1 //===- Overload.h - C++ Overloading -----------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the data structures and types used in C++ 10 // overload resolution. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_SEMA_OVERLOAD_H 15 #define LLVM_CLANG_SEMA_OVERLOAD_H 16 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclAccessPair.h" 19 #include "clang/AST/DeclBase.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/Type.h" 24 #include "clang/Basic/LLVM.h" 25 #include "clang/Basic/SourceLocation.h" 26 #include "clang/Sema/SemaFixItUtils.h" 27 #include "clang/Sema/TemplateDeduction.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Support/AlignOf.h" 34 #include "llvm/Support/Allocator.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include <cassert> 38 #include <cstddef> 39 #include <cstdint> 40 #include <utility> 41 42 namespace clang { 43 44 class APValue; 45 class ASTContext; 46 class Sema; 47 48 /// OverloadingResult - Capture the result of performing overload 49 /// resolution. 50 enum OverloadingResult { 51 /// Overload resolution succeeded. 52 OR_Success, 53 54 /// No viable function found. 55 OR_No_Viable_Function, 56 57 /// Ambiguous candidates found. 58 OR_Ambiguous, 59 60 /// Succeeded, but refers to a deleted function. 61 OR_Deleted 62 }; 63 64 enum OverloadCandidateDisplayKind { 65 /// Requests that all candidates be shown. Viable candidates will 66 /// be printed first. 67 OCD_AllCandidates, 68 69 /// Requests that only viable candidates be shown. 70 OCD_ViableCandidates, 71 72 /// Requests that only tied-for-best candidates be shown. 73 OCD_AmbiguousCandidates 74 }; 75 76 /// The parameter ordering that will be used for the candidate. This is 77 /// used to represent C++20 binary operator rewrites that reverse the order 78 /// of the arguments. If the parameter ordering is Reversed, the Args list is 79 /// reversed (but obviously the ParamDecls for the function are not). 80 /// 81 /// After forming an OverloadCandidate with reversed parameters, the list 82 /// of conversions will (as always) be indexed by argument, so will be 83 /// in reverse parameter order. 84 enum class OverloadCandidateParamOrder : char { Normal, Reversed }; 85 86 /// The kinds of rewrite we perform on overload candidates. Note that the 87 /// values here are chosen to serve as both bitflags and as a rank (lower 88 /// values are preferred by overload resolution). 89 enum OverloadCandidateRewriteKind : unsigned { 90 /// Candidate is not a rewritten candidate. 91 CRK_None = 0x0, 92 93 /// Candidate is a rewritten candidate with a different operator name. 94 CRK_DifferentOperator = 0x1, 95 96 /// Candidate is a rewritten candidate with a reversed order of parameters. 97 CRK_Reversed = 0x2, 98 }; 99 100 /// ImplicitConversionKind - The kind of implicit conversion used to 101 /// convert an argument to a parameter's type. The enumerator values 102 /// match with the table titled 'Conversions' in [over.ics.scs] and are listed 103 /// such that better conversion kinds have smaller values. 104 enum ImplicitConversionKind { 105 /// Identity conversion (no conversion) 106 ICK_Identity = 0, 107 108 /// Lvalue-to-rvalue conversion (C++ [conv.lval]) 109 ICK_Lvalue_To_Rvalue, 110 111 /// Array-to-pointer conversion (C++ [conv.array]) 112 ICK_Array_To_Pointer, 113 114 /// Function-to-pointer (C++ [conv.array]) 115 ICK_Function_To_Pointer, 116 117 /// Function pointer conversion (C++17 [conv.fctptr]) 118 ICK_Function_Conversion, 119 120 /// Qualification conversions (C++ [conv.qual]) 121 ICK_Qualification, 122 123 /// Integral promotions (C++ [conv.prom]) 124 ICK_Integral_Promotion, 125 126 /// Floating point promotions (C++ [conv.fpprom]) 127 ICK_Floating_Promotion, 128 129 /// Complex promotions (Clang extension) 130 ICK_Complex_Promotion, 131 132 /// Integral conversions (C++ [conv.integral]) 133 ICK_Integral_Conversion, 134 135 /// Floating point conversions (C++ [conv.double] 136 ICK_Floating_Conversion, 137 138 /// Complex conversions (C99 6.3.1.6) 139 ICK_Complex_Conversion, 140 141 /// Floating-integral conversions (C++ [conv.fpint]) 142 ICK_Floating_Integral, 143 144 /// Pointer conversions (C++ [conv.ptr]) 145 ICK_Pointer_Conversion, 146 147 /// Pointer-to-member conversions (C++ [conv.mem]) 148 ICK_Pointer_Member, 149 150 /// Boolean conversions (C++ [conv.bool]) 151 ICK_Boolean_Conversion, 152 153 /// Conversions between compatible types in C99 154 ICK_Compatible_Conversion, 155 156 /// Derived-to-base (C++ [over.best.ics]) 157 ICK_Derived_To_Base, 158 159 /// Vector conversions 160 ICK_Vector_Conversion, 161 162 /// Arm SVE Vector conversions 163 ICK_SVE_Vector_Conversion, 164 165 /// A vector splat from an arithmetic type 166 ICK_Vector_Splat, 167 168 /// Complex-real conversions (C99 6.3.1.7) 169 ICK_Complex_Real, 170 171 /// Block Pointer conversions 172 ICK_Block_Pointer_Conversion, 173 174 /// Transparent Union Conversions 175 ICK_TransparentUnionConversion, 176 177 /// Objective-C ARC writeback conversion 178 ICK_Writeback_Conversion, 179 180 /// Zero constant to event (OpenCL1.2 6.12.10) 181 ICK_Zero_Event_Conversion, 182 183 /// Zero constant to queue 184 ICK_Zero_Queue_Conversion, 185 186 /// Conversions allowed in C, but not C++ 187 ICK_C_Only_Conversion, 188 189 /// C-only conversion between pointers with incompatible types 190 ICK_Incompatible_Pointer_Conversion, 191 192 /// The number of conversion kinds 193 ICK_Num_Conversion_Kinds, 194 }; 195 196 /// ImplicitConversionRank - The rank of an implicit conversion 197 /// kind. The enumerator values match with Table 9 of (C++ 198 /// 13.3.3.1.1) and are listed such that better conversion ranks 199 /// have smaller values. 