1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct user_struct;
39 struct pt_regs;
40 struct folio_batch;
41
42 extern int sysctl_page_lock_unfairness;
43
44 void mm_core_init(void);
45 void init_mm_internals(void);
46
47 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
49
set_max_mapnr(unsigned long limit)50 static inline void set_max_mapnr(unsigned long limit)
51 {
52 max_mapnr = limit;
53 }
54 #else
set_max_mapnr(unsigned long limit)55 static inline void set_max_mapnr(unsigned long limit) { }
56 #endif
57
58 extern atomic_long_t _totalram_pages;
totalram_pages(void)59 static inline unsigned long totalram_pages(void)
60 {
61 return (unsigned long)atomic_long_read(&_totalram_pages);
62 }
63
totalram_pages_inc(void)64 static inline void totalram_pages_inc(void)
65 {
66 atomic_long_inc(&_totalram_pages);
67 }
68
totalram_pages_dec(void)69 static inline void totalram_pages_dec(void)
70 {
71 atomic_long_dec(&_totalram_pages);
72 }
73
totalram_pages_add(long count)74 static inline void totalram_pages_add(long count)
75 {
76 atomic_long_add(count, &_totalram_pages);
77 }
78
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
82
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99
100 #ifndef PHYSMEM_END
101 # ifdef MAX_PHYSMEM_BITS
102 # define PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
103 # else
104 # define PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
105 # endif
106 #endif
107
108 #include <asm/page.h>
109 #include <asm/processor.h>
110
111 #ifndef __pa_symbol
112 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
113 #endif
114
115 #ifndef page_to_virt
116 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
117 #endif
118
119 #ifndef lm_alias
120 #define lm_alias(x) __va(__pa_symbol(x))
121 #endif
122
123 /*
124 * To prevent common memory management code establishing
125 * a zero page mapping on a read fault.
126 * This macro should be defined within <asm/pgtable.h>.
127 * s390 does this to prevent multiplexing of hardware bits
128 * related to the physical page in case of virtualization.
129 */
130 #ifndef mm_forbids_zeropage
131 #define mm_forbids_zeropage(X) (0)
132 #endif
133
134 /*
135 * On some architectures it is expensive to call memset() for small sizes.
136 * If an architecture decides to implement their own version of
137 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
138 * define their own version of this macro in <asm/pgtable.h>
139 */
140 #if BITS_PER_LONG == 64
141 /* This function must be updated when the size of struct page grows above 96
142 * or reduces below 56. The idea that compiler optimizes out switch()
143 * statement, and only leaves move/store instructions. Also the compiler can
144 * combine write statements if they are both assignments and can be reordered,
145 * this can result in several of the writes here being dropped.
146 */
147 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)148 static inline void __mm_zero_struct_page(struct page *page)
149 {
150 unsigned long *_pp = (void *)page;
151
152 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
153 BUILD_BUG_ON(sizeof(struct page) & 7);
154 BUILD_BUG_ON(sizeof(struct page) < 56);
155 BUILD_BUG_ON(sizeof(struct page) > 96);
156
157 switch (sizeof(struct page)) {
158 case 96:
159 _pp[11] = 0;
160 fallthrough;
161 case 88:
162 _pp[10] = 0;
163 fallthrough;
164 case 80:
165 _pp[9] = 0;
166 fallthrough;
167 case 72:
168 _pp[8] = 0;
169 fallthrough;
170 case 64:
171 _pp[7] = 0;
172 fallthrough;
173 case 56:
174 _pp[6] = 0;
175 _pp[5] = 0;
176 _pp[4] = 0;
177 _pp[3] = 0;
178 _pp[2] = 0;
179 _pp[1] = 0;
180 _pp[0] = 0;
181 }
182 }
183 #else
184 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
185 #endif
186
187 /*
188 * Default maximum number of active map areas, this limits the number of vmas
189 * per mm struct. Users can overwrite this number by sysctl but there is a
190 * problem.
191 *
192 * When a program's coredump is generated as ELF format, a section is created
193 * per a vma. In ELF, the number of sections is represented in unsigned short.
194 * This means the number of sections should be smaller than 65535 at coredump.
195 * Because the kernel adds some informative sections to a image of program at
196 * generating coredump, we need some margin. The number of extra sections is
197 * 1-3 now and depends on arch. We use "5" as safe margin, here.
198 *
199 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
200 * not a hard limit any more. Although some userspace tools can be surprised by
201 * that.
202 */
203 #define MAPCOUNT_ELF_CORE_MARGIN (5)
204 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
205
206 extern int sysctl_max_map_count;
207
208 extern unsigned long sysctl_user_reserve_kbytes;
209 extern unsigned long sysctl_admin_reserve_kbytes;
210
211 extern int sysctl_overcommit_memory;
212 extern int sysctl_overcommit_ratio;
213 extern unsigned long sysctl_overcommit_kbytes;
214
215 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
216 loff_t *);
217 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
218 loff_t *);
219 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
220 loff_t *);
221
222 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
223 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
224 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
225 #else
226 #define nth_page(page,n) ((page) + (n))
227 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
228 #endif
229
230 /* to align the pointer to the (next) page boundary */
231 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
232
233 /* to align the pointer to the (prev) page boundary */
234 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
235
236 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
237 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
238
lru_to_folio(struct list_head * head)239 static inline struct folio *lru_to_folio(struct list_head *head)
240 {
241 return list_entry((head)->prev, struct folio, lru);
242 }
243
244 void setup_initial_init_mm(void *start_code, void *end_code,
245 void *end_data, void *brk);
246
247 /*
248 * Linux kernel virtual memory manager primitives.
249 * The idea being to have a "virtual" mm in the same way
250 * we have a virtual fs - giving a cleaner interface to the
251 * mm details, and allowing different kinds of memory mappings
252 * (from shared memory to executable loading to arbitrary
253 * mmap() functions).
254 */
255
256 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
257 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258 void vm_area_free(struct vm_area_struct *);
259 /* Use only if VMA has no other users */
260 void __vm_area_free(struct vm_area_struct *vma);
261
262 #ifndef CONFIG_MMU
263 extern struct rb_root nommu_region_tree;
264 extern struct rw_semaphore nommu_region_sem;
265
266 extern unsigned int kobjsize(const void *objp);
267 #endif
268
269 /*
270 * vm_flags in vm_area_struct, see mm_types.h.
271 * When changing, update also include/trace/events/mmflags.h
272 */
273 #define VM_NONE 0x00000000
274
275 #define VM_READ 0x00000001 /* currently active flags */
276 #define VM_WRITE 0x00000002
277 #define VM_EXEC 0x00000004
278 #define VM_SHARED 0x00000008
279
280 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
281 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
282 #define VM_MAYWRITE 0x00000020
283 #define VM_MAYEXEC 0x00000040
284 #define VM_MAYSHARE 0x00000080
285
286 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
287 #ifdef CONFIG_MMU
288 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
289 #else /* CONFIG_MMU */
290 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
291 #define VM_UFFD_MISSING 0
292 #endif /* CONFIG_MMU */
293 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
294 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
295
296 #define VM_LOCKED 0x00002000
297 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
298
299 /* Used by sys_madvise() */
300 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
301 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
302
303 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
304 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
305 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
306 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
307 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
308 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
309 #define VM_SYNC 0x00800000 /* Synchronous page faults */
310 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
311 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
312 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
313
314 #ifdef CONFIG_MEM_SOFT_DIRTY
315 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
316 #else
317 # define VM_SOFTDIRTY 0
318 #endif
319
320 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
321 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
322 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
323 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
324
325 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
326 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
327 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
329 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
330 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
332 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
333 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
334 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
335 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
336 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
337 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
338 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
339
340 #ifdef CONFIG_ARCH_HAS_PKEYS
341 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
342 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0
343 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
344 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
345 #if CONFIG_ARCH_PKEY_BITS > 3
346 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
347 #else
348 # define VM_PKEY_BIT3 0
349 #endif
350 #if CONFIG_ARCH_PKEY_BITS > 4
351 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
352 #else
353 # define VM_PKEY_BIT4 0
354 #endif
355 #endif /* CONFIG_ARCH_HAS_PKEYS */
356
357 #ifdef CONFIG_X86_USER_SHADOW_STACK
358 /*
359 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
360 * support core mm.
361 *
362 * These VMAs will get a single end guard page. This helps userspace protect
363 * itself from attacks. A single page is enough for current shadow stack archs
364 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
365 * for more details on the guard size.
366 */
367 # define VM_SHADOW_STACK VM_HIGH_ARCH_5
368 #else
369 # define VM_SHADOW_STACK VM_NONE
370 #endif
371
372 #if defined(CONFIG_X86)
373 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
374 #elif defined(CONFIG_PPC64)
375 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
376 #elif defined(CONFIG_PARISC)
377 # define VM_GROWSUP VM_ARCH_1
378 #elif defined(CONFIG_SPARC64)
379 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
380 # define VM_ARCH_CLEAR VM_SPARC_ADI
381 #elif defined(CONFIG_ARM64)
382 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
383 # define VM_ARCH_CLEAR VM_ARM64_BTI
384 #elif !defined(CONFIG_MMU)
385 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
386 #endif
387
388 #if defined(CONFIG_ARM64_MTE)
389 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
390 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
391 #else
392 # define VM_MTE VM_NONE
393 # define VM_MTE_ALLOWED VM_NONE
394 #endif
395
396 #ifndef VM_GROWSUP
397 # define VM_GROWSUP VM_NONE
398 #endif
399
400 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
401 # define VM_UFFD_MINOR_BIT 38
402 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
403 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
404 # define VM_UFFD_MINOR VM_NONE
405 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
406
407 /*
408 * This flag is used to connect VFIO to arch specific KVM code. It
409 * indicates that the memory under this VMA is safe for use with any
410 * non-cachable memory type inside KVM. Some VFIO devices, on some
411 * platforms, are thought to be unsafe and can cause machine crashes
412 * if KVM does not lock down the memory type.
413 */
414 #ifdef CONFIG_64BIT
415 #define VM_ALLOW_ANY_UNCACHED_BIT 39
416 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
417 #else
418 #define VM_ALLOW_ANY_UNCACHED VM_NONE
419 #endif
420
421 #ifdef CONFIG_64BIT
422 #define VM_DROPPABLE_BIT 40
423 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
424 #elif defined(CONFIG_PPC32)
425 #define VM_DROPPABLE VM_ARCH_1
426 #else
427 #define VM_DROPPABLE VM_NONE
428 #endif
429
430 #ifdef CONFIG_64BIT
431 /* VM is sealed, in vm_flags */
432 #define VM_SEALED _BITUL(63)
433 #endif
434
435 /* Bits set in the VMA until the stack is in its final location */
436 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
437
438 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
439
440 /* Common data flag combinations */
441 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
442 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
443 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
444 VM_MAYWRITE | VM_MAYEXEC)
445 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
446 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
447
448 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
449 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
450 #endif
451
452 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
453 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
454 #endif
455
456 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
457
458 #ifdef CONFIG_STACK_GROWSUP
459 #define VM_STACK VM_GROWSUP
460 #define VM_STACK_EARLY VM_GROWSDOWN
461 #else
462 #define VM_STACK VM_GROWSDOWN
463 #define VM_STACK_EARLY 0
464 #endif
465
466 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
467
468 /* VMA basic access permission flags */
469 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
470
471
472 /*
473 * Special vmas that are non-mergable, non-mlock()able.
474 */
475 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
476
477 /* This mask prevents VMA from being scanned with khugepaged */
478 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
479
480 /* This mask defines which mm->def_flags a process can inherit its parent */
481 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
482
483 /* This mask represents all the VMA flag bits used by mlock */
484 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
485
486 /* Arch-specific flags to clear when updating VM flags on protection change */
487 #ifndef VM_ARCH_CLEAR
488 # define VM_ARCH_CLEAR VM_NONE
489 #endif
490 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
491
492 /*
493 * mapping from the currently active vm_flags protection bits (the
494 * low four bits) to a page protection mask..
495 */
496
497 /*
498 * The default fault flags that should be used by most of the
499 * arch-specific page fault handlers.
500 */
501 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
502 FAULT_FLAG_KILLABLE | \
503 FAULT_FLAG_INTERRUPTIBLE)
504
505 /**
506 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
507 * @flags: Fault flags.
508 *
509 * This is mostly used for places where we want to try to avoid taking
510 * the mmap_lock for too long a time when waiting for another condition
511 * to change, in which case we can try to be polite to release the
512 * mmap_lock in the first round to avoid potential starvation of other
513 * processes that would also want the mmap_lock.
514 *
515 * Return: true if the page fault allows retry and this is the first
516 * attempt of the fault handling; false otherwise.
517 */
fault_flag_allow_retry_first(enum fault_flag flags)518 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
519 {
520 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
521 (!(flags & FAULT_FLAG_TRIED));
522 }
523
524 #define FAULT_FLAG_TRACE \
525 { FAULT_FLAG_WRITE, "WRITE" }, \
526 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
527 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
528 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
529 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
530 { FAULT_FLAG_TRIED, "TRIED" }, \
531 { FAULT_FLAG_USER, "USER" }, \
532 { FAULT_FLAG_REMOTE, "REMOTE" }, \
533 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
534 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
535 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
536
537 /*
538 * vm_fault is filled by the pagefault handler and passed to the vma's
539 * ->fault function. The vma's ->fault is responsible for returning a bitmask
540 * of VM_FAULT_xxx flags that give details about how the fault was handled.
541 *
542 * MM layer fills up gfp_mask for page allocations but fault handler might
543 * alter it if its implementation requires a different allocation context.
544 *
545 * pgoff should be used in favour of virtual_address, if possible.
546 */
547 struct vm_fault {
548 const struct {
549 struct vm_area_struct *vma; /* Target VMA */
550 gfp_t gfp_mask; /* gfp mask to be used for allocations */
551 pgoff_t pgoff; /* Logical page offset based on vma */
552 unsigned long address; /* Faulting virtual address - masked */
553 unsigned long real_address; /* Faulting virtual address - unmasked */
554 };
555 enum fault_flag flags; /* FAULT_FLAG_xxx flags
556 * XXX: should really be 'const' */
557 pmd_t *pmd; /* Pointer to pmd entry matching
558 * the 'address' */
559 pud_t *pud; /* Pointer to pud entry matching
560 * the 'address'
561 */
562 union {
563 pte_t orig_pte; /* Value of PTE at the time of fault */
564 pmd_t orig_pmd; /* Value of PMD at the time of fault,
565 * used by PMD fault only.
566 */
567 };
568
569 struct page *cow_page; /* Page handler may use for COW fault */
570 struct page *page; /* ->fault handlers should return a
571 * page here, unless VM_FAULT_NOPAGE
572 * is set (which is also implied by
573 * VM_FAULT_ERROR).
574 */
575 /* These three entries are valid only while holding ptl lock */
576 pte_t *pte; /* Pointer to pte entry matching
577 * the 'address'. NULL if the page
578 * table hasn't been allocated.
579 */
580 spinlock_t *ptl; /* Page table lock.
581 * Protects pte page table if 'pte'
582 * is not NULL, otherwise pmd.
583 */
584 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
585 * vm_ops->map_pages() sets up a page
586 * table from atomic context.
587 * do_fault_around() pre-allocates
588 * page table to avoid allocation from
589 * atomic context.
590 */
591 };
592
593 /*
594 * These are the virtual MM functions - opening of an area, closing and
595 * unmapping it (needed to keep files on disk up-to-date etc), pointer
596 * to the functions called when a no-page or a wp-page exception occurs.
597 */
598 struct vm_operations_struct {
599 void (*open)(struct vm_area_struct * area);
600 /**
601 * @close: Called when the VMA is being removed from the MM.
602 * Context: User context. May sleep. Caller holds mmap_lock.
