 bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
1136
1137 if (!WereArgsSpecified &&
1138 CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
1139 Diag(TypeConstr->TemplateNameLoc,
1140 diag::err_type_constraint_missing_arguments) << CD;
1141 return true;
1142 }
1143
1144 DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name),
1145 TypeConstr->TemplateNameLoc);
1146
1147 TemplateArgumentListInfo TemplateArgs;
1148 if (TypeConstr->LAngleLoc.isValid()) {
1149 TemplateArgs =
1150 makeTemplateArgumentListInfo(*this, *TypeConstr);
1151
1152 if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) {
1153 for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) {
1154 if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint))
1155 return true;
1156 }
1157 }
1158 }
1159 return AttachTypeConstraint(
1160 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1161 ConceptName, CD,
1162 TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
1163 ConstrainedParameter, EllipsisLoc);
1164 }
1165
1166 template<typename ArgumentLocAppender>
formImmediatelyDeclaredConstraint(Sema & S,NestedNameSpecifierLoc NS,DeclarationNameInfo NameInfo,ConceptDecl * NamedConcept,SourceLocation LAngleLoc,SourceLocation RAngleLoc,QualType ConstrainedType,SourceLocation ParamNameLoc,ArgumentLocAppender Appender,SourceLocation EllipsisLoc)1167 static ExprResult formImmediatelyDeclaredConstraint(
1168 Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
1169 ConceptDecl *NamedConcept, SourceLocation LAngleLoc,
1170 SourceLocation RAngleLoc, QualType ConstrainedType,
1171 SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
1172 SourceLocation EllipsisLoc) {
1173
1174 TemplateArgumentListInfo ConstraintArgs;
1175 ConstraintArgs.addArgument(
1176 S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
1177 /*NTTPType=*/QualType(), ParamNameLoc));
1178
1179 ConstraintArgs.setRAngleLoc(RAngleLoc);
1180 ConstraintArgs.setLAngleLoc(LAngleLoc);
1181 Appender(ConstraintArgs);
1182
1183 // C++2a [temp.param]p4:
1184 // [...] This constraint-expression E is called the immediately-declared
1185 // constraint of T. [...]
1186 CXXScopeSpec SS;
1187 SS.Adopt(NS);
1188 ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
1189 SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
1190 /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs);
1191 if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
1192 return ImmediatelyDeclaredConstraint;
1193
1194 // C++2a [temp.param]p4:
1195 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1196 //
1197 // We have the following case:
1198 //
1199 // template<typename T> concept C1 = true;
1200 // template<C1... T> struct s1;
1201 //
1202 // The constraint: (C1<T> && ...)
1203 //
1204 // Note that the type of C1<T> is known to be 'bool', so we don't need to do
1205 // any unqualified lookups for 'operator&&' here.
1206 return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr,
1207 /*LParenLoc=*/SourceLocation(),
1208 ImmediatelyDeclaredConstraint.get(), BO_LAnd,
1209 EllipsisLoc, /*RHS=*/nullptr,
1210 /*RParenLoc=*/SourceLocation(),
1211 /*NumExpansions=*/std::nullopt);
1212 }
1213
1214 /// Attach a type-constraint to a template parameter.
1215 /// \returns true if an error occurred. This can happen if the
1216 /// immediately-declared constraint could not be formed (e.g. incorrect number
1217 /// of arguments for the named concept).
AttachTypeConstraint(NestedNameSpecifierLoc NS,DeclarationNameInfo NameInfo,ConceptDecl * NamedConcept,const TemplateArgumentListInfo * TemplateArgs,TemplateTypeParmDecl * ConstrainedParameter,SourceLocation EllipsisLoc)1218 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
1219 DeclarationNameInfo NameInfo,
1220 ConceptDecl *NamedConcept,
1221 const TemplateArgumentListInfo *TemplateArgs,
1222 TemplateTypeParmDecl *ConstrainedParameter,
1223 SourceLocation EllipsisLoc) {
1224 // C++2a [temp.param]p4:
1225 // [...] If Q is of the form C<A1, ..., An>, then let E' be
1226 // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
1227 const ASTTemplateArgumentListInfo *ArgsAsWritten =
1228 TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
1229 *TemplateArgs) : nullptr;
1230
1231 QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
1232
1233 ExprResult ImmediatelyDeclaredConstraint =
1234 formImmediatelyDeclaredConstraint(
1235 *this, NS, NameInfo, NamedConcept,
1236 TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
1237 TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
1238 ParamAsArgument, ConstrainedParameter->getLocation(),
1239 [&] (TemplateArgumentListInfo &ConstraintArgs) {
1240 if (TemplateArgs)
1241 for (const auto &ArgLoc : TemplateArgs->arguments())
1242 ConstraintArgs.addArgument(ArgLoc);
1243 }, EllipsisLoc);
1244 if (ImmediatelyDeclaredConstraint.isInvalid())
1245 return true;
1246
1247 ConstrainedParameter->setTypeConstraint(NS, NameInfo,
1248 /*FoundDecl=*/NamedConcept,
1249 NamedConcept, ArgsAsWritten,
1250 ImmediatelyDeclaredConstraint.get());
1251 return false;
1252 }
1253
AttachTypeConstraint(AutoTypeLoc TL,NonTypeTemplateParmDecl * NTTP,SourceLocation EllipsisLoc)1254 bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP,
1255 SourceLocation EllipsisLoc) {
1256 if (NTTP->getType() != TL.getType() ||
1257 TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
1258 Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1259 diag::err_unsupported_placeholder_constraint)
1260 << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange();
1261 return true;
1262 }
1263 // FIXME: Concepts: This should be the type of the placeholder, but this is
1264 // unclear in the wording right now.
1265 DeclRefExpr *Ref =
1266 BuildDeclRefExpr(NTTP, NTTP->getType(), VK_PRValue, NTTP->getLocation());
1267 if (!Ref)
1268 return true;
1269 ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint(
1270 *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
1271 TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(),
1272 BuildDecltypeType(Ref), NTTP->getLocation(),
1273 [&](TemplateArgumentListInfo &ConstraintArgs) {
1274 for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
1275 ConstraintArgs.addArgument(TL.getArgLoc(I));
1276 },
1277 EllipsisLoc);
1278 if (ImmediatelyDeclaredConstraint.isInvalid() ||
1279 !ImmediatelyDeclaredConstraint.isUsable())
1280 return true;
1281
1282 NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get());
1283 return false;
1284 }
1285
1286 /// Check that the type of a non-type template parameter is
1287 /// well-formed.
1288 ///
1289 /// \returns the (possibly-promoted) parameter type if valid;
1290 /// otherwise, produces a diagnostic and returns a NULL type.
CheckNonTypeTemplateParameterType(TypeSourceInfo * & TSI,SourceLocation Loc)1291 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1292 SourceLocation Loc) {
1293 if (TSI->getType()->isUndeducedType()) {
1294 // C++17 [temp.dep.expr]p3:
1295 // An id-expression is type-dependent if it contains
1296 // - an identifier associated by name lookup with a non-type
1297 // template-parameter declared with a type that contains a
1298 // placeholder type (7.1.7.4),
1299 TSI = SubstAutoTypeSourceInfoDependent(TSI);
1300 }
1301
1302 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
1303 }
1304
1305 /// Require the given type to be a structural type, and diagnose if it is not.
1306 ///
1307 /// \return \c true if an error was produced.
RequireStructuralType(QualType T,SourceLocation Loc)1308 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) {
1309 if (T->isDependentType())
1310 return false;
1311
1312 if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete))
1313 return true;
1314
1315 if (T->isStructuralType())
1316 return false;
1317
1318 // Structural types are required to be object types or lvalue references.
1319 if (T->isRValueReferenceType()) {
1320 Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T;
1321 return true;
1322 }
1323
1324 // Don't mention structural types in our diagnostic prior to C++20. Also,
1325 // there's not much more we can say about non-scalar non-class types --
1326 // because we can't see functions or arrays here, those can only be language
1327 // extensions.
1328 if (!getLangOpts().CPlusPlus20 ||
1329 (!T->isScalarType() && !T->isRecordType())) {
1330 Diag(Loc, diag::err_template_nontype_parm_bad_type) << T;
1331 return true;
1332 }
1333
1334 // Structural types are required to be literal types.
1335 if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal))
1336 return true;
1337
1338 Diag(Loc, diag::err_template_nontype_parm_not_structural) << T;
1339
1340 // Drill down into the reason why the class is non-structural.
1341 while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
1342 // All members are required to be public and non-mutable, and can't be of
1343 // rvalue reference type. Check these conditions first to prefer a "local"
1344 // reason over a more distant one.
1345 for (const FieldDecl *FD : RD->fields()) {
1346 if (FD->getAccess() != AS_public) {
1347 Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0;
1348 return true;
1349 }
1350 if (FD->isMutable()) {
1351 Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T;
1352 return true;
1353 }
1354 if (FD->getType()->isRValueReferenceType()) {
1355 Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field)
1356 << T;
1357 return true;
1358 }
1359 }
1360
1361 // All bases are required to be public.
1362 for (const auto &BaseSpec : RD->bases()) {
1363 if (BaseSpec.getAccessSpecifier() != AS_public) {
1364 Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public)
1365 << T << 1;
1366 return true;
1367 }
1368 }
1369
1370 // All subobjects are required to be of structural types.
1371 SourceLocation SubLoc;
1372 QualType SubType;
1373 int Kind = -1;
1374
1375 for (const FieldDecl *FD : RD->fields()) {
1376 QualType T = Context.getBaseElementType(FD->getType());
1377 if (!T->isStructuralType()) {
1378 SubLoc = FD->getLocation();
1379 SubType = T;
1380 Kind = 0;
1381 break;
1382 }
1383 }
1384
1385 if (Kind == -1) {
1386 for (const auto &BaseSpec : RD->bases()) {
1387 QualType T = BaseSpec.getType();
1388 if (!T->isStructuralType()) {
1389 SubLoc = BaseSpec.getBaseTypeLoc();
1390 SubType = T;
1391 Kind = 1;
1392 break;
1393 }
1394 }
1395 }
1396
1397 assert(Kind != -1 && "couldn't find reason why type is not structural");
1398 Diag(SubLoc, diag::note_not_structural_subobject)
1399 << T << Kind << SubType;
1400 T = SubType;
1401 RD = T->getAsCXXRecordDecl();
1402 }
1403
1404 return true;
1405 }
1406
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)1407 QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1408 SourceLocation Loc) {
1409 // We don't allow variably-modified types as the type of non-type template
1410 // parameters.
1411 if (T->isVariablyModifiedType()) {
1412 Diag(Loc, diag::err_variably_modified_nontype_template_param)
1413 << T;
1414 return QualType();
1415 }
1416
1417 // C++ [temp.param]p4:
1418 //
1419 // A non-type template-parameter shall have one of the following
1420 // (optionally cv-qualified) types:
1421 //
1422 // -- integral or enumeration type,
1423 if (T->isIntegralOrEnumerationType() ||
1424 // -- pointer to object or pointer to function,
1425 T->isPointerType() ||
1426 // -- lvalue reference to object or lvalue reference to function,
1427 T->isLValueReferenceType() ||
1428 // -- pointer to member,
1429 T->isMemberPointerType() ||
1430 // -- std::nullptr_t, or
1431 T->isNullPtrType() ||
1432 // -- a type that contains a placeholder type.
1433 T->isUndeducedType()) {
1434 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1435 // are ignored when determining its type.
1436 return T.getUnqualifiedType();
1437 }
1438
1439 // C++ [temp.param]p8:
1440 //
1441 // A non-type template-parameter of type "array of T" or
1442 // "function returning T" is adjusted to be of type "pointer to
1443 // T" or "pointer to function returning T", respectively.
1444 if (T->isArrayType() || T->isFunctionType())
1445 return Context.getDecayedType(T);
1446
1447 // If T is a dependent type, we can't do the check now, so we
1448 // assume that it is well-formed. Note that stripping off the
1449 // qualifiers here is not really correct if T turns out to be
1450 // an array type, but we'll recompute the type everywhere it's
1451 // used during instantiation, so that should be OK. (Using the
1452 // qualified type is equally wrong.)
1453 if (T->isDependentType())
1454 return T.getUnqualifiedType();
1455
1456 // C++20 [temp.param]p6:
1457 // -- a structural type
1458 if (RequireStructuralType(T, Loc))
1459 return QualType();
1460
1461 if (!getLangOpts().CPlusPlus20) {
1462 // FIXME: Consider allowing structural types as an extension in C++17. (In
1463 // earlier language modes, the template argument evaluation rules are too
1464 // inflexible.)
1465 Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T;
1466 return QualType();
1467 }
1468
1469 Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T;
1470 return T.getUnqualifiedType();
1471 }
1472
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)1473 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1474 unsigned Depth,
1475 unsigned Position,
1476 SourceLocation EqualLoc,
1477 Expr *Default) {
1478 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
1479
1480 // Check that we have valid decl-specifiers specified.
1481 auto CheckValidDeclSpecifiers = [this, &D] {
1482 // C++ [temp.param]
1483 // p1
1484 // template-parameter:
1485 // ...
1486 // parameter-declaration
1487 // p2
1488 // ... A storage class shall not be specified in a template-parameter
1489 // declaration.
1490 // [dcl.typedef]p1:
1491 // The typedef specifier [...] shall not be used in the decl-specifier-seq
1492 // of a parameter-declaration
1493 const DeclSpec &DS = D.getDeclSpec();
1494 auto EmitDiag = [this](SourceLocation Loc) {
1495 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1496 << FixItHint::CreateRemoval(Loc);
1497 };
1498 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1499 EmitDiag(DS.getStorageClassSpecLoc());
1500
1501 if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1502 EmitDiag(DS.getThreadStorageClassSpecLoc());
1503
1504 // [dcl.inline]p1:
1505 // The inline specifier can be applied only to the declaration or
1506 // definition of a variable or function.
1507
1508 if (DS.isInlineSpecified())
1509 EmitDiag(DS.getInlineSpecLoc());
1510
1511 // [dcl.constexpr]p1:
1512 // The constexpr specifier shall be applied only to the definition of a
1513 // variable or variable template or the declaration of a function or
1514 // function template.
1515
1516 if (DS.hasConstexprSpecifier())
1517 EmitDiag(DS.getConstexprSpecLoc());
1518
1519 // [dcl.fct.spec]p1:
1520 // Function-specifiers can be used only in function declarations.
1521
1522 if (DS.isVirtualSpecified())
1523 EmitDiag(DS.getVirtualSpecLoc());
1524
1525 if (DS.hasExplicitSpecifier())
1526 EmitDiag(DS.getExplicitSpecLoc());
1527
1528 if (DS.isNoreturnSpecified())
1529 EmitDiag(DS.getNoreturnSpecLoc());
1530 };
1531
1532 CheckValidDeclSpecifiers();
1533
1534 if (const auto *T = TInfo->getType()->getContainedDeducedType())
1535 if (isa<AutoType>(T))
1536 Diag(D.getIdentifierLoc(),
1537 diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1538 << QualType(TInfo->getType()->getContainedAutoType(), 0);
1539
1540 assert(S->isTemplateParamScope() &&
1541 "Non-type template parameter not in template parameter scope!");
1542 bool Invalid = false;
1543
1544 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1545 if (T.isNull()) {
1546 T = Context.IntTy; // Recover with an 'int' type.
1547 Invalid = true;
1548 }
1549
1550 CheckFunctionOrTemplateParamDeclarator(S, D);
1551
1552 IdentifierInfo *ParamName = D.getIdentifier();
1553 bool IsParameterPack = D.hasEllipsis();
1554 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1555 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1556 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1557 TInfo);
1558 Param->setAccess(AS_public);
1559
1560 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
1561 if (TL.isConstrained())
1562 if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc()))
1563 Invalid = true;
1564
1565 if (Invalid)
1566 Param->setInvalidDecl();
1567
1568 if (Param->isParameterPack())
1569 if (auto *LSI = getEnclosingLambda())
1570 LSI->LocalPacks.push_back(Param);
1571
1572 if (ParamName) {
1573 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1574 ParamName);
1575
1576 // Add the template parameter into the current scope.
1577 S->AddDecl(Param);
1578 IdResolver.AddDecl(Param);
1579 }
1580
1581 // C++0x [temp.param]p9:
1582 // A default template-argument may be specified for any kind of
1583 // template-parameter that is not a template parameter pack.
1584 if (Default && IsParameterPack) {
1585 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1586 Default = nullptr;
1587 }
1588
1589 // Check the well-formedness of the default template argument, if provided.
1590 if (Default) {
1591 // Check for unexpanded parameter packs.
1592 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1593 return Param;
1594
1595 TemplateArgument SugaredConverted, CanonicalConverted;
1596 ExprResult DefaultRes = CheckTemplateArgument(
1597 Param, Param->getType(), Default, SugaredConverted, CanonicalConverted,
1598 CTAK_Specified);
1599 if (DefaultRes.isInvalid()) {
1600 Param->setInvalidDecl();
1601 return Param;
1602 }
1603 Default = DefaultRes.get();
1604
1605 Param->setDefaultArgument(Default);
1606 }
1607
1608 return Param;
1609 }
1610
1611 /// ActOnTemplateTemplateParameter - Called when a C++ template template
1612 /// parameter (e.g. T in template <template \<typename> class T> class array)
1613 /// has been parsed. S is the current scope.
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParameterList * Params,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)1614 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1615 SourceLocation TmpLoc,
1616 TemplateParameterList *Params,
1617 SourceLocation EllipsisLoc,
1618 IdentifierInfo *Name,
1619 SourceLocation NameLoc,
1620 unsigned Depth,
1621 unsigned Position,
1622 SourceLocation EqualLoc,
1623 ParsedTemplateArgument Default) {
1624 assert(S->isTemplateParamScope() &&
1625 "Template template parameter not in template parameter scope!");
1626
1627 // Construct the parameter object.
1628 bool IsParameterPack = EllipsisLoc.isValid();
1629 TemplateTemplateParmDecl *Param =
1630 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1631 NameLoc.isInvalid()? TmpLoc : NameLoc,
1632 Depth, Position, IsParameterPack,
1633 Name, Params);
1634 Param->setAccess(AS_public);
1635
1636 if (Param->isParameterPack())
1637 if (auto *LSI = getEnclosingLambda())
1638 LSI->LocalPacks.push_back(Param);
1639
1640 // If the template template parameter has a name, then link the identifier
1641 // into the scope and lookup mechanisms.
1642 if (Name) {
1643 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1644
1645 S->AddDecl(Param);
1646 IdResolver.AddDecl(Param);
1647 }
1648
1649 if (Params->size() == 0) {
1650 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1651 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1652 Param->setInvalidDecl();
1653 }
1654
1655 // C++0x [temp.param]p9:
1656 // A default template-argument may be specified for any kind of
1657 // template-parameter that is not a template parameter pack.
1658 if (IsParameterPack && !Default.isInvalid()) {
1659 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1660 Default = ParsedTemplateArgument();
1661 }
1662
1663 if (!Default.isInvalid()) {
1664 // Check only that we have a template template argument. We don't want to
1665 // try to check well-formedness now, because our template template parameter
1666 // might have dependent types in its template parameters, which we wouldn't
1667 // be able to match now.
1668 //
1669 // If none of the template template parameter's template arguments mention
1670 // other template parameters, we could actually perform more checking here.
1671 // However, it isn't worth doing.
1672 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1673 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1674 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1675 << DefaultArg.getSourceRange();
1676 return Param;
1677 }
1678
1679 // Check for unexpanded parameter packs.
1680 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1681 DefaultArg.getArgument().getAsTemplate(),
1682 UPPC_DefaultArgument))
1683 return Param;
1684
1685 Param->setDefaultArgument(Context, DefaultArg);
1686 }
1687
1688 return Param;
1689 }
1690
1691 namespace {
1692 class ConstraintRefersToContainingTemplateChecker
1693 : public TreeTransform<ConstraintRefersToContainingTemplateChecker> {
1694 bool Result = false;
1695 const FunctionDecl *Friend = nullptr;
1696 unsigned TemplateDepth = 0;
1697
1698 // Check a record-decl that we've seen to see if it is a lexical parent of the
1699 // Friend, likely because it was referred to without its template arguments.
CheckIfContainingRecord(const CXXRecordDecl * CheckingRD)1700 void CheckIfContainingRecord(const CXXRecordDecl *CheckingRD) {
1701 CheckingRD = CheckingRD->getMostRecentDecl();
1702
1703 for (const DeclContext *DC = Friend->getLexicalDeclContext();
1704 DC && !DC->isFileContext(); DC = DC->getParent())
1705 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
1706 if (CheckingRD == RD->getMostRecentDecl())
1707 Result = true;
1708 }
1709
CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl * D)1710 void CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
1711 assert(D->getDepth() <= TemplateDepth &&
1712 "Nothing should reference a value below the actual template depth, "
1713 "depth is likely wrong");
1714 if (D->getDepth() != TemplateDepth)
1715 Result = true;
1716
1717 // Necessary because the type of the NTTP might be what refers to the parent
1718 // constriant.
1719 TransformType(D->getType());
1720 }
1721
1722 public:
1723 using inherited = TreeTransform<ConstraintRefersToContainingTemplateChecker>;
1724
ConstraintRefersToContainingTemplateChecker(Sema & SemaRef,const FunctionDecl * Friend,unsigned TemplateDepth)1725 ConstraintRefersToContainingTemplateChecker(Sema &SemaRef,
1726 const FunctionDecl *Friend,
1727 unsigned TemplateDepth)
1728 : inherited(SemaRef), Friend(Friend), TemplateDepth(TemplateDepth) {}
getResult() const1729 bool getResult() const { return Result; }
1730
1731 // This should be the only template parm type that we have to deal with.
1732 // SubstTempalteTypeParmPack, SubstNonTypeTemplateParmPack, and
1733 // FunctionParmPackExpr are all partially substituted, which cannot happen
1734 // with concepts at this point in translation.
1735 using inherited::TransformTemplateTypeParmType;
TransformTemplateTypeParmType(TypeLocBuilder & TLB,TemplateTypeParmTypeLoc TL,bool)1736 QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
1737 TemplateTypeParmTypeLoc TL, bool) {
1738 assert(TL.getDecl()->getDepth() <= TemplateDepth &&
1739 "Nothing should reference a value below the actual template depth, "
1740 "depth is likely wrong");
1741 if (TL.getDecl()->getDepth() != TemplateDepth)
1742 Result = true;
1743 return inherited::TransformTemplateTypeParmType(
1744 TLB, TL,
1745 /*SuppressObjCLifetime=*/false);
1746 }
1747
TransformDecl(SourceLocation Loc,Decl * D)1748 Decl *TransformDecl(SourceLocation Loc, Decl *D) {
1749 if (!D)
1750 return D;
1751 // FIXME : This is possibly an incomplete list, but it is unclear what other
1752 // Decl kinds could be used to refer to the template parameters. This is a
1753 // best guess so far based on examples currently available, but the
1754 // unreachable should catch future instances/cases.
1755 if (auto *TD = dyn_cast<TypedefNameDecl>(D))
1756 TransformType(TD->getUnderlyingType());
1757 else if (auto *NTTPD = dyn_cast<NonTypeTemplateParmDecl>(D))
1758 CheckNonTypeTemplateParmDecl(NTTPD);
1759 else if (auto *VD = dyn_cast<ValueDecl>(D))
1760 TransformType(VD->getType());
1761 else if (auto *TD = dyn_cast<TemplateDecl>(D))
1762 TransformTemplateParameterList(TD->getTemplateParameters());
1763 else if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1764 CheckIfContainingRecord(RD);
1765 else if (isa<NamedDecl>(D)) {
1766 // No direct types to visit here I believe.
1767 } else
1768 llvm_unreachable("Don't know how to handle this declaration type yet");
1769 return D;
1770 }
1771 };
1772 } // namespace
1773
ConstraintExpressionDependsOnEnclosingTemplate(const FunctionDecl * Friend,unsigned TemplateDepth,const Expr * Constraint)1774 bool Sema::ConstraintExpressionDependsOnEnclosingTemplate(
1775 const FunctionDecl *Friend, unsigned TemplateDepth,
1776 const Expr *Constraint) {
1777 assert(Friend->getFriendObjectKind() && "Only works on a friend");
1778 ConstraintRefersToContainingTemplateChecker Checker(*this, Friend,
1779 TemplateDepth);
1780 Checker.TransformExpr(const_cast<Expr *>(Constraint));
1781 return Checker.getResult();
1782 }
1783
1784 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1785 /// constrained by RequiresClause, that contains the template parameters in
1786 /// Params.
1787 TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ArrayRef<NamedDecl * > Params,SourceLocation RAngleLoc,Expr * RequiresClause)1788 Sema::ActOnTemplateParameterList(unsigned Depth,
1789 SourceLocation ExportLoc,
1790 SourceLocation TemplateLoc,
1791 SourceLocation LAngleLoc,
1792 ArrayRef<NamedDecl *> Params,
1793 SourceLocation RAngleLoc,
1794 Expr *RequiresClause) {
1795 if (ExportLoc.isValid())
1796 Diag(ExportLoc, diag::warn_template_export_unsupported);
1797
1798 for (NamedDecl *P : Params)
1799 warnOnReservedIdentifier(P);
1800
1801 return TemplateParameterList::Create(
1802 Context, TemplateLoc, LAngleLoc,
1803 llvm::ArrayRef(Params.data(), Params.size()), RAngleLoc, RequiresClause);
1804 }
1805
SetNestedNameSpecifier(Sema & S,TagDecl * T,const CXXScopeSpec & SS)1806 static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1807 const CXXScopeSpec &SS) {
1808 if (SS.isSet())
1809 T->setQualifierInfo(SS.getWithLocInContext(S.Context));
1810 }
1811
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,const ParsedAttributesView & Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,SourceLocation ModulePrivateLoc,SourceLocation FriendLoc,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists,SkipBodyInfo * SkipBody)1812 DeclResult Sema::CheckClassTemplate(
1813 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1814 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1815 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1816 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1817 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1818 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1819 assert(TemplateParams && TemplateParams->size() > 0 &&
1820 "No template parameters");
1821 assert(TUK != TUK_Reference && "Can only declare or define class templates");
1822 bool Invalid = false;
1823
1824 // Check that we can declare a template here.
1825 if (CheckTemplateDeclScope(S, TemplateParams))
1826 return true;
1827
1828 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1829 assert(Kind != TTK_Enum && "can't build template of enumerated type");
1830
1831 // There is no such thing as an unnamed class template.
1832 if (!Name) {
1833 Diag(KWLoc, diag::err_template_unnamed_class);
1834 return true;
1835 }
1836
1837 // Find any previous declaration with this name. For a friend with no
1838 // scope explicitly specified, we only look for tag declarations (per
1839 // C++11 [basic.lookup.elab]p2).
1840 DeclContext *SemanticContext;
1841 LookupResult Previous(*this, Name, NameLoc,
1842 (SS.isEmpty() && TUK == TUK_Friend)
1843 ? LookupTagName : LookupOrdinaryName,
1844 forRedeclarationInCurContext());
1845 if (SS.isNotEmpty() && !SS.isInvalid()) {
1846 SemanticContext = computeDeclContext(SS, true);
1847 if (!SemanticContext) {
1848 // FIXME: Horrible, horrible hack! We can't currently represent this
1849 // in the AST, and historically we have just ignored such friend
1850 // class templates, so don't complain here.
1851 Diag(NameLoc, TUK == TUK_Friend
1852 ? diag::warn_template_qualified_friend_ignored
1853 : diag::err_template_qualified_declarator_no_match)
1854 << SS.getScopeRep() << SS.getRange();
1855 return TUK != TUK_Friend;
1856 }
1857
1858 if (RequireCompleteDeclContext(SS, SemanticContext))
1859 return true;
1860
1861 // If we're adding a template to a dependent context, we may need to
1862 // rebuilding some of the types used within the template parameter list,
1863 // now that we know what the current instantiation is.
1864 if (SemanticContext->isDependentContext()) {
1865 ContextRAII SavedContext(*this, SemanticContext);
1866 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1867 Invalid = true;
1868 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1869 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
1870
1871 LookupQualifiedName(Previous, SemanticContext);
1872 } else {
1873 SemanticContext = CurContext;
1874
1875 // C++14 [class.mem]p14:
1876 // If T is the name of a class, then each of the following shall have a
1877 // name different from T:
1878 // -- every member template of class T
1879 if (TUK != TUK_Friend &&
1880 DiagnoseClassNameShadow(SemanticContext,
1881 DeclarationNameInfo(Name, NameLoc)))
1882 return true;
1883
1884 LookupName(Previous, S);
1885 }
1886
1887 if (Previous.isAmbiguous())
1888 return true;
1889
1890 NamedDecl *PrevDecl = nullptr;
1891 if (Previous.begin() != Previous.end())
1892 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1893
1894 if (PrevDecl && PrevDecl->isTemplateParameter()) {
1895 // Maybe we will complain about the shadowed template parameter.
1896 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1897 // Just pretend that we didn't see the previous declaration.
1898 PrevDecl = nullptr;
1899 }
1900
1901 // If there is a previous declaration with the same name, check
1902 // whether this is a valid redeclaration.
1903 ClassTemplateDecl *PrevClassTemplate =
1904 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1905
1906 // We may have found the injected-class-name of a class template,
1907 // class template partial specialization, or class template specialization.
1908 // In these cases, grab the template that is being defined or specialized.
1909 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1910 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1911 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1912 PrevClassTemplate
1913 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1914 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1915 PrevClassTemplate
1916 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1917 ->getSpecializedTemplate();
1918 }
1919 }
1920
1921 if (TUK == TUK_Friend) {
1922 // C++ [namespace.memdef]p3:
1923 // [...] When looking for a prior declaration of a class or a function
1924 // declared as a friend, and when the name of the friend class or
1925 // function is neither a qualified name nor a template-id, scopes outside
1926 // the innermost enclosing namespace scope are not considered.
1927 if (!SS.isSet()) {
1928 DeclContext *OutermostContext = CurContext;
1929 while (!OutermostContext->isFileContext())
1930 OutermostContext = OutermostContext->getLookupParent();
1931
1932 if (PrevDecl &&
1933 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1934 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1935 SemanticContext = PrevDecl->getDeclContext();
1936 } else {
1937 // Declarations in outer scopes don't matter. However, the outermost
1938 // context we computed is the semantic context for our new
1939 // declaration.
1940 PrevDecl = PrevClassTemplate = nullptr;
1941 SemanticContext = OutermostContext;
1942
1943 // Check that the chosen semantic context doesn't already contain a
1944 // declaration of this name as a non-tag type.
1945 Previous.clear(LookupOrdinaryName);
1946 DeclContext *LookupContext = SemanticContext;
1947 while (LookupContext->isTransparentContext())
1948 LookupContext = LookupContext->getLookupParent();
1949 LookupQualifiedName(Previous, LookupContext);
1950
1951 if (Previous.isAmbiguous())
1952 return true;
1953
1954 if (Previous.begin() != Previous.end())
1955 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1956 }
1957 }
1958 } else if (PrevDecl &&
1959 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1960 S, SS.isValid()))
1961 PrevDecl = PrevClassTemplate = nullptr;
1962
1963 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1964 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1965 if (SS.isEmpty() &&
1966 !(PrevClassTemplate &&
1967 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1968 SemanticContext->getRedeclContext()))) {
1969 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1970 Diag(Shadow->getTargetDecl()->getLocation(),
1971 diag::note_using_decl_target);
1972 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
1973 // Recover by ignoring the old declaration.
1974 PrevDecl = PrevClassTemplate = nullptr;
1975 }
1976 }
1977
1978 if (PrevClassTemplate) {
1979 // Ensure that the template parameter lists are compatible. Skip this check
1980 // for a friend in a dependent context: the template parameter list itself
1981 // could be dependent.
1982 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1983 !TemplateParameterListsAreEqual(TemplateParams,
1984 PrevClassTemplate->getTemplateParameters(),
1985 /*Complain=*/true,
1986 TPL_TemplateMatch))
1987 return true;
1988
1989 // C++ [temp.class]p4:
1990 // In a redeclaration, partial specialization, explicit
1991 // specialization or explicit instantiation of a class template,
1992 // the class-key shall agree in kind with the original class
1993 // template declaration (7.1.5.3).
1994 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1995 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1996 TUK == TUK_Definition, KWLoc, Name)) {
1997 Diag(KWLoc, diag::err_use_with_wrong_tag)
1998 << Name
1999 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
2000 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
2001 Kind = PrevRecordDecl->getTagKind();
2002 }
2003
2004 // Check for redefinition of this class template.
2005 if (TUK == TUK_Definition) {
2006 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
2007 // If we have a prior definition that is not visible, treat this as
2008 // simply making that previous definition visible.
2009 NamedDecl *Hidden = nullptr;
2010 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
2011 SkipBody->ShouldSkip = true;
2012 SkipBody->Previous = Def;
2013 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
2014 assert(Tmpl && "original definition of a class template is not a "
2015 "class template?");
2016 makeMergedDefinitionVisible(Hidden);
2017 makeMergedDefinitionVisible(Tmpl);
2018 } else {
2019 Diag(NameLoc, diag::err_redefinition) << Name;
2020 Diag(Def->getLocation(), diag::note_previous_definition);
2021 // FIXME: Would it make sense to try to "forget" the previous
2022 // definition, as part of error recovery?
2023 return true;
2024 }
2025 }
2026 }
2027 } else if (PrevDecl) {
2028 // C++ [temp]p5:
2029 // A class template shall not have the same name as any other
2030 // template, class, function, object, enumeration, enumerator,
2031 // namespace, or type in the same scope (3.3), except as specified
2032 // in (14.5.4).
2033 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2034 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2035 return true;
2036 }
2037
2038 // Check the template parameter list of this declaration, possibly
2039 // merging in the template parameter list from the previous class
2040 // template declaration. Skip this check for a friend in a dependent
2041 // context, because the template parameter list might be dependent.
2042 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
2043 CheckTemplateParameterList(
2044 TemplateParams,
2045 PrevClassTemplate
2046 ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters()
2047 : nullptr,
2048 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
2049 SemanticContext->isDependentContext())
2050 ? TPC_ClassTemplateMember
2051 : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate,
2052 SkipBody))
2053 Invalid = true;
2054
2055 if (SS.isSet()) {
2056 // If the name of the template was qualified, we must be defining the
2057 // template out-of-line.
2058 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
2059 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
2060 : diag::err_member_decl_does_not_match)
2061 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
2062 Invalid = true;
2063 }
2064 }
2065
2066 // If this is a templated friend in a dependent context we should not put it
2067 // on the redecl chain. In some cases, the templated friend can be the most
2068 // recent declaration tricking the template instantiator to make substitutions
2069 // there.
2070 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
2071 bool ShouldAddRedecl
2072 = !(TUK == TUK_Friend && CurContext->isDependentContext());
2073
2074 CXXRecordDecl *NewClass =
2075 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
2076 PrevClassTemplate && ShouldAddRedecl ?
2077 PrevClassTemplate->getTemplatedDecl() : nullptr,
2078 /*DelayTypeCreation=*/true);
2079 SetNestedNameSpecifier(*this, NewClass, SS);
2080 if (NumOuterTemplateParamLists > 0)
2081 NewClass->setTemplateParameterListsInfo(
2082 Context,
2083 llvm::ArrayRef(OuterTemplateParamLists, NumOuterTemplateParamLists));
2084
2085 // Add alignment attributes if necessary; these attributes are checked when
2086 // the ASTContext lays out the structure.
2087 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
2088 AddAlignmentAttributesForRecord(NewClass);
2089 AddMsStructLayoutForRecord(NewClass);
2090 }
2091
2092 ClassTemplateDecl *NewTemplate
2093 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
2094 DeclarationName(Name), TemplateParams,
2095 NewClass);
2096
2097 if (ShouldAddRedecl)
2098 NewTemplate->setPreviousDecl(PrevClassTemplate);
2099
2100 NewClass->setDescribedClassTemplate(NewTemplate);
2101
2102 if (ModulePrivateLoc.isValid())
2103 NewTemplate->setModulePrivate();
2104
2105 // Build the type for the class template declaration now.
2106 QualType T = NewTemplate->getInjectedClassNameSpecialization();
2107 T = Context.getInjectedClassNameType(NewClass, T);
2108 assert(T->isDependentType() && "Class template type is not dependent?");
2109 (void)T;
2110
2111 // If we are providing an explicit specialization of a member that is a
2112 // class template, make a note of that.
2113 if (PrevClassTemplate &&
2114 PrevClassTemplate->getInstantiatedFromMemberTemplate())
2115 PrevClassTemplate->setMemberSpecialization();
2116
2117 // Set the access specifier.
2118 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
2119 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
2120
2121 // Set the lexical context of these templates
2122 NewClass->setLexicalDeclContext(CurContext);
2123 NewTemplate->setLexicalDeclContext(CurContext);
2124
2125 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
2126 NewClass->startDefinition();
2127
2128 ProcessDeclAttributeList(S, NewClass, Attr);
2129
2130 if (PrevClassTemplate)
2131 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
2132
2133 AddPushedVisibilityAttribute(NewClass);
2134 inferGslOwnerPointerAttribute(NewClass);
2135
2136 if (TUK != TUK_Friend) {
2137 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
2138 Scope *Outer = S;
2139 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
2140 Outer = Outer->getParent();
2141 PushOnScopeChains(NewTemplate, Outer);
2142 } else {
2143 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
2144 NewTemplate->setAccess(PrevClassTemplate->getAccess());
2145 NewClass->setAccess(PrevClassTemplate->getAccess());
2146 }
2147
2148 NewTemplate->setObjectOfFriendDecl();
2149
2150 // Friend templates are visible in fairly strange ways.
2151 if (!CurContext->isDependentContext()) {
2152 DeclContext *DC = SemanticContext->getRedeclContext();
2153 DC->makeDeclVisibleInContext(NewTemplate);
2154 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
2155 PushOnScopeChains(NewTemplate, EnclosingScope,
2156 /* AddToContext = */ false);
2157 }
2158
2159 FriendDecl *Friend = FriendDecl::Create(
2160 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
2161 Friend->setAccess(AS_public);
2162 CurContext->addDecl(Friend);
2163 }
2164
2165 if (PrevClassTemplate)
2166 CheckRedeclarationInModule(NewTemplate, PrevClassTemplate);
2167
2168 if (Invalid) {
2169 NewTemplate->setInvalidDecl();
2170 NewClass->setInvalidDecl();
2171 }
2172
2173 ActOnDocumentableDecl(NewTemplate);
2174
2175 if (SkipBody && SkipBody->ShouldSkip)
2176 return SkipBody->Previous;
2177
2178 return NewTemplate;
2179 }
2180
2181 namespace {
2182 /// Tree transform to "extract" a transformed type from a class template's
2183 /// constructor to a deduction guide.
2184 class ExtractTypeForDeductionGuide
2185 : public TreeTransform<ExtractTypeForDeductionGuide> {
2186 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs;
2187
2188 public:
2189 typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
ExtractTypeForDeductionGuide(Sema & SemaRef,llvm::SmallVectorImpl<TypedefNameDecl * > & MaterializedTypedefs)2190 ExtractTypeForDeductionGuide(
2191 Sema &SemaRef,
2192 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs)
2193 : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {}
2194
transform(TypeSourceInfo * TSI)2195 TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
2196
TransformTypedefType(TypeLocBuilder & TLB,TypedefTypeLoc TL)2197 QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
2198 ASTContext &Context = SemaRef.getASTContext();
2199 TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl();
2200 TypedefNameDecl *Decl = OrigDecl;
2201 // Transform the underlying type of the typedef and clone the Decl only if
2202 // the typedef has a dependent context.
2203 if (OrigDecl->getDeclContext()->isDependentContext()) {
2204 TypeLocBuilder InnerTLB;
2205 QualType Transformed =
2206 TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc());
2207 TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed);
2208 if (isa<TypeAliasDecl>(OrigDecl))
2209 Decl = TypeAliasDecl::Create(
2210 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2211 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2212 else {
2213 assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef");
2214 Decl = TypedefDecl::Create(
2215 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2216 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2217 }
2218 MaterializedTypedefs.push_back(Decl);
2219 }
2220
2221 QualType TDTy = Context.getTypedefType(Decl);
2222 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy);
2223 TypedefTL.setNameLoc(TL.getNameLoc());
2224
2225 return TDTy;
2226 }
2227 };
2228
2229 /// Transform to convert portions of a constructor declaration into the
2230 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
2231 struct ConvertConstructorToDeductionGuideTransform {
ConvertConstructorToDeductionGuideTransform__anon8a5f675e0811::ConvertConstructorToDeductionGuideTransform2232 ConvertConstructorToDeductionGuideTransform(Sema &S,
2233 ClassTemplateDecl *Template)
2234 : SemaRef(S), Template(Template) {}
2235
2236 Sema &SemaRef;
2237 ClassTemplateDecl *Template;
2238
2239 DeclContext *DC = Template->getDeclContext();
2240 CXXRecordDecl *Primary = Template->getTemplatedDecl();
2241 DeclarationName DeductionGuideName =
2242 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
2243
2244 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
2245
2246 // Index adjustment to apply to convert depth-1 template parameters into
2247 // depth-0 template parameters.
2248 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
2249
2250 /// Transform a constructor declaration into a deduction guide.
transformConstructor__anon8a5f675e0811::ConvertConstructorToDeductionGuideTransform2251 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
2252 CXXConstructorDecl *CD) {
2253 SmallVector<TemplateArgument, 16> SubstArgs;
2254
2255 LocalInstantiationScope Scope(SemaRef);
2256
2257 // C++ [over.match.class.deduct]p1:
2258 // -- For each constructor of the class template designated by the
2259 // template-name, a function template with the following properties:
2260
2261 // -- The template parameters are the template parameters of the class
2262 // template followed by the template parameters (including default
2263 // template arguments) of the constructor, if any.
2264 TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2265 if (FTD) {
2266 TemplateParameterList *InnerParams = FTD->getTemplateParameters();
2267 SmallVector<NamedDecl *, 16> AllParams;
2268 AllParams.reserve(TemplateParams->size() + InnerParams->size());
2269 AllParams.insert(AllParams.begin(),
2270 TemplateParams->begin(), TemplateParams->end());
2271 SubstArgs.reserve(InnerParams->size());
2272
2273 // Later template parameters could refer to earlier ones, so build up
2274 // a list of substituted template arguments as we go.
2275 for (NamedDecl *Param : *InnerParams) {
2276 MultiLevelTemplateArgumentList Args;
2277 Args.setKind(TemplateSubstitutionKind::Rewrite);
2278 Args.addOuterTemplateArguments(SubstArgs);
2279 Args.addOuterRetainedLevel();
2280 NamedDecl *NewParam = transformTemplateParameter(Param, Args);
2281 if (!NewParam)
2282 return nullptr;
2283 AllParams.push_back(NewParam);
2284 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2285 SemaRef.Context.getInjectedTemplateArg(NewParam)));
2286 }
2287
2288 // Substitute new template parameters into requires-clause if present.
2289 Expr *RequiresClause = nullptr;
2290 if (Expr *InnerRC = InnerParams->getRequiresClause()) {
2291 MultiLevelTemplateArgumentList Args;
2292 Args.setKind(TemplateSubstitutionKind::Rewrite);
2293 Args.addOuterTemplateArguments(SubstArgs);
2294 Args.addOuterRetainedLevel();
2295 ExprResult E = SemaRef.SubstExpr(InnerRC, Args);
2296 if (E.isInvalid())
2297 return nullptr;
2298 RequiresClause = E.getAs<Expr>();
2299 }
2300
2301 TemplateParams = TemplateParameterList::Create(
2302 SemaRef.Context, InnerParams->getTemplateLoc(),
2303 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
2304 RequiresClause);
2305 }
2306
2307 // If we built a new template-parameter-list, track that we need to
2308 // substitute references to the old parameters into references to the
2309 // new ones.
2310 MultiLevelTemplateArgumentList Args;
2311 Args.setKind(TemplateSubstitutionKind::Rewrite);
2312 if (FTD) {
2313 Args.addOuterTemplateArguments(SubstArgs);
2314 Args.addOuterRetainedLevel();
2315 }
2316
2317 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
2318 .getAsAdjusted<FunctionProtoTypeLoc>();
2319 assert(FPTL && "no prototype for constructor declaration");
2320
2321 // Transform the type of the function, adjusting the return type and
2322 // replacing references to the old parameters with references to the
2323 // new ones.
2324 TypeLocBuilder TLB;
2325 SmallVector<ParmVarDecl*, 8> Params;
2326 SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs;
2327 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args,
2328 MaterializedTypedefs);
2329 if (NewType.isNull())
2330 return nullptr;
2331 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
2332
2333 return buildDeductionGuide(TemplateParams, CD, CD->getExplicitSpecifier(),
2334 NewTInfo, CD->getBeginLoc(), CD->getLocation(),
2335 CD->getEndLoc(), MaterializedTypedefs);
2336 }
2337
2338 /// Build a deduction guide with the specified parameter types.
buildSimpleDeductionGuide__anon8a5f675e0811::ConvertConstructorToDeductionGuideTransform2339 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
2340 SourceLocation Loc = Template->getLocation();
2341
2342 // Build the requested type.
2343 FunctionProtoType::ExtProtoInfo EPI;
2344 EPI.HasTrailingReturn = true;
2345 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
2346 DeductionGuideName, EPI);
2347 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
2348
2349 FunctionProtoTypeLoc FPTL =
2350 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
2351
2352 // Build the parameters, needed during deduction / substitution.
2353 SmallVector<ParmVarDecl*, 4> Params;
2354 for (auto T : ParamTypes) {
2355 ParmVarDecl *NewParam = ParmVarDecl::Create(
2356 SemaRef.Context, DC, Loc, Loc, nullptr, T,
2357 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
2358 NewParam->setScopeInfo(0, Params.size());
2359 FPTL.setParam(Params.size(), NewParam);
2360 Params.push_back(NewParam);
2361 }
2362
2363 return buildDeductionGuide(Template->getTemplateParameters(), nullptr,
2364 ExplicitSpecifier(), TSI, Loc, Loc, Loc);
2365 }
2366
2367 private:
2368 /// Transform a constructor template parameter into a deduction guide template
2369 /// parameter, rebuilding any internal references to earlier parameters and
2370 /// renumbering as we go.
transformTemplateParameter__anon8a5f675e0811::ConvertConstructorToDeductionGuideTransform2371 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
2372 MultiLevelTemplateArgumentList &Args) {
2373 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
2374 // TemplateTypeParmDecl's index cannot be changed after creation, so
2375 // substitute it directly.
2376 auto *NewTTP = TemplateTypeParmDecl::Create(
2377 SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
2378 /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(),
2379 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
2380 TTP->isParameterPack(), TTP->hasTypeConstraint(),
2381 TTP->isExpandedParameterPack()
2382 ? std::optional<unsigned>(TTP->getNumExpansionParameters())
2383 : std::nullopt);
2384 if (const auto *TC = TTP->getTypeConstraint())
2385 SemaRef.SubstTypeConstraint(NewTTP, TC, Args,
2386 /*EvaluateConstraint*/ true);
2387 if (TTP->hasDefaultArgument()) {
2388 TypeSourceInfo *InstantiatedDefaultArg =
2389 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
2390 TTP->getDefaultArgumentLoc(), TTP->getDeclName());
2391 if (InstantiatedDefaultArg)
2392 NewTTP->setDefaultArgument(InstantiatedDefaultArg);
2393 }
2394 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
2395 NewTTP);
2396 return NewTTP;
2397 }
2398
2399 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
2400 return transformTemplateParameterImpl(TTP, Args);
2401
2402 return transformTemplateParameterImpl(
2403 cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
2404 }
2405 template<typename TemplateParmDecl>
2406 TemplateParmDecl *
transformTemplateParameterImpl__anon8a5f675e0811::ConvertConstructorToDeductionGuideTransform2407 transformTemplateParameterImpl(TemplateParmDecl *OldParam,
2408 MultiLevelTemplateArgumentList &Args) {
2409 // Ask the template instantiator to do the heavy lifting for us, then adjust
2410 // the index of the parameter once it's done.