200 enum ImplicitConversionRank { 201 /// Exact Match 202 ICR_Exact_Match = 0, 203 204 /// Promotion 205 ICR_Promotion, 206 207 /// Conversion 208 ICR_Conversion, 209 210 /// OpenCL Scalar Widening 211 ICR_OCL_Scalar_Widening, 212 213 /// Complex <-> Real conversion 214 ICR_Complex_Real_Conversion, 215 216 /// ObjC ARC writeback conversion 217 ICR_Writeback_Conversion, 218 219 /// Conversion only allowed in the C standard (e.g. void* to char*). 220 ICR_C_Conversion, 221 222 /// Conversion not allowed by the C standard, but that we accept as an 223 /// extension anyway. 224 ICR_C_Conversion_Extension 225 }; 226 227 ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind); 228 229 /// NarrowingKind - The kind of narrowing conversion being performed by a 230 /// standard conversion sequence according to C++11 [dcl.init.list]p7. 231 enum NarrowingKind { 232 /// Not a narrowing conversion. 233 NK_Not_Narrowing, 234 235 /// A narrowing conversion by virtue of the source and destination types. 236 NK_Type_Narrowing, 237 238 /// A narrowing conversion, because a constant expression got narrowed. 239 NK_Constant_Narrowing, 240 241 /// A narrowing conversion, because a non-constant-expression variable might 242 /// have got narrowed. 243 NK_Variable_Narrowing, 244 245 /// Cannot tell whether this is a narrowing conversion because the 246 /// expression is value-dependent. 247 NK_Dependent_Narrowing, 248 }; 249 250 /// StandardConversionSequence - represents a standard conversion 251 /// sequence (C++ 13.3.3.1.1). A standard conversion sequence 252 /// contains between zero and three conversions. If a particular 253 /// conversion is not needed, it will be set to the identity conversion 254 /// (ICK_Identity). Note that the three conversions are 255 /// specified as separate members (rather than in an array) so that 256 /// we can keep the size of a standard conversion sequence to a 257 /// single word. 258 class StandardConversionSequence { 259 public: 260 /// First -- The first conversion can be an lvalue-to-rvalue 261 /// conversion, array-to-pointer conversion, or 262 /// function-to-pointer conversion. 263 ImplicitConversionKind First : 8; 264 265 /// Second - The second conversion can be an integral promotion, 266 /// floating point promotion, integral conversion, floating point 267 /// conversion, floating-integral conversion, pointer conversion, 268 /// pointer-to-member conversion, or boolean conversion. 269 ImplicitConversionKind Second : 8; 270 271 /// Third - The third conversion can be a qualification conversion 272 /// or a function conversion. 273 ImplicitConversionKind Third : 8; 274 275 /// Whether this is the deprecated conversion of a 276 /// string literal to a pointer to non-const character data 277 /// (C++ 4.2p2). 278 unsigned DeprecatedStringLiteralToCharPtr : 1; 279 280 /// Whether the qualification conversion involves a change in the 281 /// Objective-C lifetime (for automatic reference counting). 282 unsigned QualificationIncludesObjCLifetime : 1; 283 284 /// IncompatibleObjC - Whether this is an Objective-C conversion 285 /// that we should warn about (if we actually use it). 286 unsigned IncompatibleObjC : 1; 287 288 /// ReferenceBinding - True when this is a reference binding 289 /// (C++ [over.ics.ref]). 290 unsigned ReferenceBinding : 1; 291 292 /// DirectBinding - True when this is a reference binding that is a 293 /// direct binding (C++ [dcl.init.ref]). 294 unsigned DirectBinding : 1; 295 296 /// Whether this is an lvalue reference binding (otherwise, it's 297 /// an rvalue reference binding). 298 unsigned IsLvalueReference : 1; 299 300 /// Whether we're binding to a function lvalue. 301 unsigned BindsToFunctionLvalue : 1; 302 303 /// Whether we're binding to an rvalue. 304 unsigned BindsToRvalue : 1; 305 306 /// Whether this binds an implicit object argument to a 307 /// non-static member function without a ref-qualifier. 308 unsigned BindsImplicitObjectArgumentWithoutRefQualifier : 1; 309 310 /// Whether this binds a reference to an object with a different 311 /// Objective-C lifetime qualifier. 312 unsigned ObjCLifetimeConversionBinding : 1; 313 314 /// FromType - The type that this conversion is converting 315 /// from. This is an opaque pointer that can be translated into a 316 /// QualType. 317 void *FromTypePtr; 318 319 /// ToType - The types that this conversion is converting to in 320 /// each step. This is an opaque pointer that can be translated 321 /// into a QualType. 322 void *ToTypePtrs[3]; 323 324 /// CopyConstructor - The copy constructor that is used to perform 325 /// this conversion, when the conversion is actually just the 326 /// initialization of an object via copy constructor. Such 327 /// conversions are either identity conversions or derived-to-base 328 /// conversions. 329 CXXConstructorDecl *CopyConstructor; 330 DeclAccessPair FoundCopyConstructor; 331 setFromType(QualType T)332 void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); } 333 setToType(unsigned Idx,QualType T)334 void setToType(unsigned Idx, QualType T) { 335 assert(Idx < 3 && "To type index is out of range"); 336 ToTypePtrs[Idx] = T.getAsOpaquePtr(); 337 } 338 setAllToTypes(QualType T)339 void setAllToTypes(QualType T) { 340 ToTypePtrs[0] = T.getAsOpaquePtr(); 341 ToTypePtrs[1] = ToTypePtrs[0]; 342 ToTypePtrs[2] = ToTypePtrs[0]; 343 } 344 getFromType()345 QualType getFromType() const { 346 return QualType::getFromOpaquePtr(FromTypePtr); 347 } 348 getToType(unsigned Idx)349 QualType getToType(unsigned Idx) const { 350 assert(Idx < 3 && "To type index is out of range"); 351 return QualType::getFromOpaquePtr(ToTypePtrs[Idx]); 352 } 353 354 void setAsIdentityConversion(); 355 isIdentityConversion()356 bool isIdentityConversion() const { 357 return Second == ICK_Identity && Third == ICK_Identity; 358 } 359 360 ImplicitConversionRank getRank() const; 361 NarrowingKind 362 getNarrowingKind(ASTContext &Context, const Expr *Converted, 363 APValue &ConstantValue, QualType &ConstantType, 364 bool IgnoreFloatToIntegralConversion = false) const; 365 bool isPointerConversionToBool() const; 366 bool isPointerConversionToVoidPointer(ASTContext& Context) const; 367 void dump() const; 368 }; 369 370 /// UserDefinedConversionSequence - Represents a user-defined 371 /// conversion sequence (C++ 13.3.3.1.2). 