1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Provides the Expression parsing implementation.
12 ///
13 /// Expressions in C99 basically consist of a bunch of binary operators with
14 /// unary operators and other random stuff at the leaves.
15 ///
16 /// In the C99 grammar, these unary operators bind tightest and are represented
17 /// as the 'cast-expression' production.  Everything else is either a binary
18 /// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
19 /// handled by ParseCastExpression, the higher level pieces are handled by
20 /// ParseBinaryExpression.
21 ///
22 //===----------------------------------------------------------------------===//
23 
24 #include "clang/Parse/Parser.h"
25 #include "RAIIObjectsForParser.h"
26 #include "clang/AST/ASTContext.h"
27 #include "clang/Basic/PrettyStackTrace.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/ParsedTemplate.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/TypoCorrection.h"
32 #include "llvm/ADT/SmallString.h"
33 #include "llvm/ADT/SmallVector.h"
34 using namespace clang;
35 
36 /// \brief Simple precedence-based parser for binary/ternary operators.
37 ///
38 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
39 /// production.  C99 specifies that the LHS of an assignment operator should be
40 /// parsed as a unary-expression, but consistency dictates that it be a
41 /// conditional-expession.  In practice, the important thing here is that the
42 /// LHS of an assignment has to be an l-value, which productions between
43 /// unary-expression and conditional-expression don't produce.  Because we want
44 /// consistency, we parse the LHS as a conditional-expression, then check for
45 /// l-value-ness in semantic analysis stages.
46 ///
47 /// \verbatim
48 ///       pm-expression: [C++ 5.5]
49 ///         cast-expression
50 ///         pm-expression '.*' cast-expression
51 ///         pm-expression '->*' cast-expression
52 ///
53 ///       multiplicative-expression: [C99 6.5.5]
54 ///     Note: in C++, apply pm-expression instead of cast-expression
55 ///         cast-expression
56 ///         multiplicative-expression '*' cast-expression
57 ///         multiplicative-expression '/' cast-expression
58 ///         multiplicative-expression '%' cast-expression
59 ///
60 ///       additive-expression: [C99 6.5.6]
61 ///         multiplicative-expression
62 ///         additive-expression '+' multiplicative-expression
63 ///         additive-expression '-' multiplicative-expression
64 ///
65 ///       shift-expression: [C99 6.5.7]
66 ///         additive-expression
67 ///         shift-expression '<<' additive-expression
68 ///         shift-expression '>>' additive-expression
69 ///
70 ///       relational-expression: [C99 6.5.8]
71 ///         shift-expression
72 ///         relational-expression '<' shift-expression
73 ///         relational-expression '>' shift-expression
74 ///         relational-expression '<=' shift-expression
75 ///         relational-expression '>=' shift-expression
76 ///
77 ///       equality-expression: [C99 6.5.9]
78 ///         relational-expression
79 ///         equality-expression '==' relational-expression
80 ///         equality-expression '!=' relational-expression
81 ///
82 ///       AND-expression: [C99 6.5.10]
83 ///         equality-expression
84 ///         AND-expression '&' equality-expression
85 ///
86 ///       exclusive-OR-expression: [C99 6.5.11]
87 ///         AND-expression
88 ///         exclusive-OR-expression '^' AND-expression
89 ///
90 ///       inclusive-OR-expression: [C99 6.5.12]
91 ///         exclusive-OR-expression
92 ///         inclusive-OR-expression '|' exclusive-OR-expression
93 ///
94 ///       logical-AND-expression: [C99 6.5.13]
95 ///         inclusive-OR-expression
96 ///         logical-AND-expression '&&' inclusive-OR-expression
97 ///
98 ///       logical-OR-expression: [C99 6.5.14]
99 ///         logical-AND-expression
100 ///         logical-OR-expression '||' logical-AND-expression
101 ///
102 ///       conditional-expression: [C99 6.5.15]
103 ///         logical-OR-expression
104 ///         logical-OR-expression '?' expression ':' conditional-expression
105 /// [GNU]   logical-OR-expression '?' ':' conditional-expression
106 /// [C++] the third operand is an assignment-expression
107 ///
108 ///       assignment-expression: [C99 6.5.16]
109 ///         conditional-expression
110 ///         unary-expression assignment-operator assignment-expression
111 /// [C++]   throw-expression [C++ 15]
112 ///
113 ///       assignment-operator: one of
114 ///         = *= /= %= += -= <<= >>= &= ^= |=
115 ///
116 ///       expression: [C99 6.5.17]
117 ///         assignment-expression ...[opt]
118 ///         expression ',' assignment-expression ...[opt]
119 /// \endverbatim
ParseExpression(TypeCastState isTypeCast)120 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
121   ExprResult LHS(ParseAssignmentExpression(isTypeCast));
122   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
123 }
124 
125 /// This routine is called when the '@' is seen and consumed.
