1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with generation of the layout of virtual tables.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/VTableBuilder.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/RecordLayout.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Support/Format.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include <algorithm>
23 #include <cstdio>
24
25 using namespace clang;
26
27 #define DUMP_OVERRIDERS 0
28
29 namespace {
30
31 /// BaseOffset - Represents an offset from a derived class to a direct or
32 /// indirect base class.
33 struct BaseOffset {
34 /// DerivedClass - The derived class.
35 const CXXRecordDecl *DerivedClass;
36
37 /// VirtualBase - If the path from the derived class to the base class
38 /// involves virtual base classes, this holds the declaration of the last
39 /// virtual base in this path (i.e. closest to the base class).
40 const CXXRecordDecl *VirtualBase;
41
42 /// NonVirtualOffset - The offset from the derived class to the base class.
43 /// (Or the offset from the virtual base class to the base class, if the
44 /// path from the derived class to the base class involves a virtual base
45 /// class.
46 CharUnits NonVirtualOffset;
47
BaseOffset__anona3a288e10111::BaseOffset48 BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
49 NonVirtualOffset(CharUnits::Zero()) { }
BaseOffset__anona3a288e10111::BaseOffset50 BaseOffset(const CXXRecordDecl *DerivedClass,
51 const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
52 : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
53 NonVirtualOffset(NonVirtualOffset) { }
54
isEmpty__anona3a288e10111::BaseOffset55 bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
56 };
57
58 /// FinalOverriders - Contains the final overrider member functions for all
59 /// member functions in the base subobjects of a class.
60 class FinalOverriders {
61 public:
62 /// OverriderInfo - Information about a final overrider.
63 struct OverriderInfo {
64 /// Method - The method decl of the overrider.
65 const CXXMethodDecl *Method;
66
67 /// VirtualBase - The virtual base class subobject of this overrider.
68 /// Note that this records the closest derived virtual base class subobject.
69 const CXXRecordDecl *VirtualBase;
70
71 /// Offset - the base offset of the overrider's parent in the layout class.
72 CharUnits Offset;
73
OverriderInfo__anona3a288e10111::FinalOverriders::OverriderInfo74 OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
75 Offset(CharUnits::Zero()) { }
76 };
77
78 private:
79 /// MostDerivedClass - The most derived class for which the final overriders
80 /// are stored.
81 const CXXRecordDecl *MostDerivedClass;
82
83 /// MostDerivedClassOffset - If we're building final overriders for a
84 /// construction vtable, this holds the offset from the layout class to the
85 /// most derived class.
86 const CharUnits MostDerivedClassOffset;
87
88 /// LayoutClass - The class we're using for layout information. Will be
89 /// different than the most derived class if the final overriders are for a
90 /// construction vtable.
91 const CXXRecordDecl *LayoutClass;
92
93 ASTContext &Context;
94
95 /// MostDerivedClassLayout - the AST record layout of the most derived class.
96 const ASTRecordLayout &MostDerivedClassLayout;
97
98 /// MethodBaseOffsetPairTy - Uniquely identifies a member function
99 /// in a base subobject.
100 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
101
102 typedef llvm::DenseMap<MethodBaseOffsetPairTy,
103 OverriderInfo> OverridersMapTy;
104
105 /// OverridersMap - The final overriders for all virtual member functions of
106 /// all the base subobjects of the most derived class.
107 OverridersMapTy OverridersMap;
108
109 /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
110 /// as a record decl and a subobject number) and its offsets in the most
111 /// derived class as well as the layout class.
112 typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
113 CharUnits> SubobjectOffsetMapTy;
114
115 typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
116
117 /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
118 /// given base.
119 void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
120 CharUnits OffsetInLayoutClass,
121 SubobjectOffsetMapTy &SubobjectOffsets,
122 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
123 SubobjectCountMapTy &SubobjectCounts);
124
125 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
126
127 /// dump - dump the final overriders for a base subobject, and all its direct
128 /// and indirect base subobjects.
129 void dump(raw_ostream &Out, BaseSubobject Base,
130 VisitedVirtualBasesSetTy& VisitedVirtualBases);
131
132 public:
133 FinalOverriders(const CXXRecordDecl *MostDerivedClass,
134 CharUnits MostDerivedClassOffset,
135 const CXXRecordDecl *LayoutClass);
136
137 /// getOverrider - Get the final overrider for the given method declaration in
138 /// the subobject with the given base offset.
getOverrider(const CXXMethodDecl * MD,CharUnits BaseOffset) const139 OverriderInfo getOverrider(const CXXMethodDecl *MD,
140 CharUnits BaseOffset) const {
141 assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
142 "Did not find overrider!");
143
144 return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
145 }
146
147 /// dump - dump the final overriders.
dump()148 void dump() {
149 VisitedVirtualBasesSetTy VisitedVirtualBases;
150 dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
151 VisitedVirtualBases);
152 }
153
154 };
155
FinalOverriders(const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,const CXXRecordDecl * LayoutClass)156 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
157 CharUnits MostDerivedClassOffset,
158 const CXXRecordDecl *LayoutClass)
159 : MostDerivedClass(MostDerivedClass),
160 MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
161 Context(MostDerivedClass->getASTContext()),
162 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
163
164 // Compute base offsets.
165 SubobjectOffsetMapTy SubobjectOffsets;
166 SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
167 SubobjectCountMapTy SubobjectCounts;
168 ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
169 /*IsVirtual=*/false,
170 MostDerivedClassOffset,
171 SubobjectOffsets, SubobjectLayoutClassOffsets,
172 SubobjectCounts);
173
174 // Get the final overriders.
175 CXXFinalOverriderMap FinalOverriders;
176 MostDerivedClass->getFinalOverriders(FinalOverriders);
177
178 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
179 E = FinalOverriders.end(); I != E; ++I) {
180 const CXXMethodDecl *MD = I->first;
181 const OverridingMethods& Methods = I->second;
182
183 for (OverridingMethods::const_iterator I = Methods.begin(),
184 E = Methods.end(); I != E; ++I) {
185 unsigned SubobjectNumber = I->first;
186 assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
187 SubobjectNumber)) &&
188 "Did not find subobject offset!");
189
190 CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
191 SubobjectNumber)];
192
193 assert(I->second.size() == 1 && "Final overrider is not unique!");
194 const UniqueVirtualMethod &Method = I->second.front();
195
196 const CXXRecordDecl *OverriderRD = Method.Method->getParent();
197 assert(SubobjectLayoutClassOffsets.count(
198 std::make_pair(OverriderRD, Method.Subobject))
199 && "Did not find subobject offset!");
200 CharUnits OverriderOffset =
201 SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
202 Method.Subobject)];
203
204 OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
205 assert(!Overrider.Method && "Overrider should not exist yet!");
206
207 Overrider.Offset = OverriderOffset;
208 Overrider.Method = Method.Method;
209 Overrider.VirtualBase = Method.InVirtualSubobject;
210 }
211 }
212
213 #if DUMP_OVERRIDERS
214 // And dump them (for now).
215 dump();
216 #endif
217 }
218
ComputeBaseOffset(ASTContext & Context,const CXXRecordDecl * DerivedRD,const CXXBasePath & Path)219 static BaseOffset ComputeBaseOffset(ASTContext &Context,
220 const CXXRecordDecl *DerivedRD,
221 const CXXBasePath &Path) {
222 CharUnits NonVirtualOffset = CharUnits::Zero();
223
224 unsigned NonVirtualStart = 0;
225 const CXXRecordDecl *VirtualBase = nullptr;
226
227 // First, look for the virtual base class.
228 for (int I = Path.size(), E = 0; I != E; --I) {
229 const CXXBasePathElement &Element = Path[I - 1];
230
231 if (Element.Base->isVirtual()) {
232 NonVirtualStart = I;
233 QualType VBaseType = Element.Base->getType();
234 VirtualBase = VBaseType->getAsCXXRecordDecl();
235 break;
236 }
237 }
238
239 // Now compute the non-virtual offset.
240 for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
241 const CXXBasePathElement &Element = Path[I];
242
243 // Check the base class offset.
244 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
245
246 const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
247
248 NonVirtualOffset += Layout.getBaseClassOffset(Base);
249 }
250
251 // FIXME: This should probably use CharUnits or something. Maybe we should
252 // even change the base offsets in ASTRecordLayout to be specified in
253 // CharUnits.
254 return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
255
256 }
257
ComputeBaseOffset(ASTContext & Context,const CXXRecordDecl * BaseRD,const CXXRecordDecl * DerivedRD)258 static BaseOffset ComputeBaseOffset(ASTContext &Context,
259 const CXXRecordDecl *BaseRD,
260 const CXXRecordDecl *DerivedRD) {
261 CXXBasePaths Paths(/*FindAmbiguities=*/false,
262 /*RecordPaths=*/true, /*DetectVirtual=*/false);
263
264 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
265 llvm_unreachable("Class must be derived from the passed in base class!");
266
267 return ComputeBaseOffset(Context, DerivedRD, Paths.front());
268 }
269
270 static BaseOffset
ComputeReturnAdjustmentBaseOffset(ASTContext & Context,const CXXMethodDecl * DerivedMD,const CXXMethodDecl * BaseMD)271 ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
272 const CXXMethodDecl *DerivedMD,
273 const CXXMethodDecl *BaseMD) {
274 const FunctionType *BaseFT = BaseMD->getType()->getAs<FunctionType>();
275 const FunctionType *DerivedFT = DerivedMD->getType()->getAs<FunctionType>();
276
277 // Canonicalize the return types.
278 CanQualType CanDerivedReturnType =
279 Context.getCanonicalType(DerivedFT->getReturnType());
280 CanQualType CanBaseReturnType =
281 Context.getCanonicalType(BaseFT->getReturnType());
282
283 assert(CanDerivedReturnType->getTypeClass() ==
284 CanBaseReturnType->getTypeClass() &&
285 "Types must have same type class!");
286
287 if (CanDerivedReturnType == CanBaseReturnType) {
288 // No adjustment needed.
289 return BaseOffset();
290 }
291
292 if (isa<ReferenceType>(CanDerivedReturnType)) {
293 CanDerivedReturnType =
294 CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
295 CanBaseReturnType =
296 CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
297 } else if (isa<PointerType>(CanDerivedReturnType)) {
298 CanDerivedReturnType =
299 CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
300 CanBaseReturnType =
301 CanBaseReturnType->getAs<PointerType>()->getPointeeType();
302 } else {
303 llvm_unreachable("Unexpected return type!");
304 }
305
306 // We need to compare unqualified types here; consider
307 // const T *Base::foo();
308 // T *Derived::foo();
309 if (CanDerivedReturnType.getUnqualifiedType() ==
310 CanBaseReturnType.getUnqualifiedType()) {
311 // No adjustment needed.
312 return BaseOffset();
313 }
314
315 const CXXRecordDecl *DerivedRD =
316 cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
317
318 const CXXRecordDecl *BaseRD =
319 cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
320
321 return ComputeBaseOffset(Context, BaseRD, DerivedRD);
322 }
323
324 void
ComputeBaseOffsets(BaseSubobject Base,bool IsVirtual,CharUnits OffsetInLayoutClass,SubobjectOffsetMapTy & SubobjectOffsets,SubobjectOffsetMapTy & SubobjectLayoutClassOffsets,SubobjectCountMapTy & SubobjectCounts)325 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
326 CharUnits OffsetInLayoutClass,
327 SubobjectOffsetMapTy &SubobjectOffsets,
328 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
329 SubobjectCountMapTy &SubobjectCounts) {
330 const CXXRecordDecl *RD = Base.getBase();
331
332 unsigned SubobjectNumber = 0;
333 if (!IsVirtual)
334 SubobjectNumber = ++SubobjectCounts[RD];
335
336 // Set up the subobject to offset mapping.
337 assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
338 && "Subobject offset already exists!");
339 assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
340 && "Subobject offset already exists!");
341
342 SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
343 SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
344 OffsetInLayoutClass;
345
346 // Traverse our bases.
347 for (const auto &B : RD->bases()) {
348 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
349
350 CharUnits BaseOffset;
351 CharUnits BaseOffsetInLayoutClass;
352 if (B.isVirtual()) {
353 // Check if we've visited this virtual base before.
354 if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
355 continue;
356
357 const ASTRecordLayout &LayoutClassLayout =
358 Context.getASTRecordLayout(LayoutClass);
359
360 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
361 BaseOffsetInLayoutClass =
362 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
363 } else {
364 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
365 CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
366
367 BaseOffset = Base.getBaseOffset() + Offset;
368 BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
369 }
370
371 ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
372 B.isVirtual(), BaseOffsetInLayoutClass,
373 SubobjectOffsets, SubobjectLayoutClassOffsets,
374 SubobjectCounts);
375 }
376 }
377
dump(raw_ostream & Out,BaseSubobject Base,VisitedVirtualBasesSetTy & VisitedVirtualBases)378 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
379 VisitedVirtualBasesSetTy &VisitedVirtualBases) {
380 const CXXRecordDecl *RD = Base.getBase();
381 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
382
383 for (const auto &B : RD->bases()) {
384 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
385
386 // Ignore bases that don't have any virtual member functions.
387 if (!BaseDecl->isPolymorphic())
388 continue;
389
390 CharUnits BaseOffset;
391 if (B.isVirtual()) {
392 if (!VisitedVirtualBases.insert(BaseDecl).second) {
393 // We've visited this base before.
394 continue;
395 }
396
397 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
398 } else {
399 BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
400 }
401
402 dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
403 }
404
405 Out << "Final overriders for (";
406 RD->printQualifiedName(Out);
407 Out << ", ";
408 Out << Base.getBaseOffset().getQuantity() << ")\n";
409
410 // Now dump the overriders for this base subobject.
411 for (const auto *MD : RD->methods()) {
412 if (!MD->isVirtual())
413 continue;
414
415 OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
416
417 Out << " ";
418 MD->printQualifiedName(Out);
419 Out << " - (";
420 Overrider.Method->printQualifiedName(Out);
421 Out << ", " << Overrider.Offset.getQuantity() << ')';
422
423 BaseOffset Offset;
424 if (!Overrider.Method->isPure())
425 Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
426
427 if (!Offset.isEmpty()) {
428 Out << " [ret-adj: ";
429 if (Offset.VirtualBase) {
430 Offset.VirtualBase->printQualifiedName(Out);
431 Out << " vbase, ";
432 }
433
434 Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
435 }
436
437 Out << "\n";
438 }
439 }
440
441 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
442 struct VCallOffsetMap {
443
444 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
445
446 /// Offsets - Keeps track of methods and their offsets.
447 // FIXME: This should be a real map and not a vector.
448 SmallVector<MethodAndOffsetPairTy, 16> Offsets;
449
450 /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
451 /// can share the same vcall offset.
452 static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
453 const CXXMethodDecl *RHS);
454
455 public:
456 /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
457 /// add was successful, or false if there was already a member function with
458 /// the same signature in the map.
459 bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
460
461 /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
462 /// vtable address point) for the given virtual member function.
463 CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
464
465 // empty - Return whether the offset map is empty or not.
empty__anona3a288e10111::VCallOffsetMap466 bool empty() const { return Offsets.empty(); }
467 };
468
HasSameVirtualSignature(const CXXMethodDecl * LHS,const CXXMethodDecl * RHS)469 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
470 const CXXMethodDecl *RHS) {
471 const FunctionProtoType *LT =
472 cast<FunctionProtoType>(LHS->getType().getCanonicalType());
473 const FunctionProtoType *RT =
474 cast<FunctionProtoType>(RHS->getType().getCanonicalType());
475
476 // Fast-path matches in the canonical types.
477 if (LT == RT) return true;
478
479 // Force the signatures to match. We can't rely on the overrides
480 // list here because there isn't necessarily an inheritance
481 // relationship between the two methods.
482 if (LT->getTypeQuals() != RT->getTypeQuals() ||
483 LT->getNumParams() != RT->getNumParams())
484 return false;
485 for (unsigned I = 0, E = LT->getNumParams(); I != E; ++I)
486 if (LT->getParamType(I) != RT->getParamType(I))
487 return false;
488 return true;
489 }
490
MethodsCanShareVCallOffset(const CXXMethodDecl * LHS,const CXXMethodDecl * RHS)491 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
492 const CXXMethodDecl *RHS) {
493 assert(LHS->isVirtual() && "LHS must be virtual!");
494 assert(RHS->isVirtual() && "LHS must be virtual!");
495
496 // A destructor can share a vcall offset with another destructor.
497 if (isa<CXXDestructorDecl>(LHS))
498 return isa<CXXDestructorDecl>(RHS);
499
500 // FIXME: We need to check more things here.
501
502 // The methods must have the same name.