372 struct UserDefinedConversionSequence { 373 /// Represents the standard conversion that occurs before 374 /// the actual user-defined conversion. 375 /// 376 /// C++11 13.3.3.1.2p1: 377 /// If the user-defined conversion is specified by a constructor 378 /// (12.3.1), the initial standard conversion sequence converts 379 /// the source type to the type required by the argument of the 380 /// constructor. If the user-defined conversion is specified by 381 /// a conversion function (12.3.2), the initial standard 382 /// conversion sequence converts the source type to the implicit 383 /// object parameter of the conversion function. 384 StandardConversionSequence Before; 385 386 /// EllipsisConversion - When this is true, it means user-defined 387 /// conversion sequence starts with a ... (ellipsis) conversion, instead of 388 /// a standard conversion. In this case, 'Before' field must be ignored. 389 // FIXME. I much rather put this as the first field. But there seems to be 390 // a gcc code gen. bug which causes a crash in a test. Putting it here seems 391 // to work around the crash. 392 bool EllipsisConversion : 1; 393 394 /// HadMultipleCandidates - When this is true, it means that the 395 /// conversion function was resolved from an overloaded set having 396 /// size greater than 1. 397 bool HadMultipleCandidates : 1; 398 399 /// After - Represents the standard conversion that occurs after 400 /// the actual user-defined conversion. 401 StandardConversionSequence After; 402 403 /// ConversionFunction - The function that will perform the 404 /// user-defined conversion. Null if the conversion is an 405 /// aggregate initialization from an initializer list. 406 FunctionDecl* ConversionFunction; 407 408 /// The declaration that we found via name lookup, which might be 409 /// the same as \c ConversionFunction or it might be a using declaration 410 /// that refers to \c ConversionFunction. 411 DeclAccessPair FoundConversionFunction; 412 413 void dump() const; 414 }; 415 416 /// Represents an ambiguous user-defined conversion sequence. 417 struct AmbiguousConversionSequence { 418 using ConversionSet = 419 SmallVector<std::pair<NamedDecl *, FunctionDecl *>, 4>; 420 421 void *FromTypePtr; 422 void *ToTypePtr; 423 char Buffer[sizeof(ConversionSet)]; 424 getFromTypeAmbiguousConversionSequence425 QualType getFromType() const { 426 return QualType::getFromOpaquePtr(FromTypePtr); 427 } 428 getToTypeAmbiguousConversionSequence429 QualType getToType() const { 430 return QualType::getFromOpaquePtr(ToTypePtr); 431 } 432 setFromTypeAmbiguousConversionSequence433 void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); } setToTypeAmbiguousConversionSequence434 void setToType(QualType T) { ToTypePtr = T.getAsOpaquePtr(); } 435 conversionsAmbiguousConversionSequence436 ConversionSet &conversions() { 437 return *reinterpret_cast<ConversionSet*>(Buffer); 438 } 439 conversionsAmbiguousConversionSequence440 const ConversionSet &conversions() const { 441 return *reinterpret_cast<const ConversionSet*>(Buffer); 442 } 443 addConversionAmbiguousConversionSequence444 void addConversion(NamedDecl *Found, FunctionDecl *D) { 445 conversions().push_back(std::make_pair(Found, D)); 446 } 447 448 using iterator = ConversionSet::iterator; 449 beginAmbiguousConversionSequence450 iterator begin() { return conversions().begin(); } endAmbiguousConversionSequence451 iterator end() { return conversions().end(); } 452 453 using const_iterator = ConversionSet::const_iterator; 454 beginAmbiguousConversionSequence455 const_iterator begin() const { return conversions().begin(); } endAmbiguousConversionSequence456 const_iterator end() const { return conversions().end(); } 457 458 void construct(); 459 void destruct(); 460 void copyFrom(const AmbiguousConversionSequence &); 461 }; 462 463 /// BadConversionSequence - Records information about an invalid 464 /// conversion sequence. 465 struct BadConversionSequence { 466 enum FailureKind { 467 no_conversion, 468 unrelated_class, 469 bad_qualifiers, 470 lvalue_ref_to_rvalue, 471 rvalue_ref_to_lvalue, 472 too_few_initializers, 473 too_many_initializers, 474 }; 475 476 // This can be null, e.g. for implicit object arguments. 477 Expr *FromExpr; 478 479 FailureKind Kind; 480 481 private: 482 // The type we're converting from (an opaque QualType). 483 void *FromTy; 484 485 // The type we're converting to (an opaque QualType). 486 void *ToTy; 487 488 public: initBadConversionSequence489 void init(FailureKind K, Expr *From, QualType To) { 490 init(K, From->getType(), To); 491 FromExpr = From; 492 } 493 initBadConversionSequence494 void init(FailureKind K, QualType From, QualType To) { 495 Kind = K; 496 FromExpr = nullptr; 497 setFromType(From); 498 setToType(To); 499 } 500 getFromTypeBadConversionSequence501 QualType getFromType() const { return QualType::getFromOpaquePtr(FromTy); } getToTypeBadConversionSequence502 QualType getToType() const { return QualType::getFromOpaquePtr(ToTy); } 503 setFromExprBadConversionSequence504 void setFromExpr(Expr *E) { 505 FromExpr = E; 506 setFromType(E->getType()); 507 } 508 setFromTypeBadConversionSequence509 void setFromType(QualType T) { FromTy = T.getAsOpaquePtr(); } setToTypeBadConversionSequence510 void setToType(QualType T) { ToTy = T.getAsOpaquePtr(); } 511 }; 512 513 /// ImplicitConversionSequence - Represents an implicit conversion 514 /// sequence, which may be a standard conversion sequence 515 /// (C++ 13.3.3.1.1), user-defined conversion sequence (C++ 13.3.3.1.2), 516 /// or an ellipsis conversion sequence (C++ 13.3.3.1.3). 