603 */
604 void (*close)(struct vm_area_struct * area);
605 /* Called any time before splitting to check if it's allowed */
606 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
607 int (*mremap)(struct vm_area_struct *area);
608 /*
609 * Called by mprotect() to make driver-specific permission
610 * checks before mprotect() is finalised. The VMA must not
611 * be modified. Returns 0 if mprotect() can proceed.
612 */
613 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
614 unsigned long end, unsigned long newflags);
615 vm_fault_t (*fault)(struct vm_fault *vmf);
616 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
617 vm_fault_t (*map_pages)(struct vm_fault *vmf,
618 pgoff_t start_pgoff, pgoff_t end_pgoff);
619 unsigned long (*pagesize)(struct vm_area_struct * area);
620
621 /* notification that a previously read-only page is about to become
622 * writable, if an error is returned it will cause a SIGBUS */
623 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
624
625 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
626 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
627
628 /* called by access_process_vm when get_user_pages() fails, typically
629 * for use by special VMAs. See also generic_access_phys() for a generic
630 * implementation useful for any iomem mapping.
631 */
632 int (*access)(struct vm_area_struct *vma, unsigned long addr,
633 void *buf, int len, int write);
634
635 /* Called by the /proc/PID/maps code to ask the vma whether it
636 * has a special name. Returning non-NULL will also cause this
637 * vma to be dumped unconditionally. */
638 const char *(*name)(struct vm_area_struct *vma);
639
640 #ifdef CONFIG_NUMA
641 /*
642 * set_policy() op must add a reference to any non-NULL @new mempolicy
643 * to hold the policy upon return. Caller should pass NULL @new to
644 * remove a policy and fall back to surrounding context--i.e. do not
645 * install a MPOL_DEFAULT policy, nor the task or system default
646 * mempolicy.
647 */
648 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
649
650 /*
651 * get_policy() op must add reference [mpol_get()] to any policy at
652 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
653 * in mm/mempolicy.c will do this automatically.
654 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
655 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
656 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
657 * must return NULL--i.e., do not "fallback" to task or system default
658 * policy.
659 */
660 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
661 unsigned long addr, pgoff_t *ilx);
662 #endif
663 /*
664 * Called by vm_normal_page() for special PTEs to find the
665 * page for @addr. This is useful if the default behavior
666 * (using pte_page()) would not find the correct page.
667 */
668 struct page *(*find_special_page)(struct vm_area_struct *vma,
669 unsigned long addr);
670 };
671
672 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)673 static inline void vma_numab_state_init(struct vm_area_struct *vma)
674 {
675 vma->numab_state = NULL;
676 }
vma_numab_state_free(struct vm_area_struct * vma)677 static inline void vma_numab_state_free(struct vm_area_struct *vma)
678 {
679 kfree(vma->numab_state);
680 }
681 #else
vma_numab_state_init(struct vm_area_struct * vma)682 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)683 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
684 #endif /* CONFIG_NUMA_BALANCING */
685
686 #ifdef CONFIG_PER_VMA_LOCK
687 /*
688 * Try to read-lock a vma. The function is allowed to occasionally yield false
689 * locked result to avoid performance overhead, in which case we fall back to
690 * using mmap_lock. The function should never yield false unlocked result.
691 */
vma_start_read(struct vm_area_struct * vma)692 static inline bool vma_start_read(struct vm_area_struct *vma)
693 {
694 /*
695 * Check before locking. A race might cause false locked result.
696 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
697 * ACQUIRE semantics, because this is just a lockless check whose result
698 * we don't rely on for anything - the mm_lock_seq read against which we
699 * need ordering is below.
700 */
701 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
702 return false;
703
704 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
705 return false;
706
707 /*
708 * Overflow might produce false locked result.
709 * False unlocked result is impossible because we modify and check
710 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
711 * modification invalidates all existing locks.
712 *
713 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
714 * racing with vma_end_write_all(), we only start reading from the VMA
715 * after it has been unlocked.
716 * This pairs with RELEASE semantics in vma_end_write_all().
717 */
718 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
719 up_read(&vma->vm_lock->lock);
720 return false;
721 }
722 return true;
723 }
724
vma_end_read(struct vm_area_struct * vma)725 static inline void vma_end_read(struct vm_area_struct *vma)
726 {
727 rcu_read_lock(); /* keeps vma alive till the end of up_read */
728 up_read(&vma->vm_lock->lock);
729 rcu_read_unlock();
730 }
731
732 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
__is_vma_write_locked(struct vm_area_struct * vma,int * mm_lock_seq)733 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
734 {
735 mmap_assert_write_locked(vma->vm_mm);
736
737 /*
738 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
739 * mm->mm_lock_seq can't be concurrently modified.
740 */
741 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
742 return (vma->vm_lock_seq == *mm_lock_seq);
743 }
744
745 /*
746 * Begin writing to a VMA.
747 * Exclude concurrent readers under the per-VMA lock until the currently
748 * write-locked mmap_lock is dropped or downgraded.
749 */
vma_start_write(struct vm_area_struct * vma)750 static inline void vma_start_write(struct vm_area_struct *vma)
751 {
752 int mm_lock_seq;
753
754 if (__is_vma_write_locked(vma, &mm_lock_seq))
755 return;
756
757 down_write(&vma->vm_lock->lock);
758 /*
759 * We should use WRITE_ONCE() here because we can have concurrent reads
760 * from the early lockless pessimistic check in vma_start_read().
761 * We don't really care about the correctness of that early check, but
762 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
763 */
764 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
765 up_write(&vma->vm_lock->lock);
766 }
767
vma_assert_write_locked(struct vm_area_struct * vma)768 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
769 {
770 int mm_lock_seq;
771
772 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
773 }
774
vma_assert_locked(struct vm_area_struct * vma)775 static inline void vma_assert_locked(struct vm_area_struct *vma)
776 {
777 if (!rwsem_is_locked(&vma->vm_lock->lock))
778 vma_assert_write_locked(vma);
779 }
780
vma_mark_detached(struct vm_area_struct * vma,bool detached)781 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
782 {
783 /* When detaching vma should be write-locked */
784 if (detached)
785 vma_assert_write_locked(vma);
786 vma->detached = detached;
787 }
788
release_fault_lock(struct vm_fault * vmf)789 static inline void release_fault_lock(struct vm_fault *vmf)
790 {
791 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
792 vma_end_read(vmf->vma);
793 else
794 mmap_read_unlock(vmf->vma->vm_mm);
795 }
796
assert_fault_locked(struct vm_fault * vmf)797 static inline void assert_fault_locked(struct vm_fault *vmf)
798 {
799 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
800 vma_assert_locked(vmf->vma);
801 else
802 mmap_assert_locked(vmf->vma->vm_mm);
803 }
804
805 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
806 unsigned long address);
807
808 #else /* CONFIG_PER_VMA_LOCK */
809
vma_start_read(struct vm_area_struct * vma)810 static inline bool vma_start_read(struct vm_area_struct *vma)
811 { return false; }
vma_end_read(struct vm_area_struct * vma)812 static inline void vma_end_read(struct vm_area_struct *vma) {}
vma_start_write(struct vm_area_struct * vma)813 static inline void vma_start_write(struct vm_area_struct *vma) {}
vma_assert_write_locked(struct vm_area_struct * vma)814 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
815 { mmap_assert_write_locked(vma->vm_mm); }
vma_mark_detached(struct vm_area_struct * vma,bool detached)816 static inline void vma_mark_detached(struct vm_area_struct *vma,
817 bool detached) {}
818
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)819 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
820 unsigned long address)
821 {
822 return NULL;
823 }
824
vma_assert_locked(struct vm_area_struct * vma)825 static inline void vma_assert_locked(struct vm_area_struct *vma)
826 {
827 mmap_assert_locked(vma->vm_mm);
828 }
829
release_fault_lock(struct vm_fault * vmf)830 static inline void release_fault_lock(struct vm_fault *vmf)
831 {
832 mmap_read_unlock(vmf->vma->vm_mm);
833 }
834
assert_fault_locked(struct vm_fault * vmf)835 static inline void assert_fault_locked(struct vm_fault *vmf)
836 {
837 mmap_assert_locked(vmf->vma->vm_mm);
838 }
839
840 #endif /* CONFIG_PER_VMA_LOCK */
841
842 extern const struct vm_operations_struct vma_dummy_vm_ops;
843
844 /*
845 * WARNING: vma_init does not initialize vma->vm_lock.
846 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
847 */
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)848 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
849 {
850 memset(vma, 0, sizeof(*vma));
851 vma->vm_mm = mm;
852 vma->vm_ops = &vma_dummy_vm_ops;
853 INIT_LIST_HEAD(&vma->anon_vma_chain);
854 vma_mark_detached(vma, false);
855 vma_numab_state_init(vma);
856 }
857
858 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)859 static inline void vm_flags_init(struct vm_area_struct *vma,
860 vm_flags_t flags)
861 {
862 ACCESS_PRIVATE(vma, __vm_flags) = flags;
863 }
864
865 /*
866 * Use when VMA is part of the VMA tree and modifications need coordination
867 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
868 * it should be locked explicitly beforehand.
869 */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)870 static inline void vm_flags_reset(struct vm_area_struct *vma,
871 vm_flags_t flags)
872 {
873 vma_assert_write_locked(vma);
874 vm_flags_init(vma, flags);
875 }
876
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)877 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
878 vm_flags_t flags)
879 {
880 vma_assert_write_locked(vma);
881 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
882 }
883
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)884 static inline void vm_flags_set(struct vm_area_struct *vma,
885 vm_flags_t flags)
886 {
887 vma_start_write(vma);
888 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
889 }
890
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)891 static inline void vm_flags_clear(struct vm_area_struct *vma,
892 vm_flags_t flags)
893 {
894 vma_start_write(vma);
895 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
896 }
897
898 /*
899 * Use only if VMA is not part of the VMA tree or has no other users and
900 * therefore needs no locking.
901 */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)902 static inline void __vm_flags_mod(struct vm_area_struct *vma,
903 vm_flags_t set, vm_flags_t clear)
904 {
905 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
906 }
907
908 /*
909 * Use only when the order of set/clear operations is unimportant, otherwise
910 * use vm_flags_{set|clear} explicitly.
911 */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)912 static inline void vm_flags_mod(struct vm_area_struct *vma,
913 vm_flags_t set, vm_flags_t clear)
914 {
915 vma_start_write(vma);
916 __vm_flags_mod(vma, set, clear);
917 }
918
vma_set_anonymous(struct vm_area_struct * vma)919 static inline void vma_set_anonymous(struct vm_area_struct *vma)
920 {
921 vma->vm_ops = NULL;
922 }
923
vma_is_anonymous(struct vm_area_struct * vma)924 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
925 {
926 return !vma->vm_ops;
927 }
928
929 /*
930 * Indicate if the VMA is a heap for the given task; for
931 * /proc/PID/maps that is the heap of the main task.
932 */
vma_is_initial_heap(const struct vm_area_struct * vma)933 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
934 {
935 return vma->vm_start < vma->vm_mm->brk &&
936 vma->vm_end > vma->vm_mm->start_brk;
937 }
938
939 /*
940 * Indicate if the VMA is a stack for the given task; for
941 * /proc/PID/maps that is the stack of the main task.
942 */
vma_is_initial_stack(const struct vm_area_struct * vma)943 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
944 {
945 /*
946 * We make no effort to guess what a given thread considers to be
947 * its "stack". It's not even well-defined for programs written
948 * languages like Go.
949 */
950 return vma->vm_start <= vma->vm_mm->start_stack &&
951 vma->vm_end >= vma->vm_mm->start_stack;
952 }
953
vma_is_temporary_stack(struct vm_area_struct * vma)954 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
955 {
956 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
957
958 if (!maybe_stack)
959 return false;
960
961 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
962 VM_STACK_INCOMPLETE_SETUP)
963 return true;
964
965 return false;
966 }
967
vma_is_foreign(struct vm_area_struct * vma)968 static inline bool vma_is_foreign(struct vm_area_struct *vma)
969 {
970 if (!current->mm)
971 return true;
972
973 if (current->mm != vma->vm_mm)
974 return true;
975
976 return false;
977 }
978
vma_is_accessible(struct vm_area_struct * vma)979 static inline bool vma_is_accessible(struct vm_area_struct *vma)
980 {
981 return vma->vm_flags & VM_ACCESS_FLAGS;
982 }
983
is_shared_maywrite(vm_flags_t vm_flags)984 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
985 {
986 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
987 (VM_SHARED | VM_MAYWRITE);
988 }
989
vma_is_shared_maywrite(struct vm_area_struct * vma)990 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
991 {
992 return is_shared_maywrite(vma->vm_flags);
993 }
994
995 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)996 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
997 {
998 return mas_find(&vmi->mas, max - 1);
999 }
1000
vma_next(struct vma_iterator * vmi)1001 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1002 {
1003 /*
1004 * Uses mas_find() to get the first VMA when the iterator starts.
1005 * Calling mas_next() could skip the first entry.
1006 */
1007 return mas_find(&vmi->mas, ULONG_MAX);
1008 }
1009
1010 static inline
vma_iter_next_range(struct vma_iterator * vmi)1011 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1012 {
1013 return mas_next_range(&vmi->mas, ULONG_MAX);
1014 }
1015
1016
vma_prev(struct vma_iterator * vmi)1017 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1018 {
1019 return mas_prev(&vmi->mas, 0);
1020 }
1021
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)1022 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1023 unsigned long start, unsigned long end, gfp_t gfp)
1024 {
1025 __mas_set_range(&vmi->mas, start, end - 1);
1026 mas_store_gfp(&vmi->mas, NULL, gfp);
1027 if (unlikely(mas_is_err(&vmi->mas)))
1028 return -ENOMEM;
1029
1030 return 0;
1031 }
1032
1033 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)1034 static inline void vma_iter_free(struct vma_iterator *vmi)
1035 {
1036 mas_destroy(&vmi->mas);
1037 }
1038
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)1039 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1040 struct vm_area_struct *vma)
1041 {
1042 vmi->mas.index = vma->vm_start;
1043 vmi->mas.last = vma->vm_end - 1;
1044 mas_store(&vmi->mas, vma);
1045 if (unlikely(mas_is_err(&vmi->mas)))
1046 return -ENOMEM;
1047
1048 return 0;
1049 }
1050
vma_iter_invalidate(struct vma_iterator * vmi)1051 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1052 {
1053 mas_pause(&vmi->mas);
1054 }
1055
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)1056 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1057 {
1058 mas_set(&vmi->mas, addr);
1059 }
1060
1061 #define for_each_vma(__vmi, __vma) \
1062 while (((__vma) = vma_next(&(__vmi))) != NULL)
1063
1064 /* The MM code likes to work with exclusive end addresses */
1065 #define for_each_vma_range(__vmi, __vma, __end) \
1066 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1067
1068 #ifdef CONFIG_SHMEM
1069 /*
1070 * The vma_is_shmem is not inline because it is used only by slow
1071 * paths in userfault.
1072 */
1073 bool vma_is_shmem(struct vm_area_struct *vma);
1074 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1075 #else
vma_is_shmem(struct vm_area_struct * vma)1076 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(struct vm_area_struct * vma)1077 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1078 #endif
1079
1080 int vma_is_stack_for_current(struct vm_area_struct *vma);
1081
1082 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1083 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1084
1085 struct mmu_gather;
1086 struct inode;
1087
1088 /*
1089 * compound_order() can be called without holding a reference, which means
1090 * that niceties like page_folio() don't work. These callers should be
1091 * prepared to handle wild return values. For example, PG_head may be
1092 * set before the order is initialised, or this may be a tail page.
1093 * See compaction.c for some good examples.
1094 */
compound_order(struct page * page)1095 static inline unsigned int compound_order(struct page *page)
1096 {
1097 struct folio *folio = (struct folio *)page;
1098
1099 if (!test_bit(PG_head, &folio->flags))
1100 return 0;
1101 return folio->_flags_1 & 0xff;
1102 }
1103
1104 /**
1105 * folio_order - The allocation order of a folio.
