1 //===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sinking of negation into expression trees,
10 // as long as that can be done without increasing instruction count.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/TargetFolder.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugLoc.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Use.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/DebugCounter.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/InstCombine/InstCombiner.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <functional>
47 #include <tuple>
48 #include <type_traits>
49 #include <utility>
50
51 namespace llvm {
52 class AssumptionCache;
53 class DataLayout;
54 class DominatorTree;
55 class LLVMContext;
56 } // namespace llvm
57
58 using namespace llvm;
59
60 #define DEBUG_TYPE "instcombine"
61
62 STATISTIC(NegatorTotalNegationsAttempted,
63 "Negator: Number of negations attempted to be sinked");
64 STATISTIC(NegatorNumTreesNegated,
65 "Negator: Number of negations successfully sinked");
66 STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
67 "reached while attempting to sink negation");
68 STATISTIC(NegatorTimesDepthLimitReached,
69 "Negator: How many times did the traversal depth limit was reached "
70 "during sinking");
71 STATISTIC(
72 NegatorNumValuesVisited,
73 "Negator: Total number of values visited during attempts to sink negation");
74 STATISTIC(NegatorNumNegationsFoundInCache,
75 "Negator: How many negations did we retrieve/reuse from cache");
76 STATISTIC(NegatorMaxTotalValuesVisited,
77 "Negator: Maximal number of values ever visited while attempting to "
78 "sink negation");
79 STATISTIC(NegatorNumInstructionsCreatedTotal,
80 "Negator: Number of new negated instructions created, total");
81 STATISTIC(NegatorMaxInstructionsCreated,
82 "Negator: Maximal number of new instructions created during negation "
83 "attempt");
84 STATISTIC(NegatorNumInstructionsNegatedSuccess,
85 "Negator: Number of new negated instructions created in successful "
86 "negation sinking attempts");
87
88 DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
89 "Controls Negator transformations in InstCombine pass");
90
91 static cl::opt<bool>
92 NegatorEnabled("instcombine-negator-enabled", cl::init(true),
93 cl::desc("Should we attempt to sink negations?"));
94
95 static cl::opt<unsigned>
96 NegatorMaxDepth("instcombine-negator-max-depth",
97 cl::init(NegatorDefaultMaxDepth),
98 cl::desc("What is the maximal lookup depth when trying to "
99 "check for viability of negation sinking."));
100
Negator(LLVMContext & C,const DataLayout & DL_,AssumptionCache & AC_,const DominatorTree & DT_,bool IsTrulyNegation_)101 Negator::Negator(LLVMContext &C, const DataLayout &DL_, AssumptionCache &AC_,
102 const DominatorTree &DT_, bool IsTrulyNegation_)
103 : Builder(C, TargetFolder(DL_),
104 IRBuilderCallbackInserter([&](Instruction *I) {
105 ++NegatorNumInstructionsCreatedTotal;
106 NewInstructions.push_back(I);
107 })),
108 DL(DL_), AC(AC_), DT(DT_), IsTrulyNegation(IsTrulyNegation_) {}
109
110 #if LLVM_ENABLE_STATS
~Negator()111 Negator::~Negator() {
112 NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
113 }
114 #endif
115
116 // Due to the InstCombine's worklist management, there are no guarantees that
117 // each instruction we'll encounter has been visited by InstCombine already.
118 // In particular, most importantly for us, that means we have to canonicalize
119 // constants to RHS ourselves, since that is helpful sometimes.
getSortedOperandsOfBinOp(Instruction * I)120 std::array<Value *, 2> Negator::getSortedOperandsOfBinOp(Instruction *I) {
121 assert(I->getNumOperands() == 2 && "Only for binops!");
122 std::array<Value *, 2> Ops{I->getOperand(0), I->getOperand(1)};
123 if (I->isCommutative() && InstCombiner::getComplexity(I->getOperand(0)) <
124 InstCombiner::getComplexity(I->getOperand(1)))
125 std::swap(Ops[0], Ops[1]);
126 return Ops;
127 }
128
129 // FIXME: can this be reworked into a worklist-based algorithm while preserving
130 // the depth-first, early bailout traversal?
visitImpl(Value * V,unsigned Depth)131 [[nodiscard]] Value *Negator::visitImpl(Value *V, unsigned Depth) {
132 // -(undef) -> undef.
133 if (match(V, m_Undef()))
134 return V;
135
136 // In i1, negation can simply be ignored.