2411 auto *NewParam =
2412 cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
2413 assert(NewParam->getDepth() == 0 && "unexpected template param depth");
2414 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
2415 return NewParam;
2416 }
2417
transformFunctionProtoType__anon8a5f675e0811::ConvertConstructorToDeductionGuideTransform2418 QualType transformFunctionProtoType(
2419 TypeLocBuilder &TLB, FunctionProtoTypeLoc TL,
2420 SmallVectorImpl<ParmVarDecl *> &Params,
2421 MultiLevelTemplateArgumentList &Args,
2422 SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2423 SmallVector<QualType, 4> ParamTypes;
2424 const FunctionProtoType *T = TL.getTypePtr();
2425
2426 // -- The types of the function parameters are those of the constructor.
2427 for (auto *OldParam : TL.getParams()) {
2428 ParmVarDecl *NewParam =
2429 transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs);
2430 if (!NewParam)
2431 return QualType();
2432 ParamTypes.push_back(NewParam->getType());
2433 Params.push_back(NewParam);
2434 }
2435
2436 // -- The return type is the class template specialization designated by
2437 // the template-name and template arguments corresponding to the
2438 // template parameters obtained from the class template.
2439 //
2440 // We use the injected-class-name type of the primary template instead.
2441 // This has the convenient property that it is different from any type that
2442 // the user can write in a deduction-guide (because they cannot enter the
2443 // context of the template), so implicit deduction guides can never collide
2444 // with explicit ones.
2445 QualType ReturnType = DeducedType;
2446 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
2447
2448 // Resolving a wording defect, we also inherit the variadicness of the
2449 // constructor.
2450 FunctionProtoType::ExtProtoInfo EPI;
2451 EPI.Variadic = T->isVariadic();
2452 EPI.HasTrailingReturn = true;
2453
2454 QualType Result = SemaRef.BuildFunctionType(
2455 ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
2456 if (Result.isNull())
2457 return QualType();
2458
2459 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
2460 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
2461 NewTL.setLParenLoc(TL.getLParenLoc());
2462 NewTL.setRParenLoc(TL.getRParenLoc());
2463 NewTL.setExceptionSpecRange(SourceRange());
2464 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
2465 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
2466 NewTL.setParam(I, Params[I]);
2467
2468 return Result;
2469 }
2470
transformFunctionTypeParam__anon8a5f675e0811::ConvertConstructorToDeductionGuideTransform2471 ParmVarDecl *transformFunctionTypeParam(
2472 ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args,
2473 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2474 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
2475 TypeSourceInfo *NewDI;
2476 if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
2477 // Expand out the one and only element in each inner pack.
2478 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
2479 NewDI =
2480 SemaRef.SubstType(PackTL.getPatternLoc(), Args,
2481 OldParam->getLocation(), OldParam->getDeclName());
2482 if (!NewDI) return nullptr;
2483 NewDI =
2484 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
2485 PackTL.getTypePtr()->getNumExpansions());
2486 } else
2487 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
2488 OldParam->getDeclName());
2489 if (!NewDI)
2490 return nullptr;
2491
2492 // Extract the type. This (for instance) replaces references to typedef
2493 // members of the current instantiations with the definitions of those
2494 // typedefs, avoiding triggering instantiation of the deduced type during
2495 // deduction.
2496 NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs)
2497 .transform(NewDI);
2498
2499 // Resolving a wording defect, we also inherit default arguments from the
2500 // constructor.
2501 ExprResult NewDefArg;
2502 if (OldParam->hasDefaultArg()) {
2503 // We don't care what the value is (we won't use it); just create a
2504 // placeholder to indicate there is a default argument.
2505 QualType ParamTy = NewDI->getType();
2506 NewDefArg = new (SemaRef.Context)
2507 OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(),
2508 ParamTy.getNonLValueExprType(SemaRef.Context),
2509 ParamTy->isLValueReferenceType() ? VK_LValue
2510 : ParamTy->isRValueReferenceType() ? VK_XValue
2511 : VK_PRValue);
2512 }
2513
2514 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
2515 OldParam->getInnerLocStart(),
2516 OldParam->getLocation(),
2517 OldParam->getIdentifier(),
2518 NewDI->getType(),
2519 NewDI,
2520 OldParam->getStorageClass(),
2521 NewDefArg.get());
2522 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
2523 OldParam->getFunctionScopeIndex());
2524 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
2525 return NewParam;
2526 }
2527
buildDeductionGuide__anon8a5f675e0811::ConvertConstructorToDeductionGuideTransform2528 FunctionTemplateDecl *buildDeductionGuide(
2529 TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor,
2530 ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart,
2531 SourceLocation Loc, SourceLocation LocEnd,
2532 llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) {
2533 DeclarationNameInfo Name(DeductionGuideName, Loc);
2534 ArrayRef<ParmVarDecl *> Params =
2535 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
2536
2537 // Build the implicit deduction guide template.
2538 auto *Guide =
2539 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
2540 TInfo->getType(), TInfo, LocEnd, Ctor);
2541 Guide->setImplicit();
2542 Guide->setParams(Params);
2543
2544 for (auto *Param : Params)
2545 Param->setDeclContext(Guide);
2546 for (auto *TD : MaterializedTypedefs)
2547 TD->setDeclContext(Guide);
2548
2549 auto *GuideTemplate = FunctionTemplateDecl::Create(
2550 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
2551 GuideTemplate->setImplicit();
2552 Guide->setDescribedFunctionTemplate(GuideTemplate);
2553
2554 if (isa<CXXRecordDecl>(DC)) {
2555 Guide->setAccess(AS_public);
2556 GuideTemplate->setAccess(AS_public);
2557 }
2558
2559 DC->addDecl(GuideTemplate);
2560 return GuideTemplate;
2561 }
2562 };
2563 }
2564
DeclareImplicitDeductionGuides(TemplateDecl * Template,SourceLocation Loc)2565 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
2566 SourceLocation Loc) {
2567 if (CXXRecordDecl *DefRecord =
2568 cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2569 TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate();
2570 Template = DescribedTemplate ? DescribedTemplate : Template;
2571 }
2572
2573 DeclContext *DC = Template->getDeclContext();
2574 if (DC->isDependentContext())
2575 return;
2576
2577 ConvertConstructorToDeductionGuideTransform Transform(
2578 *this, cast<ClassTemplateDecl>(Template));
2579 if (!isCompleteType(Loc, Transform.DeducedType))
2580 return;
2581
2582 // Check whether we've already declared deduction guides for this template.
2583 // FIXME: Consider storing a flag on the template to indicate this.
2584 auto Existing = DC->lookup(Transform.DeductionGuideName);
2585 for (auto *D : Existing)
2586 if (D->isImplicit())
2587 return;
2588
2589 // In case we were expanding a pack when we attempted to declare deduction
2590 // guides, turn off pack expansion for everything we're about to do.
2591 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2592 // Create a template instantiation record to track the "instantiation" of
2593 // constructors into deduction guides.
2594 // FIXME: Add a kind for this to give more meaningful diagnostics. But can
2595 // this substitution process actually fail?
2596 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
2597 if (BuildingDeductionGuides.isInvalid())
2598 return;
2599
2600 // Convert declared constructors into deduction guide templates.
2601 // FIXME: Skip constructors for which deduction must necessarily fail (those
2602 // for which some class template parameter without a default argument never
2603 // appears in a deduced context).
2604 bool AddedAny = false;
2605 for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
2606 D = D->getUnderlyingDecl();
2607 if (D->isInvalidDecl() || D->isImplicit())
2608 continue;
2609 D = cast<NamedDecl>(D->getCanonicalDecl());
2610
2611 auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
2612 auto *CD =
2613 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
2614 // Class-scope explicit specializations (MS extension) do not result in
2615 // deduction guides.
2616 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
2617 continue;
2618
2619 // Cannot make a deduction guide when unparsed arguments are present.
2620 if (llvm::any_of(CD->parameters(), [](ParmVarDecl *P) {
2621 return !P || P->hasUnparsedDefaultArg();
2622 }))
2623 continue;
2624
2625 Transform.transformConstructor(FTD, CD);
2626 AddedAny = true;
2627 }
2628
2629 // C++17 [over.match.class.deduct]
2630 // -- If C is not defined or does not declare any constructors, an
2631 // additional function template derived as above from a hypothetical
2632 // constructor C().
2633 if (!AddedAny)
2634 Transform.buildSimpleDeductionGuide(std::nullopt);
2635
2636 // -- An additional function template derived as above from a hypothetical
2637 // constructor C(C), called the copy deduction candidate.
2638 cast<CXXDeductionGuideDecl>(
2639 cast<FunctionTemplateDecl>(
2640 Transform.buildSimpleDeductionGuide(Transform.DeducedType))
2641 ->getTemplatedDecl())
2642 ->setIsCopyDeductionCandidate();
2643 }
2644
2645 /// Diagnose the presence of a default template argument on a
2646 /// template parameter, which is ill-formed in certain contexts.
2647 ///
2648 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)2649 static bool DiagnoseDefaultTemplateArgument(Sema &S,
2650 Sema::TemplateParamListContext TPC,
2651 SourceLocation ParamLoc,
2652 SourceRange DefArgRange) {
2653 switch (TPC) {
2654 case Sema::TPC_ClassTemplate:
2655 case Sema::TPC_VarTemplate:
2656 case Sema::TPC_TypeAliasTemplate:
2657 return false;
2658
2659 case Sema::TPC_FunctionTemplate:
2660 case Sema::TPC_FriendFunctionTemplateDefinition:
2661 // C++ [temp.param]p9:
2662 // A default template-argument shall not be specified in a
2663 // function template declaration or a function template
2664 // definition [...]
2665 // If a friend function template declaration specifies a default
2666 // template-argument, that declaration shall be a definition and shall be
2667 // the only declaration of the function template in the translation unit.
2668 // (C++98/03 doesn't have this wording; see DR226).
2669 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2670 diag::warn_cxx98_compat_template_parameter_default_in_function_template
2671 : diag::ext_template_parameter_default_in_function_template)
2672 << DefArgRange;
2673 return false;
2674
2675 case Sema::TPC_ClassTemplateMember:
2676 // C++0x [temp.param]p9:
2677 // A default template-argument shall not be specified in the
2678 // template-parameter-lists of the definition of a member of a
2679 // class template that appears outside of the member's class.
2680 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2681 << DefArgRange;
2682 return true;
2683
2684 case Sema::TPC_FriendClassTemplate:
2685 case Sema::TPC_FriendFunctionTemplate:
2686 // C++ [temp.param]p9:
2687 // A default template-argument shall not be specified in a
2688 // friend template declaration.
2689 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2690 << DefArgRange;
2691 return true;
2692
2693 // FIXME: C++0x [temp.param]p9 allows default template-arguments
2694 // for friend function templates if there is only a single
2695 // declaration (and it is a definition). Strange!
2696 }
2697
2698 llvm_unreachable("Invalid TemplateParamListContext!");
2699 }
2700
2701 /// Check for unexpanded parameter packs within the template parameters
2702 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)2703 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2704 TemplateTemplateParmDecl *TTP) {
2705 // A template template parameter which is a parameter pack is also a pack
2706 // expansion.
2707 if (TTP->isParameterPack())
2708 return false;
2709
2710 TemplateParameterList *Params = TTP->getTemplateParameters();
2711 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2712 NamedDecl *P = Params->getParam(I);
2713 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
2714 if (!TTP->isParameterPack())
2715 if (const TypeConstraint *TC = TTP->getTypeConstraint())
2716 if (TC->hasExplicitTemplateArgs())
2717 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2718 if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
2719 Sema::UPPC_TypeConstraint))
2720 return true;
2721 continue;
2722 }
2723
2724 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2725 if (!NTTP->isParameterPack() &&
2726 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2727 NTTP->getTypeSourceInfo(),
2728 Sema::UPPC_NonTypeTemplateParameterType))
2729 return true;
2730
2731 continue;
2732 }
2733
2734 if (TemplateTemplateParmDecl *InnerTTP
2735 = dyn_cast<TemplateTemplateParmDecl>(P))
2736 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2737 return true;
2738 }
2739
2740 return false;
2741 }
2742
2743 /// Checks the validity of a template parameter list, possibly
2744 /// considering the template parameter list from a previous
2745 /// declaration.
2746 ///
2747 /// If an "old" template parameter list is provided, it must be
2748 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
2749 /// template parameter list.
2750 ///
2751 /// \param NewParams Template parameter list for a new template
2752 /// declaration. This template parameter list will be updated with any
2753 /// default arguments that are carried through from the previous
2754 /// template parameter list.
2755 ///
2756 /// \param OldParams If provided, template parameter list from a
2757 /// previous declaration of the same template. Default template
2758 /// arguments will be merged from the old template parameter list to
2759 /// the new template parameter list.
2760 ///
2761 /// \param TPC Describes the context in which we are checking the given
2762 /// template parameter list.
2763 ///
2764 /// \param SkipBody If we might have already made a prior merged definition
2765 /// of this template visible, the corresponding body-skipping information.
2766 /// Default argument redefinition is not an error when skipping such a body,
2767 /// because (under the ODR) we can assume the default arguments are the same
2768 /// as the prior merged definition.
2769 ///
2770 /// \returns true if an error occurred, false otherwise.
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC,SkipBodyInfo * SkipBody)2771 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2772 TemplateParameterList *OldParams,
2773 TemplateParamListContext TPC,
2774 SkipBodyInfo *SkipBody) {
2775 bool Invalid = false;
2776
2777 // C++ [temp.param]p10:
2778 // The set of default template-arguments available for use with a
2779 // template declaration or definition is obtained by merging the
2780 // default arguments from the definition (if in scope) and all
2781 // declarations in scope in the same way default function
2782 // arguments are (8.3.6).
2783 bool SawDefaultArgument = false;
2784 SourceLocation PreviousDefaultArgLoc;
2785
2786 // Dummy initialization to avoid warnings.
2787 TemplateParameterList::iterator OldParam = NewParams->end();
2788 if (OldParams)
2789 OldParam = OldParams->begin();
2790
2791 bool RemoveDefaultArguments = false;
2792 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2793 NewParamEnd = NewParams->end();
2794 NewParam != NewParamEnd; ++NewParam) {
2795 // Whether we've seen a duplicate default argument in the same translation
2796 // unit.
2797 bool RedundantDefaultArg = false;
2798 // Whether we've found inconsis inconsitent default arguments in different
2799 // translation unit.
2800 bool InconsistentDefaultArg = false;
2801 // The name of the module which contains the inconsistent default argument.
2802 std::string PrevModuleName;
2803
2804 SourceLocation OldDefaultLoc;
2805 SourceLocation NewDefaultLoc;
2806
2807 // Variable used to diagnose missing default arguments
2808 bool MissingDefaultArg = false;
2809
2810 // Variable used to diagnose non-final parameter packs
2811 bool SawParameterPack = false;
2812
2813 if (TemplateTypeParmDecl *NewTypeParm
2814 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2815 // Check the presence of a default argument here.
2816 if (NewTypeParm->hasDefaultArgument() &&
2817 DiagnoseDefaultTemplateArgument(*this, TPC,
2818 NewTypeParm->getLocation(),
2819 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2820 .getSourceRange()))
2821 NewTypeParm->removeDefaultArgument();
2822
2823 // Merge default arguments for template type parameters.
2824 TemplateTypeParmDecl *OldTypeParm
2825 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2826 if (NewTypeParm->isParameterPack()) {
2827 assert(!NewTypeParm->hasDefaultArgument() &&
2828 "Parameter packs can't have a default argument!");
2829 SawParameterPack = true;
2830 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2831 NewTypeParm->hasDefaultArgument() &&
2832 (!SkipBody || !SkipBody->ShouldSkip)) {
2833 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2834 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2835 SawDefaultArgument = true;
2836
2837 if (!OldTypeParm->getOwningModule() ||
2838 isModuleUnitOfCurrentTU(OldTypeParm->getOwningModule()))
2839 RedundantDefaultArg = true;
2840 else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm,
2841 NewTypeParm)) {
2842 InconsistentDefaultArg = true;
2843 PrevModuleName =
2844 OldTypeParm->getImportedOwningModule()->getFullModuleName();
2845 }
2846 PreviousDefaultArgLoc = NewDefaultLoc;
2847 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2848 // Merge the default argument from the old declaration to the
2849 // new declaration.
2850 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2851 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2852 } else if (NewTypeParm->hasDefaultArgument()) {
2853 SawDefaultArgument = true;
2854 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2855 } else if (SawDefaultArgument)
2856 MissingDefaultArg = true;
2857 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2858 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2859 // Check for unexpanded parameter packs.
2860 if (!NewNonTypeParm->isParameterPack() &&
2861 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2862 NewNonTypeParm->getTypeSourceInfo(),
2863 UPPC_NonTypeTemplateParameterType)) {
2864 Invalid = true;
2865 continue;
2866 }
2867
2868 // Check the presence of a default argument here.
2869 if (NewNonTypeParm->hasDefaultArgument() &&
2870 DiagnoseDefaultTemplateArgument(*this, TPC,
2871 NewNonTypeParm->getLocation(),
2872 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
2873 NewNonTypeParm->removeDefaultArgument();
2874 }
2875
2876 // Merge default arguments for non-type template parameters
2877 NonTypeTemplateParmDecl *OldNonTypeParm
2878 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
2879 if (NewNonTypeParm->isParameterPack()) {
2880 assert(!NewNonTypeParm->hasDefaultArgument() &&
2881 "Parameter packs can't have a default argument!");
2882 if (!NewNonTypeParm->isPackExpansion())
2883 SawParameterPack = true;
2884 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
2885 NewNonTypeParm->hasDefaultArgument() &&
2886 (!SkipBody || !SkipBody->ShouldSkip)) {
2887 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
2888 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
2889 SawDefaultArgument = true;
2890 if (!OldNonTypeParm->getOwningModule() ||
2891 isModuleUnitOfCurrentTU(OldNonTypeParm->getOwningModule()))
2892 RedundantDefaultArg = true;
2893 else if (!getASTContext().isSameDefaultTemplateArgument(
2894 OldNonTypeParm, NewNonTypeParm)) {
2895 InconsistentDefaultArg = true;
2896 PrevModuleName =
2897 OldNonTypeParm->getImportedOwningModule()->getFullModuleName();
2898 }
2899 PreviousDefaultArgLoc = NewDefaultLoc;
2900 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
2901 // Merge the default argument from the old declaration to the
2902 // new declaration.
2903 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
2904 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
2905 } else if (NewNonTypeParm->hasDefaultArgument()) {
2906 SawDefaultArgument = true;
2907 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
2908 } else if (SawDefaultArgument)
2909 MissingDefaultArg = true;
2910 } else {
2911 TemplateTemplateParmDecl *NewTemplateParm
2912 = cast<TemplateTemplateParmDecl>(*NewParam);
2913
2914 // Check for unexpanded parameter packs, recursively.
2915 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
2916 Invalid = true;
2917 continue;
2918 }
2919
2920 // Check the presence of a default argument here.
2921 if (NewTemplateParm->hasDefaultArgument() &&
2922 DiagnoseDefaultTemplateArgument(*this, TPC,
2923 NewTemplateParm->getLocation(),
2924 NewTemplateParm->getDefaultArgument().getSourceRange()))
2925 NewTemplateParm->removeDefaultArgument();
2926
2927 // Merge default arguments for template template parameters
2928 TemplateTemplateParmDecl *OldTemplateParm
2929 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
2930 if (NewTemplateParm->isParameterPack()) {
2931 assert(!NewTemplateParm->hasDefaultArgument() &&
2932 "Parameter packs can't have a default argument!");
2933 if (!NewTemplateParm->isPackExpansion())
2934 SawParameterPack = true;
2935 } else if (OldTemplateParm &&
2936 hasVisibleDefaultArgument(OldTemplateParm) &&
2937 NewTemplateParm->hasDefaultArgument() &&
2938 (!SkipBody || !SkipBody->ShouldSkip)) {
2939 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
2940 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
2941 SawDefaultArgument = true;
2942 if (!OldTemplateParm->getOwningModule() ||
2943 isModuleUnitOfCurrentTU(OldTemplateParm->getOwningModule()))
2944 RedundantDefaultArg = true;
2945 else if (!getASTContext().isSameDefaultTemplateArgument(
2946 OldTemplateParm, NewTemplateParm)) {
2947 InconsistentDefaultArg = true;
2948 PrevModuleName =
2949 OldTemplateParm->getImportedOwningModule()->getFullModuleName();
2950 }
2951 PreviousDefaultArgLoc = NewDefaultLoc;
2952 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
2953 // Merge the default argument from the old declaration to the
2954 // new declaration.
2955 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
2956 PreviousDefaultArgLoc
2957 = OldTemplateParm->getDefaultArgument().getLocation();
2958 } else if (NewTemplateParm->hasDefaultArgument()) {
2959 SawDefaultArgument = true;
2960 PreviousDefaultArgLoc
2961 = NewTemplateParm->getDefaultArgument().getLocation();
2962 } else if (SawDefaultArgument)
2963 MissingDefaultArg = true;
2964 }
2965
2966 // C++11 [temp.param]p11:
2967 // If a template parameter of a primary class template or alias template
2968 // is a template parameter pack, it shall be the last template parameter.
2969 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
2970 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
2971 TPC == TPC_TypeAliasTemplate)) {
2972 Diag((*NewParam)->getLocation(),
2973 diag::err_template_param_pack_must_be_last_template_parameter);
2974 Invalid = true;
2975 }
2976
2977 // [basic.def.odr]/13:
2978 // There can be more than one definition of a
2979 // ...
2980 // default template argument
2981 // ...
2982 // in a program provided that each definition appears in a different
2983 // translation unit and the definitions satisfy the [same-meaning
2984 // criteria of the ODR].
2985 //
2986 // Simply, the design of modules allows the definition of template default
2987 // argument to be repeated across translation unit. Note that the ODR is
2988 // checked elsewhere. But it is still not allowed to repeat template default
2989 // argument in the same translation unit.
2990 if (RedundantDefaultArg) {
2991 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
2992 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
2993 Invalid = true;
2994 } else if (InconsistentDefaultArg) {
2995 // We could only diagnose about the case that the OldParam is imported.
2996 // The case NewParam is imported should be handled in ASTReader.
2997 Diag(NewDefaultLoc,
2998 diag::err_template_param_default_arg_inconsistent_redefinition);
2999 Diag(OldDefaultLoc,
3000 diag::note_template_param_prev_default_arg_in_other_module)
3001 << PrevModuleName;
3002 Invalid = true;
3003 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
3004 // C++ [temp.param]p11:
3005 // If a template-parameter of a class template has a default
3006 // template-argument, each subsequent template-parameter shall either
3007 // have a default template-argument supplied or be a template parameter
3008 // pack.
3009 Diag((*NewParam)->getLocation(),
3010 diag::err_template_param_default_arg_missing);
3011 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
3012 Invalid = true;
3013 RemoveDefaultArguments = true;
3014 }
3015
3016 // If we have an old template parameter list that we're merging
3017 // in, move on to the next parameter.
3018 if (OldParams)
3019 ++OldParam;
3020 }
3021
3022 // We were missing some default arguments at the end of the list, so remove
3023 // all of the default arguments.
3024 if (RemoveDefaultArguments) {
3025 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
3026 NewParamEnd = NewParams->end();
3027 NewParam != NewParamEnd; ++NewParam) {
3028 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
3029 TTP->removeDefaultArgument();
3030 else if (NonTypeTemplateParmDecl *NTTP
3031 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
3032 NTTP->removeDefaultArgument();
3033 else
3034 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
3035 }
3036 }
3037
3038 return Invalid;
3039 }
3040
3041 namespace {
3042
3043 /// A class which looks for a use of a certain level of template
3044 /// parameter.
3045 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
3046 typedef RecursiveASTVisitor<DependencyChecker> super;
3047
3048 unsigned Depth;
3049
3050 // Whether we're looking for a use of a template parameter that makes the
3051 // overall construct type-dependent / a dependent type. This is strictly
3052 // best-effort for now; we may fail to match at all for a dependent type
3053 // in some cases if this is set.
3054 bool IgnoreNonTypeDependent;
3055
3056 bool Match;
3057 SourceLocation MatchLoc;
3058
DependencyChecker__anon8a5f675e0a11::DependencyChecker3059 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
3060 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
3061 Match(false) {}
3062
DependencyChecker__anon8a5f675e0a11::DependencyChecker3063 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
3064 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
3065 NamedDecl *ND = Params->getParam(0);
3066 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
3067 Depth = PD->getDepth();
3068 } else if (NonTypeTemplateParmDecl *PD =
3069 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
3070 Depth = PD->getDepth();
3071 } else {
3072 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
3073 }
3074 }
3075
Matches__anon8a5f675e0a11::DependencyChecker3076 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
3077 if (ParmDepth >= Depth) {
3078 Match = true;
3079 MatchLoc = Loc;
3080 return true;
3081 }
3082 return false;
3083 }
3084
TraverseStmt__anon8a5f675e0a11::DependencyChecker3085 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
3086 // Prune out non-type-dependent expressions if requested. This can
3087 // sometimes result in us failing to find a template parameter reference
3088 // (if a value-dependent expression creates a dependent type), but this
3089 // mode is best-effort only.
3090 if (auto *E = dyn_cast_or_null<Expr>(S))
3091 if (IgnoreNonTypeDependent && !E->isTypeDependent())
3092 return true;
3093 return super::TraverseStmt(S, Q);
3094 }
3095
TraverseTypeLoc__anon8a5f675e0a11::DependencyChecker3096 bool TraverseTypeLoc(TypeLoc TL) {
3097 if (IgnoreNonTypeDependent && !TL.isNull() &&
3098 !TL.getType()->isDependentType())
3099 return true;
3100 return super::TraverseTypeLoc(TL);
3101 }
3102
VisitTemplateTypeParmTypeLoc__anon8a5f675e0a11::DependencyChecker3103 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
3104 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
3105 }
3106
VisitTemplateTypeParmType__anon8a5f675e0a11::DependencyChecker3107 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
3108 // For a best-effort search, keep looking until we find a location.
3109 return IgnoreNonTypeDependent || !Matches(T->getDepth());
3110 }
3111
TraverseTemplateName__anon8a5f675e0a11::DependencyChecker3112 bool TraverseTemplateName(TemplateName N) {
3113 if (TemplateTemplateParmDecl *PD =
3114 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
3115 if (Matches(PD->getDepth()))
3116 return false;
3117 return super::TraverseTemplateName(N);
3118 }
3119
VisitDeclRefExpr__anon8a5f675e0a11::DependencyChecker3120 bool VisitDeclRefExpr(DeclRefExpr *E) {
3121 if (NonTypeTemplateParmDecl *PD =
3122 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
3123 if (Matches(PD->getDepth(), E->getExprLoc()))
3124 return false;
3125 return super::VisitDeclRefExpr(E);
3126 }
3127
VisitSubstTemplateTypeParmType__anon8a5f675e0a11::DependencyChecker3128 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
3129 return TraverseType(T->getReplacementType());
3130 }
3131
3132 bool
VisitSubstTemplateTypeParmPackType__anon8a5f675e0a11::DependencyChecker3133 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
3134 return TraverseTemplateArgument(T->getArgumentPack());
3135 }
3136
TraverseInjectedClassNameType__anon8a5f675e0a11::DependencyChecker3137 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
3138 return TraverseType(T->getInjectedSpecializationType());
3139 }
3140 };
3141 } // end anonymous namespace
3142
3143 /// Determines whether a given type depends on the given parameter
3144 /// list.
3145 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)3146 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
3147 if (!Params->size())
3148 return false;
3149
3150 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
3151 Checker.TraverseType(T);
3152 return Checker.Match;
3153 }
3154
3155 // Find the source range corresponding to the named type in the given
3156 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)3157 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
3158 QualType T,
3159 const CXXScopeSpec &SS) {
3160 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
3161 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
3162 if (const Type *CurType = NNS->getAsType()) {
3163 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
3164 return NNSLoc.getTypeLoc().getSourceRange();
3165 } else
3166 break;
3167
3168 NNSLoc = NNSLoc.getPrefix();
3169 }
3170
3171 return SourceRange();
3172 }
3173
3174 /// Match the given template parameter lists to the given scope
3175 /// specifier, returning the template parameter list that applies to the
3176 /// name.
3177 ///
3178 /// \param DeclStartLoc the start of the declaration that has a scope
3179 /// specifier or a template parameter list.
3180 ///
3181 /// \param DeclLoc The location of the declaration itself.
3182 ///
3183 /// \param SS the scope specifier that will be matched to the given template
3184 /// parameter lists. This scope specifier precedes a qualified name that is
3185 /// being declared.
3186 ///
3187 /// \param TemplateId The template-id following the scope specifier, if there
3188 /// is one. Used to check for a missing 'template<>'.
3189 ///
3190 /// \param ParamLists the template parameter lists, from the outermost to the
3191 /// innermost template parameter lists.
3192 ///
3193 /// \param IsFriend Whether to apply the slightly different rules for
3194 /// matching template parameters to scope specifiers in friend
3195 /// declarations.
3196 ///
3197 /// \param IsMemberSpecialization will be set true if the scope specifier
3198 /// denotes a fully-specialized type, and therefore this is a declaration of
3199 /// a member specialization.
3200 ///
3201 /// \returns the template parameter list, if any, that corresponds to the
3202 /// name that is preceded by the scope specifier @p SS. This template
3203 /// parameter list may have template parameters (if we're declaring a
3204 /// template) or may have no template parameters (if we're declaring a
3205 /// template specialization), or may be NULL (if what we're declaring isn't
3206 /// itself a template).
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,TemplateIdAnnotation * TemplateId,ArrayRef<TemplateParameterList * > ParamLists,bool IsFriend,bool & IsMemberSpecialization,bool & Invalid,bool SuppressDiagnostic)3207 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
3208 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
3209 TemplateIdAnnotation *TemplateId,
3210 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
3211 bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
3212 IsMemberSpecialization = false;
3213 Invalid = false;
3214
3215 // The sequence of nested types to which we will match up the template
3216 // parameter lists. We first build this list by starting with the type named
3217 // by the nested-name-specifier and walking out until we run out of types.
3218 SmallVector<QualType, 4> NestedTypes;
3219 QualType T;
3220 if (SS.getScopeRep()) {
3221 if (CXXRecordDecl *Record
3222 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
3223 T = Context.getTypeDeclType(Record);
3224 else
3225 T = QualType(SS.getScopeRep()->getAsType(), 0);
3226 }
3227
3228 // If we found an explicit specialization that prevents us from needing
3229 // 'template<>' headers, this will be set to the location of that
3230 // explicit specialization.
3231 SourceLocation ExplicitSpecLoc;
3232
3233 while (!T.isNull()) {
3234 NestedTypes.push_back(T);
3235
3236 // Retrieve the parent of a record type.
3237 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3238 // If this type is an explicit specialization, we're done.
3239 if (ClassTemplateSpecializationDecl *Spec
3240 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3241 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
3242 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
3243 ExplicitSpecLoc = Spec->getLocation();
3244 break;
3245 }
3246 } else if (Record->getTemplateSpecializationKind()
3247 == TSK_ExplicitSpecialization) {
3248 ExplicitSpecLoc = Record->getLocation();
3249 break;
3250 }
3251
3252 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
3253 T = Context.getTypeDeclType(Parent);
3254 else
3255 T = QualType();
3256 continue;
3257 }
3258
3259 if (const TemplateSpecializationType *TST
3260 = T->getAs<TemplateSpecializationType>()) {
3261 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3262 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
3263 T = Context.getTypeDeclType(Parent);
3264 else
3265 T = QualType();
3266 continue;
3267 }
3268 }
3269
3270 // Look one step prior in a dependent template specialization type.
3271 if (const DependentTemplateSpecializationType *DependentTST
3272 = T->getAs<DependentTemplateSpecializationType>()) {
3273 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
3274 T = QualType(NNS->getAsType(), 0);
3275 else
3276 T = QualType();
3277 continue;
3278 }
3279
3280 // Look one step prior in a dependent name type.
3281 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
3282 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
3283 T = QualType(NNS->getAsType(), 0);
3284 else
3285 T = QualType();
3286 continue;
3287 }
3288
3289 // Retrieve the parent of an enumeration type.
3290 if (const EnumType *EnumT = T->getAs<EnumType>()) {
3291 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
3292 // check here.
3293 EnumDecl *Enum = EnumT->getDecl();
3294
3295 // Get to the parent type.
3296 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
3297 T = Context.getTypeDeclType(Parent);
3298 else
3299 T = QualType();
3300 continue;
3301 }
3302
3303 T = QualType();
3304 }
3305 // Reverse the nested types list, since we want to traverse from the outermost
3306 // to the innermost while checking template-parameter-lists.
3307 std::reverse(NestedTypes.begin(), NestedTypes.end());
3308
3309 // C++0x [temp.expl.spec]p17:
3310 // A member or a member template may be nested within many
3311 // enclosing class templates. In an explicit specialization for
3312 // such a member, the member declaration shall be preceded by a
3313 // template<> for each enclosing class template that is
3314 // explicitly specialized.
3315 bool SawNonEmptyTemplateParameterList = false;
3316
3317 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
3318 if (SawNonEmptyTemplateParameterList) {
3319 if (!SuppressDiagnostic)
3320 Diag(DeclLoc, diag::err_specialize_member_of_template)
3321 << !Recovery << Range;
3322 Invalid = true;
3323 IsMemberSpecialization = false;
3324 return true;
3325 }
3326
3327 return false;
3328 };
3329
3330 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
3331 // Check that we can have an explicit specialization here.
3332 if (CheckExplicitSpecialization(Range, true))
3333 return true;
3334
3335 // We don't have a template header, but we should.
3336 SourceLocation ExpectedTemplateLoc;
3337 if (!ParamLists.empty())
3338 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
3339 else
3340 ExpectedTemplateLoc = DeclStartLoc;
3341
3342 if (!SuppressDiagnostic)
3343 Diag(DeclLoc, diag::err_template_spec_needs_header)
3344 << Range
3345 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
3346 return false;
3347 };
3348
3349 unsigned ParamIdx = 0;
3350 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
3351 ++TypeIdx) {
3352 T = NestedTypes[TypeIdx];
3353
3354 // Whether we expect a 'template<>' header.
3355 bool NeedEmptyTemplateHeader = false;
3356
3357 // Whether we expect a template header with parameters.
3358 bool NeedNonemptyTemplateHeader = false;
3359
3360 // For a dependent type, the set of template parameters that we
3361 // expect to see.
3362 TemplateParameterList *ExpectedTemplateParams = nullptr;
3363
3364 // C++0x [temp.expl.spec]p15:
3365 // A member or a member template may be nested within many enclosing
3366 // class templates. In an explicit specialization for such a member, the
3367 // member declaration shall be preceded by a template<> for each
3368 // enclosing class template that is explicitly specialized.
3369 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3370 if (ClassTemplatePartialSpecializationDecl *Partial
3371 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
3372 ExpectedTemplateParams = Partial->getTemplateParameters();
3373 NeedNonemptyTemplateHeader = true;
3374 } else if (Record->isDependentType()) {
3375 if (Record->getDescribedClassTemplate()) {
3376 ExpectedTemplateParams = Record->getDescribedClassTemplate()
3377 ->getTemplateParameters();
3378 NeedNonemptyTemplateHeader = true;
3379 }
3380 } else if (ClassTemplateSpecializationDecl *Spec
3381 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3382 // C++0x [temp.expl.spec]p4:
3383 // Members of an explicitly specialized class template are defined
3384 // in the same manner as members of normal classes, and not using
3385 // the template<> syntax.
3386 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
3387 NeedEmptyTemplateHeader = true;
3388 else
3389 continue;
3390 } else if (Record->getTemplateSpecializationKind()) {
3391 if (Record->getTemplateSpecializationKind()
3392 != TSK_ExplicitSpecialization &&
3393 TypeIdx == NumTypes - 1)
3394 IsMemberSpecialization = true;
3395
3396 continue;
3397 }
3398 } else if (const TemplateSpecializationType *TST
3399 = T->getAs<TemplateSpecializationType>()) {
3400 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3401 ExpectedTemplateParams = Template->getTemplateParameters();
3402 NeedNonemptyTemplateHeader = true;
3403 }
3404 } else if (T->getAs<DependentTemplateSpecializationType>()) {
3405 // FIXME: We actually could/should check the template arguments here
3406 // against the corresponding template parameter list.
3407 NeedNonemptyTemplateHeader = false;
3408 }
3409
3410 // C++ [temp.expl.spec]p16:
3411 // In an explicit specialization declaration for a member of a class
3412 // template or a member template that ap- pears in namespace scope, the
3413 // member template and some of its enclosing class templates may remain
3414 // unspecialized, except that the declaration shall not explicitly
3415 // specialize a class member template if its en- closing class templates
3416 // are not explicitly specialized as well.
3417 if (ParamIdx < ParamLists.size()) {
3418 if (ParamLists[ParamIdx]->size() == 0) {
3419 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3420 false))
3421 return nullptr;
3422 } else
3423 SawNonEmptyTemplateParameterList = true;
3424 }
3425
3426 if (NeedEmptyTemplateHeader) {
3427 // If we're on the last of the types, and we need a 'template<>' header
3428 // here, then it's a member specialization.
3429 if (TypeIdx == NumTypes - 1)
3430 IsMemberSpecialization = true;
3431
3432 if (ParamIdx < ParamLists.size()) {
3433 if (ParamLists[ParamIdx]->size() > 0) {
3434 // The header has template parameters when it shouldn't. Complain.
3435 if (!SuppressDiagnostic)
3436 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3437 diag::err_template_param_list_matches_nontemplate)
3438 << T
3439 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
3440 ParamLists[ParamIdx]->getRAngleLoc())
3441 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3442 Invalid = true;
3443 return nullptr;
3444 }
3445
3446 // Consume this template header.
3447 ++ParamIdx;
3448 continue;
3449 }
3450
3451 if (!IsFriend)
3452 if (DiagnoseMissingExplicitSpecialization(
3453 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
3454 return nullptr;
3455
3456 continue;
3457 }
3458
3459 if (NeedNonemptyTemplateHeader) {
3460 // In friend declarations we can have template-ids which don't
3461 // depend on the corresponding template parameter lists. But
3462 // assume that empty parameter lists are supposed to match this
3463 // template-id.
3464 if (IsFriend && T->isDependentType()) {
3465 if (ParamIdx < ParamLists.size() &&
3466 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
3467 ExpectedTemplateParams = nullptr;
3468 else
3469 continue;
3470 }
3471
3472 if (ParamIdx < ParamLists.size()) {
3473 // Check the template parameter list, if we can.
3474 if (ExpectedTemplateParams &&
3475 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
3476 ExpectedTemplateParams,
3477 !SuppressDiagnostic, TPL_TemplateMatch))
3478 Invalid = true;
3479
3480 if (!Invalid &&
3481 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
3482 TPC_ClassTemplateMember))
3483 Invalid = true;
3484
3485 ++ParamIdx;
3486 continue;
3487 }
3488
3489 if (!SuppressDiagnostic)
3490 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
3491 << T
3492 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3493 Invalid = true;
3494 continue;
3495 }
3496 }
3497
3498 // If there were at least as many template-ids as there were template
3499 // parameter lists, then there are no template parameter lists remaining for
3500 // the declaration itself.
3501 if (ParamIdx >= ParamLists.size()) {
3502 if (TemplateId && !IsFriend) {
3503 // We don't have a template header for the declaration itself, but we
3504 // should.
3505 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
3506 TemplateId->RAngleLoc));
3507
3508 // Fabricate an empty template parameter list for the invented header.
3509 return TemplateParameterList::Create(Context, SourceLocation(),
3510 SourceLocation(), std::nullopt,
3511 SourceLocation(), nullptr);
3512 }
3513
3514 return nullptr;
3515 }
3516
3517 // If there were too many template parameter lists, complain about that now.
3518 if (ParamIdx < ParamLists.size() - 1) {
3519 bool HasAnyExplicitSpecHeader = false;
3520 bool AllExplicitSpecHeaders = true;
3521 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
3522 if (ParamLists[I]->size() == 0)
3523 HasAnyExplicitSpecHeader = true;
3524 else
3525 AllExplicitSpecHeaders = false;
3526 }
3527
3528 if (!SuppressDiagnostic)
3529 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3530 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
3531 : diag::err_template_spec_extra_headers)
3532 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
3533 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
3534
3535 // If there was a specialization somewhere, such that 'template<>' is
3536 // not required, and there were any 'template<>' headers, note where the
3537 // specialization occurred.
3538 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
3539 !SuppressDiagnostic)
3540 Diag(ExplicitSpecLoc,
3541 diag::note_explicit_template_spec_does_not_need_header)
3542 << NestedTypes.back();
3543
3544 // We have a template parameter list with no corresponding scope, which
3545 // means that the resulting template declaration can't be instantiated
3546 // properly (we'll end up with dependent nodes when we shouldn't).
3547 if (!AllExplicitSpecHeaders)
3548 Invalid = true;
3549 }
3550
3551 // C++ [temp.expl.spec]p16:
3552 // In an explicit specialization declaration for a member of a class
3553 // template or a member template that ap- pears in namespace scope, the
3554 // member template and some of its enclosing class templates may remain
3555 // unspecialized, except that the declaration shall not explicitly
3556 // specialize a class member template if its en- closing class templates
3557 // are not explicitly specialized as well.
3558 if (ParamLists.back()->size() == 0 &&
3559 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3560 false))
3561 return nullptr;
3562
3563 // Return the last template parameter list, which corresponds to the
3564 // entity being declared.
3565 return ParamLists.back();
3566 }
3567
NoteAllFoundTemplates(TemplateName Name)3568 void Sema::NoteAllFoundTemplates(TemplateName Name) {
3569 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3570 Diag(Template->getLocation(), diag::note_template_declared_here)
3571 << (isa<FunctionTemplateDecl>(Template)
3572 ? 0
3573 : isa<ClassTemplateDecl>(Template)
3574 ? 1
3575 : isa<VarTemplateDecl>(Template)
3576 ? 2
3577 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
3578 << Template->getDeclName();
3579 return;
3580 }
3581
3582 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
3583 for (OverloadedTemplateStorage::iterator I = OST->begin(),
3584 IEnd = OST->end();
3585 I != IEnd; ++I)
3586 Diag((*I)->getLocation(), diag::note_template_declared_here)
3587 << 0 << (*I)->getDeclName();
3588
3589 return;
3590 }
3591 }
3592
3593 static QualType
checkBuiltinTemplateIdType(Sema & SemaRef,BuiltinTemplateDecl * BTD,ArrayRef<TemplateArgument> Converted,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3594 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
3595 ArrayRef<TemplateArgument> Converted,
3596 SourceLocation TemplateLoc,
3597 TemplateArgumentListInfo &TemplateArgs) {
3598 ASTContext &Context = SemaRef.getASTContext();
3599
3600 switch (BTD->getBuiltinTemplateKind()) {
3601 case BTK__make_integer_seq: {
3602 // Specializations of __make_integer_seq<S, T, N> are treated like
3603 // S<T, 0, ..., N-1>.
3604
3605 QualType OrigType = Converted[1].getAsType();
3606 // C++14 [inteseq.intseq]p1:
3607 // T shall be an integer type.
3608 if (!OrigType->isDependentType() && !OrigType->isIntegralType(Context)) {
3609 SemaRef.Diag(TemplateArgs[1].getLocation(),
3610 diag::err_integer_sequence_integral_element_type);
3611 return QualType();
3612 }
3613
3614 TemplateArgument NumArgsArg = Converted[2];
3615 if (NumArgsArg.isDependent())
3616 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD),
3617 Converted);
3618
3619 TemplateArgumentListInfo SyntheticTemplateArgs;
3620 // The type argument, wrapped in substitution sugar, gets reused as the
3621 // first template argument in the synthetic template argument list.
3622 SyntheticTemplateArgs.addArgument(
3623 TemplateArgumentLoc(TemplateArgument(OrigType),
3624 SemaRef.Context.getTrivialTypeSourceInfo(
3625 OrigType, TemplateArgs[1].getLocation())));
3626
3627 if (llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); NumArgs >= 0) {
3628 // Expand N into 0 ... N-1.
3629 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3630 I < NumArgs; ++I) {
3631 TemplateArgument TA(Context, I, OrigType);
3632 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
3633 TA, OrigType, TemplateArgs[2].getLocation()));
3634 }
3635 } else {
3636 // C++14 [inteseq.make]p1:
3637 // If N is negative the program is ill-formed.
3638 SemaRef.Diag(TemplateArgs[2].getLocation(),
3639 diag::err_integer_sequence_negative_length);
3640 return QualType();
3641 }
3642
3643 // The first template argument will be reused as the template decl that
3644 // our synthetic template arguments will be applied to.
3645 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
3646 TemplateLoc, SyntheticTemplateArgs);
3647 }
3648
3649 case BTK__type_pack_element:
3650 // Specializations of
3651 // __type_pack_element<Index, T_1, ..., T_N>
3652 // are treated like T_Index.
3653 assert(Converted.size() == 2 &&
3654 "__type_pack_element should be given an index and a parameter pack");
3655
3656 TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3657 if (IndexArg.isDependent() || Ts.isDependent())
3658 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD),
3659 Converted);
3660
3661 llvm::APSInt Index = IndexArg.getAsIntegral();
3662 assert(Index >= 0 && "the index used with __type_pack_element should be of "
3663 "type std::size_t, and hence be non-negative");
3664 // If the Index is out of bounds, the program is ill-formed.
3665 if (Index >= Ts.pack_size()) {
3666 SemaRef.Diag(TemplateArgs[0].getLocation(),
3667 diag::err_type_pack_element_out_of_bounds);
3668 return QualType();
3669 }
3670
3671 // We simply return the type at index `Index`.
3672 int64_t N = Index.getExtValue();
3673 return Ts.getPackAsArray()[N].getAsType();
3674 }
3675 llvm_unreachable("unexpected BuiltinTemplateDecl!");
3676 }
3677
3678 /// Determine whether this alias template is "enable_if_t".
3679 /// libc++ >=14 uses "__enable_if_t" in C++11 mode.
isEnableIfAliasTemplate(TypeAliasTemplateDecl * AliasTemplate)3680 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3681 return AliasTemplate->getName().equals("enable_if_t") ||
3682 AliasTemplate->getName().equals("__enable_if_t");
3683 }
3684
3685 /// Collect all of the separable terms in the given condition, which
3686 /// might be a conjunction.
3687 ///
3688 /// FIXME: The right answer is to convert the logical expression into
3689 /// disjunctive normal form, so we can find the first failed term
3690 /// within each possible clause.
collectConjunctionTerms(Expr * Clause,SmallVectorImpl<Expr * > & Terms)3691 static void collectConjunctionTerms(Expr *Clause,
3692 SmallVectorImpl<Expr *> &Terms) {
3693 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
3694 if (BinOp->getOpcode() == BO_LAnd) {
3695 collectConjunctionTerms(BinOp->getLHS(), Terms);
3696 collectConjunctionTerms(BinOp->getRHS(), Terms);
3697 return;
3698 }
3699 }
3700
3701 Terms.push_back(Clause);
3702 }
3703
3704 // The ranges-v3 library uses an odd pattern of a top-level "||" with
3705 // a left-hand side that is value-dependent but never true. Identify
3706 // the idiom and ignore that term.
lookThroughRangesV3Condition(Preprocessor & PP,Expr * Cond)3707 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3708 // Top-level '||'.
