1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with generation of the layout of virtual tables.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/VTableBuilder.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/RecordLayout.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Support/Format.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include <algorithm>
23 #include <cstdio>
24 
25 using namespace clang;
26 
27 #define DUMP_OVERRIDERS 0
28 
29 namespace {
30 
31 /// BaseOffset - Represents an offset from a derived class to a direct or
32 /// indirect base class.
33 struct BaseOffset {
34   /// DerivedClass - The derived class.
35   const CXXRecordDecl *DerivedClass;
36 
37   /// VirtualBase - If the path from the derived class to the base class
38   /// involves virtual base classes, this holds the declaration of the last
39   /// virtual base in this path (i.e. closest to the base class).
40   const CXXRecordDecl *VirtualBase;
41 
42   /// NonVirtualOffset - The offset from the derived class to the base class.
43   /// (Or the offset from the virtual base class to the base class, if the
44   /// path from the derived class to the base class involves a virtual base
45   /// class.
46   CharUnits NonVirtualOffset;
47 
BaseOffset__anona3a288e10111::BaseOffset48   BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
49                  NonVirtualOffset(CharUnits::Zero()) { }
BaseOffset__anona3a288e10111::BaseOffset50   BaseOffset(const CXXRecordDecl *DerivedClass,
51              const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
52     : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
53     NonVirtualOffset(NonVirtualOffset) { }
54 
isEmpty__anona3a288e10111::BaseOffset55   bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
56 };
57 
58 /// FinalOverriders - Contains the final overrider member functions for all
59 /// member functions in the base subobjects of a class.
60 class FinalOverriders {
61 public:
62   /// OverriderInfo - Information about a final overrider.
63   struct OverriderInfo {
64     /// Method - The method decl of the overrider.
65     const CXXMethodDecl *Method;
66 
67     /// VirtualBase - The virtual base class subobject of this overrider.
68     /// Note that this records the closest derived virtual base class subobject.
69     const CXXRecordDecl *VirtualBase;
70 
71     /// Offset - the base offset of the overrider's parent in the layout class.
72     CharUnits Offset;
73 
OverriderInfo__anona3a288e10111::FinalOverriders::OverriderInfo74     OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
75                       Offset(CharUnits::Zero()) { }
76   };
77 
78 private:
79   /// MostDerivedClass - The most derived class for which the final overriders
80   /// are stored.
81   const CXXRecordDecl *MostDerivedClass;
82 
83   /// MostDerivedClassOffset - If we're building final overriders for a
84   /// construction vtable, this holds the offset from the layout class to the
85   /// most derived class.
86   const CharUnits MostDerivedClassOffset;
87 
88   /// LayoutClass - The class we're using for layout information. Will be
89   /// different than the most derived class if the final overriders are for a
90   /// construction vtable.
91   const CXXRecordDecl *LayoutClass;
92 
93   ASTContext &Context;
94 
95   /// MostDerivedClassLayout - the AST record layout of the most derived class.
96   const ASTRecordLayout &MostDerivedClassLayout;
97 
98   /// MethodBaseOffsetPairTy - Uniquely identifies a member function
99   /// in a base subobject.
100   typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
101 
102   typedef llvm::DenseMap<MethodBaseOffsetPairTy,
103                          OverriderInfo> OverridersMapTy;
104 
105   /// OverridersMap - The final overriders for all virtual member functions of
106   /// all the base subobjects of the most derived class.
107   OverridersMapTy OverridersMap;
108 
109   /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
110   /// as a record decl and a subobject number) and its offsets in the most
111   /// derived class as well as the layout class.
112   typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
113                          CharUnits> SubobjectOffsetMapTy;
114 
115   typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
116 
117   /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
118   /// given base.
119   void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
120                           CharUnits OffsetInLayoutClass,
121                           SubobjectOffsetMapTy &SubobjectOffsets,
122                           SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
123                           SubobjectCountMapTy &SubobjectCounts);
124 
125   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
126 
127   /// dump - dump the final overriders for a base subobject, and all its direct
128   /// and indirect base subobjects.
129   void dump(raw_ostream &Out, BaseSubobject Base,
130             VisitedVirtualBasesSetTy& VisitedVirtualBases);
131 
132 public:
133   FinalOverriders(const CXXRecordDecl *MostDerivedClass,
134                   CharUnits MostDerivedClassOffset,
135                   const CXXRecordDecl *LayoutClass);
136 
137   /// getOverrider - Get the final overrider for the given method declaration in
138   /// the subobject with the given base offset.
getOverrider(const CXXMethodDecl * MD,CharUnits BaseOffset) const139   OverriderInfo getOverrider(const CXXMethodDecl *MD,
140                              CharUnits BaseOffset) const {
141     assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
142            "Did not find overrider!");
143 
144     return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
145   }
146 
147   /// dump - dump the final overriders.
dump()148   void dump() {
149     VisitedVirtualBasesSetTy VisitedVirtualBases;
150     dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
151          VisitedVirtualBases);
152   }
153 
154 };
155 
FinalOverriders(const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,const CXXRecordDecl * LayoutClass)156 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
157                                  CharUnits MostDerivedClassOffset,
158                                  const CXXRecordDecl *LayoutClass)
159   : MostDerivedClass(MostDerivedClass),
160   MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
161   Context(MostDerivedClass->getASTContext()),
162   MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
163 
164   // Compute base offsets.
165   SubobjectOffsetMapTy SubobjectOffsets;
166   SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
167   SubobjectCountMapTy SubobjectCounts;
168   ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
169                      /*IsVirtual=*/false,
170                      MostDerivedClassOffset,
171                      SubobjectOffsets, SubobjectLayoutClassOffsets,
172                      SubobjectCounts);
173 
174   // Get the final overriders.
175   CXXFinalOverriderMap FinalOverriders;
176   MostDerivedClass->getFinalOverriders(FinalOverriders);
177 
178   for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
179        E = FinalOverriders.end(); I != E; ++I) {
180     const CXXMethodDecl *MD = I->first;
181     const OverridingMethods& Methods = I->second;
182 
183     for (OverridingMethods::const_iterator I = Methods.begin(),
184          E = Methods.end(); I != E; ++I) {
185       unsigned SubobjectNumber = I->first;
186       assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
187                                                    SubobjectNumber)) &&
188              "Did not find subobject offset!");
189 
190       CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
191                                                             SubobjectNumber)];
192 
193       assert(I->second.size() == 1 && "Final overrider is not unique!");
194       const UniqueVirtualMethod &Method = I->second.front();
195 
196       const CXXRecordDecl *OverriderRD = Method.Method->getParent();
197       assert(SubobjectLayoutClassOffsets.count(
198              std::make_pair(OverriderRD, Method.Subobject))
199              && "Did not find subobject offset!");
200       CharUnits OverriderOffset =
201         SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
202                                                    Method.Subobject)];
203 
204       OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
205       assert(!Overrider.Method && "Overrider should not exist yet!");
206 
207       Overrider.Offset = OverriderOffset;
208       Overrider.Method = Method.Method;
209       Overrider.VirtualBase = Method.InVirtualSubobject;
210     }
211   }
212 
213 #if DUMP_OVERRIDERS
214   // And dump them (for now).
215   dump();
216 #endif
217 }
218 
ComputeBaseOffset(ASTContext & Context,const CXXRecordDecl * DerivedRD,const CXXBasePath & Path)219 static BaseOffset ComputeBaseOffset(ASTContext &Context,
220                                     const CXXRecordDecl *DerivedRD,
221                                     const CXXBasePath &Path) {
222   CharUnits NonVirtualOffset = CharUnits::Zero();
223 
224   unsigned NonVirtualStart = 0;
225   const CXXRecordDecl *VirtualBase = nullptr;
226 
227   // First, look for the virtual base class.
228   for (int I = Path.size(), E = 0; I != E; --I) {
229     const CXXBasePathElement &Element = Path[I - 1];
230 
231     if (Element.Base->isVirtual()) {
232       NonVirtualStart = I;
233       QualType VBaseType = Element.Base->getType();
234       VirtualBase = VBaseType->getAsCXXRecordDecl();
235       break;
236     }
237   }
238 
239   // Now compute the non-virtual offset.
240   for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
241     const CXXBasePathElement &Element = Path[I];
242 
243     // Check the base class offset.
244     const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
245 
246     const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
247 
248     NonVirtualOffset += Layout.getBaseClassOffset(Base);
249   }
250 
251   // FIXME: This should probably use CharUnits or something. Maybe we should
252   // even change the base offsets in ASTRecordLayout to be specified in
253   // CharUnits.
254   return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
255 
256 }
257 
ComputeBaseOffset(ASTContext & Context,const CXXRecordDecl * BaseRD,const CXXRecordDecl * DerivedRD)258 static BaseOffset ComputeBaseOffset(ASTContext &Context,
259                                     const CXXRecordDecl *BaseRD,
260                                     const CXXRecordDecl *DerivedRD) {
261   CXXBasePaths Paths(/*FindAmbiguities=*/false,
262                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
263 
264   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
265     llvm_unreachable("Class must be derived from the passed in base class!");
266 
267   return ComputeBaseOffset(Context, DerivedRD, Paths.front());
268 }
269 
270 static BaseOffset
ComputeReturnAdjustmentBaseOffset(ASTContext & Context,const CXXMethodDecl * DerivedMD,const CXXMethodDecl * BaseMD)271 ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
272                                   const CXXMethodDecl *DerivedMD,
273                                   const CXXMethodDecl *BaseMD) {
274   const FunctionType *BaseFT = BaseMD->getType()->getAs<FunctionType>();
275   const FunctionType *DerivedFT = DerivedMD->getType()->getAs<FunctionType>();
276 
277   // Canonicalize the return types.
278   CanQualType CanDerivedReturnType =
279       Context.getCanonicalType(DerivedFT->getReturnType());
280   CanQualType CanBaseReturnType =
281       Context.getCanonicalType(BaseFT->getReturnType());
282 
283   assert(CanDerivedReturnType->getTypeClass() ==
284          CanBaseReturnType->getTypeClass() &&
285          "Types must have same type class!");
286 
287   if (CanDerivedReturnType == CanBaseReturnType) {
288     // No adjustment needed.
289     return BaseOffset();
290   }
291 
292   if (isa<ReferenceType>(CanDerivedReturnType)) {
293     CanDerivedReturnType =
294       CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
295     CanBaseReturnType =
296       CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
297   } else if (isa<PointerType>(CanDerivedReturnType)) {
298     CanDerivedReturnType =
299       CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
300     CanBaseReturnType =
301       CanBaseReturnType->getAs<PointerType>()->getPointeeType();
302   } else {
303     llvm_unreachable("Unexpected return type!");
304   }
305 
306   // We need to compare unqualified types here; consider
307   //   const T *Base::foo();
308   //   T *Derived::foo();
309   if (CanDerivedReturnType.getUnqualifiedType() ==
310       CanBaseReturnType.getUnqualifiedType()) {
311     // No adjustment needed.
312     return BaseOffset();
313   }
314 
315   const CXXRecordDecl *DerivedRD =
316     cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
317 
318   const CXXRecordDecl *BaseRD =
319     cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
320 
321   return ComputeBaseOffset(Context, BaseRD, DerivedRD);
322 }
323 
324 void
ComputeBaseOffsets(BaseSubobject Base,bool IsVirtual,CharUnits OffsetInLayoutClass,SubobjectOffsetMapTy & SubobjectOffsets,SubobjectOffsetMapTy & SubobjectLayoutClassOffsets,SubobjectCountMapTy & SubobjectCounts)325 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
326                               CharUnits OffsetInLayoutClass,
327                               SubobjectOffsetMapTy &SubobjectOffsets,
328                               SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
329                               SubobjectCountMapTy &SubobjectCounts) {
330   const CXXRecordDecl *RD = Base.getBase();
331 
332   unsigned SubobjectNumber = 0;
333   if (!IsVirtual)
334     SubobjectNumber = ++SubobjectCounts[RD];
335 
336   // Set up the subobject to offset mapping.
337   assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
338          && "Subobject offset already exists!");
339   assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
340          && "Subobject offset already exists!");
341 
342   SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
343   SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
344     OffsetInLayoutClass;
345 
346   // Traverse our bases.
347   for (const auto &B : RD->bases()) {
348     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
349 
350     CharUnits BaseOffset;
351     CharUnits BaseOffsetInLayoutClass;
352     if (B.isVirtual()) {
353       // Check if we've visited this virtual base before.
354       if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
355         continue;
356 
357       const ASTRecordLayout &LayoutClassLayout =
358         Context.getASTRecordLayout(LayoutClass);
359 
360       BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
361       BaseOffsetInLayoutClass =
362         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
363     } else {
364       const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
365       CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
366 
367       BaseOffset = Base.getBaseOffset() + Offset;
368       BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
369     }
370 
371     ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
372                        B.isVirtual(), BaseOffsetInLayoutClass,
373                        SubobjectOffsets, SubobjectLayoutClassOffsets,
374                        SubobjectCounts);
375   }
376 }
377 
dump(raw_ostream & Out,BaseSubobject Base,VisitedVirtualBasesSetTy & VisitedVirtualBases)378 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
379                            VisitedVirtualBasesSetTy &VisitedVirtualBases) {
380   const CXXRecordDecl *RD = Base.getBase();
381   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
382 
383   for (const auto &B : RD->bases()) {
384     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
385 
386     // Ignore bases that don't have any virtual member functions.
387     if (!BaseDecl->isPolymorphic())
388       continue;
389 
390     CharUnits BaseOffset;
391     if (B.isVirtual()) {
392       if (!VisitedVirtualBases.insert(BaseDecl).second) {
393         // We've visited this base before.
394         continue;
395       }
396 
397       BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
398     } else {
399       BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
400     }
401 
402     dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
403   }
404 
405   Out << "Final overriders for (";
406   RD->printQualifiedName(Out);
407   Out << ", ";
408   Out << Base.getBaseOffset().getQuantity() << ")\n";
409 
410   // Now dump the overriders for this base subobject.
411   for (const auto *MD : RD->methods()) {
412     if (!MD->isVirtual())
413       continue;
414 
415     OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
416 
417     Out << "  ";
418     MD->printQualifiedName(Out);
419     Out << " - (";
420     Overrider.Method->printQualifiedName(Out);
421     Out << ", " << Overrider.Offset.getQuantity() << ')';
422 
423     BaseOffset Offset;
424     if (!Overrider.Method->isPure())
425       Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
426 
427     if (!Offset.isEmpty()) {
428       Out << " [ret-adj: ";
429       if (Offset.VirtualBase) {
430         Offset.VirtualBase->printQualifiedName(Out);
431         Out << " vbase, ";
432       }
433 
434       Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
435     }
436 
437     Out << "\n";
438   }
439 }
440 
441 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
442 struct VCallOffsetMap {
443 
444   typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
445 
446   /// Offsets - Keeps track of methods and their offsets.
447   // FIXME: This should be a real map and not a vector.
448   SmallVector<MethodAndOffsetPairTy, 16> Offsets;
449 
450   /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
451   /// can share the same vcall offset.
452   static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
453                                          const CXXMethodDecl *RHS);
454 
455 public:
456   /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
457   /// add was successful, or false if there was already a member function with
458   /// the same signature in the map.
459   bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
460 
461   /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
462   /// vtable address point) for the given virtual member function.
463   CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
464 
465   // empty - Return whether the offset map is empty or not.
empty__anona3a288e10111::VCallOffsetMap466   bool empty() const { return Offsets.empty(); }
467 };
468 
HasSameVirtualSignature(const CXXMethodDecl * LHS,const CXXMethodDecl * RHS)469 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
470                                     const CXXMethodDecl *RHS) {
471   const FunctionProtoType *LT =
472     cast<FunctionProtoType>(LHS->getType().getCanonicalType());
473   const FunctionProtoType *RT =
474     cast<FunctionProtoType>(RHS->getType().getCanonicalType());
475 
476   // Fast-path matches in the canonical types.
477   if (LT == RT) return true;
478 
479   // Force the signatures to match.  We can't rely on the overrides
480   // list here because there isn't necessarily an inheritance
481   // relationship between the two methods.
482   if (LT->getTypeQuals() != RT->getTypeQuals() ||
483       LT->getNumParams() != RT->getNumParams())
484     return false;
485   for (unsigned I = 0, E = LT->getNumParams(); I != E; ++I)
486     if (LT->getParamType(I) != RT->getParamType(I))
487       return false;
488   return true;
489 }
490 
MethodsCanShareVCallOffset(const CXXMethodDecl * LHS,const CXXMethodDecl * RHS)491 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
492                                                 const CXXMethodDecl *RHS) {
493   assert(LHS->isVirtual() && "LHS must be virtual!");
494   assert(RHS->isVirtual() && "LHS must be virtual!");
495 
496   // A destructor can share a vcall offset with another destructor.
497   if (isa<CXXDestructorDecl>(LHS))
498     return isa<CXXDestructorDecl>(RHS);
499 
500   // FIXME: We need to check more things here.
501 
502   // The methods must have the same name.
