1 /*
2  * This program source code file is part of KiCad, a free EDA CAD application.
3  *
4  * Copyright (C) 2012-2016 Jean-Pierre Charras, jp.charras at wanadoo.fr
5  * Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version 2
10  * of the License, or (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, you may find one here:
19  * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
20  * or you may search the http://www.gnu.org website for the version 2 license,
21  * or you may write to the Free Software Foundation, Inc.,
22  * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
23  */
24 
25 #pragma once
26 
27 
28 /*  Note about internal units and max size for boards and items
29 
30     The largest distance that we (and Kicad) can support is INT_MAX, since it represents
31     distance often in a wxCoord or wxSize. As a scalar, a distance is always
32     positive. Because int is 32 bits and INT_MAX is
33     2147483647. The most difficult distance for a virtual (world) cartesian
34     space is the hypotenuse, or diagonal measurement at a 45 degree angle. This
35     puts the most stress on the distance magnitude within the bounded virtual
36     space. So if we allow this distance to be our constraint of <= INT_MAX, this
37     constraint then propagates to the maximum distance in X and in Y that can be
38     supported on each axis. Remember that the hypotenuse of a 1x1 square is
39     sqrt( 1x1 + 1x1 ) = sqrt(2) = 1.41421356.
40 
41     hypotenuse of any square = sqrt(2) * deltaX;
42 
43     Let maximum supported hypotenuse be INT_MAX, then:
44 
45     MAX_AXIS = INT_MAX / sqrt(2) = 2147483647 / 1.41421356 = 1518500251
46 
47     The next choice is what to use for internal units (IU), sometimes called
48     world units.  If nanometers, then the virtual space must be limited to
49     about 1.5 x 1.5 meters square.  This is 1518500251 divided by 1e9 nm/meter.
50 
51     The maximum zoom factor then depends on the client window size.  If we ask
52     wx to handle something outside INT_MIN to INT_MAX, there are unreported
53     problems in the non-Debug build because wxRound() goes silent.
54 
55     Pcbnew uses nanometers because we need to convert coordinates and size between
56     millimeters and inches. using a iu = 1 nm avoid rounding issues
57 
58     Gerbview uses iu = 10 nm because we can have coordinates far from origin, and
59     1 nm is too small to avoid int overflow.
60     (Conversions between millimeters and inches are not critical)
61 */
62 
63 /**
64  * @brief some define and functions to convert a value in mils, decimils or mm
65  * to the internal unit used in pcbnew, cvpcb or gerbview (nanometer or deci-mil)
66  * depending on compile time option
67  */
68 
69 constexpr double GERB_IU_PER_MM = 1e5;  // Gerbview IU is 10 nanometers.
70 constexpr double PCB_IU_PER_MM  = 1e6;  // Pcbnew IU is 1 nanometer.
71 constexpr double PL_IU_PER_MM   = 1e3;  // internal units in micron (should be enough)
72 constexpr double SCH_IU_PER_MM  = 1e4;  // Schematic internal units 1=100nm
73 
74 /// Scaling factor to convert mils to internal units.
75 #if defined(PCBNEW) || defined(CVPCB)
76 constexpr double IU_PER_MM = PCB_IU_PER_MM;
77 #elif defined(GERBVIEW)
78 constexpr double IU_PER_MM = GERB_IU_PER_MM;
79 #elif defined(PL_EDITOR)
80 constexpr double IU_PER_MM = PL_IU_PER_MM;
81 #elif defined(EESCHEMA)
82 constexpr double IU_PER_MM = SCH_IU_PER_MM;
83 #else
84 #define UNKNOWN_IU
85 #endif
86 
87 #ifndef UNKNOWN_IU
88 constexpr double IU_PER_MILS = (IU_PER_MM * 0.0254);
89 
Mils2iu(int mils)90 constexpr inline int Mils2iu( int mils )
91 {
92     double x = mils * IU_PER_MILS;
93     return int( x < 0 ? x - 0.5 : x + 0.5 );
94 }
95 
96 #if defined(EESCHEMA)
Iu2Mils(int iu)97 constexpr inline int Iu2Mils( int iu )
98 {
99     double mils = iu / IU_PER_MILS;
100 
101     return static_cast< int >( mils < 0 ? mils - 0.5 : mils + 0.5 );
102 }
103 #else
Iu2Mils(int iu)104 constexpr inline double Iu2Mils( int iu )
105 {
106     double mils = iu / IU_PER_MILS;
107 
108     return static_cast< int >( mils < 0 ? mils - 0.5 : mils + 0.5 );
109 }
110 #endif
111 
112 // Other definitions used in a few files
113 constexpr double MM_PER_IU = ( 1 / IU_PER_MM );
114 
115 /// Convert mm to internal units (iu).
Millimeter2iu(double mm)116 constexpr inline int Millimeter2iu( double mm )
117 {
118     return (int) ( mm < 0 ? mm * IU_PER_MM - 0.5 : mm * IU_PER_MM + 0.5 );
119 }
120 
121 /// Convert mm to internal units (iu).
Iu2Millimeter(int iu)122 constexpr inline double Iu2Millimeter( int iu )
123 {
124     return iu / IU_PER_MM;
125 }
126 
127 /// Convert mm to internal units (iu).
128 // constexpr inline double Iu2Mils( int iu )
129 // {
130 //     return iu / IU_PER_MILS;
131 // }
132 
133 // The max error is the distance between the middle of a segment, and the circle
134 // for circle/arc to segment approximation.
135 // Warning: too small values can create very long calculation time in zone filling
136 // 0.05 to 0.005 mm are reasonable values
137 
138 constexpr int ARC_LOW_DEF  = Millimeter2iu( 0.02 );
139 constexpr int ARC_HIGH_DEF = Millimeter2iu( 0.005 );
140 
141 #else
142 constexpr double PCB_IU_PER_MILS = (PCB_IU_PER_MM * 0.0254);
143 constexpr double SCH_IU_PER_MILS = (SCH_IU_PER_MM * 0.0254);
144 
SchMils2iu(double mils)145 constexpr inline int SchMils2iu( double mils )
146 {
147     double x = mils * SCH_IU_PER_MILS;
148     return int( x < 0 ? x - 0.5 : x + 0.5 );
149 }
SchIu2Mils(int iu)150 constexpr inline double SchIu2Mils( int iu )
151 {
152     return iu / SCH_IU_PER_MILS;
153 }
154 
PcbMm2iu(double mm)155 constexpr inline int PcbMm2iu( double mm )
156 {
157     return (int) ( mm < 0 ? mm * PCB_IU_PER_MM - 0.5 : mm * PCB_IU_PER_MM + 0.5 );
158 }
PcbIu2mm(int iu)159 constexpr inline double PcbIu2mm( int iu )
160 {
161     return iu / PCB_IU_PER_MM;
162 }
163 
164 #endif
165