503 DeclarationName LHSName = LHS->getDeclName();
504 DeclarationName RHSName = RHS->getDeclName();
505 if (LHSName != RHSName)
506 return false;
507
508 // And the same signatures.
509 return HasSameVirtualSignature(LHS, RHS);
510 }
511
AddVCallOffset(const CXXMethodDecl * MD,CharUnits OffsetOffset)512 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
513 CharUnits OffsetOffset) {
514 // Check if we can reuse an offset.
515 for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
516 if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
517 return false;
518 }
519
520 // Add the offset.
521 Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
522 return true;
523 }
524
getVCallOffsetOffset(const CXXMethodDecl * MD)525 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
526 // Look for an offset.
527 for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
528 if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
529 return Offsets[I].second;
530 }
531
532 llvm_unreachable("Should always find a vcall offset offset!");
533 }
534
535 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
536 class VCallAndVBaseOffsetBuilder {
537 public:
538 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
539 VBaseOffsetOffsetsMapTy;
540
541 private:
542 /// MostDerivedClass - The most derived class for which we're building vcall
543 /// and vbase offsets.
544 const CXXRecordDecl *MostDerivedClass;
545
546 /// LayoutClass - The class we're using for layout information. Will be
547 /// different than the most derived class if we're building a construction
548 /// vtable.
549 const CXXRecordDecl *LayoutClass;
550
551 /// Context - The ASTContext which we will use for layout information.
552 ASTContext &Context;
553
554 /// Components - vcall and vbase offset components
555 typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
556 VTableComponentVectorTy Components;
557
558 /// VisitedVirtualBases - Visited virtual bases.
559 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
560
561 /// VCallOffsets - Keeps track of vcall offsets.
562 VCallOffsetMap VCallOffsets;
563
564
565 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
566 /// relative to the address point.
567 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
568
569 /// FinalOverriders - The final overriders of the most derived class.
570 /// (Can be null when we're not building a vtable of the most derived class).
571 const FinalOverriders *Overriders;
572
573 /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
574 /// given base subobject.
575 void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
576 CharUnits RealBaseOffset);
577
578 /// AddVCallOffsets - Add vcall offsets for the given base subobject.
579 void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
580
581 /// AddVBaseOffsets - Add vbase offsets for the given class.
582 void AddVBaseOffsets(const CXXRecordDecl *Base,
583 CharUnits OffsetInLayoutClass);
584
585 /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
586 /// chars, relative to the vtable address point.
587 CharUnits getCurrentOffsetOffset() const;
588
589 public:
VCallAndVBaseOffsetBuilder(const CXXRecordDecl * MostDerivedClass,const CXXRecordDecl * LayoutClass,const FinalOverriders * Overriders,BaseSubobject Base,bool BaseIsVirtual,CharUnits OffsetInLayoutClass)590 VCallAndVBaseOffsetBuilder(const CXXRecordDecl *MostDerivedClass,
591 const CXXRecordDecl *LayoutClass,
592 const FinalOverriders *Overriders,
593 BaseSubobject Base, bool BaseIsVirtual,
594 CharUnits OffsetInLayoutClass)
595 : MostDerivedClass(MostDerivedClass), LayoutClass(LayoutClass),
596 Context(MostDerivedClass->getASTContext()), Overriders(Overriders) {
597
598 // Add vcall and vbase offsets.
599 AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
600 }
601
602 /// Methods for iterating over the components.
603 typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
components_begin() const604 const_iterator components_begin() const { return Components.rbegin(); }
components_end() const605 const_iterator components_end() const { return Components.rend(); }
606
getVCallOffsets() const607 const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
getVBaseOffsetOffsets() const608 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
609 return VBaseOffsetOffsets;
610 }
611 };
612
613 void
AddVCallAndVBaseOffsets(BaseSubobject Base,bool BaseIsVirtual,CharUnits RealBaseOffset)614 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
615 bool BaseIsVirtual,
616 CharUnits RealBaseOffset) {
617 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
618
619 // Itanium C++ ABI 2.5.2:
620 // ..in classes sharing a virtual table with a primary base class, the vcall
621 // and vbase offsets added by the derived class all come before the vcall
622 // and vbase offsets required by the base class, so that the latter may be
623 // laid out as required by the base class without regard to additions from
624 // the derived class(es).
625
626 // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
627 // emit them for the primary base first).
628 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
629 bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
630
631 CharUnits PrimaryBaseOffset;
632
633 // Get the base offset of the primary base.
634 if (PrimaryBaseIsVirtual) {
635 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
636 "Primary vbase should have a zero offset!");
637
638 const ASTRecordLayout &MostDerivedClassLayout =
639 Context.getASTRecordLayout(MostDerivedClass);
640
641 PrimaryBaseOffset =
642 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
643 } else {
644 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
645 "Primary base should have a zero offset!");
646
647 PrimaryBaseOffset = Base.getBaseOffset();
648 }
649
650 AddVCallAndVBaseOffsets(
651 BaseSubobject(PrimaryBase,PrimaryBaseOffset),
652 PrimaryBaseIsVirtual, RealBaseOffset);
653 }
654
655 AddVBaseOffsets(Base.getBase(), RealBaseOffset);
656
657 // We only want to add vcall offsets for virtual bases.
658 if (BaseIsVirtual)
659 AddVCallOffsets(Base, RealBaseOffset);
660 }
661
getCurrentOffsetOffset() const662 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
663 // OffsetIndex is the index of this vcall or vbase offset, relative to the
664 // vtable address point. (We subtract 3 to account for the information just
665 // above the address point, the RTTI info, the offset to top, and the
666 // vcall offset itself).
667 int64_t OffsetIndex = -(int64_t)(3 + Components.size());
668
669 CharUnits PointerWidth =
670 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
671 CharUnits OffsetOffset = PointerWidth * OffsetIndex;
672 return OffsetOffset;
673 }
674
AddVCallOffsets(BaseSubobject Base,CharUnits VBaseOffset)675 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
676 CharUnits VBaseOffset) {
677 const CXXRecordDecl *RD = Base.getBase();
678 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
679
680 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
681
682 // Handle the primary base first.
683 // We only want to add vcall offsets if the base is non-virtual; a virtual
684 // primary base will have its vcall and vbase offsets emitted already.
685 if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
686 // Get the base offset of the primary base.
687 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
688 "Primary base should have a zero offset!");
689
690 AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
691 VBaseOffset);
692 }
693
694 // Add the vcall offsets.
695 for (const auto *MD : RD->methods()) {
696 if (!MD->isVirtual())
697 continue;
698
699 CharUnits OffsetOffset = getCurrentOffsetOffset();
700
701 // Don't add a vcall offset if we already have one for this member function
702 // signature.
703 if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
704 continue;
705
706 CharUnits Offset = CharUnits::Zero();
707
708 if (Overriders) {
709 // Get the final overrider.
710 FinalOverriders::OverriderInfo Overrider =
711 Overriders->getOverrider(MD, Base.getBaseOffset());
712
713 /// The vcall offset is the offset from the virtual base to the object
714 /// where the function was overridden.
715 Offset = Overrider.Offset - VBaseOffset;
716 }
717
718 Components.push_back(
719 VTableComponent::MakeVCallOffset(Offset));
720 }
721
722 // And iterate over all non-virtual bases (ignoring the primary base).
723 for (const auto &B : RD->bases()) {
724 if (B.isVirtual())
725 continue;
726
727 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
728 if (BaseDecl == PrimaryBase)
729 continue;
730
731 // Get the base offset of this base.
732 CharUnits BaseOffset = Base.getBaseOffset() +
733 Layout.getBaseClassOffset(BaseDecl);
734
735 AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
736 VBaseOffset);
737 }
738 }
739
740 void
AddVBaseOffsets(const CXXRecordDecl * RD,CharUnits OffsetInLayoutClass)741 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
742 CharUnits OffsetInLayoutClass) {
743 const ASTRecordLayout &LayoutClassLayout =
744 Context.getASTRecordLayout(LayoutClass);
745
746 // Add vbase offsets.
747 for (const auto &B : RD->bases()) {
748 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
749
750 // Check if this is a virtual base that we haven't visited before.
751 if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
752 CharUnits Offset =
753 LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
754
755 // Add the vbase offset offset.
756 assert(!VBaseOffsetOffsets.count(BaseDecl) &&
757 "vbase offset offset already exists!");
758
759 CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
760 VBaseOffsetOffsets.insert(
761 std::make_pair(BaseDecl, VBaseOffsetOffset));
762
763 Components.push_back(
764 VTableComponent::MakeVBaseOffset(Offset));
765 }
766
767 // Check the base class looking for more vbase offsets.
768 AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
769 }
770 }
771
772 /// ItaniumVTableBuilder - Class for building vtable layout information.
773 class ItaniumVTableBuilder {
774 public:
775 /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
776 /// primary bases.
777 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
778 PrimaryBasesSetVectorTy;
779
780 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
781 VBaseOffsetOffsetsMapTy;
782
783 typedef llvm::DenseMap<BaseSubobject, uint64_t>
784 AddressPointsMapTy;
785
786 typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
787
788 private:
789 /// VTables - Global vtable information.
790 ItaniumVTableContext &VTables;
791
792 /// MostDerivedClass - The most derived class for which we're building this
793 /// vtable.
794 const CXXRecordDecl *MostDerivedClass;
795
796 /// MostDerivedClassOffset - If we're building a construction vtable, this
797 /// holds the offset from the layout class to the most derived class.
798 const CharUnits MostDerivedClassOffset;
799
800 /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
801 /// base. (This only makes sense when building a construction vtable).
802 bool MostDerivedClassIsVirtual;
803
804 /// LayoutClass - The class we're using for layout information. Will be
805 /// different than the most derived class if we're building a construction
806 /// vtable.
807 const CXXRecordDecl *LayoutClass;
808
809 /// Context - The ASTContext which we will use for layout information.
810 ASTContext &Context;
811
812 /// FinalOverriders - The final overriders of the most derived class.
813 const FinalOverriders Overriders;
814
815 /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
816 /// bases in this vtable.
817 llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
818
819 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
820 /// the most derived class.
821 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
822
823 /// Components - The components of the vtable being built.
824 SmallVector<VTableComponent, 64> Components;
825
826 /// AddressPoints - Address points for the vtable being built.
827 AddressPointsMapTy AddressPoints;
828
829 /// MethodInfo - Contains information about a method in a vtable.
830 /// (Used for computing 'this' pointer adjustment thunks.
831 struct MethodInfo {
832 /// BaseOffset - The base offset of this method.
833 const CharUnits BaseOffset;
834
835 /// BaseOffsetInLayoutClass - The base offset in the layout class of this
836 /// method.
837 const CharUnits BaseOffsetInLayoutClass;
838
839 /// VTableIndex - The index in the vtable that this method has.
840 /// (For destructors, this is the index of the complete destructor).
841 const uint64_t VTableIndex;
842
MethodInfo__anona3a288e10111::ItaniumVTableBuilder::MethodInfo843 MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
844 uint64_t VTableIndex)
845 : BaseOffset(BaseOffset),
846 BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
847 VTableIndex(VTableIndex) { }
848
MethodInfo__anona3a288e10111::ItaniumVTableBuilder::MethodInfo849 MethodInfo()
850 : BaseOffset(CharUnits::Zero()),
851 BaseOffsetInLayoutClass(CharUnits::Zero()),
852 VTableIndex(0) { }
853 };
854
855 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
856
857 /// MethodInfoMap - The information for all methods in the vtable we're
858 /// currently building.
859 MethodInfoMapTy MethodInfoMap;
860
861 /// MethodVTableIndices - Contains the index (relative to the vtable address
862 /// point) where the function pointer for a virtual function is stored.
863 MethodVTableIndicesTy MethodVTableIndices;
864
865 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
866
867 /// VTableThunks - The thunks by vtable index in the vtable currently being
868 /// built.
869 VTableThunksMapTy VTableThunks;
870
871 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
872 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
873
874 /// Thunks - A map that contains all the thunks needed for all methods in the
875 /// most derived class for which the vtable is currently being built.
876 ThunksMapTy Thunks;
877
878 /// AddThunk - Add a thunk for the given method.
879 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
880
881 /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
882 /// part of the vtable we're currently building.
883 void ComputeThisAdjustments();
884
885 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
886
887 /// PrimaryVirtualBases - All known virtual bases who are a primary base of
888 /// some other base.
889 VisitedVirtualBasesSetTy PrimaryVirtualBases;
890
891 /// ComputeReturnAdjustment - Compute the return adjustment given a return
892 /// adjustment base offset.
893 ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
894
895 /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
896 /// the 'this' pointer from the base subobject to the derived subobject.
897 BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
898 BaseSubobject Derived) const;
899
900 /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
901 /// given virtual member function, its offset in the layout class and its
902 /// final overrider.
903 ThisAdjustment
904 ComputeThisAdjustment(const CXXMethodDecl *MD,
905 CharUnits BaseOffsetInLayoutClass,
906 FinalOverriders::OverriderInfo Overrider);
907
908 /// AddMethod - Add a single virtual member function to the vtable
909 /// components vector.
910 void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
911
912 /// IsOverriderUsed - Returns whether the overrider will ever be used in this
913 /// part of the vtable.
914 ///
915 /// Itanium C++ ABI 2.5.2:
916 ///
917 /// struct A { virtual void f(); };
918 /// struct B : virtual public A { int i; };
919 /// struct C : virtual public A { int j; };
920 /// struct D : public B, public C {};
921 ///
922 /// When B and C are declared, A is a primary base in each case, so although
923 /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
924 /// adjustment is required and no thunk is generated. However, inside D
925 /// objects, A is no longer a primary base of C, so if we allowed calls to
926 /// C::f() to use the copy of A's vtable in the C subobject, we would need
927 /// to adjust this from C* to B::A*, which would require a third-party
928 /// thunk. Since we require that a call to C::f() first convert to A*,
929 /// C-in-D's copy of A's vtable is never referenced, so this is not
930 /// necessary.
931 bool IsOverriderUsed(const CXXMethodDecl *Overrider,
932 CharUnits BaseOffsetInLayoutClass,
933 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
934 CharUnits FirstBaseOffsetInLayoutClass) const;
935
936
937 /// AddMethods - Add the methods of this base subobject and all its
938 /// primary bases to the vtable components vector.
939 void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
940 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
941 CharUnits FirstBaseOffsetInLayoutClass,
942 PrimaryBasesSetVectorTy &PrimaryBases);
943
944 // LayoutVTable - Layout the vtable for the given base class, including its
945 // secondary vtables and any vtables for virtual bases.
946 void LayoutVTable();
947
948 /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
949 /// given base subobject, as well as all its secondary vtables.
950 ///
951 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
952 /// or a direct or indirect base of a virtual base.
953 ///
954 /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
955 /// in the layout class.
956 void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
957 bool BaseIsMorallyVirtual,
958 bool BaseIsVirtualInLayoutClass,
959 CharUnits OffsetInLayoutClass);
960
961 /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
962 /// subobject.
963 ///
964 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
965 /// or a direct or indirect base of a virtual base.
966 void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
967 CharUnits OffsetInLayoutClass);
968
969 /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
970 /// class hierarchy.
971 void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
972 CharUnits OffsetInLayoutClass,
973 VisitedVirtualBasesSetTy &VBases);
974
975 /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
976 /// given base (excluding any primary bases).