503   DeclarationName LHSName = LHS->getDeclName();
504   DeclarationName RHSName = RHS->getDeclName();
505   if (LHSName != RHSName)
506     return false;
507 
508   // And the same signatures.
509   return HasSameVirtualSignature(LHS, RHS);
510 }
511 
AddVCallOffset(const CXXMethodDecl * MD,CharUnits OffsetOffset)512 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
513                                     CharUnits OffsetOffset) {
514   // Check if we can reuse an offset.
515   for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
516     if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
517       return false;
518   }
519 
520   // Add the offset.
521   Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
522   return true;
523 }
524 
getVCallOffsetOffset(const CXXMethodDecl * MD)525 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
526   // Look for an offset.
527   for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
528     if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
529       return Offsets[I].second;
530   }
531 
532   llvm_unreachable("Should always find a vcall offset offset!");
533 }
534 
535 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
536 class VCallAndVBaseOffsetBuilder {
537 public:
538   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
539     VBaseOffsetOffsetsMapTy;
540 
541 private:
542   /// MostDerivedClass - The most derived class for which we're building vcall
543   /// and vbase offsets.
544   const CXXRecordDecl *MostDerivedClass;
545 
546   /// LayoutClass - The class we're using for layout information. Will be
547   /// different than the most derived class if we're building a construction
548   /// vtable.
549   const CXXRecordDecl *LayoutClass;
550 
551   /// Context - The ASTContext which we will use for layout information.
552   ASTContext &Context;
553 
554   /// Components - vcall and vbase offset components
555   typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
556   VTableComponentVectorTy Components;
557 
558   /// VisitedVirtualBases - Visited virtual bases.
559   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
560 
561   /// VCallOffsets - Keeps track of vcall offsets.
562   VCallOffsetMap VCallOffsets;
563 
564 
565   /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
566   /// relative to the address point.
567   VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
568 
569   /// FinalOverriders - The final overriders of the most derived class.
570   /// (Can be null when we're not building a vtable of the most derived class).
571   const FinalOverriders *Overriders;
572 
573   /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
574   /// given base subobject.
575   void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
576                                CharUnits RealBaseOffset);
577 
578   /// AddVCallOffsets - Add vcall offsets for the given base subobject.
579   void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
580 
581   /// AddVBaseOffsets - Add vbase offsets for the given class.
582   void AddVBaseOffsets(const CXXRecordDecl *Base,
583                        CharUnits OffsetInLayoutClass);
584 
585   /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
586   /// chars, relative to the vtable address point.
587   CharUnits getCurrentOffsetOffset() const;
588 
589 public:
VCallAndVBaseOffsetBuilder(const CXXRecordDecl * MostDerivedClass,const CXXRecordDecl * LayoutClass,const FinalOverriders * Overriders,BaseSubobject Base,bool BaseIsVirtual,CharUnits OffsetInLayoutClass)590   VCallAndVBaseOffsetBuilder(const CXXRecordDecl *MostDerivedClass,
591                              const CXXRecordDecl *LayoutClass,
592                              const FinalOverriders *Overriders,
593                              BaseSubobject Base, bool BaseIsVirtual,
594                              CharUnits OffsetInLayoutClass)
595     : MostDerivedClass(MostDerivedClass), LayoutClass(LayoutClass),
596     Context(MostDerivedClass->getASTContext()), Overriders(Overriders) {
597 
598     // Add vcall and vbase offsets.
599     AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
600   }
601 
602   /// Methods for iterating over the components.
603   typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
components_begin() const604   const_iterator components_begin() const { return Components.rbegin(); }
components_end() const605   const_iterator components_end() const { return Components.rend(); }
606 
getVCallOffsets() const607   const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
getVBaseOffsetOffsets() const608   const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
609     return VBaseOffsetOffsets;
610   }
611 };
612 
613 void
AddVCallAndVBaseOffsets(BaseSubobject Base,bool BaseIsVirtual,CharUnits RealBaseOffset)614 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
615                                                     bool BaseIsVirtual,
616                                                     CharUnits RealBaseOffset) {
617   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
618 
619   // Itanium C++ ABI 2.5.2:
620   //   ..in classes sharing a virtual table with a primary base class, the vcall
621   //   and vbase offsets added by the derived class all come before the vcall
622   //   and vbase offsets required by the base class, so that the latter may be
623   //   laid out as required by the base class without regard to additions from
624   //   the derived class(es).
625 
626   // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
627   // emit them for the primary base first).
628   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
629     bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
630 
631     CharUnits PrimaryBaseOffset;
632 
633     // Get the base offset of the primary base.
634     if (PrimaryBaseIsVirtual) {
635       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
636              "Primary vbase should have a zero offset!");
637 
638       const ASTRecordLayout &MostDerivedClassLayout =
639         Context.getASTRecordLayout(MostDerivedClass);
640 
641       PrimaryBaseOffset =
642         MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
643     } else {
644       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
645              "Primary base should have a zero offset!");
646 
647       PrimaryBaseOffset = Base.getBaseOffset();
648     }
649 
650     AddVCallAndVBaseOffsets(
651       BaseSubobject(PrimaryBase,PrimaryBaseOffset),
652       PrimaryBaseIsVirtual, RealBaseOffset);
653   }
654 
655   AddVBaseOffsets(Base.getBase(), RealBaseOffset);
656 
657   // We only want to add vcall offsets for virtual bases.
658   if (BaseIsVirtual)
659     AddVCallOffsets(Base, RealBaseOffset);
660 }
661 
getCurrentOffsetOffset() const662 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
663   // OffsetIndex is the index of this vcall or vbase offset, relative to the
664   // vtable address point. (We subtract 3 to account for the information just
665   // above the address point, the RTTI info, the offset to top, and the
666   // vcall offset itself).
667   int64_t OffsetIndex = -(int64_t)(3 + Components.size());
668 
669   CharUnits PointerWidth =
670     Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
671   CharUnits OffsetOffset = PointerWidth * OffsetIndex;
672   return OffsetOffset;
673 }
674 
AddVCallOffsets(BaseSubobject Base,CharUnits VBaseOffset)675 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
676                                                  CharUnits VBaseOffset) {
677   const CXXRecordDecl *RD = Base.getBase();
678   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
679 
680   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
681 
682   // Handle the primary base first.
683   // We only want to add vcall offsets if the base is non-virtual; a virtual
684   // primary base will have its vcall and vbase offsets emitted already.
685   if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
686     // Get the base offset of the primary base.
687     assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
688            "Primary base should have a zero offset!");
689 
690     AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
691                     VBaseOffset);
692   }
693 
694   // Add the vcall offsets.
695   for (const auto *MD : RD->methods()) {
696     if (!MD->isVirtual())
697       continue;
698 
699     CharUnits OffsetOffset = getCurrentOffsetOffset();
700 
701     // Don't add a vcall offset if we already have one for this member function
702     // signature.
703     if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
704       continue;
705 
706     CharUnits Offset = CharUnits::Zero();
707 
708     if (Overriders) {
709       // Get the final overrider.
710       FinalOverriders::OverriderInfo Overrider =
711         Overriders->getOverrider(MD, Base.getBaseOffset());
712 
713       /// The vcall offset is the offset from the virtual base to the object
714       /// where the function was overridden.
715       Offset = Overrider.Offset - VBaseOffset;
716     }
717 
718     Components.push_back(
719       VTableComponent::MakeVCallOffset(Offset));
720   }
721 
722   // And iterate over all non-virtual bases (ignoring the primary base).
723   for (const auto &B : RD->bases()) {
724     if (B.isVirtual())
725       continue;
726 
727     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
728     if (BaseDecl == PrimaryBase)
729       continue;
730 
731     // Get the base offset of this base.
732     CharUnits BaseOffset = Base.getBaseOffset() +
733       Layout.getBaseClassOffset(BaseDecl);
734 
735     AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
736                     VBaseOffset);
737   }
738 }
739 
740 void
AddVBaseOffsets(const CXXRecordDecl * RD,CharUnits OffsetInLayoutClass)741 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
742                                             CharUnits OffsetInLayoutClass) {
743   const ASTRecordLayout &LayoutClassLayout =
744     Context.getASTRecordLayout(LayoutClass);
745 
746   // Add vbase offsets.
747   for (const auto &B : RD->bases()) {
748     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
749 
750     // Check if this is a virtual base that we haven't visited before.
751     if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
752       CharUnits Offset =
753         LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
754 
755       // Add the vbase offset offset.
756       assert(!VBaseOffsetOffsets.count(BaseDecl) &&
757              "vbase offset offset already exists!");
758 
759       CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
760       VBaseOffsetOffsets.insert(
761           std::make_pair(BaseDecl, VBaseOffsetOffset));
762 
763       Components.push_back(
764           VTableComponent::MakeVBaseOffset(Offset));
765     }
766 
767     // Check the base class looking for more vbase offsets.
768     AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
769   }
770 }
771 
772 /// ItaniumVTableBuilder - Class for building vtable layout information.
773 class ItaniumVTableBuilder {
774 public:
775   /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
776   /// primary bases.
777   typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
778     PrimaryBasesSetVectorTy;
779 
780   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
781     VBaseOffsetOffsetsMapTy;
782 
783   typedef llvm::DenseMap<BaseSubobject, uint64_t>
784     AddressPointsMapTy;
785 
786   typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
787 
788 private:
789   /// VTables - Global vtable information.
790   ItaniumVTableContext &VTables;
791 
792   /// MostDerivedClass - The most derived class for which we're building this
793   /// vtable.
794   const CXXRecordDecl *MostDerivedClass;
795 
796   /// MostDerivedClassOffset - If we're building a construction vtable, this
797   /// holds the offset from the layout class to the most derived class.
798   const CharUnits MostDerivedClassOffset;
799 
800   /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
801   /// base. (This only makes sense when building a construction vtable).
802   bool MostDerivedClassIsVirtual;
803 
804   /// LayoutClass - The class we're using for layout information. Will be
805   /// different than the most derived class if we're building a construction
806   /// vtable.
807   const CXXRecordDecl *LayoutClass;
808 
809   /// Context - The ASTContext which we will use for layout information.
810   ASTContext &Context;
811 
812   /// FinalOverriders - The final overriders of the most derived class.
813   const FinalOverriders Overriders;
814 
815   /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
816   /// bases in this vtable.
817   llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
818 
819   /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
820   /// the most derived class.
821   VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
822 
823   /// Components - The components of the vtable being built.
824   SmallVector<VTableComponent, 64> Components;
825 
826   /// AddressPoints - Address points for the vtable being built.
827   AddressPointsMapTy AddressPoints;
828 
829   /// MethodInfo - Contains information about a method in a vtable.
830   /// (Used for computing 'this' pointer adjustment thunks.
831   struct MethodInfo {
832     /// BaseOffset - The base offset of this method.
833     const CharUnits BaseOffset;
834 
835     /// BaseOffsetInLayoutClass - The base offset in the layout class of this
836     /// method.
837     const CharUnits BaseOffsetInLayoutClass;
838 
839     /// VTableIndex - The index in the vtable that this method has.
840     /// (For destructors, this is the index of the complete destructor).
841     const uint64_t VTableIndex;
842 
MethodInfo__anona3a288e10111::ItaniumVTableBuilder::MethodInfo843     MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
844                uint64_t VTableIndex)
845       : BaseOffset(BaseOffset),
846       BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
847       VTableIndex(VTableIndex) { }
848 
MethodInfo__anona3a288e10111::ItaniumVTableBuilder::MethodInfo849     MethodInfo()
850       : BaseOffset(CharUnits::Zero()),
851       BaseOffsetInLayoutClass(CharUnits::Zero()),
852       VTableIndex(0) { }
853   };
854 
855   typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
856 
857   /// MethodInfoMap - The information for all methods in the vtable we're
858   /// currently building.
859   MethodInfoMapTy MethodInfoMap;
860 
861   /// MethodVTableIndices - Contains the index (relative to the vtable address
862   /// point) where the function pointer for a virtual function is stored.
863   MethodVTableIndicesTy MethodVTableIndices;
864 
865   typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
866 
867   /// VTableThunks - The thunks by vtable index in the vtable currently being
868   /// built.
869   VTableThunksMapTy VTableThunks;
870 
871   typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
872   typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
873 
874   /// Thunks - A map that contains all the thunks needed for all methods in the
875   /// most derived class for which the vtable is currently being built.
876   ThunksMapTy Thunks;
877 
878   /// AddThunk - Add a thunk for the given method.
879   void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
880 
881   /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
882   /// part of the vtable we're currently building.
883   void ComputeThisAdjustments();
884 
885   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
886 
887   /// PrimaryVirtualBases - All known virtual bases who are a primary base of
888   /// some other base.
889   VisitedVirtualBasesSetTy PrimaryVirtualBases;
890 
891   /// ComputeReturnAdjustment - Compute the return adjustment given a return
892   /// adjustment base offset.
893   ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
894 
895   /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
896   /// the 'this' pointer from the base subobject to the derived subobject.
897   BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
898                                              BaseSubobject Derived) const;
899 
900   /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
901   /// given virtual member function, its offset in the layout class and its
902   /// final overrider.
903   ThisAdjustment
904   ComputeThisAdjustment(const CXXMethodDecl *MD,
905                         CharUnits BaseOffsetInLayoutClass,
906                         FinalOverriders::OverriderInfo Overrider);
907 
908   /// AddMethod - Add a single virtual member function to the vtable
909   /// components vector.
910   void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
911 
912   /// IsOverriderUsed - Returns whether the overrider will ever be used in this
913   /// part of the vtable.
914   ///
915   /// Itanium C++ ABI 2.5.2:
916   ///
917   ///   struct A { virtual void f(); };
918   ///   struct B : virtual public A { int i; };
919   ///   struct C : virtual public A { int j; };
920   ///   struct D : public B, public C {};
921   ///
922   ///   When B and C are declared, A is a primary base in each case, so although
923   ///   vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
924   ///   adjustment is required and no thunk is generated. However, inside D
925   ///   objects, A is no longer a primary base of C, so if we allowed calls to
926   ///   C::f() to use the copy of A's vtable in the C subobject, we would need
927   ///   to adjust this from C* to B::A*, which would require a third-party
928   ///   thunk. Since we require that a call to C::f() first convert to A*,
929   ///   C-in-D's copy of A's vtable is never referenced, so this is not
930   ///   necessary.
931   bool IsOverriderUsed(const CXXMethodDecl *Overrider,
932                        CharUnits BaseOffsetInLayoutClass,
933                        const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
934                        CharUnits FirstBaseOffsetInLayoutClass) const;
935 
936 
937   /// AddMethods - Add the methods of this base subobject and all its
938   /// primary bases to the vtable components vector.
939   void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
940                   const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
941                   CharUnits FirstBaseOffsetInLayoutClass,
942                   PrimaryBasesSetVectorTy &PrimaryBases);
943 
944   // LayoutVTable - Layout the vtable for the given base class, including its
945   // secondary vtables and any vtables for virtual bases.
946   void LayoutVTable();
947 
948   /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
949   /// given base subobject, as well as all its secondary vtables.
950   ///
951   /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
952   /// or a direct or indirect base of a virtual base.
953   ///
954   /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
955   /// in the layout class.
956   void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
957                                         bool BaseIsMorallyVirtual,
958                                         bool BaseIsVirtualInLayoutClass,
959                                         CharUnits OffsetInLayoutClass);
960 
961   /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
962   /// subobject.
963   ///
964   /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
965   /// or a direct or indirect base of a virtual base.
966   void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
967                               CharUnits OffsetInLayoutClass);
968 
969   /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
970   /// class hierarchy.
971   void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
972                                     CharUnits OffsetInLayoutClass,
973                                     VisitedVirtualBasesSetTy &VBases);
974 
975   /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
976   /// given base (excluding any primary bases).