517 class ImplicitConversionSequence { 518 public: 519 /// Kind - The kind of implicit conversion sequence. BadConversion 520 /// specifies that there is no conversion from the source type to 521 /// the target type. AmbiguousConversion represents the unique 522 /// ambiguous conversion (C++0x [over.best.ics]p10). 523 /// StaticObjectArgumentConversion represents the conversion rules for 524 /// the synthesized first argument of calls to static member functions 525 /// ([over.best.ics.general]p8). 526 enum Kind { 527 StandardConversion = 0, 528 StaticObjectArgumentConversion, 529 UserDefinedConversion, 530 AmbiguousConversion, 531 EllipsisConversion, 532 BadConversion 533 }; 534 535 private: 536 enum { 537 Uninitialized = BadConversion + 1 538 }; 539 540 /// ConversionKind - The kind of implicit conversion sequence. 541 unsigned ConversionKind : 31; 542 543 // Whether the initializer list was of an incomplete array. 544 unsigned InitializerListOfIncompleteArray : 1; 545 546 /// When initializing an array or std::initializer_list from an 547 /// initializer-list, this is the array or std::initializer_list type being 548 /// initialized. The remainder of the conversion sequence, including ToType, 549 /// describe the worst conversion of an initializer to an element of the 550 /// array or std::initializer_list. (Note, 'worst' is not well defined.) 551 QualType InitializerListContainerType; 552 setKind(Kind K)553 void setKind(Kind K) { 554 destruct(); 555 ConversionKind = K; 556 } 557 destruct()558 void destruct() { 559 if (ConversionKind == AmbiguousConversion) Ambiguous.destruct(); 560 } 561 562 public: 563 union { 564 /// When ConversionKind == StandardConversion, provides the 565 /// details of the standard conversion sequence. 566 StandardConversionSequence Standard; 567 568 /// When ConversionKind == UserDefinedConversion, provides the 569 /// details of the user-defined conversion sequence. 570 UserDefinedConversionSequence UserDefined; 571 572 /// When ConversionKind == AmbiguousConversion, provides the 573 /// details of the ambiguous conversion. 574 AmbiguousConversionSequence Ambiguous; 575 576 /// When ConversionKind == BadConversion, provides the details 577 /// of the bad conversion. 578 BadConversionSequence Bad; 579 }; 580 ImplicitConversionSequence()581 ImplicitConversionSequence() 582 : ConversionKind(Uninitialized), 583 InitializerListOfIncompleteArray(false) { 584 Standard.setAsIdentityConversion(); 585 } 586 ImplicitConversionSequence(const ImplicitConversionSequence & Other)587 ImplicitConversionSequence(const ImplicitConversionSequence &Other) 588 : ConversionKind(Other.ConversionKind), 589 InitializerListOfIncompleteArray( 590 Other.InitializerListOfIncompleteArray), 591 InitializerListContainerType(Other.InitializerListContainerType) { 592 switch (ConversionKind) { 593 case Uninitialized: break; 594 case StandardConversion: Standard = Other.Standard; break; 595 case StaticObjectArgumentConversion: 596 break; 597 case UserDefinedConversion: UserDefined = Other.UserDefined; break; 598 case AmbiguousConversion: Ambiguous.copyFrom(Other.Ambiguous); break; 599 case EllipsisConversion: break; 600 case BadConversion: Bad = Other.Bad; break; 601 } 602 } 603 604 ImplicitConversionSequence & 605 operator=(const ImplicitConversionSequence &Other) { 606 destruct(); 607 new (this) ImplicitConversionSequence(Other); 608 return *this; 609 } 610 ~ImplicitConversionSequence()611 ~ImplicitConversionSequence() { 612 destruct(); 613 } 614 getKind()615 Kind getKind() const { 616 assert(isInitialized() && "querying uninitialized conversion"); 617 return Kind(ConversionKind); 618 } 619 620 /// Return a ranking of the implicit conversion sequence 621 /// kind, where smaller ranks represent better conversion 622 /// sequences. 623 /// 624 /// In particular, this routine gives user-defined conversion 625 /// sequences and ambiguous conversion sequences the same rank, 626 /// per C++ [over.best.ics]p10. getKindRank()627 unsigned getKindRank() const { 628 switch (getKind()) { 629 case StandardConversion: 630 case StaticObjectArgumentConversion: 631 return 0; 632 633 case UserDefinedConversion: 634 case AmbiguousConversion: 635 return 1; 636 637 case EllipsisConversion: 638 return 2; 639 640 case BadConversion: 641 return 3; 642 } 643 644 llvm_unreachable("Invalid ImplicitConversionSequence::Kind!"); 645 } 646 isBad()647 bool isBad() const { return getKind() == BadConversion; } isStandard()648 bool isStandard() const { return getKind() == StandardConversion; } isStaticObjectArgument()649 bool isStaticObjectArgument() const { 650 return getKind() == StaticObjectArgumentConversion; 651 } isEllipsis()652 bool isEllipsis() const { return getKind() == EllipsisConversion; } isAmbiguous()653 bool isAmbiguous() const { return getKind() == AmbiguousConversion; } isUserDefined()654 bool isUserDefined() const { return getKind() == UserDefinedConversion; } isFailure()655 bool isFailure() const { return isBad() || isAmbiguous(); } 656 657 /// Determines whether this conversion sequence has been 658 /// initialized. Most operations should never need to query 659 /// uninitialized conversions and should assert as above. isInitialized()660 bool isInitialized() const { return ConversionKind != Uninitialized; } 661 662 /// Sets this sequence as a bad conversion for an explicit argument. setBad(BadConversionSequence::FailureKind Failure,Expr * FromExpr,QualType ToType)663 void setBad(BadConversionSequence::FailureKind Failure, 664 Expr *FromExpr, QualType ToType) { 665 setKind(BadConversion); 666 Bad.init(Failure, FromExpr, ToType); 667 } 668 669 /// Sets this sequence as a bad conversion for an implicit