1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7
8 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
9 #define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
10
11 #ifndef __ASSEMBLY__
12 #ifdef CONFIG_MMU
13
14 #include <linux/mm_types.h>
15 #include <linux/bug.h>
16 #include <linux/errno.h>
17 #include <asm-generic/pgtable_uffd.h>
18 #include <linux/page_table_check.h>
19
20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23 #endif
24
25 /*
26 * On almost all architectures and configurations, 0 can be used as the
27 * upper ceiling to free_pgtables(): on many architectures it has the same
28 * effect as using TASK_SIZE. However, there is one configuration which
29 * must impose a more careful limit, to avoid freeing kernel pgtables.
30 */
31 #ifndef USER_PGTABLES_CEILING
32 #define USER_PGTABLES_CEILING 0UL
33 #endif
34
35 /*
36 * This defines the first usable user address. Platforms
37 * can override its value with custom FIRST_USER_ADDRESS
38 * defined in their respective <asm/pgtable.h>.
39 */
40 #ifndef FIRST_USER_ADDRESS
41 #define FIRST_USER_ADDRESS 0UL
42 #endif
43
44 /*
45 * This defines the generic helper for accessing PMD page
46 * table page. Although platforms can still override this
47 * via their respective <asm/pgtable.h>.
48 */
49 #ifndef pmd_pgtable
50 #define pmd_pgtable(pmd) pmd_page(pmd)
51 #endif
52
53 #define pmd_folio(pmd) page_folio(pmd_page(pmd))
54
55 /*
56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
57 *
58 * The pXx_index() functions return the index of the entry in the page
59 * table page which would control the given virtual address
60 *
61 * As these functions may be used by the same code for different levels of
62 * the page table folding, they are always available, regardless of
63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
64 * because in such cases PTRS_PER_PxD equals 1.
65 */
66
pte_index(unsigned long address)67 static inline unsigned long pte_index(unsigned long address)
68 {
69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
70 }
71
72 #ifndef pmd_index
pmd_index(unsigned long address)73 static inline unsigned long pmd_index(unsigned long address)
74 {
75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
76 }
77 #define pmd_index pmd_index
78 #endif
79
80 #ifndef pud_index
pud_index(unsigned long address)81 static inline unsigned long pud_index(unsigned long address)
82 {
83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
84 }
85 #define pud_index pud_index
86 #endif
87
88 #ifndef pgd_index
89 /* Must be a compile-time constant, so implement it as a macro */
90 #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
91 #endif
92
93 #ifndef pte_offset_kernel
pte_offset_kernel(pmd_t * pmd,unsigned long address)94 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
95 {
96 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
97 }
98 #define pte_offset_kernel pte_offset_kernel
99 #endif
100
101 #ifdef CONFIG_HIGHPTE
102 #define __pte_map(pmd, address) \
103 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
104 #define pte_unmap(pte) do { \
105 kunmap_local((pte)); \
106 rcu_read_unlock(); \
107 } while (0)
108 #else
__pte_map(pmd_t * pmd,unsigned long address)109 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
110 {
111 return pte_offset_kernel(pmd, address);
112 }
pte_unmap(pte_t * pte)113 static inline void pte_unmap(pte_t *pte)
114 {
115 rcu_read_unlock();
116 }
117 #endif
118
119 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
120
121 /* Find an entry in the second-level page table.. */
122 #ifndef pmd_offset
pmd_offset(pud_t * pud,unsigned long address)123 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
124 {
125 return pud_pgtable(*pud) + pmd_index(address);
126 }
127 #define pmd_offset pmd_offset
128 #endif
129
130 #ifndef pud_offset
pud_offset(p4d_t * p4d,unsigned long address)131 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
132 {
133 return p4d_pgtable(*p4d) + pud_index(address);
134 }
135 #define pud_offset pud_offset
136 #endif
137
pgd_offset_pgd(pgd_t * pgd,unsigned long address)138 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
139 {
140 return (pgd + pgd_index(address));
141 };
142
143 /*
144 * a shortcut to get a pgd_t in a given mm
145 */
146 #ifndef pgd_offset
147 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
148 #endif
149
150 /*
151 * a shortcut which implies the use of the kernel's pgd, instead
152 * of a process's
153 */
154 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
155
156 /*
157 * In many cases it is known that a virtual address is mapped at PMD or PTE
158 * level, so instead of traversing all the page table levels, we can get a
159 * pointer to the PMD entry in user or kernel page table or translate a virtual
160 * address to the pointer in the PTE in the kernel page tables with simple
161 * helpers.
162 */
pmd_off(struct mm_struct * mm,unsigned long va)163 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
164 {
165 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
166 }
167
pmd_off_k(unsigned long va)168 static inline pmd_t *pmd_off_k(unsigned long va)
169 {
170 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
171 }
172
virt_to_kpte(unsigned long vaddr)173 static inline pte_t *virt_to_kpte(unsigned long vaddr)
174 {
175 pmd_t *pmd = pmd_off_k(vaddr);
176
177 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
178 }
179
180 #ifndef pmd_young
pmd_young(pmd_t pmd)181 static inline int pmd_young(pmd_t pmd)
182 {
183 return 0;
184 }
185 #endif
186
187 #ifndef pmd_dirty
pmd_dirty(pmd_t pmd)188 static inline int pmd_dirty(pmd_t pmd)
189 {
190 return 0;
191 }
192 #endif
193
194 /*
195 * A facility to provide lazy MMU batching. This allows PTE updates and
196 * page invalidations to be delayed until a call to leave lazy MMU mode
197 * is issued. Some architectures may benefit from doing this, and it is
198 * beneficial for both shadow and direct mode hypervisors, which may batch
199 * the PTE updates which happen during this window. Note that using this
200 * interface requires that read hazards be removed from the code. A read
201 * hazard could result in the direct mode hypervisor case, since the actual
202 * write to the page tables may not yet have taken place, so reads though
203 * a raw PTE pointer after it has been modified are not guaranteed to be
204 * up to date. This mode can only be entered and left under the protection of
205 * the page table locks for all page tables which may be modified. In the UP
206 * case, this is required so that preemption is disabled, and in the SMP case,
207 * it must synchronize the delayed page table writes properly on other CPUs.
208 */
209 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
210 #define arch_enter_lazy_mmu_mode() do {} while (0)
211 #define arch_leave_lazy_mmu_mode() do {} while (0)
212 #define arch_flush_lazy_mmu_mode() do {} while (0)
213 #endif
214
215 #ifndef pte_batch_hint
216 /**
217 * pte_batch_hint - Number of pages that can be added to batch without scanning.
218 * @ptep: Page table pointer for the entry.
219 * @pte: Page table entry.
220 *
221 * Some architectures know that a set of contiguous ptes all map the same
222 * contiguous memory with the same permissions. In this case, it can provide a
223 * hint to aid pte batching without the core code needing to scan every pte.
224 *
225 * An architecture implementation may ignore the PTE accessed state. Further,
226 * the dirty state must apply atomically to all the PTEs described by the hint.
227 *
228 * May be overridden by the architecture, else pte_batch_hint is always 1.
229 */
pte_batch_hint(pte_t * ptep,pte_t pte)230 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
231 {
232 return 1;
233 }
234 #endif
235
236 #ifndef pte_advance_pfn
pte_advance_pfn(pte_t pte,unsigned long nr)237 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
238 {
239 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
240 }
241 #endif
242
243 #define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
244
245 #ifndef set_ptes
246 /**
247 * set_ptes - Map consecutive pages to a contiguous range of addresses.