1106 * @folio: The folio.
1107 *
1108 * A folio is composed of 2^order pages. See get_order() for the definition
1109 * of order.
1110 *
1111 * Return: The order of the folio.
1112 */
folio_order(const struct folio * folio)1113 static inline unsigned int folio_order(const struct folio *folio)
1114 {
1115 if (!folio_test_large(folio))
1116 return 0;
1117 return folio->_flags_1 & 0xff;
1118 }
1119
1120 #include <linux/huge_mm.h>
1121
1122 /*
1123 * Methods to modify the page usage count.
1124 *
1125 * What counts for a page usage:
1126 * - cache mapping (page->mapping)
1127 * - private data (page->private)
1128 * - page mapped in a task's page tables, each mapping
1129 * is counted separately
1130 *
1131 * Also, many kernel routines increase the page count before a critical
1132 * routine so they can be sure the page doesn't go away from under them.
1133 */
1134
1135 /*
1136 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1137 */
put_page_testzero(struct page * page)1138 static inline int put_page_testzero(struct page *page)
1139 {
1140 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1141 return page_ref_dec_and_test(page);
1142 }
1143
folio_put_testzero(struct folio * folio)1144 static inline int folio_put_testzero(struct folio *folio)
1145 {
1146 return put_page_testzero(&folio->page);
1147 }
1148
1149 /*
1150 * Try to grab a ref unless the page has a refcount of zero, return false if
1151 * that is the case.
1152 * This can be called when MMU is off so it must not access
1153 * any of the virtual mappings.
1154 */
get_page_unless_zero(struct page * page)1155 static inline bool get_page_unless_zero(struct page *page)
1156 {
1157 return page_ref_add_unless(page, 1, 0);
1158 }
1159
folio_get_nontail_page(struct page * page)1160 static inline struct folio *folio_get_nontail_page(struct page *page)
1161 {
1162 if (unlikely(!get_page_unless_zero(page)))
1163 return NULL;
1164 return (struct folio *)page;
1165 }
1166
1167 extern int page_is_ram(unsigned long pfn);
1168
1169 enum {
1170 REGION_INTERSECTS,
1171 REGION_DISJOINT,
1172 REGION_MIXED,
1173 };
1174
1175 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1176 unsigned long desc);
1177
1178 /* Support for virtually mapped pages */
1179 struct page *vmalloc_to_page(const void *addr);
1180 unsigned long vmalloc_to_pfn(const void *addr);
1181
1182 /*
1183 * Determine if an address is within the vmalloc range
1184 *
1185 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1186 * is no special casing required.
1187 */
1188 #ifdef CONFIG_MMU
1189 extern bool is_vmalloc_addr(const void *x);
1190 extern int is_vmalloc_or_module_addr(const void *x);
1191 #else
is_vmalloc_addr(const void * x)1192 static inline bool is_vmalloc_addr(const void *x)
1193 {
1194 return false;
1195 }
is_vmalloc_or_module_addr(const void * x)1196 static inline int is_vmalloc_or_module_addr(const void *x)
1197 {
1198 return 0;
1199 }
1200 #endif
1201
1202 /*
1203 * How many times the entire folio is mapped as a single unit (eg by a
1204 * PMD or PUD entry). This is probably not what you want, except for
1205 * debugging purposes or implementation of other core folio_*() primitives.
1206 */
folio_entire_mapcount(const struct folio * folio)1207 static inline int folio_entire_mapcount(const struct folio *folio)
1208 {
1209 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1210 return atomic_read(&folio->_entire_mapcount) + 1;
1211 }
1212
folio_large_mapcount(const struct folio * folio)1213 static inline int folio_large_mapcount(const struct folio *folio)
1214 {
1215 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1216 return atomic_read(&folio->_large_mapcount) + 1;
1217 }
1218
1219 /**
1220 * folio_mapcount() - Number of mappings of this folio.
1221 * @folio: The folio.
1222 *
1223 * The folio mapcount corresponds to the number of present user page table
1224 * entries that reference any part of a folio. Each such present user page
1225 * table entry must be paired with exactly on folio reference.
1226 *
1227 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1228 * exactly once.
1229 *
1230 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1231 * references the entire folio counts exactly once, even when such special
1232 * page table entries are comprised of multiple ordinary page table entries.
1233 *
1234 * Will report 0 for pages which cannot be mapped into userspace, such as
1235 * slab, page tables and similar.
1236 *
1237 * Return: The number of times this folio is mapped.
1238 */
folio_mapcount(const struct folio * folio)1239 static inline int folio_mapcount(const struct folio *folio)
1240 {
1241 int mapcount;
1242
1243 if (likely(!folio_test_large(folio))) {
1244 mapcount = atomic_read(&folio->_mapcount) + 1;
1245 if (page_mapcount_is_type(mapcount))
1246 mapcount = 0;
1247 return mapcount;
1248 }
1249 return folio_large_mapcount(folio);
1250 }
1251
1252 /**
1253 * folio_mapped - Is this folio mapped into userspace?
1254 * @folio: The folio.
1255 *
1256 * Return: True if any page in this folio is referenced by user page tables.
1257 */
folio_mapped(const struct folio * folio)1258 static inline bool folio_mapped(const struct folio *folio)
1259 {
1260 return folio_mapcount(folio) >= 1;
1261 }
1262
1263 /*
1264 * Return true if this page is mapped into pagetables.
1265 * For compound page it returns true if any sub-page of compound page is mapped,
1266 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1267 */
page_mapped(const struct page * page)1268 static inline bool page_mapped(const struct page *page)
1269 {
1270 return folio_mapped(page_folio(page));
1271 }
1272
virt_to_head_page(const void * x)1273 static inline struct page *virt_to_head_page(const void *x)
1274 {
1275 struct page *page = virt_to_page(x);
1276
1277 return compound_head(page);
1278 }
1279
virt_to_folio(const void * x)1280 static inline struct folio *virt_to_folio(const void *x)
1281 {
1282 struct page *page = virt_to_page(x);
1283
1284 return page_folio(page);
1285 }
1286
1287 void __folio_put(struct folio *folio);
1288
1289 void put_pages_list(struct list_head *pages);
1290
1291 void split_page(struct page *page, unsigned int order);
1292 void folio_copy(struct folio *dst, struct folio *src);
1293 int folio_mc_copy(struct folio *dst, struct folio *src);
1294
1295 unsigned long nr_free_buffer_pages(void);
1296
1297 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1298 static inline unsigned long page_size(struct page *page)
1299 {
1300 return PAGE_SIZE << compound_order(page);
1301 }
1302
1303 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1304 static inline unsigned int page_shift(struct page *page)
1305 {
1306 return PAGE_SHIFT + compound_order(page);
1307 }
1308
1309 /**
1310 * thp_order - Order of a transparent huge page.
1311 * @page: Head page of a transparent huge page.
1312 */
thp_order(struct page * page)1313 static inline unsigned int thp_order(struct page *page)
1314 {
1315 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1316 return compound_order(page);
1317 }
1318
1319 /**
1320 * thp_size - Size of a transparent huge page.
1321 * @page: Head page of a transparent huge page.
1322 *
1323 * Return: Number of bytes in this page.
1324 */
thp_size(struct page * page)1325 static inline unsigned long thp_size(struct page *page)
1326 {
1327 return PAGE_SIZE << thp_order(page);
1328 }
1329
1330 #ifdef CONFIG_MMU
1331 /*
1332 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1333 * servicing faults for write access. In the normal case, do always want
1334 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1335 * that do not have writing enabled, when used by access_process_vm.
1336 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1337 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1338 {
1339 if (likely(vma->vm_flags & VM_WRITE))
1340 pte = pte_mkwrite(pte, vma);
1341 return pte;
1342 }
1343
1344 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1345 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1346 struct page *page, unsigned int nr, unsigned long addr);
1347
1348 vm_fault_t finish_fault(struct vm_fault *vmf);
1349 #endif
1350
1351 /*
1352 * Multiple processes may "see" the same page. E.g. for untouched
1353 * mappings of /dev/null, all processes see the same page full of
1354 * zeroes, and text pages of executables and shared libraries have
1355 * only one copy in memory, at most, normally.
1356 *
1357 * For the non-reserved pages, page_count(page) denotes a reference count.
1358 * page_count() == 0 means the page is free. page->lru is then used for
1359 * freelist management in the buddy allocator.
1360 * page_count() > 0 means the page has been allocated.
1361 *
1362 * Pages are allocated by the slab allocator in order to provide memory
1363 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1364 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1365 * unless a particular usage is carefully commented. (the responsibility of
1366 * freeing the kmalloc memory is the caller's, of course).
1367 *
1368 * A page may be used by anyone else who does a __get_free_page().
1369 * In this case, page_count still tracks the references, and should only
1370 * be used through the normal accessor functions. The top bits of page->flags
1371 * and page->virtual store page management information, but all other fields
1372 * are unused and could be used privately, carefully. The management of this
1373 * page is the responsibility of the one who allocated it, and those who have
1374 * subsequently been given references to it.
1375 *
1376 * The other pages (we may call them "pagecache pages") are completely
1377 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1378 * The following discussion applies only to them.
1379 *
1380 * A pagecache page contains an opaque `private' member, which belongs to the
1381 * page's address_space. Usually, this is the address of a circular list of
1382 * the page's disk buffers. PG_private must be set to tell the VM to call
1383 * into the filesystem to release these pages.
1384 *
1385 * A page may belong to an inode's memory mapping. In this case, page->mapping
1386 * is the pointer to the inode, and page->index is the file offset of the page,
1387 * in units of PAGE_SIZE.
1388 *
1389 * If pagecache pages are not associated with an inode, they are said to be
1390 * anonymous pages. These may become associated with the swapcache, and in that
1391 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1392 *
1393 * In either case (swapcache or inode backed), the pagecache itself holds one
1394 * reference to the page. Setting PG_private should also increment the
1395 * refcount. The each user mapping also has a reference to the page.
1396 *
1397 * The pagecache pages are stored in a per-mapping radix tree, which is
1398 * rooted at mapping->i_pages, and indexed by offset.
1399 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1400 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1401 *
1402 * All pagecache pages may be subject to I/O:
1403 * - inode pages may need to be read from disk,
1404 * - inode pages which have been modified and are MAP_SHARED may need
1405 * to be written back to the inode on disk,
1406 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1407 * modified may need to be swapped out to swap space and (later) to be read
1408 * back into memory.
1409 */
1410
1411 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1412 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1413
1414 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
put_devmap_managed_folio_refs(struct folio * folio,int refs)1415 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1416 {
1417 if (!static_branch_unlikely(&devmap_managed_key))
1418 return false;
1419 if (!folio_is_zone_device(folio))
1420 return false;
1421 return __put_devmap_managed_folio_refs(folio, refs);
1422 }
1423 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
put_devmap_managed_folio_refs(struct folio * folio,int refs)1424 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1425 {
1426 return false;
1427 }
1428 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1429
1430 /* 127: arbitrary random number, small enough to assemble well */
1431 #define folio_ref_zero_or_close_to_overflow(folio) \
1432 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1433
1434 /**
1435 * folio_get - Increment the reference count on a folio.
1436 * @folio: The folio.
1437 *
1438 * Context: May be called in any context, as long as you know that
1439 * you have a refcount on the folio. If you do not already have one,
1440 * folio_try_get() may be the right interface for you to use.
1441 */
folio_get(struct folio * folio)1442 static inline void folio_get(struct folio *folio)
1443 {
1444 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1445 folio_ref_inc(folio);
1446 }
1447
get_page(struct page * page)1448 static inline void get_page(struct page *page)
1449 {
1450 folio_get(page_folio(page));
1451 }
1452
try_get_page(struct page * page)1453 static inline __must_check bool try_get_page(struct page *page)
1454 {
1455 page = compound_head(page);
1456 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1457 return false;
1458 page_ref_inc(page);
1459 return true;
1460 }
1461
1462 /**
1463 * folio_put - Decrement the reference count on a folio.
1464 * @folio: The folio.
1465 *
1466 * If the folio's reference count reaches zero, the memory will be
1467 * released back to the page allocator and may be used by another
1468 * allocation immediately. Do not access the memory or the struct folio
1469 * after calling folio_put() unless you can be sure that it wasn't the
1470 * last reference.
1471 *
1472 * Context: May be called in process or interrupt context, but not in NMI
1473 * context. May be called while holding a spinlock.
1474 */
folio_put(struct folio * folio)1475 static inline void folio_put(struct folio *folio)
1476 {
1477 if (folio_put_testzero(folio))
1478 __folio_put(folio);
1479 }
1480
1481 /**
1482 * folio_put_refs - Reduce the reference count on a folio.
1483 * @folio: The folio.
1484 * @refs: The amount to subtract from the folio's reference count.
1485 *
1486 * If the folio's reference count reaches zero, the memory will be
1487 * released back to the page allocator and may be used by another
1488 * allocation immediately. Do not access the memory or the struct folio
1489 * after calling folio_put_refs() unless you can be sure that these weren't
1490 * the last references.
1491 *
1492 * Context: May be called in process or interrupt context, but not in NMI
1493 * context. May be called while holding a spinlock.
1494 */
folio_put_refs(struct folio * folio,int refs)1495 static inline void folio_put_refs(struct folio *folio, int refs)
1496 {
1497 if (folio_ref_sub_and_test(folio, refs))
1498 __folio_put(folio);
1499 }
1500
1501 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1502
1503 /*
1504 * union release_pages_arg - an array of pages or folios
1505 *
1506 * release_pages() releases a simple array of multiple pages, and
1507 * accepts various different forms of said page array: either
1508 * a regular old boring array of pages, an array of folios, or
1509 * an array of encoded page pointers.
1510 *
1511 * The transparent union syntax for this kind of "any of these
1512 * argument types" is all kinds of ugly, so look away.
1513 */
1514 typedef union {
1515 struct page **pages;
1516 struct folio **folios;
1517 struct encoded_page **encoded_pages;
1518 } release_pages_arg __attribute__ ((__transparent_union__));
1519
1520 void release_pages(release_pages_arg, int nr);
1521
1522 /**
1523 * folios_put - Decrement the reference count on an array of folios.
1524 * @folios: The folios.
1525 *
1526 * Like folio_put(), but for a batch of folios. This is more efficient
1527 * than writing the loop yourself as it will optimise the locks which need
1528 * to be taken if the folios are freed. The folios batch is returned
1529 * empty and ready to be reused for another batch; there is no need to
1530 * reinitialise it.
1531 *
1532 * Context: May be called in process or interrupt context, but not in NMI
1533 * context. May be called while holding a spinlock.
1534 */
folios_put(struct folio_batch * folios)1535 static inline void folios_put(struct folio_batch *folios)
1536 {
1537 folios_put_refs(folios, NULL);
1538 }
1539
put_page(struct page * page)1540 static inline void put_page(struct page *page)
1541 {
1542 struct folio *folio = page_folio(page);
1543
1544 /*
1545 * For some devmap managed pages we need to catch refcount transition
1546 * from 2 to 1:
1547 */
1548 if (put_devmap_managed_folio_refs(folio, 1))
1549 return;
1550 folio_put(folio);
1551 }
1552
1553 /*
1554 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1555 * the page's refcount so that two separate items are tracked: the original page
1556 * reference count, and also a new count of how many pin_user_pages() calls were
1557 * made against the page. ("gup-pinned" is another term for the latter).
1558 *
1559 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1560 * distinct from normal pages. As such, the unpin_user_page() call (and its
1561 * variants) must be used in order to release gup-pinned pages.
1562 *
1563 * Choice of value:
1564 *
1565 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1566 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1567 * simpler, due to the fact that adding an even power of two to the page
1568 * refcount has the effect of using only the upper N bits, for the code that
1569 * counts up using the bias value. This means that the lower bits are left for
1570 * the exclusive use of the original code that increments and decrements by one
1571 * (or at least, by much smaller values than the bias value).