977   void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
978                                     VisitedVirtualBasesSetTy &VBases);
979 
980   /// isBuildingConstructionVTable - Return whether this vtable builder is
981   /// building a construction vtable.
isBuildingConstructorVTable() const982   bool isBuildingConstructorVTable() const {
983     return MostDerivedClass != LayoutClass;
984   }
985 
986 public:
ItaniumVTableBuilder(ItaniumVTableContext & VTables,const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,bool MostDerivedClassIsVirtual,const CXXRecordDecl * LayoutClass)987   ItaniumVTableBuilder(ItaniumVTableContext &VTables,
988                        const CXXRecordDecl *MostDerivedClass,
989                        CharUnits MostDerivedClassOffset,
990                        bool MostDerivedClassIsVirtual,
991                        const CXXRecordDecl *LayoutClass)
992       : VTables(VTables), MostDerivedClass(MostDerivedClass),
993         MostDerivedClassOffset(MostDerivedClassOffset),
994         MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
995         LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
996         Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
997     assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
998 
999     LayoutVTable();
1000 
1001     if (Context.getLangOpts().DumpVTableLayouts)
1002       dumpLayout(llvm::outs());
1003   }
1004 
getNumThunks() const1005   uint64_t getNumThunks() const {
1006     return Thunks.size();
1007   }
1008 
thunks_begin() const1009   ThunksMapTy::const_iterator thunks_begin() const {
1010     return Thunks.begin();
1011   }
1012 
thunks_end() const1013   ThunksMapTy::const_iterator thunks_end() const {
1014     return Thunks.end();
1015   }
1016 
getVBaseOffsetOffsets() const1017   const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1018     return VBaseOffsetOffsets;
1019   }
1020 
getAddressPoints() const1021   const AddressPointsMapTy &getAddressPoints() const {
1022     return AddressPoints;
1023   }
1024 
vtable_indices_begin() const1025   MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
1026     return MethodVTableIndices.begin();
1027   }
1028 
vtable_indices_end() const1029   MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
1030     return MethodVTableIndices.end();
1031   }
1032 
1033   /// getNumVTableComponents - Return the number of components in the vtable
1034   /// currently built.
getNumVTableComponents() const1035   uint64_t getNumVTableComponents() const {
1036     return Components.size();
1037   }
1038 
vtable_component_begin() const1039   const VTableComponent *vtable_component_begin() const {
1040     return Components.begin();
1041   }
1042 
vtable_component_end() const1043   const VTableComponent *vtable_component_end() const {
1044     return Components.end();
1045   }
1046 
address_points_begin() const1047   AddressPointsMapTy::const_iterator address_points_begin() const {
1048     return AddressPoints.begin();
1049   }
1050 
address_points_end() const1051   AddressPointsMapTy::const_iterator address_points_end() const {
1052     return AddressPoints.end();
1053   }
1054 
vtable_thunks_begin() const1055   VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1056     return VTableThunks.begin();
1057   }
1058 
vtable_thunks_end() const1059   VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1060     return VTableThunks.end();
1061   }
1062 
1063   /// dumpLayout - Dump the vtable layout.
1064   void dumpLayout(raw_ostream&);
1065 };
1066 
AddThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk)1067 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
1068                                     const ThunkInfo &Thunk) {
1069   assert(!isBuildingConstructorVTable() &&
1070          "Can't add thunks for construction vtable");
1071 
1072   SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
1073 
1074   // Check if we have this thunk already.
1075   if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
1076       ThunksVector.end())
1077     return;
1078 
1079   ThunksVector.push_back(Thunk);
1080 }
1081 
1082 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1083 
1084 /// Visit all the methods overridden by the given method recursively,
1085 /// in a depth-first pre-order. The Visitor's visitor method returns a bool
1086 /// indicating whether to continue the recursion for the given overridden
1087 /// method (i.e. returning false stops the iteration).
1088 template <class VisitorTy>
1089 static void
visitAllOverriddenMethods(const CXXMethodDecl * MD,VisitorTy & Visitor)1090 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1091   assert(MD->isVirtual() && "Method is not virtual!");
1092 
1093   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1094        E = MD->end_overridden_methods(); I != E; ++I) {
1095     const CXXMethodDecl *OverriddenMD = *I;
1096     if (!Visitor.visit(OverriddenMD))
1097       continue;
1098     visitAllOverriddenMethods(OverriddenMD, Visitor);
1099   }
1100 }
1101 
1102 namespace {
1103   struct OverriddenMethodsCollector {
1104     OverriddenMethodsSetTy *Methods;
1105 
visit__anona3a288e10111::__anona3a288e10211::OverriddenMethodsCollector1106     bool visit(const CXXMethodDecl *MD) {
1107       // Don't recurse on this method if we've already collected it.
1108       return Methods->insert(MD).second;
1109     }
1110   };
1111 }
1112 
1113 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1114 /// the overridden methods that the function decl overrides.
1115 static void
ComputeAllOverriddenMethods(const CXXMethodDecl * MD,OverriddenMethodsSetTy & OverriddenMethods)1116 ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1117                             OverriddenMethodsSetTy& OverriddenMethods) {
1118   OverriddenMethodsCollector Collector = { &OverriddenMethods };
1119   visitAllOverriddenMethods(MD, Collector);
1120 }
1121 
ComputeThisAdjustments()1122 void ItaniumVTableBuilder::ComputeThisAdjustments() {
1123   // Now go through the method info map and see if any of the methods need
1124   // 'this' pointer adjustments.
1125   for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
1126        E = MethodInfoMap.end(); I != E; ++I) {
1127     const CXXMethodDecl *MD = I->first;
1128     const MethodInfo &MethodInfo = I->second;
1129 
1130     // Ignore adjustments for unused function pointers.
1131     uint64_t VTableIndex = MethodInfo.VTableIndex;
1132     if (Components[VTableIndex].getKind() ==
1133         VTableComponent::CK_UnusedFunctionPointer)
1134       continue;
1135 
1136     // Get the final overrider for this method.
1137     FinalOverriders::OverriderInfo Overrider =
1138       Overriders.getOverrider(MD, MethodInfo.BaseOffset);
1139 
1140     // Check if we need an adjustment at all.
1141     if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1142       // When a return thunk is needed by a derived class that overrides a
1143       // virtual base, gcc uses a virtual 'this' adjustment as well.
1144       // While the thunk itself might be needed by vtables in subclasses or
1145       // in construction vtables, there doesn't seem to be a reason for using
1146       // the thunk in this vtable. Still, we do so to match gcc.
1147       if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
1148         continue;
1149     }
1150 
1151     ThisAdjustment ThisAdjustment =
1152       ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
1153 
1154     if (ThisAdjustment.isEmpty())
1155       continue;
1156 
1157     // Add it.
1158     VTableThunks[VTableIndex].This = ThisAdjustment;
1159 
1160     if (isa<CXXDestructorDecl>(MD)) {
1161       // Add an adjustment for the deleting destructor as well.
1162       VTableThunks[VTableIndex + 1].This = ThisAdjustment;
1163     }
1164   }
1165 
1166   /// Clear the method info map.
1167   MethodInfoMap.clear();
1168 
1169   if (isBuildingConstructorVTable()) {
1170     // We don't need to store thunk information for construction vtables.
1171     return;
1172   }
1173 
1174   for (VTableThunksMapTy::const_iterator I = VTableThunks.begin(),
1175        E = VTableThunks.end(); I != E; ++I) {
1176     const VTableComponent &Component = Components[I->first];
1177     const ThunkInfo &Thunk = I->second;
1178     const CXXMethodDecl *MD;
1179 
1180     switch (Component.getKind()) {
1181     default:
1182       llvm_unreachable("Unexpected vtable component kind!");
1183     case VTableComponent::CK_FunctionPointer:
1184       MD = Component.getFunctionDecl();
1185       break;
1186     case VTableComponent::CK_CompleteDtorPointer:
1187       MD = Component.getDestructorDecl();
1188       break;
1189     case VTableComponent::CK_DeletingDtorPointer:
1190       // We've already added the thunk when we saw the complete dtor pointer.
1191       continue;
1192     }
1193 
1194     if (MD->getParent() == MostDerivedClass)
1195       AddThunk(MD, Thunk);
1196   }
1197 }
1198 
1199 ReturnAdjustment
ComputeReturnAdjustment(BaseOffset Offset)1200 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1201   ReturnAdjustment Adjustment;
1202 
1203   if (!Offset.isEmpty()) {
1204     if (Offset.VirtualBase) {
1205       // Get the virtual base offset offset.
1206       if (Offset.DerivedClass == MostDerivedClass) {
1207         // We can get the offset offset directly from our map.
1208         Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1209           VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
1210       } else {
1211         Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1212           VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
1213                                              Offset.VirtualBase).getQuantity();
1214       }
1215     }
1216 
1217     Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1218   }
1219 
1220   return Adjustment;
1221 }
1222 
ComputeThisAdjustmentBaseOffset(BaseSubobject Base,BaseSubobject Derived) const1223 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
1224     BaseSubobject Base, BaseSubobject Derived) const {
1225   const CXXRecordDecl *BaseRD = Base.getBase();
1226   const CXXRecordDecl *DerivedRD = Derived.getBase();
1227 
1228   CXXBasePaths Paths(/*FindAmbiguities=*/true,
1229                      /*RecordPaths=*/true, /*DetectVirtual=*/true);
1230 
1231   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
1232     llvm_unreachable("Class must be derived from the passed in base class!");
1233 
1234   // We have to go through all the paths, and see which one leads us to the
1235   // right base subobject.
1236   for (CXXBasePaths::const_paths_iterator I = Paths.begin(), E = Paths.end();
1237        I != E; ++I) {
1238     BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, *I);
1239 
1240     CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1241 
1242     if (Offset.VirtualBase) {
1243       // If we have a virtual base class, the non-virtual offset is relative
1244       // to the virtual base class offset.
1245       const ASTRecordLayout &LayoutClassLayout =
1246         Context.getASTRecordLayout(LayoutClass);
1247 
1248       /// Get the virtual base offset, relative to the most derived class
1249       /// layout.
1250       OffsetToBaseSubobject +=
1251         LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
1252     } else {
1253       // Otherwise, the non-virtual offset is relative to the derived class
1254       // offset.
1255       OffsetToBaseSubobject += Derived.getBaseOffset();
1256     }
1257 
1258     // Check if this path gives us the right base subobject.
1259     if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1260       // Since we're going from the base class _to_ the derived class, we'll
1261       // invert the non-virtual offset here.
1262       Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1263       return Offset;
1264     }
1265   }
1266 
1267   return BaseOffset();
1268 }
1269 
ComputeThisAdjustment(const CXXMethodDecl * MD,CharUnits BaseOffsetInLayoutClass,FinalOverriders::OverriderInfo Overrider)1270 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
1271     const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
1272     FinalOverriders::OverriderInfo Overrider) {
1273   // Ignore adjustments for pure virtual member functions.
1274   if (Overrider.Method->isPure())
1275     return ThisAdjustment();
1276 
1277   BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1278                                         BaseOffsetInLayoutClass);
1279 
1280   BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1281                                        Overrider.Offset);
1282 
1283   // Compute the adjustment offset.
1284   BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
1285                                                       OverriderBaseSubobject);
1286   if (Offset.isEmpty())
1287     return ThisAdjustment();
1288 
1289   ThisAdjustment Adjustment;
1290 
1291   if (Offset.VirtualBase) {
1292     // Get the vcall offset map for this virtual base.
1293     VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1294 
1295     if (VCallOffsets.empty()) {
1296       // We don't have vcall offsets for this virtual base, go ahead and
1297       // build them.
1298       VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, MostDerivedClass,
1299                                          /*FinalOverriders=*/nullptr,
1300                                          BaseSubobject(Offset.VirtualBase,
1301                                                        CharUnits::Zero()),
1302                                          /*BaseIsVirtual=*/true,
1303                                          /*OffsetInLayoutClass=*/
1304                                              CharUnits::Zero());
1305 
1306       VCallOffsets = Builder.getVCallOffsets();
1307     }
1308 
1309     Adjustment.Virtual.Itanium.VCallOffsetOffset =
1310       VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1311   }
1312 
1313   // Set the non-virtual part of the adjustment.
1314   Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1315 
1316   return Adjustment;
1317 }
1318 
AddMethod(const CXXMethodDecl * MD,ReturnAdjustment ReturnAdjustment)1319 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
1320                                      ReturnAdjustment ReturnAdjustment) {
1321   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1322     assert(ReturnAdjustment.isEmpty() &&
1323            "Destructor can't have return adjustment!");
1324 
1325     // Add both the complete destructor and the deleting destructor.
1326     Components.push_back(VTableComponent::MakeCompleteDtor(DD));
1327     Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1328   } else {
1329     // Add the return adjustment if necessary.
1330     if (!ReturnAdjustment.isEmpty())
1331       VTableThunks[Components.size()].Return = ReturnAdjustment;
1332 
1333     // Add the function.
1334     Components.push_back(VTableComponent::MakeFunction(MD));
1335   }
1336 }
1337 
1338 /// OverridesIndirectMethodInBase - Return whether the given member function
1339 /// overrides any methods in the set of given bases.
1340 /// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1341 /// For example, if we have:
1342 ///
1343 /// struct A { virtual void f(); }
1344 /// struct B : A { virtual void f(); }
1345 /// struct C : B { virtual void f(); }
1346 ///
1347 /// OverridesIndirectMethodInBase will return true if given C::f as the method
1348 /// and { A } as the set of bases.
OverridesIndirectMethodInBases(const CXXMethodDecl * MD,ItaniumVTableBuilder::PrimaryBasesSetVectorTy & Bases)1349 static bool OverridesIndirectMethodInBases(
1350     const CXXMethodDecl *MD,
1351     ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1352   if (Bases.count(MD->getParent()))
1353     return true;
1354 
1355   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1356        E = MD->end_overridden_methods(); I != E; ++I) {
1357     const CXXMethodDecl *OverriddenMD = *I;
1358 
1359     // Check "indirect overriders".
1360     if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
1361       return true;
1362   }
1363 
1364   return false;
1365 }
1366 
IsOverriderUsed(const CXXMethodDecl * Overrider,CharUnits BaseOffsetInLayoutClass,const CXXRecordDecl * FirstBaseInPrimaryBaseChain,CharUnits FirstBaseOffsetInLayoutClass) const1367 bool ItaniumVTableBuilder::IsOverriderUsed(
1368     const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
1369     const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1370     CharUnits FirstBaseOffsetInLayoutClass) const {
1371   // If the base and the first base in the primary base chain have the same
1372   // offsets, then this overrider will be used.
1373   if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1374    return true;
1375 
1376   // We know now that Base (or a direct or indirect base of it) is a primary
1377   // base in part of the class hierarchy, but not a primary base in the most
1378   // derived class.
1379 
1380   // If the overrider is the first base in the primary base chain, we know
1381   // that the overrider will be used.
1382   if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1383     return true;
1384 
1385   ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1386 
1387   const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1388   PrimaryBases.insert(RD);
1389 
1390   // Now traverse the base chain, starting with the first base, until we find
1391   // the base that is no longer a primary base.
1392   while (true) {
1393     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1394     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1395 
1396     if (!PrimaryBase)
1397       break;
1398 
1399     if (Layout.isPrimaryBaseVirtual()) {
1400       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1401              "Primary base should always be at offset 0!");
1402 
1403       const ASTRecordLayout &LayoutClassLayout =
1404         Context.getASTRecordLayout(LayoutClass);
1405 
1406       // Now check if this is the primary base that is not a primary base in the
1407       // most derived class.
1408       if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1409           FirstBaseOffsetInLayoutClass) {
1410         // We found it, stop walking the chain.
1411         break;
1412       }
1413     } else {
1414       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1415              "Primary base should always be at offset 0!");
1416     }
1417 
1418     if (!PrimaryBases.insert(PrimaryBase))
1419       llvm_unreachable("Found a duplicate primary base!");
1420 
1421     RD = PrimaryBase;
1422   }
1423 
1424   // If the final overrider is an override of one of the primary bases,
1425   // then we know that it will be used.
1426   return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
1427 }
1428 
1429 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
1430 
1431 /// FindNearestOverriddenMethod - Given a method, returns the overridden method
1432 /// from the nearest base. Returns null if no method was found.
1433 /// The Bases are expected to be sorted in a base-to-derived order.
1434 static const CXXMethodDecl *
FindNearestOverriddenMethod(const CXXMethodDecl * MD,BasesSetVectorTy & Bases)1435 FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1436                             BasesSetVectorTy &Bases) {
1437   OverriddenMethodsSetTy OverriddenMethods;
1438   ComputeAllOverriddenMethods(MD, OverriddenMethods);
1439 
1440   for (int I = Bases.size(), E = 0; I != E; --I) {
1441     const CXXRecordDecl *PrimaryBase = Bases[I - 1];
1442 
1443     // Now check the overridden methods.
1444     for (OverriddenMethodsSetTy::const_iterator I = OverriddenMethods.begin(),
1445          E = OverriddenMethods.end(); I != E; ++I) {
1446       const CXXMethodDecl *OverriddenMD = *I;
1447 
1448       // We found our overridden method.
1449       if (OverriddenMD->getParent() == PrimaryBase)
1450         return OverriddenMD;
1451     }
1452   }
1453 
1454   return nullptr;
1455 }
1456 
AddMethods(BaseSubobject Base,CharUnits BaseOffsetInLayoutClass,const CXXRecordDecl * FirstBaseInPrimaryBaseChain,CharUnits FirstBaseOffsetInLayoutClass,PrimaryBasesSetVectorTy & PrimaryBases)1457 void ItaniumVTableBuilder::AddMethods(
1458     BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1459     const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1460     CharUnits FirstBaseOffsetInLayoutClass,
1461     PrimaryBasesSetVectorTy &PrimaryBases) {
1462   // Itanium C++ ABI 2.5.2:
1463   //   The order of the virtual function pointers in a virtual table is the
1464   //   order of declaration of the corresponding member functions in the class.
1465   //
1466   //   There is an entry for any virtual function declared in a class,
1467   //   whether it is a new function or overrides a base class function,
1468   //   unless it overrides a function from the primary base, and conversion
1469   //   between their return types does not require an adjustment.