126 /// Current token is an Identifier and is not a 'try'. This
127 /// routine is necessary to disambiguate \@try-statement from,
128 /// for example, \@encode-expression.
129 ///
130 ExprResult
ParseExpressionWithLeadingAt(SourceLocation AtLoc)131 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
132   ExprResult LHS(ParseObjCAtExpression(AtLoc));
133   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
134 }
135 
136 /// This routine is called when a leading '__extension__' is seen and
137 /// consumed.  This is necessary because the token gets consumed in the
138 /// process of disambiguating between an expression and a declaration.
139 ExprResult
ParseExpressionWithLeadingExtension(SourceLocation ExtLoc)140 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
141   ExprResult LHS(true);
142   {
143     // Silence extension warnings in the sub-expression
144     ExtensionRAIIObject O(Diags);
145 
146     LHS = ParseCastExpression(false);
147   }
148 
149   if (!LHS.isInvalid())
150     LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
151                                LHS.get());
152 
153   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
154 }
155 
156 /// \brief Parse an expr that doesn't include (top-level) commas.
ParseAssignmentExpression(TypeCastState isTypeCast)157 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
158   if (Tok.is(tok::code_completion)) {
159     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
160     cutOffParsing();
161     return ExprError();
162   }
163 
164   if (Tok.is(tok::kw_throw))
165     return ParseThrowExpression();
166 
167   ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
168                                        /*isAddressOfOperand=*/false,
169                                        isTypeCast);
170   return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
171 }
172 
173 /// \brief Parse an assignment expression where part of an Objective-C message
174 /// send has already been parsed.
175 ///
176 /// In this case \p LBracLoc indicates the location of the '[' of the message
177 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
178 /// the receiver of the message.
179 ///
180 /// Since this handles full assignment-expression's, it handles postfix
181 /// expressions and other binary operators for these expressions as well.
182 ExprResult
ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,SourceLocation SuperLoc,ParsedType ReceiverType,Expr * ReceiverExpr)183 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
184                                                     SourceLocation SuperLoc,
185                                                     ParsedType ReceiverType,
186                                                     Expr *ReceiverExpr) {
187   ExprResult R
188     = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
189                                      ReceiverType, ReceiverExpr);
190   R = ParsePostfixExpressionSuffix(R);
191   return ParseRHSOfBinaryExpression(R, prec::Assignment);
192 }
193 
194 
ParseConstantExpression(TypeCastState isTypeCast)195 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
196   // C++03 [basic.def.odr]p2:
197   //   An expression is potentially evaluated unless it appears where an
198   //   integral constant expression is required (see 5.19) [...].
199   // C++98 and C++11 have no such rule, but this is only a defect in C++98.
200   EnterExpressionEvaluationContext Unevaluated(Actions,
201                                                Sema::ConstantEvaluated);
202 
203   ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
204   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
205   return Actions.ActOnConstantExpression(Res);
206 }
207 
isNotExpressionStart()208 bool Parser::isNotExpressionStart() {
209   tok::TokenKind K = Tok.getKind();
210   if (K == tok::l_brace || K == tok::r_brace  ||
211       K == tok::kw_for  || K == tok::kw_while ||
212       K == tok::kw_if   || K == tok::kw_else  ||
213       K == tok::kw_goto || K == tok::kw_try)
214     return true;
215   // If this is a decl-specifier, we can't be at the start of an expression.
216   return isKnownToBeDeclarationSpecifier();
217 }
218 
isFoldOperator(prec::Level Level)219 static bool isFoldOperator(prec::Level Level) {
220   return Level > prec::Unknown && Level != prec::Conditional;
221 }
isFoldOperator(tok::TokenKind Kind)222 static bool isFoldOperator(tok::TokenKind Kind) {
223   return isFoldOperator(getBinOpPrecedence(Kind, false, true));
224 }
225 
226 /// \brief Parse a binary expression that starts with \p LHS and has a
227 /// precedence of at least \p MinPrec.