137 if (V->getType()->isIntOrIntVectorTy(1))
138 return V;
139
140 Value *X;
141
142 // -(-(X)) -> X.
143 if (match(V, m_Neg(m_Value(X))))
144 return X;
145
146 // Integral constants can be freely negated.
147 if (match(V, m_AnyIntegralConstant()))
148 return ConstantExpr::getNeg(cast<Constant>(V), /*HasNUW=*/false,
149 /*HasNSW=*/false);
150
151 // If we have a non-instruction, then give up.
152 if (!isa<Instruction>(V))
153 return nullptr;
154
155 // If we have started with a true negation (i.e. `sub 0, %y`), then if we've
156 // got instruction that does not require recursive reasoning, we can still
157 // negate it even if it has other uses, without increasing instruction count.
158 if (!V->hasOneUse() && !IsTrulyNegation)
159 return nullptr;
160
161 auto *I = cast<Instruction>(V);
162 unsigned BitWidth = I->getType()->getScalarSizeInBits();
163
164 // We must preserve the insertion point and debug info that is set in the
165 // builder at the time this function is called.
166 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
167 // And since we are trying to negate instruction I, that tells us about the
168 // insertion point and the debug info that we need to keep.
169 Builder.SetInsertPoint(I);
170
171 // In some cases we can give the answer without further recursion.
172 switch (I->getOpcode()) {
173 case Instruction::Add: {
174 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
175 // `inc` is always negatible.
176 if (match(Ops[1], m_One()))
177 return Builder.CreateNot(Ops[0], I->getName() + ".neg");
178 break;
179 }
180 case Instruction::Xor:
181 // `not` is always negatible.
182 if (match(I, m_Not(m_Value(X))))
183 return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
184 I->getName() + ".neg");
185 break;
186 case Instruction::AShr:
187 case Instruction::LShr: {
188 // Right-shift sign bit smear is negatible.
189 const APInt *Op1Val;
190 if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
191 Value *BO = I->getOpcode() == Instruction::AShr
192 ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
193 : Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
194 if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
195 NewInstr->copyIRFlags(I);
196 NewInstr->setName(I->getName() + ".neg");
197 }
198 return BO;
199 }
200 // While we could negate exact arithmetic shift:
201 // ashr exact %x, C --> sdiv exact i8 %x, -1<<C
202 // iff C != 0 and C u< bitwidth(%x), we don't want to,
203 // because division is *THAT* much worse than a shift.
204 break;
205 }
206 case Instruction::SExt:
207 case Instruction::ZExt:
208 // `*ext` of i1 is always negatible
209 if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
210 return I->getOpcode() == Instruction::SExt
211 ? Builder.CreateZExt(I->getOperand(0), I->getType(),
212 I->getName() + ".neg")
213 : Builder.CreateSExt(I->getOperand(0), I->getType(),
214 I->getName() + ".neg");
215 break;
216 case Instruction::Select: {
217 // If both arms of the select are constants, we don't need to recurse.
218 // Therefore, this transform is not limited by uses.
219 auto *Sel = cast<SelectInst>(I);
220 Constant *TrueC, *FalseC;
221 if (match(Sel->getTrueValue(), m_ImmConstant(TrueC)) &&
222 match(Sel->getFalseValue(), m_ImmConstant(FalseC))) {
223 Constant *NegTrueC = ConstantExpr::getNeg(TrueC);
224 Constant *NegFalseC = ConstantExpr::getNeg(FalseC);
225 return Builder.CreateSelect(Sel->getCondition(), NegTrueC, NegFalseC,
226 I->getName() + ".neg", /*MDFrom=*/I);
227 }
228 break;
229 }
230 default:
231 break; // Other instructions require recursive reasoning.
232 }
233
234 if (I->getOpcode() == Instruction::Sub &&
235 (I->hasOneUse() || match(I->getOperand(0), m_ImmConstant()))) {
236 // `sub` is always negatible.
237 // However, only do this either if the old `sub` doesn't stick around, or
238 // it was subtracting from a constant. Otherwise, this isn't profitable.
239 return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
240 I->getName() + ".neg");
241 }
242
243 // Some other cases, while still don't require recursion,
244 // are restricted to the one-use case.