248 * @mm: Address space to map the pages into.
249 * @addr: Address to map the first page at.
250 * @ptep: Page table pointer for the first entry.
251 * @pte: Page table entry for the first page.
252 * @nr: Number of pages to map.
253 *
254 * When nr==1, initial state of pte may be present or not present, and new state
255 * may be present or not present. When nr>1, initial state of all ptes must be
256 * not present, and new state must be present.
257 *
258 * May be overridden by the architecture, or the architecture can define
259 * set_pte() and PFN_PTE_SHIFT.
260 *
261 * Context: The caller holds the page table lock. The pages all belong
262 * to the same folio. The PTEs are all in the same PMD.
263 */
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)264 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
265 pte_t *ptep, pte_t pte, unsigned int nr)
266 {
267 page_table_check_ptes_set(mm, ptep, pte, nr);
268
269 arch_enter_lazy_mmu_mode();
270 for (;;) {
271 set_pte(ptep, pte);
272 if (--nr == 0)
273 break;
274 ptep++;
275 pte = pte_next_pfn(pte);
276 }
277 arch_leave_lazy_mmu_mode();
278 }
279 #endif
280 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
281
282 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
283 extern int ptep_set_access_flags(struct vm_area_struct *vma,
284 unsigned long address, pte_t *ptep,
285 pte_t entry, int dirty);
286 #endif
287
288 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
289 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
290 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
291 unsigned long address, pmd_t *pmdp,
292 pmd_t entry, int dirty);
293 extern int pudp_set_access_flags(struct vm_area_struct *vma,
294 unsigned long address, pud_t *pudp,
295 pud_t entry, int dirty);
296 #else
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)297 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
298 unsigned long address, pmd_t *pmdp,
299 pmd_t entry, int dirty)
300 {
301 BUILD_BUG();
302 return 0;
303 }
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)304 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
305 unsigned long address, pud_t *pudp,
306 pud_t entry, int dirty)
307 {
308 BUILD_BUG();
309 return 0;
310 }
311 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
312 #endif
313
314 #ifndef ptep_get
ptep_get(pte_t * ptep)315 static inline pte_t ptep_get(pte_t *ptep)
316 {
317 return READ_ONCE(*ptep);
318 }
319 #endif
320
321 #ifndef pmdp_get
pmdp_get(pmd_t * pmdp)322 static inline pmd_t pmdp_get(pmd_t *pmdp)
323 {
324 return READ_ONCE(*pmdp);
325 }
326 #endif
327
328 #ifndef pudp_get
pudp_get(pud_t * pudp)329 static inline pud_t pudp_get(pud_t *pudp)
330 {
331 return READ_ONCE(*pudp);
332 }
333 #endif
334
335 #ifndef p4dp_get
p4dp_get(p4d_t * p4dp)336 static inline p4d_t p4dp_get(p4d_t *p4dp)
337 {
338 return READ_ONCE(*p4dp);
339 }
340 #endif
341
342 #ifndef pgdp_get
pgdp_get(pgd_t * pgdp)343 static inline pgd_t pgdp_get(pgd_t *pgdp)
344 {
345 return READ_ONCE(*pgdp);
346 }
347 #endif
348
349 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)350 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
351 unsigned long address,
352 pte_t *ptep)
353 {
354 pte_t pte = ptep_get(ptep);
355 int r = 1;
356 if (!pte_young(pte))
357 r = 0;
358 else
359 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
360 return r;
361 }
362 #endif
363
364 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
365 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)366 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
367 unsigned long address,
368 pmd_t *pmdp)
369 {
370 pmd_t pmd = *pmdp;
371 int r = 1;
372 if (!pmd_young(pmd))
373 r = 0;
374 else
375 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
376 return r;
377 }
378 #else
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)379 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
380 unsigned long address,
381 pmd_t *pmdp)
382 {
383 BUILD_BUG();
384 return 0;
385 }
386 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
387 #endif
388
389 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
390 int ptep_clear_flush_young(struct vm_area_struct *vma,
391 unsigned long address, pte_t *ptep);
392 #endif
393
394 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
395 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
396 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
397 unsigned long address, pmd_t *pmdp);
398 #else
399 /*
400 * Despite relevant to THP only, this API is called from generic rmap code
401 * under PageTransHuge(), hence needs a dummy implementation for !THP
402 */
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)403 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
404 unsigned long address, pmd_t *pmdp)
405 {
406 BUILD_BUG();
407 return 0;
408 }
409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
410 #endif
411
412 #ifndef arch_has_hw_nonleaf_pmd_young
413 /*
414 * Return whether the accessed bit in non-leaf PMD entries is supported on the
415 * local CPU.
416 */
arch_has_hw_nonleaf_pmd_young(void)417 static inline bool arch_has_hw_nonleaf_pmd_young(void)
418 {
419 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
420 }
421 #endif
422
423 #ifndef arch_has_hw_pte_young
424 /*
425 * Return whether the accessed bit is supported on the local CPU.
426 *
427 * This stub assumes accessing through an old PTE triggers a page fault.
428 * Architectures that automatically set the access bit should overwrite it.
429 */
arch_has_hw_pte_young(void)430 static inline bool arch_has_hw_pte_young(void)
431 {
432 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
433 }
434 #endif
435
436 #ifndef arch_check_zapped_pte
arch_check_zapped_pte(struct vm_area_struct * vma,pte_t pte)437 static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
438 pte_t pte)
439 {
440 }
441 #endif
442
443 #ifndef arch_check_zapped_pmd
arch_check_zapped_pmd(struct vm_area_struct * vma,pmd_t pmd)444 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
445 pmd_t pmd)
446 {
447 }
448 #endif
449
450 #ifndef arch_check_zapped_pud
arch_check_zapped_pud(struct vm_area_struct * vma,pud_t pud)451 static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud)
452 {
453 }
454 #endif
455
456 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)457 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
458 unsigned long address,
459 pte_t *ptep)
460 {
461 pte_t pte = ptep_get(ptep);
462 pte_clear(mm, address, ptep);
463 page_table_check_pte_clear(mm, pte);
464 return pte;
465 }
466 #endif
467
468 #ifndef clear_young_dirty_ptes
469 /**
470 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
471 * same folio as old/clean.
472 * @mm: Address space the pages are mapped into.
473 * @addr: Address the first page is mapped at.
474 * @ptep: Page table pointer for the first entry.
475 * @nr: Number of entries to mark old/clean.
476 * @flags: Flags to modify the PTE batch semantics.
477 *
478 * May be overridden by the architecture; otherwise, implemented by
479 * get_and_clear/modify/set for each pte in the range.
480 *
481 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
482 * some PTEs might be write-protected.
483 *
484 * Context: The caller holds the page table lock. The PTEs map consecutive
485 * pages that belong to the same folio. The PTEs are all in the same PMD.