228 ExprResult
ParseRHSOfBinaryExpression(ExprResult LHS,prec::Level MinPrec)229 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
230   prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
231                                                GreaterThanIsOperator,
232                                                getLangOpts().CPlusPlus11);
233   SourceLocation ColonLoc;
234 
235   while (1) {
236     // If this token has a lower precedence than we are allowed to parse (e.g.
237     // because we are called recursively, or because the token is not a binop),
238     // then we are done!
239     if (NextTokPrec < MinPrec)
240       return LHS;
241 
242     // Consume the operator, saving the operator token for error reporting.
243     Token OpToken = Tok;
244     ConsumeToken();
245 
246     // Bail out when encountering a comma followed by a token which can't
247     // possibly be the start of an expression. For instance:
248     //   int f() { return 1, }
249     // We can't do this before consuming the comma, because
250     // isNotExpressionStart() looks at the token stream.
251     if (OpToken.is(tok::comma) && isNotExpressionStart()) {
252       PP.EnterToken(Tok);
253       Tok = OpToken;
254       return LHS;
255     }
256 
257     // If the next token is an ellipsis, then this is a fold-expression. Leave
258     // it alone so we can handle it in the paren expression.
259     if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
260       // FIXME: We can't check this via lookahead before we consume the token
261       // because that tickles a lexer bug.
262       PP.EnterToken(Tok);
263       Tok = OpToken;
264       return LHS;
265     }
266 
267     // Special case handling for the ternary operator.
268     ExprResult TernaryMiddle(true);
269     if (NextTokPrec == prec::Conditional) {
270       if (Tok.isNot(tok::colon)) {
271         // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
272         ColonProtectionRAIIObject X(*this);
273 
274         // Handle this production specially:
275         //   logical-OR-expression '?' expression ':' conditional-expression
276         // In particular, the RHS of the '?' is 'expression', not
277         // 'logical-OR-expression' as we might expect.
278         TernaryMiddle = ParseExpression();
279         if (TernaryMiddle.isInvalid()) {
280           Actions.CorrectDelayedTyposInExpr(LHS);
281           LHS = ExprError();
282           TernaryMiddle = nullptr;
283         }
284       } else {
285         // Special case handling of "X ? Y : Z" where Y is empty:
286         //   logical-OR-expression '?' ':' conditional-expression   [GNU]
287         TernaryMiddle = nullptr;
288         Diag(Tok, diag::ext_gnu_conditional_expr);
289       }
290 
291       if (!TryConsumeToken(tok::colon, ColonLoc)) {
292         // Otherwise, we're missing a ':'.  Assume that this was a typo that
293         // the user forgot. If we're not in a macro expansion, we can suggest
294         // a fixit hint. If there were two spaces before the current token,
295         // suggest inserting the colon in between them, otherwise insert ": ".
296         SourceLocation FILoc = Tok.getLocation();
297         const char *FIText = ": ";
298         const SourceManager &SM = PP.getSourceManager();
299         if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
300           assert(FILoc.isFileID());
301           bool IsInvalid = false;
302           const char *SourcePtr =
303             SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
304           if (!IsInvalid && *SourcePtr == ' ') {
305             SourcePtr =
306               SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
307             if (!IsInvalid && *SourcePtr == ' ') {
308               FILoc = FILoc.getLocWithOffset(-1);
309               FIText = ":";
310             }
311           }
312         }
313 
314         Diag(Tok, diag::err_expected)
315             << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
316         Diag(OpToken, diag::note_matching) << tok::question;
317         ColonLoc = Tok.getLocation();
318       }
319     }
320 
321     // Code completion for the right-hand side of an assignment expression
322     // goes through a special hook that takes the left-hand side into account.
323     if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
324       Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
325       cutOffParsing();
326       return ExprError();
327     }
328 
329     // Parse another leaf here for the RHS of the operator.
330     // ParseCastExpression works here because all RHS expressions in C have it
331     // as a prefix, at least. However, in C++, an assignment-expression could
332     // be a throw-expression, which is not a valid cast-expression.
333     // Therefore we need some special-casing here.
334     // Also note that the third operand of the conditional operator is
335     // an assignment-expression in C++, and in C++11, we can have a
336     // braced-init-list on the RHS of an assignment. For better diagnostics,
337     // parse as if we were allowed braced-init-lists everywhere, and check that
338     // they only appear on the RHS of assignments later.