245 if (!V->hasOneUse())
246 return nullptr;
247
248 switch (I->getOpcode()) {
249 case Instruction::ZExt: {
250 // Negation of zext of signbit is signbit splat:
251 // 0 - (zext (i8 X u>> 7) to iN) --> sext (i8 X s>> 7) to iN
252 Value *SrcOp = I->getOperand(0);
253 unsigned SrcWidth = SrcOp->getType()->getScalarSizeInBits();
254 const APInt &FullShift = APInt(SrcWidth, SrcWidth - 1);
255 if (IsTrulyNegation &&
256 match(SrcOp, m_LShr(m_Value(X), m_SpecificIntAllowUndef(FullShift)))) {
257 Value *Ashr = Builder.CreateAShr(X, FullShift);
258 return Builder.CreateSExt(Ashr, I->getType());
259 }
260 break;
261 }
262 case Instruction::And: {
263 Constant *ShAmt;
264 // sub(y,and(lshr(x,C),1)) --> add(ashr(shl(x,(BW-1)-C),BW-1),y)
265 if (match(I, m_c_And(m_OneUse(m_TruncOrSelf(
266 m_LShr(m_Value(X), m_ImmConstant(ShAmt)))),
267 m_One()))) {
268 unsigned BW = X->getType()->getScalarSizeInBits();
269 Constant *BWMinusOne = ConstantInt::get(X->getType(), BW - 1);
270 Value *R = Builder.CreateShl(X, Builder.CreateSub(BWMinusOne, ShAmt));
271 R = Builder.CreateAShr(R, BWMinusOne);
272 return Builder.CreateTruncOrBitCast(R, I->getType());
273 }
274 break;
275 }
276 case Instruction::SDiv:
277 // `sdiv` is negatible if divisor is not undef/INT_MIN/1.
278 // While this is normally not behind a use-check,
279 // let's consider division to be special since it's costly.
280 if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
281 if (!Op1C->containsUndefOrPoisonElement() &&
282 Op1C->isNotMinSignedValue() && Op1C->isNotOneValue()) {
283 Value *BO =
284 Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
285 I->getName() + ".neg");
286 if (auto *NewInstr = dyn_cast<Instruction>(BO))
287 NewInstr->setIsExact(I->isExact());
288 return BO;
289 }
290 }
291 break;
292 }
293
294 // Rest of the logic is recursive, so if it's time to give up then it's time.
295 if (Depth > NegatorMaxDepth) {
296 LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
297 << *V << ". Giving up.\n");
298 ++NegatorTimesDepthLimitReached;
299 return nullptr;
300 }
301
302 switch (I->getOpcode()) {
303 case Instruction::Freeze: {
304 // `freeze` is negatible if its operand is negatible.
305 Value *NegOp = negate(I->getOperand(0), Depth + 1);
306 if (!NegOp) // Early return.
307 return nullptr;
308 return Builder.CreateFreeze(NegOp, I->getName() + ".neg");
309 }
310 case Instruction::PHI: {
311 // `phi` is negatible if all the incoming values are negatible.
312 auto *PHI = cast<PHINode>(I);
313 SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
314 for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
315 if (!(std::get<1>(I) =
316 negate(std::get<0>(I), Depth + 1))) // Early return.
317 return nullptr;
318 }
319 // All incoming values are indeed negatible. Create negated PHI node.
320 PHINode *NegatedPHI = Builder.CreatePHI(
321 PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
322 for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
323 NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
324 return NegatedPHI;
325 }
326 case Instruction::Select: {
327 if (isKnownNegation(I->getOperand(1), I->getOperand(2))) {
328 // Of one hand of select is known to be negation of another hand,
329 // just swap the hands around.
330 auto *NewSelect = cast<SelectInst>(I->clone());
331 // Just swap the operands of the select.
332 NewSelect->swapValues();
333 // Don't swap prof metadata, we didn't change the branch behavior.
334 NewSelect->setName(I->getName() + ".neg");
335 Builder.Insert(NewSelect);
336 return NewSelect;
337 }
338 // `select` is negatible if both hands of `select` are negatible.
339 Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
340 if (!NegOp1) // Early return.
341 return nullptr;
342 Value *NegOp2 = negate(I->getOperand(2), Depth + 1);
343 if (!NegOp2)
344 return nullptr;
345 // Do preserve the metadata!
346 return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
347 I->getName() + ".neg", /*MDFrom=*/I);
348 }
349 case Instruction::ShuffleVector: {
350 // `shufflevector` is negatible if both operands are negatible.