1470 
1471   const CXXRecordDecl *RD = Base.getBase();
1472   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1473 
1474   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1475     CharUnits PrimaryBaseOffset;
1476     CharUnits PrimaryBaseOffsetInLayoutClass;
1477     if (Layout.isPrimaryBaseVirtual()) {
1478       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1479              "Primary vbase should have a zero offset!");
1480 
1481       const ASTRecordLayout &MostDerivedClassLayout =
1482         Context.getASTRecordLayout(MostDerivedClass);
1483 
1484       PrimaryBaseOffset =
1485         MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
1486 
1487       const ASTRecordLayout &LayoutClassLayout =
1488         Context.getASTRecordLayout(LayoutClass);
1489 
1490       PrimaryBaseOffsetInLayoutClass =
1491         LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1492     } else {
1493       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1494              "Primary base should have a zero offset!");
1495 
1496       PrimaryBaseOffset = Base.getBaseOffset();
1497       PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1498     }
1499 
1500     AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1501                PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1502                FirstBaseOffsetInLayoutClass, PrimaryBases);
1503 
1504     if (!PrimaryBases.insert(PrimaryBase))
1505       llvm_unreachable("Found a duplicate primary base!");
1506   }
1507 
1508   const CXXDestructorDecl *ImplicitVirtualDtor = nullptr;
1509 
1510   typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
1511   NewVirtualFunctionsTy NewVirtualFunctions;
1512 
1513   // Now go through all virtual member functions and add them.
1514   for (const auto *MD : RD->methods()) {
1515     if (!MD->isVirtual())
1516       continue;
1517 
1518     // Get the final overrider.
1519     FinalOverriders::OverriderInfo Overrider =
1520       Overriders.getOverrider(MD, Base.getBaseOffset());
1521 
1522     // Check if this virtual member function overrides a method in a primary
1523     // base. If this is the case, and the return type doesn't require adjustment
1524     // then we can just use the member function from the primary base.
1525     if (const CXXMethodDecl *OverriddenMD =
1526           FindNearestOverriddenMethod(MD, PrimaryBases)) {
1527       if (ComputeReturnAdjustmentBaseOffset(Context, MD,
1528                                             OverriddenMD).isEmpty()) {
1529         // Replace the method info of the overridden method with our own
1530         // method.
1531         assert(MethodInfoMap.count(OverriddenMD) &&
1532                "Did not find the overridden method!");
1533         MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1534 
1535         MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1536                               OverriddenMethodInfo.VTableIndex);
1537 
1538         assert(!MethodInfoMap.count(MD) &&
1539                "Should not have method info for this method yet!");
1540 
1541         MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1542         MethodInfoMap.erase(OverriddenMD);
1543 
1544         // If the overridden method exists in a virtual base class or a direct
1545         // or indirect base class of a virtual base class, we need to emit a
1546         // thunk if we ever have a class hierarchy where the base class is not
1547         // a primary base in the complete object.
1548         if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
1549           // Compute the this adjustment.
1550           ThisAdjustment ThisAdjustment =
1551             ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
1552                                   Overrider);
1553 
1554           if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
1555               Overrider.Method->getParent() == MostDerivedClass) {
1556 
1557             // There's no return adjustment from OverriddenMD and MD,
1558             // but that doesn't mean there isn't one between MD and
1559             // the final overrider.
1560             BaseOffset ReturnAdjustmentOffset =
1561               ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
1562             ReturnAdjustment ReturnAdjustment =
1563               ComputeReturnAdjustment(ReturnAdjustmentOffset);
1564 
1565             // This is a virtual thunk for the most derived class, add it.
1566             AddThunk(Overrider.Method,
1567                      ThunkInfo(ThisAdjustment, ReturnAdjustment));
1568           }
1569         }
1570 
1571         continue;
1572       }
1573     }
1574 
1575     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1576       if (MD->isImplicit()) {
1577         // Itanium C++ ABI 2.5.2:
1578         //   If a class has an implicitly-defined virtual destructor,
1579         //   its entries come after the declared virtual function pointers.
1580 
1581         assert(!ImplicitVirtualDtor &&
1582                "Did already see an implicit virtual dtor!");
1583         ImplicitVirtualDtor = DD;
1584         continue;
1585       }
1586     }
1587 
1588     NewVirtualFunctions.push_back(MD);
1589   }
1590 
1591   if (ImplicitVirtualDtor)
1592     NewVirtualFunctions.push_back(ImplicitVirtualDtor);
1593 
1594   for (NewVirtualFunctionsTy::const_iterator I = NewVirtualFunctions.begin(),
1595        E = NewVirtualFunctions.end(); I != E; ++I) {
1596     const CXXMethodDecl *MD = *I;
1597 
1598     // Get the final overrider.
1599     FinalOverriders::OverriderInfo Overrider =
1600       Overriders.getOverrider(MD, Base.getBaseOffset());
1601 
1602     // Insert the method info for this method.
1603     MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1604                           Components.size());
1605 
1606     assert(!MethodInfoMap.count(MD) &&
1607            "Should not have method info for this method yet!");
1608     MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1609 
1610     // Check if this overrider is going to be used.
1611     const CXXMethodDecl *OverriderMD = Overrider.Method;
1612     if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
1613                          FirstBaseInPrimaryBaseChain,
1614                          FirstBaseOffsetInLayoutClass)) {
1615       Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
1616       continue;
1617     }
1618 
1619     // Check if this overrider needs a return adjustment.
1620     // We don't want to do this for pure virtual member functions.
1621     BaseOffset ReturnAdjustmentOffset;
1622     if (!OverriderMD->isPure()) {
1623       ReturnAdjustmentOffset =
1624         ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
1625     }
1626 
1627     ReturnAdjustment ReturnAdjustment =
1628       ComputeReturnAdjustment(ReturnAdjustmentOffset);
1629 
1630     AddMethod(Overrider.Method, ReturnAdjustment);
1631   }
1632 }
1633 
LayoutVTable()1634 void ItaniumVTableBuilder::LayoutVTable() {
1635   LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
1636                                                  CharUnits::Zero()),
1637                                    /*BaseIsMorallyVirtual=*/false,
1638                                    MostDerivedClassIsVirtual,
1639                                    MostDerivedClassOffset);
1640 
1641   VisitedVirtualBasesSetTy VBases;
1642 
1643   // Determine the primary virtual bases.
1644   DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
1645                                VBases);
1646   VBases.clear();
1647 
1648   LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
1649 
1650   // -fapple-kext adds an extra entry at end of vtbl.
1651   bool IsAppleKext = Context.getLangOpts().AppleKext;
1652   if (IsAppleKext)
1653     Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
1654 }
1655 
LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,bool BaseIsMorallyVirtual,bool BaseIsVirtualInLayoutClass,CharUnits OffsetInLayoutClass)1656 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
1657     BaseSubobject Base, bool BaseIsMorallyVirtual,
1658     bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
1659   assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1660 
1661   // Add vcall and vbase offsets for this vtable.
1662   VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, LayoutClass, &Overriders,
1663                                      Base, BaseIsVirtualInLayoutClass,
1664                                      OffsetInLayoutClass);
1665   Components.append(Builder.components_begin(), Builder.components_end());
1666 
1667   // Check if we need to add these vcall offsets.
1668   if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
1669     VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1670 
1671     if (VCallOffsets.empty())
1672       VCallOffsets = Builder.getVCallOffsets();
1673   }
1674 
1675   // If we're laying out the most derived class we want to keep track of the
1676   // virtual base class offset offsets.
1677   if (Base.getBase() == MostDerivedClass)
1678     VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1679 
1680   // Add the offset to top.
1681   CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1682   Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
1683 
1684   // Next, add the RTTI.
1685   Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
1686 
1687   uint64_t AddressPoint = Components.size();
1688 
1689   // Now go through all virtual member functions and add them.
1690   PrimaryBasesSetVectorTy PrimaryBases;
1691   AddMethods(Base, OffsetInLayoutClass,
1692              Base.getBase(), OffsetInLayoutClass,
1693              PrimaryBases);
1694 
1695   const CXXRecordDecl *RD = Base.getBase();
1696   if (RD == MostDerivedClass) {
1697     assert(MethodVTableIndices.empty());
1698     for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
1699          E = MethodInfoMap.end(); I != E; ++I) {
1700       const CXXMethodDecl *MD = I->first;
1701       const MethodInfo &MI = I->second;
1702       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1703         MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
1704             = MI.VTableIndex - AddressPoint;
1705         MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1706             = MI.VTableIndex + 1 - AddressPoint;
1707       } else {
1708         MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
1709       }
1710     }
1711   }
1712 
1713   // Compute 'this' pointer adjustments.
1714   ComputeThisAdjustments();
1715 
1716   // Add all address points.
1717   while (true) {
1718     AddressPoints.insert(std::make_pair(
1719       BaseSubobject(RD, OffsetInLayoutClass),
1720       AddressPoint));
1721 
1722     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1723     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1724 
1725     if (!PrimaryBase)
1726       break;
1727 
1728     if (Layout.isPrimaryBaseVirtual()) {
1729       // Check if this virtual primary base is a primary base in the layout
1730       // class. If it's not, we don't want to add it.
1731       const ASTRecordLayout &LayoutClassLayout =
1732         Context.getASTRecordLayout(LayoutClass);
1733 
1734       if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1735           OffsetInLayoutClass) {
1736         // We don't want to add this class (or any of its primary bases).
1737         break;
1738       }
1739     }
1740 
1741     RD = PrimaryBase;
1742   }
1743 
1744   // Layout secondary vtables.
1745   LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1746 }
1747 
1748 void
LayoutSecondaryVTables(BaseSubobject Base,bool BaseIsMorallyVirtual,CharUnits OffsetInLayoutClass)1749 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1750                                              bool BaseIsMorallyVirtual,
1751                                              CharUnits OffsetInLayoutClass) {
1752   // Itanium C++ ABI 2.5.2:
1753   //   Following the primary virtual table of a derived class are secondary
1754   //   virtual tables for each of its proper base classes, except any primary
1755   //   base(s) with which it shares its primary virtual table.
1756 
1757   const CXXRecordDecl *RD = Base.getBase();
1758   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1759   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1760 
1761   for (const auto &B : RD->bases()) {
1762     // Ignore virtual bases, we'll emit them later.
1763     if (B.isVirtual())
1764       continue;
1765 
1766     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1767 
1768     // Ignore bases that don't have a vtable.
1769     if (!BaseDecl->isDynamicClass())
1770       continue;
1771 
1772     if (isBuildingConstructorVTable()) {
1773       // Itanium C++ ABI 2.6.4:
1774       //   Some of the base class subobjects may not need construction virtual
1775       //   tables, which will therefore not be present in the construction
1776       //   virtual table group, even though the subobject virtual tables are
1777       //   present in the main virtual table group for the complete object.
1778       if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
1779         continue;
1780     }
1781 
1782     // Get the base offset of this base.
1783     CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
1784     CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1785 
1786     CharUnits BaseOffsetInLayoutClass =
1787       OffsetInLayoutClass + RelativeBaseOffset;
1788 
1789     // Don't emit a secondary vtable for a primary base. We might however want
1790     // to emit secondary vtables for other bases of this base.
1791     if (BaseDecl == PrimaryBase) {
1792       LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
1793                              BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
1794       continue;
1795     }
1796 
1797     // Layout the primary vtable (and any secondary vtables) for this base.
1798     LayoutPrimaryAndSecondaryVTables(
1799       BaseSubobject(BaseDecl, BaseOffset),
1800       BaseIsMorallyVirtual,
1801       /*BaseIsVirtualInLayoutClass=*/false,
1802       BaseOffsetInLayoutClass);
1803   }
1804 }
1805 
DeterminePrimaryVirtualBases(const CXXRecordDecl * RD,CharUnits OffsetInLayoutClass,VisitedVirtualBasesSetTy & VBases)1806 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
1807     const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
1808     VisitedVirtualBasesSetTy &VBases) {
1809   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1810 
1811   // Check if this base has a primary base.
1812   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1813 
1814     // Check if it's virtual.
1815     if (Layout.isPrimaryBaseVirtual()) {
1816       bool IsPrimaryVirtualBase = true;
1817 
1818       if (isBuildingConstructorVTable()) {
1819         // Check if the base is actually a primary base in the class we use for
1820         // layout.
1821         const ASTRecordLayout &LayoutClassLayout =
1822           Context.getASTRecordLayout(LayoutClass);
1823 
1824         CharUnits PrimaryBaseOffsetInLayoutClass =
1825           LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1826 
1827         // We know that the base is not a primary base in the layout class if
1828         // the base offsets are different.
1829         if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1830           IsPrimaryVirtualBase = false;
1831       }
1832 
1833       if (IsPrimaryVirtualBase)
1834         PrimaryVirtualBases.insert(PrimaryBase);
1835     }
1836   }
1837 
1838   // Traverse bases, looking for more primary virtual bases.
1839   for (const auto &B : RD->bases()) {
1840     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1841 
1842     CharUnits BaseOffsetInLayoutClass;
1843 
1844     if (B.isVirtual()) {
1845       if (!VBases.insert(BaseDecl).second)
1846         continue;
1847 
1848       const ASTRecordLayout &LayoutClassLayout =
1849         Context.getASTRecordLayout(LayoutClass);
1850 
1851       BaseOffsetInLayoutClass =
1852         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1853     } else {
1854       BaseOffsetInLayoutClass =
1855         OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
1856     }
1857 
1858     DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
1859   }
1860 }
1861 
LayoutVTablesForVirtualBases(const CXXRecordDecl * RD,VisitedVirtualBasesSetTy & VBases)1862 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
1863     const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
1864   // Itanium C++ ABI 2.5.2:
1865   //   Then come the virtual base virtual tables, also in inheritance graph
1866   //   order, and again excluding primary bases (which share virtual tables with
1867   //   the classes for which they are primary).
1868   for (const auto &B : RD->bases()) {
1869     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1870 
1871     // Check if this base needs a vtable. (If it's virtual, not a primary base
1872     // of some other class, and we haven't visited it before).
1873     if (B.isVirtual() && BaseDecl->isDynamicClass() &&
1874         !PrimaryVirtualBases.count(BaseDecl) &&
1875         VBases.insert(BaseDecl).second) {
1876       const ASTRecordLayout &MostDerivedClassLayout =
1877         Context.getASTRecordLayout(MostDerivedClass);
1878       CharUnits BaseOffset =
1879         MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
1880 
1881       const ASTRecordLayout &LayoutClassLayout =
1882         Context.getASTRecordLayout(LayoutClass);
1883       CharUnits BaseOffsetInLayoutClass =
1884         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1885 
1886       LayoutPrimaryAndSecondaryVTables(
1887         BaseSubobject(BaseDecl, BaseOffset),
1888         /*BaseIsMorallyVirtual=*/true,
1889         /*BaseIsVirtualInLayoutClass=*/true,
1890         BaseOffsetInLayoutClass);
1891     }
1892 
1893     // We only need to check the base for virtual base vtables if it actually
1894     // has virtual bases.
1895     if (BaseDecl->getNumVBases())
1896       LayoutVTablesForVirtualBases(BaseDecl, VBases);
1897   }
1898 }
1899 
1900 /// dumpLayout - Dump the vtable layout.
dumpLayout(raw_ostream & Out)1901 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
1902   // FIXME: write more tests that actually use the dumpLayout output to prevent
1903   // ItaniumVTableBuilder regressions.
1904 
1905   if (isBuildingConstructorVTable()) {
1906     Out << "Construction vtable for ('";
1907     MostDerivedClass->printQualifiedName(Out);
1908     Out << "', ";
1909     Out << MostDerivedClassOffset.getQuantity() << ") in '";
1910     LayoutClass->printQualifiedName(Out);
1911   } else {
1912     Out << "Vtable for '";
1913     MostDerivedClass->printQualifiedName(Out);
1914   }
1915   Out << "' (" << Components.size() << " entries).\n";
1916 
1917   // Iterate through the address points and insert them into a new map where
1918   // they are keyed by the index and not the base object.
1919   // Since an address point can be shared by multiple subobjects, we use an
1920   // STL multimap.
1921   std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
1922   for (AddressPointsMapTy::const_iterator I = AddressPoints.begin(),
1923        E = AddressPoints.end(); I != E; ++I) {
1924     const BaseSubobject& Base = I->first;
1925     uint64_t Index = I->second;
1926 
1927     AddressPointsByIndex.insert(std::make_pair(Index, Base));
1928   }
1929 
1930   for (unsigned I = 0, E = Components.size(); I != E; ++I) {
1931     uint64_t Index = I;
1932 
1933     Out << llvm::format("%4d | ", I);
1934 
1935     const VTableComponent &Component = Components[I];
1936 
1937     // Dump the component.
1938     switch (Component.getKind()) {
1939 
1940     case VTableComponent::CK_VCallOffset:
1941       Out << "vcall_offset ("
1942           << Component.getVCallOffset().getQuantity()
1943           << ")";
1944       break;
1945 
1946     case VTableComponent::CK_VBaseOffset:
1947       Out << "vbase_offset ("
1948           << Component.getVBaseOffset().getQuantity()
1949           << ")";
1950       break;
1951 
1952     case VTableComponent::CK_OffsetToTop:
1953       Out << "offset_to_top ("
1954           << Component.getOffsetToTop().getQuantity()
1955           << ")";
1956       break;
1957 
1958     case VTableComponent::CK_RTTI:
1959       Component.getRTTIDecl()->printQualifiedName(Out);
1960       Out << " RTTI";
1961       break;
1962 
1963     case VTableComponent::CK_FunctionPointer: {
1964       const CXXMethodDecl *MD = Component.getFunctionDecl();
1965 
1966       std::string Str =
1967         PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
1968                                     MD);
1969       Out << Str;
1970       if (MD->isPure())
1971         Out << " [pure]";
1972 
1973       if (MD->isDeleted())
1974         Out << " [deleted]";
1975 
1976       ThunkInfo Thunk = VTableThunks.lookup(I);
1977       if (!Thunk.isEmpty()) {
1978         // If this function pointer has a return adjustment, dump it.