977 void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
978 VisitedVirtualBasesSetTy &VBases);
979
980 /// isBuildingConstructionVTable - Return whether this vtable builder is
981 /// building a construction vtable.
isBuildingConstructorVTable() const982 bool isBuildingConstructorVTable() const {
983 return MostDerivedClass != LayoutClass;
984 }
985
986 public:
ItaniumVTableBuilder(ItaniumVTableContext & VTables,const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,bool MostDerivedClassIsVirtual,const CXXRecordDecl * LayoutClass)987 ItaniumVTableBuilder(ItaniumVTableContext &VTables,
988 const CXXRecordDecl *MostDerivedClass,
989 CharUnits MostDerivedClassOffset,
990 bool MostDerivedClassIsVirtual,
991 const CXXRecordDecl *LayoutClass)
992 : VTables(VTables), MostDerivedClass(MostDerivedClass),
993 MostDerivedClassOffset(MostDerivedClassOffset),
994 MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
995 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
996 Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
997 assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
998
999 LayoutVTable();
1000
1001 if (Context.getLangOpts().DumpVTableLayouts)
1002 dumpLayout(llvm::outs());
1003 }
1004
getNumThunks() const1005 uint64_t getNumThunks() const {
1006 return Thunks.size();
1007 }
1008
thunks_begin() const1009 ThunksMapTy::const_iterator thunks_begin() const {
1010 return Thunks.begin();
1011 }
1012
thunks_end() const1013 ThunksMapTy::const_iterator thunks_end() const {
1014 return Thunks.end();
1015 }
1016
getVBaseOffsetOffsets() const1017 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1018 return VBaseOffsetOffsets;
1019 }
1020
getAddressPoints() const1021 const AddressPointsMapTy &getAddressPoints() const {
1022 return AddressPoints;
1023 }
1024
vtable_indices_begin() const1025 MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
1026 return MethodVTableIndices.begin();
1027 }
1028
vtable_indices_end() const1029 MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
1030 return MethodVTableIndices.end();
1031 }
1032
1033 /// getNumVTableComponents - Return the number of components in the vtable
1034 /// currently built.
getNumVTableComponents() const1035 uint64_t getNumVTableComponents() const {
1036 return Components.size();
1037 }
1038
vtable_component_begin() const1039 const VTableComponent *vtable_component_begin() const {
1040 return Components.begin();
1041 }
1042
vtable_component_end() const1043 const VTableComponent *vtable_component_end() const {
1044 return Components.end();
1045 }
1046
address_points_begin() const1047 AddressPointsMapTy::const_iterator address_points_begin() const {
1048 return AddressPoints.begin();
1049 }
1050
address_points_end() const1051 AddressPointsMapTy::const_iterator address_points_end() const {
1052 return AddressPoints.end();
1053 }
1054
vtable_thunks_begin() const1055 VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1056 return VTableThunks.begin();
1057 }
1058
vtable_thunks_end() const1059 VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1060 return VTableThunks.end();
1061 }
1062
1063 /// dumpLayout - Dump the vtable layout.
1064 void dumpLayout(raw_ostream&);
1065 };
1066
AddThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk)1067 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
1068 const ThunkInfo &Thunk) {
1069 assert(!isBuildingConstructorVTable() &&
1070 "Can't add thunks for construction vtable");
1071
1072 SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
1073
1074 // Check if we have this thunk already.
1075 if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
1076 ThunksVector.end())
1077 return;
1078
1079 ThunksVector.push_back(Thunk);
1080 }
1081
1082 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1083
1084 /// Visit all the methods overridden by the given method recursively,
1085 /// in a depth-first pre-order. The Visitor's visitor method returns a bool
1086 /// indicating whether to continue the recursion for the given overridden
1087 /// method (i.e. returning false stops the iteration).
1088 template <class VisitorTy>
1089 static void
visitAllOverriddenMethods(const CXXMethodDecl * MD,VisitorTy & Visitor)1090 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1091 assert(MD->isVirtual() && "Method is not virtual!");
1092
1093 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1094 E = MD->end_overridden_methods(); I != E; ++I) {
1095 const CXXMethodDecl *OverriddenMD = *I;
1096 if (!Visitor.visit(OverriddenMD))
1097 continue;
1098 visitAllOverriddenMethods(OverriddenMD, Visitor);
1099 }
1100 }
1101
1102 namespace {
1103 struct OverriddenMethodsCollector {
1104 OverriddenMethodsSetTy *Methods;
1105
visit__anona3a288e10111::__anona3a288e10211::OverriddenMethodsCollector1106 bool visit(const CXXMethodDecl *MD) {
1107 // Don't recurse on this method if we've already collected it.
1108 return Methods->insert(MD).second;
1109 }
1110 };
1111 }
1112
1113 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1114 /// the overridden methods that the function decl overrides.
1115 static void
ComputeAllOverriddenMethods(const CXXMethodDecl * MD,OverriddenMethodsSetTy & OverriddenMethods)1116 ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1117 OverriddenMethodsSetTy& OverriddenMethods) {
1118 OverriddenMethodsCollector Collector = { &OverriddenMethods };
1119 visitAllOverriddenMethods(MD, Collector);
1120 }
1121
ComputeThisAdjustments()1122 void ItaniumVTableBuilder::ComputeThisAdjustments() {
1123 // Now go through the method info map and see if any of the methods need
1124 // 'this' pointer adjustments.
1125 for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
1126 E = MethodInfoMap.end(); I != E; ++I) {
1127 const CXXMethodDecl *MD = I->first;
1128 const MethodInfo &MethodInfo = I->second;
1129
1130 // Ignore adjustments for unused function pointers.
1131 uint64_t VTableIndex = MethodInfo.VTableIndex;
1132 if (Components[VTableIndex].getKind() ==
1133 VTableComponent::CK_UnusedFunctionPointer)
1134 continue;
1135
1136 // Get the final overrider for this method.
1137 FinalOverriders::OverriderInfo Overrider =
1138 Overriders.getOverrider(MD, MethodInfo.BaseOffset);
1139
1140 // Check if we need an adjustment at all.
1141 if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1142 // When a return thunk is needed by a derived class that overrides a
1143 // virtual base, gcc uses a virtual 'this' adjustment as well.
1144 // While the thunk itself might be needed by vtables in subclasses or
1145 // in construction vtables, there doesn't seem to be a reason for using
1146 // the thunk in this vtable. Still, we do so to match gcc.
1147 if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
1148 continue;
1149 }
1150
1151 ThisAdjustment ThisAdjustment =
1152 ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
1153
1154 if (ThisAdjustment.isEmpty())
1155 continue;
1156
1157 // Add it.
1158 VTableThunks[VTableIndex].This = ThisAdjustment;
1159
1160 if (isa<CXXDestructorDecl>(MD)) {
1161 // Add an adjustment for the deleting destructor as well.
1162 VTableThunks[VTableIndex + 1].This = ThisAdjustment;
1163 }
1164 }
1165
1166 /// Clear the method info map.
1167 MethodInfoMap.clear();
1168
1169 if (isBuildingConstructorVTable()) {
1170 // We don't need to store thunk information for construction vtables.
1171 return;
1172 }
1173
1174 for (VTableThunksMapTy::const_iterator I = VTableThunks.begin(),
1175 E = VTableThunks.end(); I != E; ++I) {
1176 const VTableComponent &Component = Components[I->first];
1177 const ThunkInfo &Thunk = I->second;
1178 const CXXMethodDecl *MD;
1179
1180 switch (Component.getKind()) {
1181 default:
1182 llvm_unreachable("Unexpected vtable component kind!");
1183 case VTableComponent::CK_FunctionPointer:
1184 MD = Component.getFunctionDecl();
1185 break;
1186 case VTableComponent::CK_CompleteDtorPointer:
1187 MD = Component.getDestructorDecl();
1188 break;
1189 case VTableComponent::CK_DeletingDtorPointer:
1190 // We've already added the thunk when we saw the complete dtor pointer.
1191 continue;
1192 }
1193
1194 if (MD->getParent() == MostDerivedClass)
1195 AddThunk(MD, Thunk);
1196 }
1197 }
1198
1199 ReturnAdjustment
ComputeReturnAdjustment(BaseOffset Offset)1200 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1201 ReturnAdjustment Adjustment;
1202
1203 if (!Offset.isEmpty()) {
1204 if (Offset.VirtualBase) {
1205 // Get the virtual base offset offset.
1206 if (Offset.DerivedClass == MostDerivedClass) {
1207 // We can get the offset offset directly from our map.
1208 Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1209 VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
1210 } else {
1211 Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1212 VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
1213 Offset.VirtualBase).getQuantity();
1214 }
1215 }
1216
1217 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1218 }
1219
1220 return Adjustment;
1221 }
1222
ComputeThisAdjustmentBaseOffset(BaseSubobject Base,BaseSubobject Derived) const1223 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
1224 BaseSubobject Base, BaseSubobject Derived) const {
1225 const CXXRecordDecl *BaseRD = Base.getBase();
1226 const CXXRecordDecl *DerivedRD = Derived.getBase();
1227
1228 CXXBasePaths Paths(/*FindAmbiguities=*/true,
1229 /*RecordPaths=*/true, /*DetectVirtual=*/true);
1230
1231 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
1232 llvm_unreachable("Class must be derived from the passed in base class!");
1233
1234 // We have to go through all the paths, and see which one leads us to the
1235 // right base subobject.
1236 for (CXXBasePaths::const_paths_iterator I = Paths.begin(), E = Paths.end();
1237 I != E; ++I) {
1238 BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, *I);
1239
1240 CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1241
1242 if (Offset.VirtualBase) {
1243 // If we have a virtual base class, the non-virtual offset is relative
1244 // to the virtual base class offset.
1245 const ASTRecordLayout &LayoutClassLayout =
1246 Context.getASTRecordLayout(LayoutClass);
1247
1248 /// Get the virtual base offset, relative to the most derived class
1249 /// layout.
1250 OffsetToBaseSubobject +=
1251 LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
1252 } else {
1253 // Otherwise, the non-virtual offset is relative to the derived class
1254 // offset.
1255 OffsetToBaseSubobject += Derived.getBaseOffset();
1256 }
1257
1258 // Check if this path gives us the right base subobject.
1259 if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1260 // Since we're going from the base class _to_ the derived class, we'll
1261 // invert the non-virtual offset here.
1262 Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1263 return Offset;
1264 }
1265 }
1266
1267 return BaseOffset();
1268 }
1269
ComputeThisAdjustment(const CXXMethodDecl * MD,CharUnits BaseOffsetInLayoutClass,FinalOverriders::OverriderInfo Overrider)1270 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
1271 const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
1272 FinalOverriders::OverriderInfo Overrider) {
1273 // Ignore adjustments for pure virtual member functions.
1274 if (Overrider.Method->isPure())
1275 return ThisAdjustment();
1276
1277 BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1278 BaseOffsetInLayoutClass);
1279
1280 BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1281 Overrider.Offset);
1282
1283 // Compute the adjustment offset.
1284 BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
1285 OverriderBaseSubobject);
1286 if (Offset.isEmpty())
1287 return ThisAdjustment();
1288
1289 ThisAdjustment Adjustment;
1290
1291 if (Offset.VirtualBase) {
1292 // Get the vcall offset map for this virtual base.
1293 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1294
1295 if (VCallOffsets.empty()) {
1296 // We don't have vcall offsets for this virtual base, go ahead and
1297 // build them.
1298 VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, MostDerivedClass,
1299 /*FinalOverriders=*/nullptr,
1300 BaseSubobject(Offset.VirtualBase,
1301 CharUnits::Zero()),
1302 /*BaseIsVirtual=*/true,
1303 /*OffsetInLayoutClass=*/
1304 CharUnits::Zero());
1305
1306 VCallOffsets = Builder.getVCallOffsets();
1307 }
1308
1309 Adjustment.Virtual.Itanium.VCallOffsetOffset =
1310 VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1311 }
1312
1313 // Set the non-virtual part of the adjustment.
1314 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1315
1316 return Adjustment;
1317 }
1318
AddMethod(const CXXMethodDecl * MD,ReturnAdjustment ReturnAdjustment)1319 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
1320 ReturnAdjustment ReturnAdjustment) {
1321 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1322 assert(ReturnAdjustment.isEmpty() &&
1323 "Destructor can't have return adjustment!");
1324
1325 // Add both the complete destructor and the deleting destructor.
1326 Components.push_back(VTableComponent::MakeCompleteDtor(DD));
1327 Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1328 } else {
1329 // Add the return adjustment if necessary.
1330 if (!ReturnAdjustment.isEmpty())
1331 VTableThunks[Components.size()].Return = ReturnAdjustment;
1332
1333 // Add the function.
1334 Components.push_back(VTableComponent::MakeFunction(MD));
1335 }
1336 }
1337
1338 /// OverridesIndirectMethodInBase - Return whether the given member function
1339 /// overrides any methods in the set of given bases.
1340 /// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1341 /// For example, if we have:
1342 ///
1343 /// struct A { virtual void f(); }
1344 /// struct B : A { virtual void f(); }
1345 /// struct C : B { virtual void f(); }
1346 ///
1347 /// OverridesIndirectMethodInBase will return true if given C::f as the method
1348 /// and { A } as the set of bases.
OverridesIndirectMethodInBases(const CXXMethodDecl * MD,ItaniumVTableBuilder::PrimaryBasesSetVectorTy & Bases)1349 static bool OverridesIndirectMethodInBases(
1350 const CXXMethodDecl *MD,
1351 ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1352 if (Bases.count(MD->getParent()))
1353 return true;
1354
1355 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1356 E = MD->end_overridden_methods(); I != E; ++I) {
1357 const CXXMethodDecl *OverriddenMD = *I;
1358
1359 // Check "indirect overriders".
1360 if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
1361 return true;
1362 }
1363
1364 return false;
1365 }
1366
IsOverriderUsed(const CXXMethodDecl * Overrider,CharUnits BaseOffsetInLayoutClass,const CXXRecordDecl * FirstBaseInPrimaryBaseChain,CharUnits FirstBaseOffsetInLayoutClass) const1367 bool ItaniumVTableBuilder::IsOverriderUsed(
1368 const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
1369 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1370 CharUnits FirstBaseOffsetInLayoutClass) const {
1371 // If the base and the first base in the primary base chain have the same
1372 // offsets, then this overrider will be used.
1373 if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1374 return true;
1375
1376 // We know now that Base (or a direct or indirect base of it) is a primary
1377 // base in part of the class hierarchy, but not a primary base in the most
1378 // derived class.
1379
1380 // If the overrider is the first base in the primary base chain, we know
1381 // that the overrider will be used.
1382 if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1383 return true;
1384
1385 ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1386
1387 const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1388 PrimaryBases.insert(RD);
1389
1390 // Now traverse the base chain, starting with the first base, until we find
1391 // the base that is no longer a primary base.
1392 while (true) {
1393 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1394 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1395
1396 if (!PrimaryBase)
1397 break;
1398
1399 if (Layout.isPrimaryBaseVirtual()) {
1400 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1401 "Primary base should always be at offset 0!");
1402
1403 const ASTRecordLayout &LayoutClassLayout =
1404 Context.getASTRecordLayout(LayoutClass);
1405
1406 // Now check if this is the primary base that is not a primary base in the
1407 // most derived class.
1408 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1409 FirstBaseOffsetInLayoutClass) {
1410 // We found it, stop walking the chain.
1411 break;
1412 }
1413 } else {
1414 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1415 "Primary base should always be at offset 0!");
1416 }
1417
1418 if (!PrimaryBases.insert(PrimaryBase))
1419 llvm_unreachable("Found a duplicate primary base!");
1420
1421 RD = PrimaryBase;
1422 }
1423
1424 // If the final overrider is an override of one of the primary bases,
1425 // then we know that it will be used.
1426 return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
1427 }
1428
1429 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
1430
1431 /// FindNearestOverriddenMethod - Given a method, returns the overridden method
1432 /// from the nearest base. Returns null if no method was found.
1433 /// The Bases are expected to be sorted in a base-to-derived order.
1434 static const CXXMethodDecl *
FindNearestOverriddenMethod(const CXXMethodDecl * MD,BasesSetVectorTy & Bases)1435 FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1436 BasesSetVectorTy &Bases) {
1437 OverriddenMethodsSetTy OverriddenMethods;
1438 ComputeAllOverriddenMethods(MD, OverriddenMethods);
1439
1440 for (int I = Bases.size(), E = 0; I != E; --I) {
1441 const CXXRecordDecl *PrimaryBase = Bases[I - 1];
1442
1443 // Now check the overridden methods.
1444 for (OverriddenMethodsSetTy::const_iterator I = OverriddenMethods.begin(),
1445 E = OverriddenMethods.end(); I != E; ++I) {
1446 const CXXMethodDecl *OverriddenMD = *I;
1447
1448 // We found our overridden method.
1449 if (OverriddenMD->getParent() == PrimaryBase)
1450 return OverriddenMD;
1451 }
1452 }
1453
1454 return nullptr;
1455 }
1456
AddMethods(BaseSubobject Base,CharUnits BaseOffsetInLayoutClass,const CXXRecordDecl * FirstBaseInPrimaryBaseChain,CharUnits FirstBaseOffsetInLayoutClass,PrimaryBasesSetVectorTy & PrimaryBases)1457 void ItaniumVTableBuilder::AddMethods(
1458 BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1459 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1460 CharUnits FirstBaseOffsetInLayoutClass,
1461 PrimaryBasesSetVectorTy &PrimaryBases) {
1462 // Itanium C++ ABI 2.5.2:
1463 // The order of the virtual function pointers in a virtual table is the
1464 // order of declaration of the corresponding member functions in the class.
1465 //
1466 // There is an entry for any virtual function declared in a class,
1467 // whether it is a new function or overrides a base class function,
1468 // unless it overrides a function from the primary base, and conversion
1469 // between their return types does not require an adjustment.