486 */
clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)487 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
488 unsigned long addr, pte_t *ptep,
489 unsigned int nr, cydp_t flags)
490 {
491 pte_t pte;
492
493 for (;;) {
494 if (flags == CYDP_CLEAR_YOUNG)
495 ptep_test_and_clear_young(vma, addr, ptep);
496 else {
497 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
498 if (flags & CYDP_CLEAR_YOUNG)
499 pte = pte_mkold(pte);
500 if (flags & CYDP_CLEAR_DIRTY)
501 pte = pte_mkclean(pte);
502 set_pte_at(vma->vm_mm, addr, ptep, pte);
503 }
504 if (--nr == 0)
505 break;
506 ptep++;
507 addr += PAGE_SIZE;
508 }
509 }
510 #endif
511
ptep_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)512 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
513 pte_t *ptep)
514 {
515 ptep_get_and_clear(mm, addr, ptep);
516 }
517
518 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
519 /*
520 * For walking the pagetables without holding any locks. Some architectures
521 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
522 * instructions. We are guaranteed that a PTE will only either go from not
523 * present to present, or present to not present -- it will not switch to a
524 * completely different present page without a TLB flush inbetween; which we
525 * are blocking by holding interrupts off.
526 *
527 * Setting ptes from not present to present goes:
528 *
529 * ptep->pte_high = h;
530 * smp_wmb();
531 * ptep->pte_low = l;
532 *
533 * And present to not present goes:
534 *
535 * ptep->pte_low = 0;
536 * smp_wmb();
537 * ptep->pte_high = 0;
538 *
539 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
540 * We load pte_high *after* loading pte_low, which ensures we don't see an older
541 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
542 * picked up a changed pte high. We might have gotten rubbish values from
543 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
544 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
545 * operates on present ptes we're safe.
546 */
ptep_get_lockless(pte_t * ptep)547 static inline pte_t ptep_get_lockless(pte_t *ptep)
548 {
549 pte_t pte;
550
551 do {
552 pte.pte_low = ptep->pte_low;
553 smp_rmb();
554 pte.pte_high = ptep->pte_high;
555 smp_rmb();
556 } while (unlikely(pte.pte_low != ptep->pte_low));
557
558 return pte;
559 }
560 #define ptep_get_lockless ptep_get_lockless
561
562 #if CONFIG_PGTABLE_LEVELS > 2
pmdp_get_lockless(pmd_t * pmdp)563 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
564 {
565 pmd_t pmd;
566
567 do {
568 pmd.pmd_low = pmdp->pmd_low;
569 smp_rmb();
570 pmd.pmd_high = pmdp->pmd_high;
571 smp_rmb();
572 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
573
574 return pmd;
575 }
576 #define pmdp_get_lockless pmdp_get_lockless
577 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
578 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
579 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
580
581 /*
582 * We require that the PTE can be read atomically.
583 */
584 #ifndef ptep_get_lockless
ptep_get_lockless(pte_t * ptep)585 static inline pte_t ptep_get_lockless(pte_t *ptep)
586 {
587 return ptep_get(ptep);
588 }
589 #endif
590
591 #ifndef pmdp_get_lockless
pmdp_get_lockless(pmd_t * pmdp)592 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
593 {
594 return pmdp_get(pmdp);
595 }
pmdp_get_lockless_sync(void)596 static inline void pmdp_get_lockless_sync(void)
597 {
598 }
599 #endif
600
601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
602 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)603 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
604 unsigned long address,
605 pmd_t *pmdp)
606 {
607 pmd_t pmd = *pmdp;
608
609 pmd_clear(pmdp);
610 page_table_check_pmd_clear(mm, pmd);
611
612 return pmd;
613 }
614 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
615 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pud_t * pudp)616 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
617 unsigned long address,
618 pud_t *pudp)
619 {
620 pud_t pud = *pudp;
621
622 pud_clear(pudp);
623 page_table_check_pud_clear(mm, pud);
624
625 return pud;
626 }
627 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
628 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
629
630 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
631 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,int full)632 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
633 unsigned long address, pmd_t *pmdp,
634 int full)
635 {
636 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
637 }
638 #endif
639
640 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
pudp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,int full)641 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
642 unsigned long address, pud_t *pudp,
643 int full)
644 {
645 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
646 }
647 #endif
648 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
649
650 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)651 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
652 unsigned long address, pte_t *ptep,
653 int full)
654 {
655 return ptep_get_and_clear(mm, address, ptep);
656 }
657 #endif
658
659 #ifndef get_and_clear_full_ptes
660 /**
661 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
662 * the same folio, collecting dirty/accessed bits.
663 * @mm: Address space the pages are mapped into.
664 * @addr: Address the first page is mapped at.
665 * @ptep: Page table pointer for the first entry.
666 * @nr: Number of entries to clear.
667 * @full: Whether we are clearing a full mm.
668 *
669 * May be overridden by the architecture; otherwise, implemented as a simple
670 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
671 * returned PTE.
672 *
673 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
674 * some PTEs might be write-protected.
675 *
676 * Context: The caller holds the page table lock. The PTEs map consecutive
677 * pages that belong to the same folio. The PTEs are all in the same PMD.
678 */
get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)679 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
680 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
681 {
682 pte_t pte, tmp_pte;
683
684 pte = ptep_get_and_clear_full(mm, addr, ptep, full);
685 while (--nr) {
686 ptep++;
687 addr += PAGE_SIZE;
688 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
689 if (pte_dirty(tmp_pte))
690 pte = pte_mkdirty(pte);
691 if (pte_young(tmp_pte))
692 pte = pte_mkyoung(pte);
693 }
694 return pte;
695 }
696 #endif
697
698 #ifndef clear_full_ptes
699 /**
700 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
701 * folio.
702 * @mm: Address space the pages are mapped into.
703 * @addr: Address the first page is mapped at.
704 * @ptep: Page table pointer for the first entry.
705 * @nr: Number of entries to clear.
706 * @full: Whether we are clearing a full mm.
707 *
708 * May be overridden by the architecture; otherwise, implemented as a simple
709 * loop over ptep_get_and_clear_full().
710 *
711 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
712 * some PTEs might be write-protected.
713 *
714 * Context: The caller holds the page table lock. The PTEs map consecutive
715 * pages that belong to the same folio. The PTEs are all in the same PMD.
716 */
clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)717 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
718 pte_t *ptep, unsigned int nr, int full)
719 {
720 for (;;) {
721 ptep_get_and_clear_full(mm, addr, ptep, full);
722 if (--nr == 0)
723 break;
724 ptep++;
725 addr += PAGE_SIZE;
726 }
727 }
728 #endif
729
730 /*
731 * If two threads concurrently fault at the same page, the thread that
732 * won the race updates the PTE and its local TLB/Cache. The other thread
733 * gives up, simply does nothing, and continues; on architectures where
734 * software can update TLB, local TLB can be updated here to avoid next page
735 * fault. This function updates TLB only, do nothing with cache or others.
736 * It is the difference with function update_mmu_cache.
737 */
738 #ifndef update_mmu_tlb_range
update_mmu_tlb_range(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,unsigned int nr)739 static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
740 unsigned long address, pte_t *ptep, unsigned int nr)
741 {
742 }
743 #endif
744
update_mmu_tlb(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)745 static inline void update_mmu_tlb(struct vm_area_struct *vma,
746 unsigned long address, pte_t *ptep)
747 {
748 update_mmu_tlb_range(vma, address, ptep, 1);
749 }
750
751 /*
752 * Some architectures may be able to avoid expensive synchronization
753 * primitives when modifications are made to PTE's which are already
754 * not present, or in the process of an address space destruction.
