1 /*
2  * This program source code file is part of KiCad, a free EDA CAD application.
3  *
4  * Copyright (C) 2018-2021 KiCad Developers, see AUTHORS.txt for contributors.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you may find one here:
18  * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
19  * or you may search the http://www.gnu.org website for the version 2 license,
20  * or you may write to the Free Software Foundation, Inc.,
21  * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
22  */
23 
24 #ifndef TRIGO_H
25 #define TRIGO_H
26 
27 /**
28  * @file trigo.h
29  */
30 
31 #include <cmath>
32 #include <math/vector2d.h>
33 #include <wx/gdicmn.h> // For wxPoint
34 
35 /**
36  * Test if \a aTestPoint is on line defined by \a aSegStart and \a aSegEnd.
37  *
38  * This function is faster than #TestSegmentHit() because \a aTestPoint  should be exactly on
39  * the line.  This works fine only for H, V and 45 degree line segments.
40  *
41  * @param aSegStart The first point of the line segment.
42  * @param aSegEnd The second point of the line segment.
43  * @param aTestPoint The point to test.
44  *
45  * @return true if the point is on the line segment.
46  */
47 bool IsPointOnSegment( const wxPoint& aSegStart, const wxPoint& aSegEnd,
48                        const wxPoint& aTestPoint );
49 
50 /**
51  * Test if two lines intersect.
52  *
53  * @param a_p1_l1 The first point of the first line.
54  * @param a_p2_l1 The second point of the first line.
55  * @param a_p1_l2 The first point of the second line.
56  * @param a_p2_l2 The second point of the second line.
57  * @param aIntersectionPoint is filled with the intersection point if it exists
58  * @return bool - true if the two segments defined by four points intersect.
59  * (i.e. if the 2 segments have at least a common point)
60  */
61 bool SegmentIntersectsSegment( const wxPoint& a_p1_l1, const wxPoint& a_p2_l1,
62                                const wxPoint& a_p1_l2, const wxPoint& a_p2_l2,
63                                wxPoint* aIntersectionPoint = nullptr );
64 
65 /*
66  * Calculate the new point of coord coord pX, pY,
67  * for a rotation center 0, 0, and angle in (1 / 10 degree)
68  */
69 void RotatePoint( int *pX, int *pY, double angle );
70 
71 /*
72  * Calculate the new point of coord coord pX, pY,
73  * for a rotation center cx, cy, and angle in (1 / 10 degree)
74  */
75 void RotatePoint( int *pX, int *pY, int cx, int cy, double angle );
76 
77 /*
78  * Calculate the new coord point point for a rotation angle in (1 / 10 degree).
79  */
RotatePoint(wxPoint * point,double angle)80 inline void RotatePoint( wxPoint* point, double angle )
81 {
82     RotatePoint( &point->x, &point->y, angle );
83 }
84 
RotatePoint(VECTOR2I & point,double angle)85 inline void RotatePoint( VECTOR2I& point, double angle )
86 {
87     RotatePoint( &point.x, &point.y, angle );
88 }
89 
90 void RotatePoint( VECTOR2I& point, const VECTOR2I& centre, double angle );
91 
92 /*
93  * Calculate the new coord point point for a center rotation center and angle in (1 / 10 degree).
94  */
95 void RotatePoint( wxPoint *point, const wxPoint & centre, double angle );
96 
97 void RotatePoint( double *pX, double *pY, double angle );
98 
99 void RotatePoint( double *pX, double *pY, double cx, double cy, double angle );
100 
101 /**
102  * Determine the center of an arc or circle given three points on its circumference.
103  *
104  * @param aStart The starting point of the circle (equivalent to aEnd)
105  * @param aMid The point on the arc, half-way between aStart and aEnd
106  * @param aEnd The ending point of the circle (equivalent to aStart)
107  * @return The center of the circle
108  */
109 const VECTOR2I CalcArcCenter( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd );
110 const VECTOR2D CalcArcCenter( const VECTOR2D& aStart, const VECTOR2D& aMid, const VECTOR2D& aEnd );
111 const wxPoint CalcArcCenter( const wxPoint& aStart, const wxPoint& aMid, const wxPoint& aEnd );
112 const wxPoint CalcArcCenter( const VECTOR2I& aStart, const VECTOR2I& aEnd, double aAngle );
113 
114 /**
115  * Return the subtended angle for a given arc.