1470
1471 const CXXRecordDecl *RD = Base.getBase();
1472 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1473
1474 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1475 CharUnits PrimaryBaseOffset;
1476 CharUnits PrimaryBaseOffsetInLayoutClass;
1477 if (Layout.isPrimaryBaseVirtual()) {
1478 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1479 "Primary vbase should have a zero offset!");
1480
1481 const ASTRecordLayout &MostDerivedClassLayout =
1482 Context.getASTRecordLayout(MostDerivedClass);
1483
1484 PrimaryBaseOffset =
1485 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
1486
1487 const ASTRecordLayout &LayoutClassLayout =
1488 Context.getASTRecordLayout(LayoutClass);
1489
1490 PrimaryBaseOffsetInLayoutClass =
1491 LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1492 } else {
1493 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1494 "Primary base should have a zero offset!");
1495
1496 PrimaryBaseOffset = Base.getBaseOffset();
1497 PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1498 }
1499
1500 AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1501 PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1502 FirstBaseOffsetInLayoutClass, PrimaryBases);
1503
1504 if (!PrimaryBases.insert(PrimaryBase))
1505 llvm_unreachable("Found a duplicate primary base!");
1506 }
1507
1508 const CXXDestructorDecl *ImplicitVirtualDtor = nullptr;
1509
1510 typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
1511 NewVirtualFunctionsTy NewVirtualFunctions;
1512
1513 // Now go through all virtual member functions and add them.
1514 for (const auto *MD : RD->methods()) {
1515 if (!MD->isVirtual())
1516 continue;
1517
1518 // Get the final overrider.
1519 FinalOverriders::OverriderInfo Overrider =
1520 Overriders.getOverrider(MD, Base.getBaseOffset());
1521
1522 // Check if this virtual member function overrides a method in a primary
1523 // base. If this is the case, and the return type doesn't require adjustment
1524 // then we can just use the member function from the primary base.
1525 if (const CXXMethodDecl *OverriddenMD =
1526 FindNearestOverriddenMethod(MD, PrimaryBases)) {
1527 if (ComputeReturnAdjustmentBaseOffset(Context, MD,
1528 OverriddenMD).isEmpty()) {
1529 // Replace the method info of the overridden method with our own
1530 // method.
1531 assert(MethodInfoMap.count(OverriddenMD) &&
1532 "Did not find the overridden method!");
1533 MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1534
1535 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1536 OverriddenMethodInfo.VTableIndex);
1537
1538 assert(!MethodInfoMap.count(MD) &&
1539 "Should not have method info for this method yet!");
1540
1541 MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1542 MethodInfoMap.erase(OverriddenMD);
1543
1544 // If the overridden method exists in a virtual base class or a direct
1545 // or indirect base class of a virtual base class, we need to emit a
1546 // thunk if we ever have a class hierarchy where the base class is not
1547 // a primary base in the complete object.
1548 if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
1549 // Compute the this adjustment.
1550 ThisAdjustment ThisAdjustment =
1551 ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
1552 Overrider);
1553
1554 if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
1555 Overrider.Method->getParent() == MostDerivedClass) {
1556
1557 // There's no return adjustment from OverriddenMD and MD,
1558 // but that doesn't mean there isn't one between MD and
1559 // the final overrider.
1560 BaseOffset ReturnAdjustmentOffset =
1561 ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
1562 ReturnAdjustment ReturnAdjustment =
1563 ComputeReturnAdjustment(ReturnAdjustmentOffset);
1564
1565 // This is a virtual thunk for the most derived class, add it.
1566 AddThunk(Overrider.Method,
1567 ThunkInfo(ThisAdjustment, ReturnAdjustment));
1568 }
1569 }
1570
1571 continue;
1572 }
1573 }
1574
1575 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1576 if (MD->isImplicit()) {
1577 // Itanium C++ ABI 2.5.2:
1578 // If a class has an implicitly-defined virtual destructor,
1579 // its entries come after the declared virtual function pointers.
1580
1581 assert(!ImplicitVirtualDtor &&
1582 "Did already see an implicit virtual dtor!");
1583 ImplicitVirtualDtor = DD;
1584 continue;
1585 }
1586 }
1587
1588 NewVirtualFunctions.push_back(MD);
1589 }
1590
1591 if (ImplicitVirtualDtor)
1592 NewVirtualFunctions.push_back(ImplicitVirtualDtor);
1593
1594 for (NewVirtualFunctionsTy::const_iterator I = NewVirtualFunctions.begin(),
1595 E = NewVirtualFunctions.end(); I != E; ++I) {
1596 const CXXMethodDecl *MD = *I;
1597
1598 // Get the final overrider.
1599 FinalOverriders::OverriderInfo Overrider =
1600 Overriders.getOverrider(MD, Base.getBaseOffset());
1601
1602 // Insert the method info for this method.
1603 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1604 Components.size());
1605
1606 assert(!MethodInfoMap.count(MD) &&
1607 "Should not have method info for this method yet!");
1608 MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1609
1610 // Check if this overrider is going to be used.
1611 const CXXMethodDecl *OverriderMD = Overrider.Method;
1612 if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
1613 FirstBaseInPrimaryBaseChain,
1614 FirstBaseOffsetInLayoutClass)) {
1615 Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
1616 continue;
1617 }
1618
1619 // Check if this overrider needs a return adjustment.
1620 // We don't want to do this for pure virtual member functions.
1621 BaseOffset ReturnAdjustmentOffset;
1622 if (!OverriderMD->isPure()) {
1623 ReturnAdjustmentOffset =
1624 ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
1625 }
1626
1627 ReturnAdjustment ReturnAdjustment =
1628 ComputeReturnAdjustment(ReturnAdjustmentOffset);
1629
1630 AddMethod(Overrider.Method, ReturnAdjustment);
1631 }
1632 }
1633
LayoutVTable()1634 void ItaniumVTableBuilder::LayoutVTable() {
1635 LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
1636 CharUnits::Zero()),
1637 /*BaseIsMorallyVirtual=*/false,
1638 MostDerivedClassIsVirtual,
1639 MostDerivedClassOffset);
1640
1641 VisitedVirtualBasesSetTy VBases;
1642
1643 // Determine the primary virtual bases.
1644 DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
1645 VBases);
1646 VBases.clear();
1647
1648 LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
1649
1650 // -fapple-kext adds an extra entry at end of vtbl.
1651 bool IsAppleKext = Context.getLangOpts().AppleKext;
1652 if (IsAppleKext)
1653 Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
1654 }
1655
LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,bool BaseIsMorallyVirtual,bool BaseIsVirtualInLayoutClass,CharUnits OffsetInLayoutClass)1656 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
1657 BaseSubobject Base, bool BaseIsMorallyVirtual,
1658 bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
1659 assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1660
1661 // Add vcall and vbase offsets for this vtable.
1662 VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, LayoutClass, &Overriders,
1663 Base, BaseIsVirtualInLayoutClass,
1664 OffsetInLayoutClass);
1665 Components.append(Builder.components_begin(), Builder.components_end());
1666
1667 // Check if we need to add these vcall offsets.
1668 if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
1669 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1670
1671 if (VCallOffsets.empty())
1672 VCallOffsets = Builder.getVCallOffsets();
1673 }
1674
1675 // If we're laying out the most derived class we want to keep track of the
1676 // virtual base class offset offsets.
1677 if (Base.getBase() == MostDerivedClass)
1678 VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1679
1680 // Add the offset to top.
1681 CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1682 Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
1683
1684 // Next, add the RTTI.
1685 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
1686
1687 uint64_t AddressPoint = Components.size();
1688
1689 // Now go through all virtual member functions and add them.
1690 PrimaryBasesSetVectorTy PrimaryBases;
1691 AddMethods(Base, OffsetInLayoutClass,
1692 Base.getBase(), OffsetInLayoutClass,
1693 PrimaryBases);
1694
1695 const CXXRecordDecl *RD = Base.getBase();
1696 if (RD == MostDerivedClass) {
1697 assert(MethodVTableIndices.empty());
1698 for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
1699 E = MethodInfoMap.end(); I != E; ++I) {
1700 const CXXMethodDecl *MD = I->first;
1701 const MethodInfo &MI = I->second;
1702 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1703 MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
1704 = MI.VTableIndex - AddressPoint;
1705 MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1706 = MI.VTableIndex + 1 - AddressPoint;
1707 } else {
1708 MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
1709 }
1710 }
1711 }
1712
1713 // Compute 'this' pointer adjustments.
1714 ComputeThisAdjustments();
1715
1716 // Add all address points.
1717 while (true) {
1718 AddressPoints.insert(std::make_pair(
1719 BaseSubobject(RD, OffsetInLayoutClass),
1720 AddressPoint));
1721
1722 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1723 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1724
1725 if (!PrimaryBase)
1726 break;
1727
1728 if (Layout.isPrimaryBaseVirtual()) {
1729 // Check if this virtual primary base is a primary base in the layout
1730 // class. If it's not, we don't want to add it.
1731 const ASTRecordLayout &LayoutClassLayout =
1732 Context.getASTRecordLayout(LayoutClass);
1733
1734 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1735 OffsetInLayoutClass) {
1736 // We don't want to add this class (or any of its primary bases).
1737 break;
1738 }
1739 }
1740
1741 RD = PrimaryBase;
1742 }
1743
1744 // Layout secondary vtables.
1745 LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1746 }
1747
1748 void
LayoutSecondaryVTables(BaseSubobject Base,bool BaseIsMorallyVirtual,CharUnits OffsetInLayoutClass)1749 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1750 bool BaseIsMorallyVirtual,
1751 CharUnits OffsetInLayoutClass) {
1752 // Itanium C++ ABI 2.5.2:
1753 // Following the primary virtual table of a derived class are secondary
1754 // virtual tables for each of its proper base classes, except any primary
1755 // base(s) with which it shares its primary virtual table.
1756
1757 const CXXRecordDecl *RD = Base.getBase();
1758 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1759 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1760
1761 for (const auto &B : RD->bases()) {
1762 // Ignore virtual bases, we'll emit them later.
1763 if (B.isVirtual())
1764 continue;
1765
1766 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1767
1768 // Ignore bases that don't have a vtable.
1769 if (!BaseDecl->isDynamicClass())
1770 continue;
1771
1772 if (isBuildingConstructorVTable()) {
1773 // Itanium C++ ABI 2.6.4:
1774 // Some of the base class subobjects may not need construction virtual
1775 // tables, which will therefore not be present in the construction
1776 // virtual table group, even though the subobject virtual tables are
1777 // present in the main virtual table group for the complete object.
1778 if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
1779 continue;
1780 }
1781
1782 // Get the base offset of this base.
1783 CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
1784 CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1785
1786 CharUnits BaseOffsetInLayoutClass =
1787 OffsetInLayoutClass + RelativeBaseOffset;
1788
1789 // Don't emit a secondary vtable for a primary base. We might however want
1790 // to emit secondary vtables for other bases of this base.
1791 if (BaseDecl == PrimaryBase) {
1792 LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
1793 BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
1794 continue;
1795 }
1796
1797 // Layout the primary vtable (and any secondary vtables) for this base.
1798 LayoutPrimaryAndSecondaryVTables(
1799 BaseSubobject(BaseDecl, BaseOffset),
1800 BaseIsMorallyVirtual,
1801 /*BaseIsVirtualInLayoutClass=*/false,
1802 BaseOffsetInLayoutClass);
1803 }
1804 }
1805
DeterminePrimaryVirtualBases(const CXXRecordDecl * RD,CharUnits OffsetInLayoutClass,VisitedVirtualBasesSetTy & VBases)1806 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
1807 const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
1808 VisitedVirtualBasesSetTy &VBases) {
1809 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1810
1811 // Check if this base has a primary base.
1812 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1813
1814 // Check if it's virtual.
1815 if (Layout.isPrimaryBaseVirtual()) {
1816 bool IsPrimaryVirtualBase = true;
1817
1818 if (isBuildingConstructorVTable()) {
1819 // Check if the base is actually a primary base in the class we use for
1820 // layout.
1821 const ASTRecordLayout &LayoutClassLayout =
1822 Context.getASTRecordLayout(LayoutClass);
1823
1824 CharUnits PrimaryBaseOffsetInLayoutClass =
1825 LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1826
1827 // We know that the base is not a primary base in the layout class if
1828 // the base offsets are different.
1829 if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1830 IsPrimaryVirtualBase = false;
1831 }
1832
1833 if (IsPrimaryVirtualBase)
1834 PrimaryVirtualBases.insert(PrimaryBase);
1835 }
1836 }
1837
1838 // Traverse bases, looking for more primary virtual bases.
1839 for (const auto &B : RD->bases()) {
1840 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1841
1842 CharUnits BaseOffsetInLayoutClass;
1843
1844 if (B.isVirtual()) {
1845 if (!VBases.insert(BaseDecl).second)
1846 continue;
1847
1848 const ASTRecordLayout &LayoutClassLayout =
1849 Context.getASTRecordLayout(LayoutClass);
1850
1851 BaseOffsetInLayoutClass =
1852 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1853 } else {
1854 BaseOffsetInLayoutClass =
1855 OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
1856 }
1857
1858 DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
1859 }
1860 }
1861
LayoutVTablesForVirtualBases(const CXXRecordDecl * RD,VisitedVirtualBasesSetTy & VBases)1862 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
1863 const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
1864 // Itanium C++ ABI 2.5.2:
1865 // Then come the virtual base virtual tables, also in inheritance graph
1866 // order, and again excluding primary bases (which share virtual tables with
1867 // the classes for which they are primary).
1868 for (const auto &B : RD->bases()) {
1869 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1870
1871 // Check if this base needs a vtable. (If it's virtual, not a primary base
1872 // of some other class, and we haven't visited it before).
1873 if (B.isVirtual() && BaseDecl->isDynamicClass() &&
1874 !PrimaryVirtualBases.count(BaseDecl) &&
1875 VBases.insert(BaseDecl).second) {
1876 const ASTRecordLayout &MostDerivedClassLayout =
1877 Context.getASTRecordLayout(MostDerivedClass);
1878 CharUnits BaseOffset =
1879 MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
1880
1881 const ASTRecordLayout &LayoutClassLayout =
1882 Context.getASTRecordLayout(LayoutClass);
1883 CharUnits BaseOffsetInLayoutClass =
1884 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1885
1886 LayoutPrimaryAndSecondaryVTables(
1887 BaseSubobject(BaseDecl, BaseOffset),
1888 /*BaseIsMorallyVirtual=*/true,
1889 /*BaseIsVirtualInLayoutClass=*/true,
1890 BaseOffsetInLayoutClass);
1891 }
1892
1893 // We only need to check the base for virtual base vtables if it actually
1894 // has virtual bases.
1895 if (BaseDecl->getNumVBases())
1896 LayoutVTablesForVirtualBases(BaseDecl, VBases);
1897 }
1898 }
1899
1900 /// dumpLayout - Dump the vtable layout.
dumpLayout(raw_ostream & Out)1901 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
1902 // FIXME: write more tests that actually use the dumpLayout output to prevent
1903 // ItaniumVTableBuilder regressions.
1904
1905 if (isBuildingConstructorVTable()) {
1906 Out << "Construction vtable for ('";
1907 MostDerivedClass->printQualifiedName(Out);
1908 Out << "', ";
1909 Out << MostDerivedClassOffset.getQuantity() << ") in '";
1910 LayoutClass->printQualifiedName(Out);
1911 } else {
1912 Out << "Vtable for '";
1913 MostDerivedClass->printQualifiedName(Out);
1914 }
1915 Out << "' (" << Components.size() << " entries).\n";
1916
1917 // Iterate through the address points and insert them into a new map where
1918 // they are keyed by the index and not the base object.
1919 // Since an address point can be shared by multiple subobjects, we use an
1920 // STL multimap.
1921 std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
1922 for (AddressPointsMapTy::const_iterator I = AddressPoints.begin(),
1923 E = AddressPoints.end(); I != E; ++I) {
1924 const BaseSubobject& Base = I->first;
1925 uint64_t Index = I->second;
1926
1927 AddressPointsByIndex.insert(std::make_pair(Index, Base));
1928 }
1929
1930 for (unsigned I = 0, E = Components.size(); I != E; ++I) {
1931 uint64_t Index = I;
1932
1933 Out << llvm::format("%4d | ", I);
1934
1935 const VTableComponent &Component = Components[I];
1936
1937 // Dump the component.