755 */
756 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)757 static inline void pte_clear_not_present_full(struct mm_struct *mm,
758 unsigned long address,
759 pte_t *ptep,
760 int full)
761 {
762 pte_clear(mm, address, ptep);
763 }
764 #endif
765
766 #ifndef clear_not_present_full_ptes
767 /**
768 * clear_not_present_full_ptes - Clear multiple not present PTEs which are
769 * consecutive in the pgtable.
770 * @mm: Address space the ptes represent.
771 * @addr: Address of the first pte.
772 * @ptep: Page table pointer for the first entry.
773 * @nr: Number of entries to clear.
774 * @full: Whether we are clearing a full mm.
775 *
776 * May be overridden by the architecture; otherwise, implemented as a simple
777 * loop over pte_clear_not_present_full().
778 *
779 * Context: The caller holds the page table lock. The PTEs are all not present.
780 * The PTEs are all in the same PMD.
781 */
clear_not_present_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)782 static inline void clear_not_present_full_ptes(struct mm_struct *mm,
783 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
784 {
785 for (;;) {
786 pte_clear_not_present_full(mm, addr, ptep, full);
787 if (--nr == 0)
788 break;
789 ptep++;
790 addr += PAGE_SIZE;
791 }
792 }
793 #endif
794
795 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
796 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
797 unsigned long address,
798 pte_t *ptep);
799 #endif
800
801 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
802 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
803 unsigned long address,
804 pmd_t *pmdp);
805 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
806 unsigned long address,
807 pud_t *pudp);
808 #endif
809
810 #ifndef pte_mkwrite
pte_mkwrite(pte_t pte,struct vm_area_struct * vma)811 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
812 {
813 return pte_mkwrite_novma(pte);
814 }
815 #endif
816
817 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)818 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
819 {
820 return pmd_mkwrite_novma(pmd);
821 }
822 #endif
823
824 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
825 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)826 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
827 {
828 pte_t old_pte = ptep_get(ptep);
829 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
830 }
831 #endif
832
833 #ifndef wrprotect_ptes
834 /**
835 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
836 * folio.
837 * @mm: Address space the pages are mapped into.
838 * @addr: Address the first page is mapped at.
839 * @ptep: Page table pointer for the first entry.
840 * @nr: Number of entries to write-protect.
841 *
842 * May be overridden by the architecture; otherwise, implemented as a simple
843 * loop over ptep_set_wrprotect().
844 *
845 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
846 * some PTEs might be write-protected.
847 *
848 * Context: The caller holds the page table lock. The PTEs map consecutive
849 * pages that belong to the same folio. The PTEs are all in the same PMD.
850 */
wrprotect_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr)851 static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
852 pte_t *ptep, unsigned int nr)
853 {
854 for (;;) {
855 ptep_set_wrprotect(mm, addr, ptep);
856 if (--nr == 0)
857 break;
858 ptep++;
859 addr += PAGE_SIZE;
860 }
861 }
862 #endif
863
864 /*
865 * On some architectures hardware does not set page access bit when accessing
866 * memory page, it is responsibility of software setting this bit. It brings
867 * out extra page fault penalty to track page access bit. For optimization page
868 * access bit can be set during all page fault flow on these arches.
869 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
870 * where software maintains page access bit.
871 */
872 #ifndef pte_sw_mkyoung
pte_sw_mkyoung(pte_t pte)873 static inline pte_t pte_sw_mkyoung(pte_t pte)
874 {
875 return pte;
876 }
877 #define pte_sw_mkyoung pte_sw_mkyoung
878 #endif
879
880 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
881 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)882 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
883 unsigned long address, pmd_t *pmdp)
884 {
885 pmd_t old_pmd = *pmdp;
886 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
887 }
888 #else
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)889 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
890 unsigned long address, pmd_t *pmdp)
891 {
892 BUILD_BUG();
893 }
894 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
895 #endif
896 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
897 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
898 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)899 static inline void pudp_set_wrprotect(struct mm_struct *mm,
900 unsigned long address, pud_t *pudp)
901 {
902 pud_t old_pud = *pudp;
903
904 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
905 }
906 #else
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)907 static inline void pudp_set_wrprotect(struct mm_struct *mm,
908 unsigned long address, pud_t *pudp)
909 {
910 BUILD_BUG();
911 }
912 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
913 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
914 #endif
915
916 #ifndef pmdp_collapse_flush
917 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
918 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
919 unsigned long address, pmd_t *pmdp);
920 #else
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)921 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
922 unsigned long address,
923 pmd_t *pmdp)
924 {
925 BUILD_BUG();
926 return *pmdp;
927 }
928 #define pmdp_collapse_flush pmdp_collapse_flush
929 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
930 #endif
931
932 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
933 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
934 pgtable_t pgtable);
935 #endif
936
937 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
938 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
939 #endif
940
941 #ifndef arch_needs_pgtable_deposit
942 #define arch_needs_pgtable_deposit() (false)
943 #endif
944
945 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
946 /*
947 * This is an implementation of pmdp_establish() that is only suitable for an
948 * architecture that doesn't have hardware dirty/accessed bits. In this case we
949 * can't race with CPU which sets these bits and non-atomic approach is fine.
950 */
generic_pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)951 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
952 unsigned long address, pmd_t *pmdp, pmd_t pmd)
953 {
954 pmd_t old_pmd = *pmdp;
955 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
956 return old_pmd;
957 }
958 #endif
959
960 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
961 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
962 pmd_t *pmdp);
963 #endif
964
965 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
966
967 /*
968 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
969 * hugepage mapping in the page tables. This function is similar to
970 * pmdp_invalidate(), but should only be used if the access and dirty bits would
971 * not be cleared by the software in the new PMD value. The function ensures
972 * that hardware changes of the access and dirty bits updates would not be lost.
973 *
974 * Doing so can allow in certain architectures to avoid a TLB flush in most
975 * cases. Yet, another TLB flush might be necessary later if the PMD update
976 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
977 * even when a TLB flush is needed because of the update, the caller may be able
978 * to batch these TLB flushing operations, so fewer TLB flush operations are
979 * needed.
980 */
981 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
982 unsigned long address, pmd_t *pmdp);
983 #endif
984
985 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)986 static inline int pte_same(pte_t pte_a, pte_t pte_b)
987 {
988 return pte_val(pte_a) == pte_val(pte_b);
989 }
990 #endif
991
992 #ifndef __HAVE_ARCH_PTE_UNUSED
993 /*
994 * Some architectures provide facilities to virtualization guests
995 * so that they can flag allocated pages as unused. This allows the
996 * host to transparently reclaim unused pages. This function returns
997 * whether the pte's page is unused.