1979         if (!Thunk.Return.isEmpty()) {
1980           Out << "\n       [return adjustment: ";
1981           Out << Thunk.Return.NonVirtual << " non-virtual";
1982 
1983           if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
1984             Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
1985             Out << " vbase offset offset";
1986           }
1987 
1988           Out << ']';
1989         }
1990 
1991         // If this function pointer has a 'this' pointer adjustment, dump it.
1992         if (!Thunk.This.isEmpty()) {
1993           Out << "\n       [this adjustment: ";
1994           Out << Thunk.This.NonVirtual << " non-virtual";
1995 
1996           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
1997             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
1998             Out << " vcall offset offset";
1999           }
2000 
2001           Out << ']';
2002         }
2003       }
2004 
2005       break;
2006     }
2007 
2008     case VTableComponent::CK_CompleteDtorPointer:
2009     case VTableComponent::CK_DeletingDtorPointer: {
2010       bool IsComplete =
2011         Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
2012 
2013       const CXXDestructorDecl *DD = Component.getDestructorDecl();
2014 
2015       DD->printQualifiedName(Out);
2016       if (IsComplete)
2017         Out << "() [complete]";
2018       else
2019         Out << "() [deleting]";
2020 
2021       if (DD->isPure())
2022         Out << " [pure]";
2023 
2024       ThunkInfo Thunk = VTableThunks.lookup(I);
2025       if (!Thunk.isEmpty()) {
2026         // If this destructor has a 'this' pointer adjustment, dump it.
2027         if (!Thunk.This.isEmpty()) {
2028           Out << "\n       [this adjustment: ";
2029           Out << Thunk.This.NonVirtual << " non-virtual";
2030 
2031           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2032             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2033             Out << " vcall offset offset";
2034           }
2035 
2036           Out << ']';
2037         }
2038       }
2039 
2040       break;
2041     }
2042 
2043     case VTableComponent::CK_UnusedFunctionPointer: {
2044       const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2045 
2046       std::string Str =
2047         PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2048                                     MD);
2049       Out << "[unused] " << Str;
2050       if (MD->isPure())
2051         Out << " [pure]";
2052     }
2053 
2054     }
2055 
2056     Out << '\n';
2057 
2058     // Dump the next address point.
2059     uint64_t NextIndex = Index + 1;
2060     if (AddressPointsByIndex.count(NextIndex)) {
2061       if (AddressPointsByIndex.count(NextIndex) == 1) {
2062         const BaseSubobject &Base =
2063           AddressPointsByIndex.find(NextIndex)->second;
2064 
2065         Out << "       -- (";
2066         Base.getBase()->printQualifiedName(Out);
2067         Out << ", " << Base.getBaseOffset().getQuantity();
2068         Out << ") vtable address --\n";
2069       } else {
2070         CharUnits BaseOffset =
2071           AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
2072 
2073         // We store the class names in a set to get a stable order.
2074         std::set<std::string> ClassNames;
2075         for (std::multimap<uint64_t, BaseSubobject>::const_iterator I =
2076              AddressPointsByIndex.lower_bound(NextIndex), E =
2077              AddressPointsByIndex.upper_bound(NextIndex); I != E; ++I) {
2078           assert(I->second.getBaseOffset() == BaseOffset &&
2079                  "Invalid base offset!");
2080           const CXXRecordDecl *RD = I->second.getBase();
2081           ClassNames.insert(RD->getQualifiedNameAsString());
2082         }
2083 
2084         for (std::set<std::string>::const_iterator I = ClassNames.begin(),
2085              E = ClassNames.end(); I != E; ++I) {
2086           Out << "       -- (" << *I;
2087           Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2088         }
2089       }
2090     }
2091   }
2092 
2093   Out << '\n';
2094 
2095   if (isBuildingConstructorVTable())
2096     return;
2097 
2098   if (MostDerivedClass->getNumVBases()) {
2099     // We store the virtual base class names and their offsets in a map to get
2100     // a stable order.
2101 
2102     std::map<std::string, CharUnits> ClassNamesAndOffsets;
2103     for (VBaseOffsetOffsetsMapTy::const_iterator I = VBaseOffsetOffsets.begin(),
2104          E = VBaseOffsetOffsets.end(); I != E; ++I) {
2105       std::string ClassName = I->first->getQualifiedNameAsString();
2106       CharUnits OffsetOffset = I->second;
2107       ClassNamesAndOffsets.insert(
2108           std::make_pair(ClassName, OffsetOffset));
2109     }
2110 
2111     Out << "Virtual base offset offsets for '";
2112     MostDerivedClass->printQualifiedName(Out);
2113     Out << "' (";
2114     Out << ClassNamesAndOffsets.size();
2115     Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
2116 
2117     for (std::map<std::string, CharUnits>::const_iterator I =
2118          ClassNamesAndOffsets.begin(), E = ClassNamesAndOffsets.end();
2119          I != E; ++I)
2120       Out << "   " << I->first << " | " << I->second.getQuantity() << '\n';
2121 
2122     Out << "\n";
2123   }
2124 
2125   if (!Thunks.empty()) {
2126     // We store the method names in a map to get a stable order.
2127     std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2128 
2129     for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
2130          I != E; ++I) {
2131       const CXXMethodDecl *MD = I->first;
2132       std::string MethodName =
2133         PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2134                                     MD);
2135 
2136       MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
2137     }
2138 
2139     for (std::map<std::string, const CXXMethodDecl *>::const_iterator I =
2140          MethodNamesAndDecls.begin(), E = MethodNamesAndDecls.end();
2141          I != E; ++I) {
2142       const std::string &MethodName = I->first;
2143       const CXXMethodDecl *MD = I->second;
2144 
2145       ThunkInfoVectorTy ThunksVector = Thunks[MD];
2146       std::sort(ThunksVector.begin(), ThunksVector.end(),
2147                 [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
2148         assert(LHS.Method == nullptr && RHS.Method == nullptr);
2149         return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
2150       });
2151 
2152       Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2153       Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
2154 
2155       for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
2156         const ThunkInfo &Thunk = ThunksVector[I];
2157 
2158         Out << llvm::format("%4d | ", I);
2159 
2160         // If this function pointer has a return pointer adjustment, dump it.
2161         if (!Thunk.Return.isEmpty()) {
2162           Out << "return adjustment: " << Thunk.Return.NonVirtual;
2163           Out << " non-virtual";
2164           if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2165             Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2166             Out << " vbase offset offset";
2167           }
2168 
2169           if (!Thunk.This.isEmpty())
2170             Out << "\n       ";
2171         }
2172 
2173         // If this function pointer has a 'this' pointer adjustment, dump it.
2174         if (!Thunk.This.isEmpty()) {
2175           Out << "this adjustment: ";
2176           Out << Thunk.This.NonVirtual << " non-virtual";
2177 
2178           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2179             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2180             Out << " vcall offset offset";
2181           }
2182         }
2183 
2184         Out << '\n';
2185       }
2186 
2187       Out << '\n';
2188     }
2189   }
2190 
2191   // Compute the vtable indices for all the member functions.
2192   // Store them in a map keyed by the index so we'll get a sorted table.
2193   std::map<uint64_t, std::string> IndicesMap;
2194 
2195   for (const auto *MD : MostDerivedClass->methods()) {
2196     // We only want virtual member functions.
2197     if (!MD->isVirtual())
2198       continue;
2199 
2200     std::string MethodName =
2201       PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2202                                   MD);
2203 
2204     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2205       GlobalDecl GD(DD, Dtor_Complete);
2206       assert(MethodVTableIndices.count(GD));
2207       uint64_t VTableIndex = MethodVTableIndices[GD];
2208       IndicesMap[VTableIndex] = MethodName + " [complete]";
2209       IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
2210     } else {
2211       assert(MethodVTableIndices.count(MD));
2212       IndicesMap[MethodVTableIndices[MD]] = MethodName;
2213     }
2214   }
2215 
2216   // Print the vtable indices for all the member functions.
2217   if (!IndicesMap.empty()) {
2218     Out << "VTable indices for '";
2219     MostDerivedClass->printQualifiedName(Out);
2220     Out << "' (" << IndicesMap.size() << " entries).\n";
2221 
2222     for (std::map<uint64_t, std::string>::const_iterator I = IndicesMap.begin(),
2223          E = IndicesMap.end(); I != E; ++I) {
2224       uint64_t VTableIndex = I->first;
2225       const std::string &MethodName = I->second;
2226 
2227       Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
2228           << '\n';
2229     }
2230   }
2231 
2232   Out << '\n';
2233 }
2234 }
2235 
VTableLayout(uint64_t NumVTableComponents,const VTableComponent * VTableComponents,uint64_t NumVTableThunks,const VTableThunkTy * VTableThunks,const AddressPointsMapTy & AddressPoints,bool IsMicrosoftABI)2236 VTableLayout::VTableLayout(uint64_t NumVTableComponents,
2237                            const VTableComponent *VTableComponents,
2238                            uint64_t NumVTableThunks,
2239                            const VTableThunkTy *VTableThunks,
2240                            const AddressPointsMapTy &AddressPoints,
2241                            bool IsMicrosoftABI)
2242   : NumVTableComponents(NumVTableComponents),
2243     VTableComponents(new VTableComponent[NumVTableComponents]),
2244     NumVTableThunks(NumVTableThunks),
2245     VTableThunks(new VTableThunkTy[NumVTableThunks]),
2246     AddressPoints(AddressPoints),
2247     IsMicrosoftABI(IsMicrosoftABI) {
2248   std::copy(VTableComponents, VTableComponents+NumVTableComponents,
2249             this->VTableComponents.get());
2250   std::copy(VTableThunks, VTableThunks+NumVTableThunks,
2251             this->VTableThunks.get());
2252   std::sort(this->VTableThunks.get(),
2253             this->VTableThunks.get() + NumVTableThunks,
2254             [](const VTableLayout::VTableThunkTy &LHS,
2255                const VTableLayout::VTableThunkTy &RHS) {
2256     assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
2257            "Different thunks should have unique indices!");
2258     return LHS.first < RHS.first;
2259   });
2260 }
2261 
~VTableLayout()2262 VTableLayout::~VTableLayout() { }
2263 
ItaniumVTableContext(ASTContext & Context)2264 ItaniumVTableContext::ItaniumVTableContext(ASTContext &Context)
2265     : VTableContextBase(/*MS=*/false) {}
2266 
~ItaniumVTableContext()2267 ItaniumVTableContext::~ItaniumVTableContext() {
2268   llvm::DeleteContainerSeconds(VTableLayouts);
2269 }
2270 
getMethodVTableIndex(GlobalDecl GD)2271 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
2272   MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
2273   if (I != MethodVTableIndices.end())
2274     return I->second;
2275 
2276   const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
2277 
2278   computeVTableRelatedInformation(RD);
2279 
2280   I = MethodVTableIndices.find(GD);
2281   assert(I != MethodVTableIndices.end() && "Did not find index!");
2282   return I->second;
2283 }
2284 
2285 CharUnits
getVirtualBaseOffsetOffset(const CXXRecordDecl * RD,const CXXRecordDecl * VBase)2286 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2287                                                  const CXXRecordDecl *VBase) {
2288   ClassPairTy ClassPair(RD, VBase);
2289 
2290   VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2291     VirtualBaseClassOffsetOffsets.find(ClassPair);
2292   if (I != VirtualBaseClassOffsetOffsets.end())
2293     return I->second;
2294 
2295   VCallAndVBaseOffsetBuilder Builder(RD, RD, /*FinalOverriders=*/nullptr,
2296                                      BaseSubobject(RD, CharUnits::Zero()),
2297                                      /*BaseIsVirtual=*/false,
2298                                      /*OffsetInLayoutClass=*/CharUnits::Zero());
2299 
2300   for (VCallAndVBaseOffsetBuilder::VBaseOffsetOffsetsMapTy::const_iterator I =
2301        Builder.getVBaseOffsetOffsets().begin(),
2302        E = Builder.getVBaseOffsetOffsets().end(); I != E; ++I) {
2303     // Insert all types.
2304     ClassPairTy ClassPair(RD, I->first);
2305 
2306     VirtualBaseClassOffsetOffsets.insert(
2307         std::make_pair(ClassPair, I->second));
2308   }
2309 
2310   I = VirtualBaseClassOffsetOffsets.find(ClassPair);
2311   assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2312 
2313   return I->second;
2314 }
2315 
CreateVTableLayout(const ItaniumVTableBuilder & Builder)2316 static VTableLayout *CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
2317   SmallVector<VTableLayout::VTableThunkTy, 1>
2318     VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
2319 
2320   return new VTableLayout(Builder.getNumVTableComponents(),
2321                           Builder.vtable_component_begin(),
2322                           VTableThunks.size(),
2323                           VTableThunks.data(),
2324                           Builder.getAddressPoints(),
2325                           /*IsMicrosoftABI=*/false);
2326 }
2327 
2328 void
computeVTableRelatedInformation(const CXXRecordDecl * RD)2329 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
2330   const VTableLayout *&Entry = VTableLayouts[RD];
2331 
2332   // Check if we've computed this information before.
2333   if (Entry)
2334     return;
2335 
2336   ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
2337                                /*MostDerivedClassIsVirtual=*/0, RD);
2338   Entry = CreateVTableLayout(Builder);
2339 
2340   MethodVTableIndices.insert(Builder.vtable_indices_begin(),
2341                              Builder.vtable_indices_end());
2342 
2343   // Add the known thunks.
2344   Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
2345 
2346   // If we don't have the vbase information for this class, insert it.
2347   // getVirtualBaseOffsetOffset will compute it separately without computing
2348   // the rest of the vtable related information.
2349   if (!RD->getNumVBases())
2350     return;
2351 
2352   const CXXRecordDecl *VBase =
2353     RD->vbases_begin()->getType()->getAsCXXRecordDecl();
2354 
2355   if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
2356     return;
2357 
2358   for (ItaniumVTableBuilder::VBaseOffsetOffsetsMapTy::const_iterator
2359            I = Builder.getVBaseOffsetOffsets().begin(),
2360            E = Builder.getVBaseOffsetOffsets().end();
2361        I != E; ++I) {
2362     // Insert all types.
2363     ClassPairTy ClassPair(RD, I->first);
2364 
2365     VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I->second));
2366   }
2367 }
2368 
createConstructionVTableLayout(const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,bool MostDerivedClassIsVirtual,const CXXRecordDecl * LayoutClass)2369 VTableLayout *ItaniumVTableContext::createConstructionVTableLayout(
2370     const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
2371     bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
2372   ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
2373                                MostDerivedClassIsVirtual, LayoutClass);
2374   return CreateVTableLayout(Builder);
2375 }
2376 
2377 namespace {
2378 
2379 // Vtables in the Microsoft ABI are different from the Itanium ABI.
2380 //
2381 // The main differences are:
2382 //  1. Separate vftable and vbtable.
2383 //
2384 //  2. Each subobject with a vfptr gets its own vftable rather than an address
2385 //     point in a single vtable shared between all the subobjects.
2386 //     Each vftable is represented by a separate section and virtual calls
2387 //     must be done using the vftable which has a slot for the function to be
2388 //     called.
2389 //
2390 //  3. Virtual method definitions expect their 'this' parameter to point to the
2391 //     first vfptr whose table provides a compatible overridden method.  In many
2392 //     cases, this permits the original vf-table entry to directly call
2393 //     the method instead of passing through a thunk.
2394 //     See example before VFTableBuilder::ComputeThisOffset below.
2395 //
2396 //     A compatible overridden method is one which does not have a non-trivial
2397 //     covariant-return adjustment.
2398 //
2399 //     The first vfptr is the one with the lowest offset in the complete-object
2400 //     layout of the defining class, and the method definition will subtract
2401 //     that constant offset from the parameter value to get the real 'this'
2402 //     value.  Therefore, if the offset isn't really constant (e.g. if a virtual
2403 //     function defined in a virtual base is overridden in a more derived
2404 //     virtual base and these bases have a reverse order in the complete
2405 //     object), the vf-table may require a this-adjustment thunk.
2406 //
2407 //  4. vftables do not contain new entries for overrides that merely require
2408 //     this-adjustment.  Together with #3, this keeps vf-tables smaller and
2409 //     eliminates the need for this-adjustment thunks in many cases, at the cost
2410 //     of often requiring redundant work to adjust the "this" pointer.
2411 //
2412 //  5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
2413 //     Vtordisps are emitted into the class layout if a class has
2414 //      a) a user-defined ctor/dtor
2415 //     and
2416 //      b) a method overriding a method in a virtual base.