1938 switch (Component.getKind()) {
1939
1940 case VTableComponent::CK_VCallOffset:
1941 Out << "vcall_offset ("
1942 << Component.getVCallOffset().getQuantity()
1943 << ")";
1944 break;
1945
1946 case VTableComponent::CK_VBaseOffset:
1947 Out << "vbase_offset ("
1948 << Component.getVBaseOffset().getQuantity()
1949 << ")";
1950 break;
1951
1952 case VTableComponent::CK_OffsetToTop:
1953 Out << "offset_to_top ("
1954 << Component.getOffsetToTop().getQuantity()
1955 << ")";
1956 break;
1957
1958 case VTableComponent::CK_RTTI:
1959 Component.getRTTIDecl()->printQualifiedName(Out);
1960 Out << " RTTI";
1961 break;
1962
1963 case VTableComponent::CK_FunctionPointer: {
1964 const CXXMethodDecl *MD = Component.getFunctionDecl();
1965
1966 std::string Str =
1967 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
1968 MD);
1969 Out << Str;
1970 if (MD->isPure())
1971 Out << " [pure]";
1972
1973 if (MD->isDeleted())
1974 Out << " [deleted]";
1975
1976 ThunkInfo Thunk = VTableThunks.lookup(I);
1977 if (!Thunk.isEmpty()) {
1978 // If this function pointer has a return adjustment, dump it.
1979 if (!Thunk.Return.isEmpty()) {
1980 Out << "\n [return adjustment: ";
1981 Out << Thunk.Return.NonVirtual << " non-virtual";
1982
1983 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
1984 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
1985 Out << " vbase offset offset";
1986 }
1987
1988 Out << ']';
1989 }
1990
1991 // If this function pointer has a 'this' pointer adjustment, dump it.
1992 if (!Thunk.This.isEmpty()) {
1993 Out << "\n [this adjustment: ";
1994 Out << Thunk.This.NonVirtual << " non-virtual";
1995
1996 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
1997 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
1998 Out << " vcall offset offset";
1999 }
2000
2001 Out << ']';
2002 }
2003 }
2004
2005 break;
2006 }
2007
2008 case VTableComponent::CK_CompleteDtorPointer:
2009 case VTableComponent::CK_DeletingDtorPointer: {
2010 bool IsComplete =
2011 Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
2012
2013 const CXXDestructorDecl *DD = Component.getDestructorDecl();
2014
2015 DD->printQualifiedName(Out);
2016 if (IsComplete)
2017 Out << "() [complete]";
2018 else
2019 Out << "() [deleting]";
2020
2021 if (DD->isPure())
2022 Out << " [pure]";
2023
2024 ThunkInfo Thunk = VTableThunks.lookup(I);
2025 if (!Thunk.isEmpty()) {
2026 // If this destructor has a 'this' pointer adjustment, dump it.
2027 if (!Thunk.This.isEmpty()) {
2028 Out << "\n [this adjustment: ";
2029 Out << Thunk.This.NonVirtual << " non-virtual";
2030
2031 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2032 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2033 Out << " vcall offset offset";
2034 }
2035
2036 Out << ']';
2037 }
2038 }
2039
2040 break;
2041 }
2042
2043 case VTableComponent::CK_UnusedFunctionPointer: {
2044 const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2045
2046 std::string Str =
2047 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2048 MD);
2049 Out << "[unused] " << Str;
2050 if (MD->isPure())
2051 Out << " [pure]";
2052 }
2053
2054 }
2055
2056 Out << '\n';
2057
2058 // Dump the next address point.
2059 uint64_t NextIndex = Index + 1;
2060 if (AddressPointsByIndex.count(NextIndex)) {
2061 if (AddressPointsByIndex.count(NextIndex) == 1) {
2062 const BaseSubobject &Base =
2063 AddressPointsByIndex.find(NextIndex)->second;
2064
2065 Out << " -- (";
2066 Base.getBase()->printQualifiedName(Out);
2067 Out << ", " << Base.getBaseOffset().getQuantity();
2068 Out << ") vtable address --\n";
2069 } else {
2070 CharUnits BaseOffset =
2071 AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
2072
2073 // We store the class names in a set to get a stable order.
2074 std::set<std::string> ClassNames;
2075 for (std::multimap<uint64_t, BaseSubobject>::const_iterator I =
2076 AddressPointsByIndex.lower_bound(NextIndex), E =
2077 AddressPointsByIndex.upper_bound(NextIndex); I != E; ++I) {
2078 assert(I->second.getBaseOffset() == BaseOffset &&
2079 "Invalid base offset!");
2080 const CXXRecordDecl *RD = I->second.getBase();
2081 ClassNames.insert(RD->getQualifiedNameAsString());
2082 }
2083
2084 for (std::set<std::string>::const_iterator I = ClassNames.begin(),
2085 E = ClassNames.end(); I != E; ++I) {
2086 Out << " -- (" << *I;
2087 Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2088 }
2089 }
2090 }
2091 }
2092
2093 Out << '\n';
2094
2095 if (isBuildingConstructorVTable())
2096 return;
2097
2098 if (MostDerivedClass->getNumVBases()) {
2099 // We store the virtual base class names and their offsets in a map to get
2100 // a stable order.
2101
2102 std::map<std::string, CharUnits> ClassNamesAndOffsets;
2103 for (VBaseOffsetOffsetsMapTy::const_iterator I = VBaseOffsetOffsets.begin(),
2104 E = VBaseOffsetOffsets.end(); I != E; ++I) {
2105 std::string ClassName = I->first->getQualifiedNameAsString();
2106 CharUnits OffsetOffset = I->second;
2107 ClassNamesAndOffsets.insert(
2108 std::make_pair(ClassName, OffsetOffset));
2109 }
2110
2111 Out << "Virtual base offset offsets for '";
2112 MostDerivedClass->printQualifiedName(Out);
2113 Out << "' (";
2114 Out << ClassNamesAndOffsets.size();
2115 Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
2116
2117 for (std::map<std::string, CharUnits>::const_iterator I =
2118 ClassNamesAndOffsets.begin(), E = ClassNamesAndOffsets.end();
2119 I != E; ++I)
2120 Out << " " << I->first << " | " << I->second.getQuantity() << '\n';
2121
2122 Out << "\n";
2123 }
2124
2125 if (!Thunks.empty()) {
2126 // We store the method names in a map to get a stable order.
2127 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2128
2129 for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
2130 I != E; ++I) {
2131 const CXXMethodDecl *MD = I->first;
2132 std::string MethodName =
2133 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2134 MD);
2135
2136 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
2137 }
2138
2139 for (std::map<std::string, const CXXMethodDecl *>::const_iterator I =
2140 MethodNamesAndDecls.begin(), E = MethodNamesAndDecls.end();
2141 I != E; ++I) {
2142 const std::string &MethodName = I->first;
2143 const CXXMethodDecl *MD = I->second;
2144
2145 ThunkInfoVectorTy ThunksVector = Thunks[MD];
2146 std::sort(ThunksVector.begin(), ThunksVector.end(),
2147 [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
2148 assert(LHS.Method == nullptr && RHS.Method == nullptr);
2149 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
2150 });
2151
2152 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2153 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
2154
2155 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
2156 const ThunkInfo &Thunk = ThunksVector[I];
2157
2158 Out << llvm::format("%4d | ", I);
2159
2160 // If this function pointer has a return pointer adjustment, dump it.
2161 if (!Thunk.Return.isEmpty()) {
2162 Out << "return adjustment: " << Thunk.Return.NonVirtual;
2163 Out << " non-virtual";
2164 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2165 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2166 Out << " vbase offset offset";
2167 }
2168
2169 if (!Thunk.This.isEmpty())
2170 Out << "\n ";
2171 }
2172
2173 // If this function pointer has a 'this' pointer adjustment, dump it.
2174 if (!Thunk.This.isEmpty()) {
2175 Out << "this adjustment: ";
2176 Out << Thunk.This.NonVirtual << " non-virtual";
2177
2178 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2179 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2180 Out << " vcall offset offset";
2181 }
2182 }
2183
2184 Out << '\n';
2185 }
2186
2187 Out << '\n';
2188 }
2189 }
2190
2191 // Compute the vtable indices for all the member functions.
2192 // Store them in a map keyed by the index so we'll get a sorted table.
2193 std::map<uint64_t, std::string> IndicesMap;
2194
2195 for (const auto *MD : MostDerivedClass->methods()) {
2196 // We only want virtual member functions.
2197 if (!MD->isVirtual())
2198 continue;
2199
2200 std::string MethodName =
2201 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2202 MD);
2203
2204 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2205 GlobalDecl GD(DD, Dtor_Complete);
2206 assert(MethodVTableIndices.count(GD));
2207 uint64_t VTableIndex = MethodVTableIndices[GD];
2208 IndicesMap[VTableIndex] = MethodName + " [complete]";
2209 IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
2210 } else {
2211 assert(MethodVTableIndices.count(MD));
2212 IndicesMap[MethodVTableIndices[MD]] = MethodName;
2213 }
2214 }
2215
2216 // Print the vtable indices for all the member functions.
2217 if (!IndicesMap.empty()) {
2218 Out << "VTable indices for '";
2219 MostDerivedClass->printQualifiedName(Out);
2220 Out << "' (" << IndicesMap.size() << " entries).\n";
2221
2222 for (std::map<uint64_t, std::string>::const_iterator I = IndicesMap.begin(),
2223 E = IndicesMap.end(); I != E; ++I) {
2224 uint64_t VTableIndex = I->first;
2225 const std::string &MethodName = I->second;
2226
2227 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
2228 << '\n';
2229 }
2230 }
2231
2232 Out << '\n';
2233 }
2234 }
2235
VTableLayout(uint64_t NumVTableComponents,const VTableComponent * VTableComponents,uint64_t NumVTableThunks,const VTableThunkTy * VTableThunks,const AddressPointsMapTy & AddressPoints,bool IsMicrosoftABI)2236 VTableLayout::VTableLayout(uint64_t NumVTableComponents,
2237 const VTableComponent *VTableComponents,
2238 uint64_t NumVTableThunks,
2239 const VTableThunkTy *VTableThunks,
2240 const AddressPointsMapTy &AddressPoints,
2241 bool IsMicrosoftABI)
2242 : NumVTableComponents(NumVTableComponents),
2243 VTableComponents(new VTableComponent[NumVTableComponents]),
2244 NumVTableThunks(NumVTableThunks),
2245 VTableThunks(new VTableThunkTy[NumVTableThunks]),
2246 AddressPoints(AddressPoints),
2247 IsMicrosoftABI(IsMicrosoftABI) {
2248 std::copy(VTableComponents, VTableComponents+NumVTableComponents,
2249 this->VTableComponents.get());
2250 std::copy(VTableThunks, VTableThunks+NumVTableThunks,
2251 this->VTableThunks.get());
2252 std::sort(this->VTableThunks.get(),
2253 this->VTableThunks.get() + NumVTableThunks,
2254 [](const VTableLayout::VTableThunkTy &LHS,
2255 const VTableLayout::VTableThunkTy &RHS) {
2256 assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
2257 "Different thunks should have unique indices!");
2258 return LHS.first < RHS.first;
2259 });
2260 }
2261
~VTableLayout()2262 VTableLayout::~VTableLayout() { }
2263
ItaniumVTableContext(ASTContext & Context)2264 ItaniumVTableContext::ItaniumVTableContext(ASTContext &Context)
2265 : VTableContextBase(/*MS=*/false) {}
2266
~ItaniumVTableContext()2267 ItaniumVTableContext::~ItaniumVTableContext() {
2268 llvm::DeleteContainerSeconds(VTableLayouts);
2269 }
2270
getMethodVTableIndex(GlobalDecl GD)2271 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
2272 MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
2273 if (I != MethodVTableIndices.end())
2274 return I->second;
2275
2276 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
2277
2278 computeVTableRelatedInformation(RD);
2279
2280 I = MethodVTableIndices.find(GD);
2281 assert(I != MethodVTableIndices.end() && "Did not find index!");
2282 return I->second;
2283 }
2284
2285 CharUnits
getVirtualBaseOffsetOffset(const CXXRecordDecl * RD,const CXXRecordDecl * VBase)2286 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2287 const CXXRecordDecl *VBase) {
2288 ClassPairTy ClassPair(RD, VBase);
2289
2290 VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2291 VirtualBaseClassOffsetOffsets.find(ClassPair);
2292 if (I != VirtualBaseClassOffsetOffsets.end())
2293 return I->second;
2294
2295 VCallAndVBaseOffsetBuilder Builder(RD, RD, /*FinalOverriders=*/nullptr,
2296 BaseSubobject(RD, CharUnits::Zero()),
2297 /*BaseIsVirtual=*/false,
2298 /*OffsetInLayoutClass=*/CharUnits::Zero());
2299
2300 for (VCallAndVBaseOffsetBuilder::VBaseOffsetOffsetsMapTy::const_iterator I =
2301 Builder.getVBaseOffsetOffsets().begin(),
2302 E = Builder.getVBaseOffsetOffsets().end(); I != E; ++I) {
2303 // Insert all types.
2304 ClassPairTy ClassPair(RD, I->first);
2305
2306 VirtualBaseClassOffsetOffsets.insert(
2307 std::make_pair(ClassPair, I->second));
2308 }
2309
2310 I = VirtualBaseClassOffsetOffsets.find(ClassPair);
2311 assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2312
2313 return I->second;
2314 }
2315
CreateVTableLayout(const ItaniumVTableBuilder & Builder)2316 static VTableLayout *CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
2317 SmallVector<VTableLayout::VTableThunkTy, 1>
2318 VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
2319
2320 return new VTableLayout(Builder.getNumVTableComponents(),
2321 Builder.vtable_component_begin(),
2322 VTableThunks.size(),
2323 VTableThunks.data(),
2324 Builder.getAddressPoints(),
2325 /*IsMicrosoftABI=*/false);
2326 }
2327
2328 void
computeVTableRelatedInformation(const CXXRecordDecl * RD)2329 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
2330 const VTableLayout *&Entry = VTableLayouts[RD];
2331
2332 // Check if we've computed this information before.
2333 if (Entry)
2334 return;
2335
2336 ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
2337 /*MostDerivedClassIsVirtual=*/0, RD);
2338 Entry = CreateVTableLayout(Builder);
2339
2340 MethodVTableIndices.insert(Builder.vtable_indices_begin(),
2341 Builder.vtable_indices_end());
2342
2343 // Add the known thunks.
2344 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
2345
2346 // If we don't have the vbase information for this class, insert it.
2347 // getVirtualBaseOffsetOffset will compute it separately without computing
2348 // the rest of the vtable related information.
2349 if (!RD->getNumVBases())
2350 return;
2351
2352 const CXXRecordDecl *VBase =
2353 RD->vbases_begin()->getType()->getAsCXXRecordDecl();
2354
2355 if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
2356 return;
2357
2358 for (ItaniumVTableBuilder::VBaseOffsetOffsetsMapTy::const_iterator
2359 I = Builder.getVBaseOffsetOffsets().begin(),
2360 E = Builder.getVBaseOffsetOffsets().end();
2361 I != E; ++I) {
2362 // Insert all types.
2363 ClassPairTy ClassPair(RD, I->first);
2364
2365 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I->second));
2366 }
2367 }
2368
createConstructionVTableLayout(const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,bool MostDerivedClassIsVirtual,const CXXRecordDecl * LayoutClass)2369 VTableLayout *ItaniumVTableContext::createConstructionVTableLayout(
2370 const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
2371 bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
2372 ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
2373 MostDerivedClassIsVirtual, LayoutClass);
2374 return CreateVTableLayout(Builder);
2375 }
2376
2377 namespace {
2378
2379 // Vtables in the Microsoft ABI are different from the Itanium ABI.
2380 //
2381 // The main differences are:
2382 // 1. Separate vftable and vbtable.
2383 //
2384 // 2. Each subobject with a vfptr gets its own vftable rather than an address
2385 // point in a single vtable shared between all the subobjects.
2386 // Each vftable is represented by a separate section and virtual calls
2387 // must be done using the vftable which has a slot for the function to be
2388 // called.
2389 //
2390 // 3. Virtual method definitions expect their 'this' parameter to point to the
2391 // first vfptr whose table provides a compatible overridden method. In many
2392 // cases, this permits the original vf-table entry to directly call
2393 // the method instead of passing through a thunk.
2394 // See example before VFTableBuilder::ComputeThisOffset below.
2395 //
2396 // A compatible overridden method is one which does not have a non-trivial
2397 // covariant-return adjustment.
2398 //
2399 // The first vfptr is the one with the lowest offset in the complete-object
2400 // layout of the defining class, and the method definition will subtract
2401 // that constant offset from the parameter value to get the real 'this'
2402 // value. Therefore, if the offset isn't really constant (e.g. if a virtual
2403 // function defined in a virtual base is overridden in a more derived
2404 // virtual base and these bases have a reverse order in the complete
2405 // object), the vf-table may require a this-adjustment thunk.
2406 //
2407 // 4. vftables do not contain new entries for overrides that merely require
2408 // this-adjustment. Together with #3, this keeps vf-tables smaller and
2409 // eliminates the need for this-adjustment thunks in many cases, at the cost
2410 // of often requiring redundant work to adjust the "this" pointer.
2411 //
2412 // 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
2413 // Vtordisps are emitted into the class layout if a class has
2414 // a) a user-defined ctor/dtor
2415 // and
2416 // b) a method overriding a method in a virtual base.