3709 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
3710 if (!BinOp) return Cond;
3711
3712 if (BinOp->getOpcode() != BO_LOr) return Cond;
3713
3714 // With an inner '==' that has a literal on the right-hand side.
3715 Expr *LHS = BinOp->getLHS();
3716 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
3717 if (!InnerBinOp) return Cond;
3718
3719 if (InnerBinOp->getOpcode() != BO_EQ ||
3720 !isa<IntegerLiteral>(InnerBinOp->getRHS()))
3721 return Cond;
3722
3723 // If the inner binary operation came from a macro expansion named
3724 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3725 // of the '||', which is the real, user-provided condition.
3726 SourceLocation Loc = InnerBinOp->getExprLoc();
3727 if (!Loc.isMacroID()) return Cond;
3728
3729 StringRef MacroName = PP.getImmediateMacroName(Loc);
3730 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3731 return BinOp->getRHS();
3732
3733 return Cond;
3734 }
3735
3736 namespace {
3737
3738 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3739 // within failing boolean expression, such as substituting template parameters
3740 // for actual types.
3741 class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3742 public:
FailedBooleanConditionPrinterHelper(const PrintingPolicy & P)3743 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3744 : Policy(P) {}
3745
handledStmt(Stmt * E,raw_ostream & OS)3746 bool handledStmt(Stmt *E, raw_ostream &OS) override {
3747 const auto *DR = dyn_cast<DeclRefExpr>(E);
3748 if (DR && DR->getQualifier()) {
3749 // If this is a qualified name, expand the template arguments in nested
3750 // qualifiers.
3751 DR->getQualifier()->print(OS, Policy, true);
3752 // Then print the decl itself.
3753 const ValueDecl *VD = DR->getDecl();
3754 OS << VD->getName();
3755 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
3756 // This is a template variable, print the expanded template arguments.
3757 printTemplateArgumentList(
3758 OS, IV->getTemplateArgs().asArray(), Policy,
3759 IV->getSpecializedTemplate()->getTemplateParameters());
3760 }
3761 return true;
3762 }
3763 return false;
3764 }
3765
3766 private:
3767 const PrintingPolicy Policy;
3768 };
3769
3770 } // end anonymous namespace
3771
3772 std::pair<Expr *, std::string>
findFailedBooleanCondition(Expr * Cond)3773 Sema::findFailedBooleanCondition(Expr *Cond) {
3774 Cond = lookThroughRangesV3Condition(PP, Cond);
3775
3776 // Separate out all of the terms in a conjunction.
3777 SmallVector<Expr *, 4> Terms;
3778 collectConjunctionTerms(Cond, Terms);
3779
3780 // Determine which term failed.
3781 Expr *FailedCond = nullptr;
3782 for (Expr *Term : Terms) {
3783 Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3784
3785 // Literals are uninteresting.
3786 if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
3787 isa<IntegerLiteral>(TermAsWritten))
3788 continue;
3789
3790 // The initialization of the parameter from the argument is
3791 // a constant-evaluated context.
3792 EnterExpressionEvaluationContext ConstantEvaluated(
3793 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3794
3795 bool Succeeded;
3796 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
3797 !Succeeded) {
3798 FailedCond = TermAsWritten;
3799 break;
3800 }
3801 }
3802 if (!FailedCond)
3803 FailedCond = Cond->IgnoreParenImpCasts();
3804
3805 std::string Description;
3806 {
3807 llvm::raw_string_ostream Out(Description);
3808 PrintingPolicy Policy = getPrintingPolicy();
3809 Policy.PrintCanonicalTypes = true;
3810 FailedBooleanConditionPrinterHelper Helper(Policy);
3811 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3812 }
3813 return { FailedCond, Description };
3814 }
3815
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3816 QualType Sema::CheckTemplateIdType(TemplateName Name,
3817 SourceLocation TemplateLoc,
3818 TemplateArgumentListInfo &TemplateArgs) {
3819 DependentTemplateName *DTN
3820 = Name.getUnderlying().getAsDependentTemplateName();
3821 if (DTN && DTN->isIdentifier())
3822 // When building a template-id where the template-name is dependent,
3823 // assume the template is a type template. Either our assumption is
3824 // correct, or the code is ill-formed and will be diagnosed when the
3825 // dependent name is substituted.
3826 return Context.getDependentTemplateSpecializationType(
3827 ETK_None, DTN->getQualifier(), DTN->getIdentifier(),
3828 TemplateArgs.arguments());
3829
3830 if (Name.getAsAssumedTemplateName() &&
3831 resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc))
3832 return QualType();
3833
3834 TemplateDecl *Template = Name.getAsTemplateDecl();
3835 if (!Template || isa<FunctionTemplateDecl>(Template) ||
3836 isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
3837 // We might have a substituted template template parameter pack. If so,
3838 // build a template specialization type for it.
3839 if (Name.getAsSubstTemplateTemplateParmPack())
3840 return Context.getTemplateSpecializationType(Name,
3841 TemplateArgs.arguments());
3842
3843 Diag(TemplateLoc, diag::err_template_id_not_a_type)
3844 << Name;
3845 NoteAllFoundTemplates(Name);
3846 return QualType();
3847 }
3848
3849 // Check that the template argument list is well-formed for this
3850 // template.
3851 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
3852 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, false,
3853 SugaredConverted, CanonicalConverted,
3854 /*UpdateArgsWithConversions=*/true))
3855 return QualType();
3856
3857 QualType CanonType;
3858
3859 if (TypeAliasTemplateDecl *AliasTemplate =
3860 dyn_cast<TypeAliasTemplateDecl>(Template)) {
3861
3862 // Find the canonical type for this type alias template specialization.
3863 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
3864 if (Pattern->isInvalidDecl())
3865 return QualType();
3866
3867 // Only substitute for the innermost template argument list.
3868 MultiLevelTemplateArgumentList TemplateArgLists;
3869 TemplateArgLists.addOuterTemplateArguments(Template, CanonicalConverted,
3870 /*Final=*/false);
3871 TemplateArgLists.addOuterRetainedLevels(
3872 AliasTemplate->getTemplateParameters()->getDepth());
3873
3874 LocalInstantiationScope Scope(*this);
3875 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
3876 if (Inst.isInvalid())
3877 return QualType();
3878
3879 CanonType = SubstType(Pattern->getUnderlyingType(),
3880 TemplateArgLists, AliasTemplate->getLocation(),
3881 AliasTemplate->getDeclName());
3882 if (CanonType.isNull()) {
3883 // If this was enable_if and we failed to find the nested type
3884 // within enable_if in a SFINAE context, dig out the specific
3885 // enable_if condition that failed and present that instead.
3886 if (isEnableIfAliasTemplate(AliasTemplate)) {
3887 if (auto DeductionInfo = isSFINAEContext()) {
3888 if (*DeductionInfo &&
3889 (*DeductionInfo)->hasSFINAEDiagnostic() &&
3890 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
3891 diag::err_typename_nested_not_found_enable_if &&
3892 TemplateArgs[0].getArgument().getKind()
3893 == TemplateArgument::Expression) {
3894 Expr *FailedCond;
3895 std::string FailedDescription;
3896 std::tie(FailedCond, FailedDescription) =
3897 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
3898
3899 // Remove the old SFINAE diagnostic.
3900 PartialDiagnosticAt OldDiag =
3901 {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
3902 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
3903
3904 // Add a new SFINAE diagnostic specifying which condition
3905 // failed.
3906 (*DeductionInfo)->addSFINAEDiagnostic(
3907 OldDiag.first,
3908 PDiag(diag::err_typename_nested_not_found_requirement)
3909 << FailedDescription
3910 << FailedCond->getSourceRange());
3911 }
3912 }
3913 }
3914
3915 return QualType();
3916 }
3917 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
3918 CanonType = checkBuiltinTemplateIdType(*this, BTD, SugaredConverted,
3919 TemplateLoc, TemplateArgs);
3920 } else if (Name.isDependent() ||
3921 TemplateSpecializationType::anyDependentTemplateArguments(
3922 TemplateArgs, CanonicalConverted)) {
3923 // This class template specialization is a dependent
3924 // type. Therefore, its canonical type is another class template
3925 // specialization type that contains all of the converted
3926 // arguments in canonical form. This ensures that, e.g., A<T> and
3927 // A<T, T> have identical types when A is declared as:
3928 //
3929 // template<typename T, typename U = T> struct A;
3930 CanonType = Context.getCanonicalTemplateSpecializationType(
3931 Name, CanonicalConverted);
3932
3933 // This might work out to be a current instantiation, in which
3934 // case the canonical type needs to be the InjectedClassNameType.
3935 //
3936 // TODO: in theory this could be a simple hashtable lookup; most
3937 // changes to CurContext don't change the set of current
3938 // instantiations.
3939 if (isa<ClassTemplateDecl>(Template)) {
3940 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
3941 // If we get out to a namespace, we're done.
3942 if (Ctx->isFileContext()) break;
3943
3944 // If this isn't a record, keep looking.
3945 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
3946 if (!Record) continue;
3947
3948 // Look for one of the two cases with InjectedClassNameTypes
3949 // and check whether it's the same template.
3950 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
3951 !Record->getDescribedClassTemplate())
3952 continue;
3953
3954 // Fetch the injected class name type and check whether its
3955 // injected type is equal to the type we just built.
3956 QualType ICNT = Context.getTypeDeclType(Record);
3957 QualType Injected = cast<InjectedClassNameType>(ICNT)
3958 ->getInjectedSpecializationType();
3959
3960 if (CanonType != Injected->getCanonicalTypeInternal())
3961 continue;
3962
3963 // If so, the canonical type of this TST is the injected
3964 // class name type of the record we just found.
3965 assert(ICNT.isCanonical());
3966 CanonType = ICNT;
3967 break;
3968 }
3969 }
3970 } else if (ClassTemplateDecl *ClassTemplate =
3971 dyn_cast<ClassTemplateDecl>(Template)) {
3972 // Find the class template specialization declaration that
3973 // corresponds to these arguments.
3974 void *InsertPos = nullptr;
3975 ClassTemplateSpecializationDecl *Decl =
3976 ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
3977 if (!Decl) {
3978 // This is the first time we have referenced this class template
3979 // specialization. Create the canonical declaration and add it to
3980 // the set of specializations.
3981 Decl = ClassTemplateSpecializationDecl::Create(
3982 Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
3983 ClassTemplate->getDeclContext(),
3984 ClassTemplate->getTemplatedDecl()->getBeginLoc(),
3985 ClassTemplate->getLocation(), ClassTemplate, CanonicalConverted,
3986 nullptr);
3987 ClassTemplate->AddSpecialization(Decl, InsertPos);
3988 if (ClassTemplate->isOutOfLine())
3989 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
3990 }
3991
3992 if (Decl->getSpecializationKind() == TSK_Undeclared &&
3993 ClassTemplate->getTemplatedDecl()->hasAttrs()) {
3994 InstantiatingTemplate Inst(*this, TemplateLoc, Decl);
3995 if (!Inst.isInvalid()) {
3996 MultiLevelTemplateArgumentList TemplateArgLists(Template,
3997 CanonicalConverted,
3998 /*Final=*/false);
3999 InstantiateAttrsForDecl(TemplateArgLists,
4000 ClassTemplate->getTemplatedDecl(), Decl);
4001 }
4002 }
4003
4004 // Diagnose uses of this specialization.
4005 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
4006
4007 CanonType = Context.getTypeDeclType(Decl);
4008 assert(isa<RecordType>(CanonType) &&
4009 "type of non-dependent specialization is not a RecordType");
4010 } else {
4011 llvm_unreachable("Unhandled template kind");
4012 }
4013
4014 // Build the fully-sugared type for this class template
4015 // specialization, which refers back to the class template
4016 // specialization we created or found.
4017 return Context.getTemplateSpecializationType(Name, TemplateArgs.arguments(),
4018 CanonType);
4019 }
4020
ActOnUndeclaredTypeTemplateName(Scope * S,TemplateTy & ParsedName,TemplateNameKind & TNK,SourceLocation NameLoc,IdentifierInfo * & II)4021 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
4022 TemplateNameKind &TNK,
4023 SourceLocation NameLoc,
4024 IdentifierInfo *&II) {
4025 assert(TNK == TNK_Undeclared_template && "not an undeclared template name");
4026
4027 TemplateName Name = ParsedName.get();
4028 auto *ATN = Name.getAsAssumedTemplateName();
4029 assert(ATN && "not an assumed template name");
4030 II = ATN->getDeclName().getAsIdentifierInfo();
4031
4032 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
4033 // Resolved to a type template name.
4034 ParsedName = TemplateTy::make(Name);
4035 TNK = TNK_Type_template;
4036 }
4037 }
4038
resolveAssumedTemplateNameAsType(Scope * S,TemplateName & Name,SourceLocation NameLoc,bool Diagnose)4039 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
4040 SourceLocation NameLoc,
4041 bool Diagnose) {
4042 // We assumed this undeclared identifier to be an (ADL-only) function
4043 // template name, but it was used in a context where a type was required.
4044 // Try to typo-correct it now.
4045 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
4046 assert(ATN && "not an assumed template name");
4047
4048 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
4049 struct CandidateCallback : CorrectionCandidateCallback {
4050 bool ValidateCandidate(const TypoCorrection &TC) override {
4051 return TC.getCorrectionDecl() &&
4052 getAsTypeTemplateDecl(TC.getCorrectionDecl());
4053 }
4054 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4055 return std::make_unique<CandidateCallback>(*this);
4056 }
4057 } FilterCCC;
4058
4059 TypoCorrection Corrected =
4060 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
4061 FilterCCC, CTK_ErrorRecovery);
4062 if (Corrected && Corrected.getFoundDecl()) {
4063 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
4064 << ATN->getDeclName());
4065 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
4066 return false;
4067 }
4068
4069 if (Diagnose)
4070 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
4071 return true;
4072 }
4073
ActOnTemplateIdType(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,IdentifierInfo * TemplateII,SourceLocation TemplateIILoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,bool IsCtorOrDtorName,bool IsClassName,ImplicitTypenameContext AllowImplicitTypename)4074 TypeResult Sema::ActOnTemplateIdType(
4075 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
4076 TemplateTy TemplateD, IdentifierInfo *TemplateII,
4077 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
4078 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
4079 bool IsCtorOrDtorName, bool IsClassName,
4080 ImplicitTypenameContext AllowImplicitTypename) {
4081 if (SS.isInvalid())
4082 return true;
4083
4084 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
4085 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
4086
4087 // C++ [temp.res]p3:
4088 // A qualified-id that refers to a type and in which the
4089 // nested-name-specifier depends on a template-parameter (14.6.2)
4090 // shall be prefixed by the keyword typename to indicate that the
4091 // qualified-id denotes a type, forming an
4092 // elaborated-type-specifier (7.1.5.3).
4093 if (!LookupCtx && isDependentScopeSpecifier(SS)) {
4094 // C++2a relaxes some of those restrictions in [temp.res]p5.
4095 if (AllowImplicitTypename == ImplicitTypenameContext::Yes) {
4096 if (getLangOpts().CPlusPlus20)
4097 Diag(SS.getBeginLoc(), diag::warn_cxx17_compat_implicit_typename);
4098 else
4099 Diag(SS.getBeginLoc(), diag::ext_implicit_typename)
4100 << SS.getScopeRep() << TemplateII->getName()
4101 << FixItHint::CreateInsertion(SS.getBeginLoc(), "typename ");
4102 } else
4103 Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
4104 << SS.getScopeRep() << TemplateII->getName();
4105
4106 // FIXME: This is not quite correct recovery as we don't transform SS
4107 // into the corresponding dependent form (and we don't diagnose missing
4108 // 'template' keywords within SS as a result).
4109 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
4110 TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
4111 TemplateArgsIn, RAngleLoc);
4112 }
4113
4114 // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
4115 // it's not actually allowed to be used as a type in most cases. Because
4116 // we annotate it before we know whether it's valid, we have to check for
4117 // this case here.
4118 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
4119 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
4120 Diag(TemplateIILoc,
4121 TemplateKWLoc.isInvalid()
4122 ? diag::err_out_of_line_qualified_id_type_names_constructor
4123 : diag::ext_out_of_line_qualified_id_type_names_constructor)
4124 << TemplateII << 0 /*injected-class-name used as template name*/
4125 << 1 /*if any keyword was present, it was 'template'*/;
4126 }
4127 }
4128
4129 TemplateName Template = TemplateD.get();
4130 if (Template.getAsAssumedTemplateName() &&
4131 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
4132 return true;
4133
4134 // Translate the parser's template argument list in our AST format.
4135 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4136 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4137
4138 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4139 assert(SS.getScopeRep() == DTN->getQualifier());
4140 QualType T = Context.getDependentTemplateSpecializationType(
4141 ETK_None, DTN->getQualifier(), DTN->getIdentifier(),
4142 TemplateArgs.arguments());
4143 // Build type-source information.
4144 TypeLocBuilder TLB;
4145 DependentTemplateSpecializationTypeLoc SpecTL
4146 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4147 SpecTL.setElaboratedKeywordLoc(SourceLocation());
4148 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4149 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4150 SpecTL.setTemplateNameLoc(TemplateIILoc);
4151 SpecTL.setLAngleLoc(LAngleLoc);
4152 SpecTL.setRAngleLoc(RAngleLoc);
4153 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4154 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4155 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4156 }
4157
4158 QualType SpecTy = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
4159 if (SpecTy.isNull())
4160 return true;
4161
4162 // Build type-source information.
4163 TypeLocBuilder TLB;
4164 TemplateSpecializationTypeLoc SpecTL =
4165 TLB.push<TemplateSpecializationTypeLoc>(SpecTy);
4166 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4167 SpecTL.setTemplateNameLoc(TemplateIILoc);
4168 SpecTL.setLAngleLoc(LAngleLoc);
4169 SpecTL.setRAngleLoc(RAngleLoc);
4170 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4171 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4172
4173 // Create an elaborated-type-specifier containing the nested-name-specifier.
4174 QualType ElTy = getElaboratedType(
4175 ETK_None, !IsCtorOrDtorName ? SS : CXXScopeSpec(), SpecTy);
4176 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(ElTy);
4177 ElabTL.setElaboratedKeywordLoc(SourceLocation());
4178 if (!ElabTL.isEmpty())
4179 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4180 return CreateParsedType(ElTy, TLB.getTypeSourceInfo(Context, ElTy));
4181 }
4182
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)4183 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
4184 TypeSpecifierType TagSpec,
4185 SourceLocation TagLoc,
4186 CXXScopeSpec &SS,
4187 SourceLocation TemplateKWLoc,
4188 TemplateTy TemplateD,
4189 SourceLocation TemplateLoc,
4190 SourceLocation LAngleLoc,
4191 ASTTemplateArgsPtr TemplateArgsIn,
4192 SourceLocation RAngleLoc) {
4193 if (SS.isInvalid())
4194 return TypeResult(true);
4195
4196 TemplateName Template = TemplateD.get();
4197
4198 // Translate the parser's template argument list in our AST format.
4199 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4200 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4201
4202 // Determine the tag kind
4203 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4204 ElaboratedTypeKeyword Keyword
4205 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
4206
4207 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4208 assert(SS.getScopeRep() == DTN->getQualifier());
4209 QualType T = Context.getDependentTemplateSpecializationType(
4210 Keyword, DTN->getQualifier(), DTN->getIdentifier(),
4211 TemplateArgs.arguments());
4212
4213 // Build type-source information.
4214 TypeLocBuilder TLB;
4215 DependentTemplateSpecializationTypeLoc SpecTL
4216 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4217 SpecTL.setElaboratedKeywordLoc(TagLoc);
4218 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4219 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4220 SpecTL.setTemplateNameLoc(TemplateLoc);
4221 SpecTL.setLAngleLoc(LAngleLoc);
4222 SpecTL.setRAngleLoc(RAngleLoc);
4223 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4224 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4225 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4226 }
4227
4228 if (TypeAliasTemplateDecl *TAT =
4229 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
4230 // C++0x [dcl.type.elab]p2:
4231 // If the identifier resolves to a typedef-name or the simple-template-id
4232 // resolves to an alias template specialization, the
4233 // elaborated-type-specifier is ill-formed.
4234 Diag(TemplateLoc, diag::err_tag_reference_non_tag)
4235 << TAT << NTK_TypeAliasTemplate << TagKind;
4236 Diag(TAT->getLocation(), diag::note_declared_at);
4237 }
4238
4239 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
4240 if (Result.isNull())
4241 return TypeResult(true);
4242
4243 // Check the tag kind
4244 if (const RecordType *RT = Result->getAs<RecordType>()) {
4245 RecordDecl *D = RT->getDecl();
4246
4247 IdentifierInfo *Id = D->getIdentifier();
4248 assert(Id && "templated class must have an identifier");
4249
4250 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
4251 TagLoc, Id)) {
4252 Diag(TagLoc, diag::err_use_with_wrong_tag)
4253 << Result
4254 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
4255 Diag(D->getLocation(), diag::note_previous_use);
4256 }
4257 }
4258
4259 // Provide source-location information for the template specialization.
4260 TypeLocBuilder TLB;
4261 TemplateSpecializationTypeLoc SpecTL
4262 = TLB.push<TemplateSpecializationTypeLoc>(Result);
4263 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4264 SpecTL.setTemplateNameLoc(TemplateLoc);
4265 SpecTL.setLAngleLoc(LAngleLoc);
4266 SpecTL.setRAngleLoc(RAngleLoc);
4267 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4268 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4269
4270 // Construct an elaborated type containing the nested-name-specifier (if any)
4271 // and tag keyword.
4272 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
4273 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
4274 ElabTL.setElaboratedKeywordLoc(TagLoc);
4275 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4276 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
4277 }
4278
4279 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
4280 NamedDecl *PrevDecl,
4281 SourceLocation Loc,
4282 bool IsPartialSpecialization);
4283
4284 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
4285
isTemplateArgumentTemplateParameter(const TemplateArgument & Arg,unsigned Depth,unsigned Index)4286 static bool isTemplateArgumentTemplateParameter(
4287 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
4288 switch (Arg.getKind()) {
4289 case TemplateArgument::Null:
4290 case TemplateArgument::NullPtr:
4291 case TemplateArgument::Integral:
4292 case TemplateArgument::Declaration:
4293 case TemplateArgument::Pack:
4294 case TemplateArgument::TemplateExpansion:
4295 return false;
4296
4297 case TemplateArgument::Type: {
4298 QualType Type = Arg.getAsType();
4299 const TemplateTypeParmType *TPT =
4300 Arg.getAsType()->getAs<TemplateTypeParmType>();
4301 return TPT && !Type.hasQualifiers() &&
4302 TPT->getDepth() == Depth && TPT->getIndex() == Index;
4303 }
4304
4305 case TemplateArgument::Expression: {
4306 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
4307 if (!DRE || !DRE->getDecl())
4308 return false;
4309 const NonTypeTemplateParmDecl *NTTP =
4310 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4311 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
4312 }
4313
4314 case TemplateArgument::Template:
4315 const TemplateTemplateParmDecl *TTP =
4316 dyn_cast_or_null<TemplateTemplateParmDecl>(
4317 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
4318 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
4319 }
4320 llvm_unreachable("unexpected kind of template argument");
4321 }
4322
isSameAsPrimaryTemplate(TemplateParameterList * Params,ArrayRef<TemplateArgument> Args)4323 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
4324 ArrayRef<TemplateArgument> Args) {
4325 if (Params->size() != Args.size())
4326 return false;
4327
4328 unsigned Depth = Params->getDepth();
4329
4330 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4331 TemplateArgument Arg = Args[I];
4332
4333 // If the parameter is a pack expansion, the argument must be a pack
4334 // whose only element is a pack expansion.
4335 if (Params->getParam(I)->isParameterPack()) {
4336 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
4337 !Arg.pack_begin()->isPackExpansion())
4338 return false;
4339 Arg = Arg.pack_begin()->getPackExpansionPattern();
4340 }
4341
4342 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
4343 return false;
4344 }
4345
4346 return true;
4347 }
4348
4349 template<typename PartialSpecDecl>
checkMoreSpecializedThanPrimary(Sema & S,PartialSpecDecl * Partial)4350 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
4351 if (Partial->getDeclContext()->isDependentContext())
4352 return;
4353
4354 // FIXME: Get the TDK from deduction in order to provide better diagnostics
4355 // for non-substitution-failure issues?
4356 TemplateDeductionInfo Info(Partial->getLocation());
4357 if (S.isMoreSpecializedThanPrimary(Partial, Info))
4358 return;
4359
4360 auto *Template = Partial->getSpecializedTemplate();
4361 S.Diag(Partial->getLocation(),
4362 diag::ext_partial_spec_not_more_specialized_than_primary)
4363 << isa<VarTemplateDecl>(Template);
4364
4365 if (Info.hasSFINAEDiagnostic()) {
4366 PartialDiagnosticAt Diag = {SourceLocation(),
4367 PartialDiagnostic::NullDiagnostic()};
4368 Info.takeSFINAEDiagnostic(Diag);
4369 SmallString<128> SFINAEArgString;
4370 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
4371 S.Diag(Diag.first,
4372 diag::note_partial_spec_not_more_specialized_than_primary)
4373 << SFINAEArgString;
4374 }
4375
4376 S.Diag(Template->getLocation(), diag::note_template_decl_here);
4377 SmallVector<const Expr *, 3> PartialAC, TemplateAC;
4378 Template->getAssociatedConstraints(TemplateAC);
4379 Partial->getAssociatedConstraints(PartialAC);
4380 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
4381 TemplateAC);
4382 }
4383
4384 static void
noteNonDeducibleParameters(Sema & S,TemplateParameterList * TemplateParams,const llvm::SmallBitVector & DeducibleParams)4385 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
4386 const llvm::SmallBitVector &DeducibleParams) {
4387 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4388 if (!DeducibleParams[I]) {
4389 NamedDecl *Param = TemplateParams->getParam(I);
4390 if (Param->getDeclName())
4391 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4392 << Param->getDeclName();
4393 else
4394 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4395 << "(anonymous)";
4396 }
4397 }
4398 }
4399
4400
4401 template<typename PartialSpecDecl>
checkTemplatePartialSpecialization(Sema & S,PartialSpecDecl * Partial)4402 static void checkTemplatePartialSpecialization(Sema &S,
4403 PartialSpecDecl *Partial) {
4404 // C++1z [temp.class.spec]p8: (DR1495)
4405 // - The specialization shall be more specialized than the primary
4406 // template (14.5.5.2).
4407 checkMoreSpecializedThanPrimary(S, Partial);
4408
4409 // C++ [temp.class.spec]p8: (DR1315)
4410 // - Each template-parameter shall appear at least once in the
4411 // template-id outside a non-deduced context.
4412 // C++1z [temp.class.spec.match]p3 (P0127R2)
4413 // If the template arguments of a partial specialization cannot be
4414 // deduced because of the structure of its template-parameter-list
4415 // and the template-id, the program is ill-formed.
4416 auto *TemplateParams = Partial->getTemplateParameters();
4417 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4418 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4419 TemplateParams->getDepth(), DeducibleParams);
4420
4421 if (!DeducibleParams.all()) {
4422 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4423 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
4424 << isa<VarTemplatePartialSpecializationDecl>(Partial)
4425 << (NumNonDeducible > 1)
4426 << SourceRange(Partial->getLocation(),
4427 Partial->getTemplateArgsAsWritten()->RAngleLoc);
4428 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
4429 }
4430 }
4431
CheckTemplatePartialSpecialization(ClassTemplatePartialSpecializationDecl * Partial)4432 void Sema::CheckTemplatePartialSpecialization(
4433 ClassTemplatePartialSpecializationDecl *Partial) {
4434 checkTemplatePartialSpecialization(*this, Partial);
4435 }
4436
CheckTemplatePartialSpecialization(VarTemplatePartialSpecializationDecl * Partial)4437 void Sema::CheckTemplatePartialSpecialization(
4438 VarTemplatePartialSpecializationDecl *Partial) {
4439 checkTemplatePartialSpecialization(*this, Partial);
4440 }
4441
CheckDeductionGuideTemplate(FunctionTemplateDecl * TD)4442 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
4443 // C++1z [temp.param]p11:
4444 // A template parameter of a deduction guide template that does not have a
4445 // default-argument shall be deducible from the parameter-type-list of the
4446 // deduction guide template.
4447 auto *TemplateParams = TD->getTemplateParameters();
4448 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4449 MarkDeducedTemplateParameters(TD, DeducibleParams);
4450 for (unsigned I = 0; I != TemplateParams->size(); ++I) {
4451 // A parameter pack is deducible (to an empty pack).
4452 auto *Param = TemplateParams->getParam(I);
4453 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
4454 DeducibleParams[I] = true;
4455 }
4456
4457 if (!DeducibleParams.all()) {
4458 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4459 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
4460 << (NumNonDeducible > 1);
4461 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
4462 }
4463 }
4464
ActOnVarTemplateSpecialization(Scope * S,Declarator & D,TypeSourceInfo * DI,SourceLocation TemplateKWLoc,TemplateParameterList * TemplateParams,StorageClass SC,bool IsPartialSpecialization)4465 DeclResult Sema::ActOnVarTemplateSpecialization(
4466 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
4467 TemplateParameterList *TemplateParams, StorageClass SC,
4468 bool IsPartialSpecialization) {
4469 // D must be variable template id.
4470 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
4471 "Variable template specialization is declared with a template id.");
4472
4473 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4474 TemplateArgumentListInfo TemplateArgs =
4475 makeTemplateArgumentListInfo(*this, *TemplateId);
4476 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
4477 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
4478 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
4479
4480 TemplateName Name = TemplateId->Template.get();
4481
4482 // The template-id must name a variable template.
4483 VarTemplateDecl *VarTemplate =
4484 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
4485 if (!VarTemplate) {
4486 NamedDecl *FnTemplate;
4487 if (auto *OTS = Name.getAsOverloadedTemplate())
4488 FnTemplate = *OTS->begin();
4489 else
4490 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4491 if (FnTemplate)
4492 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
4493 << FnTemplate->getDeclName();
4494 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
4495 << IsPartialSpecialization;
4496 }
4497
4498 // Check for unexpanded parameter packs in any of the template arguments.
4499 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4500 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4501 UPPC_PartialSpecialization))
4502 return true;
4503
4504 // Check that the template argument list is well-formed for this
4505 // template.
4506 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4507 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
4508 false, SugaredConverted, CanonicalConverted,
4509 /*UpdateArgsWithConversions=*/true))
4510 return true;
4511
4512 // Find the variable template (partial) specialization declaration that
4513 // corresponds to these arguments.
4514 if (IsPartialSpecialization) {
4515 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
4516 TemplateArgs.size(),
4517 CanonicalConverted))
4518 return true;
4519
4520 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
4521 // also do them during instantiation.
4522 if (!Name.isDependent() &&
4523 !TemplateSpecializationType::anyDependentTemplateArguments(
4524 TemplateArgs, CanonicalConverted)) {
4525 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4526 << VarTemplate->getDeclName();
4527 IsPartialSpecialization = false;
4528 }
4529
4530 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
4531 CanonicalConverted) &&
4532 (!Context.getLangOpts().CPlusPlus20 ||
4533 !TemplateParams->hasAssociatedConstraints())) {
4534 // C++ [temp.class.spec]p9b3:
4535 //
4536 // -- The argument list of the specialization shall not be identical
4537 // to the implicit argument list of the primary template.
4538 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4539 << /*variable template*/ 1
4540 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
4541 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4542 // FIXME: Recover from this by treating the declaration as a redeclaration
4543 // of the primary template.
4544 return true;
4545 }
4546 }
4547
4548 void *InsertPos = nullptr;
4549 VarTemplateSpecializationDecl *PrevDecl = nullptr;
4550
4551 if (IsPartialSpecialization)
4552 PrevDecl = VarTemplate->findPartialSpecialization(
4553 CanonicalConverted, TemplateParams, InsertPos);
4554 else
4555 PrevDecl = VarTemplate->findSpecialization(CanonicalConverted, InsertPos);
4556
4557 VarTemplateSpecializationDecl *Specialization = nullptr;
4558
4559 // Check whether we can declare a variable template specialization in
4560 // the current scope.
4561 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
4562 TemplateNameLoc,
4563 IsPartialSpecialization))
4564 return true;
4565
4566 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4567 // Since the only prior variable template specialization with these
4568 // arguments was referenced but not declared, reuse that
4569 // declaration node as our own, updating its source location and
4570 // the list of outer template parameters to reflect our new declaration.
4571 Specialization = PrevDecl;
4572 Specialization->setLocation(TemplateNameLoc);
4573 PrevDecl = nullptr;
4574 } else if (IsPartialSpecialization) {
4575 // Create a new class template partial specialization declaration node.
4576 VarTemplatePartialSpecializationDecl *PrevPartial =
4577 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
4578 VarTemplatePartialSpecializationDecl *Partial =
4579 VarTemplatePartialSpecializationDecl::Create(
4580 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
4581 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
4582 CanonicalConverted, TemplateArgs);
4583
4584 if (!PrevPartial)
4585 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
4586 Specialization = Partial;
4587
4588 // If we are providing an explicit specialization of a member variable
4589 // template specialization, make a note of that.
4590 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4591 PrevPartial->setMemberSpecialization();
4592
4593 CheckTemplatePartialSpecialization(Partial);
4594 } else {
4595 // Create a new class template specialization declaration node for
4596 // this explicit specialization or friend declaration.
4597 Specialization = VarTemplateSpecializationDecl::Create(
4598 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
4599 VarTemplate, DI->getType(), DI, SC, CanonicalConverted);
4600 Specialization->setTemplateArgsInfo(TemplateArgs);
4601
4602 if (!PrevDecl)
4603 VarTemplate->AddSpecialization(Specialization, InsertPos);
4604 }
4605
4606 // C++ [temp.expl.spec]p6:
4607 // If a template, a member template or the member of a class template is
4608 // explicitly specialized then that specialization shall be declared
4609 // before the first use of that specialization that would cause an implicit
4610 // instantiation to take place, in every translation unit in which such a
4611 // use occurs; no diagnostic is required.
4612 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4613 bool Okay = false;
4614 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
4615 // Is there any previous explicit specialization declaration?
4616 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4617 Okay = true;
4618 break;
4619 }
4620 }
4621
4622 if (!Okay) {
4623 SourceRange Range(TemplateNameLoc, RAngleLoc);
4624 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4625 << Name << Range;
4626
4627 Diag(PrevDecl->getPointOfInstantiation(),
4628 diag::note_instantiation_required_here)
4629 << (PrevDecl->getTemplateSpecializationKind() !=
4630 TSK_ImplicitInstantiation);
4631 return true;
4632 }
4633 }
4634
4635 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4636 Specialization->setLexicalDeclContext(CurContext);
4637
4638 // Add the specialization into its lexical context, so that it can
4639 // be seen when iterating through the list of declarations in that
4640 // context. However, specializations are not found by name lookup.
4641 CurContext->addDecl(Specialization);
4642
4643 // Note that this is an explicit specialization.
4644 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4645
4646 if (PrevDecl) {
4647 // Check that this isn't a redefinition of this specialization,
4648 // merging with previous declarations.
4649 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
4650 forRedeclarationInCurContext());
4651 PrevSpec.addDecl(PrevDecl);
4652 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
4653 } else if (Specialization->isStaticDataMember() &&
4654 Specialization->isOutOfLine()) {
4655 Specialization->setAccess(VarTemplate->getAccess());
4656 }
4657
4658 return Specialization;
4659 }
4660
4661 namespace {
4662 /// A partial specialization whose template arguments have matched
4663 /// a given template-id.
4664 struct PartialSpecMatchResult {
4665 VarTemplatePartialSpecializationDecl *Partial;
4666 TemplateArgumentList *Args;
4667 };
4668 } // end anonymous namespace
4669
4670 DeclResult
CheckVarTemplateId(VarTemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation TemplateNameLoc,const TemplateArgumentListInfo & TemplateArgs)4671 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4672 SourceLocation TemplateNameLoc,
4673 const TemplateArgumentListInfo &TemplateArgs) {
4674 assert(Template && "A variable template id without template?");
4675
4676 // Check that the template argument list is well-formed for this template.
4677 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4678 if (CheckTemplateArgumentList(
4679 Template, TemplateNameLoc,
4680 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4681 SugaredConverted, CanonicalConverted,
4682 /*UpdateArgsWithConversions=*/true))
4683 return true;
4684
4685 // Produce a placeholder value if the specialization is dependent.
4686 if (Template->getDeclContext()->isDependentContext() ||
4687 TemplateSpecializationType::anyDependentTemplateArguments(
4688 TemplateArgs, CanonicalConverted))
4689 return DeclResult();
4690
4691 // Find the variable template specialization declaration that
4692 // corresponds to these arguments.
4693 void *InsertPos = nullptr;
4694 if (VarTemplateSpecializationDecl *Spec =
4695 Template->findSpecialization(CanonicalConverted, InsertPos)) {
4696 checkSpecializationReachability(TemplateNameLoc, Spec);
4697 // If we already have a variable template specialization, return it.
4698 return Spec;
4699 }
4700
4701 // This is the first time we have referenced this variable template
4702 // specialization. Create the canonical declaration and add it to
4703 // the set of specializations, based on the closest partial specialization
4704 // that it represents. That is,
4705 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4706 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
4707 CanonicalConverted);
4708 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
4709 bool AmbiguousPartialSpec = false;
4710 typedef PartialSpecMatchResult MatchResult;
4711 SmallVector<MatchResult, 4> Matched;
4712 SourceLocation PointOfInstantiation = TemplateNameLoc;
4713 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4714 /*ForTakingAddress=*/false);
4715
4716 // 1. Attempt to find the closest partial specialization that this
4717 // specializes, if any.
4718 // TODO: Unify with InstantiateClassTemplateSpecialization()?
4719 // Perhaps better after unification of DeduceTemplateArguments() and
4720 // getMoreSpecializedPartialSpecialization().
4721 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4722 Template->getPartialSpecializations(PartialSpecs);
4723
4724 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4725 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4726 TemplateDeductionInfo Info(FailedCandidates.getLocation());
4727
4728 if (TemplateDeductionResult Result =
4729 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
4730 // Store the failed-deduction information for use in diagnostics, later.
4731 // TODO: Actually use the failed-deduction info?
4732 FailedCandidates.addCandidate().set(
4733 DeclAccessPair::make(Template, AS_public), Partial,
4734 MakeDeductionFailureInfo(Context, Result, Info));
4735 (void)Result;
4736 } else {
4737 Matched.push_back(PartialSpecMatchResult());
4738 Matched.back().Partial = Partial;
4739 Matched.back().Args = Info.takeCanonical();
4740 }
4741 }
4742
4743 if (Matched.size() >= 1) {
4744 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4745 if (Matched.size() == 1) {
4746 // -- If exactly one matching specialization is found, the
4747 // instantiation is generated from that specialization.
4748 // We don't need to do anything for this.
4749 } else {
4750 // -- If more than one matching specialization is found, the
4751 // partial order rules (14.5.4.2) are used to determine
4752 // whether one of the specializations is more specialized
4753 // than the others. If none of the specializations is more
4754 // specialized than all of the other matching
4755 // specializations, then the use of the variable template is
4756 // ambiguous and the program is ill-formed.
4757 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4758 PEnd = Matched.end();
4759 P != PEnd; ++P) {
4760 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
4761 PointOfInstantiation) ==
4762 P->Partial)
4763 Best = P;
4764 }
4765
4766 // Determine if the best partial specialization is more specialized than
4767 // the others.
4768 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4769 PEnd = Matched.end();
4770 P != PEnd; ++P) {
4771 if (P != Best && getMoreSpecializedPartialSpecialization(
4772 P->Partial, Best->Partial,
4773 PointOfInstantiation) != Best->Partial) {
4774 AmbiguousPartialSpec = true;
4775 break;
4776 }
4777 }
4778 }
4779
4780 // Instantiate using the best variable template partial specialization.
4781 InstantiationPattern = Best->Partial;
4782 InstantiationArgs = Best->Args;
4783 } else {
4784 // -- If no match is found, the instantiation is generated
4785 // from the primary template.
4786 // InstantiationPattern = Template->getTemplatedDecl();
4787 }
4788
4789 // 2. Create the canonical declaration.
4790 // Note that we do not instantiate a definition until we see an odr-use
4791 // in DoMarkVarDeclReferenced().
4792 // FIXME: LateAttrs et al.?
4793 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4794 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
4795 CanonicalConverted, TemplateNameLoc /*, LateAttrs, StartingScope*/);
4796 if (!Decl)
4797 return true;
4798
4799 if (AmbiguousPartialSpec) {
4800 // Partial ordering did not produce a clear winner. Complain.
4801 Decl->setInvalidDecl();
4802 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4803 << Decl;
4804
4805 // Print the matching partial specializations.
4806 for (MatchResult P : Matched)
4807 Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4808 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4809 *P.Args);
4810 return true;
4811 }
4812
4813 if (VarTemplatePartialSpecializationDecl *D =
4814 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
4815 Decl->setInstantiationOf(D, InstantiationArgs);
4816
4817 checkSpecializationReachability(TemplateNameLoc, Decl);
4818
4819 assert(Decl && "No variable template specialization?");
4820 return Decl;
4821 }
4822
4823 ExprResult
CheckVarTemplateId(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,VarTemplateDecl * Template,SourceLocation TemplateLoc,const TemplateArgumentListInfo * TemplateArgs)4824 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
4825 const DeclarationNameInfo &NameInfo,
4826 VarTemplateDecl *Template, SourceLocation TemplateLoc,
4827 const TemplateArgumentListInfo *TemplateArgs) {
4828
4829 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
4830 *TemplateArgs);
4831 if (Decl.isInvalid())
4832 return ExprError();
4833
4834 if (!Decl.get())
4835 return ExprResult();
4836
4837 VarDecl *Var = cast<VarDecl>(Decl.get());
4838 if (!Var->getTemplateSpecializationKind())
4839 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
4840 NameInfo.getLoc());
4841
4842 // Build an ordinary singleton decl ref.
4843 return BuildDeclarationNameExpr(SS, NameInfo, Var,
4844 /*FoundD=*/nullptr, TemplateArgs);
4845 }
4846
diagnoseMissingTemplateArguments(TemplateName Name,SourceLocation Loc)4847 void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
4848 SourceLocation Loc) {
4849 Diag(Loc, diag::err_template_missing_args)
4850 << (int)getTemplateNameKindForDiagnostics(Name) << Name;
4851 if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
4852 Diag(TD->getLocation(), diag::note_template_decl_here)
4853 << TD->getTemplateParameters()->getSourceRange();
4854 }
4855 }
4856
4857 ExprResult
CheckConceptTemplateId(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & ConceptNameInfo,NamedDecl * FoundDecl,ConceptDecl * NamedConcept,const TemplateArgumentListInfo * TemplateArgs)4858 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
4859 SourceLocation TemplateKWLoc,
4860 const DeclarationNameInfo &ConceptNameInfo,
4861 NamedDecl *FoundDecl,
4862 ConceptDecl *NamedConcept,
4863 const TemplateArgumentListInfo *TemplateArgs) {
4864 assert(NamedConcept && "A concept template id without a template?");
4865
4866 llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4867 if (CheckTemplateArgumentList(
4868 NamedConcept, ConceptNameInfo.getLoc(),
4869 const_cast<TemplateArgumentListInfo &>(*TemplateArgs),
4870 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted,
4871 /*UpdateArgsWithConversions=*/false))
4872 return ExprError();
4873
4874 auto *CSD = ImplicitConceptSpecializationDecl::Create(
4875 Context, NamedConcept->getDeclContext(), NamedConcept->getLocation(),
4876 CanonicalConverted);
4877 ConstraintSatisfaction Satisfaction;
4878 bool AreArgsDependent =
4879 TemplateSpecializationType::anyDependentTemplateArguments(
4880 *TemplateArgs, CanonicalConverted);
4881 MultiLevelTemplateArgumentList MLTAL(NamedConcept, CanonicalConverted,
4882 /*Final=*/false);
4883 LocalInstantiationScope Scope(*this);
4884
4885 EnterExpressionEvaluationContext EECtx{
4886 *this, ExpressionEvaluationContext::ConstantEvaluated, CSD};
4887
4888 if (!AreArgsDependent &&
4889 CheckConstraintSatisfaction(
4890 NamedConcept, {NamedConcept->getConstraintExpr()}, MLTAL,
4891 SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(),
4892 TemplateArgs->getRAngleLoc()),
4893 Satisfaction))
4894 return ExprError();
4895
4896 return ConceptSpecializationExpr::Create(
4897 Context,
4898 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
4899 TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
4900 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), CSD,
4901 AreArgsDependent ? nullptr : &Satisfaction);
4902 }
4903
BuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)4904 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
4905 SourceLocation TemplateKWLoc,
4906 LookupResult &R,
4907 bool RequiresADL,
4908 const TemplateArgumentListInfo *TemplateArgs) {
4909 // FIXME: Can we do any checking at this point? I guess we could check the
4910 // template arguments that we have against the template name, if the template
4911 // name refers to a single template. That's not a terribly common case,
4912 // though.
4913 // foo<int> could identify a single function unambiguously
4914 // This approach does NOT work, since f<int>(1);
4915 // gets resolved prior to resorting to overload resolution
4916 // i.e., template<class T> void f(double);
4917 // vs template<class T, class U> void f(U);
4918
4919 // These should be filtered out by our callers.
4920 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
4921
4922 // Non-function templates require a template argument list.
4923 if (auto *TD = R.getAsSingle<TemplateDecl>()) {
4924 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
4925 diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
4926 return ExprError();
4927 }
4928 }
4929
4930 // In C++1y, check variable template ids.
4931 if (R.getAsSingle<VarTemplateDecl>()) {
4932 ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(),
4933 R.getAsSingle<VarTemplateDecl>(),
4934 TemplateKWLoc, TemplateArgs);
4935 if (Res.isInvalid() || Res.isUsable())
4936 return Res;
4937 // Result is dependent. Carry on to build an UnresolvedLookupEpxr.
4938 }
4939
4940 if (R.getAsSingle<ConceptDecl>()) {
4941 return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
4942 R.getFoundDecl(),
4943 R.getAsSingle<ConceptDecl>(), TemplateArgs);
4944 }
4945
4946 // We don't want lookup warnings at this point.
4947 R.suppressDiagnostics();
4948
4949 UnresolvedLookupExpr *ULE
4950 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
4951 SS.getWithLocInContext(Context),
4952 TemplateKWLoc,
4953 R.getLookupNameInfo(),
4954 RequiresADL, TemplateArgs,
4955 R.begin(), R.end());
4956
4957 return ULE;
4958 }
4959
4960 // We actually only call this from template instantiation.
4961 ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)4962 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
4963 SourceLocation TemplateKWLoc,
4964 const DeclarationNameInfo &NameInfo,
4965 const TemplateArgumentListInfo *TemplateArgs) {
4966
4967 assert(TemplateArgs || TemplateKWLoc.isValid());
4968 DeclContext *DC;
4969 if (!(DC = computeDeclContext(SS, false)) ||
4970 DC->isDependentContext() ||
4971 RequireCompleteDeclContext(SS, DC))
4972 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
4973
4974 bool MemberOfUnknownSpecialization;
4975 LookupResult R(*this, NameInfo, LookupOrdinaryName);
4976 if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
4977 /*Entering*/false, MemberOfUnknownSpecialization,
4978 TemplateKWLoc))
4979 return ExprError();
4980
4981 if (R.isAmbiguous())
4982 return ExprError();
4983
4984 if (R.empty()) {
4985 Diag(NameInfo.getLoc(), diag::err_no_member)
4986 << NameInfo.getName() << DC << SS.getRange();
4987 return ExprError();
4988 }
4989
4990 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
4991 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
4992 << SS.getScopeRep()
4993 << NameInfo.getName().getAsString() << SS.getRange();
4994 Diag(Temp->getLocation(), diag::note_referenced_class_template);
4995 return ExprError();
4996 }
4997
4998 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
4999 }
5000
5001 /// Form a template name from a name that is syntactically required to name a
5002 /// template, either due to use of the 'template' keyword or because a name in
5003 /// this syntactic context is assumed to name a template (C++ [temp.names]p2-4).