339     ExprResult RHS;
340     bool RHSIsInitList = false;
341     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
342       RHS = ParseBraceInitializer();
343       RHSIsInitList = true;
344     } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
345       RHS = ParseAssignmentExpression();
346     else
347       RHS = ParseCastExpression(false);
348 
349     if (RHS.isInvalid()) {
350       Actions.CorrectDelayedTyposInExpr(LHS);
351       LHS = ExprError();
352     }
353 
354     // Remember the precedence of this operator and get the precedence of the
355     // operator immediately to the right of the RHS.
356     prec::Level ThisPrec = NextTokPrec;
357     NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
358                                      getLangOpts().CPlusPlus11);
359 
360     // Assignment and conditional expressions are right-associative.
361     bool isRightAssoc = ThisPrec == prec::Conditional ||
362                         ThisPrec == prec::Assignment;
363 
364     // Get the precedence of the operator to the right of the RHS.  If it binds
365     // more tightly with RHS than we do, evaluate it completely first.
366     if (ThisPrec < NextTokPrec ||
367         (ThisPrec == NextTokPrec && isRightAssoc)) {
368       if (!RHS.isInvalid() && RHSIsInitList) {
369         Diag(Tok, diag::err_init_list_bin_op)
370           << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
371         RHS = ExprError();
372       }
373       // If this is left-associative, only parse things on the RHS that bind
374       // more tightly than the current operator.  If it is left-associative, it
375       // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
376       // A=(B=(C=D)), where each paren is a level of recursion here.
377       // The function takes ownership of the RHS.
378       RHS = ParseRHSOfBinaryExpression(RHS,
379                             static_cast<prec::Level>(ThisPrec + !isRightAssoc));
380       RHSIsInitList = false;
381 
382       if (RHS.isInvalid()) {
383         Actions.CorrectDelayedTyposInExpr(LHS);
384         LHS = ExprError();
385       }
386 
387       NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
388                                        getLangOpts().CPlusPlus11);
389     }
390 
391     if (!RHS.isInvalid() && RHSIsInitList) {
392       if (ThisPrec == prec::Assignment) {
393         Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
394           << Actions.getExprRange(RHS.get());
395       } else {
396         Diag(OpToken, diag::err_init_list_bin_op)
397           << /*RHS*/1 << PP.getSpelling(OpToken)
398           << Actions.getExprRange(RHS.get());
399         LHS = ExprError();
400       }
401     }
402 
403     if (!LHS.isInvalid()) {
404       // Combine the LHS and RHS into the LHS (e.g. build AST).
405       if (TernaryMiddle.isInvalid()) {
406         // If we're using '>>' as an operator within a template
407         // argument list (in C++98), suggest the addition of
408         // parentheses so that the code remains well-formed in C++0x.
409         if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
410           SuggestParentheses(OpToken.getLocation(),
411                              diag::warn_cxx11_right_shift_in_template_arg,
412                          SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
413                                      Actions.getExprRange(RHS.get()).getEnd()));
414 
415         LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
416                                  OpToken.getKind(), LHS.get(), RHS.get());
417       } else
418         LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
419                                          LHS.get(), TernaryMiddle.get(),
420                                          RHS.get());
421     } else
422       // Ensure potential typos in the RHS aren't left undiagnosed.
423       Actions.CorrectDelayedTyposInExpr(RHS);
424   }
425 }
426 
427 /// \brief Parse a cast-expression, or, if \p isUnaryExpression is true,
428 /// parse a unary-expression.
429 ///
430 /// \p isAddressOfOperand exists because an id-expression that is the
431 /// operand of address-of gets special treatment due to member pointers.
432 ///
ParseCastExpression(bool isUnaryExpression,bool isAddressOfOperand,TypeCastState isTypeCast)433 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
434                                        bool isAddressOfOperand,
435                                        TypeCastState isTypeCast) {
436   bool NotCastExpr;
437   ExprResult Res = ParseCastExpression(isUnaryExpression,
438                                        isAddressOfOperand,
439                                        NotCastExpr,
440                                        isTypeCast);
441   if (NotCastExpr)
442     Diag(Tok, diag::err_expected_expression);
443   return Res;
444 }
445 
446 namespace {
447 class CastExpressionIdValidator : public CorrectionCandidateCallback {
448  public:
CastExpressionIdValidator(bool AllowTypes,bool AllowNonTypes)449   CastExpressionIdValidator(bool AllowTypes, bool AllowNonTypes)
450       : AllowNonTypes(AllowNonTypes) {
451     WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
452   }
453 
ValidateCandidate(const TypoCorrection & candidate)454   bool ValidateCandidate(const TypoCorrection &candidate) override {
455     NamedDecl *ND = candidate.getCorrectionDecl();
456     if (!ND)
457       return candidate.isKeyword();
458 
459     if (isa<TypeDecl>(ND))
460       return WantTypeSpecifiers;
461     return AllowNonTypes &&
462            CorrectionCandidateCallback::ValidateCandidate(candidate);
463   }
464 
465  private:
466   bool AllowNonTypes;
467 };
468 }
469 
470 /// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse
471 /// a unary-expression.