1572 *
1573 * Of course, once the lower bits overflow into the upper bits (and this is
1574 * OK, because subtraction recovers the original values), then visual inspection
1575 * no longer suffices to directly view the separate counts. However, for normal
1576 * applications that don't have huge page reference counts, this won't be an
1577 * issue.
1578 *
1579 * Locking: the lockless algorithm described in folio_try_get_rcu()
1580 * provides safe operation for get_user_pages(), folio_mkclean() and
1581 * other calls that race to set up page table entries.
1582 */
1583 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1584
1585 void unpin_user_page(struct page *page);
1586 void unpin_folio(struct folio *folio);
1587 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1588 bool make_dirty);
1589 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1590 bool make_dirty);
1591 void unpin_user_pages(struct page **pages, unsigned long npages);
1592 void unpin_user_folio(struct folio *folio, unsigned long npages);
1593 void unpin_folios(struct folio **folios, unsigned long nfolios);
1594
is_cow_mapping(vm_flags_t flags)1595 static inline bool is_cow_mapping(vm_flags_t flags)
1596 {
1597 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1598 }
1599
1600 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1601 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1602 {
1603 /*
1604 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1605 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1606 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1607 * underlying memory if ptrace is active, so this is only possible if
1608 * ptrace does not apply. Note that there is no mprotect() to upgrade
1609 * write permissions later.
1610 */
1611 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1612 }
1613 #endif
1614
1615 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1616 #define SECTION_IN_PAGE_FLAGS
1617 #endif
1618
1619 /*
1620 * The identification function is mainly used by the buddy allocator for
1621 * determining if two pages could be buddies. We are not really identifying
1622 * the zone since we could be using the section number id if we do not have
1623 * node id available in page flags.
1624 * We only guarantee that it will return the same value for two combinable
1625 * pages in a zone.
1626 */
page_zone_id(struct page * page)1627 static inline int page_zone_id(struct page *page)
1628 {
1629 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1630 }
1631
1632 #ifdef NODE_NOT_IN_PAGE_FLAGS
1633 int page_to_nid(const struct page *page);
1634 #else
page_to_nid(const struct page * page)1635 static inline int page_to_nid(const struct page *page)
1636 {
1637 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1638 }
1639 #endif
1640
folio_nid(const struct folio * folio)1641 static inline int folio_nid(const struct folio *folio)
1642 {
1643 return page_to_nid(&folio->page);
1644 }
1645
1646 #ifdef CONFIG_NUMA_BALANCING
1647 /* page access time bits needs to hold at least 4 seconds */
1648 #define PAGE_ACCESS_TIME_MIN_BITS 12
1649 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1650 #define PAGE_ACCESS_TIME_BUCKETS \
1651 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1652 #else
1653 #define PAGE_ACCESS_TIME_BUCKETS 0
1654 #endif
1655
1656 #define PAGE_ACCESS_TIME_MASK \
1657 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1658
cpu_pid_to_cpupid(int cpu,int pid)1659 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1660 {
1661 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1662 }
1663
cpupid_to_pid(int cpupid)1664 static inline int cpupid_to_pid(int cpupid)
1665 {
1666 return cpupid & LAST__PID_MASK;
1667 }
1668
cpupid_to_cpu(int cpupid)1669 static inline int cpupid_to_cpu(int cpupid)
1670 {
1671 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1672 }
1673
cpupid_to_nid(int cpupid)1674 static inline int cpupid_to_nid(int cpupid)
1675 {
1676 return cpu_to_node(cpupid_to_cpu(cpupid));
1677 }
1678
cpupid_pid_unset(int cpupid)1679 static inline bool cpupid_pid_unset(int cpupid)
1680 {
1681 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1682 }
1683
cpupid_cpu_unset(int cpupid)1684 static inline bool cpupid_cpu_unset(int cpupid)
1685 {
1686 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1687 }
1688
__cpupid_match_pid(pid_t task_pid,int cpupid)1689 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1690 {
1691 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1692 }
1693
1694 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1695 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1696 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1697 {
1698 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1699 }
1700
folio_last_cpupid(struct folio * folio)1701 static inline int folio_last_cpupid(struct folio *folio)
1702 {
1703 return folio->_last_cpupid;
1704 }
page_cpupid_reset_last(struct page * page)1705 static inline void page_cpupid_reset_last(struct page *page)
1706 {
1707 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1708 }
1709 #else
folio_last_cpupid(struct folio * folio)1710 static inline int folio_last_cpupid(struct folio *folio)
1711 {
1712 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1713 }
1714
1715 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1716
page_cpupid_reset_last(struct page * page)1717 static inline void page_cpupid_reset_last(struct page *page)
1718 {
1719 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1720 }
1721 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1722
folio_xchg_access_time(struct folio * folio,int time)1723 static inline int folio_xchg_access_time(struct folio *folio, int time)
1724 {
1725 int last_time;
1726
1727 last_time = folio_xchg_last_cpupid(folio,
1728 time >> PAGE_ACCESS_TIME_BUCKETS);
1729 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1730 }
1731
vma_set_access_pid_bit(struct vm_area_struct * vma)1732 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1733 {
1734 unsigned int pid_bit;
1735
1736 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1737 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1738 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1739 }
1740 }
1741
1742 bool folio_use_access_time(struct folio *folio);
1743 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1744 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1745 {
1746 return folio_nid(folio); /* XXX */
1747 }
1748
folio_xchg_access_time(struct folio * folio,int time)1749 static inline int folio_xchg_access_time(struct folio *folio, int time)
1750 {
1751 return 0;
1752 }
1753
folio_last_cpupid(struct folio * folio)1754 static inline int folio_last_cpupid(struct folio *folio)
1755 {
1756 return folio_nid(folio); /* XXX */
1757 }
1758
cpupid_to_nid(int cpupid)1759 static inline int cpupid_to_nid(int cpupid)
1760 {
1761 return -1;
1762 }
1763
cpupid_to_pid(int cpupid)1764 static inline int cpupid_to_pid(int cpupid)
1765 {
1766 return -1;
1767 }
1768
cpupid_to_cpu(int cpupid)1769 static inline int cpupid_to_cpu(int cpupid)
1770 {
1771 return -1;
1772 }
1773
cpu_pid_to_cpupid(int nid,int pid)1774 static inline int cpu_pid_to_cpupid(int nid, int pid)
1775 {
1776 return -1;
1777 }
1778
cpupid_pid_unset(int cpupid)1779 static inline bool cpupid_pid_unset(int cpupid)
1780 {
1781 return true;
1782 }
1783
page_cpupid_reset_last(struct page * page)1784 static inline void page_cpupid_reset_last(struct page *page)
1785 {
1786 }
1787
cpupid_match_pid(struct task_struct * task,int cpupid)1788 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1789 {
1790 return false;
1791 }
1792
vma_set_access_pid_bit(struct vm_area_struct * vma)1793 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1794 {
1795 }
folio_use_access_time(struct folio * folio)1796 static inline bool folio_use_access_time(struct folio *folio)
1797 {
1798 return false;
1799 }
1800 #endif /* CONFIG_NUMA_BALANCING */
1801
1802 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1803
1804 /*
1805 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1806 * setting tags for all pages to native kernel tag value 0xff, as the default
1807 * value 0x00 maps to 0xff.
1808 */
1809
page_kasan_tag(const struct page * page)1810 static inline u8 page_kasan_tag(const struct page *page)
1811 {
1812 u8 tag = KASAN_TAG_KERNEL;
1813
1814 if (kasan_enabled()) {
1815 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1816 tag ^= 0xff;
1817 }
1818
1819 return tag;
1820 }
1821
page_kasan_tag_set(struct page * page,u8 tag)1822 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1823 {
1824 unsigned long old_flags, flags;
1825
1826 if (!kasan_enabled())
1827 return;
1828
1829 tag ^= 0xff;
1830 old_flags = READ_ONCE(page->flags);
1831 do {
1832 flags = old_flags;
1833 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1834 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1835 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1836 }
1837
page_kasan_tag_reset(struct page * page)1838 static inline void page_kasan_tag_reset(struct page *page)
1839 {
1840 if (kasan_enabled())
1841 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1842 }
1843
1844 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1845
page_kasan_tag(const struct page * page)1846 static inline u8 page_kasan_tag(const struct page *page)
1847 {
1848 return 0xff;
1849 }
1850
page_kasan_tag_set(struct page * page,u8 tag)1851 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1852 static inline void page_kasan_tag_reset(struct page *page) { }
1853
1854 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1855
page_zone(const struct page * page)1856 static inline struct zone *page_zone(const struct page *page)
1857 {
1858 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1859 }
1860
page_pgdat(const struct page * page)1861 static inline pg_data_t *page_pgdat(const struct page *page)
1862 {
1863 return NODE_DATA(page_to_nid(page));
1864 }
1865
folio_zone(const struct folio * folio)1866 static inline struct zone *folio_zone(const struct folio *folio)
1867 {
1868 return page_zone(&folio->page);
1869 }
1870
folio_pgdat(const struct folio * folio)1871 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1872 {
1873 return page_pgdat(&folio->page);
1874 }
1875
1876 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1877 static inline void set_page_section(struct page *page, unsigned long section)
1878 {
1879 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1880 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1881 }
1882
page_to_section(const struct page * page)1883 static inline unsigned long page_to_section(const struct page *page)
1884 {
1885 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1886 }
1887 #endif
1888
1889 /**
1890 * folio_pfn - Return the Page Frame Number of a folio.
1891 * @folio: The folio.
1892 *
1893 * A folio may contain multiple pages. The pages have consecutive
1894 * Page Frame Numbers.
1895 *
1896 * Return: The Page Frame Number of the first page in the folio.
1897 */
folio_pfn(struct folio * folio)1898 static inline unsigned long folio_pfn(struct folio *folio)
1899 {
1900 return page_to_pfn(&folio->page);
1901 }
1902
pfn_folio(unsigned long pfn)1903 static inline struct folio *pfn_folio(unsigned long pfn)
1904 {
1905 return page_folio(pfn_to_page(pfn));
1906 }
1907
1908 /**
1909 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1910 * @folio: The folio.
1911 *
1912 * This function checks if a folio has been pinned via a call to
1913 * a function in the pin_user_pages() family.
1914 *
1915 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1916 * because it means "definitely not pinned for DMA", but true means "probably
1917 * pinned for DMA, but possibly a false positive due to having at least
1918 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1919 *
1920 * False positives are OK, because: a) it's unlikely for a folio to
1921 * get that many refcounts, and b) all the callers of this routine are
1922 * expected to be able to deal gracefully with a false positive.
1923 *
1924 * For large folios, the result will be exactly correct. That's because
1925 * we have more tracking data available: the _pincount field is used
1926 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1927 *
1928 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1929 *
1930 * Return: True, if it is likely that the folio has been "dma-pinned".
1931 * False, if the folio is definitely not dma-pinned.
1932 */
folio_maybe_dma_pinned(struct folio * folio)1933 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1934 {
1935 if (folio_test_large(folio))
1936 return atomic_read(&folio->_pincount) > 0;
1937
1938 /*
1939 * folio_ref_count() is signed. If that refcount overflows, then
1940 * folio_ref_count() returns a negative value, and callers will avoid
1941 * further incrementing the refcount.
1942 *
1943 * Here, for that overflow case, use the sign bit to count a little
1944 * bit higher via unsigned math, and thus still get an accurate result.
1945 */
1946 return ((unsigned int)folio_ref_count(folio)) >=
1947 GUP_PIN_COUNTING_BIAS;
1948 }
1949
1950 /*
1951 * This should most likely only be called during fork() to see whether we
1952 * should break the cow immediately for an anon page on the src mm.
1953 *
1954 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1955 */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)1956 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1957 struct folio *folio)
1958 {
1959 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1960
1961 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1962 return false;
1963
1964 return folio_maybe_dma_pinned(folio);
1965 }
1966
1967 /**
1968 * is_zero_page - Query if a page is a zero page
1969 * @page: The page to query
1970 *
1971 * This returns true if @page is one of the permanent zero pages.
1972 */
is_zero_page(const struct page * page)1973 static inline bool is_zero_page(const struct page *page)
1974 {
1975 return is_zero_pfn(page_to_pfn(page));
1976 }
1977
1978 /**
1979 * is_zero_folio - Query if a folio is a zero page
1980 * @folio: The folio to query
1981 *
1982 * This returns true if @folio is one of the permanent zero pages.
1983 */
is_zero_folio(const struct folio * folio)1984 static inline bool is_zero_folio(const struct folio *folio)
1985 {
1986 return is_zero_page(&folio->page);
1987 }
1988
1989 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1990 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)1991 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1992 {
1993 #ifdef CONFIG_CMA
1994 int mt = folio_migratetype(folio);
1995
1996 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1997 return false;
1998 #endif
1999 /* The zero page can be "pinned" but gets special handling. */
2000 if (is_zero_folio(folio))
2001 return true;
2002
2003 /* Coherent device memory must always allow eviction. */
2004 if (folio_is_device_coherent(folio))
2005 return false;
2006
2007 /* Otherwise, non-movable zone folios can be pinned. */
2008 return !folio_is_zone_movable(folio);
2009
2010 }
2011 #else
folio_is_longterm_pinnable(struct folio * folio)2012 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2013 {
2014 return true;
2015 }
2016 #endif
2017
set_page_zone(struct page * page,enum zone_type zone)2018 static inline void set_page_zone(struct page *page, enum zone_type zone)
2019 {
2020 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2021 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2022 }
2023
set_page_node(struct page * page,unsigned long node)2024 static inline void set_page_node(struct page *page, unsigned long node)
2025 {
2026 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2027 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2028 }
2029
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)2030 static inline void set_page_links(struct page *page, enum zone_type zone,
2031 unsigned long node, unsigned long pfn)
2032 {
2033 set_page_zone(page, zone);
2034 set_page_node(page, node);
2035 #ifdef SECTION_IN_PAGE_FLAGS
2036 set_page_section(page, pfn_to_section_nr(pfn));
2037 #endif
2038 }
2039
2040 /**
2041 * folio_nr_pages - The number of pages in the folio.
2042 * @folio: The folio.
2043 *
2044 * Return: A positive power of two.
2045 */
folio_nr_pages(const struct folio * folio)2046 static inline long folio_nr_pages(const struct folio *folio)
2047 {
2048 if (!folio_test_large(folio))
2049 return 1;
2050 #ifdef CONFIG_64BIT
2051 return folio->_folio_nr_pages;
2052 #else
2053 return 1L << (folio->_flags_1 & 0xff);
2054 #endif
2055 }
2056
2057 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2058 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2059 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2060 #else
2061 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2062 #endif
2063
2064 /*
2065 * compound_nr() returns the number of pages in this potentially compound
2066 * page. compound_nr() can be called on a tail page, and is defined to
2067 * return 1 in that case.
2068 */
compound_nr(struct page * page)2069 static inline unsigned long compound_nr(struct page *page)
2070 {
2071 struct folio *folio = (struct folio *)page;
2072
2073 if (!test_bit(PG_head, &folio->flags))
2074 return 1;
2075 #ifdef CONFIG_64BIT
2076 return folio->_folio_nr_pages;
2077 #else
2078 return 1L << (folio->_flags_1 & 0xff);
2079 #endif
2080 }
2081
2082 /**
2083 * thp_nr_pages - The number of regular pages in this huge page.
2084 * @page: The head page of a huge page.
2085 */
thp_nr_pages(struct page * page)2086 static inline int thp_nr_pages(struct page *page)
2087 {
2088 return folio_nr_pages((struct folio *)page);
2089 }
2090
2091 /**
2092 * folio_next - Move to the next physical folio.
2093 * @folio: The folio we're currently operating on.