998 */
pte_unused(pte_t pte)999 static inline int pte_unused(pte_t pte)
1000 {
1001 return 0;
1002 }
1003 #endif
1004
1005 #ifndef pte_access_permitted
1006 #define pte_access_permitted(pte, write) \
1007 (pte_present(pte) && (!(write) || pte_write(pte)))
1008 #endif
1009
1010 #ifndef pmd_access_permitted
1011 #define pmd_access_permitted(pmd, write) \
1012 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
1013 #endif
1014
1015 #ifndef pud_access_permitted
1016 #define pud_access_permitted(pud, write) \
1017 (pud_present(pud) && (!(write) || pud_write(pud)))
1018 #endif
1019
1020 #ifndef p4d_access_permitted
1021 #define p4d_access_permitted(p4d, write) \
1022 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
1023 #endif
1024
1025 #ifndef pgd_access_permitted
1026 #define pgd_access_permitted(pgd, write) \
1027 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
1028 #endif
1029
1030 #ifndef __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)1031 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1032 {
1033 return pmd_val(pmd_a) == pmd_val(pmd_b);
1034 }
1035 #endif
1036
1037 #ifndef pud_same
pud_same(pud_t pud_a,pud_t pud_b)1038 static inline int pud_same(pud_t pud_a, pud_t pud_b)
1039 {
1040 return pud_val(pud_a) == pud_val(pud_b);
1041 }
1042 #define pud_same pud_same
1043 #endif
1044
1045 #ifndef __HAVE_ARCH_P4D_SAME
p4d_same(p4d_t p4d_a,p4d_t p4d_b)1046 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1047 {
1048 return p4d_val(p4d_a) == p4d_val(p4d_b);
1049 }
1050 #endif
1051
1052 #ifndef __HAVE_ARCH_PGD_SAME
pgd_same(pgd_t pgd_a,pgd_t pgd_b)1053 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1054 {
1055 return pgd_val(pgd_a) == pgd_val(pgd_b);
1056 }
1057 #endif
1058
1059 /*
1060 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1061 * TLB flush will be required as a result of the "set". For example, use
1062 * in scenarios where it is known ahead of time that the routine is
1063 * setting non-present entries, or re-setting an existing entry to the
1064 * same value. Otherwise, use the typical "set" helpers and flush the
1065 * TLB.
1066 */
1067 #define set_pte_safe(ptep, pte) \
1068 ({ \
1069 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
1070 set_pte(ptep, pte); \
1071 })
1072
1073 #define set_pmd_safe(pmdp, pmd) \
1074 ({ \
1075 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
1076 set_pmd(pmdp, pmd); \
1077 })
1078
1079 #define set_pud_safe(pudp, pud) \
1080 ({ \
1081 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
1082 set_pud(pudp, pud); \
1083 })
1084
1085 #define set_p4d_safe(p4dp, p4d) \
1086 ({ \
1087 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1088 set_p4d(p4dp, p4d); \
1089 })
1090
1091 #define set_pgd_safe(pgdp, pgd) \
1092 ({ \
1093 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1094 set_pgd(pgdp, pgd); \
1095 })
1096
1097 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
arch_do_swap_page_nr(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte,int nr)1098 static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1099 struct vm_area_struct *vma,
1100 unsigned long addr,
1101 pte_t pte, pte_t oldpte,
1102 int nr)
1103 {
1104
1105 }
1106 #else
1107 /*
1108 * Some architectures support metadata associated with a page. When a
1109 * page is being swapped out, this metadata must be saved so it can be
1110 * restored when the page is swapped back in. SPARC M7 and newer
1111 * processors support an ADI (Application Data Integrity) tag for the
1112 * page as metadata for the page. arch_do_swap_page() can restore this
1113 * metadata when a page is swapped back in.
1114 */
arch_do_swap_page_nr(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte,int nr)1115 static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1116 struct vm_area_struct *vma,
1117 unsigned long addr,
1118 pte_t pte, pte_t oldpte,
1119 int nr)
1120 {
1121 for (int i = 0; i < nr; i++) {
1122 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
1123 pte_advance_pfn(pte, i),
1124 pte_advance_pfn(oldpte, i));
1125 }
1126 }
1127 #endif
1128
1129 #ifndef __HAVE_ARCH_UNMAP_ONE
1130 /*
1131 * Some architectures support metadata associated with a page. When a
1132 * page is being swapped out, this metadata must be saved so it can be
1133 * restored when the page is swapped back in. SPARC M7 and newer
1134 * processors support an ADI (Application Data Integrity) tag for the
1135 * page as metadata for the page. arch_unmap_one() can save this
1136 * metadata on a swap-out of a page.
1137 */
arch_unmap_one(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t orig_pte)1138 static inline int arch_unmap_one(struct mm_struct *mm,
1139 struct vm_area_struct *vma,
1140 unsigned long addr,
1141 pte_t orig_pte)
1142 {
1143 return 0;
1144 }
1145 #endif
1146
1147 /*
1148 * Allow architectures to preserve additional metadata associated with
1149 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1150 * prototypes must be defined in the arch-specific asm/pgtable.h file.
1151 */
1152 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
arch_prepare_to_swap(struct folio * folio)1153 static inline int arch_prepare_to_swap(struct folio *folio)
1154 {
1155 return 0;
1156 }
1157 #endif
1158
1159 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)1160 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1161 {
1162 }
1163
arch_swap_invalidate_area(int type)1164 static inline void arch_swap_invalidate_area(int type)
1165 {
1166 }
1167 #endif
1168
1169 #ifndef __HAVE_ARCH_SWAP_RESTORE
arch_swap_restore(swp_entry_t entry,struct folio * folio)1170 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1171 {
1172 }
1173 #endif
1174
1175 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
1176 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
1177 #endif
1178
1179 #ifndef __HAVE_ARCH_MOVE_PTE
1180 #define move_pte(pte, old_addr, new_addr) (pte)
1181 #endif
1182
1183 #ifndef pte_accessible
1184 # define pte_accessible(mm, pte) ((void)(pte), 1)
1185 #endif
1186
1187 #ifndef flush_tlb_fix_spurious_fault
1188 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1189 #endif
1190
1191 /*
1192 * When walking page tables, get the address of the next boundary,
1193 * or the end address of the range if that comes earlier. Although no
1194 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1195 */
1196
1197 #define pgd_addr_end(addr, end) \
1198 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
1199 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1200 })
1201
1202 #ifndef p4d_addr_end
1203 #define p4d_addr_end(addr, end) \
1204 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
1205 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1206 })
1207 #endif
1208
1209 #ifndef pud_addr_end
1210 #define pud_addr_end(addr, end) \
1211 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
1212 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1213 })
1214 #endif
1215
1216 #ifndef pmd_addr_end
1217 #define pmd_addr_end(addr, end) \
1218 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
1219 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1220 })
1221 #endif
1222
1223 /*
1224 * When walking page tables, we usually want to skip any p?d_none entries;
1225 * and any p?d_bad entries - reporting the error before resetting to none.
1226 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1227 */
1228 void pgd_clear_bad(pgd_t *);
1229
1230 #ifndef __PAGETABLE_P4D_FOLDED
1231 void p4d_clear_bad(p4d_t *);
1232 #else
1233 #define p4d_clear_bad(p4d) do { } while (0)
1234 #endif
1235
1236 #ifndef __PAGETABLE_PUD_FOLDED
1237 void pud_clear_bad(pud_t *);
1238 #else
1239 #define pud_clear_bad(p4d) do { } while (0)
1240 #endif
1241
1242 void pmd_clear_bad(pmd_t *);
1243
pgd_none_or_clear_bad(pgd_t * pgd)1244 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1245 {
1246 if (pgd_none(*pgd))
1247 return 1;
1248 if (unlikely(pgd_bad(*pgd))) {
1249 pgd_clear_bad(pgd);
1250 return 1;
1251 }
1252 return 0;
1253 }
1254
p4d_none_or_clear_bad(p4d_t * p4d)1255 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1256 {
1257 if (p4d_none(*p4d))
1258 return 1;
1259 if (unlikely(p4d_bad(*p4d))) {
1260 p4d_clear_bad(p4d);
1261 return 1;
1262 }
1263 return 0;
1264 }
1265
pud_none_or_clear_bad(pud_t * pud)1266 static inline int pud_none_or_clear_bad(pud_t *pud)
1267 {
1268 if (pud_none(*pud))
1269 return 1;
1270 if (unlikely(pud_bad(*pud))) {
1271 pud_clear_bad(pud);
1272 return 1;
1273 }
1274 return 0;
1275 }
1276
pmd_none_or_clear_bad(pmd_t * pmd)1277 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1278 {
1279 if (pmd_none(*pmd))
1280 return 1;
1281 if (unlikely(pmd_bad(*pmd))) {
1282 pmd_clear_bad(pmd);
1283 return 1;
1284 }
1285 return 0;
1286 }
1287
__ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1288 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1289 unsigned long addr,
1290 pte_t *ptep)
1291 {
1292 /*
1293 * Get the current pte state, but zero it out to make it
1294 * non-present, preventing the hardware from asynchronously
1295 * updating it.