116  */
117 double CalcArcAngle( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd );
118 
119 /**
120  * Return the middle point of an arc, half-way between aStart and aEnd. There are two possible
121  * solutions which can be found by toggling aMinArcAngle. The behaviour is undefined for
122  * semicircles (i.e. 180 degree arcs).
123  *
124  * @param aStart The starting point of the arc (for calculating the radius)
125  * @param aEnd The end point of the arc (for determining the arc angle)
126  * @param aCenter The center point of the arc
127  * @param aMinArcAngle If true, returns the point that results in the smallest arc angle.
128  * @return The middle point of the arc
129 */
130 const VECTOR2I CalcArcMid( const VECTOR2I& aStart, const VECTOR2I& aEnd, const VECTOR2I& aCenter,
131                            bool aMinArcAngle = true );
132 
133 /* Return the arc tangent of 0.1 degrees coord vector dx, dy
134  * between -1800 and 1800
135  * Equivalent to atan2 (but faster for calculations if
136  * the angle is 0 to -1800, or + - 900)
137  * Lorenzo: In fact usually atan2 already has to do these optimizations
138  * (due to the discontinuity in tan) but this function also returns
139  * in decidegrees instead of radians, so it's handier
140  */
141 double ArcTangente( int dy, int dx );
142 
143 //! @brief Euclidean norm of a 2D vector
144 //! @param vector Two-dimensional vector
145 //! @return Euclidean norm of the vector
EuclideanNorm(const wxPoint & vector)146 inline double EuclideanNorm( const wxPoint &vector )
147 {
148     // this is working with doubles
149     return hypot( vector.x, vector.y );
150 }
151 
EuclideanNorm(const wxSize & vector)152 inline double EuclideanNorm( const wxSize &vector )
153 {
154     // this is working with doubles, too
155     return hypot( vector.x, vector.y );
156 }
157 
158 //! @brief Compute the distance between a line and a reference point
159 //! Reference: http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
160 //! @param linePointA Point on line
161 //! @param linePointB Point on line
162 //! @param referencePoint Reference point
DistanceLinePoint(const wxPoint & linePointA,const wxPoint & linePointB,const wxPoint & referencePoint)163 inline double DistanceLinePoint( const wxPoint& linePointA,
164                                  const wxPoint& linePointB,
165                                  const wxPoint& referencePoint )
166 {
167     // Some of the multiple double casts are redundant. However in the previous
168     // definition the cast was (implicitly) done too late, just before
169     // the division (EuclideanNorm gives a double so from int it would
170     // be promoted); that means that the whole expression were
171     // vulnerable to overflow during int multiplications
172     return fabs( ( static_cast<double>( linePointB.x - linePointA.x ) *
173                    static_cast<double>( linePointA.y - referencePoint.y ) -
174                    static_cast<double>( linePointA.x  - referencePoint.x ) *
175                    static_cast<double>( linePointB.y - linePointA.y) )
176             / EuclideanNorm( linePointB - linePointA ) );
177 }
178 
179 //! @brief Test, if two points are near each other
180 //! @param pointA First point
181 //! @param pointB Second point
182 //! @param threshold The maximum distance
183 //! @return True or false
HitTestPoints(const wxPoint & pointA,const wxPoint & pointB,double threshold)184 inline bool HitTestPoints( const wxPoint& pointA, const wxPoint& pointB, double threshold )
185 {
186     wxPoint vectorAB = pointB - pointA;
187 
188     // Compare the distances squared. The double is needed to avoid
189     // overflow during int multiplication
190     double sqdistance = (double)vectorAB.x * vectorAB.x + (double)vectorAB.y * vectorAB.y;
191 
192     return sqdistance < threshold * threshold;
193 }
194 
195 //! @brief Determine the cross product
196 //! @param vectorA Two-dimensional vector
197 //! @param vectorB Two-dimensional vector
CrossProduct(const wxPoint & vectorA,const wxPoint & vectorB)198 inline double CrossProduct( const wxPoint& vectorA, const wxPoint& vectorB )
199 {
200     // As before the cast is to avoid int overflow
201     return (double)vectorA.x * vectorB.y - (double)vectorA.y * vectorB.x;
202 }
203 
204 /**
205  * Test if \a aRefPoint is with \a aDistance on the line defined by \a aStart and \a aEnd..
206  *
207  * @param aRefPoint = reference point to test
208  * @param aStart is the first end-point of the line segment
209  * @param aEnd is the second end-point of the line segment
210  * @param aDist = maximum distance for hit
211 */
212 bool TestSegmentHit( const wxPoint& aRefPoint, const wxPoint& aStart, const wxPoint& aEnd,
213                      int aDist );
214 
215 /**
216  * Return the length of a line segment defined by \a aPointA and \a aPointB.