argument. setBad(BadConversionSequence::FailureKind Failure,QualType FromType,QualType ToType)670 void setBad(BadConversionSequence::FailureKind Failure, 671 QualType FromType, QualType ToType) { 672 setKind(BadConversion); 673 Bad.init(Failure, FromType, ToType); 674 } 675 setStandard()676 void setStandard() { setKind(StandardConversion); } setStaticObjectArgument()677 void setStaticObjectArgument() { setKind(StaticObjectArgumentConversion); } setEllipsis()678 void setEllipsis() { setKind(EllipsisConversion); } setUserDefined()679 void setUserDefined() { setKind(UserDefinedConversion); } 680 setAmbiguous()681 void setAmbiguous() { 682 if (ConversionKind == AmbiguousConversion) return; 683 ConversionKind = AmbiguousConversion; 684 Ambiguous.construct(); 685 } 686 setAsIdentityConversion(QualType T)687 void setAsIdentityConversion(QualType T) { 688 setStandard(); 689 Standard.setAsIdentityConversion(); 690 Standard.setFromType(T); 691 Standard.setAllToTypes(T); 692 } 693 694 // True iff this is a conversion sequence from an initializer list to an 695 // array or std::initializer. hasInitializerListContainerType()696 bool hasInitializerListContainerType() const { 697 return !InitializerListContainerType.isNull(); 698 } setInitializerListContainerType(QualType T,bool IA)699 void setInitializerListContainerType(QualType T, bool IA) { 700 InitializerListContainerType = T; 701 InitializerListOfIncompleteArray = IA; 702 } isInitializerListOfIncompleteArray()703 bool isInitializerListOfIncompleteArray() const { 704 return InitializerListOfIncompleteArray; 705 } getInitializerListContainerType()706 QualType getInitializerListContainerType() const { 707 assert(hasInitializerListContainerType() && 708 "not initializer list container"); 709 return InitializerListContainerType; 710 } 711 712 /// Form an "implicit" conversion sequence from nullptr_t to bool, for a 713 /// direct-initialization of a bool object from nullptr_t. getNullptrToBool(QualType SourceType,QualType DestType,bool NeedLValToRVal)714 static ImplicitConversionSequence getNullptrToBool(QualType SourceType, 715 QualType DestType, 716 bool NeedLValToRVal) { 717 ImplicitConversionSequence ICS; 718 ICS.setStandard(); 719 ICS.Standard.setAsIdentityConversion(); 720 ICS.Standard.setFromType(SourceType); 721 if (NeedLValToRVal) 722 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 723 ICS.Standard.setToType(0, SourceType); 724 ICS.Standard.Second = ICK_Boolean_Conversion; 725 ICS.Standard.setToType(1, DestType); 726 ICS.Standard.setToType(2, DestType); 727 return ICS; 728 } 729 730 // The result of a comparison between implicit conversion 731 // sequences. Use Sema::CompareImplicitConversionSequences to 732 // actually perform the comparison. 733 enum CompareKind { 734 Better = -1, 735 Indistinguishable = 0, 736 Worse = 1 737 }; 738 739 void DiagnoseAmbiguousConversion(Sema &S, 740 SourceLocation CaretLoc, 741 const PartialDiagnostic &PDiag) const; 742 743 void dump() const; 744 }; 745 746 enum OverloadFailureKind { 747 ovl_fail_too_many_arguments, 748 ovl_fail_too_few_arguments, 749 ovl_fail_bad_conversion, 750 ovl_fail_bad_deduction, 751 752 /// This conversion candidate was not considered because it 753 /// duplicates the work of a trivial or derived-to-base 754 /// conversion. 755 ovl_fail_trivial_conversion, 756 757 /// This conversion candidate was not considered because it is 758 /// an illegal instantiation of a constructor temploid: it is 759 /// callable with one argument, we only have one argument, and 760 /// its first parameter type is exactly the type of the class. 761 /// 762 /// Defining such a constructor directly is illegal, and 763 /// template-argument deduction is supposed to ignore such 764 /// instantiations, but we can still get one with the right 765 /// kind of implicit instantiation. 766 ovl_fail_illegal_constructor, 767 768 /// This conversion candidate is not viable because its result 769 /// type is not implicitly convertible to the desired type. 770 ovl_fail_bad_final_conversion, 771 772 /// This conversion function template specialization candidate is not 773 /// viable because the final conversion was not an exact match. 774 ovl_fail_final_conversion_not_exact, 775 776 /// (CUDA) This candidate was not viable because the callee 777 /// was not accessible from the caller's target (i.e. host->device, 778 /// global->host, device->host). 779 ovl_fail_bad_target, 780 781 /// This candidate function was not viable because an enable_if 782 /// attribute disabled it. 783 ovl_fail_enable_if, 784 785 /// This candidate constructor or conversion function is explicit but 786 /// the context doesn't permit explicit functions. 787 ovl_fail_explicit, 788 789 /// This candidate was not viable because its address could not be taken. 790 ovl_fail_addr_not_available, 791 792 /// This inherited constructor is not viable because it would slice the 793 /// argument. 794 ovl_fail_inhctor_slice, 795 796 /// This candidate was not viable because it is a non-default multiversioned 797 /// function. 798 ovl_non_default_multiversion_function, 799 800 /// This constructor/conversion candidate fail due to an address space 801 /// mismatch between the object being constructed and the overload 802 /// candidate. 803 ovl_fail_object_addrspace_mismatch, 804 805 /// This candidate was not viable because its associated constraints were 806 /// not satisfied. 807 ovl_fail_constraints_not_satisfied, 808 809 /// This candidate was not viable because it has internal linkage and is 810 /// from a different module unit than the use. 811 ovl_fail_module_mismatched, 812 }; 813 814 /// A list of implicit conversion sequences for the arguments of an 815 /// OverloadCandidate. 816 using ConversionSequenceList = 817 llvm::MutableArrayRef<ImplicitConversionSequence>; 818 819 /// OverloadCandidate - A single candidate in an overload set (C++ 13.3). 