351 auto *Shuf = cast<ShuffleVectorInst>(I);
352 Value *NegOp0 = negate(I->getOperand(0), Depth + 1);
353 if (!NegOp0) // Early return.
354 return nullptr;
355 Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
356 if (!NegOp1)
357 return nullptr;
358 return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
359 I->getName() + ".neg");
360 }
361 case Instruction::ExtractElement: {
362 // `extractelement` is negatible if source operand is negatible.
363 auto *EEI = cast<ExtractElementInst>(I);
364 Value *NegVector = negate(EEI->getVectorOperand(), Depth + 1);
365 if (!NegVector) // Early return.
366 return nullptr;
367 return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(),
368 I->getName() + ".neg");
369 }
370 case Instruction::InsertElement: {
371 // `insertelement` is negatible if both the source vector and
372 // element-to-be-inserted are negatible.
373 auto *IEI = cast<InsertElementInst>(I);
374 Value *NegVector = negate(IEI->getOperand(0), Depth + 1);
375 if (!NegVector) // Early return.
376 return nullptr;
377 Value *NegNewElt = negate(IEI->getOperand(1), Depth + 1);
378 if (!NegNewElt) // Early return.
379 return nullptr;
380 return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2),
381 I->getName() + ".neg");
382 }
383 case Instruction::Trunc: {
384 // `trunc` is negatible if its operand is negatible.
385 Value *NegOp = negate(I->getOperand(0), Depth + 1);
386 if (!NegOp) // Early return.
387 return nullptr;
388 return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
389 }
390 case Instruction::Shl: {
391 // `shl` is negatible if the first operand is negatible.
392 if (Value *NegOp0 = negate(I->getOperand(0), Depth + 1))
393 return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg");
394 // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`.
395 auto *Op1C = dyn_cast<Constant>(I->getOperand(1));
396 if (!Op1C || !IsTrulyNegation)
397 return nullptr;
398 return Builder.CreateMul(
399 I->getOperand(0),
400 ConstantExpr::getShl(Constant::getAllOnesValue(Op1C->getType()), Op1C),
401 I->getName() + ".neg");
402 }
403 case Instruction::Or: {
404 if (!haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), DL, &AC, I,
405 &DT))
406 return nullptr; // Don't know how to handle `or` in general.
407 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
408 // `or`/`add` are interchangeable when operands have no common bits set.
409 // `inc` is always negatible.
410 if (match(Ops[1], m_One()))
411 return Builder.CreateNot(Ops[0], I->getName() + ".neg");
412 // Else, just defer to Instruction::Add handling.
413 [[fallthrough]];
414 }
415 case Instruction::Add: {
416 // `add` is negatible if both of its operands are negatible.
417 SmallVector<Value *, 2> NegatedOps, NonNegatedOps;
418 for (Value *Op : I->operands()) {
419 // Can we sink the negation into this operand?
420 if (Value *NegOp = negate(Op, Depth + 1)) {
421 NegatedOps.emplace_back(NegOp); // Successfully negated operand!
422 continue;
423 }
424 // Failed to sink negation into this operand. IFF we started from negation
425 // and we manage to sink negation into one operand, we can still do this.
426 if (!IsTrulyNegation)
427 return nullptr;
428 NonNegatedOps.emplace_back(Op); // Just record which operand that was.
429 }
430 assert((NegatedOps.size() + NonNegatedOps.size()) == 2 &&
431 "Internal consistency check failed.");
432 // Did we manage to sink negation into both of the operands?
433 if (NegatedOps.size() == 2) // Then we get to keep the `add`!
434 return Builder.CreateAdd(NegatedOps[0], NegatedOps[1],
435 I->getName() + ".neg");
436 assert(IsTrulyNegation && "We should have early-exited then.");
437 // Completely failed to sink negation?
438 if (NonNegatedOps.size() == 2)
439 return nullptr;
440 // 0-(a+b) --> (-a)-b
441 return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0],
442 I->getName() + ".neg");
443 }
444 case Instruction::Xor: {
445 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
446 // `xor` is negatible if one of its operands is invertible.
447 // FIXME: InstCombineInverter? But how to connect Inverter and Negator?
448 if (auto *C = dyn_cast<Constant>(Ops[1])) {
449 Value *Xor = Builder.CreateXor(Ops[0], ConstantExpr::getNot(C));
450 return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
451 I->getName() + ".neg");
452 }
453 return nullptr;
454 }
455 case Instruction::Mul: {
456 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
457 // `mul` is negatible if one of its operands is negatible.