2417 //
2418 // To get a better understanding of this code,
2419 // you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
2420
2421 class VFTableBuilder {
2422 public:
2423 typedef MicrosoftVTableContext::MethodVFTableLocation MethodVFTableLocation;
2424
2425 typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
2426 MethodVFTableLocationsTy;
2427
2428 typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
2429 method_locations_range;
2430
2431 private:
2432 /// VTables - Global vtable information.
2433 MicrosoftVTableContext &VTables;
2434
2435 /// Context - The ASTContext which we will use for layout information.
2436 ASTContext &Context;
2437
2438 /// MostDerivedClass - The most derived class for which we're building this
2439 /// vtable.
2440 const CXXRecordDecl *MostDerivedClass;
2441
2442 const ASTRecordLayout &MostDerivedClassLayout;
2443
2444 const VPtrInfo &WhichVFPtr;
2445
2446 /// FinalOverriders - The final overriders of the most derived class.
2447 const FinalOverriders Overriders;
2448
2449 /// Components - The components of the vftable being built.
2450 SmallVector<VTableComponent, 64> Components;
2451
2452 MethodVFTableLocationsTy MethodVFTableLocations;
2453
2454 /// \brief Does this class have an RTTI component?
2455 bool HasRTTIComponent;
2456
2457 /// MethodInfo - Contains information about a method in a vtable.
2458 /// (Used for computing 'this' pointer adjustment thunks.
2459 struct MethodInfo {
2460 /// VBTableIndex - The nonzero index in the vbtable that
2461 /// this method's base has, or zero.
2462 const uint64_t VBTableIndex;
2463
2464 /// VFTableIndex - The index in the vftable that this method has.
2465 const uint64_t VFTableIndex;
2466
2467 /// Shadowed - Indicates if this vftable slot is shadowed by
2468 /// a slot for a covariant-return override. If so, it shouldn't be printed
2469 /// or used for vcalls in the most derived class.
2470 bool Shadowed;
2471
2472 /// UsesExtraSlot - Indicates if this vftable slot was created because
2473 /// any of the overridden slots required a return adjusting thunk.
2474 bool UsesExtraSlot;
2475
MethodInfo__anona3a288e10511::VFTableBuilder::MethodInfo2476 MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
2477 bool UsesExtraSlot = false)
2478 : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
2479 Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
2480
MethodInfo__anona3a288e10511::VFTableBuilder::MethodInfo2481 MethodInfo()
2482 : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
2483 UsesExtraSlot(false) {}
2484 };
2485
2486 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
2487
2488 /// MethodInfoMap - The information for all methods in the vftable we're
2489 /// currently building.
2490 MethodInfoMapTy MethodInfoMap;
2491
2492 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
2493
2494 /// VTableThunks - The thunks by vftable index in the vftable currently being
2495 /// built.
2496 VTableThunksMapTy VTableThunks;
2497
2498 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
2499 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
2500
2501 /// Thunks - A map that contains all the thunks needed for all methods in the
2502 /// most derived class for which the vftable is currently being built.
2503 ThunksMapTy Thunks;
2504
2505 /// AddThunk - Add a thunk for the given method.
AddThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk)2506 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
2507 SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
2508
2509 // Check if we have this thunk already.
2510 if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
2511 ThunksVector.end())
2512 return;
2513
2514 ThunksVector.push_back(Thunk);
2515 }
2516
2517 /// ComputeThisOffset - Returns the 'this' argument offset for the given
2518 /// method, relative to the beginning of the MostDerivedClass.
2519 CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
2520
2521 void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
2522 CharUnits ThisOffset, ThisAdjustment &TA);
2523
2524 /// AddMethod - Add a single virtual member function to the vftable
2525 /// components vector.
AddMethod(const CXXMethodDecl * MD,ThunkInfo TI)2526 void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
2527 if (!TI.isEmpty()) {
2528 VTableThunks[Components.size()] = TI;
2529 AddThunk(MD, TI);
2530 }
2531 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2532 assert(TI.Return.isEmpty() &&
2533 "Destructor can't have return adjustment!");
2534 Components.push_back(VTableComponent::MakeDeletingDtor(DD));
2535 } else {
2536 Components.push_back(VTableComponent::MakeFunction(MD));
2537 }
2538 }
2539
2540 /// AddMethods - Add the methods of this base subobject and the relevant
2541 /// subbases to the vftable we're currently laying out.
2542 void AddMethods(BaseSubobject Base, unsigned BaseDepth,
2543 const CXXRecordDecl *LastVBase,
2544 BasesSetVectorTy &VisitedBases);
2545
LayoutVFTable()2546 void LayoutVFTable() {
2547 // RTTI data goes before all other entries.
2548 if (HasRTTIComponent)
2549 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
2550
2551 BasesSetVectorTy VisitedBases;
2552 AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
2553 VisitedBases);
2554 assert((HasRTTIComponent ? Components.size() - 1 : Components.size()) &&
2555 "vftable can't be empty");
2556
2557 assert(MethodVFTableLocations.empty());
2558 for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
2559 E = MethodInfoMap.end(); I != E; ++I) {
2560 const CXXMethodDecl *MD = I->first;
2561 const MethodInfo &MI = I->second;
2562 // Skip the methods that the MostDerivedClass didn't override
2563 // and the entries shadowed by return adjusting thunks.
2564 if (MD->getParent() != MostDerivedClass || MI.Shadowed)
2565 continue;
2566 MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
2567 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
2568 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2569 MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
2570 } else {
2571 MethodVFTableLocations[MD] = Loc;
2572 }
2573 }
2574 }
2575
2576 public:
VFTableBuilder(MicrosoftVTableContext & VTables,const CXXRecordDecl * MostDerivedClass,const VPtrInfo * Which)2577 VFTableBuilder(MicrosoftVTableContext &VTables,
2578 const CXXRecordDecl *MostDerivedClass, const VPtrInfo *Which)
2579 : VTables(VTables),
2580 Context(MostDerivedClass->getASTContext()),
2581 MostDerivedClass(MostDerivedClass),
2582 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
2583 WhichVFPtr(*Which),
2584 Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
2585 // Only include the RTTI component if we know that we will provide a
2586 // definition of the vftable.
2587 HasRTTIComponent = Context.getLangOpts().RTTIData &&
2588 !MostDerivedClass->hasAttr<DLLImportAttr>();
2589
2590 LayoutVFTable();
2591
2592 if (Context.getLangOpts().DumpVTableLayouts)
2593 dumpLayout(llvm::outs());
2594 }
2595
getNumThunks() const2596 uint64_t getNumThunks() const { return Thunks.size(); }
2597
thunks_begin() const2598 ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
2599
thunks_end() const2600 ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
2601
vtable_locations() const2602 method_locations_range vtable_locations() const {
2603 return method_locations_range(MethodVFTableLocations.begin(),
2604 MethodVFTableLocations.end());
2605 }
2606
getNumVTableComponents() const2607 uint64_t getNumVTableComponents() const { return Components.size(); }
2608
vtable_component_begin() const2609 const VTableComponent *vtable_component_begin() const {
2610 return Components.begin();
2611 }
2612
vtable_component_end() const2613 const VTableComponent *vtable_component_end() const {
2614 return Components.end();
2615 }
2616
vtable_thunks_begin() const2617 VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
2618 return VTableThunks.begin();
2619 }
2620
vtable_thunks_end() const2621 VTableThunksMapTy::const_iterator vtable_thunks_end() const {
2622 return VTableThunks.end();
2623 }
2624
2625 void dumpLayout(raw_ostream &);
2626 };
2627
2628 } // end namespace
2629
2630 /// InitialOverriddenDefinitionCollector - Finds the set of least derived bases
2631 /// that define the given method.
2632 struct InitialOverriddenDefinitionCollector {
2633 BasesSetVectorTy Bases;
2634 OverriddenMethodsSetTy VisitedOverriddenMethods;
2635
visitInitialOverriddenDefinitionCollector2636 bool visit(const CXXMethodDecl *OverriddenMD) {
2637 if (OverriddenMD->size_overridden_methods() == 0)
2638 Bases.insert(OverriddenMD->getParent());
2639 // Don't recurse on this method if we've already collected it.
2640 return VisitedOverriddenMethods.insert(OverriddenMD).second;
2641 }
2642 };
2643
BaseInSet(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * BasesSet)2644 static bool BaseInSet(const CXXBaseSpecifier *Specifier,
2645 CXXBasePath &Path, void *BasesSet) {
2646 BasesSetVectorTy *Bases = (BasesSetVectorTy *)BasesSet;
2647 return Bases->count(Specifier->getType()->getAsCXXRecordDecl());
2648 }
2649
2650 // Let's study one class hierarchy as an example:
2651 // struct A {
2652 // virtual void f();
2653 // int x;
2654 // };
2655 //
2656 // struct B : virtual A {
2657 // virtual void f();
2658 // };
2659 //
2660 // Record layouts:
2661 // struct A:
2662 // 0 | (A vftable pointer)
2663 // 4 | int x
2664 //
2665 // struct B:
2666 // 0 | (B vbtable pointer)
2667 // 4 | struct A (virtual base)
2668 // 4 | (A vftable pointer)
2669 // 8 | int x
2670 //
2671 // Let's assume we have a pointer to the A part of an object of dynamic type B:
2672 // B b;
2673 // A *a = (A*)&b;
2674 // a->f();
2675 //
2676 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects
2677 // "this" parameter to point at the A subobject, which is B+4.
2678 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
2679 // performed as a *static* adjustment.
2680 //
2681 // Interesting thing happens when we alter the relative placement of A and B
2682 // subobjects in a class:
2683 // struct C : virtual B { };
2684 //
2685 // C c;
2686 // A *a = (A*)&c;
2687 // a->f();
2688 //
2689 // Respective record layout is:
2690 // 0 | (C vbtable pointer)
2691 // 4 | struct A (virtual base)
2692 // 4 | (A vftable pointer)
2693 // 8 | int x
2694 // 12 | struct B (virtual base)
2695 // 12 | (B vbtable pointer)
2696 //
2697 // The final overrider of f() in class C is still B::f(), so B+4 should be
2698 // passed as "this" to that code. However, "a" points at B-8, so the respective
2699 // vftable entry should hold a thunk that adds 12 to the "this" argument before
2700 // performing a tail call to B::f().
2701 //
2702 // With this example in mind, we can now calculate the 'this' argument offset
2703 // for the given method, relative to the beginning of the MostDerivedClass.
2704 CharUnits
ComputeThisOffset(FinalOverriders::OverriderInfo Overrider)2705 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
2706 InitialOverriddenDefinitionCollector Collector;
2707 visitAllOverriddenMethods(Overrider.Method, Collector);
2708
2709 // If there are no overrides then 'this' is located
2710 // in the base that defines the method.
2711 if (Collector.Bases.size() == 0)
2712 return Overrider.Offset;
2713
2714 CXXBasePaths Paths;
2715 Overrider.Method->getParent()->lookupInBases(BaseInSet, &Collector.Bases,
2716 Paths);
2717
2718 // This will hold the smallest this offset among overridees of MD.
2719 // This implies that an offset of a non-virtual base will dominate an offset
2720 // of a virtual base to potentially reduce the number of thunks required
2721 // in the derived classes that inherit this method.
2722 CharUnits Ret;
2723 bool First = true;
2724
2725 const ASTRecordLayout &OverriderRDLayout =
2726 Context.getASTRecordLayout(Overrider.Method->getParent());
2727 for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end();
2728 I != E; ++I) {
2729 const CXXBasePath &Path = (*I);
2730 CharUnits ThisOffset = Overrider.Offset;
2731 CharUnits LastVBaseOffset;
2732
2733 // For each path from the overrider to the parents of the overridden methods,
2734 // traverse the path, calculating the this offset in the most derived class.
2735 for (int J = 0, F = Path.size(); J != F; ++J) {
2736 const CXXBasePathElement &Element = Path[J];
2737 QualType CurTy = Element.Base->getType();
2738 const CXXRecordDecl *PrevRD = Element.Class,
2739 *CurRD = CurTy->getAsCXXRecordDecl();
2740 const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
2741
2742 if (Element.Base->isVirtual()) {
2743 // The interesting things begin when you have virtual inheritance.
2744 // The final overrider will use a static adjustment equal to the offset
2745 // of the vbase in the final overrider class.
2746 // For example, if the final overrider is in a vbase B of the most
2747 // derived class and it overrides a method of the B's own vbase A,
2748 // it uses A* as "this". In its prologue, it can cast A* to B* with
2749 // a static offset. This offset is used regardless of the actual
2750 // offset of A from B in the most derived class, requiring an
2751 // this-adjusting thunk in the vftable if A and B are laid out
2752 // differently in the most derived class.
2753 LastVBaseOffset = ThisOffset =
2754 Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
2755 } else {
2756 ThisOffset += Layout.getBaseClassOffset(CurRD);
2757 }
2758 }
2759
2760 if (isa<CXXDestructorDecl>(Overrider.Method)) {
2761 if (LastVBaseOffset.isZero()) {
2762 // If a "Base" class has at least one non-virtual base with a virtual
2763 // destructor, the "Base" virtual destructor will take the address
2764 // of the "Base" subobject as the "this" argument.
2765 ThisOffset = Overrider.Offset;
2766 } else {
2767 // A virtual destructor of a virtual base takes the address of the
2768 // virtual base subobject as the "this" argument.
2769 ThisOffset = LastVBaseOffset;
2770 }
2771 }
2772
2773 if (Ret > ThisOffset || First) {
2774 First = false;
2775 Ret = ThisOffset;
2776 }
2777 }
2778
2779 assert(!First && "Method not found in the given subobject?");
2780 return Ret;
2781 }
2782
2783 // Things are getting even more complex when the "this" adjustment has to
2784 // use a dynamic offset instead of a static one, or even two dynamic offsets.
2785 // This is sometimes required when a virtual call happens in the middle of
2786 // a non-most-derived class construction or destruction.
2787 //
2788 // Let's take a look at the following example:
2789 // struct A {
2790 // virtual void f();
2791 // };
2792 //
2793 // void foo(A *a) { a->f(); } // Knows nothing about siblings of A.
2794 //
2795 // struct B : virtual A {
2796 // virtual void f();
2797 // B() {
2798 // foo(this);
2799 // }
2800 // };
2801 //
2802 // struct C : virtual B {
2803 // virtual void f();
2804 // };
2805 //
2806 // Record layouts for these classes are:
2807 // struct A
2808 // 0 | (A vftable pointer)
2809 //
2810 // struct B
2811 // 0 | (B vbtable pointer)
2812 // 4 | (vtordisp for vbase A)
2813 // 8 | struct A (virtual base)
2814 // 8 | (A vftable pointer)
2815 //
2816 // struct C
2817 // 0 | (C vbtable pointer)
2818 // 4 | (vtordisp for vbase A)
2819 // 8 | struct A (virtual base) // A precedes B!
2820 // 8 | (A vftable pointer)
2821 // 12 | struct B (virtual base)
2822 // 12 | (B vbtable pointer)
2823 //
2824 // When one creates an object of type C, the C constructor:
2825 // - initializes all the vbptrs, then
2826 // - calls the A subobject constructor
2827 // (initializes A's vfptr with an address of A vftable), then
2828 // - calls the B subobject constructor
2829 // (initializes A's vfptr with an address of B vftable and vtordisp for A),
2830 // that in turn calls foo(), then
2831 // - initializes A's vfptr with an address of C vftable and zeroes out the
2832 // vtordisp
2833 // FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
2834 // without vtordisp thunks?
2835 // FIXME: how are vtordisp handled in the presence of nooverride/final?
2836 //
2837 // When foo() is called, an object with a layout of class C has a vftable
2838 // referencing B::f() that assumes a B layout, so the "this" adjustments are
2839 // incorrect, unless an extra adjustment is done. This adjustment is called
2840 // "vtordisp adjustment". Vtordisp basically holds the difference between the
2841 // actual location of a vbase in the layout class and the location assumed by
2842 // the vftable of the class being constructed/destructed. Vtordisp is only
2843 // needed if "this" escapes a
2844 // structor (or we can't prove otherwise).
2845 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
2846 // estimation of a dynamic adjustment]
2847 //
2848 // foo() gets a pointer to the A vbase and doesn't know anything about B or C,
2849 // so it just passes that pointer as "this" in a virtual call.
2850 // If there was no vtordisp, that would just dispatch to B::f().
2851 // However, B::f() assumes B+8 is passed as "this",
2852 // yet the pointer foo() passes along is B-4 (i.e. C+8).
2853 // An extra adjustment is needed, so we emit a thunk into the B vftable.