5004 ///
5005 /// This action forms a template name given the name of the template and its
5006 /// optional scope specifier. This is used when the 'template' keyword is used
5007 /// or when the parsing context unambiguously treats a following '<' as
5008 /// introducing a template argument list. Note that this may produce a
5009 /// non-dependent template name if we can perform the lookup now and identify
5010 /// the named template.
5011 ///
5012 /// For example, given "x.MetaFun::template apply", the scope specifier
5013 /// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location
5014 /// of the "template" keyword, and "apply" is the \p Name.
ActOnTemplateName(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result,bool AllowInjectedClassName)5015 TemplateNameKind Sema::ActOnTemplateName(Scope *S,
5016 CXXScopeSpec &SS,
5017 SourceLocation TemplateKWLoc,
5018 const UnqualifiedId &Name,
5019 ParsedType ObjectType,
5020 bool EnteringContext,
5021 TemplateTy &Result,
5022 bool AllowInjectedClassName) {
5023 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
5024 Diag(TemplateKWLoc,
5025 getLangOpts().CPlusPlus11 ?
5026 diag::warn_cxx98_compat_template_outside_of_template :
5027 diag::ext_template_outside_of_template)
5028 << FixItHint::CreateRemoval(TemplateKWLoc);
5029
5030 if (SS.isInvalid())
5031 return TNK_Non_template;
5032
5033 // Figure out where isTemplateName is going to look.
5034 DeclContext *LookupCtx = nullptr;
5035 if (SS.isNotEmpty())
5036 LookupCtx = computeDeclContext(SS, EnteringContext);
5037 else if (ObjectType)
5038 LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType));
5039
5040 // C++0x [temp.names]p5:
5041 // If a name prefixed by the keyword template is not the name of
5042 // a template, the program is ill-formed. [Note: the keyword
5043 // template may not be applied to non-template members of class
5044 // templates. -end note ] [ Note: as is the case with the
5045 // typename prefix, the template prefix is allowed in cases
5046 // where it is not strictly necessary; i.e., when the
5047 // nested-name-specifier or the expression on the left of the ->
5048 // or . is not dependent on a template-parameter, or the use
5049 // does not appear in the scope of a template. -end note]
5050 //
5051 // Note: C++03 was more strict here, because it banned the use of
5052 // the "template" keyword prior to a template-name that was not a
5053 // dependent name. C++ DR468 relaxed this requirement (the
5054 // "template" keyword is now permitted). We follow the C++0x
5055 // rules, even in C++03 mode with a warning, retroactively applying the DR.
5056 bool MemberOfUnknownSpecialization;
5057 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
5058 ObjectType, EnteringContext, Result,
5059 MemberOfUnknownSpecialization);
5060 if (TNK != TNK_Non_template) {
5061 // We resolved this to a (non-dependent) template name. Return it.
5062 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
5063 if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD &&
5064 Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
5065 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
5066 // C++14 [class.qual]p2:
5067 // In a lookup in which function names are not ignored and the
5068 // nested-name-specifier nominates a class C, if the name specified
5069 // [...] is the injected-class-name of C, [...] the name is instead
5070 // considered to name the constructor
5071 //
5072 // We don't get here if naming the constructor would be valid, so we
5073 // just reject immediately and recover by treating the
5074 // injected-class-name as naming the template.
5075 Diag(Name.getBeginLoc(),
5076 diag::ext_out_of_line_qualified_id_type_names_constructor)
5077 << Name.Identifier
5078 << 0 /*injected-class-name used as template name*/
5079 << TemplateKWLoc.isValid();
5080 }
5081 return TNK;
5082 }
5083
5084 if (!MemberOfUnknownSpecialization) {
5085 // Didn't find a template name, and the lookup wasn't dependent.
5086 // Do the lookup again to determine if this is a "nothing found" case or
5087 // a "not a template" case. FIXME: Refactor isTemplateName so we don't
5088 // need to do this.
5089 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
5090 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
5091 LookupOrdinaryName);
5092 bool MOUS;
5093 // Tell LookupTemplateName that we require a template so that it diagnoses
5094 // cases where it finds a non-template.
5095 RequiredTemplateKind RTK = TemplateKWLoc.isValid()
5096 ? RequiredTemplateKind(TemplateKWLoc)
5097 : TemplateNameIsRequired;
5098 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS,
5099 RTK, nullptr, /*AllowTypoCorrection=*/false) &&
5100 !R.isAmbiguous()) {
5101 if (LookupCtx)
5102 Diag(Name.getBeginLoc(), diag::err_no_member)
5103 << DNI.getName() << LookupCtx << SS.getRange();
5104 else
5105 Diag(Name.getBeginLoc(), diag::err_undeclared_use)
5106 << DNI.getName() << SS.getRange();
5107 }
5108 return TNK_Non_template;
5109 }
5110
5111 NestedNameSpecifier *Qualifier = SS.getScopeRep();
5112
5113 switch (Name.getKind()) {
5114 case UnqualifiedIdKind::IK_Identifier:
5115 Result = TemplateTy::make(
5116 Context.getDependentTemplateName(Qualifier, Name.Identifier));
5117 return TNK_Dependent_template_name;
5118
5119 case UnqualifiedIdKind::IK_OperatorFunctionId:
5120 Result = TemplateTy::make(Context.getDependentTemplateName(
5121 Qualifier, Name.OperatorFunctionId.Operator));
5122 return TNK_Function_template;
5123
5124 case UnqualifiedIdKind::IK_LiteralOperatorId:
5125 // This is a kind of template name, but can never occur in a dependent
5126 // scope (literal operators can only be declared at namespace scope).
5127 break;
5128
5129 default:
5130 break;
5131 }
5132
5133 // This name cannot possibly name a dependent template. Diagnose this now
5134 // rather than building a dependent template name that can never be valid.
5135 Diag(Name.getBeginLoc(),
5136 diag::err_template_kw_refers_to_dependent_non_template)
5137 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
5138 << TemplateKWLoc.isValid() << TemplateKWLoc;
5139 return TNK_Non_template;
5140 }
5141
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,TemplateArgumentLoc & AL,SmallVectorImpl<TemplateArgument> & SugaredConverted,SmallVectorImpl<TemplateArgument> & CanonicalConverted)5142 bool Sema::CheckTemplateTypeArgument(
5143 TemplateTypeParmDecl *Param, TemplateArgumentLoc &AL,
5144 SmallVectorImpl<TemplateArgument> &SugaredConverted,
5145 SmallVectorImpl<TemplateArgument> &CanonicalConverted) {
5146 const TemplateArgument &Arg = AL.getArgument();
5147 QualType ArgType;
5148 TypeSourceInfo *TSI = nullptr;
5149
5150 // Check template type parameter.
5151 switch(Arg.getKind()) {
5152 case TemplateArgument::Type:
5153 // C++ [temp.arg.type]p1:
5154 // A template-argument for a template-parameter which is a
5155 // type shall be a type-id.
5156 ArgType = Arg.getAsType();
5157 TSI = AL.getTypeSourceInfo();
5158 break;
5159 case TemplateArgument::Template:
5160 case TemplateArgument::TemplateExpansion: {
5161 // We have a template type parameter but the template argument
5162 // is a template without any arguments.
5163 SourceRange SR = AL.getSourceRange();
5164 TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
5165 diagnoseMissingTemplateArguments(Name, SR.getEnd());
5166 return true;
5167 }
5168 case TemplateArgument::Expression: {
5169 // We have a template type parameter but the template argument is an
5170 // expression; see if maybe it is missing the "typename" keyword.
5171 CXXScopeSpec SS;
5172 DeclarationNameInfo NameInfo;
5173
5174 if (DependentScopeDeclRefExpr *ArgExpr =
5175 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
5176 SS.Adopt(ArgExpr->getQualifierLoc());
5177 NameInfo = ArgExpr->getNameInfo();
5178 } else if (CXXDependentScopeMemberExpr *ArgExpr =
5179 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
5180 if (ArgExpr->isImplicitAccess()) {
5181 SS.Adopt(ArgExpr->getQualifierLoc());
5182 NameInfo = ArgExpr->getMemberNameInfo();
5183 }
5184 }
5185
5186 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
5187 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
5188 LookupParsedName(Result, CurScope, &SS);
5189
5190 if (Result.getAsSingle<TypeDecl>() ||
5191 Result.getResultKind() ==
5192 LookupResult::NotFoundInCurrentInstantiation) {
5193 assert(SS.getScopeRep() && "dependent scope expr must has a scope!");
5194 // Suggest that the user add 'typename' before the NNS.
5195 SourceLocation Loc = AL.getSourceRange().getBegin();
5196 Diag(Loc, getLangOpts().MSVCCompat
5197 ? diag::ext_ms_template_type_arg_missing_typename
5198 : diag::err_template_arg_must_be_type_suggest)
5199 << FixItHint::CreateInsertion(Loc, "typename ");
5200 Diag(Param->getLocation(), diag::note_template_param_here);
5201
5202 // Recover by synthesizing a type using the location information that we
5203 // already have.
5204 ArgType =
5205 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
5206 TypeLocBuilder TLB;
5207 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
5208 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
5209 TL.setQualifierLoc(SS.getWithLocInContext(Context));
5210 TL.setNameLoc(NameInfo.getLoc());
5211 TSI = TLB.getTypeSourceInfo(Context, ArgType);
5212
5213 // Overwrite our input TemplateArgumentLoc so that we can recover
5214 // properly.
5215 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
5216 TemplateArgumentLocInfo(TSI));
5217
5218 break;
5219 }
5220 }
5221 // fallthrough
5222 [[fallthrough]];
5223 }
5224 default: {
5225 // We have a template type parameter but the template argument
5226 // is not a type.
5227 SourceRange SR = AL.getSourceRange();
5228 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
5229 Diag(Param->getLocation(), diag::note_template_param_here);
5230
5231 return true;
5232 }
5233 }
5234
5235 if (CheckTemplateArgument(TSI))
5236 return true;
5237
5238 // Objective-C ARC:
5239 // If an explicitly-specified template argument type is a lifetime type
5240 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
5241 if (getLangOpts().ObjCAutoRefCount &&
5242 ArgType->isObjCLifetimeType() &&
5243 !ArgType.getObjCLifetime()) {
5244 Qualifiers Qs;
5245 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
5246 ArgType = Context.getQualifiedType(ArgType, Qs);
5247 }
5248
5249 SugaredConverted.push_back(TemplateArgument(ArgType));
5250 CanonicalConverted.push_back(
5251 TemplateArgument(Context.getCanonicalType(ArgType)));
5252 return false;
5253 }
5254
5255 /// Substitute template arguments into the default template argument for
5256 /// the given template type parameter.
5257 ///
5258 /// \param SemaRef the semantic analysis object for which we are performing
5259 /// the substitution.
5260 ///
5261 /// \param Template the template that we are synthesizing template arguments
5262 /// for.
5263 ///
5264 /// \param TemplateLoc the location of the template name that started the
5265 /// template-id we are checking.
5266 ///
5267 /// \param RAngleLoc the location of the right angle bracket ('>') that
5268 /// terminates the template-id.
5269 ///
5270 /// \param Param the template template parameter whose default we are
5271 /// substituting into.
5272 ///
5273 /// \param Converted the list of template arguments provided for template
5274 /// parameters that precede \p Param in the template parameter list.
5275 /// \returns the substituted template argument, or NULL if an error occurred.
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,ArrayRef<TemplateArgument> SugaredConverted,ArrayRef<TemplateArgument> CanonicalConverted)5276 static TypeSourceInfo *SubstDefaultTemplateArgument(
5277 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5278 SourceLocation RAngleLoc, TemplateTypeParmDecl *Param,
5279 ArrayRef<TemplateArgument> SugaredConverted,
5280 ArrayRef<TemplateArgument> CanonicalConverted) {
5281 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
5282
5283 // If the argument type is dependent, instantiate it now based
5284 // on the previously-computed template arguments.
5285 if (ArgType->getType()->isInstantiationDependentType()) {
5286 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
5287 SugaredConverted,
5288 SourceRange(TemplateLoc, RAngleLoc));
5289 if (Inst.isInvalid())
5290 return nullptr;
5291
5292 // Only substitute for the innermost template argument list.
5293 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5294 /*Final=*/true);
5295 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5296 TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5297
5298 bool ForLambdaCallOperator = false;
5299 if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext()))
5300 ForLambdaCallOperator = Rec->isLambda();
5301 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(),
5302 !ForLambdaCallOperator);
5303 ArgType =
5304 SemaRef.SubstType(ArgType, TemplateArgLists,
5305 Param->getDefaultArgumentLoc(), Param->getDeclName());
5306 }
5307
5308 return ArgType;
5309 }
5310
5311 /// Substitute template arguments into the default template argument for
5312 /// the given non-type template parameter.
5313 ///
5314 /// \param SemaRef the semantic analysis object for which we are performing
5315 /// the substitution.
5316 ///
5317 /// \param Template the template that we are synthesizing template arguments
5318 /// for.
5319 ///
5320 /// \param TemplateLoc the location of the template name that started the
5321 /// template-id we are checking.
5322 ///
5323 /// \param RAngleLoc the location of the right angle bracket ('>') that
5324 /// terminates the template-id.
5325 ///
5326 /// \param Param the non-type template parameter whose default we are
5327 /// substituting into.
5328 ///
5329 /// \param Converted the list of template arguments provided for template
5330 /// parameters that precede \p Param in the template parameter list.
5331 ///
5332 /// \returns the substituted template argument, or NULL if an error occurred.
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,ArrayRef<TemplateArgument> SugaredConverted,ArrayRef<TemplateArgument> CanonicalConverted)5333 static ExprResult SubstDefaultTemplateArgument(
5334 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5335 SourceLocation RAngleLoc, NonTypeTemplateParmDecl *Param,
5336 ArrayRef<TemplateArgument> SugaredConverted,
5337 ArrayRef<TemplateArgument> CanonicalConverted) {
5338 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
5339 SugaredConverted,
5340 SourceRange(TemplateLoc, RAngleLoc));
5341 if (Inst.isInvalid())
5342 return ExprError();
5343
5344 // Only substitute for the innermost template argument list.
5345 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5346 /*Final=*/true);
5347 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5348 TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5349
5350 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5351 EnterExpressionEvaluationContext ConstantEvaluated(
5352 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5353 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
5354 }
5355
5356 /// Substitute template arguments into the default template argument for
5357 /// the given template template parameter.
5358 ///
5359 /// \param SemaRef the semantic analysis object for which we are performing
5360 /// the substitution.
5361 ///
5362 /// \param Template the template that we are synthesizing template arguments
5363 /// for.
5364 ///
5365 /// \param TemplateLoc the location of the template name that started the
5366 /// template-id we are checking.
5367 ///
5368 /// \param RAngleLoc the location of the right angle bracket ('>') that
5369 /// terminates the template-id.
5370 ///
5371 /// \param Param the template template parameter whose default we are
5372 /// substituting into.
5373 ///
5374 /// \param Converted the list of template arguments provided for template
5375 /// parameters that precede \p Param in the template parameter list.
5376 ///
5377 /// \param QualifierLoc Will be set to the nested-name-specifier (with
5378 /// source-location information) that precedes the template name.
5379 ///
5380 /// \returns the substituted template argument, or NULL if an error occurred.
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,ArrayRef<TemplateArgument> SugaredConverted,ArrayRef<TemplateArgument> CanonicalConverted,NestedNameSpecifierLoc & QualifierLoc)5381 static TemplateName SubstDefaultTemplateArgument(
5382 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5383 SourceLocation RAngleLoc, TemplateTemplateParmDecl *Param,
5384 ArrayRef<TemplateArgument> SugaredConverted,
5385 ArrayRef<TemplateArgument> CanonicalConverted,
5386 NestedNameSpecifierLoc &QualifierLoc) {
5387 Sema::InstantiatingTemplate Inst(
5388 SemaRef, TemplateLoc, TemplateParameter(Param), Template,
5389 SugaredConverted, SourceRange(TemplateLoc, RAngleLoc));
5390 if (Inst.isInvalid())
5391 return TemplateName();
5392
5393 // Only substitute for the innermost template argument list.
5394 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5395 /*Final=*/true);
5396 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5397 TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5398
5399 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5400 // Substitute into the nested-name-specifier first,
5401 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
5402 if (QualifierLoc) {
5403 QualifierLoc =
5404 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
5405 if (!QualifierLoc)
5406 return TemplateName();
5407 }
5408
5409 return SemaRef.SubstTemplateName(
5410 QualifierLoc,
5411 Param->getDefaultArgument().getArgument().getAsTemplate(),
5412 Param->getDefaultArgument().getTemplateNameLoc(),
5413 TemplateArgLists);
5414 }
5415
5416 /// If the given template parameter has a default template
5417 /// argument, substitute into that default template argument and
5418 /// return the corresponding template argument.
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,ArrayRef<TemplateArgument> SugaredConverted,ArrayRef<TemplateArgument> CanonicalConverted,bool & HasDefaultArg)5419 TemplateArgumentLoc Sema::SubstDefaultTemplateArgumentIfAvailable(
5420 TemplateDecl *Template, SourceLocation TemplateLoc,
5421 SourceLocation RAngleLoc, Decl *Param,
5422 ArrayRef<TemplateArgument> SugaredConverted,
5423 ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg) {
5424 HasDefaultArg = false;
5425
5426 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
5427 if (!hasReachableDefaultArgument(TypeParm))
5428 return TemplateArgumentLoc();
5429
5430 HasDefaultArg = true;
5431 TypeSourceInfo *DI = SubstDefaultTemplateArgument(
5432 *this, Template, TemplateLoc, RAngleLoc, TypeParm, SugaredConverted,
5433 CanonicalConverted);
5434 if (DI)
5435 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
5436
5437 return TemplateArgumentLoc();
5438 }
5439
5440 if (NonTypeTemplateParmDecl *NonTypeParm
5441 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5442 if (!hasReachableDefaultArgument(NonTypeParm))
5443 return TemplateArgumentLoc();
5444
5445 HasDefaultArg = true;
5446 ExprResult Arg = SubstDefaultTemplateArgument(
5447 *this, Template, TemplateLoc, RAngleLoc, NonTypeParm, SugaredConverted,
5448 CanonicalConverted);
5449 if (Arg.isInvalid())
5450 return TemplateArgumentLoc();
5451
5452 Expr *ArgE = Arg.getAs<Expr>();
5453 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
5454 }
5455
5456 TemplateTemplateParmDecl *TempTempParm
5457 = cast<TemplateTemplateParmDecl>(Param);
5458 if (!hasReachableDefaultArgument(TempTempParm))
5459 return TemplateArgumentLoc();
5460
5461 HasDefaultArg = true;
5462 NestedNameSpecifierLoc QualifierLoc;
5463 TemplateName TName = SubstDefaultTemplateArgument(
5464 *this, Template, TemplateLoc, RAngleLoc, TempTempParm, SugaredConverted,
5465 CanonicalConverted, QualifierLoc);
5466 if (TName.isNull())
5467 return TemplateArgumentLoc();
5468
5469 return TemplateArgumentLoc(
5470 Context, TemplateArgument(TName),
5471 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
5472 TempTempParm->getDefaultArgument().getTemplateNameLoc());
5473 }
5474
5475 /// Convert a template-argument that we parsed as a type into a template, if
5476 /// possible. C++ permits injected-class-names to perform dual service as
5477 /// template template arguments and as template type arguments.
5478 static TemplateArgumentLoc
convertTypeTemplateArgumentToTemplate(ASTContext & Context,TypeLoc TLoc)5479 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) {
5480 // Extract and step over any surrounding nested-name-specifier.
5481 NestedNameSpecifierLoc QualLoc;
5482 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
5483 if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
5484 return TemplateArgumentLoc();
5485
5486 QualLoc = ETLoc.getQualifierLoc();
5487 TLoc = ETLoc.getNamedTypeLoc();
5488 }
5489 // If this type was written as an injected-class-name, it can be used as a
5490 // template template argument.
5491 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
5492 return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(),
5493 QualLoc, InjLoc.getNameLoc());
5494
5495 // If this type was written as an injected-class-name, it may have been
5496 // converted to a RecordType during instantiation. If the RecordType is
5497 // *not* wrapped in a TemplateSpecializationType and denotes a class
5498 // template specialization, it must have come from an injected-class-name.
5499 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
5500 if (auto *CTSD =
5501 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
5502 return TemplateArgumentLoc(Context,
5503 TemplateName(CTSD->getSpecializedTemplate()),
5504 QualLoc, RecLoc.getNameLoc());
5505
5506 return TemplateArgumentLoc();
5507 }
5508
5509 /// Check that the given template argument corresponds to the given
5510 /// template parameter.
5511 ///
5512 /// \param Param The template parameter against which the argument will be
5513 /// checked.
5514 ///
5515 /// \param Arg The template argument, which may be updated due to conversions.
5516 ///
5517 /// \param Template The template in which the template argument resides.
5518 ///
5519 /// \param TemplateLoc The location of the template name for the template
5520 /// whose argument list we're matching.
5521 ///
5522 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
5523 /// the template argument list.
5524 ///
5525 /// \param ArgumentPackIndex The index into the argument pack where this
5526 /// argument will be placed. Only valid if the parameter is a parameter pack.
5527 ///
5528 /// \param Converted The checked, converted argument will be added to the
5529 /// end of this small vector.
5530 ///
5531 /// \param CTAK Describes how we arrived at this particular template argument:
5532 /// explicitly written, deduced, etc.
5533 ///
5534 /// \returns true on error, false otherwise.
CheckTemplateArgument(NamedDecl * Param,TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,SmallVectorImpl<TemplateArgument> & SugaredConverted,SmallVectorImpl<TemplateArgument> & CanonicalConverted,CheckTemplateArgumentKind CTAK)5535 bool Sema::CheckTemplateArgument(
5536 NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template,
5537 SourceLocation TemplateLoc, SourceLocation RAngleLoc,
5538 unsigned ArgumentPackIndex,
5539 SmallVectorImpl<TemplateArgument> &SugaredConverted,
5540 SmallVectorImpl<TemplateArgument> &CanonicalConverted,
5541 CheckTemplateArgumentKind CTAK) {
5542 // Check template type parameters.
5543 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
5544 return CheckTemplateTypeArgument(TTP, Arg, SugaredConverted,
5545 CanonicalConverted);
5546
5547 // Check non-type template parameters.
5548 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5549 // Do substitution on the type of the non-type template parameter
5550 // with the template arguments we've seen thus far. But if the
5551 // template has a dependent context then we cannot substitute yet.
5552 QualType NTTPType = NTTP->getType();
5553 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
5554 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
5555
5556 if (NTTPType->isInstantiationDependentType() &&
5557 !isa<TemplateTemplateParmDecl>(Template) &&
5558 !Template->getDeclContext()->isDependentContext()) {
5559 // Do substitution on the type of the non-type template parameter.
5560 InstantiatingTemplate Inst(*this, TemplateLoc, Template, NTTP,
5561 SugaredConverted,
5562 SourceRange(TemplateLoc, RAngleLoc));
5563 if (Inst.isInvalid())
5564 return true;
5565
5566 MultiLevelTemplateArgumentList MLTAL(Template, SugaredConverted,
5567 /*Final=*/true);
5568 // If the parameter is a pack expansion, expand this slice of the pack.
5569 if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
5570 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
5571 ArgumentPackIndex);
5572 NTTPType = SubstType(PET->getPattern(), MLTAL, NTTP->getLocation(),
5573 NTTP->getDeclName());
5574 } else {
5575 NTTPType = SubstType(NTTPType, MLTAL, NTTP->getLocation(),
5576 NTTP->getDeclName());
5577 }
5578
5579 // If that worked, check the non-type template parameter type
5580 // for validity.
5581 if (!NTTPType.isNull())
5582 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
5583 NTTP->getLocation());
5584 if (NTTPType.isNull())
5585 return true;
5586 }
5587
5588 switch (Arg.getArgument().getKind()) {
5589 case TemplateArgument::Null:
5590 llvm_unreachable("Should never see a NULL template argument here");
5591
5592 case TemplateArgument::Expression: {
5593 Expr *E = Arg.getArgument().getAsExpr();
5594 TemplateArgument SugaredResult, CanonicalResult;
5595 unsigned CurSFINAEErrors = NumSFINAEErrors;
5596 ExprResult Res = CheckTemplateArgument(NTTP, NTTPType, E, SugaredResult,
5597 CanonicalResult, CTAK);
5598 if (Res.isInvalid())
5599 return true;
5600 // If the current template argument causes an error, give up now.
5601 if (CurSFINAEErrors < NumSFINAEErrors)
5602 return true;
5603
5604 // If the resulting expression is new, then use it in place of the
5605 // old expression in the template argument.
5606 if (Res.get() != E) {
5607 TemplateArgument TA(Res.get());
5608 Arg = TemplateArgumentLoc(TA, Res.get());
5609 }
5610
5611 SugaredConverted.push_back(SugaredResult);
5612 CanonicalConverted.push_back(CanonicalResult);
5613 break;
5614 }
5615
5616 case TemplateArgument::Declaration:
5617 case TemplateArgument::Integral:
5618 case TemplateArgument::NullPtr:
5619 // We've already checked this template argument, so just copy
5620 // it to the list of converted arguments.
5621 SugaredConverted.push_back(Arg.getArgument());
5622 CanonicalConverted.push_back(
5623 Context.getCanonicalTemplateArgument(Arg.getArgument()));
5624 break;
5625
5626 case TemplateArgument::Template:
5627 case TemplateArgument::TemplateExpansion:
5628 // We were given a template template argument. It may not be ill-formed;
5629 // see below.
5630 if (DependentTemplateName *DTN
5631 = Arg.getArgument().getAsTemplateOrTemplatePattern()
5632 .getAsDependentTemplateName()) {
5633 // We have a template argument such as \c T::template X, which we
5634 // parsed as a template template argument. However, since we now
5635 // know that we need a non-type template argument, convert this
5636 // template name into an expression.
5637
5638 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
5639 Arg.getTemplateNameLoc());
5640
5641 CXXScopeSpec SS;
5642 SS.Adopt(Arg.getTemplateQualifierLoc());
5643 // FIXME: the template-template arg was a DependentTemplateName,
5644 // so it was provided with a template keyword. However, its source
5645 // location is not stored in the template argument structure.
5646 SourceLocation TemplateKWLoc;
5647 ExprResult E = DependentScopeDeclRefExpr::Create(
5648 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
5649 nullptr);
5650
5651 // If we parsed the template argument as a pack expansion, create a
5652 // pack expansion expression.
5653 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
5654 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
5655 if (E.isInvalid())
5656 return true;
5657 }
5658
5659 TemplateArgument SugaredResult, CanonicalResult;
5660 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), SugaredResult,
5661 CanonicalResult, CTAK_Specified);
5662 if (E.isInvalid())
5663 return true;
5664
5665 SugaredConverted.push_back(SugaredResult);
5666 CanonicalConverted.push_back(CanonicalResult);
5667 break;
5668 }
5669
5670 // We have a template argument that actually does refer to a class
5671 // template, alias template, or template template parameter, and
5672 // therefore cannot be a non-type template argument.
5673 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
5674 << Arg.getSourceRange();
5675
5676 Diag(Param->getLocation(), diag::note_template_param_here);
5677 return true;
5678
5679 case TemplateArgument::Type: {
5680 // We have a non-type template parameter but the template
5681 // argument is a type.
5682
5683 // C++ [temp.arg]p2:
5684 // In a template-argument, an ambiguity between a type-id and
5685 // an expression is resolved to a type-id, regardless of the
5686 // form of the corresponding template-parameter.
5687 //
5688 // We warn specifically about this case, since it can be rather
5689 // confusing for users.
5690 QualType T = Arg.getArgument().getAsType();
5691 SourceRange SR = Arg.getSourceRange();
5692 if (T->isFunctionType())
5693 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
5694 else
5695 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
5696 Diag(Param->getLocation(), diag::note_template_param_here);
5697 return true;
5698 }
5699
5700 case TemplateArgument::Pack:
5701 llvm_unreachable("Caller must expand template argument packs");
5702 }
5703
5704 return false;
5705 }
5706
5707
5708 // Check template template parameters.
5709 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
5710
5711 TemplateParameterList *Params = TempParm->getTemplateParameters();
5712 if (TempParm->isExpandedParameterPack())
5713 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
5714
5715 // Substitute into the template parameter list of the template
5716 // template parameter, since previously-supplied template arguments
5717 // may appear within the template template parameter.
5718 //
5719 // FIXME: Skip this if the parameters aren't instantiation-dependent.
5720 {
5721 // Set up a template instantiation context.
5722 LocalInstantiationScope Scope(*this);
5723 InstantiatingTemplate Inst(*this, TemplateLoc, Template, TempParm,
5724 SugaredConverted,
5725 SourceRange(TemplateLoc, RAngleLoc));
5726 if (Inst.isInvalid())
5727 return true;
5728
5729 Params =
5730 SubstTemplateParams(Params, CurContext,
5731 MultiLevelTemplateArgumentList(
5732 Template, SugaredConverted, /*Final=*/true),
5733 /*EvaluateConstraints=*/false);
5734 if (!Params)
5735 return true;
5736 }
5737
5738 // C++1z [temp.local]p1: (DR1004)
5739 // When [the injected-class-name] is used [...] as a template-argument for
5740 // a template template-parameter [...] it refers to the class template
5741 // itself.
5742 if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5743 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5744 Context, Arg.getTypeSourceInfo()->getTypeLoc());
5745 if (!ConvertedArg.getArgument().isNull())
5746 Arg = ConvertedArg;
5747 }
5748
5749 switch (Arg.getArgument().getKind()) {
5750 case TemplateArgument::Null:
5751 llvm_unreachable("Should never see a NULL template argument here");
5752
5753 case TemplateArgument::Template:
5754 case TemplateArgument::TemplateExpansion:
5755 if (CheckTemplateTemplateArgument(TempParm, Params, Arg))
5756 return true;
5757
5758 SugaredConverted.push_back(Arg.getArgument());
5759 CanonicalConverted.push_back(
5760 Context.getCanonicalTemplateArgument(Arg.getArgument()));
5761 break;
5762
5763 case TemplateArgument::Expression:
5764 case TemplateArgument::Type:
5765 // We have a template template parameter but the template
5766 // argument does not refer to a template.
5767 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5768 << getLangOpts().CPlusPlus11;
5769 return true;
5770
5771 case TemplateArgument::Declaration:
5772 llvm_unreachable("Declaration argument with template template parameter");
5773 case TemplateArgument::Integral:
5774 llvm_unreachable("Integral argument with template template parameter");
5775 case TemplateArgument::NullPtr:
5776 llvm_unreachable("Null pointer argument with template template parameter");
5777
5778 case TemplateArgument::Pack:
5779 llvm_unreachable("Caller must expand template argument packs");
5780 }
5781
5782 return false;
5783 }
5784
5785 /// Diagnose a missing template argument.
5786 template<typename TemplateParmDecl>
diagnoseMissingArgument(Sema & S,SourceLocation Loc,TemplateDecl * TD,const TemplateParmDecl * D,TemplateArgumentListInfo & Args)5787 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5788 TemplateDecl *TD,
5789 const TemplateParmDecl *D,
5790 TemplateArgumentListInfo &Args) {
5791 // Dig out the most recent declaration of the template parameter; there may be
5792 // declarations of the template that are more recent than TD.
5793 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5794 ->getTemplateParameters()
5795 ->getParam(D->getIndex()));
5796
5797 // If there's a default argument that's not reachable, diagnose that we're
5798 // missing a module import.
5799 llvm::SmallVector<Module*, 8> Modules;
5800 if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, &Modules)) {
5801 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
5802 D->getDefaultArgumentLoc(), Modules,
5803 Sema::MissingImportKind::DefaultArgument,
5804 /*Recover*/true);
5805 return true;
5806 }
5807
5808 // FIXME: If there's a more recent default argument that *is* visible,
5809 // diagnose that it was declared too late.
5810
5811 TemplateParameterList *Params = TD->getTemplateParameters();
5812
5813 S.Diag(Loc, diag::err_template_arg_list_different_arity)
5814 << /*not enough args*/0
5815 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5816 << TD;
5817 S.Diag(TD->getLocation(), diag::note_template_decl_here)
5818 << Params->getSourceRange();
5819 return true;
5820 }
5821
5822 /// Check that the given template argument list is well-formed
5823 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,SmallVectorImpl<TemplateArgument> & SugaredConverted,SmallVectorImpl<TemplateArgument> & CanonicalConverted,bool UpdateArgsWithConversions,bool * ConstraintsNotSatisfied)5824 bool Sema::CheckTemplateArgumentList(
5825 TemplateDecl *Template, SourceLocation TemplateLoc,
5826 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5827 SmallVectorImpl<TemplateArgument> &SugaredConverted,
5828 SmallVectorImpl<TemplateArgument> &CanonicalConverted,
5829 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
5830
5831 if (ConstraintsNotSatisfied)
5832 *ConstraintsNotSatisfied = false;
5833
5834 // Make a copy of the template arguments for processing. Only make the
5835 // changes at the end when successful in matching the arguments to the
5836 // template.
5837 TemplateArgumentListInfo NewArgs = TemplateArgs;
5838
5839 // Make sure we get the template parameter list from the most
5840 // recent declaration, since that is the only one that is guaranteed to
5841 // have all the default template argument information.
5842 TemplateParameterList *Params =
5843 cast<TemplateDecl>(Template->getMostRecentDecl())
5844 ->getTemplateParameters();
5845
5846 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
5847
5848 // C++ [temp.arg]p1:
5849 // [...] The type and form of each template-argument specified in
5850 // a template-id shall match the type and form specified for the
5851 // corresponding parameter declared by the template in its
5852 // template-parameter-list.
5853 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
5854 SmallVector<TemplateArgument, 2> SugaredArgumentPack;
5855 SmallVector<TemplateArgument, 2> CanonicalArgumentPack;
5856 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
5857 LocalInstantiationScope InstScope(*this, true);
5858 for (TemplateParameterList::iterator Param = Params->begin(),
5859 ParamEnd = Params->end();
5860 Param != ParamEnd; /* increment in loop */) {
5861 // If we have an expanded parameter pack, make sure we don't have too
5862 // many arguments.
5863 if (std::optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
5864 if (*Expansions == SugaredArgumentPack.size()) {
5865 // We're done with this parameter pack. Pack up its arguments and add
5866 // them to the list.
5867 SugaredConverted.push_back(
5868 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
5869 SugaredArgumentPack.clear();
5870
5871 CanonicalConverted.push_back(
5872 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
5873 CanonicalArgumentPack.clear();
5874
5875 // This argument is assigned to the next parameter.
5876 ++Param;
5877 continue;
5878 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
5879 // Not enough arguments for this parameter pack.
5880 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5881 << /*not enough args*/0
5882 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5883 << Template;
5884 Diag(Template->getLocation(), diag::note_template_decl_here)
5885 << Params->getSourceRange();
5886 return true;
5887 }
5888 }
5889
5890 if (ArgIdx < NumArgs) {
5891 // Check the template argument we were given.
5892 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, TemplateLoc,
5893 RAngleLoc, SugaredArgumentPack.size(),
5894 SugaredConverted, CanonicalConverted,
5895 CTAK_Specified))
5896 return true;
5897
5898 bool PackExpansionIntoNonPack =
5899 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
5900 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
5901 if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) ||
5902 isa<ConceptDecl>(Template))) {
5903 // Core issue 1430: we have a pack expansion as an argument to an
5904 // alias template, and it's not part of a parameter pack. This
5905 // can't be canonicalized, so reject it now.
5906 // As for concepts - we cannot normalize constraints where this
5907 // situation exists.
5908 Diag(NewArgs[ArgIdx].getLocation(),
5909 diag::err_template_expansion_into_fixed_list)
5910 << (isa<ConceptDecl>(Template) ? 1 : 0)
5911 << NewArgs[ArgIdx].getSourceRange();
5912 Diag((*Param)->getLocation(), diag::note_template_param_here);
5913 return true;
5914 }
5915
5916 // We're now done with this argument.
5917 ++ArgIdx;
5918
5919 if ((*Param)->isTemplateParameterPack()) {
5920 // The template parameter was a template parameter pack, so take the
5921 // deduced argument and place it on the argument pack. Note that we
5922 // stay on the same template parameter so that we can deduce more
5923 // arguments.
5924 SugaredArgumentPack.push_back(SugaredConverted.pop_back_val());
5925 CanonicalArgumentPack.push_back(CanonicalConverted.pop_back_val());
5926 } else {
5927 // Move to the next template parameter.
5928 ++Param;
5929 }
5930
5931 // If we just saw a pack expansion into a non-pack, then directly convert
5932 // the remaining arguments, because we don't know what parameters they'll
5933 // match up with.
5934 if (PackExpansionIntoNonPack) {
5935 if (!SugaredArgumentPack.empty()) {
5936 // If we were part way through filling in an expanded parameter pack,
5937 // fall back to just producing individual arguments.
5938 SugaredConverted.insert(SugaredConverted.end(),
5939 SugaredArgumentPack.begin(),
5940 SugaredArgumentPack.end());
5941 SugaredArgumentPack.clear();
5942
5943 CanonicalConverted.insert(CanonicalConverted.end(),
5944 CanonicalArgumentPack.begin(),
5945 CanonicalArgumentPack.end());
5946 CanonicalArgumentPack.clear();
5947 }
5948
5949 while (ArgIdx < NumArgs) {
5950 const TemplateArgument &Arg = NewArgs[ArgIdx].getArgument();
5951 SugaredConverted.push_back(Arg);
5952 CanonicalConverted.push_back(
5953 Context.getCanonicalTemplateArgument(Arg));
5954 ++ArgIdx;
5955 }
5956
5957 return false;
5958 }
5959
5960 continue;
5961 }
5962
5963 // If we're checking a partial template argument list, we're done.
5964 if (PartialTemplateArgs) {
5965 if ((*Param)->isTemplateParameterPack() && !SugaredArgumentPack.empty()) {
5966 SugaredConverted.push_back(
5967 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
5968 CanonicalConverted.push_back(
5969 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
5970 }
5971 return false;
5972 }
5973
5974 // If we have a template parameter pack with no more corresponding
5975 // arguments, just break out now and we'll fill in the argument pack below.
5976 if ((*Param)->isTemplateParameterPack()) {
5977 assert(!getExpandedPackSize(*Param) &&
5978 "Should have dealt with this already");
5979
5980 // A non-expanded parameter pack before the end of the parameter list
5981 // only occurs for an ill-formed template parameter list, unless we've
5982 // got a partial argument list for a function template, so just bail out.
5983 if (Param + 1 != ParamEnd) {
5984 assert(
5985 (Template->getMostRecentDecl()->getKind() != Decl::Kind::Concept) &&
5986 "Concept templates must have parameter packs at the end.");
5987 return true;
5988 }
5989
5990 SugaredConverted.push_back(
5991 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
5992 SugaredArgumentPack.clear();
5993
5994 CanonicalConverted.push_back(
5995 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
5996 CanonicalArgumentPack.clear();
5997
5998 ++Param;
5999 continue;
6000 }
6001
6002 // Check whether we have a default argument.
6003 TemplateArgumentLoc Arg;
6004
6005 // Retrieve the default template argument from the template
6006 // parameter. For each kind of template parameter, we substitute the
6007 // template arguments provided thus far and any "outer" template arguments
6008 // (when the template parameter was part of a nested template) into
6009 // the default argument.
6010 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
6011 if (!hasReachableDefaultArgument(TTP))
6012 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
6013 NewArgs);
6014
6015 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(
6016 *this, Template, TemplateLoc, RAngleLoc, TTP, SugaredConverted,
6017 CanonicalConverted);
6018 if (!ArgType)
6019 return true;
6020
6021 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
6022 ArgType);
6023 } else if (NonTypeTemplateParmDecl *NTTP
6024 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
6025 if (!hasReachableDefaultArgument(NTTP))
6026 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
6027 NewArgs);
6028
6029 ExprResult E = SubstDefaultTemplateArgument(
6030 *this, Template, TemplateLoc, RAngleLoc, NTTP, SugaredConverted,
6031 CanonicalConverted);
6032 if (E.isInvalid())
6033 return true;
6034
6035 Expr *Ex = E.getAs<Expr>();
6036 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
6037 } else {
6038 TemplateTemplateParmDecl *TempParm
6039 = cast<TemplateTemplateParmDecl>(*Param);
6040
6041 if (!hasReachableDefaultArgument(TempParm))
6042 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
6043 NewArgs);
6044
6045 NestedNameSpecifierLoc QualifierLoc;
6046 TemplateName Name = SubstDefaultTemplateArgument(
6047 *this, Template, TemplateLoc, RAngleLoc, TempParm, SugaredConverted,
6048 CanonicalConverted, QualifierLoc);
6049 if (Name.isNull())
6050 return true;
6051
6052 Arg = TemplateArgumentLoc(
6053 Context, TemplateArgument(Name), QualifierLoc,
6054 TempParm->getDefaultArgument().getTemplateNameLoc());
6055 }
6056
6057 // Introduce an instantiation record that describes where we are using
6058 // the default template argument. We're not actually instantiating a
6059 // template here, we just create this object to put a note into the
6060 // context stack.
6061 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param,
6062 SugaredConverted,
6063 SourceRange(TemplateLoc, RAngleLoc));
6064 if (Inst.isInvalid())
6065 return true;
6066
6067 // Check the default template argument.
6068 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, RAngleLoc, 0,
6069 SugaredConverted, CanonicalConverted,
6070 CTAK_Specified))
6071 return true;
6072
6073 // Core issue 150 (assumed resolution): if this is a template template
6074 // parameter, keep track of the default template arguments from the
6075 // template definition.
6076 if (isTemplateTemplateParameter)
6077 NewArgs.addArgument(Arg);
6078
6079 // Move to the next template parameter and argument.
6080 ++Param;
6081 ++ArgIdx;
6082 }
6083
6084 // If we're performing a partial argument substitution, allow any trailing
6085 // pack expansions; they might be empty. This can happen even if
6086 // PartialTemplateArgs is false (the list of arguments is complete but
6087 // still dependent).
6088 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
6089 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
6090 while (ArgIdx < NumArgs &&
6091 NewArgs[ArgIdx].getArgument().isPackExpansion()) {
6092 const TemplateArgument &Arg = NewArgs[ArgIdx++].getArgument();
6093 SugaredConverted.push_back(Arg);
6094 CanonicalConverted.push_back(Context.getCanonicalTemplateArgument(Arg));
6095 }
6096 }
6097
6098 // If we have any leftover arguments, then there were too many arguments.
6099 // Complain and fail.
6100 if (ArgIdx < NumArgs) {
6101 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
6102 << /*too many args*/1
6103 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
6104 << Template
6105 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
6106 Diag(Template->getLocation(), diag::note_template_decl_here)
6107 << Params->getSourceRange();
6108 return true;
6109 }
6110
6111 // No problems found with the new argument list, propagate changes back
6112 // to caller.
6113 if (UpdateArgsWithConversions)
6114 TemplateArgs = std::move(NewArgs);
6115
6116 if (!PartialTemplateArgs) {
6117 TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
6118 CanonicalConverted);
6119 // Setup the context/ThisScope for the case where we are needing to
6120 // re-instantiate constraints outside of normal instantiation.
6121 DeclContext *NewContext = Template->getDeclContext();
6122
6123 // If this template is in a template, make sure we extract the templated
6124 // decl.