820 struct OverloadCandidate { 821 /// Function - The actual function that this candidate 822 /// represents. When NULL, this is a built-in candidate 823 /// (C++ [over.oper]) or a surrogate for a conversion to a 824 /// function pointer or reference (C++ [over.call.object]). 825 FunctionDecl *Function; 826 827 /// FoundDecl - The original declaration that was looked up / 828 /// invented / otherwise found, together with its access. 829 /// Might be a UsingShadowDecl or a FunctionTemplateDecl. 830 DeclAccessPair FoundDecl; 831 832 /// BuiltinParamTypes - Provides the parameter types of a built-in overload 833 /// candidate. Only valid when Function is NULL. 834 QualType BuiltinParamTypes[3]; 835 836 /// Surrogate - The conversion function for which this candidate 837 /// is a surrogate, but only if IsSurrogate is true. 838 CXXConversionDecl *Surrogate; 839 840 /// The conversion sequences used to convert the function arguments 841 /// to the function parameters. Note that these are indexed by argument, 842 /// so may not match the parameter order of Function. 843 ConversionSequenceList Conversions; 844 845 /// The FixIt hints which can be used to fix the Bad candidate. 846 ConversionFixItGenerator Fix; 847 848 /// Viable - True to indicate that this overload candidate is viable. 849 bool Viable : 1; 850 851 /// Whether this candidate is the best viable function, or tied for being 852 /// the best viable function. 853 /// 854 /// For an ambiguous overload resolution, indicates whether this candidate 855 /// was part of the ambiguity kernel: the minimal non-empty set of viable 856 /// candidates such that all elements of the ambiguity kernel are better 857 /// than all viable candidates not in the ambiguity kernel. 858 bool Best : 1; 859 860 /// IsSurrogate - True to indicate that this candidate is a 861 /// surrogate for a conversion to a function pointer or reference 862 /// (C++ [over.call.object]). 863 bool IsSurrogate : 1; 864 865 /// IgnoreObjectArgument - True to indicate that the first 866 /// argument's conversion, which for this function represents the 867 /// implicit object argument, should be ignored. This will be true 868 /// when the candidate is a static member function (where the 869 /// implicit object argument is just a placeholder) or a 870 /// non-static member function when the call doesn't have an 871 /// object argument. 872 bool IgnoreObjectArgument : 1; 873 874 /// True if the candidate was found using ADL. 875 CallExpr::ADLCallKind IsADLCandidate : 1; 876 877 /// Whether this is a rewritten candidate, and if so, of what kind? 878 unsigned RewriteKind : 2; 879 880 /// FailureKind - The reason why this candidate is not viable. 881 /// Actually an OverloadFailureKind. 882 unsigned char FailureKind; 883 884 /// The number of call arguments that were explicitly provided, 885 /// to be used while performing partial ordering of function templates. 886 unsigned ExplicitCallArguments; 887 888 union { 889 DeductionFailureInfo DeductionFailure; 890 891 /// FinalConversion - For a conversion function (where Function is 892 /// a CXXConversionDecl), the standard conversion that occurs 893 /// after the call to the overload candidate to convert the result 894 /// of calling the conversion function to the required type. 895 StandardConversionSequence FinalConversion; 896 }; 897 898 /// Get RewriteKind value in OverloadCandidateRewriteKind type (This 899 /// function is to workaround the spurious GCC bitfield enum warning) getRewriteKindOverloadCandidate900 OverloadCandidateRewriteKind getRewriteKind() const { 901 return static_cast<OverloadCandidateRewriteKind>(RewriteKind); 902 } 903 isReversedOverloadCandidate904 bool isReversed() const { return getRewriteKind() & CRK_Reversed; } 905 906 /// hasAmbiguousConversion - Returns whether this overload 907 /// candidate requires an ambiguous conversion or not. hasAmbiguousConversionOverloadCandidate908 bool hasAmbiguousConversion() const { 909 for (auto &C : Conversions) { 910 if (!C.isInitialized()) return false; 911 if (C.isAmbiguous()) return true; 912 } 913 return false; 914 } 915 TryToFixBadConversionOverloadCandidate916 bool TryToFixBadConversion(unsigned Idx, Sema &S) { 917 bool CanFix = Fix.tryToFixConversion( 918 Conversions[Idx].Bad.FromExpr, 919 Conversions[Idx].Bad.getFromType(), 920 Conversions[Idx].Bad.getToType(), S); 921 922 // If at least one conversion fails, the candidate cannot be fixed. 923 if (!CanFix) 924 Fix.clear(); 925 926 return CanFix; 927 } 928 getNumParamsOverloadCandidate929 unsigned getNumParams() const { 930 if (IsSurrogate) { 931 QualType STy = Surrogate->getConversionType(); 932 while (STy->isPointerType() || STy->isReferenceType()) 933 STy = STy->getPointeeType(); 934 return STy->castAs<FunctionProtoType>()->getNumParams(); 935 } 936 if (Function) 937 return Function->getNumParams(); 938 return ExplicitCallArguments; 939 } 940 941 bool NotValidBecauseConstraintExprHasError() const; 942 943 private: 944 friend class OverloadCandidateSet; OverloadCandidateOverloadCandidate945 OverloadCandidate() 946 : IsSurrogate(false), IsADLCandidate(CallExpr::NotADL), RewriteKind(CRK_None) {} 947 }; 948 949 /// OverloadCandidateSet - A set of overload candidates, used in C++ 950 /// overload resolution (C++ 13.3). 951 class OverloadCandidateSet { 952 public: 953 enum CandidateSetKind { 954 /// Normal lookup. 955 CSK_Normal, 956 957 /// C++ [over.match.oper]: 958 /// Lookup of operator function candidates in a call using operator 959 /// syntax. Candidates that have no parameters of class type will be 960 /// skipped unless there is a parameter of (reference to) enum type and 961 /// the corresponding argument is of the same enum type. 962 CSK_Operator, 963 964 /// C++ [over.match.copy]: 965 /// Copy-initialization of an object of class type by user-defined 966 /// conversion. 