2854 // This vtordisp thunk subtracts the value of vtordisp
2855 // from the "this" argument (-12) before making a tailcall to B::f().
2856 //
2857 // Let's consider an even more complex example:
2858 // struct D : virtual B, virtual C {
2859 // D() {
2860 // foo(this);
2861 // }
2862 // };
2863 //
2864 // struct D
2865 // 0 | (D vbtable pointer)
2866 // 4 | (vtordisp for vbase A)
2867 // 8 | struct A (virtual base) // A precedes both B and C!
2868 // 8 | (A vftable pointer)
2869 // 12 | struct B (virtual base) // B precedes C!
2870 // 12 | (B vbtable pointer)
2871 // 16 | struct C (virtual base)
2872 // 16 | (C vbtable pointer)
2873 //
2874 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall
2875 // to C::f(), which assumes C+8 as its "this" parameter. This time, foo()
2876 // passes along A, which is C-8. The A vtordisp holds
2877 // "D.vbptr[index_of_A] - offset_of_A_in_D"
2878 // and we statically know offset_of_A_in_D, so can get a pointer to D.
2879 // When we know it, we can make an extra vbtable lookup to locate the C vbase
2880 // and one extra static adjustment to calculate the expected value of C+8.
CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,CharUnits ThisOffset,ThisAdjustment & TA)2881 void VFTableBuilder::CalculateVtordispAdjustment(
2882 FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
2883 ThisAdjustment &TA) {
2884 const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
2885 MostDerivedClassLayout.getVBaseOffsetsMap();
2886 const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
2887 VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
2888 assert(VBaseMapEntry != VBaseMap.end());
2889
2890 // If there's no vtordisp or the final overrider is defined in the same vbase
2891 // as the initial declaration, we don't need any vtordisp adjustment.
2892 if (!VBaseMapEntry->second.hasVtorDisp() ||
2893 Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
2894 return;
2895
2896 // OK, now we know we need to use a vtordisp thunk.
2897 // The implicit vtordisp field is located right before the vbase.
2898 CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
2899 TA.Virtual.Microsoft.VtordispOffset =
2900 (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
2901
2902 // A simple vtordisp thunk will suffice if the final overrider is defined
2903 // in either the most derived class or its non-virtual base.
2904 if (Overrider.Method->getParent() == MostDerivedClass ||
2905 !Overrider.VirtualBase)
2906 return;
2907
2908 // Otherwise, we need to do use the dynamic offset of the final overrider
2909 // in order to get "this" adjustment right.
2910 TA.Virtual.Microsoft.VBPtrOffset =
2911 (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
2912 MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
2913 TA.Virtual.Microsoft.VBOffsetOffset =
2914 Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
2915 VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
2916
2917 TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
2918 }
2919
GroupNewVirtualOverloads(const CXXRecordDecl * RD,SmallVector<const CXXMethodDecl *,10> & VirtualMethods)2920 static void GroupNewVirtualOverloads(
2921 const CXXRecordDecl *RD,
2922 SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
2923 // Put the virtual methods into VirtualMethods in the proper order:
2924 // 1) Group overloads by declaration name. New groups are added to the
2925 // vftable in the order of their first declarations in this class
2926 // (including overrides and non-virtual methods).
2927 // 2) In each group, new overloads appear in the reverse order of declaration.
2928 typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
2929 SmallVector<MethodGroup, 10> Groups;
2930 typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
2931 VisitedGroupIndicesTy VisitedGroupIndices;
2932 for (const auto *MD : RD->methods()) {
2933 VisitedGroupIndicesTy::iterator J;
2934 bool Inserted;
2935 std::tie(J, Inserted) = VisitedGroupIndices.insert(
2936 std::make_pair(MD->getDeclName(), Groups.size()));
2937 if (Inserted)
2938 Groups.push_back(MethodGroup());
2939 if (MD->isVirtual())
2940 Groups[J->second].push_back(MD);
2941 }
2942
2943 for (unsigned I = 0, E = Groups.size(); I != E; ++I)
2944 VirtualMethods.append(Groups[I].rbegin(), Groups[I].rend());
2945 }
2946
isDirectVBase(const CXXRecordDecl * Base,const CXXRecordDecl * RD)2947 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
2948 for (const auto &B : RD->bases()) {
2949 if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
2950 return true;
2951 }
2952 return false;
2953 }
2954
AddMethods(BaseSubobject Base,unsigned BaseDepth,const CXXRecordDecl * LastVBase,BasesSetVectorTy & VisitedBases)2955 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
2956 const CXXRecordDecl *LastVBase,
2957 BasesSetVectorTy &VisitedBases) {
2958 const CXXRecordDecl *RD = Base.getBase();
2959 if (!RD->isPolymorphic())
2960 return;
2961
2962 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2963
2964 // See if this class expands a vftable of the base we look at, which is either
2965 // the one defined by the vfptr base path or the primary base of the current class.
2966 const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
2967 CharUnits NextBaseOffset;
2968 if (BaseDepth < WhichVFPtr.PathToBaseWithVPtr.size()) {
2969 NextBase = WhichVFPtr.PathToBaseWithVPtr[BaseDepth];
2970 if (isDirectVBase(NextBase, RD)) {
2971 NextLastVBase = NextBase;
2972 NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
2973 } else {
2974 NextBaseOffset =
2975 Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
2976 }
2977 } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
2978 assert(!Layout.isPrimaryBaseVirtual() &&
2979 "No primary virtual bases in this ABI");
2980 NextBase = PrimaryBase;
2981 NextBaseOffset = Base.getBaseOffset();
2982 }
2983
2984 if (NextBase) {
2985 AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
2986 NextLastVBase, VisitedBases);
2987 if (!VisitedBases.insert(NextBase))
2988 llvm_unreachable("Found a duplicate primary base!");
2989 }
2990
2991 SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
2992 // Put virtual methods in the proper order.
2993 GroupNewVirtualOverloads(RD, VirtualMethods);
2994
2995 // Now go through all virtual member functions and add them to the current
2996 // vftable. This is done by
2997 // - replacing overridden methods in their existing slots, as long as they
2998 // don't require return adjustment; calculating This adjustment if needed.
2999 // - adding new slots for methods of the current base not present in any
3000 // sub-bases;
3001 // - adding new slots for methods that require Return adjustment.
3002 // We keep track of the methods visited in the sub-bases in MethodInfoMap.
3003 for (unsigned I = 0, E = VirtualMethods.size(); I != E; ++I) {
3004 const CXXMethodDecl *MD = VirtualMethods[I];
3005
3006 FinalOverriders::OverriderInfo FinalOverrider =
3007 Overriders.getOverrider(MD, Base.getBaseOffset());
3008 const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
3009 const CXXMethodDecl *OverriddenMD =
3010 FindNearestOverriddenMethod(MD, VisitedBases);
3011
3012 ThisAdjustment ThisAdjustmentOffset;
3013 bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
3014 CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
3015 ThisAdjustmentOffset.NonVirtual =
3016 (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
3017 if ((OverriddenMD || FinalOverriderMD != MD) &&
3018 WhichVFPtr.getVBaseWithVPtr())
3019 CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
3020 ThisAdjustmentOffset);
3021
3022 if (OverriddenMD) {
3023 // If MD overrides anything in this vftable, we need to update the entries.
3024 MethodInfoMapTy::iterator OverriddenMDIterator =
3025 MethodInfoMap.find(OverriddenMD);
3026
3027 // If the overridden method went to a different vftable, skip it.
3028 if (OverriddenMDIterator == MethodInfoMap.end())
3029 continue;
3030
3031 MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
3032
3033 // Let's check if the overrider requires any return adjustments.
3034 // We must create a new slot if the MD's return type is not trivially
3035 // convertible to the OverriddenMD's one.
3036 // Once a chain of method overrides adds a return adjusting vftable slot,
3037 // all subsequent overrides will also use an extra method slot.
3038 ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
3039 Context, MD, OverriddenMD).isEmpty() ||
3040 OverriddenMethodInfo.UsesExtraSlot;
3041
3042 if (!ReturnAdjustingThunk) {
3043 // No return adjustment needed - just replace the overridden method info
3044 // with the current info.
3045 MethodInfo MI(OverriddenMethodInfo.VBTableIndex,
3046 OverriddenMethodInfo.VFTableIndex);
3047 MethodInfoMap.erase(OverriddenMDIterator);
3048
3049 assert(!MethodInfoMap.count(MD) &&
3050 "Should not have method info for this method yet!");
3051 MethodInfoMap.insert(std::make_pair(MD, MI));
3052 continue;
3053 }
3054
3055 // In case we need a return adjustment, we'll add a new slot for
3056 // the overrider. Mark the overriden method as shadowed by the new slot.
3057 OverriddenMethodInfo.Shadowed = true;
3058
3059 // Force a special name mangling for a return-adjusting thunk
3060 // unless the method is the final overrider without this adjustment.
3061 ForceReturnAdjustmentMangling =
3062 !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
3063 } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
3064 MD->size_overridden_methods()) {
3065 // Skip methods that don't belong to the vftable of the current class,
3066 // e.g. each method that wasn't seen in any of the visited sub-bases
3067 // but overrides multiple methods of other sub-bases.
3068 continue;
3069 }
3070
3071 // If we got here, MD is a method not seen in any of the sub-bases or
3072 // it requires return adjustment. Insert the method info for this method.
3073 unsigned VBIndex =
3074 LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
3075 MethodInfo MI(VBIndex,
3076 HasRTTIComponent ? Components.size() - 1 : Components.size(),
3077 ReturnAdjustingThunk);
3078
3079 assert(!MethodInfoMap.count(MD) &&
3080 "Should not have method info for this method yet!");
3081 MethodInfoMap.insert(std::make_pair(MD, MI));
3082
3083 // Check if this overrider needs a return adjustment.
3084 // We don't want to do this for pure virtual member functions.
3085 BaseOffset ReturnAdjustmentOffset;
3086 ReturnAdjustment ReturnAdjustment;
3087 if (!FinalOverriderMD->isPure()) {
3088 ReturnAdjustmentOffset =
3089 ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
3090 }
3091 if (!ReturnAdjustmentOffset.isEmpty()) {
3092 ForceReturnAdjustmentMangling = true;
3093 ReturnAdjustment.NonVirtual =
3094 ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
3095 if (ReturnAdjustmentOffset.VirtualBase) {
3096 const ASTRecordLayout &DerivedLayout =
3097 Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
3098 ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
3099 DerivedLayout.getVBPtrOffset().getQuantity();
3100 ReturnAdjustment.Virtual.Microsoft.VBIndex =
3101 VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
3102 ReturnAdjustmentOffset.VirtualBase);
3103 }
3104 }
3105
3106 AddMethod(FinalOverriderMD,
3107 ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
3108 ForceReturnAdjustmentMangling ? MD : nullptr));
3109 }
3110 }
3111
PrintBasePath(const VPtrInfo::BasePath & Path,raw_ostream & Out)3112 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
3113 for (VPtrInfo::BasePath::const_reverse_iterator I = Path.rbegin(),
3114 E = Path.rend(); I != E; ++I) {
3115 Out << "'";
3116 (*I)->printQualifiedName(Out);
3117 Out << "' in ";
3118 }
3119 }
3120
dumpMicrosoftThunkAdjustment(const ThunkInfo & TI,raw_ostream & Out,bool ContinueFirstLine)3121 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
3122 bool ContinueFirstLine) {
3123 const ReturnAdjustment &R = TI.Return;
3124 bool Multiline = false;
3125 const char *LinePrefix = "\n ";
3126 if (!R.isEmpty() || TI.Method) {
3127 if (!ContinueFirstLine)
3128 Out << LinePrefix;
3129 Out << "[return adjustment (to type '"
3130 << TI.Method->getReturnType().getCanonicalType().getAsString()
3131 << "'): ";
3132 if (R.Virtual.Microsoft.VBPtrOffset)
3133 Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
3134 if (R.Virtual.Microsoft.VBIndex)
3135 Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
3136 Out << R.NonVirtual << " non-virtual]";
3137 Multiline = true;
3138 }
3139
3140 const ThisAdjustment &T = TI.This;
3141 if (!T.isEmpty()) {
3142 if (Multiline || !ContinueFirstLine)
3143 Out << LinePrefix;
3144 Out << "[this adjustment: ";
3145 if (!TI.This.Virtual.isEmpty()) {
3146 assert(T.Virtual.Microsoft.VtordispOffset < 0);
3147 Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
3148 if (T.Virtual.Microsoft.VBPtrOffset) {
3149 Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
3150 << " to the left,";
3151 assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
3152 Out << LinePrefix << " vboffset at "
3153 << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
3154 }
3155 }
3156 Out << T.NonVirtual << " non-virtual]";
3157 }
3158 }
3159
dumpLayout(raw_ostream & Out)3160 void VFTableBuilder::dumpLayout(raw_ostream &Out) {
3161 Out << "VFTable for ";
3162 PrintBasePath(WhichVFPtr.PathToBaseWithVPtr, Out);
3163 Out << "'";
3164 MostDerivedClass->printQualifiedName(Out);
3165 Out << "' (" << Components.size()
3166 << (Components.size() == 1 ? " entry" : " entries") << ").\n";
3167
3168 for (unsigned I = 0, E = Components.size(); I != E; ++I) {
3169 Out << llvm::format("%4d | ", I);
3170
3171 const VTableComponent &Component = Components[I];
3172
3173 // Dump the component.
3174 switch (Component.getKind()) {
3175 case VTableComponent::CK_RTTI:
3176 Component.getRTTIDecl()->printQualifiedName(Out);
3177 Out << " RTTI";
3178 break;
3179
3180 case VTableComponent::CK_FunctionPointer: {
3181 const CXXMethodDecl *MD = Component.getFunctionDecl();
3182
3183 // FIXME: Figure out how to print the real thunk type, since they can
3184 // differ in the return type.
3185 std::string Str = PredefinedExpr::ComputeName(
3186 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3187 Out << Str;
3188 if (MD->isPure())
3189 Out << " [pure]";
3190
3191 if (MD->isDeleted())
3192 Out << " [deleted]";
3193
3194 ThunkInfo Thunk = VTableThunks.lookup(I);
3195 if (!Thunk.isEmpty())
3196 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3197
3198 break;
3199 }
3200
3201 case VTableComponent::CK_DeletingDtorPointer: {
3202 const CXXDestructorDecl *DD = Component.getDestructorDecl();
3203
3204 DD->printQualifiedName(Out);
3205 Out << "() [scalar deleting]";
3206
3207 if (DD->isPure())
3208 Out << " [pure]";
3209
3210 ThunkInfo Thunk = VTableThunks.lookup(I);
3211 if (!Thunk.isEmpty()) {
3212 assert(Thunk.Return.isEmpty() &&
3213 "No return adjustment needed for destructors!");
3214 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3215 }
3216
3217 break;
3218 }
3219
3220 default:
3221 DiagnosticsEngine &Diags = Context.getDiagnostics();
3222 unsigned DiagID = Diags.getCustomDiagID(
3223 DiagnosticsEngine::Error,
3224 "Unexpected vftable component type %0 for component number %1");
3225 Diags.Report(MostDerivedClass->getLocation(), DiagID)
3226 << I << Component.getKind();
3227 }
3228
3229 Out << '\n';
3230 }
3231
3232 Out << '\n';
3233
3234 if (!Thunks.empty()) {
3235 // We store the method names in a map to get a stable order.
3236 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
3237
3238 for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
3239 I != E; ++I) {
3240 const CXXMethodDecl *MD = I->first;
3241 std::string MethodName = PredefinedExpr::ComputeName(
3242 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3243
3244 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
3245 }
3246
3247 for (std::map<std::string, const CXXMethodDecl *>::const_iterator
3248 I = MethodNamesAndDecls.begin(),
3249 E = MethodNamesAndDecls.end();
3250 I != E; ++I) {
3251 const std::string &MethodName = I->first;
3252 const CXXMethodDecl *MD = I->second;
3253
3254 ThunkInfoVectorTy ThunksVector = Thunks[MD];
3255 std::stable_sort(ThunksVector.begin(), ThunksVector.end(),
3256 [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
3257 // Keep different thunks with the same adjustments in the order they
3258 // were put into the vector.
3259 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
3260 });
3261
3262 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
3263 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
3264
3265 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
3266 const ThunkInfo &Thunk = ThunksVector[I];
3267
3268 Out << llvm::format("%4d | ", I);
3269 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
3270 Out << '\n';
3271 }
3272
3273 Out << '\n';
3274 }
3275 }
3276
3277 Out.flush();
3278 }
3279
setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *,4> & A,ArrayRef<const CXXRecordDecl * > B)3280 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
3281 ArrayRef<const CXXRecordDecl *> B) {
3282 for (ArrayRef<const CXXRecordDecl *>::iterator I = B.begin(), E = B.end();
3283 I != E; ++I) {
3284 if (A.count(*I))
3285 return true;
3286 }
3287 return false;
3288 }
3289
3290 static bool rebucketPaths(VPtrInfoVector &Paths);
3291
3292 /// Produces MSVC-compatible vbtable data. The symbols produced by this
3293 /// algorithm match those produced by MSVC 2012 and newer, which is different
3294 /// from MSVC 2010.