2417 //
2418 //  To get a better understanding of this code,
2419 //  you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
2420 
2421 class VFTableBuilder {
2422 public:
2423   typedef MicrosoftVTableContext::MethodVFTableLocation MethodVFTableLocation;
2424 
2425   typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
2426     MethodVFTableLocationsTy;
2427 
2428   typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
2429     method_locations_range;
2430 
2431 private:
2432   /// VTables - Global vtable information.
2433   MicrosoftVTableContext &VTables;
2434 
2435   /// Context - The ASTContext which we will use for layout information.
2436   ASTContext &Context;
2437 
2438   /// MostDerivedClass - The most derived class for which we're building this
2439   /// vtable.
2440   const CXXRecordDecl *MostDerivedClass;
2441 
2442   const ASTRecordLayout &MostDerivedClassLayout;
2443 
2444   const VPtrInfo &WhichVFPtr;
2445 
2446   /// FinalOverriders - The final overriders of the most derived class.
2447   const FinalOverriders Overriders;
2448 
2449   /// Components - The components of the vftable being built.
2450   SmallVector<VTableComponent, 64> Components;
2451 
2452   MethodVFTableLocationsTy MethodVFTableLocations;
2453 
2454   /// \brief Does this class have an RTTI component?
2455   bool HasRTTIComponent;
2456 
2457   /// MethodInfo - Contains information about a method in a vtable.
2458   /// (Used for computing 'this' pointer adjustment thunks.
2459   struct MethodInfo {
2460     /// VBTableIndex - The nonzero index in the vbtable that
2461     /// this method's base has, or zero.
2462     const uint64_t VBTableIndex;
2463 
2464     /// VFTableIndex - The index in the vftable that this method has.
2465     const uint64_t VFTableIndex;
2466 
2467     /// Shadowed - Indicates if this vftable slot is shadowed by
2468     /// a slot for a covariant-return override. If so, it shouldn't be printed
2469     /// or used for vcalls in the most derived class.
2470     bool Shadowed;
2471 
2472     /// UsesExtraSlot - Indicates if this vftable slot was created because
2473     /// any of the overridden slots required a return adjusting thunk.
2474     bool UsesExtraSlot;
2475 
MethodInfo__anona3a288e10511::VFTableBuilder::MethodInfo2476     MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
2477                bool UsesExtraSlot = false)
2478         : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
2479           Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
2480 
MethodInfo__anona3a288e10511::VFTableBuilder::MethodInfo2481     MethodInfo()
2482         : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
2483           UsesExtraSlot(false) {}
2484   };
2485 
2486   typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
2487 
2488   /// MethodInfoMap - The information for all methods in the vftable we're
2489   /// currently building.
2490   MethodInfoMapTy MethodInfoMap;
2491 
2492   typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
2493 
2494   /// VTableThunks - The thunks by vftable index in the vftable currently being
2495   /// built.
2496   VTableThunksMapTy VTableThunks;
2497 
2498   typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
2499   typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
2500 
2501   /// Thunks - A map that contains all the thunks needed for all methods in the
2502   /// most derived class for which the vftable is currently being built.
2503   ThunksMapTy Thunks;
2504 
2505   /// AddThunk - Add a thunk for the given method.
AddThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk)2506   void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
2507     SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
2508 
2509     // Check if we have this thunk already.
2510     if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
2511         ThunksVector.end())
2512       return;
2513 
2514     ThunksVector.push_back(Thunk);
2515   }
2516 
2517   /// ComputeThisOffset - Returns the 'this' argument offset for the given
2518   /// method, relative to the beginning of the MostDerivedClass.
2519   CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
2520 
2521   void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
2522                                    CharUnits ThisOffset, ThisAdjustment &TA);
2523 
2524   /// AddMethod - Add a single virtual member function to the vftable
2525   /// components vector.
AddMethod(const CXXMethodDecl * MD,ThunkInfo TI)2526   void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
2527     if (!TI.isEmpty()) {
2528       VTableThunks[Components.size()] = TI;
2529       AddThunk(MD, TI);
2530     }
2531     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2532       assert(TI.Return.isEmpty() &&
2533              "Destructor can't have return adjustment!");
2534       Components.push_back(VTableComponent::MakeDeletingDtor(DD));
2535     } else {
2536       Components.push_back(VTableComponent::MakeFunction(MD));
2537     }
2538   }
2539 
2540   /// AddMethods - Add the methods of this base subobject and the relevant
2541   /// subbases to the vftable we're currently laying out.
2542   void AddMethods(BaseSubobject Base, unsigned BaseDepth,
2543                   const CXXRecordDecl *LastVBase,
2544                   BasesSetVectorTy &VisitedBases);
2545 
LayoutVFTable()2546   void LayoutVFTable() {
2547     // RTTI data goes before all other entries.
2548     if (HasRTTIComponent)
2549       Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
2550 
2551     BasesSetVectorTy VisitedBases;
2552     AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
2553                VisitedBases);
2554     assert((HasRTTIComponent ? Components.size() - 1 : Components.size()) &&
2555            "vftable can't be empty");
2556 
2557     assert(MethodVFTableLocations.empty());
2558     for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
2559          E = MethodInfoMap.end(); I != E; ++I) {
2560       const CXXMethodDecl *MD = I->first;
2561       const MethodInfo &MI = I->second;
2562       // Skip the methods that the MostDerivedClass didn't override
2563       // and the entries shadowed by return adjusting thunks.
2564       if (MD->getParent() != MostDerivedClass || MI.Shadowed)
2565         continue;
2566       MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
2567                                 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
2568       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2569         MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
2570       } else {
2571         MethodVFTableLocations[MD] = Loc;
2572       }
2573     }
2574   }
2575 
2576 public:
VFTableBuilder(MicrosoftVTableContext & VTables,const CXXRecordDecl * MostDerivedClass,const VPtrInfo * Which)2577   VFTableBuilder(MicrosoftVTableContext &VTables,
2578                  const CXXRecordDecl *MostDerivedClass, const VPtrInfo *Which)
2579       : VTables(VTables),
2580         Context(MostDerivedClass->getASTContext()),
2581         MostDerivedClass(MostDerivedClass),
2582         MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
2583         WhichVFPtr(*Which),
2584         Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
2585     // Only include the RTTI component if we know that we will provide a
2586     // definition of the vftable.
2587     HasRTTIComponent = Context.getLangOpts().RTTIData &&
2588                        !MostDerivedClass->hasAttr<DLLImportAttr>();
2589 
2590     LayoutVFTable();
2591 
2592     if (Context.getLangOpts().DumpVTableLayouts)
2593       dumpLayout(llvm::outs());
2594   }
2595 
getNumThunks() const2596   uint64_t getNumThunks() const { return Thunks.size(); }
2597 
thunks_begin() const2598   ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
2599 
thunks_end() const2600   ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
2601 
vtable_locations() const2602   method_locations_range vtable_locations() const {
2603     return method_locations_range(MethodVFTableLocations.begin(),
2604                                   MethodVFTableLocations.end());
2605   }
2606 
getNumVTableComponents() const2607   uint64_t getNumVTableComponents() const { return Components.size(); }
2608 
vtable_component_begin() const2609   const VTableComponent *vtable_component_begin() const {
2610     return Components.begin();
2611   }
2612 
vtable_component_end() const2613   const VTableComponent *vtable_component_end() const {
2614     return Components.end();
2615   }
2616 
vtable_thunks_begin() const2617   VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
2618     return VTableThunks.begin();
2619   }
2620 
vtable_thunks_end() const2621   VTableThunksMapTy::const_iterator vtable_thunks_end() const {
2622     return VTableThunks.end();
2623   }
2624 
2625   void dumpLayout(raw_ostream &);
2626 };
2627 
2628 } // end namespace
2629 
2630 /// InitialOverriddenDefinitionCollector - Finds the set of least derived bases
2631 /// that define the given method.
2632 struct InitialOverriddenDefinitionCollector {
2633   BasesSetVectorTy Bases;
2634   OverriddenMethodsSetTy VisitedOverriddenMethods;
2635 
visitInitialOverriddenDefinitionCollector2636   bool visit(const CXXMethodDecl *OverriddenMD) {
2637     if (OverriddenMD->size_overridden_methods() == 0)
2638       Bases.insert(OverriddenMD->getParent());
2639     // Don't recurse on this method if we've already collected it.
2640     return VisitedOverriddenMethods.insert(OverriddenMD).second;
2641   }
2642 };
2643 
BaseInSet(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * BasesSet)2644 static bool BaseInSet(const CXXBaseSpecifier *Specifier,
2645                       CXXBasePath &Path, void *BasesSet) {
2646   BasesSetVectorTy *Bases = (BasesSetVectorTy *)BasesSet;
2647   return Bases->count(Specifier->getType()->getAsCXXRecordDecl());
2648 }
2649 
2650 // Let's study one class hierarchy as an example:
2651 //   struct A {
2652 //     virtual void f();
2653 //     int x;
2654 //   };
2655 //
2656 //   struct B : virtual A {
2657 //     virtual void f();
2658 //   };
2659 //
2660 // Record layouts:
2661 //   struct A:
2662 //   0 |   (A vftable pointer)
2663 //   4 |   int x
2664 //
2665 //   struct B:
2666 //   0 |   (B vbtable pointer)
2667 //   4 |   struct A (virtual base)
2668 //   4 |     (A vftable pointer)
2669 //   8 |     int x
2670 //
2671 // Let's assume we have a pointer to the A part of an object of dynamic type B:
2672 //   B b;
2673 //   A *a = (A*)&b;
2674 //   a->f();
2675 //
2676 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects
2677 // "this" parameter to point at the A subobject, which is B+4.
2678 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
2679 // performed as a *static* adjustment.
2680 //
2681 // Interesting thing happens when we alter the relative placement of A and B
2682 // subobjects in a class:
2683 //   struct C : virtual B { };
2684 //
2685 //   C c;
2686 //   A *a = (A*)&c;
2687 //   a->f();
2688 //
2689 // Respective record layout is:
2690 //   0 |   (C vbtable pointer)
2691 //   4 |   struct A (virtual base)
2692 //   4 |     (A vftable pointer)
2693 //   8 |     int x
2694 //  12 |   struct B (virtual base)
2695 //  12 |     (B vbtable pointer)
2696 //
2697 // The final overrider of f() in class C is still B::f(), so B+4 should be
2698 // passed as "this" to that code.  However, "a" points at B-8, so the respective
2699 // vftable entry should hold a thunk that adds 12 to the "this" argument before
2700 // performing a tail call to B::f().
2701 //
2702 // With this example in mind, we can now calculate the 'this' argument offset
2703 // for the given method, relative to the beginning of the MostDerivedClass.
2704 CharUnits
ComputeThisOffset(FinalOverriders::OverriderInfo Overrider)2705 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
2706   InitialOverriddenDefinitionCollector Collector;
2707   visitAllOverriddenMethods(Overrider.Method, Collector);
2708 
2709   // If there are no overrides then 'this' is located
2710   // in the base that defines the method.
2711   if (Collector.Bases.size() == 0)
2712     return Overrider.Offset;
2713 
2714   CXXBasePaths Paths;
2715   Overrider.Method->getParent()->lookupInBases(BaseInSet, &Collector.Bases,
2716                                                Paths);
2717 
2718   // This will hold the smallest this offset among overridees of MD.
2719   // This implies that an offset of a non-virtual base will dominate an offset
2720   // of a virtual base to potentially reduce the number of thunks required
2721   // in the derived classes that inherit this method.
2722   CharUnits Ret;
2723   bool First = true;
2724 
2725   const ASTRecordLayout &OverriderRDLayout =
2726       Context.getASTRecordLayout(Overrider.Method->getParent());
2727   for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end();
2728        I != E; ++I) {
2729     const CXXBasePath &Path = (*I);
2730     CharUnits ThisOffset = Overrider.Offset;
2731     CharUnits LastVBaseOffset;
2732 
2733     // For each path from the overrider to the parents of the overridden methods,
2734     // traverse the path, calculating the this offset in the most derived class.
2735     for (int J = 0, F = Path.size(); J != F; ++J) {
2736       const CXXBasePathElement &Element = Path[J];
2737       QualType CurTy = Element.Base->getType();
2738       const CXXRecordDecl *PrevRD = Element.Class,
2739                           *CurRD = CurTy->getAsCXXRecordDecl();
2740       const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
2741 
2742       if (Element.Base->isVirtual()) {
2743         // The interesting things begin when you have virtual inheritance.
2744         // The final overrider will use a static adjustment equal to the offset
2745         // of the vbase in the final overrider class.
2746         // For example, if the final overrider is in a vbase B of the most
2747         // derived class and it overrides a method of the B's own vbase A,
2748         // it uses A* as "this".  In its prologue, it can cast A* to B* with
2749         // a static offset.  This offset is used regardless of the actual
2750         // offset of A from B in the most derived class, requiring an
2751         // this-adjusting thunk in the vftable if A and B are laid out
2752         // differently in the most derived class.
2753         LastVBaseOffset = ThisOffset =
2754             Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
2755       } else {
2756         ThisOffset += Layout.getBaseClassOffset(CurRD);
2757       }
2758     }
2759 
2760     if (isa<CXXDestructorDecl>(Overrider.Method)) {
2761       if (LastVBaseOffset.isZero()) {
2762         // If a "Base" class has at least one non-virtual base with a virtual
2763         // destructor, the "Base" virtual destructor will take the address
2764         // of the "Base" subobject as the "this" argument.
2765         ThisOffset = Overrider.Offset;
2766       } else {
2767         // A virtual destructor of a virtual base takes the address of the
2768         // virtual base subobject as the "this" argument.
2769         ThisOffset = LastVBaseOffset;
2770       }
2771     }
2772 
2773     if (Ret > ThisOffset || First) {
2774       First = false;
2775       Ret = ThisOffset;
2776     }
2777   }
2778 
2779   assert(!First && "Method not found in the given subobject?");
2780   return Ret;
2781 }
2782 
2783 // Things are getting even more complex when the "this" adjustment has to
2784 // use a dynamic offset instead of a static one, or even two dynamic offsets.
2785 // This is sometimes required when a virtual call happens in the middle of
2786 // a non-most-derived class construction or destruction.
2787 //
2788 // Let's take a look at the following example:
2789 //   struct A {
2790 //     virtual void f();
2791 //   };
2792 //
2793 //   void foo(A *a) { a->f(); }  // Knows nothing about siblings of A.
2794 //
2795 //   struct B : virtual A {
2796 //     virtual void f();
2797 //     B() {
2798 //       foo(this);
2799 //     }
2800 //   };
2801 //
2802 //   struct C : virtual B {
2803 //     virtual void f();
2804 //   };
2805 //
2806 // Record layouts for these classes are:
2807 //   struct A
2808 //   0 |   (A vftable pointer)
2809 //
2810 //   struct B
2811 //   0 |   (B vbtable pointer)
2812 //   4 |   (vtordisp for vbase A)
2813 //   8 |   struct A (virtual base)
2814 //   8 |     (A vftable pointer)
2815 //
2816 //   struct C
2817 //   0 |   (C vbtable pointer)
2818 //   4 |   (vtordisp for vbase A)
2819 //   8 |   struct A (virtual base)  // A precedes B!
2820 //   8 |     (A vftable pointer)
2821 //  12 |   struct B (virtual base)
2822 //  12 |     (B vbtable pointer)
2823 //
2824 // When one creates an object of type C, the C constructor:
2825 // - initializes all the vbptrs, then
2826 // - calls the A subobject constructor
2827 //   (initializes A's vfptr with an address of A vftable), then
2828 // - calls the B subobject constructor
2829 //   (initializes A's vfptr with an address of B vftable and vtordisp for A),
2830 //   that in turn calls foo(), then
2831 // - initializes A's vfptr with an address of C vftable and zeroes out the
2832 //   vtordisp
2833 //   FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
2834 //   without vtordisp thunks?
2835 //   FIXME: how are vtordisp handled in the presence of nooverride/final?
2836 //
2837 // When foo() is called, an object with a layout of class C has a vftable
2838 // referencing B::f() that assumes a B layout, so the "this" adjustments are
2839 // incorrect, unless an extra adjustment is done.  This adjustment is called
2840 // "vtordisp adjustment".  Vtordisp basically holds the difference between the
2841 // actual location of a vbase in the layout class and the location assumed by
2842 // the vftable of the class being constructed/destructed.  Vtordisp is only
2843 // needed if "this" escapes a
2844 // structor (or we can't prove otherwise).
2845 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
2846 // estimation of a dynamic adjustment]
2847 //
2848 // foo() gets a pointer to the A vbase and doesn't know anything about B or C,
2849 // so it just passes that pointer as "this" in a virtual call.
2850 // If there was no vtordisp, that would just dispatch to B::f().
2851 // However, B::f() assumes B+8 is passed as "this",
2852 // yet the pointer foo() passes along is B-4 (i.e. C+8).
2853 // An extra adjustment is needed, so we emit a thunk into the B vftable.