2094 *
2095 * If you have physically contiguous memory which may span more than
2096 * one folio (eg a &struct bio_vec), use this function to move from one
2097 * folio to the next. Do not use it if the memory is only virtually
2098 * contiguous as the folios are almost certainly not adjacent to each
2099 * other. This is the folio equivalent to writing ``page++``.
2100 *
2101 * Context: We assume that the folios are refcounted and/or locked at a
2102 * higher level and do not adjust the reference counts.
2103 * Return: The next struct folio.
2104 */
folio_next(struct folio * folio)2105 static inline struct folio *folio_next(struct folio *folio)
2106 {
2107 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2108 }
2109
2110 /**
2111 * folio_shift - The size of the memory described by this folio.
2112 * @folio: The folio.
2113 *
2114 * A folio represents a number of bytes which is a power-of-two in size.
2115 * This function tells you which power-of-two the folio is. See also
2116 * folio_size() and folio_order().
2117 *
2118 * Context: The caller should have a reference on the folio to prevent
2119 * it from being split. It is not necessary for the folio to be locked.
2120 * Return: The base-2 logarithm of the size of this folio.
2121 */
folio_shift(const struct folio * folio)2122 static inline unsigned int folio_shift(const struct folio *folio)
2123 {
2124 return PAGE_SHIFT + folio_order(folio);
2125 }
2126
2127 /**
2128 * folio_size - The number of bytes in a folio.
2129 * @folio: The folio.
2130 *
2131 * Context: The caller should have a reference on the folio to prevent
2132 * it from being split. It is not necessary for the folio to be locked.
2133 * Return: The number of bytes in this folio.
2134 */
folio_size(const struct folio * folio)2135 static inline size_t folio_size(const struct folio *folio)
2136 {
2137 return PAGE_SIZE << folio_order(folio);
2138 }
2139
2140 /**
2141 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2142 * tables of more than one MM
2143 * @folio: The folio.
2144 *
2145 * This function checks if the folio is currently mapped into more than one
2146 * MM ("mapped shared"), or if the folio is only mapped into a single MM
2147 * ("mapped exclusively").
2148 *
2149 * For KSM folios, this function also returns "mapped shared" when a folio is
2150 * mapped multiple times into the same MM, because the individual page mappings
2151 * are independent.
2152 *
2153 * As precise information is not easily available for all folios, this function
2154 * estimates the number of MMs ("sharers") that are currently mapping a folio
2155 * using the number of times the first page of the folio is currently mapped
2156 * into page tables.
2157 *
2158 * For small anonymous folios and anonymous hugetlb folios, the return
2159 * value will be exactly correct: non-KSM folios can only be mapped at most once
2160 * into an MM, and they cannot be partially mapped. KSM folios are
2161 * considered shared even if mapped multiple times into the same MM.
2162 *
2163 * For other folios, the result can be fuzzy:
2164 * #. For partially-mappable large folios (THP), the return value can wrongly
2165 * indicate "mapped exclusively" (false negative) when the folio is
2166 * only partially mapped into at least one MM.
2167 * #. For pagecache folios (including hugetlb), the return value can wrongly
2168 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2169 * cover the same file range.
2170 *
2171 * Further, this function only considers current page table mappings that
2172 * are tracked using the folio mapcount(s).
2173 *
2174 * This function does not consider:
2175 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2176 * pagecache, temporary unmapping for migration).
2177 * #. If the folio is mapped differently (VM_PFNMAP).
2178 * #. If hugetlb page table sharing applies. Callers might want to check
2179 * hugetlb_pmd_shared().
2180 *
2181 * Return: Whether the folio is estimated to be mapped into more than one MM.
2182 */
folio_likely_mapped_shared(struct folio * folio)2183 static inline bool folio_likely_mapped_shared(struct folio *folio)
2184 {
2185 int mapcount = folio_mapcount(folio);
2186
2187 /* Only partially-mappable folios require more care. */
2188 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2189 return mapcount > 1;
2190
2191 /* A single mapping implies "mapped exclusively". */
2192 if (mapcount <= 1)
2193 return false;
2194
2195 /* If any page is mapped more than once we treat it "mapped shared". */
2196 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2197 return true;
2198
2199 /* Let's guess based on the first subpage. */
2200 return atomic_read(&folio->_mapcount) > 0;
2201 }
2202
2203 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2204 static inline int arch_make_folio_accessible(struct folio *folio)
2205 {
2206 return 0;
2207 }
2208 #endif
2209
2210 /*
2211 * Some inline functions in vmstat.h depend on page_zone()
2212 */
2213 #include <linux/vmstat.h>
2214
2215 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2216 #define HASHED_PAGE_VIRTUAL
2217 #endif
2218
2219 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2220 static inline void *page_address(const struct page *page)
2221 {
2222 return page->virtual;
2223 }
set_page_address(struct page * page,void * address)2224 static inline void set_page_address(struct page *page, void *address)
2225 {
2226 page->virtual = address;
2227 }
2228 #define page_address_init() do { } while(0)
2229 #endif
2230
2231 #if defined(HASHED_PAGE_VIRTUAL)
2232 void *page_address(const struct page *page);
2233 void set_page_address(struct page *page, void *virtual);
2234 void page_address_init(void);
2235 #endif
2236
lowmem_page_address(const struct page * page)2237 static __always_inline void *lowmem_page_address(const struct page *page)
2238 {
2239 return page_to_virt(page);
2240 }
2241
2242 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2243 #define page_address(page) lowmem_page_address(page)
2244 #define set_page_address(page, address) do { } while(0)
2245 #define page_address_init() do { } while(0)
2246 #endif
2247
folio_address(const struct folio * folio)2248 static inline void *folio_address(const struct folio *folio)
2249 {
2250 return page_address(&folio->page);
2251 }
2252
2253 /*
2254 * Return true only if the page has been allocated with
2255 * ALLOC_NO_WATERMARKS and the low watermark was not
2256 * met implying that the system is under some pressure.
2257 */
page_is_pfmemalloc(const struct page * page)2258 static inline bool page_is_pfmemalloc(const struct page *page)
2259 {
2260 /*
2261 * lru.next has bit 1 set if the page is allocated from the
2262 * pfmemalloc reserves. Callers may simply overwrite it if
2263 * they do not need to preserve that information.
2264 */
2265 return (uintptr_t)page->lru.next & BIT(1);
2266 }
2267
2268 /*
2269 * Return true only if the folio has been allocated with
2270 * ALLOC_NO_WATERMARKS and the low watermark was not
2271 * met implying that the system is under some pressure.
2272 */
folio_is_pfmemalloc(const struct folio * folio)2273 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2274 {
2275 /*
2276 * lru.next has bit 1 set if the page is allocated from the
2277 * pfmemalloc reserves. Callers may simply overwrite it if
2278 * they do not need to preserve that information.
2279 */
2280 return (uintptr_t)folio->lru.next & BIT(1);
2281 }
2282
2283 /*
2284 * Only to be called by the page allocator on a freshly allocated
2285 * page.
2286 */
set_page_pfmemalloc(struct page * page)2287 static inline void set_page_pfmemalloc(struct page *page)
2288 {
2289 page->lru.next = (void *)BIT(1);
2290 }
2291
clear_page_pfmemalloc(struct page * page)2292 static inline void clear_page_pfmemalloc(struct page *page)
2293 {
2294 page->lru.next = NULL;
2295 }
2296
2297 /*
2298 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2299 */
2300 extern void pagefault_out_of_memory(void);
2301
2302 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2303 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2304 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2305
2306 /*
2307 * Parameter block passed down to zap_pte_range in exceptional cases.
2308 */
2309 struct zap_details {
2310 struct folio *single_folio; /* Locked folio to be unmapped */
2311 bool even_cows; /* Zap COWed private pages too? */
2312 zap_flags_t zap_flags; /* Extra flags for zapping */
2313 };
2314
2315 /*
2316 * Whether to drop the pte markers, for example, the uffd-wp information for
2317 * file-backed memory. This should only be specified when we will completely
2318 * drop the page in the mm, either by truncation or unmapping of the vma. By
2319 * default, the flag is not set.
2320 */
2321 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2322 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2323 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2324
2325 #ifdef CONFIG_SCHED_MM_CID
2326 void sched_mm_cid_before_execve(struct task_struct *t);
2327 void sched_mm_cid_after_execve(struct task_struct *t);
2328 void sched_mm_cid_fork(struct task_struct *t);
2329 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2330 static inline int task_mm_cid(struct task_struct *t)
2331 {
2332 return t->mm_cid;
2333 }
2334 #else
sched_mm_cid_before_execve(struct task_struct * t)2335 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2336 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2337 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2338 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2339 static inline int task_mm_cid(struct task_struct *t)
2340 {
2341 /*
2342 * Use the processor id as a fall-back when the mm cid feature is
2343 * disabled. This provides functional per-cpu data structure accesses
2344 * in user-space, althrough it won't provide the memory usage benefits.
2345 */
2346 return raw_smp_processor_id();
2347 }
2348 #endif
2349
2350 #ifdef CONFIG_MMU
2351 extern bool can_do_mlock(void);
2352 #else
can_do_mlock(void)2353 static inline bool can_do_mlock(void) { return false; }
2354 #endif
2355 extern int user_shm_lock(size_t, struct ucounts *);
2356 extern void user_shm_unlock(size_t, struct ucounts *);
2357
2358 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2359 pte_t pte);
2360 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2361 pte_t pte);
2362 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2363 unsigned long addr, pmd_t pmd);
2364 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2365 pmd_t pmd);
2366
2367 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2368 unsigned long size);
2369 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2370 unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2371 static inline void zap_vma_pages(struct vm_area_struct *vma)
2372 {
2373 zap_page_range_single(vma, vma->vm_start,
2374 vma->vm_end - vma->vm_start, NULL);
2375 }
2376 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2377 struct vm_area_struct *start_vma, unsigned long start,
2378 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2379
2380 struct mmu_notifier_range;
2381
2382 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2383 unsigned long end, unsigned long floor, unsigned long ceiling);
2384 int
2385 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2386 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2387 void *buf, int len, int write);
2388
2389 struct follow_pfnmap_args {
2390 /**
2391 * Inputs:
2392 * @vma: Pointer to @vm_area_struct struct
2393 * @address: the virtual address to walk
2394 */
2395 struct vm_area_struct *vma;
2396 unsigned long address;
2397 /**
2398 * Internals:
2399 *
2400 * The caller shouldn't touch any of these.
2401 */
2402 spinlock_t *lock;
2403 pte_t *ptep;
2404 /**
2405 * Outputs:
2406 *
2407 * @pfn: the PFN of the address
2408 * @pgprot: the pgprot_t of the mapping
2409 * @writable: whether the mapping is writable
2410 * @special: whether the mapping is a special mapping (real PFN maps)
2411 */
2412 unsigned long pfn;
2413 pgprot_t pgprot;
2414 bool writable;
2415 bool special;
2416 };
2417 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2418 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2419
2420 extern void truncate_pagecache(struct inode *inode, loff_t new);
2421 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2422 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2423 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2424 int generic_error_remove_folio(struct address_space *mapping,
2425 struct folio *folio);
2426
2427 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2428 unsigned long address, struct pt_regs *regs);
2429
2430 #ifdef CONFIG_MMU
2431 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2432 unsigned long address, unsigned int flags,
2433 struct pt_regs *regs);
2434 extern int fixup_user_fault(struct mm_struct *mm,
2435 unsigned long address, unsigned int fault_flags,
2436 bool *unlocked);
2437 void unmap_mapping_pages(struct address_space *mapping,
2438 pgoff_t start, pgoff_t nr, bool even_cows);
2439 void unmap_mapping_range(struct address_space *mapping,
2440 loff_t const holebegin, loff_t const holelen, int even_cows);
2441 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2442 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2443 unsigned long address, unsigned int flags,
2444 struct pt_regs *regs)
2445 {
2446 /* should never happen if there's no MMU */
2447 BUG();
2448 return VM_FAULT_SIGBUS;
2449 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2450 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2451 unsigned int fault_flags, bool *unlocked)
2452 {
2453 /* should never happen if there's no MMU */
2454 BUG();
2455 return -EFAULT;
2456 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2457 static inline void unmap_mapping_pages(struct address_space *mapping,
2458 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2459 static inline void unmap_mapping_range(struct address_space *mapping,
2460 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2461 #endif
2462
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2463 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2464 loff_t const holebegin, loff_t const holelen)
2465 {
2466 unmap_mapping_range(mapping, holebegin, holelen, 0);
2467 }
2468
2469 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2470 unsigned long addr);
2471
2472 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2473 void *buf, int len, unsigned int gup_flags);
2474 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2475 void *buf, int len, unsigned int gup_flags);
2476
2477 long get_user_pages_remote(struct mm_struct *mm,
2478 unsigned long start, unsigned long nr_pages,
2479 unsigned int gup_flags, struct page **pages,
2480 int *locked);
2481 long pin_user_pages_remote(struct mm_struct *mm,
2482 unsigned long start, unsigned long nr_pages,
2483 unsigned int gup_flags, struct page **pages,
2484 int *locked);
2485
2486 /*
2487 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2488 */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2489 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2490 unsigned long addr,
2491 int gup_flags,
2492 struct vm_area_struct **vmap)
2493 {
2494 struct page *page;
2495 struct vm_area_struct *vma;
2496 int got;
2497
2498 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2499 return ERR_PTR(-EINVAL);
2500
2501 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2502
2503 if (got < 0)
2504 return ERR_PTR(got);
2505
2506 vma = vma_lookup(mm, addr);
2507 if (WARN_ON_ONCE(!vma)) {
2508 put_page(page);
2509 return ERR_PTR(-EINVAL);
2510 }
2511
2512 *vmap = vma;
2513 return page;
2514 }
2515
2516 long get_user_pages(unsigned long start, unsigned long nr_pages,
2517 unsigned int gup_flags, struct page **pages);
2518 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2519 unsigned int gup_flags, struct page **pages);
2520 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2521 struct page **pages, unsigned int gup_flags);
2522 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2523 struct page **pages, unsigned int gup_flags);
2524 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2525 struct folio **folios, unsigned int max_folios,
2526 pgoff_t *offset);
2527
2528 int get_user_pages_fast(unsigned long start, int nr_pages,
2529 unsigned int gup_flags, struct page **pages);
2530 int pin_user_pages_fast(unsigned long start, int nr_pages,
2531 unsigned int gup_flags, struct page **pages);
2532 void folio_add_pin(struct folio *folio);
2533
2534 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2535 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2536 struct task_struct *task, bool bypass_rlim);
2537
2538 struct kvec;
2539 struct page *get_dump_page(unsigned long addr);
2540
2541 bool folio_mark_dirty(struct folio *folio);
2542 bool set_page_dirty(struct page *page);
2543 int set_page_dirty_lock(struct page *page);
2544
2545 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2546
2547 /*
2548 * Flags used by change_protection(). For now we make it a bitmap so
2549 * that we can pass in multiple flags just like parameters. However
2550 * for now all the callers are only use one of the flags at the same
2551 * time.
2552 */
2553 /*
2554 * Whether we should manually check if we can map individual PTEs writable,
2555 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2556 * PTEs automatically in a writable mapping.
2557 */
2558 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2559 /* Whether this protection change is for NUMA hints */
2560 #define MM_CP_PROT_NUMA (1UL << 1)
2561 /* Whether this change is for write protecting */
2562 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2563 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2564 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2565 MM_CP_UFFD_WP_RESOLVE)
2566
2567 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2568 pte_t pte);
2569 extern long change_protection(struct mmu_gather *tlb,
2570 struct vm_area_struct *vma, unsigned long start,
2571 unsigned long end, unsigned long cp_flags);
2572 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2573 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2574 unsigned long start, unsigned long end, unsigned long newflags);
2575
2576 /*
2577 * doesn't attempt to fault and will return short.