1296 */
1297 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1298 }
1299
__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte)1300 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1301 unsigned long addr,
1302 pte_t *ptep, pte_t pte)
1303 {
1304 /*
1305 * The pte is non-present, so there's no hardware state to
1306 * preserve.
1307 */
1308 set_pte_at(vma->vm_mm, addr, ptep, pte);
1309 }
1310
1311 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1312 /*
1313 * Start a pte protection read-modify-write transaction, which
1314 * protects against asynchronous hardware modifications to the pte.
1315 * The intention is not to prevent the hardware from making pte
1316 * updates, but to prevent any updates it may make from being lost.
1317 *
1318 * This does not protect against other software modifications of the
1319 * pte; the appropriate pte lock must be held over the transaction.
1320 *
1321 * Note that this interface is intended to be batchable, meaning that
1322 * ptep_modify_prot_commit may not actually update the pte, but merely
1323 * queue the update to be done at some later time. The update must be
1324 * actually committed before the pte lock is released, however.
1325 */
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1326 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1327 unsigned long addr,
1328 pte_t *ptep)
1329 {
1330 return __ptep_modify_prot_start(vma, addr, ptep);
1331 }
1332
1333 /*
1334 * Commit an update to a pte, leaving any hardware-controlled bits in
1335 * the PTE unmodified.
1336 */
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1337 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1338 unsigned long addr,
1339 pte_t *ptep, pte_t old_pte, pte_t pte)
1340 {
1341 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1342 }
1343 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1344 #endif /* CONFIG_MMU */
1345
1346 /*
1347 * No-op macros that just return the current protection value. Defined here
1348 * because these macros can be used even if CONFIG_MMU is not defined.
1349 */
1350
1351 #ifndef pgprot_nx
1352 #define pgprot_nx(prot) (prot)
1353 #endif
1354
1355 #ifndef pgprot_noncached
1356 #define pgprot_noncached(prot) (prot)
1357 #endif
1358
1359 #ifndef pgprot_writecombine
1360 #define pgprot_writecombine pgprot_noncached
1361 #endif
1362
1363 #ifndef pgprot_writethrough
1364 #define pgprot_writethrough pgprot_noncached
1365 #endif
1366
1367 #ifndef pgprot_device
1368 #define pgprot_device pgprot_noncached
1369 #endif
1370
1371 #ifndef pgprot_mhp
1372 #define pgprot_mhp(prot) (prot)
1373 #endif
1374
1375 #ifdef CONFIG_MMU
1376 #ifndef pgprot_modify
1377 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)1378 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1379 {
1380 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1381 newprot = pgprot_noncached(newprot);
1382 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1383 newprot = pgprot_writecombine(newprot);
1384 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1385 newprot = pgprot_device(newprot);
1386 return newprot;
1387 }
1388 #endif
1389 #endif /* CONFIG_MMU */
1390
1391 #ifndef pgprot_encrypted
1392 #define pgprot_encrypted(prot) (prot)
1393 #endif
1394
1395 #ifndef pgprot_decrypted
1396 #define pgprot_decrypted(prot) (prot)
1397 #endif
1398
1399 /*
1400 * A facility to provide batching of the reload of page tables and
1401 * other process state with the actual context switch code for
1402 * paravirtualized guests. By convention, only one of the batched
1403 * update (lazy) modes (CPU, MMU) should be active at any given time,
1404 * entry should never be nested, and entry and exits should always be
1405 * paired. This is for sanity of maintaining and reasoning about the
1406 * kernel code. In this case, the exit (end of the context switch) is
1407 * in architecture-specific code, and so doesn't need a generic
1408 * definition.
1409 */
1410 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1411 #define arch_start_context_switch(prev) do {} while (0)
1412 #endif
1413
1414 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1415 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)1416 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1417 {
1418 return pmd;
1419 }
1420
pmd_swp_soft_dirty(pmd_t pmd)1421 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1422 {
1423 return 0;
1424 }
1425
pmd_swp_clear_soft_dirty(pmd_t pmd)1426 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1427 {
1428 return pmd;
1429 }
1430 #endif
1431 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
pte_soft_dirty(pte_t pte)1432 static inline int pte_soft_dirty(pte_t pte)
1433 {
1434 return 0;
1435 }
1436
pmd_soft_dirty(pmd_t pmd)1437 static inline int pmd_soft_dirty(pmd_t pmd)
1438 {
1439 return 0;
1440 }
1441
pte_mksoft_dirty(pte_t pte)1442 static inline pte_t pte_mksoft_dirty(pte_t pte)
1443 {
1444 return pte;
1445 }
1446
pmd_mksoft_dirty(pmd_t pmd)1447 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1448 {
1449 return pmd;
1450 }
1451
pte_clear_soft_dirty(pte_t pte)1452 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1453 {
1454 return pte;
1455 }
1456
pmd_clear_soft_dirty(pmd_t pmd)1457 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1458 {
1459 return pmd;
1460 }
1461
pte_swp_mksoft_dirty(pte_t pte)1462 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1463 {
1464 return pte;
1465 }
1466
pte_swp_soft_dirty(pte_t pte)1467 static inline int pte_swp_soft_dirty(pte_t pte)
1468 {
1469 return 0;
1470 }
1471
pte_swp_clear_soft_dirty(pte_t pte)1472 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1473 {
1474 return pte;
1475 }
1476
pmd_swp_mksoft_dirty(pmd_t pmd)1477 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1478 {
1479 return pmd;
1480 }
1481
pmd_swp_soft_dirty(pmd_t pmd)1482 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1483 {
1484 return 0;
1485 }
1486
pmd_swp_clear_soft_dirty(pmd_t pmd)1487 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1488 {
1489 return pmd;
1490 }
1491 #endif
1492
1493 #ifndef __HAVE_PFNMAP_TRACKING
1494 /*
1495 * Interfaces that can be used by architecture code to keep track of
1496 * memory type of pfn mappings specified by the remap_pfn_range,
1497 * vmf_insert_pfn.
1498 */
1499
1500 /*
1501 * track_pfn_remap is called when a _new_ pfn mapping is being established
1502 * by remap_pfn_range() for physical range indicated by pfn and size.
1503 */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1504 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1505 unsigned long pfn, unsigned long addr,
1506 unsigned long size)
1507 {
1508 return 0;
1509 }
1510
1511 /*
1512 * track_pfn_insert is called when a _new_ single pfn is established
1513 * by vmf_insert_pfn().