472 ///
473 /// \p isAddressOfOperand exists because an id-expression that is the operand
474 /// of address-of gets special treatment due to member pointers. NotCastExpr
475 /// is set to true if the token is not the start of a cast-expression, and no
476 /// diagnostic is emitted in this case.
477 ///
478 /// \verbatim
479 ///       cast-expression: [C99 6.5.4]
480 ///         unary-expression
481 ///         '(' type-name ')' cast-expression
482 ///
483 ///       unary-expression:  [C99 6.5.3]
484 ///         postfix-expression
485 ///         '++' unary-expression
486 ///         '--' unary-expression
487 ///         unary-operator cast-expression
488 ///         'sizeof' unary-expression
489 ///         'sizeof' '(' type-name ')'
490 /// [C++11] 'sizeof' '...' '(' identifier ')'
491 /// [GNU]   '__alignof' unary-expression
492 /// [GNU]   '__alignof' '(' type-name ')'
493 /// [C11]   '_Alignof' '(' type-name ')'
494 /// [C++11] 'alignof' '(' type-id ')'
495 /// [GNU]   '&&' identifier
496 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
497 /// [C++]   new-expression
498 /// [C++]   delete-expression
499 ///
500 ///       unary-operator: one of
501 ///         '&'  '*'  '+'  '-'  '~'  '!'
502 /// [GNU]   '__extension__'  '__real'  '__imag'
503 ///
504 ///       primary-expression: [C99 6.5.1]
505 /// [C99]   identifier
506 /// [C++]   id-expression
507 ///         constant
508 ///         string-literal
509 /// [C++]   boolean-literal  [C++ 2.13.5]
510 /// [C++11] 'nullptr'        [C++11 2.14.7]
511 /// [C++11] user-defined-literal
512 ///         '(' expression ')'
513 /// [C11]   generic-selection
514 ///         '__func__'        [C99 6.4.2.2]
515 /// [GNU]   '__FUNCTION__'
516 /// [MS]    '__FUNCDNAME__'
517 /// [MS]    'L__FUNCTION__'
518 /// [GNU]   '__PRETTY_FUNCTION__'
519 /// [GNU]   '(' compound-statement ')'
520 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
521 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
522 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
523 ///                                     assign-expr ')'
524 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
525 /// [GNU]   '__null'
526 /// [OBJC]  '[' objc-message-expr ']'
527 /// [OBJC]  '\@selector' '(' objc-selector-arg ')'
528 /// [OBJC]  '\@protocol' '(' identifier ')'
529 /// [OBJC]  '\@encode' '(' type-name ')'
530 /// [OBJC]  objc-string-literal
531 /// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
532 /// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
533 /// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
534 /// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
535 /// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
536 /// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
537 /// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
538 /// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
539 /// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
540 /// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
541 /// [C++]   'this'          [C++ 9.3.2]
542 /// [G++]   unary-type-trait '(' type-id ')'
543 /// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
544 /// [EMBT]  array-type-trait '(' type-id ',' integer ')'
545 /// [clang] '^' block-literal
546 ///
547 ///       constant: [C99 6.4.4]
548 ///         integer-constant
549 ///         floating-constant
550 ///         enumeration-constant -> identifier
551 ///         character-constant
552 ///
553 ///       id-expression: [C++ 5.1]
554 ///                   unqualified-id
555 ///                   qualified-id
556 ///
557 ///       unqualified-id: [C++ 5.1]
558 ///                   identifier
559 ///                   operator-function-id
560 ///                   conversion-function-id
561 ///                   '~' class-name
562 ///                   template-id
563 ///
564 ///       new-expression: [C++ 5.3.4]
565 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
566 ///                                     new-initializer[opt]
567 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
568 ///                                     new-initializer[opt]
569 ///
570 ///       delete-expression: [C++ 5.3.5]
571 ///                   '::'[opt] 'delete' cast-expression
572 ///                   '::'[opt] 'delete' '[' ']' cast-expression
573 ///
574 /// [GNU/Embarcadero] unary-type-trait:
575 ///                   '__is_arithmetic'
576 ///                   '__is_floating_point'