6125 if (auto *TD = dyn_cast<TemplateDecl>(NewContext))
6126 NewContext = Decl::castToDeclContext(TD->getTemplatedDecl());
6127 auto *RD = dyn_cast<CXXRecordDecl>(NewContext);
6128
6129 Qualifiers ThisQuals;
6130 if (const auto *Method =
6131 dyn_cast_or_null<CXXMethodDecl>(Template->getTemplatedDecl()))
6132 ThisQuals = Method->getMethodQualifiers();
6133
6134 ContextRAII Context(*this, NewContext);
6135 CXXThisScopeRAII(*this, RD, ThisQuals, RD != nullptr);
6136
6137 MultiLevelTemplateArgumentList MLTAL = getTemplateInstantiationArgs(
6138 Template, /*Final=*/false, &StackTemplateArgs,
6139 /*RelativeToPrimary=*/true,
6140 /*Pattern=*/nullptr,
6141 /*ForConceptInstantiation=*/true);
6142 if (EnsureTemplateArgumentListConstraints(
6143 Template, MLTAL,
6144 SourceRange(TemplateLoc, TemplateArgs.getRAngleLoc()))) {
6145 if (ConstraintsNotSatisfied)
6146 *ConstraintsNotSatisfied = true;
6147 return true;
6148 }
6149 }
6150
6151 return false;
6152 }
6153
6154 namespace {
6155 class UnnamedLocalNoLinkageFinder
6156 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
6157 {
6158 Sema &S;
6159 SourceRange SR;
6160
6161 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
6162
6163 public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)6164 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
6165
Visit(QualType T)6166 bool Visit(QualType T) {
6167 return T.isNull() ? false : inherited::Visit(T.getTypePtr());
6168 }
6169
6170 #define TYPE(Class, Parent) \
6171 bool Visit##Class##Type(const Class##Type *);
6172 #define ABSTRACT_TYPE(Class, Parent) \
6173 bool Visit##Class##Type(const Class##Type *) { return false; }
6174 #define NON_CANONICAL_TYPE(Class, Parent) \
6175 bool Visit##Class##Type(const Class##Type *) { return false; }
6176 #include "clang/AST/TypeNodes.inc"
6177
6178 bool VisitTagDecl(const TagDecl *Tag);
6179 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
6180 };
6181 } // end anonymous namespace
6182
VisitBuiltinType(const BuiltinType *)6183 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
6184 return false;
6185 }
6186
VisitComplexType(const ComplexType * T)6187 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
6188 return Visit(T->getElementType());
6189 }
6190
VisitPointerType(const PointerType * T)6191 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
6192 return Visit(T->getPointeeType());
6193 }
6194
VisitBlockPointerType(const BlockPointerType * T)6195 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
6196 const BlockPointerType* T) {
6197 return Visit(T->getPointeeType());
6198 }
6199
VisitLValueReferenceType(const LValueReferenceType * T)6200 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
6201 const LValueReferenceType* T) {
6202 return Visit(T->getPointeeType());
6203 }
6204
VisitRValueReferenceType(const RValueReferenceType * T)6205 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
6206 const RValueReferenceType* T) {
6207 return Visit(T->getPointeeType());
6208 }
6209
VisitMemberPointerType(const MemberPointerType * T)6210 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
6211 const MemberPointerType* T) {
6212 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
6213 }
6214
VisitConstantArrayType(const ConstantArrayType * T)6215 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
6216 const ConstantArrayType* T) {
6217 return Visit(T->getElementType());
6218 }
6219
VisitIncompleteArrayType(const IncompleteArrayType * T)6220 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
6221 const IncompleteArrayType* T) {
6222 return Visit(T->getElementType());
6223 }
6224
VisitVariableArrayType(const VariableArrayType * T)6225 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
6226 const VariableArrayType* T) {
6227 return Visit(T->getElementType());
6228 }
6229
VisitDependentSizedArrayType(const DependentSizedArrayType * T)6230 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
6231 const DependentSizedArrayType* T) {
6232 return Visit(T->getElementType());
6233 }
6234
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)6235 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
6236 const DependentSizedExtVectorType* T) {
6237 return Visit(T->getElementType());
6238 }
6239
VisitDependentSizedMatrixType(const DependentSizedMatrixType * T)6240 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType(
6241 const DependentSizedMatrixType *T) {
6242 return Visit(T->getElementType());
6243 }
6244
VisitDependentAddressSpaceType(const DependentAddressSpaceType * T)6245 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
6246 const DependentAddressSpaceType *T) {
6247 return Visit(T->getPointeeType());
6248 }
6249
VisitVectorType(const VectorType * T)6250 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
6251 return Visit(T->getElementType());
6252 }
6253
VisitDependentVectorType(const DependentVectorType * T)6254 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
6255 const DependentVectorType *T) {
6256 return Visit(T->getElementType());
6257 }
6258
VisitExtVectorType(const ExtVectorType * T)6259 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
6260 return Visit(T->getElementType());
6261 }
6262
VisitConstantMatrixType(const ConstantMatrixType * T)6263 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType(
6264 const ConstantMatrixType *T) {
6265 return Visit(T->getElementType());
6266 }
6267
VisitFunctionProtoType(const FunctionProtoType * T)6268 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
6269 const FunctionProtoType* T) {
6270 for (const auto &A : T->param_types()) {
6271 if (Visit(A))
6272 return true;
6273 }
6274
6275 return Visit(T->getReturnType());
6276 }
6277
VisitFunctionNoProtoType(const FunctionNoProtoType * T)6278 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
6279 const FunctionNoProtoType* T) {
6280 return Visit(T->getReturnType());
6281 }
6282
VisitUnresolvedUsingType(const UnresolvedUsingType *)6283 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
6284 const UnresolvedUsingType*) {
6285 return false;
6286 }
6287
VisitTypeOfExprType(const TypeOfExprType *)6288 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
6289 return false;
6290 }
6291
VisitTypeOfType(const TypeOfType * T)6292 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
6293 return Visit(T->getUnmodifiedType());
6294 }
6295
VisitDecltypeType(const DecltypeType *)6296 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
6297 return false;
6298 }
6299
VisitUnaryTransformType(const UnaryTransformType *)6300 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
6301 const UnaryTransformType*) {
6302 return false;
6303 }
6304
VisitAutoType(const AutoType * T)6305 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
6306 return Visit(T->getDeducedType());
6307 }
6308
VisitDeducedTemplateSpecializationType(const DeducedTemplateSpecializationType * T)6309 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
6310 const DeducedTemplateSpecializationType *T) {
6311 return Visit(T->getDeducedType());
6312 }
6313
VisitRecordType(const RecordType * T)6314 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
6315 return VisitTagDecl(T->getDecl());
6316 }
6317
VisitEnumType(const EnumType * T)6318 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
6319 return VisitTagDecl(T->getDecl());
6320 }
6321
VisitTemplateTypeParmType(const TemplateTypeParmType *)6322 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
6323 const TemplateTypeParmType*) {
6324 return false;
6325 }
6326
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)6327 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
6328 const SubstTemplateTypeParmPackType *) {
6329 return false;
6330 }
6331
VisitTemplateSpecializationType(const TemplateSpecializationType *)6332 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
6333 const TemplateSpecializationType*) {
6334 return false;
6335 }
6336
VisitInjectedClassNameType(const InjectedClassNameType * T)6337 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
6338 const InjectedClassNameType* T) {
6339 return VisitTagDecl(T->getDecl());
6340 }
6341
VisitDependentNameType(const DependentNameType * T)6342 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
6343 const DependentNameType* T) {
6344 return VisitNestedNameSpecifier(T->getQualifier());
6345 }
6346
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)6347 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
6348 const DependentTemplateSpecializationType* T) {
6349 if (auto *Q = T->getQualifier())
6350 return VisitNestedNameSpecifier(Q);
6351 return false;
6352 }
6353
VisitPackExpansionType(const PackExpansionType * T)6354 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
6355 const PackExpansionType* T) {
6356 return Visit(T->getPattern());
6357 }
6358
VisitObjCObjectType(const ObjCObjectType *)6359 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
6360 return false;
6361 }
6362
VisitObjCInterfaceType(const ObjCInterfaceType *)6363 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
6364 const ObjCInterfaceType *) {
6365 return false;
6366 }
6367
VisitObjCObjectPointerType(const ObjCObjectPointerType *)6368 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
6369 const ObjCObjectPointerType *) {
6370 return false;
6371 }
6372
VisitAtomicType(const AtomicType * T)6373 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
6374 return Visit(T->getValueType());
6375 }
6376
VisitPipeType(const PipeType * T)6377 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
6378 return false;
6379 }
6380
VisitBitIntType(const BitIntType * T)6381 bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) {
6382 return false;
6383 }
6384
VisitDependentBitIntType(const DependentBitIntType * T)6385 bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType(
6386 const DependentBitIntType *T) {
6387 return false;
6388 }
6389
VisitTagDecl(const TagDecl * Tag)6390 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
6391 if (Tag->getDeclContext()->isFunctionOrMethod()) {
6392 S.Diag(SR.getBegin(),
6393 S.getLangOpts().CPlusPlus11 ?
6394 diag::warn_cxx98_compat_template_arg_local_type :
6395 diag::ext_template_arg_local_type)
6396 << S.Context.getTypeDeclType(Tag) << SR;
6397 return true;
6398 }
6399
6400 if (!Tag->hasNameForLinkage()) {
6401 S.Diag(SR.getBegin(),
6402 S.getLangOpts().CPlusPlus11 ?
6403 diag::warn_cxx98_compat_template_arg_unnamed_type :
6404 diag::ext_template_arg_unnamed_type) << SR;
6405 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
6406 return true;
6407 }
6408
6409 return false;
6410 }
6411
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)6412 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
6413 NestedNameSpecifier *NNS) {
6414 assert(NNS);
6415 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
6416 return true;
6417
6418 switch (NNS->getKind()) {
6419 case NestedNameSpecifier::Identifier:
6420 case NestedNameSpecifier::Namespace:
6421 case NestedNameSpecifier::NamespaceAlias:
6422 case NestedNameSpecifier::Global:
6423 case NestedNameSpecifier::Super:
6424 return false;
6425
6426 case NestedNameSpecifier::TypeSpec:
6427 case NestedNameSpecifier::TypeSpecWithTemplate:
6428 return Visit(QualType(NNS->getAsType(), 0));
6429 }
6430 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6431 }
6432
6433 /// Check a template argument against its corresponding
6434 /// template type parameter.
6435 ///
6436 /// This routine implements the semantics of C++ [temp.arg.type]. It
6437 /// returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TypeSourceInfo * ArgInfo)6438 bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) {
6439 assert(ArgInfo && "invalid TypeSourceInfo");
6440 QualType Arg = ArgInfo->getType();
6441 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
6442 QualType CanonArg = Context.getCanonicalType(Arg);
6443
6444 if (CanonArg->isVariablyModifiedType()) {
6445 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
6446 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
6447 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
6448 }
6449
6450 // C++03 [temp.arg.type]p2:
6451 // A local type, a type with no linkage, an unnamed type or a type
6452 // compounded from any of these types shall not be used as a
6453 // template-argument for a template type-parameter.
6454 //
6455 // C++11 allows these, and even in C++03 we allow them as an extension with
6456 // a warning.
6457 if (LangOpts.CPlusPlus11 || CanonArg->hasUnnamedOrLocalType()) {
6458 UnnamedLocalNoLinkageFinder Finder(*this, SR);
6459 (void)Finder.Visit(CanonArg);
6460 }
6461
6462 return false;
6463 }
6464
6465 enum NullPointerValueKind {
6466 NPV_NotNullPointer,
6467 NPV_NullPointer,
6468 NPV_Error
6469 };
6470
6471 /// Determine whether the given template argument is a null pointer
6472 /// value of the appropriate type.
6473 static NullPointerValueKind
isNullPointerValueTemplateArgument(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg,Decl * Entity=nullptr)6474 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
6475 QualType ParamType, Expr *Arg,
6476 Decl *Entity = nullptr) {
6477 if (Arg->isValueDependent() || Arg->isTypeDependent())
6478 return NPV_NotNullPointer;
6479
6480 // dllimport'd entities aren't constant but are available inside of template
6481 // arguments.
6482 if (Entity && Entity->hasAttr<DLLImportAttr>())
6483 return NPV_NotNullPointer;
6484
6485 if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
6486 llvm_unreachable(
6487 "Incomplete parameter type in isNullPointerValueTemplateArgument!");
6488
6489 if (!S.getLangOpts().CPlusPlus11)
6490 return NPV_NotNullPointer;
6491
6492 // Determine whether we have a constant expression.
6493 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
6494 if (ArgRV.isInvalid())
6495 return NPV_Error;
6496 Arg = ArgRV.get();
6497
6498 Expr::EvalResult EvalResult;
6499 SmallVector<PartialDiagnosticAt, 8> Notes;
6500 EvalResult.Diag = &Notes;
6501 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
6502 EvalResult.HasSideEffects) {
6503 SourceLocation DiagLoc = Arg->getExprLoc();
6504
6505 // If our only note is the usual "invalid subexpression" note, just point
6506 // the caret at its location rather than producing an essentially
6507 // redundant note.
6508 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6509 diag::note_invalid_subexpr_in_const_expr) {
6510 DiagLoc = Notes[0].first;
6511 Notes.clear();
6512 }
6513
6514 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
6515 << Arg->getType() << Arg->getSourceRange();
6516 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6517 S.Diag(Notes[I].first, Notes[I].second);
6518
6519 S.Diag(Param->getLocation(), diag::note_template_param_here);
6520 return NPV_Error;
6521 }
6522
6523 // C++11 [temp.arg.nontype]p1:
6524 // - an address constant expression of type std::nullptr_t
6525 if (Arg->getType()->isNullPtrType())
6526 return NPV_NullPointer;
6527
6528 // - a constant expression that evaluates to a null pointer value (4.10); or
6529 // - a constant expression that evaluates to a null member pointer value
6530 // (4.11); or
6531 if ((EvalResult.Val.isLValue() && EvalResult.Val.isNullPointer()) ||
6532 (EvalResult.Val.isMemberPointer() &&
6533 !EvalResult.Val.getMemberPointerDecl())) {
6534 // If our expression has an appropriate type, we've succeeded.
6535 bool ObjCLifetimeConversion;
6536 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
6537 S.IsQualificationConversion(Arg->getType(), ParamType, false,
6538 ObjCLifetimeConversion))
6539 return NPV_NullPointer;
6540
6541 // The types didn't match, but we know we got a null pointer; complain,
6542 // then recover as if the types were correct.
6543 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
6544 << Arg->getType() << ParamType << Arg->getSourceRange();
6545 S.Diag(Param->getLocation(), diag::note_template_param_here);
6546 return NPV_NullPointer;
6547 }
6548
6549 if (EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) {
6550 // We found a pointer that isn't null, but doesn't refer to an object.
6551 // We could just return NPV_NotNullPointer, but we can print a better
6552 // message with the information we have here.
6553 S.Diag(Arg->getExprLoc(), diag::err_template_arg_invalid)
6554 << EvalResult.Val.getAsString(S.Context, ParamType);
6555 S.Diag(Param->getLocation(), diag::note_template_param_here);
6556 return NPV_Error;
6557 }
6558
6559 // If we don't have a null pointer value, but we do have a NULL pointer
6560 // constant, suggest a cast to the appropriate type.
6561 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
6562 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
6563 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
6564 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
6565 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
6566 ")");
6567 S.Diag(Param->getLocation(), diag::note_template_param_here);
6568 return NPV_NullPointer;
6569 }
6570
6571 // FIXME: If we ever want to support general, address-constant expressions
6572 // as non-type template arguments, we should return the ExprResult here to
6573 // be interpreted by the caller.
6574 return NPV_NotNullPointer;
6575 }
6576
6577 /// Checks whether the given template argument is compatible with its
6578 /// template parameter.
CheckTemplateArgumentIsCompatibleWithParameter(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,Expr * Arg,QualType ArgType)6579 static bool CheckTemplateArgumentIsCompatibleWithParameter(
6580 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6581 Expr *Arg, QualType ArgType) {
6582 bool ObjCLifetimeConversion;
6583 if (ParamType->isPointerType() &&
6584 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
6585 S.IsQualificationConversion(ArgType, ParamType, false,
6586 ObjCLifetimeConversion)) {
6587 // For pointer-to-object types, qualification conversions are
6588 // permitted.
6589 } else {
6590 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
6591 if (!ParamRef->getPointeeType()->isFunctionType()) {
6592 // C++ [temp.arg.nontype]p5b3:
6593 // For a non-type template-parameter of type reference to
6594 // object, no conversions apply. The type referred to by the
6595 // reference may be more cv-qualified than the (otherwise
6596 // identical) type of the template- argument. The
6597 // template-parameter is bound directly to the
6598 // template-argument, which shall be an lvalue.
6599
6600 // FIXME: Other qualifiers?
6601 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
6602 unsigned ArgQuals = ArgType.getCVRQualifiers();
6603
6604 if ((ParamQuals | ArgQuals) != ParamQuals) {
6605 S.Diag(Arg->getBeginLoc(),
6606 diag::err_template_arg_ref_bind_ignores_quals)
6607 << ParamType << Arg->getType() << Arg->getSourceRange();
6608 S.Diag(Param->getLocation(), diag::note_template_param_here);
6609 return true;
6610 }
6611 }
6612 }
6613
6614 // At this point, the template argument refers to an object or
6615 // function with external linkage. We now need to check whether the
6616 // argument and parameter types are compatible.
6617 if (!S.Context.hasSameUnqualifiedType(ArgType,
6618 ParamType.getNonReferenceType())) {
6619 // We can't perform this conversion or binding.
6620 if (ParamType->isReferenceType())
6621 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
6622 << ParamType << ArgIn->getType() << Arg->getSourceRange();
6623 else
6624 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6625 << ArgIn->getType() << ParamType << Arg->getSourceRange();
6626 S.Diag(Param->getLocation(), diag::note_template_param_here);
6627 return true;
6628 }
6629 }
6630
6631 return false;
6632 }
6633
6634 /// Checks whether the given template argument is the address
6635 /// of an object or function according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & SugaredConverted,TemplateArgument & CanonicalConverted)6636 static bool CheckTemplateArgumentAddressOfObjectOrFunction(
6637 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6638 TemplateArgument &SugaredConverted, TemplateArgument &CanonicalConverted) {
6639 bool Invalid = false;
6640 Expr *Arg = ArgIn;
6641 QualType ArgType = Arg->getType();
6642
6643 bool AddressTaken = false;
6644 SourceLocation AddrOpLoc;
6645 if (S.getLangOpts().MicrosoftExt) {
6646 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
6647 // dereference and address-of operators.
6648 Arg = Arg->IgnoreParenCasts();
6649
6650 bool ExtWarnMSTemplateArg = false;
6651 UnaryOperatorKind FirstOpKind;
6652 SourceLocation FirstOpLoc;
6653 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6654 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
6655 if (UnOpKind == UO_Deref)
6656 ExtWarnMSTemplateArg = true;
6657 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
6658 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
6659 if (!AddrOpLoc.isValid()) {
6660 FirstOpKind = UnOpKind;
6661 FirstOpLoc = UnOp->getOperatorLoc();
6662 }
6663 } else
6664 break;
6665 }
6666 if (FirstOpLoc.isValid()) {
6667 if (ExtWarnMSTemplateArg)
6668 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
6669 << ArgIn->getSourceRange();
6670
6671 if (FirstOpKind == UO_AddrOf)
6672 AddressTaken = true;
6673 else if (Arg->getType()->isPointerType()) {
6674 // We cannot let pointers get dereferenced here, that is obviously not a
6675 // constant expression.
6676 assert(FirstOpKind == UO_Deref);
6677 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6678 << Arg->getSourceRange();
6679 }
6680 }
6681 } else {
6682 // See through any implicit casts we added to fix the type.
6683 Arg = Arg->IgnoreImpCasts();
6684
6685 // C++ [temp.arg.nontype]p1:
6686 //
6687 // A template-argument for a non-type, non-template
6688 // template-parameter shall be one of: [...]
6689 //
6690 // -- the address of an object or function with external
6691 // linkage, including function templates and function
6692 // template-ids but excluding non-static class members,
6693 // expressed as & id-expression where the & is optional if
6694 // the name refers to a function or array, or if the
6695 // corresponding template-parameter is a reference; or
6696
6697 // In C++98/03 mode, give an extension warning on any extra parentheses.
6698 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6699 bool ExtraParens = false;
6700 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6701 if (!Invalid && !ExtraParens) {
6702 S.Diag(Arg->getBeginLoc(),
6703 S.getLangOpts().CPlusPlus11
6704 ? diag::warn_cxx98_compat_template_arg_extra_parens
6705 : diag::ext_template_arg_extra_parens)
6706 << Arg->getSourceRange();
6707 ExtraParens = true;
6708 }
6709
6710 Arg = Parens->getSubExpr();
6711 }
6712
6713 while (SubstNonTypeTemplateParmExpr *subst =
6714 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6715 Arg = subst->getReplacement()->IgnoreImpCasts();
6716
6717 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6718 if (UnOp->getOpcode() == UO_AddrOf) {
6719 Arg = UnOp->getSubExpr();
6720 AddressTaken = true;
6721 AddrOpLoc = UnOp->getOperatorLoc();
6722 }
6723 }
6724
6725 while (SubstNonTypeTemplateParmExpr *subst =
6726 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6727 Arg = subst->getReplacement()->IgnoreImpCasts();
6728 }
6729
6730 ValueDecl *Entity = nullptr;
6731 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg))
6732 Entity = DRE->getDecl();
6733 else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg))
6734 Entity = CUE->getGuidDecl();
6735
6736 // If our parameter has pointer type, check for a null template value.
6737 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
6738 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
6739 Entity)) {
6740 case NPV_NullPointer:
6741 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6742 SugaredConverted = TemplateArgument(ParamType,
6743 /*isNullPtr=*/true);
6744 CanonicalConverted =
6745 TemplateArgument(S.Context.getCanonicalType(ParamType),
6746 /*isNullPtr=*/true);
6747 return false;
6748
6749 case NPV_Error:
6750 return true;
6751
6752 case NPV_NotNullPointer:
6753 break;
6754 }
6755 }
6756
6757 // Stop checking the precise nature of the argument if it is value dependent,
6758 // it should be checked when instantiated.
6759 if (Arg->isValueDependent()) {
6760 SugaredConverted = TemplateArgument(ArgIn);
6761 CanonicalConverted =
6762 S.Context.getCanonicalTemplateArgument(SugaredConverted);
6763 return false;
6764 }
6765
6766 if (!Entity) {
6767 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6768 << Arg->getSourceRange();
6769 S.Diag(Param->getLocation(), diag::note_template_param_here);
6770 return true;
6771 }
6772
6773 // Cannot refer to non-static data members
6774 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
6775 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
6776 << Entity << Arg->getSourceRange();
6777 S.Diag(Param->getLocation(), diag::note_template_param_here);
6778 return true;
6779 }
6780
6781 // Cannot refer to non-static member functions
6782 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
6783 if (!Method->isStatic()) {
6784 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
6785 << Method << Arg->getSourceRange();
6786 S.Diag(Param->getLocation(), diag::note_template_param_here);
6787 return true;
6788 }
6789 }
6790
6791 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
6792 VarDecl *Var = dyn_cast<VarDecl>(Entity);
6793 MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity);
6794
6795 // A non-type template argument must refer to an object or function.
6796 if (!Func && !Var && !Guid) {
6797 // We found something, but we don't know specifically what it is.
6798 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
6799 << Arg->getSourceRange();
6800 S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here);
6801 return true;
6802 }
6803
6804 // Address / reference template args must have external linkage in C++98.
6805 if (Entity->getFormalLinkage() == InternalLinkage) {
6806 S.Diag(Arg->getBeginLoc(),
6807 S.getLangOpts().CPlusPlus11
6808 ? diag::warn_cxx98_compat_template_arg_object_internal
6809 : diag::ext_template_arg_object_internal)
6810 << !Func << Entity << Arg->getSourceRange();
6811 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6812 << !Func;
6813 } else if (!Entity->hasLinkage()) {
6814 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
6815 << !Func << Entity << Arg->getSourceRange();
6816 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6817 << !Func;
6818 return true;
6819 }
6820
6821 if (Var) {
6822 // A value of reference type is not an object.
6823 if (Var->getType()->isReferenceType()) {
6824 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
6825 << Var->getType() << Arg->getSourceRange();
6826 S.Diag(Param->getLocation(), diag::note_template_param_here);
6827 return true;
6828 }
6829
6830 // A template argument must have static storage duration.
6831 if (Var->getTLSKind()) {
6832 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
6833 << Arg->getSourceRange();
6834 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
6835 return true;
6836 }
6837 }
6838
6839 if (AddressTaken && ParamType->isReferenceType()) {
6840 // If we originally had an address-of operator, but the
6841 // parameter has reference type, complain and (if things look
6842 // like they will work) drop the address-of operator.
6843 if (!S.Context.hasSameUnqualifiedType(Entity->getType(),
6844 ParamType.getNonReferenceType())) {
6845 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6846 << ParamType;
6847 S.Diag(Param->getLocation(), diag::note_template_param_here);
6848 return true;
6849 }
6850
6851 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6852 << ParamType
6853 << FixItHint::CreateRemoval(AddrOpLoc);
6854 S.Diag(Param->getLocation(), diag::note_template_param_here);
6855
6856 ArgType = Entity->getType();
6857 }
6858
6859 // If the template parameter has pointer type, either we must have taken the
6860 // address or the argument must decay to a pointer.
6861 if (!AddressTaken && ParamType->isPointerType()) {
6862 if (Func) {
6863 // Function-to-pointer decay.
6864 ArgType = S.Context.getPointerType(Func->getType());
6865 } else if (Entity->getType()->isArrayType()) {
6866 // Array-to-pointer decay.
6867 ArgType = S.Context.getArrayDecayedType(Entity->getType());
6868 } else {
6869 // If the template parameter has pointer type but the address of
6870 // this object was not taken, complain and (possibly) recover by
6871 // taking the address of the entity.
6872 ArgType = S.Context.getPointerType(Entity->getType());
6873 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
6874 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6875 << ParamType;
6876 S.Diag(Param->getLocation(), diag::note_template_param_here);
6877 return true;
6878 }
6879
6880 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6881 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
6882
6883 S.Diag(Param->getLocation(), diag::note_template_param_here);
6884 }
6885 }
6886
6887 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
6888 Arg, ArgType))
6889 return true;
6890
6891 // Create the template argument.
6892 SugaredConverted = TemplateArgument(Entity, ParamType);
6893 CanonicalConverted =
6894 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
6895 S.Context.getCanonicalType(ParamType));
6896 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
6897 return false;
6898 }
6899
6900 /// Checks whether the given template argument is a pointer to
6901 /// member constant according to C++ [temp.arg.nontype]p1.
6902 static bool
CheckTemplateArgumentPointerToMember(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * & ResultArg,TemplateArgument & SugaredConverted,TemplateArgument & CanonicalConverted)6903 CheckTemplateArgumentPointerToMember(Sema &S, NonTypeTemplateParmDecl *Param,
6904 QualType ParamType, Expr *&ResultArg,
6905 TemplateArgument &SugaredConverted,
6906 TemplateArgument &CanonicalConverted) {
6907 bool Invalid = false;
6908
6909 Expr *Arg = ResultArg;
6910 bool ObjCLifetimeConversion;
6911
6912 // C++ [temp.arg.nontype]p1:
6913 //
6914 // A template-argument for a non-type, non-template
6915 // template-parameter shall be one of: [...]
6916 //
6917 // -- a pointer to member expressed as described in 5.3.1.
6918 DeclRefExpr *DRE = nullptr;
6919
6920 // In C++98/03 mode, give an extension warning on any extra parentheses.
6921 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6922 bool ExtraParens = false;
6923 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6924 if (!Invalid && !ExtraParens) {
6925 S.Diag(Arg->getBeginLoc(),
6926 S.getLangOpts().CPlusPlus11
6927 ? diag::warn_cxx98_compat_template_arg_extra_parens
6928 : diag::ext_template_arg_extra_parens)
6929 << Arg->getSourceRange();
6930 ExtraParens = true;
6931 }
6932
6933 Arg = Parens->getSubExpr();
6934 }
6935
6936 while (SubstNonTypeTemplateParmExpr *subst =
6937 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6938 Arg = subst->getReplacement()->IgnoreImpCasts();
6939
6940 // A pointer-to-member constant written &Class::member.
6941 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6942 if (UnOp->getOpcode() == UO_AddrOf) {
6943 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
6944 if (DRE && !DRE->getQualifier())
6945 DRE = nullptr;
6946 }
6947 }
6948 // A constant of pointer-to-member type.
6949 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
6950 ValueDecl *VD = DRE->getDecl();
6951 if (VD->getType()->isMemberPointerType()) {
6952 if (isa<NonTypeTemplateParmDecl>(VD)) {
6953 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6954 SugaredConverted = TemplateArgument(Arg);
6955 CanonicalConverted =
6956 S.Context.getCanonicalTemplateArgument(SugaredConverted);
6957 } else {
6958 SugaredConverted = TemplateArgument(VD, ParamType);
6959 CanonicalConverted =
6960 TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
6961 S.Context.getCanonicalType(ParamType));
6962 }
6963 return Invalid;
6964 }
6965 }
6966
6967 DRE = nullptr;
6968 }
6969
6970 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
6971
6972 // Check for a null pointer value.
6973 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
6974 Entity)) {
6975 case NPV_Error:
6976 return true;
6977 case NPV_NullPointer:
6978 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6979 SugaredConverted = TemplateArgument(ParamType,
6980 /*isNullPtr*/ true);
6981 CanonicalConverted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6982 /*isNullPtr*/ true);
6983 return false;
6984 case NPV_NotNullPointer:
6985 break;
6986 }
6987
6988 if (S.IsQualificationConversion(ResultArg->getType(),
6989 ParamType.getNonReferenceType(), false,
6990 ObjCLifetimeConversion)) {
6991 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
6992 ResultArg->getValueKind())
6993 .get();
6994 } else if (!S.Context.hasSameUnqualifiedType(
6995 ResultArg->getType(), ParamType.getNonReferenceType())) {
6996 // We can't perform this conversion.
6997 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
6998 << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
6999 S.Diag(Param->getLocation(), diag::note_template_param_here);
7000 return true;
7001 }
7002
7003 if (!DRE)
7004 return S.Diag(Arg->getBeginLoc(),
7005 diag::err_template_arg_not_pointer_to_member_form)
7006 << Arg->getSourceRange();
7007
7008 if (isa<FieldDecl>(DRE->getDecl()) ||
7009 isa<IndirectFieldDecl>(DRE->getDecl()) ||
7010 isa<CXXMethodDecl>(DRE->getDecl())) {
7011 assert((isa<FieldDecl>(DRE->getDecl()) ||
7012 isa<IndirectFieldDecl>(DRE->getDecl()) ||
7013 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
7014 "Only non-static member pointers can make it here");
7015
7016 // Okay: this is the address of a non-static member, and therefore
7017 // a member pointer constant.
7018 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7019 SugaredConverted = TemplateArgument(Arg);
7020 CanonicalConverted =
7021 S.Context.getCanonicalTemplateArgument(SugaredConverted);
7022 } else {
7023 ValueDecl *D = DRE->getDecl();
7024 SugaredConverted = TemplateArgument(D, ParamType);
7025 CanonicalConverted =
7026 TemplateArgument(cast<ValueDecl>(D->getCanonicalDecl()),
7027 S.Context.getCanonicalType(ParamType));
7028 }
7029 return Invalid;
7030 }
7031
7032 // We found something else, but we don't know specifically what it is.
7033 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
7034 << Arg->getSourceRange();
7035 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
7036 return true;
7037 }
7038
7039 /// Check a template argument against its corresponding
7040 /// non-type template parameter.
7041 ///
7042 /// This routine implements the semantics of C++ [temp.arg.nontype].
7043 /// If an error occurred, it returns ExprError(); otherwise, it
7044 /// returns the converted template argument. \p ParamType is the
7045 /// type of the non-type template parameter after it has been instantiated.
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg,TemplateArgument & SugaredConverted,TemplateArgument & CanonicalConverted,CheckTemplateArgumentKind CTAK)7046 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
7047 QualType ParamType, Expr *Arg,
7048 TemplateArgument &SugaredConverted,
7049 TemplateArgument &CanonicalConverted,
7050 CheckTemplateArgumentKind CTAK) {
7051 SourceLocation StartLoc = Arg->getBeginLoc();
7052
7053 // If the parameter type somehow involves auto, deduce the type now.
7054 DeducedType *DeducedT = ParamType->getContainedDeducedType();
7055 if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) {
7056 // During template argument deduction, we allow 'decltype(auto)' to
7057 // match an arbitrary dependent argument.
7058 // FIXME: The language rules don't say what happens in this case.
7059 // FIXME: We get an opaque dependent type out of decltype(auto) if the
7060 // expression is merely instantiation-dependent; is this enough?
7061 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
7062 auto *AT = dyn_cast<AutoType>(DeducedT);
7063 if (AT && AT->isDecltypeAuto()) {
7064 SugaredConverted = TemplateArgument(Arg);
7065 CanonicalConverted = TemplateArgument(
7066 Context.getCanonicalTemplateArgument(SugaredConverted));
7067 return Arg;
7068 }
7069 }
7070
7071 // When checking a deduced template argument, deduce from its type even if
7072 // the type is dependent, in order to check the types of non-type template
7073 // arguments line up properly in partial ordering.
7074 Expr *DeductionArg = Arg;
7075 if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg))
7076 DeductionArg = PE->getPattern();
7077 TypeSourceInfo *TSI =
7078 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation());
7079 if (isa<DeducedTemplateSpecializationType>(DeducedT)) {
7080 InitializedEntity Entity =
7081 InitializedEntity::InitializeTemplateParameter(ParamType, Param);
7082 InitializationKind Kind = InitializationKind::CreateForInit(
7083 DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg);
7084 Expr *Inits[1] = {DeductionArg};
7085 ParamType =
7086 DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits);
7087 if (ParamType.isNull())
7088 return ExprError();
7089 } else {
7090 TemplateDeductionInfo Info(DeductionArg->getExprLoc(),
7091 Param->getDepth() + 1);
7092 ParamType = QualType();
7093 TemplateDeductionResult Result =
7094 DeduceAutoType(TSI->getTypeLoc(), DeductionArg, ParamType, Info,
7095 /*DependentDeduction=*/true,
7096 // We do not check constraints right now because the
7097 // immediately-declared constraint of the auto type is
7098 // also an associated constraint, and will be checked
7099 // along with the other associated constraints after
7100 // checking the template argument list.
7101 /*IgnoreConstraints=*/true);
7102 if (Result == TDK_AlreadyDiagnosed) {
7103 if (ParamType.isNull())
7104 return ExprError();
7105 } else if (Result != TDK_Success) {
7106 Diag(Arg->getExprLoc(),
7107 diag::err_non_type_template_parm_type_deduction_failure)
7108 << Param->getDeclName() << Param->getType() << Arg->getType()
7109 << Arg->getSourceRange();
7110 Diag(Param->getLocation(), diag::note_template_param_here);
7111 return ExprError();
7112 }
7113 }
7114 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
7115 // an error. The error message normally references the parameter
7116 // declaration, but here we'll pass the argument location because that's
7117 // where the parameter type is deduced.
7118 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
7119 if (ParamType.isNull()) {
7120 Diag(Param->getLocation(), diag::note_template_param_here);
7121 return ExprError();
7122 }
7123 }
7124
7125 // We should have already dropped all cv-qualifiers by now.
7126 assert(!ParamType.hasQualifiers() &&
7127 "non-type template parameter type cannot be qualified");
7128
7129 // FIXME: When Param is a reference, should we check that Arg is an lvalue?
7130 if (CTAK == CTAK_Deduced &&
7131 (ParamType->isReferenceType()
7132 ? !Context.hasSameType(ParamType.getNonReferenceType(),
7133 Arg->getType())
7134 : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) {
7135 // FIXME: If either type is dependent, we skip the check. This isn't
7136 // correct, since during deduction we're supposed to have replaced each
7137 // template parameter with some unique (non-dependent) placeholder.
7138 // FIXME: If the argument type contains 'auto', we carry on and fail the
7139 // type check in order to force specific types to be more specialized than
7140 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
7141 // work. Similarly for CTAD, when comparing 'A<x>' against 'A'.
7142 if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
7143 !Arg->getType()->getContainedDeducedType()) {
7144 SugaredConverted = TemplateArgument(Arg);
7145 CanonicalConverted = TemplateArgument(
7146 Context.getCanonicalTemplateArgument(SugaredConverted));
7147 return Arg;
7148 }
7149 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
7150 // we should actually be checking the type of the template argument in P,
7151 // not the type of the template argument deduced from A, against the
7152 // template parameter type.
7153 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
7154 << Arg->getType()
7155 << ParamType.getUnqualifiedType();
7156 Diag(Param->getLocation(), diag::note_template_param_here);
7157 return ExprError();
7158 }
7159
7160 // If either the parameter has a dependent type or the argument is
7161 // type-dependent, there's nothing we can check now.
7162 if (ParamType->isDependentType() || Arg->isTypeDependent()) {
7163 // Force the argument to the type of the parameter to maintain invariants.
7164 auto *PE = dyn_cast<PackExpansionExpr>(Arg);
7165 if (PE)
7166 Arg = PE->getPattern();
7167 ExprResult E = ImpCastExprToType(
7168 Arg, ParamType.getNonLValueExprType(Context), CK_Dependent,
7169 ParamType->isLValueReferenceType() ? VK_LValue
7170 : ParamType->isRValueReferenceType() ? VK_XValue
7171 : VK_PRValue);
7172 if (E.isInvalid())
7173 return ExprError();
7174 if (PE) {
7175 // Recreate a pack expansion if we unwrapped one.
7176 E = new (Context)
7177 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
7178 PE->getNumExpansions());
7179 }
7180 SugaredConverted = TemplateArgument(E.get());
7181 CanonicalConverted = TemplateArgument(
7182 Context.getCanonicalTemplateArgument(SugaredConverted));
7183 return E;
7184 }
7185
7186 // The initialization of the parameter from the argument is
7187 // a constant-evaluated context.
7188 EnterExpressionEvaluationContext ConstantEvaluated(
7189 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
7190
7191 if (getLangOpts().CPlusPlus17) {
7192 QualType CanonParamType = Context.getCanonicalType(ParamType);
7193
7194 // Avoid making a copy when initializing a template parameter of class type
7195 // from a template parameter object of the same type. This is going beyond
7196 // the standard, but is required for soundness: in
7197 // template<A a> struct X { X *p; X<a> *q; };
7198 // ... we need p and q to have the same type.
7199 //
7200 // Similarly, don't inject a call to a copy constructor when initializing
7201 // from a template parameter of the same type.
7202 Expr *InnerArg = Arg->IgnoreParenImpCasts();
7203 if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) &&
7204 Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) {
7205 NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl();
7206 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
7207
7208 SugaredConverted = TemplateArgument(TPO, ParamType);
7209 CanonicalConverted =
7210 TemplateArgument(TPO->getCanonicalDecl(), CanonParamType);
7211 return Arg;
7212 }
7213 if (isa<NonTypeTemplateParmDecl>(ND)) {
7214 SugaredConverted = TemplateArgument(Arg);
7215 CanonicalConverted =
7216 Context.getCanonicalTemplateArgument(SugaredConverted);
7217 return Arg;
7218 }
7219 }
7220
7221 // C++17 [temp.arg.nontype]p1:
7222 // A template-argument for a non-type template parameter shall be
7223 // a converted constant expression of the type of the template-parameter.
7224 APValue Value;
7225 ExprResult ArgResult = CheckConvertedConstantExpression(
7226 Arg, ParamType, Value, CCEK_TemplateArg, Param);
7227 if (ArgResult.isInvalid())
7228 return ExprError();
7229
7230 // For a value-dependent argument, CheckConvertedConstantExpression is
7231 // permitted (and expected) to be unable to determine a value.
7232 if (ArgResult.get()->isValueDependent()) {
7233 SugaredConverted = TemplateArgument(ArgResult.get());
7234 CanonicalConverted =
7235 Context.getCanonicalTemplateArgument(SugaredConverted);
7236 return ArgResult;
7237 }
7238
7239 // Convert the APValue to a TemplateArgument.
7240 switch (Value.getKind()) {
7241 case APValue::None:
7242 assert(ParamType->isNullPtrType());
7243 SugaredConverted = TemplateArgument(ParamType, /*isNullPtr=*/true);
7244 CanonicalConverted = TemplateArgument(CanonParamType, /*isNullPtr=*/true);
7245 break;
7246 case APValue::Indeterminate:
7247 llvm_unreachable("result of constant evaluation should be initialized");
7248 break;
7249 case APValue::Int:
7250 assert(ParamType->isIntegralOrEnumerationType());
7251 SugaredConverted = TemplateArgument(Context, Value.getInt(), ParamType);
7252 CanonicalConverted =
7253 TemplateArgument(Context, Value.getInt(), CanonParamType);
7254 break;
7255 case APValue::MemberPointer: {
7256 assert(ParamType->isMemberPointerType());
7257
7258 // FIXME: We need TemplateArgument representation and mangling for these.
7259 if (!Value.getMemberPointerPath().empty()) {
7260 Diag(Arg->getBeginLoc(),
7261 diag::err_template_arg_member_ptr_base_derived_not_supported)
7262 << Value.getMemberPointerDecl() << ParamType
7263 << Arg->getSourceRange();
7264 return ExprError();
7265 }
7266
7267 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
7268 SugaredConverted = VD ? TemplateArgument(VD, ParamType)
7269 : TemplateArgument(ParamType, /*isNullPtr=*/true);
7270 CanonicalConverted =
7271 VD ? TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
7272 CanonParamType)
7273 : TemplateArgument(CanonParamType, /*isNullPtr=*/true);
7274 break;
7275 }
7276 case APValue::LValue: {
7277 // For a non-type template-parameter of pointer or reference type,
7278 // the value of the constant expression shall not refer to
7279 assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
7280 ParamType->isNullPtrType());
7281 // -- a temporary object
7282 // -- a string literal
7283 // -- the result of a typeid expression, or
7284 // -- a predefined __func__ variable
7285 APValue::LValueBase Base = Value.getLValueBase();
7286 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
7287 if (Base &&
7288 (!VD ||
7289 isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(VD))) {
7290 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
7291 << Arg->getSourceRange();
7292 return ExprError();
7293 }
7294 // -- a subobject
7295 // FIXME: Until C++20
7296 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
7297 VD && VD->getType()->isArrayType() &&
7298 Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
7299 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
7300 // Per defect report (no number yet):
7301 // ... other than a pointer to the first element of a complete array
7302 // object.
7303 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
7304 Value.isLValueOnePastTheEnd()) {
7305 Diag(StartLoc, diag::err_non_type_template_arg_subobject)
7306 << Value.getAsString(Context, ParamType);
7307 return ExprError();
7308 }
7309 assert((VD || !ParamType->isReferenceType()) &&
7310 "null reference should not be a constant expression");
7311 assert((!VD || !ParamType->isNullPtrType()) &&
7312 "non-null value of type nullptr_t?");
7313
7314 SugaredConverted = VD ? TemplateArgument(VD, ParamType)
7315 : TemplateArgument(ParamType, /*isNullPtr=*/true);
7316 CanonicalConverted =
7317 VD ? TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
7318 CanonParamType)
7319 : TemplateArgument(CanonParamType, /*isNullPtr=*/true);
7320 break;
7321 }
7322 case APValue::Struct:
7323 case APValue::Union: {
7324 // Get or create the corresponding template parameter object.
7325 TemplateParamObjectDecl *D =
7326 Context.getTemplateParamObjectDecl(ParamType, Value);
7327 SugaredConverted = TemplateArgument(D, ParamType);
7328 CanonicalConverted =
7329 TemplateArgument(D->getCanonicalDecl(), CanonParamType);
7330 break;
7331 }
7332 case APValue::AddrLabelDiff:
7333 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
7334 case APValue::FixedPoint:
7335 case APValue::Float:
7336 case APValue::ComplexInt:
7337 case APValue::ComplexFloat:
7338 case APValue::Vector:
7339 case APValue::Array:
7340 return Diag(StartLoc, diag::err_non_type_template_arg_unsupported)
7341 << ParamType;
7342 }
7343
7344 return ArgResult.get();
7345 }
7346
7347 // C++ [temp.arg.nontype]p5:
7348 // The following conversions are performed on each expression used
7349 // as a non-type template-argument. If a non-type
7350 // template-argument cannot be converted to the type of the
7351 // corresponding template-parameter then the program is
7352 // ill-formed.
7353 if (ParamType->isIntegralOrEnumerationType()) {
7354 // C++11:
7355 // -- for a non-type template-parameter of integral or
7356 // enumeration type, conversions permitted in a converted
7357 // constant expression are applied.
7358 //
7359 // C++98:
7360 // -- for a non-type template-parameter of integral or
7361 // enumeration type, integral promotions (4.5) and integral
7362 // conversions (4.7) are applied.
7363
7364 if (getLangOpts().CPlusPlus11) {
7365 // C++ [temp.arg.nontype]p1:
7366 // A template-argument for a non-type, non-template template-parameter
7367 // shall be one of:
7368 //
7369 // -- for a non-type template-parameter of integral or enumeration
7370 // type, a converted constant expression of the type of the
7371 // template-parameter; or
7372 llvm::APSInt Value;
7373 ExprResult ArgResult =
7374 CheckConvertedConstantExpression(Arg, ParamType, Value,
7375 CCEK_TemplateArg);
7376 if (ArgResult.isInvalid())
7377 return ExprError();
7378
7379 // We can't check arbitrary value-dependent arguments.
7380 if (ArgResult.get()->isValueDependent()) {
7381 SugaredConverted = TemplateArgument(ArgResult.get());
7382 CanonicalConverted =
7383 Context.getCanonicalTemplateArgument(SugaredConverted);
7384 return ArgResult;
7385 }
7386
7387 // Widen the argument value to sizeof(parameter type). This is almost
7388 // always a no-op, except when the parameter type is bool. In
7389 // that case, this may extend the argument from 1 bit to 8 bits.
7390 QualType IntegerType = ParamType;
7391 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
7392 IntegerType = Enum->getDecl()->getIntegerType();
7393 Value = Value.extOrTrunc(IntegerType->isBitIntType()
7394 ? Context.getIntWidth(IntegerType)
7395 : Context.getTypeSize(IntegerType));
7396
7397 SugaredConverted = TemplateArgument(Context, Value, ParamType);
7398 CanonicalConverted =
7399 TemplateArgument(Context, Value, Context.getCanonicalType(ParamType));
7400 return ArgResult;
7401 }
7402
7403 ExprResult ArgResult = DefaultLvalueConversion(Arg);
7404 if (ArgResult.isInvalid())
7405 return ExprError();
7406 Arg = ArgResult.get();
7407
7408 QualType ArgType = Arg->getType();
7409
7410 // C++ [temp.arg.nontype]p1:
7411 // A template-argument for a non-type, non-template
7412 // template-parameter shall be one of:
7413 //
7414 // -- an integral constant-expression of integral or enumeration
7415 // type; or
7416 // -- the name of a non-type template-parameter; or
7417 llvm::APSInt Value;
7418 if (!ArgType->isIntegralOrEnumerationType()) {
7419 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
7420 << ArgType << Arg->getSourceRange();
7421 Diag(Param->getLocation(), diag::note_template_param_here);
7422 return ExprError();
7423 } else if (!Arg->isValueDependent()) {
7424 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
7425 QualType T;
7426
7427 public:
7428 TmplArgICEDiagnoser(QualType T) : T(T) { }
7429
7430 SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
7431 SourceLocation Loc) override {
7432 return S.Diag(Loc, diag::err_template_arg_not_ice) << T;
7433 }
7434 } Diagnoser(ArgType);
7435
7436 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get();
7437 if (!Arg)
7438 return ExprError();
7439 }
7440
7441 // From here on out, all we care about is the unqualified form
7442 // of the argument type.
7443 ArgType = ArgType.getUnqualifiedType();
7444
7445 // Try to convert the argument to the parameter's type.
7446 if (Context.hasSameType(ParamType, ArgType)) {
7447 // Okay: no conversion necessary
7448 } else if (ParamType->isBooleanType()) {
7449 // This is an integral-to-boolean conversion.
7450 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
7451 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
7452 !ParamType->isEnumeralType()) {
7453 // This is an integral promotion or conversion.
7454 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
7455 } else {
7456 // We can't perform this conversion.
7457 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
7458 << Arg->getType() << ParamType << Arg->getSourceRange();
7459 Diag(Param->getLocation(), diag::note_template_param_here);
7460 return ExprError();
7461 }
7462
7463 // Add the value of this argument to the list of converted
7464 // arguments. We use the bitwidth and signedness of the template
7465 // parameter.
7466 if (Arg->isValueDependent()) {
7467 // The argument is value-dependent. Create a new
7468 // TemplateArgument with the converted expression.
7469 SugaredConverted = TemplateArgument(Arg);
7470 CanonicalConverted =
7471 Context.getCanonicalTemplateArgument(SugaredConverted);
7472 return Arg;
7473 }
7474
7475 QualType IntegerType = ParamType;
7476 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) {
7477 IntegerType = Enum->getDecl()->getIntegerType();
7478 }
7479
7480 if (ParamType->isBooleanType()) {
7481 // Value must be zero or one.
7482 Value = Value != 0;
7483 unsigned AllowedBits = Context.getTypeSize(IntegerType);
7484 if (Value.getBitWidth() != AllowedBits)
7485 Value = Value.extOrTrunc(AllowedBits);
7486 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7487 } else {
7488 llvm::APSInt OldValue = Value;
7489
7490 // Coerce the template argument's value to the value it will have
7491 // based on the template parameter's type.
7492 unsigned AllowedBits = IntegerType->isBitIntType()
7493 ? Context.getIntWidth(IntegerType)
7494 : Context.getTypeSize(IntegerType);
7495 if (Value.getBitWidth() != AllowedBits)
7496 Value = Value.extOrTrunc(AllowedBits);
7497 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7498
7499 // Complain if an unsigned parameter received a negative value.
7500 if (IntegerType->isUnsignedIntegerOrEnumerationType() &&
7501 (OldValue.isSigned() && OldValue.isNegative())) {
7502 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
7503 << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7504 << Arg->getSourceRange();
7505 Diag(Param->getLocation(), diag::note_template_param_here);
7506 }
7507
7508 // Complain if we overflowed the template parameter's type.
7509 unsigned RequiredBits;
7510 if (IntegerType->isUnsignedIntegerOrEnumerationType())
7511 RequiredBits = OldValue.getActiveBits();
7512 else if (OldValue.isUnsigned())
7513 RequiredBits = OldValue.getActiveBits() + 1;
7514 else
7515 RequiredBits = OldValue.getMinSignedBits();
7516 if (RequiredBits > AllowedBits) {
7517 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
7518 << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7519 << Arg->getSourceRange();
7520 Diag(Param->getLocation(), diag::note_template_param_here);
7521 }
7522 }
7523
7524 QualType T = ParamType->isEnumeralType() ? ParamType : IntegerType;
7525 SugaredConverted = TemplateArgument(Context, Value, T);
7526 CanonicalConverted =
7527 TemplateArgument(Context, Value, Context.getCanonicalType(T));
7528 return Arg;
7529 }
7530
7531 QualType ArgType = Arg->getType();
7532 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
7533
7534 // Handle pointer-to-function, reference-to-function, and
7535 // pointer-to-member-function all in (roughly) the same way.