3295 ///
3296 /// MSVC 2012 appears to minimize the vbtable names using the following
3297 /// algorithm. First, walk the class hierarchy in the usual order, depth first,
3298 /// left to right, to find all of the subobjects which contain a vbptr field.
3299 /// Visiting each class node yields a list of inheritance paths to vbptrs. Each
3300 /// record with a vbptr creates an initially empty path.
3301 ///
3302 /// To combine paths from child nodes, the paths are compared to check for
3303 /// ambiguity. Paths are "ambiguous" if multiple paths have the same set of
3304 /// components in the same order. Each group of ambiguous paths is extended by
3305 /// appending the class of the base from which it came. If the current class
3306 /// node produced an ambiguous path, its path is extended with the current class.
3307 /// After extending paths, MSVC again checks for ambiguity, and extends any
3308 /// ambiguous path which wasn't already extended. Because each node yields an
3309 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once
3310 /// to produce an unambiguous set of paths.
3311 ///
3312 /// TODO: Presumably vftables use the same algorithm.
computeVTablePaths(bool ForVBTables,const CXXRecordDecl * RD,VPtrInfoVector & Paths)3313 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
3314 const CXXRecordDecl *RD,
3315 VPtrInfoVector &Paths) {
3316 assert(Paths.empty());
3317 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3318
3319 // Base case: this subobject has its own vptr.
3320 if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
3321 Paths.push_back(new VPtrInfo(RD));
3322
3323 // Recursive case: get all the vbtables from our bases and remove anything
3324 // that shares a virtual base.
3325 llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3326 for (const auto &B : RD->bases()) {
3327 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3328 if (B.isVirtual() && VBasesSeen.count(Base))
3329 continue;
3330
3331 if (!Base->isDynamicClass())
3332 continue;
3333
3334 const VPtrInfoVector &BasePaths =
3335 ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
3336
3337 for (VPtrInfo *BaseInfo : BasePaths) {
3338 // Don't include the path if it goes through a virtual base that we've
3339 // already included.
3340 if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
3341 continue;
3342
3343 // Copy the path and adjust it as necessary.
3344 VPtrInfo *P = new VPtrInfo(*BaseInfo);
3345
3346 // We mangle Base into the path if the path would've been ambiguous and it
3347 // wasn't already extended with Base.
3348 if (P->MangledPath.empty() || P->MangledPath.back() != Base)
3349 P->NextBaseToMangle = Base;
3350
3351 // Keep track of which vtable the derived class is going to extend with
3352 // new methods or bases. We append to either the vftable of our primary
3353 // base, or the first non-virtual base that has a vbtable.
3354 if (P->ReusingBase == Base &&
3355 Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
3356 : Layout.getPrimaryBase()))
3357 P->ReusingBase = RD;
3358
3359 // Keep track of the full adjustment from the MDC to this vtable. The
3360 // adjustment is captured by an optional vbase and a non-virtual offset.
3361 if (B.isVirtual())
3362 P->ContainingVBases.push_back(Base);
3363 else if (P->ContainingVBases.empty())
3364 P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
3365
3366 // Update the full offset in the MDC.
3367 P->FullOffsetInMDC = P->NonVirtualOffset;
3368 if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
3369 P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
3370
3371 Paths.push_back(P);
3372 }
3373
3374 if (B.isVirtual())
3375 VBasesSeen.insert(Base);
3376
3377 // After visiting any direct base, we've transitively visited all of its
3378 // morally virtual bases.
3379 for (const auto &VB : Base->vbases())
3380 VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
3381 }
3382
3383 // Sort the paths into buckets, and if any of them are ambiguous, extend all
3384 // paths in ambiguous buckets.
3385 bool Changed = true;
3386 while (Changed)
3387 Changed = rebucketPaths(Paths);
3388 }
3389
extendPath(VPtrInfo * P)3390 static bool extendPath(VPtrInfo *P) {
3391 if (P->NextBaseToMangle) {
3392 P->MangledPath.push_back(P->NextBaseToMangle);
3393 P->NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
3394 return true;
3395 }
3396 return false;
3397 }
3398
rebucketPaths(VPtrInfoVector & Paths)3399 static bool rebucketPaths(VPtrInfoVector &Paths) {
3400 // What we're essentially doing here is bucketing together ambiguous paths.
3401 // Any bucket with more than one path in it gets extended by NextBase, which
3402 // is usually the direct base of the inherited the vbptr. This code uses a
3403 // sorted vector to implement a multiset to form the buckets. Note that the
3404 // ordering is based on pointers, but it doesn't change our output order. The
3405 // current algorithm is designed to match MSVC 2012's names.
3406 VPtrInfoVector PathsSorted(Paths);
3407 std::sort(PathsSorted.begin(), PathsSorted.end(),
3408 [](const VPtrInfo *LHS, const VPtrInfo *RHS) {
3409 return LHS->MangledPath < RHS->MangledPath;
3410 });
3411 bool Changed = false;
3412 for (size_t I = 0, E = PathsSorted.size(); I != E;) {
3413 // Scan forward to find the end of the bucket.
3414 size_t BucketStart = I;
3415 do {
3416 ++I;
3417 } while (I != E && PathsSorted[BucketStart]->MangledPath ==
3418 PathsSorted[I]->MangledPath);
3419
3420 // If this bucket has multiple paths, extend them all.
3421 if (I - BucketStart > 1) {
3422 for (size_t II = BucketStart; II != I; ++II)
3423 Changed |= extendPath(PathsSorted[II]);
3424 assert(Changed && "no paths were extended to fix ambiguity");
3425 }
3426 }
3427 return Changed;
3428 }
3429
~MicrosoftVTableContext()3430 MicrosoftVTableContext::~MicrosoftVTableContext() {
3431 for (auto &P : VFPtrLocations)
3432 llvm::DeleteContainerPointers(*P.second);
3433 llvm::DeleteContainerSeconds(VFPtrLocations);
3434 llvm::DeleteContainerSeconds(VFTableLayouts);
3435 llvm::DeleteContainerSeconds(VBaseInfo);
3436 }
3437
3438 static bool
findPathForVPtr(ASTContext & Context,const ASTRecordLayout & MostDerivedLayout,const CXXRecordDecl * RD,CharUnits Offset,llvm::SmallPtrSetImpl<const CXXRecordDecl * > & VBasesSeen,VPtrInfo::BasePath & FullPath,VPtrInfo * Info)3439 findPathForVPtr(ASTContext &Context, const ASTRecordLayout &MostDerivedLayout,
3440 const CXXRecordDecl *RD, CharUnits Offset,
3441 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &VBasesSeen,
3442 VPtrInfo::BasePath &FullPath, VPtrInfo *Info) {
3443 if (RD == Info->BaseWithVPtr && Offset == Info->FullOffsetInMDC) {
3444 Info->PathToBaseWithVPtr = FullPath;
3445 return true;
3446 }
3447
3448 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3449
3450 // Recurse with non-virtual bases first.
3451 // FIXME: Does this need to be in layout order? Virtual bases will be in base
3452 // specifier order, which isn't necessarily layout order.
3453 SmallVector<CXXBaseSpecifier, 4> Bases(RD->bases_begin(), RD->bases_end());
3454 std::stable_partition(Bases.begin(), Bases.end(),
3455 [](CXXBaseSpecifier bs) { return !bs.isVirtual(); });
3456
3457 for (const auto &B : Bases) {
3458 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3459 CharUnits NewOffset;
3460 if (!B.isVirtual())
3461 NewOffset = Offset + Layout.getBaseClassOffset(Base);
3462 else {
3463 if (!VBasesSeen.insert(Base).second)
3464 return false;
3465 NewOffset = MostDerivedLayout.getVBaseClassOffset(Base);
3466 }
3467 FullPath.push_back(Base);
3468 if (findPathForVPtr(Context, MostDerivedLayout, Base, NewOffset, VBasesSeen,
3469 FullPath, Info))
3470 return true;
3471 FullPath.pop_back();
3472 }
3473 return false;
3474 }
3475
computeFullPathsForVFTables(ASTContext & Context,const CXXRecordDecl * RD,VPtrInfoVector & Paths)3476 static void computeFullPathsForVFTables(ASTContext &Context,
3477 const CXXRecordDecl *RD,
3478 VPtrInfoVector &Paths) {
3479 llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3480 const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
3481 VPtrInfo::BasePath FullPath;
3482 for (VPtrInfo *Info : Paths) {
3483 findPathForVPtr(Context, MostDerivedLayout, RD, CharUnits::Zero(),
3484 VBasesSeen, FullPath, Info);
3485 VBasesSeen.clear();
3486 FullPath.clear();
3487 }
3488 }
3489
computeVTableRelatedInformation(const CXXRecordDecl * RD)3490 void MicrosoftVTableContext::computeVTableRelatedInformation(
3491 const CXXRecordDecl *RD) {
3492 assert(RD->isDynamicClass());
3493
3494 // Check if we've computed this information before.
3495 if (VFPtrLocations.count(RD))
3496 return;
3497
3498 const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
3499
3500 VPtrInfoVector *VFPtrs = new VPtrInfoVector();
3501 computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
3502 computeFullPathsForVFTables(Context, RD, *VFPtrs);
3503 VFPtrLocations[RD] = VFPtrs;
3504
3505 MethodVFTableLocationsTy NewMethodLocations;
3506 for (VPtrInfoVector::iterator I = VFPtrs->begin(), E = VFPtrs->end();
3507 I != E; ++I) {
3508 VFTableBuilder Builder(*this, RD, *I);
3509
3510 VFTableIdTy id(RD, (*I)->FullOffsetInMDC);
3511 assert(VFTableLayouts.count(id) == 0);
3512 SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
3513 Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
3514 VFTableLayouts[id] = new VTableLayout(
3515 Builder.getNumVTableComponents(), Builder.vtable_component_begin(),
3516 VTableThunks.size(), VTableThunks.data(), EmptyAddressPointsMap, true);
3517 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
3518
3519 for (const auto &Loc : Builder.vtable_locations()) {
3520 GlobalDecl GD = Loc.first;
3521 MethodVFTableLocation NewLoc = Loc.second;
3522 auto M = NewMethodLocations.find(GD);
3523 if (M == NewMethodLocations.end() || NewLoc < M->second)
3524 NewMethodLocations[GD] = NewLoc;
3525 }
3526 }
3527
3528 MethodVFTableLocations.insert(NewMethodLocations.begin(),
3529 NewMethodLocations.end());
3530 if (Context.getLangOpts().DumpVTableLayouts)
3531 dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
3532 }
3533
dumpMethodLocations(const CXXRecordDecl * RD,const MethodVFTableLocationsTy & NewMethods,raw_ostream & Out)3534 void MicrosoftVTableContext::dumpMethodLocations(
3535 const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
3536 raw_ostream &Out) {
3537 // Compute the vtable indices for all the member functions.
3538 // Store them in a map keyed by the location so we'll get a sorted table.
3539 std::map<MethodVFTableLocation, std::string> IndicesMap;
3540 bool HasNonzeroOffset = false;
3541
3542 for (MethodVFTableLocationsTy::const_iterator I = NewMethods.begin(),
3543 E = NewMethods.end(); I != E; ++I) {
3544 const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I->first.getDecl());
3545 assert(MD->isVirtual());
3546
3547 std::string MethodName = PredefinedExpr::ComputeName(
3548 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3549
3550 if (isa<CXXDestructorDecl>(MD)) {
3551 IndicesMap[I->second] = MethodName + " [scalar deleting]";
3552 } else {
3553 IndicesMap[I->second] = MethodName;
3554 }
3555
3556 if (!I->second.VFPtrOffset.isZero() || I->second.VBTableIndex != 0)
3557 HasNonzeroOffset = true;
3558 }
3559
3560 // Print the vtable indices for all the member functions.
3561 if (!IndicesMap.empty()) {
3562 Out << "VFTable indices for ";
3563 Out << "'";
3564 RD->printQualifiedName(Out);
3565 Out << "' (" << IndicesMap.size()
3566 << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
3567
3568 CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
3569 uint64_t LastVBIndex = 0;
3570 for (std::map<MethodVFTableLocation, std::string>::const_iterator
3571 I = IndicesMap.begin(),
3572 E = IndicesMap.end();
3573 I != E; ++I) {
3574 CharUnits VFPtrOffset = I->first.VFPtrOffset;
3575 uint64_t VBIndex = I->first.VBTableIndex;
3576 if (HasNonzeroOffset &&
3577 (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
3578 assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
3579 Out << " -- accessible via ";
3580 if (VBIndex)
3581 Out << "vbtable index " << VBIndex << ", ";
3582 Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
3583 LastVFPtrOffset = VFPtrOffset;
3584 LastVBIndex = VBIndex;
3585 }
3586
3587 uint64_t VTableIndex = I->first.Index;
3588 const std::string &MethodName = I->second;
3589 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
3590 }
3591 Out << '\n';
3592 }
3593
3594 Out.flush();
3595 }
3596
computeVBTableRelatedInformation(const CXXRecordDecl * RD)3597 const VirtualBaseInfo *MicrosoftVTableContext::computeVBTableRelatedInformation(
3598 const CXXRecordDecl *RD) {
3599 VirtualBaseInfo *VBI;
3600
3601 {
3602 // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell,
3603 // as it may be modified and rehashed under us.
3604 VirtualBaseInfo *&Entry = VBaseInfo[RD];
3605 if (Entry)
3606 return Entry;
3607 Entry = VBI = new VirtualBaseInfo();
3608 }
3609
3610 computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
3611
3612 // First, see if the Derived class shared the vbptr with a non-virtual base.
3613 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3614 if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
3615 // If the Derived class shares the vbptr with a non-virtual base, the shared
3616 // virtual bases come first so that the layout is the same.
3617 const VirtualBaseInfo *BaseInfo =
3618 computeVBTableRelatedInformation(VBPtrBase);
3619 VBI->VBTableIndices.insert(BaseInfo->VBTableIndices.begin(),
3620 BaseInfo->VBTableIndices.end());
3621 }
3622
3623 // New vbases are added to the end of the vbtable.
3624 // Skip the self entry and vbases visited in the non-virtual base, if any.
3625 unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
3626 for (const auto &VB : RD->vbases()) {
3627 const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
3628 if (!VBI->VBTableIndices.count(CurVBase))
3629 VBI->VBTableIndices[CurVBase] = VBTableIndex++;
3630 }
3631
3632 return VBI;
3633 }
3634
getVBTableIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * VBase)3635 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
3636 const CXXRecordDecl *VBase) {
3637 const VirtualBaseInfo *VBInfo = computeVBTableRelatedInformation(Derived);
3638 assert(VBInfo->VBTableIndices.count(VBase));
3639 return VBInfo->VBTableIndices.find(VBase)->second;
3640 }
3641
3642 const VPtrInfoVector &
enumerateVBTables(const CXXRecordDecl * RD)3643 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
3644 return computeVBTableRelatedInformation(RD)->VBPtrPaths;
3645 }
3646
3647 const VPtrInfoVector &
getVFPtrOffsets(const CXXRecordDecl * RD)3648 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
3649 computeVTableRelatedInformation(RD);
3650
3651 assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
3652 return *VFPtrLocations[RD];
3653 }
3654
3655 const VTableLayout &
getVFTableLayout(const CXXRecordDecl * RD,CharUnits VFPtrOffset)3656 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
3657 CharUnits VFPtrOffset) {
3658 computeVTableRelatedInformation(RD);
3659
3660 VFTableIdTy id(RD, VFPtrOffset);
3661 assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
3662 return *VFTableLayouts[id];
3663 }
3664
3665 const MicrosoftVTableContext::MethodVFTableLocation &
getMethodVFTableLocation(GlobalDecl GD)3666 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
3667 assert(cast<CXXMethodDecl>(GD.getDecl())->isVirtual() &&
3668 "Only use this method for virtual methods or dtors");
3669 if (isa<CXXDestructorDecl>(GD.getDecl()))
3670 assert(GD.getDtorType() == Dtor_Deleting);
3671
3672 MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
3673 if (I != MethodVFTableLocations.end())
3674 return I->second;
3675
3676 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
3677
3678 computeVTableRelatedInformation(RD);
3679
3680 I = MethodVFTableLocations.find(GD);
3681 assert(I != MethodVFTableLocations.end() && "Did not find index!");
3682 return I->second;
3683 }
3684