2854 // This vtordisp thunk subtracts the value of vtordisp
2855 // from the "this" argument (-12) before making a tailcall to B::f().
2856 //
2857 // Let's consider an even more complex example:
2858 //   struct D : virtual B, virtual C {
2859 //     D() {
2860 //       foo(this);
2861 //     }
2862 //   };
2863 //
2864 //   struct D
2865 //   0 |   (D vbtable pointer)
2866 //   4 |   (vtordisp for vbase A)
2867 //   8 |   struct A (virtual base)  // A precedes both B and C!
2868 //   8 |     (A vftable pointer)
2869 //  12 |   struct B (virtual base)  // B precedes C!
2870 //  12 |     (B vbtable pointer)
2871 //  16 |   struct C (virtual base)
2872 //  16 |     (C vbtable pointer)
2873 //
2874 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall
2875 // to C::f(), which assumes C+8 as its "this" parameter.  This time, foo()
2876 // passes along A, which is C-8.  The A vtordisp holds
2877 //   "D.vbptr[index_of_A] - offset_of_A_in_D"
2878 // and we statically know offset_of_A_in_D, so can get a pointer to D.
2879 // When we know it, we can make an extra vbtable lookup to locate the C vbase
2880 // and one extra static adjustment to calculate the expected value of C+8.
CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,CharUnits ThisOffset,ThisAdjustment & TA)2881 void VFTableBuilder::CalculateVtordispAdjustment(
2882     FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
2883     ThisAdjustment &TA) {
2884   const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
2885       MostDerivedClassLayout.getVBaseOffsetsMap();
2886   const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
2887       VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
2888   assert(VBaseMapEntry != VBaseMap.end());
2889 
2890   // If there's no vtordisp or the final overrider is defined in the same vbase
2891   // as the initial declaration, we don't need any vtordisp adjustment.
2892   if (!VBaseMapEntry->second.hasVtorDisp() ||
2893       Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
2894     return;
2895 
2896   // OK, now we know we need to use a vtordisp thunk.
2897   // The implicit vtordisp field is located right before the vbase.
2898   CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
2899   TA.Virtual.Microsoft.VtordispOffset =
2900       (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
2901 
2902   // A simple vtordisp thunk will suffice if the final overrider is defined
2903   // in either the most derived class or its non-virtual base.
2904   if (Overrider.Method->getParent() == MostDerivedClass ||
2905       !Overrider.VirtualBase)
2906     return;
2907 
2908   // Otherwise, we need to do use the dynamic offset of the final overrider
2909   // in order to get "this" adjustment right.
2910   TA.Virtual.Microsoft.VBPtrOffset =
2911       (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
2912        MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
2913   TA.Virtual.Microsoft.VBOffsetOffset =
2914       Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
2915       VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
2916 
2917   TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
2918 }
2919 
GroupNewVirtualOverloads(const CXXRecordDecl * RD,SmallVector<const CXXMethodDecl *,10> & VirtualMethods)2920 static void GroupNewVirtualOverloads(
2921     const CXXRecordDecl *RD,
2922     SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
2923   // Put the virtual methods into VirtualMethods in the proper order:
2924   // 1) Group overloads by declaration name. New groups are added to the
2925   //    vftable in the order of their first declarations in this class
2926   //    (including overrides and non-virtual methods).
2927   // 2) In each group, new overloads appear in the reverse order of declaration.
2928   typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
2929   SmallVector<MethodGroup, 10> Groups;
2930   typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
2931   VisitedGroupIndicesTy VisitedGroupIndices;
2932   for (const auto *MD : RD->methods()) {
2933     VisitedGroupIndicesTy::iterator J;
2934     bool Inserted;
2935     std::tie(J, Inserted) = VisitedGroupIndices.insert(
2936         std::make_pair(MD->getDeclName(), Groups.size()));
2937     if (Inserted)
2938       Groups.push_back(MethodGroup());
2939     if (MD->isVirtual())
2940       Groups[J->second].push_back(MD);
2941   }
2942 
2943   for (unsigned I = 0, E = Groups.size(); I != E; ++I)
2944     VirtualMethods.append(Groups[I].rbegin(), Groups[I].rend());
2945 }
2946 
isDirectVBase(const CXXRecordDecl * Base,const CXXRecordDecl * RD)2947 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
2948   for (const auto &B : RD->bases()) {
2949     if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
2950       return true;
2951   }
2952   return false;
2953 }
2954 
AddMethods(BaseSubobject Base,unsigned BaseDepth,const CXXRecordDecl * LastVBase,BasesSetVectorTy & VisitedBases)2955 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
2956                                 const CXXRecordDecl *LastVBase,
2957                                 BasesSetVectorTy &VisitedBases) {
2958   const CXXRecordDecl *RD = Base.getBase();
2959   if (!RD->isPolymorphic())
2960     return;
2961 
2962   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2963 
2964   // See if this class expands a vftable of the base we look at, which is either
2965   // the one defined by the vfptr base path or the primary base of the current class.
2966   const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
2967   CharUnits NextBaseOffset;
2968   if (BaseDepth < WhichVFPtr.PathToBaseWithVPtr.size()) {
2969     NextBase = WhichVFPtr.PathToBaseWithVPtr[BaseDepth];
2970     if (isDirectVBase(NextBase, RD)) {
2971       NextLastVBase = NextBase;
2972       NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
2973     } else {
2974       NextBaseOffset =
2975           Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
2976     }
2977   } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
2978     assert(!Layout.isPrimaryBaseVirtual() &&
2979            "No primary virtual bases in this ABI");
2980     NextBase = PrimaryBase;
2981     NextBaseOffset = Base.getBaseOffset();
2982   }
2983 
2984   if (NextBase) {
2985     AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
2986                NextLastVBase, VisitedBases);
2987     if (!VisitedBases.insert(NextBase))
2988       llvm_unreachable("Found a duplicate primary base!");
2989   }
2990 
2991   SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
2992   // Put virtual methods in the proper order.
2993   GroupNewVirtualOverloads(RD, VirtualMethods);
2994 
2995   // Now go through all virtual member functions and add them to the current
2996   // vftable. This is done by
2997   //  - replacing overridden methods in their existing slots, as long as they
2998   //    don't require return adjustment; calculating This adjustment if needed.
2999   //  - adding new slots for methods of the current base not present in any
3000   //    sub-bases;
3001   //  - adding new slots for methods that require Return adjustment.
3002   // We keep track of the methods visited in the sub-bases in MethodInfoMap.
3003   for (unsigned I = 0, E = VirtualMethods.size(); I != E; ++I) {
3004     const CXXMethodDecl *MD = VirtualMethods[I];
3005 
3006     FinalOverriders::OverriderInfo FinalOverrider =
3007         Overriders.getOverrider(MD, Base.getBaseOffset());
3008     const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
3009     const CXXMethodDecl *OverriddenMD =
3010         FindNearestOverriddenMethod(MD, VisitedBases);
3011 
3012     ThisAdjustment ThisAdjustmentOffset;
3013     bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
3014     CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
3015     ThisAdjustmentOffset.NonVirtual =
3016         (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
3017     if ((OverriddenMD || FinalOverriderMD != MD) &&
3018         WhichVFPtr.getVBaseWithVPtr())
3019       CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
3020                                   ThisAdjustmentOffset);
3021 
3022     if (OverriddenMD) {
3023       // If MD overrides anything in this vftable, we need to update the entries.
3024       MethodInfoMapTy::iterator OverriddenMDIterator =
3025           MethodInfoMap.find(OverriddenMD);
3026 
3027       // If the overridden method went to a different vftable, skip it.
3028       if (OverriddenMDIterator == MethodInfoMap.end())
3029         continue;
3030 
3031       MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
3032 
3033       // Let's check if the overrider requires any return adjustments.
3034       // We must create a new slot if the MD's return type is not trivially
3035       // convertible to the OverriddenMD's one.
3036       // Once a chain of method overrides adds a return adjusting vftable slot,
3037       // all subsequent overrides will also use an extra method slot.
3038       ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
3039                                   Context, MD, OverriddenMD).isEmpty() ||
3040                              OverriddenMethodInfo.UsesExtraSlot;
3041 
3042       if (!ReturnAdjustingThunk) {
3043         // No return adjustment needed - just replace the overridden method info
3044         // with the current info.
3045         MethodInfo MI(OverriddenMethodInfo.VBTableIndex,
3046                       OverriddenMethodInfo.VFTableIndex);
3047         MethodInfoMap.erase(OverriddenMDIterator);
3048 
3049         assert(!MethodInfoMap.count(MD) &&
3050                "Should not have method info for this method yet!");
3051         MethodInfoMap.insert(std::make_pair(MD, MI));
3052         continue;
3053       }
3054 
3055       // In case we need a return adjustment, we'll add a new slot for
3056       // the overrider. Mark the overriden method as shadowed by the new slot.
3057       OverriddenMethodInfo.Shadowed = true;
3058 
3059       // Force a special name mangling for a return-adjusting thunk
3060       // unless the method is the final overrider without this adjustment.
3061       ForceReturnAdjustmentMangling =
3062           !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
3063     } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
3064                MD->size_overridden_methods()) {
3065       // Skip methods that don't belong to the vftable of the current class,
3066       // e.g. each method that wasn't seen in any of the visited sub-bases
3067       // but overrides multiple methods of other sub-bases.
3068       continue;
3069     }
3070 
3071     // If we got here, MD is a method not seen in any of the sub-bases or
3072     // it requires return adjustment. Insert the method info for this method.
3073     unsigned VBIndex =
3074         LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
3075     MethodInfo MI(VBIndex,
3076                   HasRTTIComponent ? Components.size() - 1 : Components.size(),
3077                   ReturnAdjustingThunk);
3078 
3079     assert(!MethodInfoMap.count(MD) &&
3080            "Should not have method info for this method yet!");
3081     MethodInfoMap.insert(std::make_pair(MD, MI));
3082 
3083     // Check if this overrider needs a return adjustment.
3084     // We don't want to do this for pure virtual member functions.
3085     BaseOffset ReturnAdjustmentOffset;
3086     ReturnAdjustment ReturnAdjustment;
3087     if (!FinalOverriderMD->isPure()) {
3088       ReturnAdjustmentOffset =
3089           ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
3090     }
3091     if (!ReturnAdjustmentOffset.isEmpty()) {
3092       ForceReturnAdjustmentMangling = true;
3093       ReturnAdjustment.NonVirtual =
3094           ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
3095       if (ReturnAdjustmentOffset.VirtualBase) {
3096         const ASTRecordLayout &DerivedLayout =
3097             Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
3098         ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
3099             DerivedLayout.getVBPtrOffset().getQuantity();
3100         ReturnAdjustment.Virtual.Microsoft.VBIndex =
3101             VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
3102                                     ReturnAdjustmentOffset.VirtualBase);
3103       }
3104     }
3105 
3106     AddMethod(FinalOverriderMD,
3107               ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
3108                         ForceReturnAdjustmentMangling ? MD : nullptr));
3109   }
3110 }
3111 
PrintBasePath(const VPtrInfo::BasePath & Path,raw_ostream & Out)3112 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
3113   for (VPtrInfo::BasePath::const_reverse_iterator I = Path.rbegin(),
3114        E = Path.rend(); I != E; ++I) {
3115     Out << "'";
3116     (*I)->printQualifiedName(Out);
3117     Out << "' in ";
3118   }
3119 }
3120 
dumpMicrosoftThunkAdjustment(const ThunkInfo & TI,raw_ostream & Out,bool ContinueFirstLine)3121 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
3122                                          bool ContinueFirstLine) {
3123   const ReturnAdjustment &R = TI.Return;
3124   bool Multiline = false;
3125   const char *LinePrefix = "\n       ";
3126   if (!R.isEmpty() || TI.Method) {
3127     if (!ContinueFirstLine)
3128       Out << LinePrefix;
3129     Out << "[return adjustment (to type '"
3130         << TI.Method->getReturnType().getCanonicalType().getAsString()
3131         << "'): ";
3132     if (R.Virtual.Microsoft.VBPtrOffset)
3133       Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
3134     if (R.Virtual.Microsoft.VBIndex)
3135       Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
3136     Out << R.NonVirtual << " non-virtual]";
3137     Multiline = true;
3138   }
3139 
3140   const ThisAdjustment &T = TI.This;
3141   if (!T.isEmpty()) {
3142     if (Multiline || !ContinueFirstLine)
3143       Out << LinePrefix;
3144     Out << "[this adjustment: ";
3145     if (!TI.This.Virtual.isEmpty()) {
3146       assert(T.Virtual.Microsoft.VtordispOffset < 0);
3147       Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
3148       if (T.Virtual.Microsoft.VBPtrOffset) {
3149         Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
3150             << " to the left,";
3151         assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
3152         Out << LinePrefix << " vboffset at "
3153             << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
3154       }
3155     }
3156     Out << T.NonVirtual << " non-virtual]";
3157   }
3158 }
3159 
dumpLayout(raw_ostream & Out)3160 void VFTableBuilder::dumpLayout(raw_ostream &Out) {
3161   Out << "VFTable for ";
3162   PrintBasePath(WhichVFPtr.PathToBaseWithVPtr, Out);
3163   Out << "'";
3164   MostDerivedClass->printQualifiedName(Out);
3165   Out << "' (" << Components.size()
3166       << (Components.size() == 1 ? " entry" : " entries") << ").\n";
3167 
3168   for (unsigned I = 0, E = Components.size(); I != E; ++I) {
3169     Out << llvm::format("%4d | ", I);
3170 
3171     const VTableComponent &Component = Components[I];
3172 
3173     // Dump the component.
3174     switch (Component.getKind()) {
3175     case VTableComponent::CK_RTTI:
3176       Component.getRTTIDecl()->printQualifiedName(Out);
3177       Out << " RTTI";
3178       break;
3179 
3180     case VTableComponent::CK_FunctionPointer: {
3181       const CXXMethodDecl *MD = Component.getFunctionDecl();
3182 
3183       // FIXME: Figure out how to print the real thunk type, since they can
3184       // differ in the return type.
3185       std::string Str = PredefinedExpr::ComputeName(
3186           PredefinedExpr::PrettyFunctionNoVirtual, MD);
3187       Out << Str;
3188       if (MD->isPure())
3189         Out << " [pure]";
3190 
3191       if (MD->isDeleted())
3192         Out << " [deleted]";
3193 
3194       ThunkInfo Thunk = VTableThunks.lookup(I);
3195       if (!Thunk.isEmpty())
3196         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3197 
3198       break;
3199     }
3200 
3201     case VTableComponent::CK_DeletingDtorPointer: {
3202       const CXXDestructorDecl *DD = Component.getDestructorDecl();
3203 
3204       DD->printQualifiedName(Out);
3205       Out << "() [scalar deleting]";
3206 
3207       if (DD->isPure())
3208         Out << " [pure]";
3209 
3210       ThunkInfo Thunk = VTableThunks.lookup(I);
3211       if (!Thunk.isEmpty()) {
3212         assert(Thunk.Return.isEmpty() &&
3213                "No return adjustment needed for destructors!");
3214         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3215       }
3216 
3217       break;
3218     }
3219 
3220     default:
3221       DiagnosticsEngine &Diags = Context.getDiagnostics();
3222       unsigned DiagID = Diags.getCustomDiagID(
3223           DiagnosticsEngine::Error,
3224           "Unexpected vftable component type %0 for component number %1");
3225       Diags.Report(MostDerivedClass->getLocation(), DiagID)
3226           << I << Component.getKind();
3227     }
3228 
3229     Out << '\n';
3230   }
3231 
3232   Out << '\n';
3233 
3234   if (!Thunks.empty()) {
3235     // We store the method names in a map to get a stable order.
3236     std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
3237 
3238     for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
3239          I != E; ++I) {
3240       const CXXMethodDecl *MD = I->first;
3241       std::string MethodName = PredefinedExpr::ComputeName(
3242           PredefinedExpr::PrettyFunctionNoVirtual, MD);
3243 
3244       MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
3245     }
3246 
3247     for (std::map<std::string, const CXXMethodDecl *>::const_iterator
3248              I = MethodNamesAndDecls.begin(),
3249              E = MethodNamesAndDecls.end();
3250          I != E; ++I) {
3251       const std::string &MethodName = I->first;
3252       const CXXMethodDecl *MD = I->second;
3253 
3254       ThunkInfoVectorTy ThunksVector = Thunks[MD];
3255       std::stable_sort(ThunksVector.begin(), ThunksVector.end(),
3256                        [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
3257         // Keep different thunks with the same adjustments in the order they
3258         // were put into the vector.
3259         return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
3260       });
3261 
3262       Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
3263       Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
3264 
3265       for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
3266         const ThunkInfo &Thunk = ThunksVector[I];
3267 
3268         Out << llvm::format("%4d | ", I);
3269         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
3270         Out << '\n';
3271       }
3272 
3273       Out << '\n';
3274     }
3275   }
3276 
3277   Out.flush();
3278 }
3279 
setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *,4> & A,ArrayRef<const CXXRecordDecl * > B)3280 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
3281                           ArrayRef<const CXXRecordDecl *> B) {
3282   for (ArrayRef<const CXXRecordDecl *>::iterator I = B.begin(), E = B.end();
3283        I != E; ++I) {
3284     if (A.count(*I))
3285       return true;
3286   }
3287   return false;
3288 }
3289 
3290 static bool rebucketPaths(VPtrInfoVector &Paths);
3291 
3292 /// Produces MSVC-compatible vbtable data.  The symbols produced by this
3293 /// algorithm match those produced by MSVC 2012 and newer, which is different
3294 /// from MSVC 2010.