7536 if (// -- For a non-type template-parameter of type pointer to
7537 // function, only the function-to-pointer conversion (4.3) is
7538 // applied. If the template-argument represents a set of
7539 // overloaded functions (or a pointer to such), the matching
7540 // function is selected from the set (13.4).
7541 (ParamType->isPointerType() &&
7542 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
7543 // -- For a non-type template-parameter of type reference to
7544 // function, no conversions apply. If the template-argument
7545 // represents a set of overloaded functions, the matching
7546 // function is selected from the set (13.4).
7547 (ParamType->isReferenceType() &&
7548 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
7549 // -- For a non-type template-parameter of type pointer to
7550 // member function, no conversions apply. If the
7551 // template-argument represents a set of overloaded member
7552 // functions, the matching member function is selected from
7553 // the set (13.4).
7554 (ParamType->isMemberPointerType() &&
7555 ParamType->castAs<MemberPointerType>()->getPointeeType()
7556 ->isFunctionType())) {
7557
7558 if (Arg->getType() == Context.OverloadTy) {
7559 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
7560 true,
7561 FoundResult)) {
7562 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7563 return ExprError();
7564
7565 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7566 ArgType = Arg->getType();
7567 } else
7568 return ExprError();
7569 }
7570
7571 if (!ParamType->isMemberPointerType()) {
7572 if (CheckTemplateArgumentAddressOfObjectOrFunction(
7573 *this, Param, ParamType, Arg, SugaredConverted,
7574 CanonicalConverted))
7575 return ExprError();
7576 return Arg;
7577 }
7578
7579 if (CheckTemplateArgumentPointerToMember(
7580 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7581 return ExprError();
7582 return Arg;
7583 }
7584
7585 if (ParamType->isPointerType()) {
7586 // -- for a non-type template-parameter of type pointer to
7587 // object, qualification conversions (4.4) and the
7588 // array-to-pointer conversion (4.2) are applied.
7589 // C++0x also allows a value of std::nullptr_t.
7590 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
7591 "Only object pointers allowed here");
7592
7593 if (CheckTemplateArgumentAddressOfObjectOrFunction(
7594 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7595 return ExprError();
7596 return Arg;
7597 }
7598
7599 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
7600 // -- For a non-type template-parameter of type reference to
7601 // object, no conversions apply. The type referred to by the
7602 // reference may be more cv-qualified than the (otherwise
7603 // identical) type of the template-argument. The
7604 // template-parameter is bound directly to the
7605 // template-argument, which must be an lvalue.
7606 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
7607 "Only object references allowed here");
7608
7609 if (Arg->getType() == Context.OverloadTy) {
7610 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
7611 ParamRefType->getPointeeType(),
7612 true,
7613 FoundResult)) {
7614 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7615 return ExprError();
7616
7617 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7618 ArgType = Arg->getType();
7619 } else
7620 return ExprError();
7621 }
7622
7623 if (CheckTemplateArgumentAddressOfObjectOrFunction(
7624 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7625 return ExprError();
7626 return Arg;
7627 }
7628
7629 // Deal with parameters of type std::nullptr_t.
7630 if (ParamType->isNullPtrType()) {
7631 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7632 SugaredConverted = TemplateArgument(Arg);
7633 CanonicalConverted =
7634 Context.getCanonicalTemplateArgument(SugaredConverted);
7635 return Arg;
7636 }
7637
7638 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
7639 case NPV_NotNullPointer:
7640 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
7641 << Arg->getType() << ParamType;
7642 Diag(Param->getLocation(), diag::note_template_param_here);
7643 return ExprError();
7644
7645 case NPV_Error:
7646 return ExprError();
7647
7648 case NPV_NullPointer:
7649 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7650 SugaredConverted = TemplateArgument(ParamType,
7651 /*isNullPtr=*/true);
7652 CanonicalConverted = TemplateArgument(Context.getCanonicalType(ParamType),
7653 /*isNullPtr=*/true);
7654 return Arg;
7655 }
7656 }
7657
7658 // -- For a non-type template-parameter of type pointer to data
7659 // member, qualification conversions (4.4) are applied.
7660 assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
7661
7662 if (CheckTemplateArgumentPointerToMember(
7663 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7664 return ExprError();
7665 return Arg;
7666 }
7667
7668 static void DiagnoseTemplateParameterListArityMismatch(
7669 Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
7670 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
7671
7672 /// Check a template argument against its corresponding
7673 /// template template parameter.
7674 ///
7675 /// This routine implements the semantics of C++ [temp.arg.template].
7676 /// It returns true if an error occurred, and false otherwise.
CheckTemplateTemplateArgument(TemplateTemplateParmDecl * Param,TemplateParameterList * Params,TemplateArgumentLoc & Arg)7677 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7678 TemplateParameterList *Params,
7679 TemplateArgumentLoc &Arg) {
7680 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
7681 TemplateDecl *Template = Name.getAsTemplateDecl();
7682 if (!Template) {
7683 // Any dependent template name is fine.
7684 assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
7685 return false;
7686 }
7687
7688 if (Template->isInvalidDecl())
7689 return true;
7690
7691 // C++0x [temp.arg.template]p1:
7692 // A template-argument for a template template-parameter shall be
7693 // the name of a class template or an alias template, expressed as an
7694 // id-expression. When the template-argument names a class template, only
7695 // primary class templates are considered when matching the
7696 // template template argument with the corresponding parameter;
7697 // partial specializations are not considered even if their
7698 // parameter lists match that of the template template parameter.
7699 //
7700 // Note that we also allow template template parameters here, which
7701 // will happen when we are dealing with, e.g., class template
7702 // partial specializations.
7703 if (!isa<ClassTemplateDecl>(Template) &&
7704 !isa<TemplateTemplateParmDecl>(Template) &&
7705 !isa<TypeAliasTemplateDecl>(Template) &&
7706 !isa<BuiltinTemplateDecl>(Template)) {
7707 assert(isa<FunctionTemplateDecl>(Template) &&
7708 "Only function templates are possible here");
7709 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
7710 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
7711 << Template;
7712 }
7713
7714 // C++1z [temp.arg.template]p3: (DR 150)
7715 // A template-argument matches a template template-parameter P when P
7716 // is at least as specialized as the template-argument A.
7717 // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a
7718 // defect report resolution from C++17 and shouldn't be introduced by
7719 // concepts.
7720 if (getLangOpts().RelaxedTemplateTemplateArgs) {
7721 // Quick check for the common case:
7722 // If P contains a parameter pack, then A [...] matches P if each of A's
7723 // template parameters matches the corresponding template parameter in
7724 // the template-parameter-list of P.
7725 if (TemplateParameterListsAreEqual(
7726 Template->getTemplateParameters(), Params, false,
7727 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) &&
7728 // If the argument has no associated constraints, then the parameter is
7729 // definitely at least as specialized as the argument.
7730 // Otherwise - we need a more thorough check.
7731 !Template->hasAssociatedConstraints())
7732 return false;
7733
7734 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
7735 Arg.getLocation())) {
7736 // P2113
7737 // C++20[temp.func.order]p2
7738 // [...] If both deductions succeed, the partial ordering selects the
7739 // more constrained template (if one exists) as determined below.
7740 SmallVector<const Expr *, 3> ParamsAC, TemplateAC;
7741 Params->getAssociatedConstraints(ParamsAC);
7742 // C++2a[temp.arg.template]p3
7743 // [...] In this comparison, if P is unconstrained, the constraints on A
7744 // are not considered.
7745 if (ParamsAC.empty())
7746 return false;
7747
7748 Template->getAssociatedConstraints(TemplateAC);
7749
7750 bool IsParamAtLeastAsConstrained;
7751 if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
7752 IsParamAtLeastAsConstrained))
7753 return true;
7754 if (!IsParamAtLeastAsConstrained) {
7755 Diag(Arg.getLocation(),
7756 diag::err_template_template_parameter_not_at_least_as_constrained)
7757 << Template << Param << Arg.getSourceRange();
7758 Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
7759 Diag(Template->getLocation(), diag::note_entity_declared_at)
7760 << Template;
7761 MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
7762 TemplateAC);
7763 return true;
7764 }
7765 return false;
7766 }
7767 // FIXME: Produce better diagnostics for deduction failures.
7768 }
7769
7770 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
7771 Params,
7772 true,
7773 TPL_TemplateTemplateArgumentMatch,
7774 Arg.getLocation());
7775 }
7776
7777 /// Given a non-type template argument that refers to a
7778 /// declaration and the type of its corresponding non-type template
7779 /// parameter, produce an expression that properly refers to that
7780 /// declaration.
7781 ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc)7782 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7783 QualType ParamType,
7784 SourceLocation Loc) {
7785 // C++ [temp.param]p8:
7786 //
7787 // A non-type template-parameter of type "array of T" or
7788 // "function returning T" is adjusted to be of type "pointer to
7789 // T" or "pointer to function returning T", respectively.
7790 if (ParamType->isArrayType())
7791 ParamType = Context.getArrayDecayedType(ParamType);
7792 else if (ParamType->isFunctionType())
7793 ParamType = Context.getPointerType(ParamType);
7794
7795 // For a NULL non-type template argument, return nullptr casted to the
7796 // parameter's type.
7797 if (Arg.getKind() == TemplateArgument::NullPtr) {
7798 return ImpCastExprToType(
7799 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
7800 ParamType,
7801 ParamType->getAs<MemberPointerType>()
7802 ? CK_NullToMemberPointer
7803 : CK_NullToPointer);
7804 }
7805 assert(Arg.getKind() == TemplateArgument::Declaration &&
7806 "Only declaration template arguments permitted here");
7807
7808 ValueDecl *VD = Arg.getAsDecl();
7809
7810 CXXScopeSpec SS;
7811 if (ParamType->isMemberPointerType()) {
7812 // If this is a pointer to member, we need to use a qualified name to
7813 // form a suitable pointer-to-member constant.
7814 assert(VD->getDeclContext()->isRecord() &&
7815 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
7816 isa<IndirectFieldDecl>(VD)));
7817 QualType ClassType
7818 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
7819 NestedNameSpecifier *Qualifier
7820 = NestedNameSpecifier::Create(Context, nullptr, false,
7821 ClassType.getTypePtr());
7822 SS.MakeTrivial(Context, Qualifier, Loc);
7823 }
7824
7825 ExprResult RefExpr = BuildDeclarationNameExpr(
7826 SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
7827 if (RefExpr.isInvalid())
7828 return ExprError();
7829
7830 // For a pointer, the argument declaration is the pointee. Take its address.
7831 QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
7832 if (ParamType->isPointerType() && !ElemT.isNull() &&
7833 Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
7834 // Decay an array argument if we want a pointer to its first element.
7835 RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
7836 if (RefExpr.isInvalid())
7837 return ExprError();
7838 } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
7839 // For any other pointer, take the address (or form a pointer-to-member).
7840 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
7841 if (RefExpr.isInvalid())
7842 return ExprError();
7843 } else if (ParamType->isRecordType()) {
7844 assert(isa<TemplateParamObjectDecl>(VD) &&
7845 "arg for class template param not a template parameter object");
7846 // No conversions apply in this case.
7847 return RefExpr;
7848 } else {
7849 assert(ParamType->isReferenceType() &&
7850 "unexpected type for decl template argument");
7851 }
7852
7853 // At this point we should have the right value category.
7854 assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&
7855 "value kind mismatch for non-type template argument");
7856
7857 // The type of the template parameter can differ from the type of the
7858 // argument in various ways; convert it now if necessary.
7859 QualType DestExprType = ParamType.getNonLValueExprType(Context);
7860 if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
7861 CastKind CK;
7862 QualType Ignored;
7863 if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
7864 IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
7865 CK = CK_NoOp;
7866 } else if (ParamType->isVoidPointerType() &&
7867 RefExpr.get()->getType()->isPointerType()) {
7868 CK = CK_BitCast;
7869 } else {
7870 // FIXME: Pointers to members can need conversion derived-to-base or
7871 // base-to-derived conversions. We currently don't retain enough
7872 // information to convert properly (we need to track a cast path or
7873 // subobject number in the template argument).
7874 llvm_unreachable(
7875 "unexpected conversion required for non-type template argument");
7876 }
7877 RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
7878 RefExpr.get()->getValueKind());
7879 }
7880
7881 return RefExpr;
7882 }
7883
7884 /// Construct a new expression that refers to the given
7885 /// integral template argument with the given source-location
7886 /// information.
7887 ///
7888 /// This routine takes care of the mapping from an integral template
7889 /// argument (which may have any integral type) to the appropriate
7890 /// literal value.
7891 ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)7892 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7893 SourceLocation Loc) {
7894 assert(Arg.getKind() == TemplateArgument::Integral &&
7895 "Operation is only valid for integral template arguments");
7896 QualType OrigT = Arg.getIntegralType();
7897
7898 // If this is an enum type that we're instantiating, we need to use an integer
7899 // type the same size as the enumerator. We don't want to build an
7900 // IntegerLiteral with enum type. The integer type of an enum type can be of
7901 // any integral type with C++11 enum classes, make sure we create the right
7902 // type of literal for it.
7903 QualType T = OrigT;
7904 if (const EnumType *ET = OrigT->getAs<EnumType>())
7905 T = ET->getDecl()->getIntegerType();
7906
7907 Expr *E;
7908 if (T->isAnyCharacterType()) {
7909 CharacterLiteral::CharacterKind Kind;
7910 if (T->isWideCharType())
7911 Kind = CharacterLiteral::Wide;
7912 else if (T->isChar8Type() && getLangOpts().Char8)
7913 Kind = CharacterLiteral::UTF8;
7914 else if (T->isChar16Type())
7915 Kind = CharacterLiteral::UTF16;
7916 else if (T->isChar32Type())
7917 Kind = CharacterLiteral::UTF32;
7918 else
7919 Kind = CharacterLiteral::Ascii;
7920
7921 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
7922 Kind, T, Loc);
7923 } else if (T->isBooleanType()) {
7924 E = CXXBoolLiteralExpr::Create(Context, Arg.getAsIntegral().getBoolValue(),
7925 T, Loc);
7926 } else if (T->isNullPtrType()) {
7927 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
7928 } else {
7929 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
7930 }
7931
7932 if (OrigT->isEnumeralType()) {
7933 // FIXME: This is a hack. We need a better way to handle substituted
7934 // non-type template parameters.
7935 E = CStyleCastExpr::Create(Context, OrigT, VK_PRValue, CK_IntegralCast, E,
7936 nullptr, CurFPFeatureOverrides(),
7937 Context.getTrivialTypeSourceInfo(OrigT, Loc),
7938 Loc, Loc);
7939 }
7940
7941 return E;
7942 }
7943
7944 /// Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,const NamedDecl * NewInstFrom,NamedDecl * Old,const NamedDecl * OldInstFrom,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc,bool PartialOrdering)7945 static bool MatchTemplateParameterKind(
7946 Sema &S, NamedDecl *New, const NamedDecl *NewInstFrom, NamedDecl *Old,
7947 const NamedDecl *OldInstFrom, bool Complain,
7948 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc,
7949 bool PartialOrdering) {
7950 // Check the actual kind (type, non-type, template).
7951 if (Old->getKind() != New->getKind()) {
7952 if (Complain) {
7953 unsigned NextDiag = diag::err_template_param_different_kind;
7954 if (TemplateArgLoc.isValid()) {
7955 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7956 NextDiag = diag::note_template_param_different_kind;
7957 }
7958 S.Diag(New->getLocation(), NextDiag)
7959 << (Kind != Sema::TPL_TemplateMatch);
7960 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
7961 << (Kind != Sema::TPL_TemplateMatch);
7962 }
7963
7964 return false;
7965 }
7966
7967 // Check that both are parameter packs or neither are parameter packs.
7968 // However, if we are matching a template template argument to a
7969 // template template parameter, the template template parameter can have
7970 // a parameter pack where the template template argument does not.
7971 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
7972 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
7973 Old->isTemplateParameterPack())) {
7974 if (Complain) {
7975 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
7976 if (TemplateArgLoc.isValid()) {
7977 S.Diag(TemplateArgLoc,
7978 diag::err_template_arg_template_params_mismatch);
7979 NextDiag = diag::note_template_parameter_pack_non_pack;
7980 }
7981
7982 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
7983 : isa<NonTypeTemplateParmDecl>(New)? 1
7984 : 2;
7985 S.Diag(New->getLocation(), NextDiag)
7986 << ParamKind << New->isParameterPack();
7987 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
7988 << ParamKind << Old->isParameterPack();
7989 }
7990
7991 return false;
7992 }
7993
7994 // For non-type template parameters, check the type of the parameter.
7995 if (NonTypeTemplateParmDecl *OldNTTP
7996 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
7997 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
7998
7999 // If we are matching a template template argument to a template
8000 // template parameter and one of the non-type template parameter types
8001 // is dependent, then we must wait until template instantiation time
8002 // to actually compare the arguments.
8003 if (Kind != Sema::TPL_TemplateTemplateArgumentMatch ||
8004 (!OldNTTP->getType()->isDependentType() &&
8005 !NewNTTP->getType()->isDependentType()))
8006 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
8007 if (Complain) {
8008 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
8009 if (TemplateArgLoc.isValid()) {
8010 S.Diag(TemplateArgLoc,
8011 diag::err_template_arg_template_params_mismatch);
8012 NextDiag = diag::note_template_nontype_parm_different_type;
8013 }
8014 S.Diag(NewNTTP->getLocation(), NextDiag)
8015 << NewNTTP->getType()
8016 << (Kind != Sema::TPL_TemplateMatch);
8017 S.Diag(OldNTTP->getLocation(),
8018 diag::note_template_nontype_parm_prev_declaration)
8019 << OldNTTP->getType();
8020 }
8021
8022 return false;
8023 }
8024 }
8025 // For template template parameters, check the template parameter types.
8026 // The template parameter lists of template template
8027 // parameters must agree.
8028 else if (TemplateTemplateParmDecl *OldTTP
8029 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
8030 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
8031 if (!S.TemplateParameterListsAreEqual(
8032 NewInstFrom, NewTTP->getTemplateParameters(), OldInstFrom,
8033 OldTTP->getTemplateParameters(), Complain,
8034 (Kind == Sema::TPL_TemplateMatch
8035 ? Sema::TPL_TemplateTemplateParmMatch
8036 : Kind),
8037 TemplateArgLoc, PartialOrdering))
8038 return false;
8039 }
8040
8041 if (!PartialOrdering && Kind != Sema::TPL_TemplateTemplateArgumentMatch &&
8042 !isa<TemplateTemplateParmDecl>(Old)) {
8043 const Expr *NewC = nullptr, *OldC = nullptr;
8044
8045 if (isa<TemplateTypeParmDecl>(New)) {
8046 if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint())
8047 NewC = TC->getImmediatelyDeclaredConstraint();
8048 if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint())
8049 OldC = TC->getImmediatelyDeclaredConstraint();
8050 } else if (isa<NonTypeTemplateParmDecl>(New)) {
8051 if (const Expr *E = cast<NonTypeTemplateParmDecl>(New)
8052 ->getPlaceholderTypeConstraint())
8053 NewC = E;
8054 if (const Expr *E = cast<NonTypeTemplateParmDecl>(Old)
8055 ->getPlaceholderTypeConstraint())
8056 OldC = E;
8057 } else
8058 llvm_unreachable("unexpected template parameter type");
8059
8060 auto Diagnose = [&] {
8061 S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
8062 diag::err_template_different_type_constraint);
8063 S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
8064 diag::note_template_prev_declaration) << /*declaration*/0;
8065 };
8066
8067 if (!NewC != !OldC) {
8068 if (Complain)
8069 Diagnose();
8070 return false;
8071 }
8072
8073 if (NewC) {
8074 if (!S.AreConstraintExpressionsEqual(OldInstFrom, OldC, NewInstFrom,
8075 NewC)) {
8076 if (Complain)
8077 Diagnose();
8078 return false;
8079 }
8080 }
8081 }
8082
8083 return true;
8084 }
8085
8086 /// Diagnose a known arity mismatch when comparing template argument
8087 /// lists.
8088 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)8089 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
8090 TemplateParameterList *New,
8091 TemplateParameterList *Old,
8092 Sema::TemplateParameterListEqualKind Kind,
8093 SourceLocation TemplateArgLoc) {
8094 unsigned NextDiag = diag::err_template_param_list_different_arity;
8095 if (TemplateArgLoc.isValid()) {
8096 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
8097 NextDiag = diag::note_template_param_list_different_arity;
8098 }
8099 S.Diag(New->getTemplateLoc(), NextDiag)
8100 << (New->size() > Old->size())
8101 << (Kind != Sema::TPL_TemplateMatch)
8102 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
8103 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
8104 << (Kind != Sema::TPL_TemplateMatch)
8105 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
8106 }
8107
8108 /// Determine whether the given template parameter lists are
8109 /// equivalent.
8110 ///
8111 /// \param New The new template parameter list, typically written in the
8112 /// source code as part of a new template declaration.
8113 ///
8114 /// \param Old The old template parameter list, typically found via
8115 /// name lookup of the template declared with this template parameter
8116 /// list.
8117 ///
8118 /// \param Complain If true, this routine will produce a diagnostic if
8119 /// the template parameter lists are not equivalent.
8120 ///
8121 /// \param Kind describes how we are to match the template parameter lists.
8122 ///
8123 /// \param TemplateArgLoc If this source location is valid, then we
8124 /// are actually checking the template parameter list of a template
8125 /// argument (New) against the template parameter list of its
8126 /// corresponding template template parameter (Old). We produce
8127 /// slightly different diagnostics in this scenario.
8128 ///
8129 /// \returns True if the template parameter lists are equal, false
8130 /// otherwise.
TemplateParameterListsAreEqual(const NamedDecl * NewInstFrom,TemplateParameterList * New,const NamedDecl * OldInstFrom,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc,bool PartialOrdering)8131 bool Sema::TemplateParameterListsAreEqual(
8132 const NamedDecl *NewInstFrom, TemplateParameterList *New,
8133 const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain,
8134 TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc,
8135 bool PartialOrdering) {
8136 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
8137 if (Complain)
8138 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
8139 TemplateArgLoc);
8140
8141 return false;
8142 }
8143
8144 // C++0x [temp.arg.template]p3:
8145 // A template-argument matches a template template-parameter (call it P)
8146 // when each of the template parameters in the template-parameter-list of
8147 // the template-argument's corresponding class template or alias template
8148 // (call it A) matches the corresponding template parameter in the
8149 // template-parameter-list of P. [...]
8150 TemplateParameterList::iterator NewParm = New->begin();
8151 TemplateParameterList::iterator NewParmEnd = New->end();
8152 for (TemplateParameterList::iterator OldParm = Old->begin(),
8153 OldParmEnd = Old->end();
8154 OldParm != OldParmEnd; ++OldParm) {
8155 if (Kind != TPL_TemplateTemplateArgumentMatch ||
8156 !(*OldParm)->isTemplateParameterPack()) {
8157 if (NewParm == NewParmEnd) {
8158 if (Complain)
8159 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
8160 TemplateArgLoc);
8161
8162 return false;
8163 }
8164
8165 if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm,
8166 OldInstFrom, Complain, Kind,
8167 TemplateArgLoc, PartialOrdering))
8168 return false;
8169
8170 ++NewParm;
8171 continue;
8172 }
8173
8174 // C++0x [temp.arg.template]p3:
8175 // [...] When P's template- parameter-list contains a template parameter
8176 // pack (14.5.3), the template parameter pack will match zero or more
8177 // template parameters or template parameter packs in the
8178 // template-parameter-list of A with the same type and form as the
8179 // template parameter pack in P (ignoring whether those template
8180 // parameters are template parameter packs).
8181 for (; NewParm != NewParmEnd; ++NewParm) {
8182 if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm,
8183 OldInstFrom, Complain, Kind,
8184 TemplateArgLoc, PartialOrdering))
8185 return false;
8186 }
8187 }
8188
8189 // Make sure we exhausted all of the arguments.
8190 if (NewParm != NewParmEnd) {
8191 if (Complain)
8192 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
8193 TemplateArgLoc);
8194
8195 return false;
8196 }
8197
8198 if (!PartialOrdering && Kind != TPL_TemplateTemplateArgumentMatch) {
8199 const Expr *NewRC = New->getRequiresClause();
8200 const Expr *OldRC = Old->getRequiresClause();
8201
8202 auto Diagnose = [&] {
8203 Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
8204 diag::err_template_different_requires_clause);
8205 Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
8206 diag::note_template_prev_declaration) << /*declaration*/0;
8207 };
8208
8209 if (!NewRC != !OldRC) {
8210 if (Complain)
8211 Diagnose();
8212 return false;
8213 }
8214
8215 if (NewRC) {
8216 if (!AreConstraintExpressionsEqual(OldInstFrom, OldRC, NewInstFrom,
8217 NewRC)) {
8218 if (Complain)
8219 Diagnose();
8220 return false;
8221 }
8222 }
8223 }
8224
8225 return true;
8226 }
8227
8228 /// Check whether a template can be declared within this scope.
8229 ///
8230 /// If the template declaration is valid in this scope, returns
8231 /// false. Otherwise, issues a diagnostic and returns true.
8232 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)8233 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
8234 if (!S)
8235 return false;
8236
8237 // Find the nearest enclosing declaration scope.
8238 while ((S->getFlags() & Scope::DeclScope) == 0 ||
8239 (S->getFlags() & Scope::TemplateParamScope) != 0)
8240 S = S->getParent();
8241
8242 // C++ [temp.pre]p6: [P2096]
8243 // A template, explicit specialization, or partial specialization shall not
8244 // have C linkage.
8245 DeclContext *Ctx = S->getEntity();
8246 if (Ctx && Ctx->isExternCContext()) {
8247 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
8248 << TemplateParams->getSourceRange();
8249 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
8250 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
8251 return true;
8252 }
8253 Ctx = Ctx ? Ctx->getRedeclContext() : nullptr;
8254
8255 // C++ [temp]p2:
8256 // A template-declaration can appear only as a namespace scope or
8257 // class scope declaration.
8258 // C++ [temp.expl.spec]p3:
8259 // An explicit specialization may be declared in any scope in which the
8260 // corresponding primary template may be defined.
8261 // C++ [temp.class.spec]p6: [P2096]
8262 // A partial specialization may be declared in any scope in which the
8263 // corresponding primary template may be defined.
8264 if (Ctx) {
8265 if (Ctx->isFileContext())
8266 return false;
8267 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
8268 // C++ [temp.mem]p2:
8269 // A local class shall not have member templates.
8270 if (RD->isLocalClass())
8271 return Diag(TemplateParams->getTemplateLoc(),
8272 diag::err_template_inside_local_class)
8273 << TemplateParams->getSourceRange();
8274 else
8275 return false;
8276 }
8277 }
8278
8279 return Diag(TemplateParams->getTemplateLoc(),
8280 diag::err_template_outside_namespace_or_class_scope)
8281 << TemplateParams->getSourceRange();
8282 }
8283
8284 /// Determine what kind of template specialization the given declaration
8285 /// is.
getTemplateSpecializationKind(Decl * D)8286 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
8287 if (!D)
8288 return TSK_Undeclared;
8289
8290 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
8291 return Record->getTemplateSpecializationKind();
8292 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
8293 return Function->getTemplateSpecializationKind();
8294 if (VarDecl *Var = dyn_cast<VarDecl>(D))
8295 return Var->getTemplateSpecializationKind();
8296
8297 return TSK_Undeclared;
8298 }
8299
8300 /// Check whether a specialization is well-formed in the current
8301 /// context.
8302 ///
8303 /// This routine determines whether a template specialization can be declared
8304 /// in the current context (C++ [temp.expl.spec]p2).
8305 ///
8306 /// \param S the semantic analysis object for which this check is being
8307 /// performed.
8308 ///
8309 /// \param Specialized the entity being specialized or instantiated, which
8310 /// may be a kind of template (class template, function template, etc.) or
8311 /// a member of a class template (member function, static data member,
8312 /// member class).
8313 ///
8314 /// \param PrevDecl the previous declaration of this entity, if any.
8315 ///
8316 /// \param Loc the location of the explicit specialization or instantiation of
8317 /// this entity.
8318 ///
8319 /// \param IsPartialSpecialization whether this is a partial specialization of
8320 /// a class template.
8321 ///
8322 /// \returns true if there was an error that we cannot recover from, false
8323 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)8324 static bool CheckTemplateSpecializationScope(Sema &S,
8325 NamedDecl *Specialized,
8326 NamedDecl *PrevDecl,
8327 SourceLocation Loc,
8328 bool IsPartialSpecialization) {
8329 // Keep these "kind" numbers in sync with the %select statements in the
8330 // various diagnostics emitted by this routine.
8331 int EntityKind = 0;
8332 if (isa<ClassTemplateDecl>(Specialized))
8333 EntityKind = IsPartialSpecialization? 1 : 0;
8334 else if (isa<VarTemplateDecl>(Specialized))
8335 EntityKind = IsPartialSpecialization ? 3 : 2;
8336 else if (isa<FunctionTemplateDecl>(Specialized))
8337 EntityKind = 4;
8338 else if (isa<CXXMethodDecl>(Specialized))
8339 EntityKind = 5;
8340 else if (isa<VarDecl>(Specialized))
8341 EntityKind = 6;
8342 else if (isa<RecordDecl>(Specialized))
8343 EntityKind = 7;
8344 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
8345 EntityKind = 8;
8346 else {
8347 S.Diag(Loc, diag::err_template_spec_unknown_kind)
8348 << S.getLangOpts().CPlusPlus11;
8349 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8350 return true;
8351 }
8352
8353 // C++ [temp.expl.spec]p2:
8354 // An explicit specialization may be declared in any scope in which
8355 // the corresponding primary template may be defined.
8356 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8357 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
8358 << Specialized;
8359 return true;
8360 }
8361
8362 // C++ [temp.class.spec]p6:
8363 // A class template partial specialization may be declared in any
8364 // scope in which the primary template may be defined.
8365 DeclContext *SpecializedContext =
8366 Specialized->getDeclContext()->getRedeclContext();
8367 DeclContext *DC = S.CurContext->getRedeclContext();
8368
8369 // Make sure that this redeclaration (or definition) occurs in the same
8370 // scope or an enclosing namespace.
8371 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
8372 : DC->Equals(SpecializedContext))) {
8373 if (isa<TranslationUnitDecl>(SpecializedContext))
8374 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
8375 << EntityKind << Specialized;
8376 else {
8377 auto *ND = cast<NamedDecl>(SpecializedContext);
8378 int Diag = diag::err_template_spec_redecl_out_of_scope;
8379 if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
8380 Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
8381 S.Diag(Loc, Diag) << EntityKind << Specialized
8382 << ND << isa<CXXRecordDecl>(ND);
8383 }
8384
8385 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8386
8387 // Don't allow specializing in the wrong class during error recovery.
8388 // Otherwise, things can go horribly wrong.
8389 if (DC->isRecord())
8390 return true;
8391 }
8392
8393 return false;
8394 }
8395
findTemplateParameterInType(unsigned Depth,Expr * E)8396 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
8397 if (!E->isTypeDependent())
8398 return SourceLocation();
8399 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8400 Checker.TraverseStmt(E);
8401 if (Checker.MatchLoc.isInvalid())
8402 return E->getSourceRange();
8403 return Checker.MatchLoc;
8404 }
8405
findTemplateParameter(unsigned Depth,TypeLoc TL)8406 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
8407 if (!TL.getType()->isDependentType())
8408 return SourceLocation();
8409 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8410 Checker.TraverseTypeLoc(TL);
8411 if (Checker.MatchLoc.isInvalid())
8412 return TL.getSourceRange();
8413 return Checker.MatchLoc;
8414 }
8415
8416 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
8417 /// that checks non-type template partial specialization arguments.
CheckNonTypeTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs,bool IsDefaultArgument)8418 static bool CheckNonTypeTemplatePartialSpecializationArgs(
8419 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
8420 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
8421 for (unsigned I = 0; I != NumArgs; ++I) {
8422 if (Args[I].getKind() == TemplateArgument::Pack) {
8423 if (CheckNonTypeTemplatePartialSpecializationArgs(
8424 S, TemplateNameLoc, Param, Args[I].pack_begin(),
8425 Args[I].pack_size(), IsDefaultArgument))
8426 return true;
8427
8428 continue;
8429 }
8430
8431 if (Args[I].getKind() != TemplateArgument::Expression)
8432 continue;
8433
8434 Expr *ArgExpr = Args[I].getAsExpr();
8435
8436 // We can have a pack expansion of any of the bullets below.
8437 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
8438 ArgExpr = Expansion->getPattern();
8439
8440 // Strip off any implicit casts we added as part of type checking.
8441 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8442 ArgExpr = ICE->getSubExpr();
8443
8444 // C++ [temp.class.spec]p8:
8445 // A non-type argument is non-specialized if it is the name of a
8446 // non-type parameter. All other non-type arguments are
8447 // specialized.
8448 //
8449 // Below, we check the two conditions that only apply to
8450 // specialized non-type arguments, so skip any non-specialized
8451 // arguments.
8452 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
8453 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
8454 continue;
8455
8456 // C++ [temp.class.spec]p9:
8457 // Within the argument list of a class template partial
8458 // specialization, the following restrictions apply:
8459 // -- A partially specialized non-type argument expression
8460 // shall not involve a template parameter of the partial
8461 // specialization except when the argument expression is a
8462 // simple identifier.
8463 // -- The type of a template parameter corresponding to a
8464 // specialized non-type argument shall not be dependent on a
8465 // parameter of the specialization.
8466 // DR1315 removes the first bullet, leaving an incoherent set of rules.
8467 // We implement a compromise between the original rules and DR1315:
8468 // -- A specialized non-type template argument shall not be
8469 // type-dependent and the corresponding template parameter
8470 // shall have a non-dependent type.
8471 SourceRange ParamUseRange =
8472 findTemplateParameterInType(Param->getDepth(), ArgExpr);
8473 if (ParamUseRange.isValid()) {
8474 if (IsDefaultArgument) {
8475 S.Diag(TemplateNameLoc,
8476 diag::err_dependent_non_type_arg_in_partial_spec);
8477 S.Diag(ParamUseRange.getBegin(),
8478 diag::note_dependent_non_type_default_arg_in_partial_spec)
8479 << ParamUseRange;
8480 } else {
8481 S.Diag(ParamUseRange.getBegin(),
8482 diag::err_dependent_non_type_arg_in_partial_spec)
8483 << ParamUseRange;
8484 }
8485 return true;
8486 }
8487
8488 ParamUseRange = findTemplateParameter(
8489 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
8490 if (ParamUseRange.isValid()) {
8491 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
8492 diag::err_dependent_typed_non_type_arg_in_partial_spec)
8493 << Param->getType();
8494 S.Diag(Param->getLocation(), diag::note_template_param_here)
8495 << (IsDefaultArgument ? ParamUseRange : SourceRange())
8496 << ParamUseRange;
8497 return true;
8498 }
8499 }
8500
8501 return false;
8502 }
8503
8504 /// Check the non-type template arguments of a class template
8505 /// partial specialization according to C++ [temp.class.spec]p9.
8506 ///
8507 /// \param TemplateNameLoc the location of the template name.
8508 /// \param PrimaryTemplate the template parameters of the primary class
8509 /// template.
8510 /// \param NumExplicit the number of explicitly-specified template arguments.
8511 /// \param TemplateArgs the template arguments of the class template
8512 /// partial specialization.
8513 ///
8514 /// \returns \c true if there was an error, \c false otherwise.
CheckTemplatePartialSpecializationArgs(SourceLocation TemplateNameLoc,TemplateDecl * PrimaryTemplate,unsigned NumExplicit,ArrayRef<TemplateArgument> TemplateArgs)8515 bool Sema::CheckTemplatePartialSpecializationArgs(
8516 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
8517 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
8518 // We have to be conservative when checking a template in a dependent
8519 // context.
8520 if (PrimaryTemplate->getDeclContext()->isDependentContext())
8521 return false;
8522
8523 TemplateParameterList *TemplateParams =
8524 PrimaryTemplate->getTemplateParameters();
8525 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8526 NonTypeTemplateParmDecl *Param
8527 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
8528 if (!Param)
8529 continue;
8530
8531 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
8532 Param, &TemplateArgs[I],
8533 1, I >= NumExplicit))
8534 return true;
8535 }
8536
8537 return false;
8538 }
8539
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,SourceLocation ModulePrivateLoc,CXXScopeSpec & SS,TemplateIdAnnotation & TemplateId,const ParsedAttributesView & Attr,MultiTemplateParamsArg TemplateParameterLists,SkipBodyInfo * SkipBody)8540 DeclResult Sema::ActOnClassTemplateSpecialization(
8541 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
8542 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
8543 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
8544 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
8545 assert(TUK != TUK_Reference && "References are not specializations");
8546
8547 // NOTE: KWLoc is the location of the tag keyword. This will instead
8548 // store the location of the outermost template keyword in the declaration.
8549 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
8550 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
8551 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
8552 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
8553 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
8554
8555 // Find the class template we're specializing
8556 TemplateName Name = TemplateId.Template.get();
8557 ClassTemplateDecl *ClassTemplate
8558 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
8559
8560 if (!ClassTemplate) {
8561 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
8562 << (Name.getAsTemplateDecl() &&
8563 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
8564 return true;
8565 }
8566
8567 bool isMemberSpecialization = false;
8568 bool isPartialSpecialization = false;
8569
8570 // Check the validity of the template headers that introduce this
8571 // template.
8572 // FIXME: We probably shouldn't complain about these headers for
8573 // friend declarations.
8574 bool Invalid = false;
8575 TemplateParameterList *TemplateParams =
8576 MatchTemplateParametersToScopeSpecifier(
8577 KWLoc, TemplateNameLoc, SS, &TemplateId,
8578 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
8579 Invalid);
8580 if (Invalid)
8581 return true;
8582
8583 // Check that we can declare a template specialization here.
8584 if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams))
8585 return true;
8586
8587 if (TemplateParams && TemplateParams->size() > 0) {
8588 isPartialSpecialization = true;
8589
8590 if (TUK == TUK_Friend) {
8591 Diag(KWLoc, diag::err_partial_specialization_friend)
8592 << SourceRange(LAngleLoc, RAngleLoc);
8593 return true;
8594 }
8595
8596 // C++ [temp.class.spec]p10:
8597 // The template parameter list of a specialization shall not
8598 // contain default template argument values.
8599 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8600 Decl *Param = TemplateParams->getParam(I);
8601 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
8602 if (TTP->hasDefaultArgument()) {
8603 Diag(TTP->getDefaultArgumentLoc(),
8604 diag::err_default_arg_in_partial_spec);
8605 TTP->removeDefaultArgument();
8606 }
8607 } else if (NonTypeTemplateParmDecl *NTTP
8608 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
8609 if (Expr *DefArg = NTTP->getDefaultArgument()) {
8610 Diag(NTTP->getDefaultArgumentLoc(),
8611 diag::err_default_arg_in_partial_spec)
8612 << DefArg->getSourceRange();
8613 NTTP->removeDefaultArgument();
8614 }
8615 } else {
8616 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
8617 if (TTP->hasDefaultArgument()) {
8618 Diag(TTP->getDefaultArgument().getLocation(),
8619 diag::err_default_arg_in_partial_spec)
8620 << TTP->getDefaultArgument().getSourceRange();
8621 TTP->removeDefaultArgument();
8622 }
8623 }
8624 }
8625 } else if (TemplateParams) {
8626 if (TUK == TUK_Friend)
8627 Diag(KWLoc, diag::err_template_spec_friend)
8628 << FixItHint::CreateRemoval(
8629 SourceRange(TemplateParams->getTemplateLoc(),
8630 TemplateParams->getRAngleLoc()))
8631 << SourceRange(LAngleLoc, RAngleLoc);
8632 } else {
8633 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
8634 }
8635
8636 // Check that the specialization uses the same tag kind as the
8637 // original template.
8638 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8639 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
8640 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
8641 Kind, TUK == TUK_Definition, KWLoc,
8642 ClassTemplate->getIdentifier())) {
8643 Diag(KWLoc, diag::err_use_with_wrong_tag)
8644 << ClassTemplate
8645 << FixItHint::CreateReplacement(KWLoc,
8646 ClassTemplate->getTemplatedDecl()->getKindName());
8647 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8648 diag::note_previous_use);
8649 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8650 }
8651
8652 // Translate the parser's template argument list in our AST format.
8653 TemplateArgumentListInfo TemplateArgs =
8654 makeTemplateArgumentListInfo(*this, TemplateId);
8655
8656 // Check for unexpanded parameter packs in any of the template arguments.
8657 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8658 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
8659 UPPC_PartialSpecialization))
8660 return true;
8661
8662 // Check that the template argument list is well-formed for this
8663 // template.
8664 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
8665 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs,
8666 false, SugaredConverted, CanonicalConverted,
8667 /*UpdateArgsWithConversions=*/true))
8668 return true;
8669
8670 // Find the class template (partial) specialization declaration that
8671 // corresponds to these arguments.
8672 if (isPartialSpecialization) {
8673 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
8674 TemplateArgs.size(),
8675 CanonicalConverted))
8676 return true;
8677
8678 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
8679 // also do it during instantiation.
8680 if (!Name.isDependent() &&
8681 !TemplateSpecializationType::anyDependentTemplateArguments(
8682 TemplateArgs, CanonicalConverted)) {
8683 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
8684 << ClassTemplate->getDeclName();
8685 isPartialSpecialization = false;
8686 }
8687 }
8688
8689 void *InsertPos = nullptr;
8690 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
8691
8692 if (isPartialSpecialization)
8693 PrevDecl = ClassTemplate->findPartialSpecialization(
8694 CanonicalConverted, TemplateParams, InsertPos);
8695 else
8696 PrevDecl = ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
8697
8698 ClassTemplateSpecializationDecl *Specialization = nullptr;
8699
8700 // Check whether we can declare a class template specialization in
8701 // the current scope.
8702 if (TUK != TUK_Friend &&
8703 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
8704 TemplateNameLoc,
8705 isPartialSpecialization))
8706 return true;
8707
8708 // The canonical type
8709 QualType CanonType;
8710 if (isPartialSpecialization) {
8711 // Build the canonical type that describes the converted template
8712 // arguments of the class template partial specialization.
8713 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8714 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8715 CanonicalConverted);
8716
8717 if (Context.hasSameType(CanonType,
8718 ClassTemplate->getInjectedClassNameSpecialization()) &&
8719 (!Context.getLangOpts().CPlusPlus20 ||
8720 !TemplateParams->hasAssociatedConstraints())) {
8721 // C++ [temp.class.spec]p9b3:
8722 //
8723 // -- The argument list of the specialization shall not be identical
8724 // to the implicit argument list of the primary template.
8725 //
8726 // This rule has since been removed, because it's redundant given DR1495,
8727 // but we keep it because it produces better diagnostics and recovery.
8728 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
8729 << /*class template*/0 << (TUK == TUK_Definition)
8730 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
8731 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
8732 ClassTemplate->getIdentifier(),
8733 TemplateNameLoc,
8734 Attr,
8735 TemplateParams,
8736 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
8737 /*FriendLoc*/SourceLocation(),
8738 TemplateParameterLists.size() - 1,
8739 TemplateParameterLists.data());
8740 }
8741
8742 // Create a new class template partial specialization declaration node.
8743 ClassTemplatePartialSpecializationDecl *PrevPartial
8744 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
8745 ClassTemplatePartialSpecializationDecl *Partial =
8746 ClassTemplatePartialSpecializationDecl::Create(
8747 Context, Kind, ClassTemplate->getDeclContext(), KWLoc,
8748 TemplateNameLoc, TemplateParams, ClassTemplate, CanonicalConverted,
8749 TemplateArgs, CanonType, PrevPartial);
8750 SetNestedNameSpecifier(*this, Partial, SS);
8751 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
8752 Partial->setTemplateParameterListsInfo(
8753 Context, TemplateParameterLists.drop_back(1));
8754 }
8755
8756 if (!PrevPartial)
8757 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
8758 Specialization = Partial;
8759
8760 // If we are providing an explicit specialization of a member class
8761 // template specialization, make a note of that.
8762 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
8763 PrevPartial->setMemberSpecialization();
8764
8765 CheckTemplatePartialSpecialization(Partial);
8766 } else {
8767 // Create a new class template specialization declaration node for
8768 // this explicit specialization or friend declaration.
8769 Specialization = ClassTemplateSpecializationDecl::Create(
8770 Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc,
8771 ClassTemplate, CanonicalConverted, PrevDecl);
8772 SetNestedNameSpecifier(*this, Specialization, SS);
8773 if (TemplateParameterLists.size() > 0) {
8774 Specialization->setTemplateParameterListsInfo(Context,
8775 TemplateParameterLists);
8776 }
8777
8778 if (!PrevDecl)
8779 ClassTemplate->AddSpecialization(Specialization, InsertPos);
8780
8781 if (CurContext->isDependentContext()) {
8782 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8783 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8784 CanonicalConverted);
8785 } else {
8786 CanonType = Context.getTypeDeclType(Specialization);
8787 }
8788 }
8789
8790 // C++ [temp.expl.spec]p6:
8791 // If a template, a member template or the member of a class template is
8792 // explicitly specialized then that specialization shall be declared
8793 // before the first use of that specialization that would cause an implicit
8794 // instantiation to take place, in every translation unit in which such a
8795 // use occurs; no diagnostic is required.
8796 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
8797 bool Okay = false;
8798 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8799 // Is there any previous explicit specialization declaration?
8800 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8801 Okay = true;
8802 break;
8803 }
8804 }
8805
8806 if (!Okay) {
8807 SourceRange Range(TemplateNameLoc, RAngleLoc);
8808 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
8809 << Context.getTypeDeclType(Specialization) << Range;
8810
8811 Diag(PrevDecl->getPointOfInstantiation(),
8812 diag::note_instantiation_required_here)
8813 << (PrevDecl->getTemplateSpecializationKind()
8814 != TSK_ImplicitInstantiation);
8815 return true;
8816 }
8817 }
8818
8819 // If this is not a friend, note that this is an explicit specialization.
8820 if (TUK != TUK_Friend)
8821 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
8822
8823 // Check that this isn't a redefinition of this specialization.
8824 if (TUK == TUK_Definition) {
8825 RecordDecl *Def = Specialization->getDefinition();
8826 NamedDecl *Hidden = nullptr;
8827 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
8828 SkipBody->ShouldSkip = true;
8829 SkipBody->Previous = Def;
8830 makeMergedDefinitionVisible(Hidden);
8831 } else if (Def) {
8832 SourceRange Range(TemplateNameLoc, RAngleLoc);
8833 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
8834 Diag(Def->getLocation(), diag::note_previous_definition);
8835 Specialization->setInvalidDecl();
8836 return true;
8837 }
8838 }
8839
8840 ProcessDeclAttributeList(S, Specialization, Attr);
8841
8842 // Add alignment attributes if necessary; these attributes are checked when
8843 // the ASTContext lays out the structure.