967 CSK_InitByUserDefinedConversion, 968 969 /// C++ [over.match.ctor], [over.match.list] 970 /// Initialization of an object of class type by constructor, 971 /// using either a parenthesized or braced list of arguments. 972 CSK_InitByConstructor, 973 }; 974 975 /// Information about operator rewrites to consider when adding operator 976 /// functions to a candidate set. 977 struct OperatorRewriteInfo { OperatorRewriteInfoOperatorRewriteInfo978 OperatorRewriteInfo() 979 : OriginalOperator(OO_None), OpLoc(), AllowRewrittenCandidates(false) {} OperatorRewriteInfoOperatorRewriteInfo980 OperatorRewriteInfo(OverloadedOperatorKind Op, SourceLocation OpLoc, 981 bool AllowRewritten) 982 : OriginalOperator(Op), OpLoc(OpLoc), 983 AllowRewrittenCandidates(AllowRewritten) {} 984 985 /// The original operator as written in the source. 986 OverloadedOperatorKind OriginalOperator; 987 /// The source location of the operator. 988 SourceLocation OpLoc; 989 /// Whether we should include rewritten candidates in the overload set. 990 bool AllowRewrittenCandidates; 991 992 /// Would use of this function result in a rewrite using a different 993 /// operator? isRewrittenOperatorOperatorRewriteInfo994 bool isRewrittenOperator(const FunctionDecl *FD) { 995 return OriginalOperator && 996 FD->getDeclName().getCXXOverloadedOperator() != OriginalOperator; 997 } 998 isAcceptableCandidateOperatorRewriteInfo999 bool isAcceptableCandidate(const FunctionDecl *FD) { 1000 if (!OriginalOperator) 1001 return true; 1002 1003 // For an overloaded operator, we can have candidates with a different 1004 // name in our unqualified lookup set. Make sure we only consider the 1005 // ones we're supposed to. 1006 OverloadedOperatorKind OO = 1007 FD->getDeclName().getCXXOverloadedOperator(); 1008 return OO && (OO == OriginalOperator || 1009 (AllowRewrittenCandidates && 1010 OO == getRewrittenOverloadedOperator(OriginalOperator))); 1011 } 1012 1013 /// Determine the kind of rewrite that should be performed for this 1014 /// candidate. 1015 OverloadCandidateRewriteKind getRewriteKindOperatorRewriteInfo1016 getRewriteKind(const FunctionDecl *FD, OverloadCandidateParamOrder PO) { 1017 OverloadCandidateRewriteKind CRK = CRK_None; 1018 if (isRewrittenOperator(FD)) 1019 CRK = OverloadCandidateRewriteKind(CRK | CRK_DifferentOperator); 1020 if (PO == OverloadCandidateParamOrder::Reversed) 1021 CRK = OverloadCandidateRewriteKind(CRK | CRK_Reversed); 1022 return CRK; 1023 } 1024 /// Determines whether this operator could be implemented by a function 1025 /// with reversed parameter order. isReversibleOperatorRewriteInfo1026 bool isReversible() { 1027 return AllowRewrittenCandidates && OriginalOperator && 1028 (getRewrittenOverloadedOperator(OriginalOperator) != OO_None || 1029 allowsReversed(OriginalOperator)); 1030 } 1031 1032 /// Determine whether reversing parameter order is allowed for operator 1033 /// Op. 1034 bool allowsReversed(OverloadedOperatorKind Op); 1035 1036 /// Determine whether we should add a rewritten candidate for \p FD with 1037 /// reversed parameter order. 1038 /// \param OriginalArgs are the original non reversed arguments. 1039 bool shouldAddReversed(Sema &S, ArrayRef<Expr *> OriginalArgs, 1040 FunctionDecl *FD); 1041 }; 1042 1043 private: 1044 SmallVector<OverloadCandidate, 16> Candidates; 1045 llvm::SmallPtrSet<uintptr_t, 16> Functions; 1046 1047 // Allocator for ConversionSequenceLists. We store the first few of these 1048 // inline to avoid allocation for small sets. 1049 llvm::BumpPtrAllocator SlabAllocator; 1050 1051 SourceLocation Loc; 1052 CandidateSetKind Kind; 1053 OperatorRewriteInfo RewriteInfo; 1054 1055 constexpr static unsigned NumInlineBytes = 1056 24 * sizeof(ImplicitConversionSequence); 1057 unsigned NumInlineBytesUsed = 0; 1058 alignas(void *) char InlineSpace[NumInlineBytes]; 1059 1060 // Address space of the object being constructed. 1061 LangAS DestAS = LangAS::Default; 1062 1063 /// If we have space, allocates from inline storage. Otherwise, allocates 1064 /// from the slab allocator. 1065 /// FIXME: It would probably be nice to have a SmallBumpPtrAllocator 1066 /// instead. 1067 /// FIXME: Now that this only allocates ImplicitConversionSequences, do we 1068 /// want to un-generalize this? 1069 template <typename T> slabAllocate(unsigned N)1070 T *slabAllocate(unsigned N) { 1071 // It's simpler if this doesn't need to consider alignment. 1072 static_assert(alignof(T) == alignof(void *), 1073 "Only works for pointer-aligned types."); 1074 static_assert(std::is_trivial<T>::value || 1075 std::is_same<ImplicitConversionSequence, T>::value, 1076 "Add destruction logic to OverloadCandidateSet::clear()."); 1077 1078 unsigned NBytes = sizeof(T) * N; 1079 if (NBytes > NumInlineBytes - NumInlineBytesUsed) 1080 return SlabAllocator.Allocate<T>(N); 1081 char *FreeSpaceStart = InlineSpace + NumInlineBytesUsed; 1082 assert(uintptr_t(FreeSpaceStart) % alignof(void *) == 0 && 1083 "Misaligned storage!"); 1084 1085 NumInlineBytesUsed += NBytes; 1086 return reinterpret_cast<T *>(FreeSpaceStart); 1087 } 1088 1089 void destroyCandidates(); 1090 1091 public: 1092 OverloadCandidateSet(SourceLocation Loc, CandidateSetKind CSK, 1093 OperatorRewriteInfo RewriteInfo = {}) Loc(Loc)1094 : Loc(Loc), Kind(CSK), RewriteInfo(RewriteInfo) {} 1095 OverloadCandidateSet(const OverloadCandidateSet &) = delete; 1096 OverloadCandidateSet &operator=(const OverloadCandidateSet &) = delete; ~OverloadCandidateSet()1097 ~OverloadCandidateSet() { destroyCandidates(); } 1098 getLocation()1099 SourceLocation getLocation() const { return Loc; } getKind()1100 CandidateSetKind getKind() const { return Kind; } getRewriteInfo()1101 OperatorRewriteInfo getRewriteInfo() const { return RewriteInfo; } 1102 1103 /// Whether diagnostics should be deferred. 