2578 */
2579 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2580 unsigned int gup_flags, struct page **pages);
2581
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2582 static inline bool get_user_page_fast_only(unsigned long addr,
2583 unsigned int gup_flags, struct page **pagep)
2584 {
2585 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2586 }
2587 /*
2588 * per-process(per-mm_struct) statistics.
2589 */
get_mm_counter(struct mm_struct * mm,int member)2590 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2591 {
2592 return percpu_counter_read_positive(&mm->rss_stat[member]);
2593 }
2594
2595 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2596
add_mm_counter(struct mm_struct * mm,int member,long value)2597 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2598 {
2599 percpu_counter_add(&mm->rss_stat[member], value);
2600
2601 mm_trace_rss_stat(mm, member);
2602 }
2603
inc_mm_counter(struct mm_struct * mm,int member)2604 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2605 {
2606 percpu_counter_inc(&mm->rss_stat[member]);
2607
2608 mm_trace_rss_stat(mm, member);
2609 }
2610
dec_mm_counter(struct mm_struct * mm,int member)2611 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2612 {
2613 percpu_counter_dec(&mm->rss_stat[member]);
2614
2615 mm_trace_rss_stat(mm, member);
2616 }
2617
2618 /* Optimized variant when folio is already known not to be anon */
mm_counter_file(struct folio * folio)2619 static inline int mm_counter_file(struct folio *folio)
2620 {
2621 if (folio_test_swapbacked(folio))
2622 return MM_SHMEMPAGES;
2623 return MM_FILEPAGES;
2624 }
2625
mm_counter(struct folio * folio)2626 static inline int mm_counter(struct folio *folio)
2627 {
2628 if (folio_test_anon(folio))
2629 return MM_ANONPAGES;
2630 return mm_counter_file(folio);
2631 }
2632
get_mm_rss(struct mm_struct * mm)2633 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2634 {
2635 return get_mm_counter(mm, MM_FILEPAGES) +
2636 get_mm_counter(mm, MM_ANONPAGES) +
2637 get_mm_counter(mm, MM_SHMEMPAGES);
2638 }
2639
get_mm_hiwater_rss(struct mm_struct * mm)2640 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2641 {
2642 return max(mm->hiwater_rss, get_mm_rss(mm));
2643 }
2644
get_mm_hiwater_vm(struct mm_struct * mm)2645 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2646 {
2647 return max(mm->hiwater_vm, mm->total_vm);
2648 }
2649
update_hiwater_rss(struct mm_struct * mm)2650 static inline void update_hiwater_rss(struct mm_struct *mm)
2651 {
2652 unsigned long _rss = get_mm_rss(mm);
2653
2654 if ((mm)->hiwater_rss < _rss)
2655 (mm)->hiwater_rss = _rss;
2656 }
2657
update_hiwater_vm(struct mm_struct * mm)2658 static inline void update_hiwater_vm(struct mm_struct *mm)
2659 {
2660 if (mm->hiwater_vm < mm->total_vm)
2661 mm->hiwater_vm = mm->total_vm;
2662 }
2663
reset_mm_hiwater_rss(struct mm_struct * mm)2664 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2665 {
2666 mm->hiwater_rss = get_mm_rss(mm);
2667 }
2668
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2669 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2670 struct mm_struct *mm)
2671 {
2672 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2673
2674 if (*maxrss < hiwater_rss)
2675 *maxrss = hiwater_rss;
2676 }
2677
2678 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2679 static inline int pte_special(pte_t pte)
2680 {
2681 return 0;
2682 }
2683
pte_mkspecial(pte_t pte)2684 static inline pte_t pte_mkspecial(pte_t pte)
2685 {
2686 return pte;
2687 }
2688 #endif
2689
2690 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)2691 static inline bool pmd_special(pmd_t pmd)
2692 {
2693 return false;
2694 }
2695
pmd_mkspecial(pmd_t pmd)2696 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2697 {
2698 return pmd;
2699 }
2700 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2701
2702 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)2703 static inline bool pud_special(pud_t pud)
2704 {
2705 return false;
2706 }
2707
pud_mkspecial(pud_t pud)2708 static inline pud_t pud_mkspecial(pud_t pud)
2709 {
2710 return pud;
2711 }
2712 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2713
2714 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2715 static inline int pte_devmap(pte_t pte)
2716 {
2717 return 0;
2718 }
2719 #endif
2720
2721 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2722 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2723 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2724 spinlock_t **ptl)
2725 {
2726 pte_t *ptep;
2727 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2728 return ptep;
2729 }
2730
2731 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2732 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2733 unsigned long address)
2734 {
2735 return 0;
2736 }
2737 #else
2738 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2739 #endif
2740
2741 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2742 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2743 unsigned long address)
2744 {
2745 return 0;
2746 }
mm_inc_nr_puds(struct mm_struct * mm)2747 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2748 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2749
2750 #else
2751 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2752
mm_inc_nr_puds(struct mm_struct * mm)2753 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2754 {
2755 if (mm_pud_folded(mm))
2756 return;
2757 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2758 }
2759
mm_dec_nr_puds(struct mm_struct * mm)2760 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2761 {
2762 if (mm_pud_folded(mm))
2763 return;
2764 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2765 }
2766 #endif
2767
2768 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2769 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2770 unsigned long address)
2771 {
2772 return 0;
2773 }
2774
mm_inc_nr_pmds(struct mm_struct * mm)2775 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2776 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2777
2778 #else
2779 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2780
mm_inc_nr_pmds(struct mm_struct * mm)2781 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2782 {
2783 if (mm_pmd_folded(mm))
2784 return;
2785 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2786 }
2787
mm_dec_nr_pmds(struct mm_struct * mm)2788 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2789 {
2790 if (mm_pmd_folded(mm))
2791 return;
2792 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2793 }
2794 #endif
2795
2796 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2797 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2798 {
2799 atomic_long_set(&mm->pgtables_bytes, 0);
2800 }
2801
mm_pgtables_bytes(const struct mm_struct * mm)2802 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2803 {
2804 return atomic_long_read(&mm->pgtables_bytes);
2805 }
2806
mm_inc_nr_ptes(struct mm_struct * mm)2807 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2808 {
2809 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2810 }
2811
mm_dec_nr_ptes(struct mm_struct * mm)2812 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2813 {
2814 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2815 }
2816 #else
2817
mm_pgtables_bytes_init(struct mm_struct * mm)2818 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2819 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2820 {
2821 return 0;
2822 }
2823
mm_inc_nr_ptes(struct mm_struct * mm)2824 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2825 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2826 #endif
2827
2828 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2829 int __pte_alloc_kernel(pmd_t *pmd);
2830
2831 #if defined(CONFIG_MMU)
2832
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2833 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2834 unsigned long address)
2835 {
2836 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2837 NULL : p4d_offset(pgd, address);
2838 }
2839
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2840 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2841 unsigned long address)
2842 {
2843 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2844 NULL : pud_offset(p4d, address);
2845 }
2846
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2847 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2848 {
2849 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2850 NULL: pmd_offset(pud, address);
2851 }
2852 #endif /* CONFIG_MMU */
2853
virt_to_ptdesc(const void * x)2854 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2855 {
2856 return page_ptdesc(virt_to_page(x));
2857 }
2858
ptdesc_to_virt(const struct ptdesc * pt)2859 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2860 {
2861 return page_to_virt(ptdesc_page(pt));
2862 }
2863
ptdesc_address(const struct ptdesc * pt)2864 static inline void *ptdesc_address(const struct ptdesc *pt)
2865 {
2866 return folio_address(ptdesc_folio(pt));
2867 }
2868
pagetable_is_reserved(struct ptdesc * pt)2869 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2870 {
2871 return folio_test_reserved(ptdesc_folio(pt));
2872 }
2873
2874 /**
2875 * pagetable_alloc - Allocate pagetables
2876 * @gfp: GFP flags
2877 * @order: desired pagetable order
2878 *
2879 * pagetable_alloc allocates memory for page tables as well as a page table
2880 * descriptor to describe that memory.
2881 *
2882 * Return: The ptdesc describing the allocated page tables.
2883 */
pagetable_alloc_noprof(gfp_t gfp,unsigned int order)2884 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2885 {
2886 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2887
2888 return page_ptdesc(page);
2889 }
2890 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2891
2892 /**
2893 * pagetable_free - Free pagetables
2894 * @pt: The page table descriptor
2895 *
2896 * pagetable_free frees the memory of all page tables described by a page
2897 * table descriptor and the memory for the descriptor itself.
2898 */
pagetable_free(struct ptdesc * pt)2899 static inline void pagetable_free(struct ptdesc *pt)
2900 {
2901 struct page *page = ptdesc_page(pt);
2902
2903 __free_pages(page, compound_order(page));
2904 }
2905
2906 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2907 #if ALLOC_SPLIT_PTLOCKS
2908 void __init ptlock_cache_init(void);
2909 bool ptlock_alloc(struct ptdesc *ptdesc);
2910 void ptlock_free(struct ptdesc *ptdesc);
2911
ptlock_ptr(struct ptdesc * ptdesc)2912 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2913 {
2914 return ptdesc->ptl;
2915 }
2916 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2917 static inline void ptlock_cache_init(void)
2918 {
2919 }
2920
ptlock_alloc(struct ptdesc * ptdesc)2921 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2922 {
2923 return true;
2924 }
2925
ptlock_free(struct ptdesc * ptdesc)2926 static inline void ptlock_free(struct ptdesc *ptdesc)
2927 {
2928 }
2929
ptlock_ptr(struct ptdesc * ptdesc)2930 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2931 {
2932 return &ptdesc->ptl;
2933 }
2934 #endif /* ALLOC_SPLIT_PTLOCKS */
2935
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2936 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2937 {
2938 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2939 }
2940
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2941 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2942 {
2943 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2944 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2945 return ptlock_ptr(virt_to_ptdesc(pte));
2946 }
2947
ptlock_init(struct ptdesc * ptdesc)2948 static inline bool ptlock_init(struct ptdesc *ptdesc)
2949 {
2950 /*
2951 * prep_new_page() initialize page->private (and therefore page->ptl)
2952 * with 0. Make sure nobody took it in use in between.
2953 *
2954 * It can happen if arch try to use slab for page table allocation:
2955 * slab code uses page->slab_cache, which share storage with page->ptl.
2956 */
2957 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2958 if (!ptlock_alloc(ptdesc))
2959 return false;
2960 spin_lock_init(ptlock_ptr(ptdesc));
2961 return true;
2962 }
2963
2964 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2965 /*
2966 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2967 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2968 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2969 {
2970 return &mm->page_table_lock;
2971 }
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2972 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2973 {
2974 return &mm->page_table_lock;
2975 }
ptlock_cache_init(void)2976 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)2977 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)2978 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2979 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2980
pagetable_pte_ctor(struct ptdesc * ptdesc)2981 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2982 {
2983 struct folio *folio = ptdesc_folio(ptdesc);
2984
2985 if (!ptlock_init(ptdesc))
2986 return false;
2987 __folio_set_pgtable(folio);
2988 lruvec_stat_add_folio(folio, NR_PAGETABLE);
2989 return true;
2990 }
2991
pagetable_pte_dtor(struct ptdesc * ptdesc)2992 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2993 {
2994 struct folio *folio = ptdesc_folio(ptdesc);
2995
2996 ptlock_free(ptdesc);
2997 __folio_clear_pgtable(folio);
2998 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2999 }
3000
3001 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
pte_offset_map(pmd_t * pmd,unsigned long addr)3002 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3003 {
3004 return __pte_offset_map(pmd, addr, NULL);
3005 }
3006
3007 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3008 unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)3009 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3010 unsigned long addr, spinlock_t **ptlp)
3011 {
3012 pte_t *pte;
3013
3014 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
3015 return pte;
3016 }
3017
3018 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
3019 unsigned long addr, spinlock_t **ptlp);
3020
3021 #define pte_unmap_unlock(pte, ptl) do { \
3022 spin_unlock(ptl); \
3023 pte_unmap(pte); \
3024 } while (0)
3025
3026 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3027
3028 #define pte_alloc_map(mm, pmd, address) \
3029 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3030
3031 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3032 (pte_alloc(mm, pmd) ? \
3033 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3034
3035 #define pte_alloc_kernel(pmd, address) \
3036 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3037 NULL: pte_offset_kernel(pmd, address))
3038
3039 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3040
pmd_pgtable_page(pmd_t * pmd)3041 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3042 {
3043 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3044 return virt_to_page((void *)((unsigned long) pmd & mask));
3045 }
3046
pmd_ptdesc(pmd_t * pmd)3047 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3048 {
3049 return page_ptdesc(pmd_pgtable_page(pmd));
3050 }
3051
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3052 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3053 {
3054 return ptlock_ptr(pmd_ptdesc(pmd));
3055 }
3056
pmd_ptlock_init(struct ptdesc * ptdesc)3057 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3058 {
3059 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3060 ptdesc->pmd_huge_pte = NULL;
3061 #endif
3062 return ptlock_init(ptdesc);
3063 }
3064
pmd_ptlock_free(struct ptdesc * ptdesc)3065 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3066 {
3067 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3068 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3069 #endif
3070 ptlock_free(ptdesc);
3071 }
3072
3073 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3074
3075 #else
3076
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3077 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3078 {
3079 return &mm->page_table_lock;
3080 }
3081
pmd_ptlock_init(struct ptdesc * ptdesc)3082 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
pmd_ptlock_free(struct ptdesc * ptdesc)3083 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3084
3085 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3086
3087 #endif
3088
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3089 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3090 {
3091 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3092 spin_lock(ptl);
3093 return ptl;
3094 }
3095
pagetable_pmd_ctor(struct ptdesc * ptdesc)3096 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3097 {
3098 struct folio *folio = ptdesc_folio(ptdesc);
3099
3100 if (!pmd_ptlock_init(ptdesc))
3101 return false;
3102 __folio_set_pgtable(folio);
3103 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3104 return true;
3105 }
3106
pagetable_pmd_dtor(struct ptdesc * ptdesc)3107 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3108 {
3109 struct folio *folio = ptdesc_folio(ptdesc);
3110
3111 pmd_ptlock_free(ptdesc);
3112 __folio_clear_pgtable(folio);
3113 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3114 }
3115
3116 /*
3117 * No scalability reason to split PUD locks yet, but follow the same pattern
3118 * as the PMD locks to make it easier if we decide to. The VM should not be
3119 * considered ready to switch to split PUD locks yet; there may be places
3120 * which need to be converted from page_table_lock.
3121 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3122 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3123 {
3124 return &mm->page_table_lock;
3125 }
3126
pud_lock(struct mm_struct * mm,pud_t * pud)3127 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3128 {
3129 spinlock_t *ptl = pud_lockptr(mm, pud);
3130
3131 spin_lock(ptl);
3132 return ptl;
3133 }
3134
pagetable_pud_ctor(struct ptdesc * ptdesc)3135 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3136 {
3137 struct folio *folio = ptdesc_folio(ptdesc);
3138
3139 __folio_set_pgtable(folio);
3140 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3141 }
3142
pagetable_pud_dtor(struct ptdesc * ptdesc)3143 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3144 {
3145 struct folio *folio = ptdesc_folio(ptdesc);
3146
3147 __folio_clear_pgtable(folio);
3148 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3149 }
3150
3151 extern void __init pagecache_init(void);
3152 extern void free_initmem(void);
3153
3154 /*
3155 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3156 * into the buddy system. The freed pages will be poisoned with pattern
3157 * "poison" if it's within range [0, UCHAR_MAX].
3158 * Return pages freed into the buddy system.