8844 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
8845 AddAlignmentAttributesForRecord(Specialization);
8846 AddMsStructLayoutForRecord(Specialization);
8847 }
8848
8849 if (ModulePrivateLoc.isValid())
8850 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
8851 << (isPartialSpecialization? 1 : 0)
8852 << FixItHint::CreateRemoval(ModulePrivateLoc);
8853
8854 // Build the fully-sugared type for this class template
8855 // specialization as the user wrote in the specialization
8856 // itself. This means that we'll pretty-print the type retrieved
8857 // from the specialization's declaration the way that the user
8858 // actually wrote the specialization, rather than formatting the
8859 // name based on the "canonical" representation used to store the
8860 // template arguments in the specialization.
8861 TypeSourceInfo *WrittenTy
8862 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
8863 TemplateArgs, CanonType);
8864 if (TUK != TUK_Friend) {
8865 Specialization->setTypeAsWritten(WrittenTy);
8866 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
8867 }
8868
8869 // C++ [temp.expl.spec]p9:
8870 // A template explicit specialization is in the scope of the
8871 // namespace in which the template was defined.
8872 //
8873 // We actually implement this paragraph where we set the semantic
8874 // context (in the creation of the ClassTemplateSpecializationDecl),
8875 // but we also maintain the lexical context where the actual
8876 // definition occurs.
8877 Specialization->setLexicalDeclContext(CurContext);
8878
8879 // We may be starting the definition of this specialization.
8880 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
8881 Specialization->startDefinition();
8882
8883 if (TUK == TUK_Friend) {
8884 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
8885 TemplateNameLoc,
8886 WrittenTy,
8887 /*FIXME:*/KWLoc);
8888 Friend->setAccess(AS_public);
8889 CurContext->addDecl(Friend);
8890 } else {
8891 // Add the specialization into its lexical context, so that it can
8892 // be seen when iterating through the list of declarations in that
8893 // context. However, specializations are not found by name lookup.
8894 CurContext->addDecl(Specialization);
8895 }
8896
8897 if (SkipBody && SkipBody->ShouldSkip)
8898 return SkipBody->Previous;
8899
8900 return Specialization;
8901 }
8902
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)8903 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
8904 MultiTemplateParamsArg TemplateParameterLists,
8905 Declarator &D) {
8906 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
8907 ActOnDocumentableDecl(NewDecl);
8908 return NewDecl;
8909 }
8910
ActOnConceptDefinition(Scope * S,MultiTemplateParamsArg TemplateParameterLists,IdentifierInfo * Name,SourceLocation NameLoc,Expr * ConstraintExpr)8911 Decl *Sema::ActOnConceptDefinition(Scope *S,
8912 MultiTemplateParamsArg TemplateParameterLists,
8913 IdentifierInfo *Name, SourceLocation NameLoc,
8914 Expr *ConstraintExpr) {
8915 DeclContext *DC = CurContext;
8916
8917 if (!DC->getRedeclContext()->isFileContext()) {
8918 Diag(NameLoc,
8919 diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
8920 return nullptr;
8921 }
8922
8923 if (TemplateParameterLists.size() > 1) {
8924 Diag(NameLoc, diag::err_concept_extra_headers);
8925 return nullptr;
8926 }
8927
8928 TemplateParameterList *Params = TemplateParameterLists.front();
8929
8930 if (Params->size() == 0) {
8931 Diag(NameLoc, diag::err_concept_no_parameters);
8932 return nullptr;
8933 }
8934
8935 // Ensure that the parameter pack, if present, is the last parameter in the
8936 // template.
8937 for (TemplateParameterList::const_iterator ParamIt = Params->begin(),
8938 ParamEnd = Params->end();
8939 ParamIt != ParamEnd; ++ParamIt) {
8940 Decl const *Param = *ParamIt;
8941 if (Param->isParameterPack()) {
8942 if (++ParamIt == ParamEnd)
8943 break;
8944 Diag(Param->getLocation(),
8945 diag::err_template_param_pack_must_be_last_template_parameter);
8946 return nullptr;
8947 }
8948 }
8949
8950 if (DiagnoseUnexpandedParameterPack(ConstraintExpr))
8951 return nullptr;
8952
8953 ConceptDecl *NewDecl =
8954 ConceptDecl::Create(Context, DC, NameLoc, Name, Params, ConstraintExpr);
8955
8956 if (NewDecl->hasAssociatedConstraints()) {
8957 // C++2a [temp.concept]p4:
8958 // A concept shall not have associated constraints.
8959 Diag(NameLoc, diag::err_concept_no_associated_constraints);
8960 NewDecl->setInvalidDecl();
8961 }
8962
8963 // Check for conflicting previous declaration.
8964 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
8965 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8966 forRedeclarationInCurContext());
8967 LookupName(Previous, S);
8968 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false,
8969 /*AllowInlineNamespace*/false);
8970 bool AddToScope = true;
8971 CheckConceptRedefinition(NewDecl, Previous, AddToScope);
8972
8973 ActOnDocumentableDecl(NewDecl);
8974 if (AddToScope)
8975 PushOnScopeChains(NewDecl, S);
8976 return NewDecl;
8977 }
8978
CheckConceptRedefinition(ConceptDecl * NewDecl,LookupResult & Previous,bool & AddToScope)8979 void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl,
8980 LookupResult &Previous, bool &AddToScope) {
8981 AddToScope = true;
8982
8983 if (Previous.empty())
8984 return;
8985
8986 auto *OldConcept = dyn_cast<ConceptDecl>(Previous.getRepresentativeDecl()->getUnderlyingDecl());
8987 if (!OldConcept) {
8988 auto *Old = Previous.getRepresentativeDecl();
8989 Diag(NewDecl->getLocation(), diag::err_redefinition_different_kind)
8990 << NewDecl->getDeclName();
8991 notePreviousDefinition(Old, NewDecl->getLocation());
8992 AddToScope = false;
8993 return;
8994 }
8995 // Check if we can merge with a concept declaration.
8996 bool IsSame = Context.isSameEntity(NewDecl, OldConcept);
8997 if (!IsSame) {
8998 Diag(NewDecl->getLocation(), diag::err_redefinition_different_concept)
8999 << NewDecl->getDeclName();
9000 notePreviousDefinition(OldConcept, NewDecl->getLocation());
9001 AddToScope = false;
9002 return;
9003 }
9004 if (hasReachableDefinition(OldConcept) &&
9005 IsRedefinitionInModule(NewDecl, OldConcept)) {
9006 Diag(NewDecl->getLocation(), diag::err_redefinition)
9007 << NewDecl->getDeclName();
9008 notePreviousDefinition(OldConcept, NewDecl->getLocation());
9009 AddToScope = false;
9010 return;
9011 }
9012 if (!Previous.isSingleResult()) {
9013 // FIXME: we should produce an error in case of ambig and failed lookups.
9014 // Other decls (e.g. namespaces) also have this shortcoming.
9015 return;
9016 }
9017 // We unwrap canonical decl late to check for module visibility.
9018 Context.setPrimaryMergedDecl(NewDecl, OldConcept->getCanonicalDecl());
9019 }
9020
9021 /// \brief Strips various properties off an implicit instantiation
9022 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D,bool MinGW)9023 static void StripImplicitInstantiation(NamedDecl *D, bool MinGW) {
9024 if (MinGW || (isa<FunctionDecl>(D) &&
9025 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())) {
9026 D->dropAttr<DLLImportAttr>();
9027 D->dropAttr<DLLExportAttr>();
9028 }
9029
9030 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
9031 FD->setInlineSpecified(false);
9032 }
9033
9034 /// Compute the diagnostic location for an explicit instantiation
9035 // declaration or definition.
DiagLocForExplicitInstantiation(NamedDecl * D,SourceLocation PointOfInstantiation)9036 static SourceLocation DiagLocForExplicitInstantiation(
9037 NamedDecl* D, SourceLocation PointOfInstantiation) {
9038 // Explicit instantiations following a specialization have no effect and
9039 // hence no PointOfInstantiation. In that case, walk decl backwards
9040 // until a valid name loc is found.
9041 SourceLocation PrevDiagLoc = PointOfInstantiation;
9042 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
9043 Prev = Prev->getPreviousDecl()) {
9044 PrevDiagLoc = Prev->getLocation();
9045 }
9046 assert(PrevDiagLoc.isValid() &&
9047 "Explicit instantiation without point of instantiation?");
9048 return PrevDiagLoc;
9049 }
9050
9051 /// Diagnose cases where we have an explicit template specialization
9052 /// before/after an explicit template instantiation, producing diagnostics
9053 /// for those cases where they are required and determining whether the
9054 /// new specialization/instantiation will have any effect.
9055 ///
9056 /// \param NewLoc the location of the new explicit specialization or
9057 /// instantiation.
9058 ///
9059 /// \param NewTSK the kind of the new explicit specialization or instantiation.
9060 ///
9061 /// \param PrevDecl the previous declaration of the entity.
9062 ///
9063 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
9064 ///
9065 /// \param PrevPointOfInstantiation if valid, indicates where the previous
9066 /// declaration was instantiated (either implicitly or explicitly).
9067 ///
9068 /// \param HasNoEffect will be set to true to indicate that the new
9069 /// specialization or instantiation has no effect and should be ignored.
9070 ///
9071 /// \returns true if there was an error that should prevent the introduction of
9072 /// the new declaration into the AST, false otherwise.
9073 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)9074 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
9075 TemplateSpecializationKind NewTSK,
9076 NamedDecl *PrevDecl,
9077 TemplateSpecializationKind PrevTSK,
9078 SourceLocation PrevPointOfInstantiation,
9079 bool &HasNoEffect) {
9080 HasNoEffect = false;
9081
9082 switch (NewTSK) {
9083 case TSK_Undeclared:
9084 case TSK_ImplicitInstantiation:
9085 assert(
9086 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
9087 "previous declaration must be implicit!");
9088 return false;
9089
9090 case TSK_ExplicitSpecialization:
9091 switch (PrevTSK) {
9092 case TSK_Undeclared:
9093 case TSK_ExplicitSpecialization:
9094 // Okay, we're just specializing something that is either already
9095 // explicitly specialized or has merely been mentioned without any
9096 // instantiation.
9097 return false;
9098
9099 case TSK_ImplicitInstantiation:
9100 if (PrevPointOfInstantiation.isInvalid()) {
9101 // The declaration itself has not actually been instantiated, so it is
9102 // still okay to specialize it.
9103 StripImplicitInstantiation(
9104 PrevDecl,
9105 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment());
9106 return false;
9107 }
9108 // Fall through
9109 [[fallthrough]];
9110
9111 case TSK_ExplicitInstantiationDeclaration:
9112 case TSK_ExplicitInstantiationDefinition:
9113 assert((PrevTSK == TSK_ImplicitInstantiation ||
9114 PrevPointOfInstantiation.isValid()) &&
9115 "Explicit instantiation without point of instantiation?");
9116
9117 // C++ [temp.expl.spec]p6:
9118 // If a template, a member template or the member of a class template
9119 // is explicitly specialized then that specialization shall be declared
9120 // before the first use of that specialization that would cause an
9121 // implicit instantiation to take place, in every translation unit in
9122 // which such a use occurs; no diagnostic is required.
9123 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
9124 // Is there any previous explicit specialization declaration?
9125 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
9126 return false;
9127 }
9128
9129 Diag(NewLoc, diag::err_specialization_after_instantiation)
9130 << PrevDecl;
9131 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
9132 << (PrevTSK != TSK_ImplicitInstantiation);
9133
9134 return true;
9135 }
9136 llvm_unreachable("The switch over PrevTSK must be exhaustive.");
9137
9138 case TSK_ExplicitInstantiationDeclaration:
9139 switch (PrevTSK) {
9140 case TSK_ExplicitInstantiationDeclaration:
9141 // This explicit instantiation declaration is redundant (that's okay).
9142 HasNoEffect = true;
9143 return false;
9144
9145 case TSK_Undeclared:
9146 case TSK_ImplicitInstantiation:
9147 // We're explicitly instantiating something that may have already been
9148 // implicitly instantiated; that's fine.
9149 return false;
9150
9151 case TSK_ExplicitSpecialization:
9152 // C++0x [temp.explicit]p4:
9153 // For a given set of template parameters, if an explicit instantiation
9154 // of a template appears after a declaration of an explicit
9155 // specialization for that template, the explicit instantiation has no
9156 // effect.
9157 HasNoEffect = true;
9158 return false;
9159
9160 case TSK_ExplicitInstantiationDefinition:
9161 // C++0x [temp.explicit]p10:
9162 // If an entity is the subject of both an explicit instantiation
9163 // declaration and an explicit instantiation definition in the same
9164 // translation unit, the definition shall follow the declaration.
9165 Diag(NewLoc,
9166 diag::err_explicit_instantiation_declaration_after_definition);
9167
9168 // Explicit instantiations following a specialization have no effect and
9169 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
9170 // until a valid name loc is found.
9171 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
9172 diag::note_explicit_instantiation_definition_here);
9173 HasNoEffect = true;
9174 return false;
9175 }
9176 llvm_unreachable("Unexpected TemplateSpecializationKind!");
9177
9178 case TSK_ExplicitInstantiationDefinition:
9179 switch (PrevTSK) {
9180 case TSK_Undeclared:
9181 case TSK_ImplicitInstantiation:
9182 // We're explicitly instantiating something that may have already been
9183 // implicitly instantiated; that's fine.
9184 return false;
9185
9186 case TSK_ExplicitSpecialization:
9187 // C++ DR 259, C++0x [temp.explicit]p4:
9188 // For a given set of template parameters, if an explicit
9189 // instantiation of a template appears after a declaration of
9190 // an explicit specialization for that template, the explicit
9191 // instantiation has no effect.
9192 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
9193 << PrevDecl;
9194 Diag(PrevDecl->getLocation(),
9195 diag::note_previous_template_specialization);
9196 HasNoEffect = true;
9197 return false;
9198
9199 case TSK_ExplicitInstantiationDeclaration:
9200 // We're explicitly instantiating a definition for something for which we
9201 // were previously asked to suppress instantiations. That's fine.
9202
9203 // C++0x [temp.explicit]p4:
9204 // For a given set of template parameters, if an explicit instantiation
9205 // of a template appears after a declaration of an explicit
9206 // specialization for that template, the explicit instantiation has no
9207 // effect.
9208 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
9209 // Is there any previous explicit specialization declaration?
9210 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
9211 HasNoEffect = true;
9212 break;
9213 }
9214 }
9215
9216 return false;
9217
9218 case TSK_ExplicitInstantiationDefinition:
9219 // C++0x [temp.spec]p5:
9220 // For a given template and a given set of template-arguments,
9221 // - an explicit instantiation definition shall appear at most once
9222 // in a program,
9223
9224 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
9225 Diag(NewLoc, (getLangOpts().MSVCCompat)
9226 ? diag::ext_explicit_instantiation_duplicate
9227 : diag::err_explicit_instantiation_duplicate)
9228 << PrevDecl;
9229 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
9230 diag::note_previous_explicit_instantiation);
9231 HasNoEffect = true;
9232 return false;
9233 }
9234 }
9235
9236 llvm_unreachable("Missing specialization/instantiation case?");
9237 }
9238
9239 /// Perform semantic analysis for the given dependent function
9240 /// template specialization.
9241 ///
9242 /// The only possible way to get a dependent function template specialization
9243 /// is with a friend declaration, like so:
9244 ///
9245 /// \code
9246 /// template \<class T> void foo(T);
9247 /// template \<class T> class A {
9248 /// friend void foo<>(T);
9249 /// };
9250 /// \endcode
9251 ///
9252 /// There really isn't any useful analysis we can do here, so we
9253 /// just store the information.
9254 bool
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo & ExplicitTemplateArgs,LookupResult & Previous)9255 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
9256 const TemplateArgumentListInfo &ExplicitTemplateArgs,
9257 LookupResult &Previous) {
9258 // Remove anything from Previous that isn't a function template in
9259 // the correct context.
9260 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
9261 LookupResult::Filter F = Previous.makeFilter();
9262 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
9263 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
9264 while (F.hasNext()) {
9265 NamedDecl *D = F.next()->getUnderlyingDecl();
9266 if (!isa<FunctionTemplateDecl>(D)) {
9267 F.erase();
9268 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
9269 continue;
9270 }
9271
9272 if (!FDLookupContext->InEnclosingNamespaceSetOf(
9273 D->getDeclContext()->getRedeclContext())) {
9274 F.erase();
9275 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
9276 continue;
9277 }
9278 }
9279 F.done();
9280
9281 if (Previous.empty()) {
9282 Diag(FD->getLocation(),
9283 diag::err_dependent_function_template_spec_no_match);
9284 for (auto &P : DiscardedCandidates)
9285 Diag(P.second->getLocation(),
9286 diag::note_dependent_function_template_spec_discard_reason)
9287 << P.first;
9288 return true;
9289 }
9290
9291 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
9292 ExplicitTemplateArgs);
9293 return false;
9294 }
9295
9296 /// Perform semantic analysis for the given function template
9297 /// specialization.
9298 ///
9299 /// This routine performs all of the semantic analysis required for an
9300 /// explicit function template specialization. On successful completion,
9301 /// the function declaration \p FD will become a function template
9302 /// specialization.
9303 ///
9304 /// \param FD the function declaration, which will be updated to become a
9305 /// function template specialization.
9306 ///
9307 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
9308 /// if any. Note that this may be valid info even when 0 arguments are
9309 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
9310 /// as it anyway contains info on the angle brackets locations.
9311 ///
9312 /// \param Previous the set of declarations that may be specialized by
9313 /// this function specialization.
9314 ///
9315 /// \param QualifiedFriend whether this is a lookup for a qualified friend
9316 /// declaration with no explicit template argument list that might be
9317 /// befriending a function template specialization.
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous,bool QualifiedFriend)9318 bool Sema::CheckFunctionTemplateSpecialization(
9319 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
9320 LookupResult &Previous, bool QualifiedFriend) {
9321 // The set of function template specializations that could match this
9322 // explicit function template specialization.
9323 UnresolvedSet<8> Candidates;
9324 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
9325 /*ForTakingAddress=*/false);
9326
9327 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
9328 ConvertedTemplateArgs;
9329
9330 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
9331 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9332 I != E; ++I) {
9333 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
9334 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
9335 // Only consider templates found within the same semantic lookup scope as
9336 // FD.
9337 if (!FDLookupContext->InEnclosingNamespaceSetOf(
9338 Ovl->getDeclContext()->getRedeclContext()))
9339 continue;
9340
9341 // When matching a constexpr member function template specialization
9342 // against the primary template, we don't yet know whether the
9343 // specialization has an implicit 'const' (because we don't know whether
9344 // it will be a static member function until we know which template it
9345 // specializes), so adjust it now assuming it specializes this template.
9346 QualType FT = FD->getType();
9347 if (FD->isConstexpr()) {
9348 CXXMethodDecl *OldMD =
9349 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
9350 if (OldMD && OldMD->isConst()) {
9351 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
9352 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9353 EPI.TypeQuals.addConst();
9354 FT = Context.getFunctionType(FPT->getReturnType(),
9355 FPT->getParamTypes(), EPI);
9356 }
9357 }
9358
9359 TemplateArgumentListInfo Args;
9360 if (ExplicitTemplateArgs)
9361 Args = *ExplicitTemplateArgs;
9362
9363 // C++ [temp.expl.spec]p11:
9364 // A trailing template-argument can be left unspecified in the
9365 // template-id naming an explicit function template specialization
9366 // provided it can be deduced from the function argument type.
9367 // Perform template argument deduction to determine whether we may be
9368 // specializing this template.
9369 // FIXME: It is somewhat wasteful to build
9370 TemplateDeductionInfo Info(FailedCandidates.getLocation());
9371 FunctionDecl *Specialization = nullptr;
9372 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
9373 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
9374 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
9375 Info)) {
9376 // Template argument deduction failed; record why it failed, so
9377 // that we can provide nifty diagnostics.
9378 FailedCandidates.addCandidate().set(
9379 I.getPair(), FunTmpl->getTemplatedDecl(),
9380 MakeDeductionFailureInfo(Context, TDK, Info));
9381 (void)TDK;
9382 continue;
9383 }
9384
9385 // Target attributes are part of the cuda function signature, so
9386 // the deduced template's cuda target must match that of the
9387 // specialization. Given that C++ template deduction does not
9388 // take target attributes into account, we reject candidates
9389 // here that have a different target.
9390 if (LangOpts.CUDA &&
9391 IdentifyCUDATarget(Specialization,
9392 /* IgnoreImplicitHDAttr = */ true) !=
9393 IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
9394 FailedCandidates.addCandidate().set(
9395 I.getPair(), FunTmpl->getTemplatedDecl(),
9396 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
9397 continue;
9398 }
9399
9400 // Record this candidate.
9401 if (ExplicitTemplateArgs)
9402 ConvertedTemplateArgs[Specialization] = std::move(Args);
9403 Candidates.addDecl(Specialization, I.getAccess());
9404 }
9405 }
9406
9407 // For a qualified friend declaration (with no explicit marker to indicate
9408 // that a template specialization was intended), note all (template and
9409 // non-template) candidates.
9410 if (QualifiedFriend && Candidates.empty()) {
9411 Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
9412 << FD->getDeclName() << FDLookupContext;
9413 // FIXME: We should form a single candidate list and diagnose all
9414 // candidates at once, to get proper sorting and limiting.
9415 for (auto *OldND : Previous) {
9416 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
9417 NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
9418 }
9419 FailedCandidates.NoteCandidates(*this, FD->getLocation());
9420 return true;
9421 }
9422
9423 // Find the most specialized function template.
9424 UnresolvedSetIterator Result = getMostSpecialized(
9425 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
9426 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
9427 PDiag(diag::err_function_template_spec_ambiguous)
9428 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
9429 PDiag(diag::note_function_template_spec_matched));
9430
9431 if (Result == Candidates.end())
9432 return true;
9433
9434 // Ignore access information; it doesn't figure into redeclaration checking.
9435 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
9436
9437 FunctionTemplateSpecializationInfo *SpecInfo
9438 = Specialization->getTemplateSpecializationInfo();
9439 assert(SpecInfo && "Function template specialization info missing?");
9440
9441 // Note: do not overwrite location info if previous template
9442 // specialization kind was explicit.
9443 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
9444 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
9445 Specialization->setLocation(FD->getLocation());
9446 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
9447 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
9448 // function can differ from the template declaration with respect to
9449 // the constexpr specifier.
9450 // FIXME: We need an update record for this AST mutation.
9451 // FIXME: What if there are multiple such prior declarations (for instance,
9452 // from different modules)?
9453 Specialization->setConstexprKind(FD->getConstexprKind());
9454 }
9455
9456 // FIXME: Check if the prior specialization has a point of instantiation.
9457 // If so, we have run afoul of .
9458
9459 // If this is a friend declaration, then we're not really declaring
9460 // an explicit specialization.
9461 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
9462
9463 // Check the scope of this explicit specialization.
9464 if (!isFriend &&
9465 CheckTemplateSpecializationScope(*this,
9466 Specialization->getPrimaryTemplate(),
9467 Specialization, FD->getLocation(),
9468 false))
9469 return true;
9470
9471 // C++ [temp.expl.spec]p6:
9472 // If a template, a member template or the member of a class template is
9473 // explicitly specialized then that specialization shall be declared
9474 // before the first use of that specialization that would cause an implicit
9475 // instantiation to take place, in every translation unit in which such a
9476 // use occurs; no diagnostic is required.
9477 bool HasNoEffect = false;
9478 if (!isFriend &&
9479 CheckSpecializationInstantiationRedecl(FD->getLocation(),
9480 TSK_ExplicitSpecialization,
9481 Specialization,
9482 SpecInfo->getTemplateSpecializationKind(),
9483 SpecInfo->getPointOfInstantiation(),
9484 HasNoEffect))
9485 return true;
9486
9487 // Mark the prior declaration as an explicit specialization, so that later
9488 // clients know that this is an explicit specialization.
9489 if (!isFriend) {
9490 // Since explicit specializations do not inherit '=delete' from their
9491 // primary function template - check if the 'specialization' that was
9492 // implicitly generated (during template argument deduction for partial
9493 // ordering) from the most specialized of all the function templates that
9494 // 'FD' could have been specializing, has a 'deleted' definition. If so,
9495 // first check that it was implicitly generated during template argument
9496 // deduction by making sure it wasn't referenced, and then reset the deleted
9497 // flag to not-deleted, so that we can inherit that information from 'FD'.
9498 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
9499 !Specialization->getCanonicalDecl()->isReferenced()) {
9500 // FIXME: This assert will not hold in the presence of modules.
9501 assert(
9502 Specialization->getCanonicalDecl() == Specialization &&
9503 "This must be the only existing declaration of this specialization");
9504 // FIXME: We need an update record for this AST mutation.
9505 Specialization->setDeletedAsWritten(false);
9506 }
9507 // FIXME: We need an update record for this AST mutation.
9508 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9509 MarkUnusedFileScopedDecl(Specialization);
9510 }
9511
9512 // Turn the given function declaration into a function template
9513 // specialization, with the template arguments from the previous
9514 // specialization.
9515 // Take copies of (semantic and syntactic) template argument lists.
9516 const TemplateArgumentList* TemplArgs = new (Context)
9517 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
9518 FD->setFunctionTemplateSpecialization(
9519 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
9520 SpecInfo->getTemplateSpecializationKind(),
9521 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
9522
9523 // A function template specialization inherits the target attributes
9524 // of its template. (We require the attributes explicitly in the
9525 // code to match, but a template may have implicit attributes by
9526 // virtue e.g. of being constexpr, and it passes these implicit
9527 // attributes on to its specializations.)
9528 if (LangOpts.CUDA)
9529 inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
9530
9531 // The "previous declaration" for this function template specialization is
9532 // the prior function template specialization.
9533 Previous.clear();
9534 Previous.addDecl(Specialization);
9535 return false;
9536 }
9537
9538 /// Perform semantic analysis for the given non-template member
9539 /// specialization.
9540 ///
9541 /// This routine performs all of the semantic analysis required for an
9542 /// explicit member function specialization. On successful completion,
9543 /// the function declaration \p FD will become a member function
9544 /// specialization.
9545 ///
9546 /// \param Member the member declaration, which will be updated to become a
9547 /// specialization.
9548 ///
9549 /// \param Previous the set of declarations, one of which may be specialized
9550 /// by this function specialization; the set will be modified to contain the
9551 /// redeclared member.
9552 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)9553 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
9554 assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
9555
9556 // Try to find the member we are instantiating.
9557 NamedDecl *FoundInstantiation = nullptr;
9558 NamedDecl *Instantiation = nullptr;
9559 NamedDecl *InstantiatedFrom = nullptr;
9560 MemberSpecializationInfo *MSInfo = nullptr;
9561
9562 if (Previous.empty()) {
9563 // Nowhere to look anyway.
9564 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
9565 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9566 I != E; ++I) {
9567 NamedDecl *D = (*I)->getUnderlyingDecl();
9568 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
9569 QualType Adjusted = Function->getType();
9570 if (!hasExplicitCallingConv(Adjusted))
9571 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
9572 // This doesn't handle deduced return types, but both function
9573 // declarations should be undeduced at this point.
9574 if (Context.hasSameType(Adjusted, Method->getType())) {
9575 FoundInstantiation = *I;
9576 Instantiation = Method;
9577 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
9578 MSInfo = Method->getMemberSpecializationInfo();
9579 break;
9580 }
9581 }
9582 }
9583 } else if (isa<VarDecl>(Member)) {
9584 VarDecl *PrevVar;
9585 if (Previous.isSingleResult() &&
9586 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
9587 if (PrevVar->isStaticDataMember()) {
9588 FoundInstantiation = Previous.getRepresentativeDecl();
9589 Instantiation = PrevVar;
9590 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
9591 MSInfo = PrevVar->getMemberSpecializationInfo();
9592 }
9593 } else if (isa<RecordDecl>(Member)) {
9594 CXXRecordDecl *PrevRecord;
9595 if (Previous.isSingleResult() &&
9596 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
9597 FoundInstantiation = Previous.getRepresentativeDecl();
9598 Instantiation = PrevRecord;
9599 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
9600 MSInfo = PrevRecord->getMemberSpecializationInfo();
9601 }
9602 } else if (isa<EnumDecl>(Member)) {
9603 EnumDecl *PrevEnum;
9604 if (Previous.isSingleResult() &&
9605 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
9606 FoundInstantiation = Previous.getRepresentativeDecl();
9607 Instantiation = PrevEnum;
9608 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
9609 MSInfo = PrevEnum->getMemberSpecializationInfo();
9610 }
9611 }
9612
9613 if (!Instantiation) {
9614 // There is no previous declaration that matches. Since member
9615 // specializations are always out-of-line, the caller will complain about
9616 // this mismatch later.
9617 return false;
9618 }
9619
9620 // A member specialization in a friend declaration isn't really declaring
9621 // an explicit specialization, just identifying a specific (possibly implicit)
9622 // specialization. Don't change the template specialization kind.
9623 //
9624 // FIXME: Is this really valid? Other compilers reject.
9625 if (Member->getFriendObjectKind() != Decl::FOK_None) {
9626 // Preserve instantiation information.
9627 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
9628 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
9629 cast<CXXMethodDecl>(InstantiatedFrom),
9630 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
9631 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
9632 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
9633 cast<CXXRecordDecl>(InstantiatedFrom),
9634 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
9635 }
9636
9637 Previous.clear();
9638 Previous.addDecl(FoundInstantiation);
9639 return false;
9640 }
9641
9642 // Make sure that this is a specialization of a member.
9643 if (!InstantiatedFrom) {
9644 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
9645 << Member;
9646 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
9647 return true;
9648 }
9649
9650 // C++ [temp.expl.spec]p6:
9651 // If a template, a member template or the member of a class template is
9652 // explicitly specialized then that specialization shall be declared
9653 // before the first use of that specialization that would cause an implicit
9654 // instantiation to take place, in every translation unit in which such a
9655 // use occurs; no diagnostic is required.
9656 assert(MSInfo && "Member specialization info missing?");
9657
9658 bool HasNoEffect = false;
9659 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
9660 TSK_ExplicitSpecialization,
9661 Instantiation,
9662 MSInfo->getTemplateSpecializationKind(),
9663 MSInfo->getPointOfInstantiation(),
9664 HasNoEffect))
9665 return true;
9666
9667 // Check the scope of this explicit specialization.
9668 if (CheckTemplateSpecializationScope(*this,
9669 InstantiatedFrom,
9670 Instantiation, Member->getLocation(),
9671 false))
9672 return true;
9673
9674 // Note that this member specialization is an "instantiation of" the
9675 // corresponding member of the original template.
9676 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
9677 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
9678 if (InstantiationFunction->getTemplateSpecializationKind() ==
9679 TSK_ImplicitInstantiation) {
9680 // Explicit specializations of member functions of class templates do not
9681 // inherit '=delete' from the member function they are specializing.
9682 if (InstantiationFunction->isDeleted()) {
9683 // FIXME: This assert will not hold in the presence of modules.
9684 assert(InstantiationFunction->getCanonicalDecl() ==
9685 InstantiationFunction);
9686 // FIXME: We need an update record for this AST mutation.
9687 InstantiationFunction->setDeletedAsWritten(false);
9688 }
9689 }
9690
9691 MemberFunction->setInstantiationOfMemberFunction(
9692 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9693 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
9694 MemberVar->setInstantiationOfStaticDataMember(
9695 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9696 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
9697 MemberClass->setInstantiationOfMemberClass(
9698 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9699 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
9700 MemberEnum->setInstantiationOfMemberEnum(
9701 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9702 } else {
9703 llvm_unreachable("unknown member specialization kind");
9704 }
9705
9706 // Save the caller the trouble of having to figure out which declaration
9707 // this specialization matches.
9708 Previous.clear();
9709 Previous.addDecl(FoundInstantiation);
9710 return false;
9711 }
9712
9713 /// Complete the explicit specialization of a member of a class template by
9714 /// updating the instantiated member to be marked as an explicit specialization.
9715 ///
9716 /// \param OrigD The member declaration instantiated from the template.
9717 /// \param Loc The location of the explicit specialization of the member.
9718 template<typename DeclT>
completeMemberSpecializationImpl(Sema & S,DeclT * OrigD,SourceLocation Loc)9719 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
9720 SourceLocation Loc) {
9721 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
9722 return;
9723
9724 // FIXME: Inform AST mutation listeners of this AST mutation.
9725 // FIXME: If there are multiple in-class declarations of the member (from
9726 // multiple modules, or a declaration and later definition of a member type),
9727 // should we update all of them?
9728 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9729 OrigD->setLocation(Loc);
9730 }
9731
CompleteMemberSpecialization(NamedDecl * Member,LookupResult & Previous)9732 void Sema::CompleteMemberSpecialization(NamedDecl *Member,
9733 LookupResult &Previous) {
9734 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
9735 if (Instantiation == Member)
9736 return;
9737
9738 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
9739 completeMemberSpecializationImpl(*this, Function, Member->getLocation());
9740 else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
9741 completeMemberSpecializationImpl(*this, Var, Member->getLocation());
9742 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
9743 completeMemberSpecializationImpl(*this, Record, Member->getLocation());
9744 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
9745 completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
9746 else
9747 llvm_unreachable("unknown member specialization kind");
9748 }
9749
9750 /// Check the scope of an explicit instantiation.
9751 ///
9752 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)9753 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
9754 SourceLocation InstLoc,
9755 bool WasQualifiedName) {
9756 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
9757 DeclContext *CurContext = S.CurContext->getRedeclContext();
9758
9759 if (CurContext->isRecord()) {
9760 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
9761 << D;
9762 return true;
9763 }
9764
9765 // C++11 [temp.explicit]p3:
9766 // An explicit instantiation shall appear in an enclosing namespace of its
9767 // template. If the name declared in the explicit instantiation is an
9768 // unqualified name, the explicit instantiation shall appear in the
9769 // namespace where its template is declared or, if that namespace is inline
9770 // (7.3.1), any namespace from its enclosing namespace set.
9771 //
9772 // This is DR275, which we do not retroactively apply to C++98/03.
9773 if (WasQualifiedName) {
9774 if (CurContext->Encloses(OrigContext))
9775 return false;
9776 } else {
9777 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
9778 return false;
9779 }
9780
9781 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
9782 if (WasQualifiedName)
9783 S.Diag(InstLoc,
9784 S.getLangOpts().CPlusPlus11?
9785 diag::err_explicit_instantiation_out_of_scope :
9786 diag::warn_explicit_instantiation_out_of_scope_0x)
9787 << D << NS;
9788 else
9789 S.Diag(InstLoc,
9790 S.getLangOpts().CPlusPlus11?
9791 diag::err_explicit_instantiation_unqualified_wrong_namespace :
9792 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
9793 << D << NS;
9794 } else
9795 S.Diag(InstLoc,
9796 S.getLangOpts().CPlusPlus11?
9797 diag::err_explicit_instantiation_must_be_global :
9798 diag::warn_explicit_instantiation_must_be_global_0x)
9799 << D;
9800 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
9801 return false;
9802 }
9803
9804 /// Common checks for whether an explicit instantiation of \p D is valid.
CheckExplicitInstantiation(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName,TemplateSpecializationKind TSK)9805 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
9806 SourceLocation InstLoc,
9807 bool WasQualifiedName,
9808 TemplateSpecializationKind TSK) {
9809 // C++ [temp.explicit]p13:
9810 // An explicit instantiation declaration shall not name a specialization of
9811 // a template with internal linkage.
9812 if (TSK == TSK_ExplicitInstantiationDeclaration &&
9813 D->getFormalLinkage() == InternalLinkage) {
9814 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
9815 return true;
9816 }
9817
9818 // C++11 [temp.explicit]p3: [DR 275]
9819 // An explicit instantiation shall appear in an enclosing namespace of its
9820 // template.
9821 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
9822 return true;
9823
9824 return false;
9825 }
9826
9827 /// Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)9828 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
9829 if (!SS.isSet())
9830 return false;
9831
9832 // C++11 [temp.explicit]p3:
9833 // If the explicit instantiation is for a member function, a member class
9834 // or a static data member of a class template specialization, the name of
9835 // the class template specialization in the qualified-id for the member
9836 // name shall be a simple-template-id.
9837 //
9838 // C++98 has the same restriction, just worded differently.
9839 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
9840 NNS = NNS->getPrefix())
9841 if (const Type *T = NNS->getAsType())
9842 if (isa<TemplateSpecializationType>(T))
9843 return true;
9844
9845 return false;
9846 }
9847
9848 /// Make a dllexport or dllimport attr on a class template specialization take
9849 /// effect.
dllExportImportClassTemplateSpecialization(Sema & S,ClassTemplateSpecializationDecl * Def)9850 static void dllExportImportClassTemplateSpecialization(
9851 Sema &S, ClassTemplateSpecializationDecl *Def) {
9852 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
9853 assert(A && "dllExportImportClassTemplateSpecialization called "
9854 "on Def without dllexport or dllimport");
9855
9856 // We reject explicit instantiations in class scope, so there should
9857 // never be any delayed exported classes to worry about.
9858 assert(S.DelayedDllExportClasses.empty() &&
9859 "delayed exports present at explicit instantiation");
9860 S.checkClassLevelDLLAttribute(Def);
9861
9862 // Propagate attribute to base class templates.
9863 for (auto &B : Def->bases()) {
9864 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
9865 B.getType()->getAsCXXRecordDecl()))
9866 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
9867 }
9868
9869 S.referenceDLLExportedClassMethods();
9870 }
9871
9872 // Explicit instantiation of a class template specialization
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,const ParsedAttributesView & Attr)9873 DeclResult Sema::ActOnExplicitInstantiation(
9874 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
9875 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
9876 TemplateTy TemplateD, SourceLocation TemplateNameLoc,
9877 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
9878 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
9879 // Find the class template we're specializing
9880 TemplateName Name = TemplateD.get();
9881 TemplateDecl *TD = Name.getAsTemplateDecl();
9882 // Check that the specialization uses the same tag kind as the
9883 // original template.
9884 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9885 assert(Kind != TTK_Enum &&
9886 "Invalid enum tag in class template explicit instantiation!");
9887
9888 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
9889
9890 if (!ClassTemplate) {
9891 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
9892 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind;
9893 Diag(TD->getLocation(), diag::note_previous_use);
9894 return true;
9895 }
9896
9897 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
9898 Kind, /*isDefinition*/false, KWLoc,
9899 ClassTemplate->getIdentifier())) {
9900 Diag(KWLoc, diag::err_use_with_wrong_tag)
9901 << ClassTemplate
9902 << FixItHint::CreateReplacement(KWLoc,
9903 ClassTemplate->getTemplatedDecl()->getKindName());
9904 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
9905 diag::note_previous_use);
9906 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
9907 }
9908
9909 // C++0x [temp.explicit]p2:
9910 // There are two forms of explicit instantiation: an explicit instantiation
9911 // definition and an explicit instantiation declaration. An explicit
9912 // instantiation declaration begins with the extern keyword. [...]
9913 TemplateSpecializationKind TSK = ExternLoc.isInvalid()
9914 ? TSK_ExplicitInstantiationDefinition
9915 : TSK_ExplicitInstantiationDeclaration;
9916
9917 if (TSK == TSK_ExplicitInstantiationDeclaration &&
9918 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9919 // Check for dllexport class template instantiation declarations,
9920 // except for MinGW mode.
9921 for (const ParsedAttr &AL : Attr) {
9922 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9923 Diag(ExternLoc,
9924 diag::warn_attribute_dllexport_explicit_instantiation_decl);
9925 Diag(AL.getLoc(), diag::note_attribute);
9926 break;
9927 }
9928 }
9929
9930 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
9931 Diag(ExternLoc,
9932 diag::warn_attribute_dllexport_explicit_instantiation_decl);
9933 Diag(A->getLocation(), diag::note_attribute);
9934 }
9935 }
9936
9937 // In MSVC mode, dllimported explicit instantiation definitions are treated as
9938 // instantiation declarations for most purposes.
9939 bool DLLImportExplicitInstantiationDef = false;
9940 if (TSK == TSK_ExplicitInstantiationDefinition &&
9941 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9942 // Check for dllimport class template instantiation definitions.
9943 bool DLLImport =
9944 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
9945 for (const ParsedAttr &AL : Attr) {
9946 if (AL.getKind() == ParsedAttr::AT_DLLImport)
9947 DLLImport = true;
9948 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9949 // dllexport trumps dllimport here.
9950 DLLImport = false;
9951 break;
9952 }
9953 }
9954 if (DLLImport) {
9955 TSK = TSK_ExplicitInstantiationDeclaration;
9956 DLLImportExplicitInstantiationDef = true;
9957 }
9958 }
9959
9960 // Translate the parser's template argument list in our AST format.
9961 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
9962 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
9963
9964 // Check that the template argument list is well-formed for this
9965 // template.
9966 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
9967 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs,
9968 false, SugaredConverted, CanonicalConverted,
9969 /*UpdateArgsWithConversions=*/true))
9970 return true;
9971
9972 // Find the class template specialization declaration that
9973 // corresponds to these arguments.
9974 void *InsertPos = nullptr;
9975 ClassTemplateSpecializationDecl *PrevDecl =
9976 ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
9977
9978 TemplateSpecializationKind PrevDecl_TSK
9979 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
9980
9981 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
9982 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9983 // Check for dllexport class template instantiation definitions in MinGW
9984 // mode, if a previous declaration of the instantiation was seen.
9985 for (const ParsedAttr &AL : Attr) {
9986 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9987 Diag(AL.getLoc(),
9988 diag::warn_attribute_dllexport_explicit_instantiation_def);
9989 break;
9990 }
9991 }
9992 }
9993
9994 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
9995 SS.isSet(), TSK))
9996 return true;
9997
9998 ClassTemplateSpecializationDecl *Specialization = nullptr;
9999
10000 bool HasNoEffect = false;
10001 if (PrevDecl) {
10002 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
10003 PrevDecl, PrevDecl_TSK,
10004 PrevDecl->getPointOfInstantiation(),
10005 HasNoEffect))
10006 return PrevDecl;
10007
10008 // Even though HasNoEffect == true means that this explicit instantiation
10009 // has no effect on semantics, we go on to put its syntax in the AST.
10010
10011 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
10012 PrevDecl_TSK == TSK_Undeclared) {
10013 // Since the only prior class template specialization with these
10014 // arguments was referenced but not declared, reuse that
10015 // declaration node as our own, updating the source location
10016 // for the template name to reflect our new declaration.
10017 // (Other source locations will be updated later.)
10018 Specialization = PrevDecl;
10019 Specialization->setLocation(TemplateNameLoc);
10020 PrevDecl = nullptr;
10021 }
10022
10023 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
10024 DLLImportExplicitInstantiationDef) {
10025 // The new specialization might add a dllimport attribute.
10026 HasNoEffect = false;
10027 }
10028 }
10029
10030 if (!Specialization) {
10031 // Create a new class template specialization declaration node for
10032 // this explicit specialization.
10033 Specialization = ClassTemplateSpecializationDecl::Create(
10034 Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc,
10035 ClassTemplate, CanonicalConverted, PrevDecl);
10036 SetNestedNameSpecifier(*this, Specialization, SS);
10037
10038 if (!HasNoEffect && !PrevDecl) {
10039 // Insert the new specialization.
10040 ClassTemplate->AddSpecialization(Specialization, InsertPos);
10041 }
10042 }
10043
10044 // Build the fully-sugared type for this explicit instantiation as
10045 // the user wrote in the explicit instantiation itself. This means
10046 // that we'll pretty-print the type retrieved from the
10047 // specialization's declaration the way that the user actually wrote
10048 // the explicit instantiation, rather than formatting the name based
10049 // on the "canonical" representation used to store the template
10050 // arguments in the specialization.
10051 TypeSourceInfo *WrittenTy
10052 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
10053 TemplateArgs,
10054 Context.getTypeDeclType(Specialization));
10055 Specialization->setTypeAsWritten(WrittenTy);
10056
10057 // Set source locations for keywords.
10058 Specialization->setExternLoc(ExternLoc);
10059 Specialization->setTemplateKeywordLoc(TemplateLoc);
10060 Specialization->setBraceRange(SourceRange());
10061
10062 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
10063 ProcessDeclAttributeList(S, Specialization, Attr);
10064
10065 // Add the explicit instantiation into its lexical context. However,
10066 // since explicit instantiations are never found by name lookup, we
10067 // just put it into the declaration context directly.
10068 Specialization->setLexicalDeclContext(CurContext);
10069 CurContext->addDecl(Specialization);
10070
10071 // Syntax is now OK, so return if it has no other effect on semantics.
10072 if (HasNoEffect) {
10073 // Set the template specialization kind.
10074 Specialization->setTemplateSpecializationKind(TSK);
10075 return Specialization;
10076 }
10077
10078 // C++ [temp.explicit]p3:
10079 // A definition of a class template or class member template
10080 // shall be in scope at the point of the explicit instantiation of
10081 // the class template or class member template.
10082 //
10083 // This check comes when we actually try to perform the
10084 // instantiation.
10085 ClassTemplateSpecializationDecl *Def
10086 = cast_or_null<ClassTemplateSpecializationDecl>(
10087 Specialization->getDefinition());
10088 if (!Def)
10089 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
10090 else if (TSK == TSK_ExplicitInstantiationDefinition) {
10091 MarkVTableUsed(TemplateNameLoc, Specialization, true);
10092 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
10093 }
10094
10095 // Instantiate the members of this class template specialization.
10096 Def = cast_or_null<ClassTemplateSpecializationDecl>(
10097 Specialization->getDefinition());
10098 if (Def) {
10099 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
10100 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
10101 // TSK_ExplicitInstantiationDefinition
10102 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
10103 (TSK == TSK_ExplicitInstantiationDefinition ||
10104 DLLImportExplicitInstantiationDef)) {
10105 // FIXME: Need to notify the ASTMutationListener that we did this.
10106 Def->setTemplateSpecializationKind(TSK);
10107
10108 if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
10109 (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
10110 !Context.getTargetInfo().getTriple().isPS())) {
10111 // An explicit instantiation definition can add a dll attribute to a
10112 // template with a previous instantiation declaration. MinGW doesn't
10113 // allow this.
10114 auto *A = cast<InheritableAttr>(
10115 getDLLAttr(Specialization)->clone(getASTContext()));
10116 A->setInherited(true);
10117 Def->addAttr(A);
10118 dllExportImportClassTemplateSpecialization(*this, Def);
10119 }
10120 }
10121
10122 // Fix a TSK_ImplicitInstantiation followed by a
10123 // TSK_ExplicitInstantiationDefinition
10124 bool NewlyDLLExported =
10125 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
10126 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
10127 (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
10128 !Context.getTargetInfo().getTriple().isPS())) {
10129 // An explicit instantiation definition can add a dll attribute to a
10130 // template with a previous implicit instantiation. MinGW doesn't allow
10131 // this. We limit clang to only adding dllexport, to avoid potentially
10132 // strange codegen behavior. For example, if we extend this conditional
10133 // to dllimport, and we have a source file calling a method on an
10134 // implicitly instantiated template class instance and then declaring a
10135 // dllimport explicit instantiation definition for the same template
10136 // class, the codegen for the method call will not respect the dllimport,
10137 // while it will with cl. The Def will already have the DLL attribute,
10138 // since the Def and Specialization will be the same in the case of
10139 // Old_TSK == TSK_ImplicitInstantiation, and we already added the
10140 // attribute to the Specialization; we just need to make it take effect.
10141 assert(Def == Specialization &&
10142 "Def and Specialization should match for implicit instantiation");
10143 dllExportImportClassTemplateSpecialization(*this, Def);
10144 }
10145
10146 // In MinGW mode, export the template instantiation if the declaration
10147 // was marked dllexport.