217  *
218  * See also EuclideanNorm and Distance for the single vector or four scalar versions.
219  *
220  * @return Length of a line (as double)
221  */
GetLineLength(const wxPoint & aPointA,const wxPoint & aPointB)222 inline double GetLineLength( const wxPoint& aPointA, const wxPoint& aPointB )
223 {
224     // Implicitly casted to double
225     return hypot( aPointA.x - aPointB.x, aPointA.y - aPointB.y );
226 }
227 
228 // These are the usual degrees <-> radians conversion routines
DEG2RAD(double deg)229 inline double DEG2RAD( double deg ) { return deg * M_PI / 180.0; }
RAD2DEG(double rad)230 inline double RAD2DEG( double rad ) { return rad * 180.0 / M_PI; }
231 
232 // These are the same *but* work with the internal 'decidegrees' unit
DECIDEG2RAD(double deg)233 inline double DECIDEG2RAD( double deg ) { return deg * M_PI / 1800.0; }
RAD2DECIDEG(double rad)234 inline double RAD2DECIDEG( double rad ) { return rad * 1800.0 / M_PI; }
235 
236 /* These are templated over T (and not simply double) because Eeschema
237    is still using int for angles in some place */
238 
239 /// Normalize angle to be  >=-360.0 and <= 360.0
240 /// Angle can be equal to -360 or +360
NormalizeAngle360Max(T Angle)241 template <class T> inline T NormalizeAngle360Max( T Angle )
242 {
243     while( Angle < -3600 )
244         Angle += 3600;
245 
246     while( Angle > 3600 )
247         Angle -= 3600;
248 
249     return Angle;
250 }
251 
252 /// Normalize angle to be > -360.0 and < 360.0
253 /// Angle equal to -360 or +360 are set to 0
NormalizeAngle360Min(T Angle)254 template <class T> inline T NormalizeAngle360Min( T Angle )
255 {
256     while( Angle <= -3600 )
257         Angle += 3600;
258 
259     while( Angle >= 3600 )
260         Angle -= 3600;
261 
262     return Angle;
263 }
264 
265 
266 /// Normalize angle to be in the 0.0 .. -360.0 range: angle is in 1/10 degrees.
267 template <class T>
NormalizeAngleNeg(T Angle)268 inline T NormalizeAngleNeg( T Angle )
269 {
270     while( Angle <= -3600 )
271         Angle += 3600;
272 
273     while( Angle > 0 )
274         Angle -= 3600;
275 
276     return Angle;
277 }
278 
279 
280 /// Normalize angle to be in the 0.0 .. 360.0 range: angle is in 1/10 degrees.
NormalizeAnglePos(T Angle)281 template <class T> inline T NormalizeAnglePos( T Angle )
282 {
283     while( Angle < 0 )
284         Angle += 3600;
285     while( Angle >= 3600 )
286         Angle -= 3600;
287     return Angle;
288 }
289 
NORMALIZE_ANGLE_POS(T & Angle)290 template <class T> inline void NORMALIZE_ANGLE_POS( T& Angle )
291 {
292     Angle = NormalizeAnglePos( Angle );
293 }
294 
295 
296 /// Normalize angle to be in the 0.0 .. 360.0 range: angle is in degrees.
NormalizeAngleDegreesPos(double Angle)297 inline double NormalizeAngleDegreesPos( double Angle )
298 {
299     while( Angle < 0 )
300         Angle += 360.0;
301 
302     while( Angle >= 360.0 )
303         Angle -= 360.0;
304 
305     return Angle;
306 }
307 
308 
NORMALIZE_ANGLE_DEGREES_POS(double & Angle)309 inline void NORMALIZE_ANGLE_DEGREES_POS( double& Angle )
310 {
311     Angle = NormalizeAngleDegreesPos( Angle );
312 }
313 
314 
NormalizeAngleRadiansPos(double Angle)315 inline double NormalizeAngleRadiansPos( double Angle )
316 {
317     while( Angle < 0 )
318         Angle += (2 * M_PI );
319 
320     while( Angle >= ( 2 * M_PI ) )
321         Angle -= ( 2 * M_PI );
322 
323     return Angle;
324 }
325 
326 /// Normalize angle to be aMin < angle <= aMax angle is in degrees.