3159 */
3160 extern unsigned long free_reserved_area(void *start, void *end,
3161 int poison, const char *s);
3162
3163 extern void adjust_managed_page_count(struct page *page, long count);
3164
3165 extern void reserve_bootmem_region(phys_addr_t start,
3166 phys_addr_t end, int nid);
3167
3168 /* Free the reserved page into the buddy system, so it gets managed. */
3169 void free_reserved_page(struct page *page);
3170 #define free_highmem_page(page) free_reserved_page(page)
3171
mark_page_reserved(struct page * page)3172 static inline void mark_page_reserved(struct page *page)
3173 {
3174 SetPageReserved(page);
3175 adjust_managed_page_count(page, -1);
3176 }
3177
free_reserved_ptdesc(struct ptdesc * pt)3178 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3179 {
3180 free_reserved_page(ptdesc_page(pt));
3181 }
3182
3183 /*
3184 * Default method to free all the __init memory into the buddy system.
3185 * The freed pages will be poisoned with pattern "poison" if it's within
3186 * range [0, UCHAR_MAX].
3187 * Return pages freed into the buddy system.
3188 */
free_initmem_default(int poison)3189 static inline unsigned long free_initmem_default(int poison)
3190 {
3191 extern char __init_begin[], __init_end[];
3192
3193 return free_reserved_area(&__init_begin, &__init_end,
3194 poison, "unused kernel image (initmem)");
3195 }
3196
get_num_physpages(void)3197 static inline unsigned long get_num_physpages(void)
3198 {
3199 int nid;
3200 unsigned long phys_pages = 0;
3201
3202 for_each_online_node(nid)
3203 phys_pages += node_present_pages(nid);
3204
3205 return phys_pages;
3206 }
3207
3208 /*
3209 * Using memblock node mappings, an architecture may initialise its
3210 * zones, allocate the backing mem_map and account for memory holes in an
3211 * architecture independent manner.
3212 *
3213 * An architecture is expected to register range of page frames backed by
3214 * physical memory with memblock_add[_node]() before calling
3215 * free_area_init() passing in the PFN each zone ends at. At a basic
3216 * usage, an architecture is expected to do something like
3217 *
3218 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3219 * max_highmem_pfn};
3220 * for_each_valid_physical_page_range()
3221 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3222 * free_area_init(max_zone_pfns);
3223 */
3224 void free_area_init(unsigned long *max_zone_pfn);
3225 unsigned long node_map_pfn_alignment(void);
3226 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3227 unsigned long end_pfn);
3228 extern void get_pfn_range_for_nid(unsigned int nid,
3229 unsigned long *start_pfn, unsigned long *end_pfn);
3230
3231 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3232 static inline int early_pfn_to_nid(unsigned long pfn)
3233 {
3234 return 0;
3235 }
3236 #else
3237 /* please see mm/page_alloc.c */
3238 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3239 #endif
3240
3241 extern void mem_init(void);
3242 extern void __init mmap_init(void);
3243
3244 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3245 static inline void show_mem(void)
3246 {
3247 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3248 }
3249 extern long si_mem_available(void);
3250 extern void si_meminfo(struct sysinfo * val);
3251 extern void si_meminfo_node(struct sysinfo *val, int nid);
3252
3253 extern __printf(3, 4)
3254 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3255
3256 extern void setup_per_cpu_pageset(void);
3257
3258 /* nommu.c */
3259 extern atomic_long_t mmap_pages_allocated;
3260 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3261
3262 /* interval_tree.c */
3263 void vma_interval_tree_insert(struct vm_area_struct *node,
3264 struct rb_root_cached *root);
3265 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3266 struct vm_area_struct *prev,
3267 struct rb_root_cached *root);
3268 void vma_interval_tree_remove(struct vm_area_struct *node,
3269 struct rb_root_cached *root);
3270 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3271 unsigned long start, unsigned long last);
3272 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3273 unsigned long start, unsigned long last);
3274
3275 #define vma_interval_tree_foreach(vma, root, start, last) \
3276 for (vma = vma_interval_tree_iter_first(root, start, last); \
3277 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3278
3279 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3280 struct rb_root_cached *root);
3281 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3282 struct rb_root_cached *root);
3283 struct anon_vma_chain *
3284 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3285 unsigned long start, unsigned long last);
3286 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3287 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3288 #ifdef CONFIG_DEBUG_VM_RB
3289 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3290 #endif
3291
3292 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
3293 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3294 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3295
3296 /* mmap.c */
3297 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3298 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3299 extern void exit_mmap(struct mm_struct *);
3300 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3301
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3302 static inline int check_data_rlimit(unsigned long rlim,
3303 unsigned long new,
3304 unsigned long start,
3305 unsigned long end_data,
3306 unsigned long start_data)
3307 {
3308 if (rlim < RLIM_INFINITY) {
3309 if (((new - start) + (end_data - start_data)) > rlim)
3310 return -ENOSPC;
3311 }
3312
3313 return 0;
3314 }
3315
3316 extern int mm_take_all_locks(struct mm_struct *mm);
3317 extern void mm_drop_all_locks(struct mm_struct *mm);
3318
3319 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3320 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3321 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3322 extern struct file *get_task_exe_file(struct task_struct *task);
3323
3324 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3325 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3326
3327 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3328 const struct vm_special_mapping *sm);
3329 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3330 unsigned long addr, unsigned long len,
3331 unsigned long flags,
3332 const struct vm_special_mapping *spec);
3333
3334 unsigned long randomize_stack_top(unsigned long stack_top);
3335 unsigned long randomize_page(unsigned long start, unsigned long range);
3336
3337 unsigned long
3338 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3339 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3340
3341 static inline unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3342 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3343 unsigned long pgoff, unsigned long flags)
3344 {
3345 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3346 }
3347
3348 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3349 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3350 struct list_head *uf);
3351 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3352 unsigned long len, unsigned long prot, unsigned long flags,
3353 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3354 struct list_head *uf);
3355 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3356 unsigned long start, size_t len, struct list_head *uf,
3357 bool unlock);
3358 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3359 struct mm_struct *mm, unsigned long start,
3360 unsigned long end, struct list_head *uf, bool unlock);
3361 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3362 struct list_head *uf);
3363 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3364
3365 #ifdef CONFIG_MMU
3366 extern int __mm_populate(unsigned long addr, unsigned long len,
3367 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3368 static inline void mm_populate(unsigned long addr, unsigned long len)
3369 {
3370 /* Ignore errors */
3371 (void) __mm_populate(addr, len, 1);
3372 }
3373 #else
mm_populate(unsigned long addr,unsigned long len)3374 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3375 #endif
3376
3377 /* This takes the mm semaphore itself */
3378 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3379 extern int vm_munmap(unsigned long, size_t);
3380 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3381 unsigned long, unsigned long,
3382 unsigned long, unsigned long);
3383
3384 struct vm_unmapped_area_info {
3385 #define VM_UNMAPPED_AREA_TOPDOWN 1
3386 unsigned long flags;
3387 unsigned long length;
3388 unsigned long low_limit;
3389 unsigned long high_limit;
3390 unsigned long align_mask;
3391 unsigned long align_offset;
3392 unsigned long start_gap;
3393 };
3394
3395 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3396
3397 /* truncate.c */
3398 extern void truncate_inode_pages(struct address_space *, loff_t);
3399 extern void truncate_inode_pages_range(struct address_space *,
3400 loff_t lstart, loff_t lend);
3401 extern void truncate_inode_pages_final(struct address_space *);
3402
3403 /* generic vm_area_ops exported for stackable file systems */
3404 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3405 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3406 pgoff_t start_pgoff, pgoff_t end_pgoff);
3407 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3408
3409 extern unsigned long stack_guard_gap;
3410 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3411 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3412 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3413
3414 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3415 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3416
3417 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3418 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3419 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3420 struct vm_area_struct **pprev);
3421
3422 /*
3423 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3424 * NULL if none. Assume start_addr < end_addr.
3425 */
3426 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3427 unsigned long start_addr, unsigned long end_addr);
3428
3429 /**
3430 * vma_lookup() - Find a VMA at a specific address
3431 * @mm: The process address space.
3432 * @addr: The user address.
3433 *
3434 * Return: The vm_area_struct at the given address, %NULL otherwise.
3435 */
3436 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3437 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3438 {
3439 return mtree_load(&mm->mm_mt, addr);
3440 }
3441
stack_guard_start_gap(struct vm_area_struct * vma)3442 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3443 {
3444 if (vma->vm_flags & VM_GROWSDOWN)
3445 return stack_guard_gap;
3446
3447 /* See reasoning around the VM_SHADOW_STACK definition */
3448 if (vma->vm_flags & VM_SHADOW_STACK)
3449 return PAGE_SIZE;
3450
3451 return 0;
3452 }
3453
vm_start_gap(struct vm_area_struct * vma)3454 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3455 {
3456 unsigned long gap = stack_guard_start_gap(vma);
3457 unsigned long vm_start = vma->vm_start;
3458
3459 vm_start -= gap;
3460 if (vm_start > vma->vm_start)
3461 vm_start = 0;
3462 return vm_start;
3463 }
3464
vm_end_gap(struct vm_area_struct * vma)3465 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3466 {
3467 unsigned long vm_end = vma->vm_end;
3468
3469 if (vma->vm_flags & VM_GROWSUP) {
3470 vm_end += stack_guard_gap;
3471 if (vm_end < vma->vm_end)
3472 vm_end = -PAGE_SIZE;
3473 }
3474 return vm_end;
3475 }
3476
vma_pages(struct vm_area_struct * vma)3477 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3478 {
3479 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3480 }
3481
3482 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3483 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3484 unsigned long vm_start, unsigned long vm_end)
3485 {
3486 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3487
3488 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3489 vma = NULL;
3490
3491 return vma;
3492 }
3493
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)3494 static inline bool range_in_vma(struct vm_area_struct *vma,
3495 unsigned long start, unsigned long end)
3496 {
3497 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3498 }
3499
3500 #ifdef CONFIG_MMU
3501 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3502 void vma_set_page_prot(struct vm_area_struct *vma);
3503 #else
vm_get_page_prot(unsigned long vm_flags)3504 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3505 {
3506 return __pgprot(0);
3507 }
vma_set_page_prot(struct vm_area_struct * vma)3508 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3509 {
3510 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3511 }
3512 #endif
3513
3514 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3515
3516 #ifdef CONFIG_NUMA_BALANCING
3517 unsigned long change_prot_numa(struct vm_area_struct *vma,
3518 unsigned long start, unsigned long end);
3519 #endif
3520
3521 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3522 unsigned long addr);
3523 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3524 unsigned long pfn, unsigned long size, pgprot_t);
3525 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3526 unsigned long pfn, unsigned long size, pgprot_t prot);
3527 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3528 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3529 struct page **pages, unsigned long *num);
3530 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3531 unsigned long num);
3532 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3533 unsigned long num);
3534 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3535 unsigned long pfn);
3536 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3537 unsigned long pfn, pgprot_t pgprot);
3538 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3539 pfn_t pfn);
3540 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3541 unsigned long addr, pfn_t pfn);
3542 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3543
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3544 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3545 unsigned long addr, struct page *page)
3546 {
3547 int err = vm_insert_page(vma, addr, page);
3548
3549 if (err == -ENOMEM)
3550 return VM_FAULT_OOM;
3551 if (err < 0 && err != -EBUSY)
3552 return VM_FAULT_SIGBUS;
3553
3554 return VM_FAULT_NOPAGE;
3555 }
3556
3557 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3558 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3559 unsigned long addr, unsigned long pfn,
3560 unsigned long size, pgprot_t prot)
3561 {
3562 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3563 }
3564 #endif
3565
vmf_error(int err)3566 static inline vm_fault_t vmf_error(int err)
3567 {
3568 if (err == -ENOMEM)
3569 return VM_FAULT_OOM;
3570 else if (err == -EHWPOISON)
3571 return VM_FAULT_HWPOISON;
3572 return VM_FAULT_SIGBUS;
3573 }
3574
3575 /*
3576 * Convert errno to return value for ->page_mkwrite() calls.
3577 *
3578 * This should eventually be merged with vmf_error() above, but will need a
3579 * careful audit of all vmf_error() callers.
3580 */
vmf_fs_error(int err)3581 static inline vm_fault_t vmf_fs_error(int err)
3582 {
3583 if (err == 0)
3584 return VM_FAULT_LOCKED;
3585 if (err == -EFAULT || err == -EAGAIN)
3586 return VM_FAULT_NOPAGE;
3587 if (err == -ENOMEM)
3588 return VM_FAULT_OOM;
3589 /* -ENOSPC, -EDQUOT, -EIO ... */
3590 return VM_FAULT_SIGBUS;
3591 }
3592
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3593 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3594 {
3595 if (vm_fault & VM_FAULT_OOM)
3596 return -ENOMEM;
3597 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3598 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3599 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3600 return -EFAULT;
3601 return 0;
3602 }
3603
3604 /*
3605 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3606 * a (NUMA hinting) fault is required.
3607 */
gup_can_follow_protnone(struct vm_area_struct * vma,unsigned int flags)3608 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3609 unsigned int flags)
3610 {
3611 /*
3612 * If callers don't want to honor NUMA hinting faults, no need to
3613 * determine if we would actually have to trigger a NUMA hinting fault.
3614 */
3615 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3616 return true;
3617
3618 /*
3619 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3620 *
3621 * Requiring a fault here even for inaccessible VMAs would mean that
3622 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3623 * refuses to process NUMA hinting faults in inaccessible VMAs.
3624 */
3625 return !vma_is_accessible(vma);
3626 }
3627
3628 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3629 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3630 unsigned long size, pte_fn_t fn, void *data);
3631 extern int apply_to_existing_page_range(struct mm_struct *mm,
3632 unsigned long address, unsigned long size,
3633 pte_fn_t fn, void *data);
3634
3635 #ifdef CONFIG_PAGE_POISONING
3636 extern void __kernel_poison_pages(struct page *page, int numpages);
3637 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3638 extern bool _page_poisoning_enabled_early;
3639 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3640 static inline bool page_poisoning_enabled(void)
3641 {
3642 return _page_poisoning_enabled_early;
3643 }
3644 /*
3645 * For use in fast paths after init_mem_debugging() has run, or when a
3646 * false negative result is not harmful when called too early.
3647 */
page_poisoning_enabled_static(void)3648 static inline bool page_poisoning_enabled_static(void)
3649 {
3650 return static_branch_unlikely(&_page_poisoning_enabled);
3651 }
kernel_poison_pages(struct page * page,int numpages)3652 static inline void kernel_poison_pages(struct page *page, int numpages)
3653 {
3654 if (page_poisoning_enabled_static())
3655 __kernel_poison_pages(page, numpages);
3656 }
kernel_unpoison_pages(struct page * page,int numpages)3657 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3658 {
3659 if (page_poisoning_enabled_static())
3660 __kernel_unpoison_pages(page, numpages);
3661 }
3662 #else
page_poisoning_enabled(void)3663 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3664 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3665 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3666 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3667 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3668 #endif
3669
3670 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3671 static inline bool want_init_on_alloc(gfp_t flags)
3672 {
3673 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3674 &init_on_alloc))
3675 return true;
3676 return flags & __GFP_ZERO;
3677 }
3678
3679 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3680 static inline bool want_init_on_free(void)
3681 {
3682 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3683 &init_on_free);
3684 }
3685
3686 extern bool _debug_pagealloc_enabled_early;
3687 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3688
debug_pagealloc_enabled(void)3689 static inline bool debug_pagealloc_enabled(void)
3690 {
3691 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3692 _debug_pagealloc_enabled_early;
3693 }
3694
3695 /*
3696 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3697 * or when a false negative result is not harmful when called too early.