10148 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
10149 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
10150 PrevDecl->hasAttr<DLLExportAttr>()) {
10151 dllExportImportClassTemplateSpecialization(*this, Def);
10152 }
10153
10154 if (Def->hasAttr<MSInheritanceAttr>()) {
10155 Specialization->addAttr(Def->getAttr<MSInheritanceAttr>());
10156 Consumer.AssignInheritanceModel(Specialization);
10157 }
10158
10159 // Set the template specialization kind. Make sure it is set before
10160 // instantiating the members which will trigger ASTConsumer callbacks.
10161 Specialization->setTemplateSpecializationKind(TSK);
10162 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
10163 } else {
10164
10165 // Set the template specialization kind.
10166 Specialization->setTemplateSpecializationKind(TSK);
10167 }
10168
10169 return Specialization;
10170 }
10171
10172 // Explicit instantiation of a member class of a class template.
10173 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,const ParsedAttributesView & Attr)10174 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
10175 SourceLocation TemplateLoc, unsigned TagSpec,
10176 SourceLocation KWLoc, CXXScopeSpec &SS,
10177 IdentifierInfo *Name, SourceLocation NameLoc,
10178 const ParsedAttributesView &Attr) {
10179
10180 bool Owned = false;
10181 bool IsDependent = false;
10182 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, KWLoc, SS, Name,
10183 NameLoc, Attr, AS_none, /*ModulePrivateLoc=*/SourceLocation(),
10184 MultiTemplateParamsArg(), Owned, IsDependent, SourceLocation(),
10185 false, TypeResult(), /*IsTypeSpecifier*/ false,
10186 /*IsTemplateParamOrArg*/ false, /*OOK=*/OOK_Outside).get();
10187 assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
10188
10189 if (!TagD)
10190 return true;
10191
10192 TagDecl *Tag = cast<TagDecl>(TagD);
10193 assert(!Tag->isEnum() && "shouldn't see enumerations here");
10194
10195 if (Tag->isInvalidDecl())
10196 return true;
10197
10198 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
10199 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
10200 if (!Pattern) {
10201 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
10202 << Context.getTypeDeclType(Record);
10203 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
10204 return true;
10205 }
10206
10207 // C++0x [temp.explicit]p2:
10208 // If the explicit instantiation is for a class or member class, the
10209 // elaborated-type-specifier in the declaration shall include a
10210 // simple-template-id.
10211 //
10212 // C++98 has the same restriction, just worded differently.
10213 if (!ScopeSpecifierHasTemplateId(SS))
10214 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
10215 << Record << SS.getRange();
10216
10217 // C++0x [temp.explicit]p2:
10218 // There are two forms of explicit instantiation: an explicit instantiation
10219 // definition and an explicit instantiation declaration. An explicit
10220 // instantiation declaration begins with the extern keyword. [...]
10221 TemplateSpecializationKind TSK
10222 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
10223 : TSK_ExplicitInstantiationDeclaration;
10224
10225 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
10226
10227 // Verify that it is okay to explicitly instantiate here.
10228 CXXRecordDecl *PrevDecl
10229 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
10230 if (!PrevDecl && Record->getDefinition())
10231 PrevDecl = Record;
10232 if (PrevDecl) {
10233 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
10234 bool HasNoEffect = false;
10235 assert(MSInfo && "No member specialization information?");
10236 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
10237 PrevDecl,
10238 MSInfo->getTemplateSpecializationKind(),
10239 MSInfo->getPointOfInstantiation(),
10240 HasNoEffect))
10241 return true;
10242 if (HasNoEffect)
10243 return TagD;
10244 }
10245
10246 CXXRecordDecl *RecordDef
10247 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
10248 if (!RecordDef) {
10249 // C++ [temp.explicit]p3:
10250 // A definition of a member class of a class template shall be in scope
10251 // at the point of an explicit instantiation of the member class.
10252 CXXRecordDecl *Def
10253 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
10254 if (!Def) {
10255 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
10256 << 0 << Record->getDeclName() << Record->getDeclContext();
10257 Diag(Pattern->getLocation(), diag::note_forward_declaration)
10258 << Pattern;
10259 return true;
10260 } else {
10261 if (InstantiateClass(NameLoc, Record, Def,
10262 getTemplateInstantiationArgs(Record),
10263 TSK))
10264 return true;
10265
10266 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
10267 if (!RecordDef)
10268 return true;
10269 }
10270 }
10271
10272 // Instantiate all of the members of the class.
10273 InstantiateClassMembers(NameLoc, RecordDef,
10274 getTemplateInstantiationArgs(Record), TSK);
10275
10276 if (TSK == TSK_ExplicitInstantiationDefinition)
10277 MarkVTableUsed(NameLoc, RecordDef, true);
10278
10279 // FIXME: We don't have any representation for explicit instantiations of
10280 // member classes. Such a representation is not needed for compilation, but it
10281 // should be available for clients that want to see all of the declarations in
10282 // the source code.
10283 return TagD;
10284 }
10285
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)10286 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
10287 SourceLocation ExternLoc,
10288 SourceLocation TemplateLoc,
10289 Declarator &D) {
10290 // Explicit instantiations always require a name.
10291 // TODO: check if/when DNInfo should replace Name.
10292 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10293 DeclarationName Name = NameInfo.getName();
10294 if (!Name) {
10295 if (!D.isInvalidType())
10296 Diag(D.getDeclSpec().getBeginLoc(),
10297 diag::err_explicit_instantiation_requires_name)
10298 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
10299
10300 return true;
10301 }
10302
10303 // The scope passed in may not be a decl scope. Zip up the scope tree until
10304 // we find one that is.
10305 while ((S->getFlags() & Scope::DeclScope) == 0 ||
10306 (S->getFlags() & Scope::TemplateParamScope) != 0)
10307 S = S->getParent();
10308
10309 // Determine the type of the declaration.
10310 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
10311 QualType R = T->getType();
10312 if (R.isNull())
10313 return true;
10314
10315 // C++ [dcl.stc]p1:
10316 // A storage-class-specifier shall not be specified in [...] an explicit
10317 // instantiation (14.7.2) directive.
10318 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
10319 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
10320 << Name;
10321 return true;
10322 } else if (D.getDeclSpec().getStorageClassSpec()
10323 != DeclSpec::SCS_unspecified) {
10324 // Complain about then remove the storage class specifier.
10325 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
10326 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10327
10328 D.getMutableDeclSpec().ClearStorageClassSpecs();
10329 }
10330
10331 // C++0x [temp.explicit]p1:
10332 // [...] An explicit instantiation of a function template shall not use the
10333 // inline or constexpr specifiers.
10334 // Presumably, this also applies to member functions of class templates as
10335 // well.
10336 if (D.getDeclSpec().isInlineSpecified())
10337 Diag(D.getDeclSpec().getInlineSpecLoc(),
10338 getLangOpts().CPlusPlus11 ?
10339 diag::err_explicit_instantiation_inline :
10340 diag::warn_explicit_instantiation_inline_0x)
10341 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
10342 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
10343 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
10344 // not already specified.
10345 Diag(D.getDeclSpec().getConstexprSpecLoc(),
10346 diag::err_explicit_instantiation_constexpr);
10347
10348 // A deduction guide is not on the list of entities that can be explicitly
10349 // instantiated.
10350 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
10351 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
10352 << /*explicit instantiation*/ 0;
10353 return true;
10354 }
10355
10356 // C++0x [temp.explicit]p2:
10357 // There are two forms of explicit instantiation: an explicit instantiation
10358 // definition and an explicit instantiation declaration. An explicit
10359 // instantiation declaration begins with the extern keyword. [...]
10360 TemplateSpecializationKind TSK
10361 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
10362 : TSK_ExplicitInstantiationDeclaration;
10363
10364 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
10365 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
10366
10367 if (!R->isFunctionType()) {
10368 // C++ [temp.explicit]p1:
10369 // A [...] static data member of a class template can be explicitly
10370 // instantiated from the member definition associated with its class
10371 // template.
10372 // C++1y [temp.explicit]p1:
10373 // A [...] variable [...] template specialization can be explicitly
10374 // instantiated from its template.
10375 if (Previous.isAmbiguous())
10376 return true;
10377
10378 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
10379 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
10380
10381 if (!PrevTemplate) {
10382 if (!Prev || !Prev->isStaticDataMember()) {
10383 // We expect to see a static data member here.
10384 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
10385 << Name;
10386 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10387 P != PEnd; ++P)
10388 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
10389 return true;
10390 }
10391
10392 if (!Prev->getInstantiatedFromStaticDataMember()) {
10393 // FIXME: Check for explicit specialization?
10394 Diag(D.getIdentifierLoc(),
10395 diag::err_explicit_instantiation_data_member_not_instantiated)
10396 << Prev;
10397 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
10398 // FIXME: Can we provide a note showing where this was declared?
10399 return true;
10400 }
10401 } else {
10402 // Explicitly instantiate a variable template.
10403
10404 // C++1y [dcl.spec.auto]p6:
10405 // ... A program that uses auto or decltype(auto) in a context not
10406 // explicitly allowed in this section is ill-formed.
10407 //
10408 // This includes auto-typed variable template instantiations.
10409 if (R->isUndeducedType()) {
10410 Diag(T->getTypeLoc().getBeginLoc(),
10411 diag::err_auto_not_allowed_var_inst);
10412 return true;
10413 }
10414
10415 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
10416 // C++1y [temp.explicit]p3:
10417 // If the explicit instantiation is for a variable, the unqualified-id
10418 // in the declaration shall be a template-id.
10419 Diag(D.getIdentifierLoc(),
10420 diag::err_explicit_instantiation_without_template_id)
10421 << PrevTemplate;
10422 Diag(PrevTemplate->getLocation(),
10423 diag::note_explicit_instantiation_here);
10424 return true;
10425 }
10426
10427 // Translate the parser's template argument list into our AST format.
10428 TemplateArgumentListInfo TemplateArgs =
10429 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10430
10431 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
10432 D.getIdentifierLoc(), TemplateArgs);
10433 if (Res.isInvalid())
10434 return true;
10435
10436 if (!Res.isUsable()) {
10437 // We somehow specified dependent template arguments in an explicit
10438 // instantiation. This should probably only happen during error
10439 // recovery.
10440 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent);
10441 return true;
10442 }
10443
10444 // Ignore access control bits, we don't need them for redeclaration
10445 // checking.
10446 Prev = cast<VarDecl>(Res.get());
10447 }
10448
10449 // C++0x [temp.explicit]p2:
10450 // If the explicit instantiation is for a member function, a member class
10451 // or a static data member of a class template specialization, the name of
10452 // the class template specialization in the qualified-id for the member
10453 // name shall be a simple-template-id.
10454 //
10455 // C++98 has the same restriction, just worded differently.
10456 //
10457 // This does not apply to variable template specializations, where the
10458 // template-id is in the unqualified-id instead.
10459 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
10460 Diag(D.getIdentifierLoc(),
10461 diag::ext_explicit_instantiation_without_qualified_id)
10462 << Prev << D.getCXXScopeSpec().getRange();
10463
10464 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
10465
10466 // Verify that it is okay to explicitly instantiate here.
10467 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
10468 SourceLocation POI = Prev->getPointOfInstantiation();
10469 bool HasNoEffect = false;
10470 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
10471 PrevTSK, POI, HasNoEffect))
10472 return true;
10473
10474 if (!HasNoEffect) {
10475 // Instantiate static data member or variable template.
10476 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10477 // Merge attributes.
10478 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
10479 if (TSK == TSK_ExplicitInstantiationDefinition)
10480 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
10481 }
10482
10483 // Check the new variable specialization against the parsed input.
10484 if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) {
10485 Diag(T->getTypeLoc().getBeginLoc(),
10486 diag::err_invalid_var_template_spec_type)
10487 << 0 << PrevTemplate << R << Prev->getType();
10488 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
10489 << 2 << PrevTemplate->getDeclName();
10490 return true;
10491 }
10492
10493 // FIXME: Create an ExplicitInstantiation node?
10494 return (Decl*) nullptr;
10495 }
10496
10497 // If the declarator is a template-id, translate the parser's template
10498 // argument list into our AST format.
10499 bool HasExplicitTemplateArgs = false;
10500 TemplateArgumentListInfo TemplateArgs;
10501 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
10502 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10503 HasExplicitTemplateArgs = true;
10504 }
10505
10506 // C++ [temp.explicit]p1:
10507 // A [...] function [...] can be explicitly instantiated from its template.
10508 // A member function [...] of a class template can be explicitly
10509 // instantiated from the member definition associated with its class
10510 // template.
10511 UnresolvedSet<8> TemplateMatches;
10512 FunctionDecl *NonTemplateMatch = nullptr;
10513 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
10514 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10515 P != PEnd; ++P) {
10516 NamedDecl *Prev = *P;
10517 if (!HasExplicitTemplateArgs) {
10518 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
10519 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
10520 /*AdjustExceptionSpec*/true);
10521 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
10522 if (Method->getPrimaryTemplate()) {
10523 TemplateMatches.addDecl(Method, P.getAccess());
10524 } else {
10525 // FIXME: Can this assert ever happen? Needs a test.
10526 assert(!NonTemplateMatch && "Multiple NonTemplateMatches");
10527 NonTemplateMatch = Method;
10528 }
10529 }
10530 }
10531 }
10532
10533 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
10534 if (!FunTmpl)
10535 continue;
10536
10537 TemplateDeductionInfo Info(FailedCandidates.getLocation());
10538 FunctionDecl *Specialization = nullptr;
10539 if (TemplateDeductionResult TDK
10540 = DeduceTemplateArguments(FunTmpl,
10541 (HasExplicitTemplateArgs ? &TemplateArgs
10542 : nullptr),
10543 R, Specialization, Info)) {
10544 // Keep track of almost-matches.
10545 FailedCandidates.addCandidate()
10546 .set(P.getPair(), FunTmpl->getTemplatedDecl(),
10547 MakeDeductionFailureInfo(Context, TDK, Info));
10548 (void)TDK;
10549 continue;
10550 }
10551
10552 // Target attributes are part of the cuda function signature, so
10553 // the cuda target of the instantiated function must match that of its
10554 // template. Given that C++ template deduction does not take
10555 // target attributes into account, we reject candidates here that
10556 // have a different target.
10557 if (LangOpts.CUDA &&
10558 IdentifyCUDATarget(Specialization,
10559 /* IgnoreImplicitHDAttr = */ true) !=
10560 IdentifyCUDATarget(D.getDeclSpec().getAttributes())) {
10561 FailedCandidates.addCandidate().set(
10562 P.getPair(), FunTmpl->getTemplatedDecl(),
10563 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
10564 continue;
10565 }
10566
10567 TemplateMatches.addDecl(Specialization, P.getAccess());
10568 }
10569
10570 FunctionDecl *Specialization = NonTemplateMatch;
10571 if (!Specialization) {
10572 // Find the most specialized function template specialization.
10573 UnresolvedSetIterator Result = getMostSpecialized(
10574 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
10575 D.getIdentifierLoc(),
10576 PDiag(diag::err_explicit_instantiation_not_known) << Name,
10577 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
10578 PDiag(diag::note_explicit_instantiation_candidate));
10579
10580 if (Result == TemplateMatches.end())
10581 return true;
10582
10583 // Ignore access control bits, we don't need them for redeclaration checking.
10584 Specialization = cast<FunctionDecl>(*Result);
10585 }
10586
10587 // C++11 [except.spec]p4
10588 // In an explicit instantiation an exception-specification may be specified,
10589 // but is not required.
10590 // If an exception-specification is specified in an explicit instantiation
10591 // directive, it shall be compatible with the exception-specifications of
10592 // other declarations of that function.
10593 if (auto *FPT = R->getAs<FunctionProtoType>())
10594 if (FPT->hasExceptionSpec()) {
10595 unsigned DiagID =
10596 diag::err_mismatched_exception_spec_explicit_instantiation;
10597 if (getLangOpts().MicrosoftExt)
10598 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
10599 bool Result = CheckEquivalentExceptionSpec(
10600 PDiag(DiagID) << Specialization->getType(),
10601 PDiag(diag::note_explicit_instantiation_here),
10602 Specialization->getType()->getAs<FunctionProtoType>(),
10603 Specialization->getLocation(), FPT, D.getBeginLoc());
10604 // In Microsoft mode, mismatching exception specifications just cause a
10605 // warning.
10606 if (!getLangOpts().MicrosoftExt && Result)
10607 return true;
10608 }
10609
10610 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
10611 Diag(D.getIdentifierLoc(),
10612 diag::err_explicit_instantiation_member_function_not_instantiated)
10613 << Specialization
10614 << (Specialization->getTemplateSpecializationKind() ==
10615 TSK_ExplicitSpecialization);
10616 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
10617 return true;
10618 }
10619
10620 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
10621 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
10622 PrevDecl = Specialization;
10623
10624 if (PrevDecl) {
10625 bool HasNoEffect = false;
10626 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
10627 PrevDecl,
10628 PrevDecl->getTemplateSpecializationKind(),
10629 PrevDecl->getPointOfInstantiation(),
10630 HasNoEffect))
10631 return true;
10632
10633 // FIXME: We may still want to build some representation of this
10634 // explicit specialization.
10635 if (HasNoEffect)
10636 return (Decl*) nullptr;
10637 }
10638
10639 // HACK: libc++ has a bug where it attempts to explicitly instantiate the
10640 // functions
10641 // valarray<size_t>::valarray(size_t) and
10642 // valarray<size_t>::~valarray()
10643 // that it declared to have internal linkage with the internal_linkage
10644 // attribute. Ignore the explicit instantiation declaration in this case.
10645 if (Specialization->hasAttr<InternalLinkageAttr>() &&
10646 TSK == TSK_ExplicitInstantiationDeclaration) {
10647 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
10648 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
10649 RD->isInStdNamespace())
10650 return (Decl*) nullptr;
10651 }
10652
10653 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
10654
10655 // In MSVC mode, dllimported explicit instantiation definitions are treated as
10656 // instantiation declarations.
10657 if (TSK == TSK_ExplicitInstantiationDefinition &&
10658 Specialization->hasAttr<DLLImportAttr>() &&
10659 Context.getTargetInfo().getCXXABI().isMicrosoft())
10660 TSK = TSK_ExplicitInstantiationDeclaration;
10661
10662 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10663
10664 if (Specialization->isDefined()) {
10665 // Let the ASTConsumer know that this function has been explicitly
10666 // instantiated now, and its linkage might have changed.
10667 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
10668 } else if (TSK == TSK_ExplicitInstantiationDefinition)
10669 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
10670
10671 // C++0x [temp.explicit]p2:
10672 // If the explicit instantiation is for a member function, a member class
10673 // or a static data member of a class template specialization, the name of
10674 // the class template specialization in the qualified-id for the member
10675 // name shall be a simple-template-id.
10676 //
10677 // C++98 has the same restriction, just worded differently.
10678 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
10679 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
10680 D.getCXXScopeSpec().isSet() &&
10681 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
10682 Diag(D.getIdentifierLoc(),
10683 diag::ext_explicit_instantiation_without_qualified_id)
10684 << Specialization << D.getCXXScopeSpec().getRange();
10685
10686 CheckExplicitInstantiation(
10687 *this,
10688 FunTmpl ? (NamedDecl *)FunTmpl
10689 : Specialization->getInstantiatedFromMemberFunction(),
10690 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
10691
10692 // FIXME: Create some kind of ExplicitInstantiationDecl here.
10693 return (Decl*) nullptr;
10694 }
10695
10696 TypeResult
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)10697 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10698 const CXXScopeSpec &SS, IdentifierInfo *Name,
10699 SourceLocation TagLoc, SourceLocation NameLoc) {
10700 // This has to hold, because SS is expected to be defined.
10701 assert(Name && "Expected a name in a dependent tag");
10702
10703 NestedNameSpecifier *NNS = SS.getScopeRep();
10704 if (!NNS)
10705 return true;
10706
10707 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10708
10709 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
10710 Diag(NameLoc, diag::err_dependent_tag_decl)
10711 << (TUK == TUK_Definition) << Kind << SS.getRange();
10712 return true;
10713 }
10714
10715 // Create the resulting type.
10716 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10717 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
10718
10719 // Create type-source location information for this type.
10720 TypeLocBuilder TLB;
10721 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
10722 TL.setElaboratedKeywordLoc(TagLoc);
10723 TL.setQualifierLoc(SS.getWithLocInContext(Context));
10724 TL.setNameLoc(NameLoc);
10725 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
10726 }
10727
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc,ImplicitTypenameContext IsImplicitTypename)10728 TypeResult Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
10729 const CXXScopeSpec &SS,
10730 const IdentifierInfo &II,
10731 SourceLocation IdLoc,
10732 ImplicitTypenameContext IsImplicitTypename) {
10733 if (SS.isInvalid())
10734 return true;
10735
10736 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10737 Diag(TypenameLoc,
10738 getLangOpts().CPlusPlus11 ?
10739 diag::warn_cxx98_compat_typename_outside_of_template :
10740 diag::ext_typename_outside_of_template)
10741 << FixItHint::CreateRemoval(TypenameLoc);
10742
10743 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10744 TypeSourceInfo *TSI = nullptr;
10745 QualType T =
10746 CheckTypenameType((TypenameLoc.isValid() ||
10747 IsImplicitTypename == ImplicitTypenameContext::Yes)
10748 ? ETK_Typename
10749 : ETK_None,
10750 TypenameLoc, QualifierLoc, II, IdLoc, &TSI,
10751 /*DeducedTSTContext=*/true);
10752 if (T.isNull())
10753 return true;
10754 return CreateParsedType(T, TSI);
10755 }
10756
10757 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateIn,IdentifierInfo * TemplateII,SourceLocation TemplateIILoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)10758 Sema::ActOnTypenameType(Scope *S,
10759 SourceLocation TypenameLoc,
10760 const CXXScopeSpec &SS,
10761 SourceLocation TemplateKWLoc,
10762 TemplateTy TemplateIn,
10763 IdentifierInfo *TemplateII,
10764 SourceLocation TemplateIILoc,
10765 SourceLocation LAngleLoc,
10766 ASTTemplateArgsPtr TemplateArgsIn,
10767 SourceLocation RAngleLoc) {
10768 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10769 Diag(TypenameLoc,
10770 getLangOpts().CPlusPlus11 ?
10771 diag::warn_cxx98_compat_typename_outside_of_template :
10772 diag::ext_typename_outside_of_template)
10773 << FixItHint::CreateRemoval(TypenameLoc);
10774
10775 // Strangely, non-type results are not ignored by this lookup, so the
10776 // program is ill-formed if it finds an injected-class-name.
10777 if (TypenameLoc.isValid()) {
10778 auto *LookupRD =
10779 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
10780 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
10781 Diag(TemplateIILoc,
10782 diag::ext_out_of_line_qualified_id_type_names_constructor)
10783 << TemplateII << 0 /*injected-class-name used as template name*/
10784 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
10785 }
10786 }
10787
10788 // Translate the parser's template argument list in our AST format.
10789 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
10790 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
10791
10792 TemplateName Template = TemplateIn.get();
10793 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
10794 // Construct a dependent template specialization type.
10795 assert(DTN && "dependent template has non-dependent name?");
10796 assert(DTN->getQualifier() == SS.getScopeRep());
10797 QualType T = Context.getDependentTemplateSpecializationType(
10798 ETK_Typename, DTN->getQualifier(), DTN->getIdentifier(),
10799 TemplateArgs.arguments());
10800
10801 // Create source-location information for this type.
10802 TypeLocBuilder Builder;
10803 DependentTemplateSpecializationTypeLoc SpecTL
10804 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
10805 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
10806 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
10807 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10808 SpecTL.setTemplateNameLoc(TemplateIILoc);
10809 SpecTL.setLAngleLoc(LAngleLoc);
10810 SpecTL.setRAngleLoc(RAngleLoc);
10811 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10812 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10813 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
10814 }
10815
10816 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
10817 if (T.isNull())
10818 return true;
10819
10820 // Provide source-location information for the template specialization type.
10821 TypeLocBuilder Builder;
10822 TemplateSpecializationTypeLoc SpecTL
10823 = Builder.push<TemplateSpecializationTypeLoc>(T);
10824 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10825 SpecTL.setTemplateNameLoc(TemplateIILoc);
10826 SpecTL.setLAngleLoc(LAngleLoc);
10827 SpecTL.setRAngleLoc(RAngleLoc);
10828 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10829 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10830
10831 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
10832 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
10833 TL.setElaboratedKeywordLoc(TypenameLoc);
10834 TL.setQualifierLoc(SS.getWithLocInContext(Context));
10835
10836 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
10837 return CreateParsedType(T, TSI);
10838 }
10839
10840
10841 /// Determine whether this failed name lookup should be treated as being
10842 /// disabled by a usage of std::enable_if.
isEnableIf(NestedNameSpecifierLoc NNS,const IdentifierInfo & II,SourceRange & CondRange,Expr * & Cond)10843 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
10844 SourceRange &CondRange, Expr *&Cond) {
10845 // We must be looking for a ::type...
10846 if (!II.isStr("type"))
10847 return false;
10848
10849 // ... within an explicitly-written template specialization...
10850 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
10851 return false;
10852 TypeLoc EnableIfTy = NNS.getTypeLoc();
10853 TemplateSpecializationTypeLoc EnableIfTSTLoc =
10854 EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
10855 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
10856 return false;
10857 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
10858
10859 // ... which names a complete class template declaration...
10860 const TemplateDecl *EnableIfDecl =
10861 EnableIfTST->getTemplateName().getAsTemplateDecl();
10862 if (!EnableIfDecl || EnableIfTST->isIncompleteType())
10863 return false;
10864
10865 // ... called "enable_if".
10866 const IdentifierInfo *EnableIfII =
10867 EnableIfDecl->getDeclName().getAsIdentifierInfo();
10868 if (!EnableIfII || !EnableIfII->isStr("enable_if"))
10869 return false;
10870
10871 // Assume the first template argument is the condition.
10872 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
10873
10874 // Dig out the condition.
10875 Cond = nullptr;
10876 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
10877 != TemplateArgument::Expression)
10878 return true;
10879
10880 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
10881
10882 // Ignore Boolean literals; they add no value.
10883 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
10884 Cond = nullptr;
10885
10886 return true;
10887 }
10888
10889 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc,TypeSourceInfo ** TSI,bool DeducedTSTContext)10890 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10891 SourceLocation KeywordLoc,
10892 NestedNameSpecifierLoc QualifierLoc,
10893 const IdentifierInfo &II,
10894 SourceLocation IILoc,
10895 TypeSourceInfo **TSI,
10896 bool DeducedTSTContext) {
10897 QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
10898 DeducedTSTContext);
10899 if (T.isNull())
10900 return QualType();
10901
10902 *TSI = Context.CreateTypeSourceInfo(T);
10903 if (isa<DependentNameType>(T)) {
10904 DependentNameTypeLoc TL =
10905 (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
10906 TL.setElaboratedKeywordLoc(KeywordLoc);
10907 TL.setQualifierLoc(QualifierLoc);
10908 TL.setNameLoc(IILoc);
10909 } else {
10910 ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
10911 TL.setElaboratedKeywordLoc(KeywordLoc);
10912 TL.setQualifierLoc(QualifierLoc);
10913 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
10914 }
10915 return T;
10916 }
10917
10918 /// Build the type that describes a C++ typename specifier,
10919 /// e.g., "typename T::type".
10920 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc,bool DeducedTSTContext)10921 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10922 SourceLocation KeywordLoc,
10923 NestedNameSpecifierLoc QualifierLoc,
10924 const IdentifierInfo &II,
10925 SourceLocation IILoc, bool DeducedTSTContext) {
10926 CXXScopeSpec SS;
10927 SS.Adopt(QualifierLoc);
10928
10929 DeclContext *Ctx = nullptr;
10930 if (QualifierLoc) {
10931 Ctx = computeDeclContext(SS);
10932 if (!Ctx) {
10933 // If the nested-name-specifier is dependent and couldn't be
10934 // resolved to a type, build a typename type.
10935 assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
10936 return Context.getDependentNameType(Keyword,
10937 QualifierLoc.getNestedNameSpecifier(),
10938 &II);
10939 }
10940
10941 // If the nested-name-specifier refers to the current instantiation,
10942 // the "typename" keyword itself is superfluous. In C++03, the
10943 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
10944 // allows such extraneous "typename" keywords, and we retroactively
10945 // apply this DR to C++03 code with only a warning. In any case we continue.
10946
10947 if (RequireCompleteDeclContext(SS, Ctx))
10948 return QualType();
10949 }
10950
10951 DeclarationName Name(&II);
10952 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
10953 if (Ctx)
10954 LookupQualifiedName(Result, Ctx, SS);
10955 else
10956 LookupName(Result, CurScope);
10957 unsigned DiagID = 0;
10958 Decl *Referenced = nullptr;
10959 switch (Result.getResultKind()) {
10960 case LookupResult::NotFound: {
10961 // If we're looking up 'type' within a template named 'enable_if', produce
10962 // a more specific diagnostic.
10963 SourceRange CondRange;
10964 Expr *Cond = nullptr;
10965 if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) {
10966 // If we have a condition, narrow it down to the specific failed
10967 // condition.
10968 if (Cond) {
10969 Expr *FailedCond;
10970 std::string FailedDescription;
10971 std::tie(FailedCond, FailedDescription) =
10972 findFailedBooleanCondition(Cond);
10973
10974 Diag(FailedCond->getExprLoc(),
10975 diag::err_typename_nested_not_found_requirement)
10976 << FailedDescription
10977 << FailedCond->getSourceRange();
10978 return QualType();
10979 }
10980
10981 Diag(CondRange.getBegin(),
10982 diag::err_typename_nested_not_found_enable_if)
10983 << Ctx << CondRange;
10984 return QualType();
10985 }
10986
10987 DiagID = Ctx ? diag::err_typename_nested_not_found
10988 : diag::err_unknown_typename;
10989 break;
10990 }
10991
10992 case LookupResult::FoundUnresolvedValue: {
10993 // We found a using declaration that is a value. Most likely, the using
10994 // declaration itself is meant to have the 'typename' keyword.
10995 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10996 IILoc);
10997 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
10998 << Name << Ctx << FullRange;
10999 if (UnresolvedUsingValueDecl *Using
11000 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
11001 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
11002 Diag(Loc, diag::note_using_value_decl_missing_typename)
11003 << FixItHint::CreateInsertion(Loc, "typename ");
11004 }
11005 }
11006 // Fall through to create a dependent typename type, from which we can recover
11007 // better.
11008 [[fallthrough]];
11009
11010 case LookupResult::NotFoundInCurrentInstantiation:
11011 // Okay, it's a member of an unknown instantiation.
11012 return Context.getDependentNameType(Keyword,
11013 QualifierLoc.getNestedNameSpecifier(),
11014 &II);
11015
11016 case LookupResult::Found:
11017 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
11018 // C++ [class.qual]p2:
11019 // In a lookup in which function names are not ignored and the
11020 // nested-name-specifier nominates a class C, if the name specified
11021 // after the nested-name-specifier, when looked up in C, is the
11022 // injected-class-name of C [...] then the name is instead considered
11023 // to name the constructor of class C.
11024 //
11025 // Unlike in an elaborated-type-specifier, function names are not ignored
11026 // in typename-specifier lookup. However, they are ignored in all the
11027 // contexts where we form a typename type with no keyword (that is, in
11028 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
11029 //
11030 // FIXME: That's not strictly true: mem-initializer-id lookup does not
11031 // ignore functions, but that appears to be an oversight.
11032 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
11033 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
11034 if (Keyword == ETK_Typename && LookupRD && FoundRD &&
11035 FoundRD->isInjectedClassName() &&
11036 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
11037 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
11038 << &II << 1 << 0 /*'typename' keyword used*/;
11039
11040 // We found a type. Build an ElaboratedType, since the
11041 // typename-specifier was just sugar.
11042 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
11043 return Context.getElaboratedType(Keyword,
11044 QualifierLoc.getNestedNameSpecifier(),
11045 Context.getTypeDeclType(Type));
11046 }
11047
11048 // C++ [dcl.type.simple]p2:
11049 // A type-specifier of the form
11050 // typename[opt] nested-name-specifier[opt] template-name
11051 // is a placeholder for a deduced class type [...].
11052 if (getLangOpts().CPlusPlus17) {
11053 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
11054 if (!DeducedTSTContext) {
11055 QualType T(QualifierLoc
11056 ? QualifierLoc.getNestedNameSpecifier()->getAsType()
11057 : nullptr, 0);
11058 if (!T.isNull())
11059 Diag(IILoc, diag::err_dependent_deduced_tst)
11060 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
11061 else
11062 Diag(IILoc, diag::err_deduced_tst)
11063 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
11064 Diag(TD->getLocation(), diag::note_template_decl_here);
11065 return QualType();
11066 }
11067 return Context.getElaboratedType(
11068 Keyword, QualifierLoc.getNestedNameSpecifier(),
11069 Context.getDeducedTemplateSpecializationType(TemplateName(TD),
11070 QualType(), false));
11071 }
11072 }
11073
11074 DiagID = Ctx ? diag::err_typename_nested_not_type
11075 : diag::err_typename_not_type;
11076 Referenced = Result.getFoundDecl();
11077 break;
11078
11079 case LookupResult::FoundOverloaded:
11080 DiagID = Ctx ? diag::err_typename_nested_not_type
11081 : diag::err_typename_not_type;
11082 Referenced = *Result.begin();
11083 break;
11084
11085 case LookupResult::Ambiguous:
11086 return QualType();
11087 }
11088
11089 // If we get here, it's because name lookup did not find a
11090 // type. Emit an appropriate diagnostic and return an error.
11091 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
11092 IILoc);
11093 if (Ctx)
11094 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
11095 else
11096 Diag(IILoc, DiagID) << FullRange << Name;
11097 if (Referenced)
11098 Diag(Referenced->getLocation(),
11099 Ctx ? diag::note_typename_member_refers_here
11100 : diag::note_typename_refers_here)
11101 << Name;
11102 return QualType();
11103 }
11104
11105 namespace {
11106 // See Sema::RebuildTypeInCurrentInstantiation
11107 class CurrentInstantiationRebuilder
11108 : public TreeTransform<CurrentInstantiationRebuilder> {
11109 SourceLocation Loc;
11110 DeclarationName Entity;
11111
11112 public:
11113 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
11114
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)11115 CurrentInstantiationRebuilder(Sema &SemaRef,
11116 SourceLocation Loc,
11117 DeclarationName Entity)
11118 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
11119 Loc(Loc), Entity(Entity) { }
11120
11121 /// Determine whether the given type \p T has already been
11122 /// transformed.
11123 ///
11124 /// For the purposes of type reconstruction, a type has already been
11125 /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)11126 bool AlreadyTransformed(QualType T) {
11127 return T.isNull() || !T->isInstantiationDependentType();
11128 }
11129
11130 /// Returns the location of the entity whose type is being
11131 /// rebuilt.
getBaseLocation()11132 SourceLocation getBaseLocation() { return Loc; }
11133
11134 /// Returns the name of the entity whose type is being rebuilt.
getBaseEntity()11135 DeclarationName getBaseEntity() { return Entity; }
11136
11137 /// Sets the "base" location and entity when that
11138 /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)11139 void setBase(SourceLocation Loc, DeclarationName Entity) {
11140 this->Loc = Loc;
11141 this->Entity = Entity;
11142 }
11143
TransformLambdaExpr(LambdaExpr * E)11144 ExprResult TransformLambdaExpr(LambdaExpr *E) {
11145 // Lambdas never need to be transformed.
11146 return E;
11147 }
11148 };
11149 } // end anonymous namespace
11150
11151 /// Rebuilds a type within the context of the current instantiation.
11152 ///
11153 /// The type \p T is part of the type of an out-of-line member definition of
11154 /// a class template (or class template partial specialization) that was parsed
11155 /// and constructed before we entered the scope of the class template (or
11156 /// partial specialization thereof). This routine will rebuild that type now
11157 /// that we have entered the declarator's scope, which may produce different
11158 /// canonical types, e.g.,
11159 ///
11160 /// \code
11161 /// template<typename T>
11162 /// struct X {
11163 /// typedef T* pointer;
11164 /// pointer data();
11165 /// };
11166 ///
11167 /// template<typename T>
11168 /// typename X<T>::pointer X<T>::data() { ... }
11169 /// \endcode
11170 ///
11171 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
11172 /// since we do not know that we can look into X<T> when we parsed the type.
11173 /// This function will rebuild the type, performing the lookup of "pointer"
11174 /// in X<T> and returning an ElaboratedType whose canonical type is the same
11175 /// as the canonical type of T*, allowing the return types of the out-of-line
11176 /// definition and the declaration to match.
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)11177 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
11178 SourceLocation Loc,
11179 DeclarationName Name) {
11180 if (!T || !T->getType()->isInstantiationDependentType())
11181 return T;
11182
11183 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
11184 return Rebuilder.TransformType(T);
11185 }
11186
RebuildExprInCurrentInstantiation(Expr * E)11187 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
11188 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
11189 DeclarationName());
11190 return Rebuilder.TransformExpr(E);
11191 }
11192
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)11193 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
11194 if (SS.isInvalid())
11195 return true;
11196
11197 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11198 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
11199 DeclarationName());
11200 NestedNameSpecifierLoc Rebuilt
11201 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
11202 if (!Rebuilt)
11203 return true;
11204
11205 SS.Adopt(Rebuilt);
11206 return false;
11207 }
11208
11209 /// Rebuild the template parameters now that we know we're in a current
11210 /// instantiation.
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList * Params)11211 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
11212 TemplateParameterList *Params) {
11213 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
11214 Decl *Param = Params->getParam(I);
11215
11216 // There is nothing to rebuild in a type parameter.
11217 if (isa<TemplateTypeParmDecl>(Param))
11218 continue;
11219
11220 // Rebuild the template parameter list of a template template parameter.
11221 if (TemplateTemplateParmDecl *TTP
11222 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
11223 if (RebuildTemplateParamsInCurrentInstantiation(
11224 TTP->getTemplateParameters()))
11225 return true;
11226
11227 continue;
11228 }
11229
11230 // Rebuild the type of a non-type template parameter.
11231 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
11232 TypeSourceInfo *NewTSI
11233 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
11234 NTTP->getLocation(),
11235 NTTP->getDeclName());
11236 if (!NewTSI)
11237 return true;
11238
11239 if (NewTSI->getType()->isUndeducedType()) {
11240 // C++17 [temp.dep.expr]p3:
11241 // An id-expression is type-dependent if it contains
11242 // - an identifier associated by name lookup with a non-type
11243 // template-parameter declared with a type that contains a
11244 // placeholder type (7.1.7.4),
11245 NewTSI = SubstAutoTypeSourceInfoDependent(NewTSI);
11246 }
11247
11248 if (NewTSI != NTTP->getTypeSourceInfo()) {
11249 NTTP->setTypeSourceInfo(NewTSI);
11250 NTTP->setType(NewTSI->getType());
11251 }
11252 }
11253
11254 return false;
11255 }
11256
11257 /// Produces a formatted string that describes the binding of
11258 /// template parameters to template arguments.
11259 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)11260 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
11261 const TemplateArgumentList &Args) {
11262 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
11263 }
11264
11265 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)11266 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
11267 const TemplateArgument *Args,
11268 unsigned NumArgs) {
11269 SmallString<128> Str;
11270 llvm::raw_svector_ostream Out(Str);
11271
11272 if (!Params || Params->size() == 0 || NumArgs == 0)
11273 return std::string();
11274
11275 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
11276 if (I >= NumArgs)
11277 break;
11278
11279 if (I == 0)
11280 Out << "[with ";
11281 else
11282 Out << ", ";
11283
11284 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
11285 Out << Id->getName();
11286 } else {
11287 Out << '$' << I;
11288 }
11289
11290 Out << " = ";
11291 Args[I].print(getPrintingPolicy(), Out,
11292 TemplateParameterList::shouldIncludeTypeForArgument(
11293 getPrintingPolicy(), Params, I));
11294 }
11295
11296 Out << ']';
11297 return std::string(Out.str());
11298 }
11299
MarkAsLateParsedTemplate(FunctionDecl * FD,Decl * FnD,CachedTokens & Toks)11300 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
11301 CachedTokens &Toks) {
11302 if (!FD)
11303 return;
11304
11305 auto LPT = std::make_unique<LateParsedTemplate>();
11306
11307 // Take tokens to avoid allocations
11308 LPT->Toks.swap(Toks);
11309 LPT->D = FnD;
11310 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
11311
11312 FD->setLateTemplateParsed(true);
11313 }
11314
UnmarkAsLateParsedTemplate(FunctionDecl * FD)11315 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
11316 if (!FD)
11317 return;
11318 FD->setLateTemplateParsed(false);
11319 }
11320
IsInsideALocalClassWithinATemplateFunction()11321 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
11322 DeclContext *DC = CurContext;
11323
11324 while (DC) {
11325 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
11326 const FunctionDecl *FD = RD->isLocalClass();
11327 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
11328 } else if (DC->isTranslationUnit() || DC->isNamespace())
11329 return false;
11330
11331 DC = DC->getParent();
11332 }
11333 return false;
11334 }
11335
11336 namespace {
11337 /// Walk the path from which a declaration was instantiated, and check
11338 /// that every explicit specialization along that path is visible. This enforces
11339 /// C++ [temp.expl.spec]/6:
11340 ///
11341 /// If a template, a member template or a member of a class template is
11342 /// explicitly specialized then that specialization shall be declared before
11343 /// the first use of that specialization that would cause an implicit
11344 /// instantiation to take place, in every translation unit in which such a
11345 /// use occurs; no diagnostic is required.
11346 ///
11347 /// and also C++ [temp.class.spec]/1:
11348 ///
11349 /// A partial specialization shall be declared before the first use of a
11350 /// class template specialization that would make use of the partial
11351 /// specialization as the result of an implicit or explicit instantiation
11352 /// in every translation unit in which such a use occurs; no diagnostic is
11353 /// required.
11354 class ExplicitSpecializationVisibilityChecker {
11355 Sema &S;
11356 SourceLocation Loc;
11357 llvm::SmallVector<Module *, 8> Modules;
11358 Sema::AcceptableKind Kind;
11359
11360 public:
ExplicitSpecializationVisibilityChecker(Sema & S,SourceLocation Loc,Sema::AcceptableKind Kind)11361 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc,
11362 Sema::AcceptableKind Kind)
11363 : S(S), Loc(Loc), Kind(Kind) {}
11364
check(NamedDecl * ND)11365 void check(NamedDecl *ND) {
11366 if (auto *FD = dyn_cast<FunctionDecl>(ND))
11367 return checkImpl(FD);
11368 if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
11369 return checkImpl(RD);
11370 if (auto *VD = dyn_cast<VarDecl>(ND))
11371 return checkImpl(VD);
11372 if (auto *ED = dyn_cast<EnumDecl>(ND))
11373 return checkImpl(ED);
11374 }
11375
11376 private:
diagnose(NamedDecl * D,bool IsPartialSpec)11377 void diagnose(NamedDecl *D, bool IsPartialSpec) {
11378 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
11379 : Sema::MissingImportKind::ExplicitSpecialization;
11380 const bool Recover = true;
11381
11382 // If we got a custom set of modules (because only a subset of the
11383 // declarations are interesting), use them, otherwise let
11384 // diagnoseMissingImport intelligently pick some.
11385 if (Modules.empty())
11386 S.diagnoseMissingImport(Loc, D, Kind, Recover);
11387 else
11388 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
11389 }
11390
CheckMemberSpecialization(const NamedDecl * D)11391 bool CheckMemberSpecialization(const NamedDecl *D) {
11392 return Kind == Sema::AcceptableKind::Visible
11393 ? S.hasVisibleMemberSpecialization(D)
11394 : S.hasReachableMemberSpecialization(D);
11395 }
11396
CheckExplicitSpecialization(const NamedDecl * D)11397 bool CheckExplicitSpecialization(const NamedDecl *D) {
11398 return Kind == Sema::AcceptableKind::Visible
11399 ? S.hasVisibleExplicitSpecialization(D)
11400 : S.hasReachableExplicitSpecialization(D);
11401 }
11402
CheckDeclaration(const NamedDecl * D)11403 bool CheckDeclaration(const NamedDecl *D) {
11404 return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D)
11405 : S.hasReachableDeclaration(D);
11406 }
11407
11408 // Check a specific declaration. There are three problematic cases:
11409 //
11410 // 1) The declaration is an explicit specialization of a template
11411 // specialization.
11412 // 2) The declaration is an explicit specialization of a member of an
11413 // templated class.
11414 // 3) The declaration is an instantiation of a template, and that template
11415 // is an explicit specialization of a member of a templated class.
11416 //
11417 // We don't need to go any deeper than that, as the instantiation of the
11418 // surrounding class / etc is not triggered by whatever triggered this
11419 // instantiation, and thus should be checked elsewhere.
11420 template<typename SpecDecl>
checkImpl(SpecDecl * Spec)11421 void checkImpl(SpecDecl *Spec) {
11422 bool IsHiddenExplicitSpecialization = false;
11423 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
11424 IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo()
11425 ? !CheckMemberSpecialization(Spec)
11426 : !CheckExplicitSpecialization(Spec);
11427 } else {
11428 checkInstantiated(Spec);
11429 }
11430
11431 if (IsHiddenExplicitSpecialization)
11432 diagnose(Spec->getMostRecentDecl(), false);
11433 }
11434
checkInstantiated(FunctionDecl * FD)11435 void checkInstantiated(FunctionDecl *FD) {
11436 if (auto *TD = FD->getPrimaryTemplate())
11437 checkTemplate(TD);
11438 }
11439
checkInstantiated(CXXRecordDecl * RD)11440 void checkInstantiated(CXXRecordDecl *RD) {
11441 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
11442 if (!SD)
11443 return;
11444
11445 auto From = SD->getSpecializedTemplateOrPartial();
11446 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
11447 checkTemplate(TD);
11448 else if (auto *TD =
11449 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
11450 if (!CheckDeclaration(TD))
11451 diagnose(TD, true);
11452 checkTemplate(TD);
11453 }
11454 }
11455
checkInstantiated(VarDecl * RD)11456 void checkInstantiated(VarDecl *RD) {
11457 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
11458 if (!SD)
11459 return;
11460
11461 auto From = SD->getSpecializedTemplateOrPartial();
11462 if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
11463 checkTemplate(TD);
11464 else if (auto *TD =
11465 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
11466 if (!CheckDeclaration(TD))
11467 diagnose(TD, true);
11468 checkTemplate(TD);
11469 }
11470 }
11471
checkInstantiated(EnumDecl * FD)11472 void checkInstantiated(EnumDecl *FD) {}
11473
11474 template<typename TemplDecl>
checkTemplate(TemplDecl * TD)11475 void checkTemplate(TemplDecl *TD) {
11476 if (TD->isMemberSpecialization()) {
11477 if (!CheckMemberSpecialization(TD))
11478 diagnose(TD->getMostRecentDecl(), false);
11479 }
11480 }
11481 };
11482 } // end anonymous namespace
11483
checkSpecializationVisibility(SourceLocation Loc,NamedDecl * Spec)11484 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
11485 if (!getLangOpts().Modules)
11486 return;
11487
11488 ExplicitSpecializationVisibilityChecker(*this, Loc,
11489 Sema::AcceptableKind::Visible)
11490 .check(Spec);
11491 }
11492
checkSpecializationReachability(SourceLocation Loc,NamedDecl * Spec)11493 void Sema::checkSpecializationReachability(SourceLocation Loc,
11494 NamedDecl *Spec) {
11495 if (!getLangOpts().CPlusPlusModules)
11496 return checkSpecializationVisibility(Loc, Spec);
11497
11498 ExplicitSpecializationVisibilityChecker(*this, Loc,
11499 Sema::AcceptableKind::Reachable)
11500 .check(Spec);
11501 }
11502