1514 */
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1515 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1516 pfn_t pfn)
1517 {
1518 }
1519
1520 /*
1521 * track_pfn_copy is called when vma that is covering the pfnmap gets
1522 * copied through copy_page_range().
1523 */
track_pfn_copy(struct vm_area_struct * vma)1524 static inline int track_pfn_copy(struct vm_area_struct *vma)
1525 {
1526 return 0;
1527 }
1528
1529 /*
1530 * untrack_pfn is called while unmapping a pfnmap for a region.
1531 * untrack can be called for a specific region indicated by pfn and size or
1532 * can be for the entire vma (in which case pfn, size are zero).
1533 */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size,bool mm_wr_locked)1534 static inline void untrack_pfn(struct vm_area_struct *vma,
1535 unsigned long pfn, unsigned long size,
1536 bool mm_wr_locked)
1537 {
1538 }
1539
1540 /*
1541 * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1542 * or fails to copy pgtable during duplicate vm area.
1543 */
untrack_pfn_clear(struct vm_area_struct * vma)1544 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1545 {
1546 }
1547 #else
1548 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1549 unsigned long pfn, unsigned long addr,
1550 unsigned long size);
1551 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1552 pfn_t pfn);
1553 extern int track_pfn_copy(struct vm_area_struct *vma);
1554 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1555 unsigned long size, bool mm_wr_locked);
1556 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1557 #endif
1558
1559 #ifdef CONFIG_MMU
1560 #ifdef __HAVE_COLOR_ZERO_PAGE
is_zero_pfn(unsigned long pfn)1561 static inline int is_zero_pfn(unsigned long pfn)
1562 {
1563 extern unsigned long zero_pfn;
1564 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1565 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1566 }
1567
1568 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1569
1570 #else
is_zero_pfn(unsigned long pfn)1571 static inline int is_zero_pfn(unsigned long pfn)
1572 {
1573 extern unsigned long zero_pfn;
1574 return pfn == zero_pfn;
1575 }
1576
my_zero_pfn(unsigned long addr)1577 static inline unsigned long my_zero_pfn(unsigned long addr)
1578 {
1579 extern unsigned long zero_pfn;
1580 return zero_pfn;
1581 }
1582 #endif
1583 #else
is_zero_pfn(unsigned long pfn)1584 static inline int is_zero_pfn(unsigned long pfn)
1585 {
1586 return 0;
1587 }
1588
my_zero_pfn(unsigned long addr)1589 static inline unsigned long my_zero_pfn(unsigned long addr)
1590 {
1591 return 0;
1592 }
1593 #endif /* CONFIG_MMU */
1594
1595 #ifdef CONFIG_MMU
1596
1597 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)1598 static inline int pmd_trans_huge(pmd_t pmd)
1599 {
1600 return 0;
1601 }
1602 #ifndef pmd_write
pmd_write(pmd_t pmd)1603 static inline int pmd_write(pmd_t pmd)
1604 {
1605 BUG();
1606 return 0;
1607 }
1608 #endif /* pmd_write */
1609 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1610
1611 #ifndef pud_write
pud_write(pud_t pud)1612 static inline int pud_write(pud_t pud)
1613 {
1614 BUG();
1615 return 0;
1616 }
1617 #endif /* pud_write */
1618
1619 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)1620 static inline int pmd_devmap(pmd_t pmd)
1621 {
1622 return 0;
1623 }
pud_devmap(pud_t pud)1624 static inline int pud_devmap(pud_t pud)
1625 {
1626 return 0;
1627 }
pgd_devmap(pgd_t pgd)1628 static inline int pgd_devmap(pgd_t pgd)
1629 {
1630 return 0;
1631 }
1632 #endif
1633
1634 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1635 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
pud_trans_huge(pud_t pud)1636 static inline int pud_trans_huge(pud_t pud)
1637 {
1638 return 0;
1639 }
1640 #endif
1641
pud_trans_unstable(pud_t * pud)1642 static inline int pud_trans_unstable(pud_t *pud)
1643 {
1644 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1645 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1646 pud_t pudval = READ_ONCE(*pud);
1647
1648 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1649 return 1;
1650 if (unlikely(pud_bad(pudval))) {
1651 pud_clear_bad(pud);
1652 return 1;
1653 }
1654 #endif
1655 return 0;
1656 }
1657
1658 #ifndef CONFIG_NUMA_BALANCING
1659 /*
1660 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1661 * perfectly valid to indicate "no" in that case, which is why our default
1662 * implementation defaults to "always no".
1663 *
1664 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1665 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1666 * accessible VMAs.
1667 *
1668 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1669 * looking at the VMA accessibility is sufficient.
1670 */
pte_protnone(pte_t pte)1671 static inline int pte_protnone(pte_t pte)
1672 {
1673 return 0;
1674 }
1675
pmd_protnone(pmd_t pmd)1676 static inline int pmd_protnone(pmd_t pmd)
1677 {
1678 return 0;
1679 }
1680 #endif /* CONFIG_NUMA_BALANCING */
1681
1682 #endif /* CONFIG_MMU */
1683
1684 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1685
1686 #ifndef __PAGETABLE_P4D_FOLDED
1687 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1688 void p4d_clear_huge(p4d_t *p4d);
1689 #else
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1690 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1691 {
1692 return 0;
1693 }
p4d_clear_huge(p4d_t * p4d)1694 static inline void p4d_clear_huge(p4d_t *p4d) { }
1695 #endif /* !__PAGETABLE_P4D_FOLDED */
1696
1697 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1698 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1699 int pud_clear_huge(pud_t *pud);
1700 int pmd_clear_huge(pmd_t *pmd);
1701 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1702 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1703 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1704 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1705 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1706 {
1707 return 0;
1708 }
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1709 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1710 {
1711 return 0;
1712 }
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1713 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1714 {
1715 return 0;
1716 }
p4d_clear_huge(p4d_t * p4d)1717 static inline void p4d_clear_huge(p4d_t *p4d) { }
pud_clear_huge(pud_t * pud)1718 static inline int pud_clear_huge(pud_t *pud)
1719 {
1720 return 0;
1721 }
pmd_clear_huge(pmd_t * pmd)1722 static inline int pmd_clear_huge(pmd_t *pmd)
1723 {
1724 return 0;
1725 }
p4d_free_pud_page(p4d_t * p4d,unsigned long addr)1726 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1727 {
1728 return 0;
1729 }
pud_free_pmd_page(pud_t * pud,unsigned long addr)1730 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1731 {
1732 return 0;
1733 }
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1734 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1735 {
1736 return 0;
1737 }
1738 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1739
1740 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1741 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1742 /*
1743 * ARCHes with special requirements for evicting THP backing TLB entries can
1744 * implement this. Otherwise also, it can help optimize normal TLB flush in
1745 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1746 * entire TLB if flush span is greater than a threshold, which will
1747 * likely be true for a single huge page. Thus a single THP flush will
1748 * invalidate the entire TLB which is not desirable.