3698 */
debug_pagealloc_enabled_static(void)3699 static inline bool debug_pagealloc_enabled_static(void)
3700 {
3701 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3702 return false;
3703
3704 return static_branch_unlikely(&_debug_pagealloc_enabled);
3705 }
3706
3707 /*
3708 * To support DEBUG_PAGEALLOC architecture must ensure that
3709 * __kernel_map_pages() never fails
3710 */
3711 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3712 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3713 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3714 {
3715 if (debug_pagealloc_enabled_static())
3716 __kernel_map_pages(page, numpages, 1);
3717 }
3718
debug_pagealloc_unmap_pages(struct page * page,int numpages)3719 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3720 {
3721 if (debug_pagealloc_enabled_static())
3722 __kernel_map_pages(page, numpages, 0);
3723 }
3724
3725 extern unsigned int _debug_guardpage_minorder;
3726 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3727
debug_guardpage_minorder(void)3728 static inline unsigned int debug_guardpage_minorder(void)
3729 {
3730 return _debug_guardpage_minorder;
3731 }
3732
debug_guardpage_enabled(void)3733 static inline bool debug_guardpage_enabled(void)
3734 {
3735 return static_branch_unlikely(&_debug_guardpage_enabled);
3736 }
3737
page_is_guard(struct page * page)3738 static inline bool page_is_guard(struct page *page)
3739 {
3740 if (!debug_guardpage_enabled())
3741 return false;
3742
3743 return PageGuard(page);
3744 }
3745
3746 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3747 static inline bool set_page_guard(struct zone *zone, struct page *page,
3748 unsigned int order)
3749 {
3750 if (!debug_guardpage_enabled())
3751 return false;
3752 return __set_page_guard(zone, page, order);
3753 }
3754
3755 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3756 static inline void clear_page_guard(struct zone *zone, struct page *page,
3757 unsigned int order)
3758 {
3759 if (!debug_guardpage_enabled())
3760 return;
3761 __clear_page_guard(zone, page, order);
3762 }
3763
3764 #else /* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3765 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3766 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3767 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3768 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3769 static inline bool page_is_guard(struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3770 static inline bool set_page_guard(struct zone *zone, struct page *page,
3771 unsigned int order) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3772 static inline void clear_page_guard(struct zone *zone, struct page *page,
3773 unsigned int order) {}
3774 #endif /* CONFIG_DEBUG_PAGEALLOC */
3775
3776 #ifdef __HAVE_ARCH_GATE_AREA
3777 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3778 extern int in_gate_area_no_mm(unsigned long addr);
3779 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3780 #else
get_gate_vma(struct mm_struct * mm)3781 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3782 {
3783 return NULL;
3784 }
in_gate_area_no_mm(unsigned long addr)3785 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3786 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3787 {
3788 return 0;
3789 }
3790 #endif /* __HAVE_ARCH_GATE_AREA */
3791
3792 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3793
3794 #ifdef CONFIG_SYSCTL
3795 extern int sysctl_drop_caches;
3796 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3797 loff_t *);
3798 #endif
3799
3800 void drop_slab(void);
3801
3802 #ifndef CONFIG_MMU
3803 #define randomize_va_space 0
3804 #else
3805 extern int randomize_va_space;
3806 #endif
3807
3808 const char * arch_vma_name(struct vm_area_struct *vma);
3809 #ifdef CONFIG_MMU
3810 void print_vma_addr(char *prefix, unsigned long rip);
3811 #else
print_vma_addr(char * prefix,unsigned long rip)3812 static inline void print_vma_addr(char *prefix, unsigned long rip)
3813 {
3814 }
3815 #endif
3816
3817 void *sparse_buffer_alloc(unsigned long size);
3818 struct page * __populate_section_memmap(unsigned long pfn,
3819 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3820 struct dev_pagemap *pgmap);
3821 void pud_init(void *addr);
3822 void pmd_init(void *addr);
3823 void kernel_pte_init(void *addr);
3824 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3825 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3826 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3827 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3828 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3829 struct vmem_altmap *altmap, struct page *reuse);
3830 void *vmemmap_alloc_block(unsigned long size, int node);
3831 struct vmem_altmap;
3832 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3833 struct vmem_altmap *altmap);
3834 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3835 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3836 unsigned long addr, unsigned long next);
3837 int vmemmap_check_pmd(pmd_t *pmd, int node,
3838 unsigned long addr, unsigned long next);
3839 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3840 int node, struct vmem_altmap *altmap);
3841 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3842 int node, struct vmem_altmap *altmap);
3843 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3844 struct vmem_altmap *altmap);
3845 void vmemmap_populate_print_last(void);
3846 #ifdef CONFIG_MEMORY_HOTPLUG
3847 void vmemmap_free(unsigned long start, unsigned long end,
3848 struct vmem_altmap *altmap);
3849 #endif
3850
3851 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(struct vmem_altmap * altmap)3852 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3853 {
3854 /* number of pfns from base where pfn_to_page() is valid */
3855 if (altmap)
3856 return altmap->reserve + altmap->free;
3857 return 0;
3858 }
3859
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3860 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3861 unsigned long nr_pfns)
3862 {
3863 altmap->alloc -= nr_pfns;
3864 }
3865 #else
vmem_altmap_offset(struct vmem_altmap * altmap)3866 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3867 {
3868 return 0;
3869 }
3870
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3871 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3872 unsigned long nr_pfns)
3873 {
3874 }
3875 #endif
3876
3877 #define VMEMMAP_RESERVE_NR 2
3878 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3879 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3880 struct dev_pagemap *pgmap)
3881 {
3882 unsigned long nr_pages;
3883 unsigned long nr_vmemmap_pages;
3884
3885 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3886 return false;
3887
3888 nr_pages = pgmap_vmemmap_nr(pgmap);
3889 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3890 /*
3891 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3892 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3893 */
3894 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3895 }
3896 /*
3897 * If we don't have an architecture override, use the generic rule
3898 */
3899 #ifndef vmemmap_can_optimize
3900 #define vmemmap_can_optimize __vmemmap_can_optimize
3901 #endif
3902
3903 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3904 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3905 struct dev_pagemap *pgmap)
3906 {
3907 return false;
3908 }
3909 #endif
3910
3911 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3912 unsigned long nr_pages);
3913
3914 enum mf_flags {
3915 MF_COUNT_INCREASED = 1 << 0,
3916 MF_ACTION_REQUIRED = 1 << 1,
3917 MF_MUST_KILL = 1 << 2,
3918 MF_SOFT_OFFLINE = 1 << 3,
3919 MF_UNPOISON = 1 << 4,
3920 MF_SW_SIMULATED = 1 << 5,
3921 MF_NO_RETRY = 1 << 6,
3922 MF_MEM_PRE_REMOVE = 1 << 7,
3923 };
3924 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3925 unsigned long count, int mf_flags);
3926 extern int memory_failure(unsigned long pfn, int flags);
3927 extern void memory_failure_queue_kick(int cpu);
3928 extern int unpoison_memory(unsigned long pfn);
3929 extern atomic_long_t num_poisoned_pages __read_mostly;
3930 extern int soft_offline_page(unsigned long pfn, int flags);
3931 #ifdef CONFIG_MEMORY_FAILURE
3932 /*
3933 * Sysfs entries for memory failure handling statistics.
3934 */
3935 extern const struct attribute_group memory_failure_attr_group;
3936 extern void memory_failure_queue(unsigned long pfn, int flags);
3937 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3938 bool *migratable_cleared);
3939 void num_poisoned_pages_inc(unsigned long pfn);
3940 void num_poisoned_pages_sub(unsigned long pfn, long i);
3941 #else
memory_failure_queue(unsigned long pfn,int flags)3942 static inline void memory_failure_queue(unsigned long pfn, int flags)
3943 {
3944 }
3945
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)3946 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3947 bool *migratable_cleared)
3948 {
3949 return 0;
3950 }
3951
num_poisoned_pages_inc(unsigned long pfn)3952 static inline void num_poisoned_pages_inc(unsigned long pfn)
3953 {
3954 }
3955
num_poisoned_pages_sub(unsigned long pfn,long i)3956 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3957 {
3958 }
3959 #endif
3960
3961 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3962 extern void memblk_nr_poison_inc(unsigned long pfn);
3963 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3964 #else
memblk_nr_poison_inc(unsigned long pfn)3965 static inline void memblk_nr_poison_inc(unsigned long pfn)
3966 {
3967 }
3968
memblk_nr_poison_sub(unsigned long pfn,long i)3969 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3970 {
3971 }
3972 #endif
3973
3974 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)3975 static inline int arch_memory_failure(unsigned long pfn, int flags)
3976 {
3977 return -ENXIO;
3978 }
3979 #endif
3980
3981 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)3982 static inline bool arch_is_platform_page(u64 paddr)
3983 {
3984 return false;
3985 }
3986 #endif
3987
3988 /*
3989 * Error handlers for various types of pages.
3990 */
3991 enum mf_result {
3992 MF_IGNORED, /* Error: cannot be handled */
3993 MF_FAILED, /* Error: handling failed */
3994 MF_DELAYED, /* Will be handled later */
3995 MF_RECOVERED, /* Successfully recovered */
3996 };
3997
3998 enum mf_action_page_type {
3999 MF_MSG_KERNEL,
4000 MF_MSG_KERNEL_HIGH_ORDER,
4001 MF_MSG_DIFFERENT_COMPOUND,
4002 MF_MSG_HUGE,
4003 MF_MSG_FREE_HUGE,
4004 MF_MSG_GET_HWPOISON,
4005 MF_MSG_UNMAP_FAILED,
4006 MF_MSG_DIRTY_SWAPCACHE,
4007 MF_MSG_CLEAN_SWAPCACHE,
4008 MF_MSG_DIRTY_MLOCKED_LRU,
4009 MF_MSG_CLEAN_MLOCKED_LRU,
4010 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4011 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4012 MF_MSG_DIRTY_LRU,
4013 MF_MSG_CLEAN_LRU,
4014 MF_MSG_TRUNCATED_LRU,
4015 MF_MSG_BUDDY,
4016 MF_MSG_DAX,
4017 MF_MSG_UNSPLIT_THP,
4018 MF_MSG_ALREADY_POISONED,
4019 MF_MSG_UNKNOWN,
4020 };
4021
4022 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4023 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4024 int copy_user_large_folio(struct folio *dst, struct folio *src,
4025 unsigned long addr_hint,
4026 struct vm_area_struct *vma);
4027 long copy_folio_from_user(struct folio *dst_folio,
4028 const void __user *usr_src,
4029 bool allow_pagefault);
4030
4031 /**
4032 * vma_is_special_huge - Are transhuge page-table entries considered special?
4033 * @vma: Pointer to the struct vm_area_struct to consider
4034 *
4035 * Whether transhuge page-table entries are considered "special" following
4036 * the definition in vm_normal_page().
4037 *
4038 * Return: true if transhuge page-table entries should be considered special,
4039 * false otherwise.
4040 */
vma_is_special_huge(const struct vm_area_struct * vma)4041 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4042 {
4043 return vma_is_dax(vma) || (vma->vm_file &&
4044 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4045 }
4046
4047 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4048
4049 #if MAX_NUMNODES > 1
4050 void __init setup_nr_node_ids(void);
4051 #else
setup_nr_node_ids(void)4052 static inline void setup_nr_node_ids(void) {}
4053 #endif
4054
4055 extern int memcmp_pages(struct page *page1, struct page *page2);
4056
pages_identical(struct page * page1,struct page * page2)4057 static inline int pages_identical(struct page *page1, struct page *page2)
4058 {
4059 return !memcmp_pages(page1, page2);
4060 }
4061
4062 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4063 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4064 pgoff_t first_index, pgoff_t nr,
4065 pgoff_t bitmap_pgoff,
4066 unsigned long *bitmap,
4067 pgoff_t *start,
4068 pgoff_t *end);
4069
4070 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4071 pgoff_t first_index, pgoff_t nr);
4072 #endif
4073
4074 extern int sysctl_nr_trim_pages;
4075
4076 #ifdef CONFIG_PRINTK
4077 void mem_dump_obj(void *object);
4078 #else
mem_dump_obj(void * object)4079 static inline void mem_dump_obj(void *object) {}
4080 #endif
4081
4082 /**
4083 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4084 * handle them.
4085 * @seals: the seals to check
4086 * @vma: the vma to operate on
4087 *
4088 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4089 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors.
4090 */
seal_check_write(int seals,struct vm_area_struct * vma)4091 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4092 {
4093 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4094 /*
4095 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4096 * write seals are active.
4097 */
4098 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4099 return -EPERM;
4100
4101 /*
4102 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4103 * MAP_SHARED and read-only, take care to not allow mprotect to
4104 * revert protections on such mappings. Do this only for shared
4105 * mappings. For private mappings, don't need to mask
4106 * VM_MAYWRITE as we still want them to be COW-writable.
4107 */
4108 if (vma->vm_flags & VM_SHARED)
4109 vm_flags_clear(vma, VM_MAYWRITE);
4110 }
4111
4112 return 0;
4113 }
4114
4115 #ifdef CONFIG_ANON_VMA_NAME
4116 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4117 unsigned long len_in,
4118 struct anon_vma_name *anon_name);
4119 #else
4120 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)4121 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4122 unsigned long len_in, struct anon_vma_name *anon_name) {
4123 return 0;
4124 }
4125 #endif
4126
4127 #ifdef CONFIG_UNACCEPTED_MEMORY
4128
4129 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4130 void accept_memory(phys_addr_t start, unsigned long size);
4131
4132 #else
4133
range_contains_unaccepted_memory(phys_addr_t start,unsigned long size)4134 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4135 unsigned long size)
4136 {
4137 return false;
4138 }
4139
accept_memory(phys_addr_t start,unsigned long size)4140 static inline void accept_memory(phys_addr_t start, unsigned long size)
4141 {
4142 }
4143
4144 #endif
4145
pfn_is_unaccepted_memory(unsigned long pfn)4146 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4147 {
4148 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4149 }
4150
4151 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4152 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4153
4154 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4155
4156 #ifdef CONFIG_64BIT
4157 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4158 #else
do_mseal(unsigned long start,size_t len_in,unsigned long flags)4159 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4160 {
4161 /* noop on 32 bit */
4162 return 0;
4163 }
4164 #endif
4165
4166 #ifdef CONFIG_MEM_ALLOC_PROFILING
pgalloc_tag_split(struct folio * folio,int old_order,int new_order)4167 static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order)
4168 {
4169 int i;
4170 struct alloc_tag *tag;
4171 unsigned int nr_pages = 1 << new_order;
4172
4173 if (!mem_alloc_profiling_enabled())
4174 return;
4175
4176 tag = pgalloc_tag_get(&folio->page);
4177 if (!tag)
4178 return;
4179
4180 for (i = nr_pages; i < (1 << old_order); i += nr_pages) {
4181 union codetag_ref *ref = get_page_tag_ref(folio_page(folio, i));
4182
4183 if (ref) {
4184 /* Set new reference to point to the original tag */
4185 alloc_tag_ref_set(ref, tag);
4186 put_page_tag_ref(ref);
4187 }
4188 }
4189 }
4190
pgalloc_tag_copy(struct folio * new,struct folio * old)4191 static inline void pgalloc_tag_copy(struct folio *new, struct folio *old)
4192 {
4193 struct alloc_tag *tag;
4194 union codetag_ref *ref;
4195
4196 tag = pgalloc_tag_get(&old->page);
4197 if (!tag)
4198 return;
4199
4200 ref = get_page_tag_ref(&new->page);
4201 if (!ref)
4202 return;
4203
4204 /* Clear the old ref to the original allocation tag. */
4205 clear_page_tag_ref(&old->page);
4206 /* Decrement the counters of the tag on get_new_folio. */
4207 alloc_tag_sub(ref, folio_nr_pages(new));
4208
4209 __alloc_tag_ref_set(ref, tag);
4210
4211 put_page_tag_ref(ref);
4212 }
4213 #else /* !CONFIG_MEM_ALLOC_PROFILING */
pgalloc_tag_split(struct folio * folio,int old_order,int new_order)4214 static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order)
4215 {
4216 }
4217
pgalloc_tag_copy(struct folio * new,struct folio * old)4218 static inline void pgalloc_tag_copy(struct folio *new, struct folio *old)
4219 {
4220 }
4221 #endif /* CONFIG_MEM_ALLOC_PROFILING */
4222
4223 #endif /* _LINUX_MM_H */
4224