NormalizeAngleDegrees(double Angle,double aMin,double aMax)327 inline double NormalizeAngleDegrees( double Angle, double aMin, double aMax )
328 {
329     while( Angle < aMin )
330         Angle += 360.0;
331 
332     while( Angle >= aMax )
333         Angle -= 360.0;
334 
335     return Angle;
336 }
337 
338 /// Add two angles (keeping the result normalized). T2 is here
339 // because most of the time it's an int (and templates don't promote in
340 // that way)
AddAngles(T a1,T2 a2)341 template <class T, class T2> inline T AddAngles( T a1, T2 a2 )
342 {
343     a1 += a2;
344     NORMALIZE_ANGLE_POS( a1 );
345     return a1;
346 }
347 
348 
NegateAndNormalizeAnglePos(T Angle)349 template <class T> inline T NegateAndNormalizeAnglePos( T Angle )
350 {
351     Angle = -Angle;
352 
353     while( Angle < 0 )
354         Angle += 3600;
355 
356     while( Angle >= 3600 )
357         Angle -= 3600;
358 
359     return Angle;
360 }
361 
NEGATE_AND_NORMALIZE_ANGLE_POS(T & Angle)362 template <class T> inline void NEGATE_AND_NORMALIZE_ANGLE_POS( T& Angle )
363 {
364     Angle = NegateAndNormalizeAnglePos( Angle );
365 }
366 
367 
368 /// Normalize angle to be in the -90.0 .. 90.0 range
NormalizeAngle90(T Angle)369 template <class T> inline T NormalizeAngle90( T Angle )
370 {
371     while( Angle < -900 )
372         Angle += 1800;
373 
374     while( Angle > 900 )
375         Angle -= 1800;
376 
377     return Angle;
378 }
379 
NORMALIZE_ANGLE_90(T & Angle)380 template <class T> inline void NORMALIZE_ANGLE_90( T& Angle )
381 {
382     Angle = NormalizeAngle90( Angle );
383 }
384 
385 
386 /// Normalize angle to be in the -180.0 .. 180.0 range
NormalizeAngle180(T Angle)387 template <class T> inline T NormalizeAngle180( T Angle )
388 {
389     while( Angle <= -1800 )
390         Angle += 3600;
391 
392     while( Angle > 1800 )
393         Angle -= 3600;
394 
395     return Angle;
396 }
397 
NORMALIZE_ANGLE_180(T & Angle)398 template <class T> inline void NORMALIZE_ANGLE_180( T& Angle )
399 {
400     Angle = NormalizeAngle180( Angle );
401 }
402 
403 /**
404  * Test if an arc from \a aStartAngle to \a aEndAngle crosses the positive X axis (0 degrees).
405  *
406  * Testing is performed in the quadrant 1 to quadrant 4 direction (counter-clockwise).
407  *
408  * @param aStartAngle The arc start angle in degrees.
409  * @param aEndAngle The arc end angle in degrees.
410  */
InterceptsPositiveX(double aStartAngle,double aEndAngle)411 inline bool InterceptsPositiveX( double aStartAngle, double aEndAngle )
412 {
413     double end = aEndAngle;
414 
415     if( aStartAngle > aEndAngle )
416         end += 360.0;
417 
418     return aStartAngle < 360.0 && end > 360.0;
419 }
420 
421 /**
422  * Test if an arc from \a aStartAngle to \a aEndAngle crosses the negative X axis (180 degrees).
423  *
424  * Testing is performed in the quadrant 1 to quadrant 4 direction (counter-clockwise).
425  *
426  * @param aStartAngle The arc start angle in degrees.
427  * @param aEndAngle The arc end angle in degrees.
428  */
InterceptsNegativeX(double aStartAngle,double aEndAngle)429 inline bool InterceptsNegativeX( double aStartAngle, double aEndAngle )
430 {
431     double end = aEndAngle;
432 
433     if( aStartAngle > aEndAngle )
434         end += 360.0;
435 
436     return aStartAngle < 180.0 && end > 180.0;
437 }
438 
439 /**
440  * Circle generation utility: computes r * sin(a)
441  * Where a is in decidegrees, not in radians.
442  */
sindecideg(double r,double a)443 inline double sindecideg( double r, double a )
444 {
445     return r * sin( DECIDEG2RAD( a ) );
446 }
447 
448 /**
449  * Circle generation utility: computes r * cos(a)
450  * Where a is in decidegrees, not in radians.
451  */
cosdecideg(double r,double a)452 inline double cosdecideg( double r, double a )
453 {
454     return r * cos( DECIDEG2RAD( a ) );
455 }
456 
457 #endif
458