1104 bool shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, SourceLocation OpLoc); 1105 1106 /// Determine when this overload candidate will be new to the 1107 /// overload set. 1108 bool isNewCandidate(Decl *F, OverloadCandidateParamOrder PO = 1109 OverloadCandidateParamOrder::Normal) { 1110 uintptr_t Key = reinterpret_cast<uintptr_t>(F->getCanonicalDecl()); 1111 Key |= static_cast<uintptr_t>(PO); 1112 return Functions.insert(Key).second; 1113 } 1114 1115 /// Exclude a function from being considered by overload resolution. exclude(Decl * F)1116 void exclude(Decl *F) { 1117 isNewCandidate(F, OverloadCandidateParamOrder::Normal); 1118 isNewCandidate(F, OverloadCandidateParamOrder::Reversed); 1119 } 1120 1121 /// Clear out all of the candidates. 1122 void clear(CandidateSetKind CSK); 1123 1124 using iterator = SmallVectorImpl<OverloadCandidate>::iterator; 1125 begin()1126 iterator begin() { return Candidates.begin(); } end()1127 iterator end() { return Candidates.end(); } 1128 size()1129 size_t size() const { return Candidates.size(); } empty()1130 bool empty() const { return Candidates.empty(); } 1131 1132 /// Allocate storage for conversion sequences for NumConversions 1133 /// conversions. 1134 ConversionSequenceList allocateConversionSequences(unsigned NumConversions)1135 allocateConversionSequences(unsigned NumConversions) { 1136 ImplicitConversionSequence *Conversions = 1137 slabAllocate<ImplicitConversionSequence>(NumConversions); 1138 1139 // Construct the new objects. 1140 for (unsigned I = 0; I != NumConversions; ++I) 1141 new (&Conversions[I]) ImplicitConversionSequence(); 1142 1143 return ConversionSequenceList(Conversions, NumConversions); 1144 } 1145 1146 /// Add a new candidate with NumConversions conversion sequence slots 1147 /// to the overload set. 1148 OverloadCandidate & 1149 addCandidate(unsigned NumConversions = 0, 1150 ConversionSequenceList Conversions = std::nullopt) { 1151 assert((Conversions.empty() || Conversions.size() == NumConversions) && 1152 "preallocated conversion sequence has wrong length"); 1153 1154 Candidates.push_back(OverloadCandidate()); 1155 OverloadCandidate &C = Candidates.back(); 1156 C.Conversions = Conversions.empty() 1157 ? allocateConversionSequences(NumConversions) 1158 : Conversions; 1159 return C; 1160 } 1161 1162 /// Find the best viable function on this overload set, if it exists. 1163 OverloadingResult BestViableFunction(Sema &S, SourceLocation Loc, 1164 OverloadCandidateSet::iterator& Best); 1165 1166 SmallVector<OverloadCandidate *, 32> CompleteCandidates( 1167 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args, 1168 SourceLocation OpLoc = SourceLocation(), 1169 llvm::function_ref<bool(OverloadCandidate &)> Filter = 1170 [](OverloadCandidate &) { return true; }); 1171 1172 void NoteCandidates( 1173 PartialDiagnosticAt PA, Sema &S, OverloadCandidateDisplayKind OCD, 1174 ArrayRef<Expr *> Args, StringRef Opc = "", 1175 SourceLocation Loc = SourceLocation(), 1176 llvm::function_ref<bool(OverloadCandidate &)> Filter = 1177 [](OverloadCandidate &) { return true; }); 1178 1179 void NoteCandidates(Sema &S, ArrayRef<Expr *> Args, 1180 ArrayRef<OverloadCandidate *> Cands, 1181 StringRef Opc = "", 1182 SourceLocation OpLoc = SourceLocation()); 1183 getDestAS()1184 LangAS getDestAS() { return DestAS; } 1185 setDestAS(LangAS AS)1186 void setDestAS(LangAS AS) { 1187 assert((Kind == CSK_InitByConstructor || 1188 Kind == CSK_InitByUserDefinedConversion) && 1189 "can't set the destination address space when not constructing an " 1190 "object"); 1191 DestAS = AS; 1192 } 1193 1194 }; 1195 1196 bool isBetterOverloadCandidate(Sema &S, 1197 const OverloadCandidate &Cand1, 1198 const OverloadCandidate &Cand2, 1199 SourceLocation Loc, 1200 OverloadCandidateSet::CandidateSetKind Kind); 1201 1202 struct ConstructorInfo { 1203 DeclAccessPair FoundDecl; 1204 CXXConstructorDecl *Constructor; 1205 FunctionTemplateDecl *ConstructorTmpl; 1206 1207 explicit operator bool() const { return Constructor; } 1208 }; 1209 1210 // FIXME: Add an AddOverloadCandidate / AddTemplateOverloadCandidate overload 1211 // that takes one of these. getConstructorInfo(NamedDecl * ND)1212 inline ConstructorInfo getConstructorInfo(NamedDecl *ND) { 1213 if (isa<UsingDecl>(ND)) 1214 return ConstructorInfo{}; 1215 1216 // For constructors, the access check is performed against the underlying 1217 // declaration, not the found declaration. 1218 auto *D = ND->getUnderlyingDecl(); 1219 ConstructorInfo Info = {DeclAccessPair::make(ND, D->getAccess()), nullptr, 1220 nullptr}; 1221 Info.ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); 1222 if (Info.ConstructorTmpl) 1223 D = Info.ConstructorTmpl->getTemplatedDecl(); 1224 Info.Constructor = dyn_cast<CXXConstructorDecl>(D); 1225 return Info; 1226 } 1227 1228 // Returns false if signature help is relevant despite number of arguments 1229 // exceeding parameters. Specifically, it returns false when 1230 // PartialOverloading is true and one of the following: 1231 // * Function is variadic 1232 // * Function is template variadic 1233 // * Function is an instantiation of template variadic function 1234 // The last case may seem strange. The idea is that if we added one more 1235 // argument, we'd end up with a function similar to Function. Since, in the 1236 // context of signature help and/or code completion, we do not know what the 1237 // type of the next argument (that the user is typing) will be, this is as 1238 // good candidate as we can get, despite the fact that it takes one less 1239 // parameter. 1240 bool shouldEnforceArgLimit(bool PartialOverloading, FunctionDecl *Function); 1241 1242 } // namespace clang 1243 1244 #endif // LLVM_CLANG_SEMA_OVERLOAD_H 1245