577 ///                   '__is_integral'
578 ///                   '__is_lvalue_expr'
579 ///                   '__is_rvalue_expr'
580 ///                   '__is_complete_type'
581 ///                   '__is_void'
582 ///                   '__is_array'
583 ///                   '__is_function'
584 ///                   '__is_reference'
585 ///                   '__is_lvalue_reference'
586 ///                   '__is_rvalue_reference'
587 ///                   '__is_fundamental'
588 ///                   '__is_object'
589 ///                   '__is_scalar'
590 ///                   '__is_compound'
591 ///                   '__is_pointer'
592 ///                   '__is_member_object_pointer'
593 ///                   '__is_member_function_pointer'
594 ///                   '__is_member_pointer'
595 ///                   '__is_const'
596 ///                   '__is_volatile'
597 ///                   '__is_trivial'
598 ///                   '__is_standard_layout'
599 ///                   '__is_signed'
600 ///                   '__is_unsigned'
601 ///
602 /// [GNU] unary-type-trait:
603 ///                   '__has_nothrow_assign'
604 ///                   '__has_nothrow_copy'
605 ///                   '__has_nothrow_constructor'
606 ///                   '__has_trivial_assign'                  [TODO]
607 ///                   '__has_trivial_copy'                    [TODO]
608 ///                   '__has_trivial_constructor'
609 ///                   '__has_trivial_destructor'
610 ///                   '__has_virtual_destructor'
611 ///                   '__is_abstract'                         [TODO]
612 ///                   '__is_class'
613 ///                   '__is_empty'                            [TODO]
614 ///                   '__is_enum'
615 ///                   '__is_final'
616 ///                   '__is_pod'
617 ///                   '__is_polymorphic'
618 ///                   '__is_sealed'                           [MS]
619 ///                   '__is_trivial'
620 ///                   '__is_union'
621 ///
622 /// [Clang] unary-type-trait:
623 ///                   '__trivially_copyable'
624 ///
625 ///       binary-type-trait:
626 /// [GNU]             '__is_base_of'
627 /// [MS]              '__is_convertible_to'
628 ///                   '__is_convertible'
629 ///                   '__is_same'
630 ///
631 /// [Embarcadero] array-type-trait:
632 ///                   '__array_rank'
633 ///                   '__array_extent'
634 ///
635 /// [Embarcadero] expression-trait:
636 ///                   '__is_lvalue_expr'
637 ///                   '__is_rvalue_expr'
638 /// \endverbatim
639 ///
ParseCastExpression(bool isUnaryExpression,bool isAddressOfOperand,bool & NotCastExpr,TypeCastState isTypeCast)640 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
641                                        bool isAddressOfOperand,
642                                        bool &NotCastExpr,
643                                        TypeCastState isTypeCast) {
644   ExprResult Res;
645   tok::TokenKind SavedKind = Tok.getKind();
646   NotCastExpr = false;
647 
648   // This handles all of cast-expression, unary-expression, postfix-expression,
649   // and primary-expression.  We handle them together like this for efficiency
650   // and to simplify handling of an expression starting with a '(' token: which
651   // may be one of a parenthesized expression, cast-expression, compound literal
652   // expression, or statement expression.
653   //
654   // If the parsed tokens consist of a primary-expression, the cases below
655   // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
656   // to handle the postfix expression suffixes.  Cases that cannot be followed
657   // by postfix exprs should return without invoking
658   // ParsePostfixExpressionSuffix.
659   switch (SavedKind) {
660   case tok::l_paren: {
661     // If this expression is limited to being a unary-expression, the parent can
662     // not start a cast expression.
663     ParenParseOption ParenExprType =
664         (isUnaryExpression && !getLangOpts().CPlusPlus) ? CompoundLiteral
665                                                         : CastExpr;
666     ParsedType CastTy;
667     SourceLocation RParenLoc;
668     Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
669                                isTypeCast == IsTypeCast, CastTy, RParenLoc);
670 
671     switch (ParenExprType) {
672     case SimpleExpr:   break;    // Nothing else to do.