458 Value *NegatedOp, *OtherOp;
459 // First try the second operand, in case it's a constant it will be best to
460 // just invert it instead of sinking the `neg` deeper.
461 if (Value *NegOp1 = negate(Ops[1], Depth + 1)) {
462 NegatedOp = NegOp1;
463 OtherOp = Ops[0];
464 } else if (Value *NegOp0 = negate(Ops[0], Depth + 1)) {
465 NegatedOp = NegOp0;
466 OtherOp = Ops[1];
467 } else
468 // Can't negate either of them.
469 return nullptr;
470 return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg");
471 }
472 default:
473 return nullptr; // Don't know, likely not negatible for free.
474 }
475
476 llvm_unreachable("Can't get here. We always return from switch.");
477 }
478
negate(Value * V,unsigned Depth)479 [[nodiscard]] Value *Negator::negate(Value *V, unsigned Depth) {
480 NegatorMaxDepthVisited.updateMax(Depth);
481 ++NegatorNumValuesVisited;
482
483 #if LLVM_ENABLE_STATS
484 ++NumValuesVisitedInThisNegator;
485 #endif
486
487 #ifndef NDEBUG
488 // We can't ever have a Value with such an address.
489 Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1));
490 #endif
491
492 // Did we already try to negate this value?
493 auto NegationsCacheIterator = NegationsCache.find(V);
494 if (NegationsCacheIterator != NegationsCache.end()) {
495 ++NegatorNumNegationsFoundInCache;
496 Value *NegatedV = NegationsCacheIterator->second;
497 assert(NegatedV != Placeholder && "Encountered a cycle during negation.");
498 return NegatedV;
499 }
500
501 #ifndef NDEBUG
502 // We did not find a cached result for negation of V. While there,
503 // let's temporairly cache a placeholder value, with the idea that if later
504 // during negation we fetch it from cache, we'll know we're in a cycle.
505 NegationsCache[V] = Placeholder;
506 #endif
507
508 // No luck. Try negating it for real.
509 Value *NegatedV = visitImpl(V, Depth);
510 // And cache the (real) result for the future.
511 NegationsCache[V] = NegatedV;
512
513 return NegatedV;
514 }
515
run(Value * Root)516 [[nodiscard]] std::optional<Negator::Result> Negator::run(Value *Root) {
517 Value *Negated = negate(Root, /*Depth=*/0);
518 if (!Negated) {
519 // We must cleanup newly-inserted instructions, to avoid any potential
520 // endless combine looping.
521 for (Instruction *I : llvm::reverse(NewInstructions))
522 I->eraseFromParent();
523 return std::nullopt;
524 }
525 return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
526 }
527
Negate(bool LHSIsZero,Value * Root,InstCombinerImpl & IC)528 [[nodiscard]] Value *Negator::Negate(bool LHSIsZero, Value *Root,
529 InstCombinerImpl &IC) {
530 ++NegatorTotalNegationsAttempted;
531 LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
532 << "\n");
533
534 if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
535 return nullptr;
536
537 Negator N(Root->getContext(), IC.getDataLayout(), IC.getAssumptionCache(),
538 IC.getDominatorTree(), LHSIsZero);
539 std::optional<Result> Res = N.run(Root);
540 if (!Res) { // Negation failed.
541 LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
542 << "\n");
543 return nullptr;
544 }
545
546 LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
547 << "\n NEW: " << *Res->second << "\n");
548 ++NegatorNumTreesNegated;
549
550 // We must temporarily unset the 'current' insertion point and DebugLoc of the
551 // InstCombine's IRBuilder so that it won't interfere with the ones we have
552 // already specified when producing negated instructions.
553 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
554 IC.Builder.ClearInsertionPoint();
555 IC.Builder.SetCurrentDebugLocation(DebugLoc());
556
557 // And finally, we must add newly-created instructions into the InstCombine's
558 // worklist (in a proper order!) so it can attempt to combine them.
559 LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
560 << " instrs to InstCombine\n");
561 NegatorMaxInstructionsCreated.updateMax(Res->first.size());
562 NegatorNumInstructionsNegatedSuccess += Res->first.size();
563
564 // They are in def-use order, so nothing fancy, just insert them in order.
565 for (Instruction *I : Res->first)
566 IC.Builder.Insert(I, I->getName());
567
568 // And return the new root.
569 return Res->second;
570 }
571