3295 ///
3296 /// MSVC 2012 appears to minimize the vbtable names using the following
3297 /// algorithm.  First, walk the class hierarchy in the usual order, depth first,
3298 /// left to right, to find all of the subobjects which contain a vbptr field.
3299 /// Visiting each class node yields a list of inheritance paths to vbptrs.  Each
3300 /// record with a vbptr creates an initially empty path.
3301 ///
3302 /// To combine paths from child nodes, the paths are compared to check for
3303 /// ambiguity.  Paths are "ambiguous" if multiple paths have the same set of
3304 /// components in the same order.  Each group of ambiguous paths is extended by
3305 /// appending the class of the base from which it came.  If the current class
3306 /// node produced an ambiguous path, its path is extended with the current class.
3307 /// After extending paths, MSVC again checks for ambiguity, and extends any
3308 /// ambiguous path which wasn't already extended.  Because each node yields an
3309 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once
3310 /// to produce an unambiguous set of paths.
3311 ///
3312 /// TODO: Presumably vftables use the same algorithm.
computeVTablePaths(bool ForVBTables,const CXXRecordDecl * RD,VPtrInfoVector & Paths)3313 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
3314                                                 const CXXRecordDecl *RD,
3315                                                 VPtrInfoVector &Paths) {
3316   assert(Paths.empty());
3317   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3318 
3319   // Base case: this subobject has its own vptr.
3320   if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
3321     Paths.push_back(new VPtrInfo(RD));
3322 
3323   // Recursive case: get all the vbtables from our bases and remove anything
3324   // that shares a virtual base.
3325   llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3326   for (const auto &B : RD->bases()) {
3327     const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3328     if (B.isVirtual() && VBasesSeen.count(Base))
3329       continue;
3330 
3331     if (!Base->isDynamicClass())
3332       continue;
3333 
3334     const VPtrInfoVector &BasePaths =
3335         ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
3336 
3337     for (VPtrInfo *BaseInfo : BasePaths) {
3338       // Don't include the path if it goes through a virtual base that we've
3339       // already included.
3340       if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
3341         continue;
3342 
3343       // Copy the path and adjust it as necessary.
3344       VPtrInfo *P = new VPtrInfo(*BaseInfo);
3345 
3346       // We mangle Base into the path if the path would've been ambiguous and it
3347       // wasn't already extended with Base.
3348       if (P->MangledPath.empty() || P->MangledPath.back() != Base)
3349         P->NextBaseToMangle = Base;
3350 
3351       // Keep track of which vtable the derived class is going to extend with
3352       // new methods or bases.  We append to either the vftable of our primary
3353       // base, or the first non-virtual base that has a vbtable.
3354       if (P->ReusingBase == Base &&
3355           Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
3356                                : Layout.getPrimaryBase()))
3357         P->ReusingBase = RD;
3358 
3359       // Keep track of the full adjustment from the MDC to this vtable.  The
3360       // adjustment is captured by an optional vbase and a non-virtual offset.
3361       if (B.isVirtual())
3362         P->ContainingVBases.push_back(Base);
3363       else if (P->ContainingVBases.empty())
3364         P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
3365 
3366       // Update the full offset in the MDC.
3367       P->FullOffsetInMDC = P->NonVirtualOffset;
3368       if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
3369         P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
3370 
3371       Paths.push_back(P);
3372     }
3373 
3374     if (B.isVirtual())
3375       VBasesSeen.insert(Base);
3376 
3377     // After visiting any direct base, we've transitively visited all of its
3378     // morally virtual bases.
3379     for (const auto &VB : Base->vbases())
3380       VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
3381   }
3382 
3383   // Sort the paths into buckets, and if any of them are ambiguous, extend all
3384   // paths in ambiguous buckets.
3385   bool Changed = true;
3386   while (Changed)
3387     Changed = rebucketPaths(Paths);
3388 }
3389 
extendPath(VPtrInfo * P)3390 static bool extendPath(VPtrInfo *P) {
3391   if (P->NextBaseToMangle) {
3392     P->MangledPath.push_back(P->NextBaseToMangle);
3393     P->NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
3394     return true;
3395   }
3396   return false;
3397 }
3398 
rebucketPaths(VPtrInfoVector & Paths)3399 static bool rebucketPaths(VPtrInfoVector &Paths) {
3400   // What we're essentially doing here is bucketing together ambiguous paths.
3401   // Any bucket with more than one path in it gets extended by NextBase, which
3402   // is usually the direct base of the inherited the vbptr.  This code uses a
3403   // sorted vector to implement a multiset to form the buckets.  Note that the
3404   // ordering is based on pointers, but it doesn't change our output order.  The
3405   // current algorithm is designed to match MSVC 2012's names.
3406   VPtrInfoVector PathsSorted(Paths);
3407   std::sort(PathsSorted.begin(), PathsSorted.end(),
3408             [](const VPtrInfo *LHS, const VPtrInfo *RHS) {
3409     return LHS->MangledPath < RHS->MangledPath;
3410   });
3411   bool Changed = false;
3412   for (size_t I = 0, E = PathsSorted.size(); I != E;) {
3413     // Scan forward to find the end of the bucket.
3414     size_t BucketStart = I;
3415     do {
3416       ++I;
3417     } while (I != E && PathsSorted[BucketStart]->MangledPath ==
3418                            PathsSorted[I]->MangledPath);
3419 
3420     // If this bucket has multiple paths, extend them all.
3421     if (I - BucketStart > 1) {
3422       for (size_t II = BucketStart; II != I; ++II)
3423         Changed |= extendPath(PathsSorted[II]);
3424       assert(Changed && "no paths were extended to fix ambiguity");
3425     }
3426   }
3427   return Changed;
3428 }
3429 
~MicrosoftVTableContext()3430 MicrosoftVTableContext::~MicrosoftVTableContext() {
3431   for (auto &P : VFPtrLocations)
3432     llvm::DeleteContainerPointers(*P.second);
3433   llvm::DeleteContainerSeconds(VFPtrLocations);
3434   llvm::DeleteContainerSeconds(VFTableLayouts);
3435   llvm::DeleteContainerSeconds(VBaseInfo);
3436 }
3437 
3438 static bool
findPathForVPtr(ASTContext & Context,const ASTRecordLayout & MostDerivedLayout,const CXXRecordDecl * RD,CharUnits Offset,llvm::SmallPtrSetImpl<const CXXRecordDecl * > & VBasesSeen,VPtrInfo::BasePath & FullPath,VPtrInfo * Info)3439 findPathForVPtr(ASTContext &Context, const ASTRecordLayout &MostDerivedLayout,
3440                 const CXXRecordDecl *RD, CharUnits Offset,
3441                 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &VBasesSeen,
3442                 VPtrInfo::BasePath &FullPath, VPtrInfo *Info) {
3443   if (RD == Info->BaseWithVPtr && Offset == Info->FullOffsetInMDC) {
3444     Info->PathToBaseWithVPtr = FullPath;
3445     return true;
3446   }
3447 
3448   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3449 
3450   // Recurse with non-virtual bases first.
3451   // FIXME: Does this need to be in layout order? Virtual bases will be in base
3452   // specifier order, which isn't necessarily layout order.
3453   SmallVector<CXXBaseSpecifier, 4> Bases(RD->bases_begin(), RD->bases_end());
3454   std::stable_partition(Bases.begin(), Bases.end(),
3455                         [](CXXBaseSpecifier bs) { return !bs.isVirtual(); });
3456 
3457   for (const auto &B : Bases) {
3458     const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3459     CharUnits NewOffset;
3460     if (!B.isVirtual())
3461       NewOffset = Offset + Layout.getBaseClassOffset(Base);
3462     else {
3463       if (!VBasesSeen.insert(Base).second)
3464         return false;
3465       NewOffset = MostDerivedLayout.getVBaseClassOffset(Base);
3466     }
3467     FullPath.push_back(Base);
3468     if (findPathForVPtr(Context, MostDerivedLayout, Base, NewOffset, VBasesSeen,
3469                         FullPath, Info))
3470       return true;
3471     FullPath.pop_back();
3472   }
3473   return false;
3474 }
3475 
computeFullPathsForVFTables(ASTContext & Context,const CXXRecordDecl * RD,VPtrInfoVector & Paths)3476 static void computeFullPathsForVFTables(ASTContext &Context,
3477                                         const CXXRecordDecl *RD,
3478                                         VPtrInfoVector &Paths) {
3479   llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3480   const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
3481   VPtrInfo::BasePath FullPath;
3482   for (VPtrInfo *Info : Paths) {
3483     findPathForVPtr(Context, MostDerivedLayout, RD, CharUnits::Zero(),
3484                     VBasesSeen, FullPath, Info);
3485     VBasesSeen.clear();
3486     FullPath.clear();
3487   }
3488 }
3489 
computeVTableRelatedInformation(const CXXRecordDecl * RD)3490 void MicrosoftVTableContext::computeVTableRelatedInformation(
3491     const CXXRecordDecl *RD) {
3492   assert(RD->isDynamicClass());
3493 
3494   // Check if we've computed this information before.
3495   if (VFPtrLocations.count(RD))
3496     return;
3497 
3498   const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
3499 
3500   VPtrInfoVector *VFPtrs = new VPtrInfoVector();
3501   computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
3502   computeFullPathsForVFTables(Context, RD, *VFPtrs);
3503   VFPtrLocations[RD] = VFPtrs;
3504 
3505   MethodVFTableLocationsTy NewMethodLocations;
3506   for (VPtrInfoVector::iterator I = VFPtrs->begin(), E = VFPtrs->end();
3507        I != E; ++I) {
3508     VFTableBuilder Builder(*this, RD, *I);
3509 
3510     VFTableIdTy id(RD, (*I)->FullOffsetInMDC);
3511     assert(VFTableLayouts.count(id) == 0);
3512     SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
3513         Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
3514     VFTableLayouts[id] = new VTableLayout(
3515         Builder.getNumVTableComponents(), Builder.vtable_component_begin(),
3516         VTableThunks.size(), VTableThunks.data(), EmptyAddressPointsMap, true);
3517     Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
3518 
3519     for (const auto &Loc : Builder.vtable_locations()) {
3520       GlobalDecl GD = Loc.first;
3521       MethodVFTableLocation NewLoc = Loc.second;
3522       auto M = NewMethodLocations.find(GD);
3523       if (M == NewMethodLocations.end() || NewLoc < M->second)
3524         NewMethodLocations[GD] = NewLoc;
3525     }
3526   }
3527 
3528   MethodVFTableLocations.insert(NewMethodLocations.begin(),
3529                                 NewMethodLocations.end());
3530   if (Context.getLangOpts().DumpVTableLayouts)
3531     dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
3532 }
3533 
dumpMethodLocations(const CXXRecordDecl * RD,const MethodVFTableLocationsTy & NewMethods,raw_ostream & Out)3534 void MicrosoftVTableContext::dumpMethodLocations(
3535     const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
3536     raw_ostream &Out) {
3537   // Compute the vtable indices for all the member functions.
3538   // Store them in a map keyed by the location so we'll get a sorted table.
3539   std::map<MethodVFTableLocation, std::string> IndicesMap;
3540   bool HasNonzeroOffset = false;
3541 
3542   for (MethodVFTableLocationsTy::const_iterator I = NewMethods.begin(),
3543        E = NewMethods.end(); I != E; ++I) {
3544     const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I->first.getDecl());
3545     assert(MD->isVirtual());
3546 
3547     std::string MethodName = PredefinedExpr::ComputeName(
3548         PredefinedExpr::PrettyFunctionNoVirtual, MD);
3549 
3550     if (isa<CXXDestructorDecl>(MD)) {
3551       IndicesMap[I->second] = MethodName + " [scalar deleting]";
3552     } else {
3553       IndicesMap[I->second] = MethodName;
3554     }
3555 
3556     if (!I->second.VFPtrOffset.isZero() || I->second.VBTableIndex != 0)
3557       HasNonzeroOffset = true;
3558   }
3559 
3560   // Print the vtable indices for all the member functions.
3561   if (!IndicesMap.empty()) {
3562     Out << "VFTable indices for ";
3563     Out << "'";
3564     RD->printQualifiedName(Out);
3565     Out << "' (" << IndicesMap.size()
3566         << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
3567 
3568     CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
3569     uint64_t LastVBIndex = 0;
3570     for (std::map<MethodVFTableLocation, std::string>::const_iterator
3571              I = IndicesMap.begin(),
3572              E = IndicesMap.end();
3573          I != E; ++I) {
3574       CharUnits VFPtrOffset = I->first.VFPtrOffset;
3575       uint64_t VBIndex = I->first.VBTableIndex;
3576       if (HasNonzeroOffset &&
3577           (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
3578         assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
3579         Out << " -- accessible via ";
3580         if (VBIndex)
3581           Out << "vbtable index " << VBIndex << ", ";
3582         Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
3583         LastVFPtrOffset = VFPtrOffset;
3584         LastVBIndex = VBIndex;
3585       }
3586 
3587       uint64_t VTableIndex = I->first.Index;
3588       const std::string &MethodName = I->second;
3589       Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
3590     }
3591     Out << '\n';
3592   }
3593 
3594   Out.flush();
3595 }
3596 
computeVBTableRelatedInformation(const CXXRecordDecl * RD)3597 const VirtualBaseInfo *MicrosoftVTableContext::computeVBTableRelatedInformation(
3598     const CXXRecordDecl *RD) {
3599   VirtualBaseInfo *VBI;
3600 
3601   {
3602     // Get or create a VBI for RD.  Don't hold a reference to the DenseMap cell,
3603     // as it may be modified and rehashed under us.
3604     VirtualBaseInfo *&Entry = VBaseInfo[RD];
3605     if (Entry)
3606       return Entry;
3607     Entry = VBI = new VirtualBaseInfo();
3608   }
3609 
3610   computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
3611 
3612   // First, see if the Derived class shared the vbptr with a non-virtual base.
3613   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3614   if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
3615     // If the Derived class shares the vbptr with a non-virtual base, the shared
3616     // virtual bases come first so that the layout is the same.
3617     const VirtualBaseInfo *BaseInfo =
3618         computeVBTableRelatedInformation(VBPtrBase);
3619     VBI->VBTableIndices.insert(BaseInfo->VBTableIndices.begin(),
3620                                BaseInfo->VBTableIndices.end());
3621   }
3622 
3623   // New vbases are added to the end of the vbtable.
3624   // Skip the self entry and vbases visited in the non-virtual base, if any.
3625   unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
3626   for (const auto &VB : RD->vbases()) {
3627     const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
3628     if (!VBI->VBTableIndices.count(CurVBase))
3629       VBI->VBTableIndices[CurVBase] = VBTableIndex++;
3630   }
3631 
3632   return VBI;
3633 }
3634 
getVBTableIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * VBase)3635 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
3636                                                  const CXXRecordDecl *VBase) {
3637   const VirtualBaseInfo *VBInfo = computeVBTableRelatedInformation(Derived);
3638   assert(VBInfo->VBTableIndices.count(VBase));
3639   return VBInfo->VBTableIndices.find(VBase)->second;
3640 }
3641 
3642 const VPtrInfoVector &
enumerateVBTables(const CXXRecordDecl * RD)3643 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
3644   return computeVBTableRelatedInformation(RD)->VBPtrPaths;
3645 }
3646 
3647 const VPtrInfoVector &
getVFPtrOffsets(const CXXRecordDecl * RD)3648 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
3649   computeVTableRelatedInformation(RD);
3650 
3651   assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
3652   return *VFPtrLocations[RD];
3653 }
3654 
3655 const VTableLayout &
getVFTableLayout(const CXXRecordDecl * RD,CharUnits VFPtrOffset)3656 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
3657                                          CharUnits VFPtrOffset) {
3658   computeVTableRelatedInformation(RD);
3659 
3660   VFTableIdTy id(RD, VFPtrOffset);
3661   assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
3662   return *VFTableLayouts[id];
3663 }
3664 
3665 const MicrosoftVTableContext::MethodVFTableLocation &
getMethodVFTableLocation(GlobalDecl GD)3666 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
3667   assert(cast<CXXMethodDecl>(GD.getDecl())->isVirtual() &&
3668          "Only use this method for virtual methods or dtors");
3669   if (isa<CXXDestructorDecl>(GD.getDecl()))
3670     assert(GD.getDtorType() == Dtor_Deleting);
3671 
3672   MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
3673   if (I != MethodVFTableLocations.end())
3674     return I->second;
3675 
3676   const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
3677 
3678   computeVTableRelatedInformation(RD);
3679 
3680   I = MethodVFTableLocations.find(GD);
3681   assert(I != MethodVFTableLocations.end() && "Did not find index!");
3682   return I->second;
3683 }
3684