1749 * e.g. see arch/arc: flush_pmd_tlb_range
1750 */
1751 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1752 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1753 #else
1754 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1755 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1756 #endif
1757 #endif
1758
1759 struct file;
1760 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1761 unsigned long size, pgprot_t *vma_prot);
1762
1763 #ifndef CONFIG_X86_ESPFIX64
init_espfix_bsp(void)1764 static inline void init_espfix_bsp(void) { }
1765 #endif
1766
1767 extern void __init pgtable_cache_init(void);
1768
1769 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
pfn_modify_allowed(unsigned long pfn,pgprot_t prot)1770 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1771 {
1772 return true;
1773 }
1774
arch_has_pfn_modify_check(void)1775 static inline bool arch_has_pfn_modify_check(void)
1776 {
1777 return false;
1778 }
1779 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1780
1781 /*
1782 * Architecture PAGE_KERNEL_* fallbacks
1783 *
1784 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1785 * because they really don't support them, or the port needs to be updated to
1786 * reflect the required functionality. Below are a set of relatively safe
1787 * fallbacks, as best effort, which we can count on in lieu of the architectures
1788 * not defining them on their own yet.
1789 */
1790
1791 #ifndef PAGE_KERNEL_RO
1792 # define PAGE_KERNEL_RO PAGE_KERNEL
1793 #endif
1794
1795 #ifndef PAGE_KERNEL_EXEC
1796 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1797 #endif
1798
1799 /*
1800 * Page Table Modification bits for pgtbl_mod_mask.
1801 *
1802 * These are used by the p?d_alloc_track*() set of functions an in the generic
1803 * vmalloc/ioremap code to track at which page-table levels entries have been
1804 * modified. Based on that the code can better decide when vmalloc and ioremap
1805 * mapping changes need to be synchronized to other page-tables in the system.
1806 */
1807 #define __PGTBL_PGD_MODIFIED 0
1808 #define __PGTBL_P4D_MODIFIED 1
1809 #define __PGTBL_PUD_MODIFIED 2
1810 #define __PGTBL_PMD_MODIFIED 3
1811 #define __PGTBL_PTE_MODIFIED 4
1812
1813 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1814 #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1815 #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1816 #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1817 #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1818
1819 /* Page-Table Modification Mask */
1820 typedef unsigned int pgtbl_mod_mask;
1821
1822 #endif /* !__ASSEMBLY__ */
1823
1824 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1825 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1826 /*
1827 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1828 * with physical address space extension, but falls back to
1829 * BITS_PER_LONG otherwise.
1830 */
1831 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1832 #else
1833 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1834 #endif
1835 #endif
1836
1837 #ifndef has_transparent_hugepage
1838 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1839 #endif
1840
1841 #ifndef has_transparent_pud_hugepage
1842 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1843 #endif
1844 /*
1845 * On some architectures it depends on the mm if the p4d/pud or pmd
1846 * layer of the page table hierarchy is folded or not.
1847 */
1848 #ifndef mm_p4d_folded
1849 #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1850 #endif
1851
1852 #ifndef mm_pud_folded
1853 #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1854 #endif
1855
1856 #ifndef mm_pmd_folded
1857 #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1858 #endif
1859
1860 #ifndef p4d_offset_lockless
1861 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1862 #endif
1863 #ifndef pud_offset_lockless
1864 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1865 #endif
1866 #ifndef pmd_offset_lockless
1867 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1868 #endif
1869
1870 /*
1871 * pXd_leaf() is the API to check whether a pgtable entry is a huge page
1872 * mapping. It should work globally across all archs, without any
1873 * dependency on CONFIG_* options. For architectures that do not support
1874 * huge mappings on specific levels, below fallbacks will be used.
1875 *
1876 * A leaf pgtable entry should always imply the following:
1877 *
1878 * - It is a "present" entry. IOW, before using this API, please check it
1879 * with pXd_present() first. NOTE: it may not always mean the "present
1880 * bit" is set. For example, PROT_NONE entries are always "present".
1881 *
1882 * - It should _never_ be a swap entry of any type. Above "present" check
1883 * should have guarded this, but let's be crystal clear on this.
1884 *
1885 * - It should contain a huge PFN, which points to a huge page larger than
1886 * PAGE_SIZE of the platform. The PFN format isn't important here.
1887 *
1888 * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(),
1889 * pXd_devmap(), or hugetlb mappings).
1890 */
1891 #ifndef pgd_leaf
1892 #define pgd_leaf(x) false
1893 #endif
1894 #ifndef p4d_leaf
1895 #define p4d_leaf(x) false
1896 #endif
1897 #ifndef pud_leaf
1898 #define pud_leaf(x) false
1899 #endif
1900 #ifndef pmd_leaf
1901 #define pmd_leaf(x) false
1902 #endif
1903
1904 #ifndef pgd_leaf_size
1905 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1906 #endif
1907 #ifndef p4d_leaf_size
1908 #define p4d_leaf_size(x) P4D_SIZE
1909 #endif
1910 #ifndef pud_leaf_size
1911 #define pud_leaf_size(x) PUD_SIZE
1912 #endif
1913 #ifndef pmd_leaf_size
1914 #define pmd_leaf_size(x) PMD_SIZE
1915 #endif
1916 #ifndef __pte_leaf_size
1917 #ifndef pte_leaf_size
1918 #define pte_leaf_size(x) PAGE_SIZE
1919 #endif
1920 #define __pte_leaf_size(x,y) pte_leaf_size(y)
1921 #endif
1922
1923 /*
1924 * We always define pmd_pfn for all archs as it's used in lots of generic
1925 * code. Now it happens too for pud_pfn (and can happen for larger
1926 * mappings too in the future; we're not there yet). Instead of defining
1927 * it for all archs (like pmd_pfn), provide a fallback.
1928 *
1929 * Note that returning 0 here means any arch that didn't define this can
1930 * get severely wrong when it hits a real pud leaf. It's arch's
1931 * responsibility to properly define it when a huge pud is possible.
1932 */
1933 #ifndef pud_pfn
1934 #define pud_pfn(x) 0
1935 #endif
1936
1937 /*
1938 * Some architectures have MMUs that are configurable or selectable at boot
1939 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1940 * helps to have a static maximum value.
1941 */
1942
1943 #ifndef MAX_PTRS_PER_PTE
1944 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1945 #endif
1946
1947 #ifndef MAX_PTRS_PER_PMD
1948 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1949 #endif
1950
1951 #ifndef MAX_PTRS_PER_PUD
1952 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1953 #endif
1954
1955 #ifndef MAX_PTRS_PER_P4D
1956 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1957 #endif
1958
1959 #ifndef pte_pgprot
1960 #define pte_pgprot(x) ((pgprot_t) {0})
1961 #endif
1962
1963 #ifndef pmd_pgprot
1964 #define pmd_pgprot(x) ((pgprot_t) {0})
1965 #endif
1966
1967 #ifndef pud_pgprot
1968 #define pud_pgprot(x) ((pgprot_t) {0})
1969 #endif
1970
1971 /* description of effects of mapping type and prot in current implementation.
1972 * this is due to the limited x86 page protection hardware. The expected
1973 * behavior is in parens:
1974 *
1975 * map_type prot
1976 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1977 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1978 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1979 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1980 *
1981 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1982 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1983 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1984 *
1985 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1986 * MAP_PRIVATE (with Enhanced PAN supported):
1987 * r: (no) no
1988 * w: (no) no
1989 * x: (yes) yes
1990 */
1991 #define DECLARE_VM_GET_PAGE_PROT \
1992 pgprot_t vm_get_page_prot(unsigned long vm_flags) \
1993 { \
1994 return protection_map[vm_flags & \
1995 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
1996 } \
1997 EXPORT_SYMBOL(vm_get_page_prot);
1998
1999 #endif /* _LINUX_PGTABLE_H */
2000