673     case CompoundStmt: break;  // Nothing else to do.
674     case CompoundLiteral:
675       // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
676       // postfix-expression exist, parse them now.
677       break;
678     case CastExpr:
679       // We have parsed the cast-expression and no postfix-expr pieces are
680       // following.
681       return Res;
682     }
683 
684     break;
685   }
686 
687     // primary-expression
688   case tok::numeric_constant:
689     // constant: integer-constant
690     // constant: floating-constant
691 
692     Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
693     ConsumeToken();
694     break;
695 
696   case tok::kw_true:
697   case tok::kw_false:
698     return ParseCXXBoolLiteral();
699 
700   case tok::kw___objc_yes:
701   case tok::kw___objc_no:
702       return ParseObjCBoolLiteral();
703 
704   case tok::kw_nullptr:
705     Diag(Tok, diag::warn_cxx98_compat_nullptr);
706     return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
707 
708   case tok::annot_primary_expr:
709     assert(Res.get() == nullptr && "Stray primary-expression annotation?");
710     Res = getExprAnnotation(Tok);
711     ConsumeToken();
712     break;
713 
714   case tok::kw___super:
715   case tok::kw_decltype:
716     // Annotate the token and tail recurse.
717     if (TryAnnotateTypeOrScopeToken())
718       return ExprError();
719     assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
720     return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
721 
722   case tok::identifier: {      // primary-expression: identifier
723                                // unqualified-id: identifier
724                                // constant: enumeration-constant
725     // Turn a potentially qualified name into a annot_typename or
726     // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
727     if (getLangOpts().CPlusPlus) {
728       // Avoid the unnecessary parse-time lookup in the common case
729       // where the syntax forbids a type.
730       const Token &Next = NextToken();
731 
732       // If this identifier was reverted from a token ID, and the next token
733       // is a parenthesis, this is likely to be a use of a type trait. Check
734       // those tokens.
735       if (Next.is(tok::l_paren) &&
736           Tok.is(tok::identifier) &&
737           Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
738         IdentifierInfo *II = Tok.getIdentifierInfo();
739         // Build up the mapping of revertible type traits, for future use.
740         if (RevertibleTypeTraits.empty()) {
741 #define RTT_JOIN(X,Y) X##Y
742 #define REVERTIBLE_TYPE_TRAIT(Name)                         \
743           RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
744             = RTT_JOIN(tok::kw_,Name)
745 
746           REVERTIBLE_TYPE_TRAIT(__is_abstract);
747           REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
748           REVERTIBLE_TYPE_TRAIT(__is_array);
749           REVERTIBLE_TYPE_TRAIT(__is_base_of);
750           REVERTIBLE_TYPE_TRAIT(__is_class);
751           REVERTIBLE_TYPE_TRAIT(__is_complete_type);
752           REVERTIBLE_TYPE_TRAIT(__is_compound);
753           REVERTIBLE_TYPE_TRAIT(__is_const);
754           REVERTIBLE_TYPE_TRAIT(__is_constructible);
755           REVERTIBLE_TYPE_TRAIT(__is_convertible);
756           REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
757           REVERTIBLE_TYPE_TRAIT(__is_destructible);
758           REVERTIBLE_TYPE_TRAIT(__is_empty);
759           REVERTIBLE_TYPE_TRAIT(__is_enum);
760           REVERTIBLE_TYPE_TRAIT(__is_floating_point);
761           REVERTIBLE_TYPE_TRAIT(__is_final);
762           REVERTIBLE_TYPE_TRAIT(__is_function);
763           REVERTIBLE_TYPE_TRAIT(__is_fundamental);
764           REVERTIBLE_TYPE_TRAIT(__is_integral);
765           REVERTIBLE_TYPE_TRAIT(__is_interface_class);
766           REVERTIBLE_TYPE_TRAIT(__is_literal);
767           REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
768           REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
769           REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
770           REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
771           REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
772           REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
773           REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
774           REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
775           REVERTIBLE_TYPE_TRAIT(__is_object);
776           REVERTIBLE_TYPE_TRAIT(__is_pod);
777           REVERTIBLE_TYPE_TRAIT(__is_pointer);
778           REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
779           REVERTIBLE_TYPE_TRAIT(__is_reference);
780           REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
781           REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
782           REVERTIBLE_TYPE_TRAIT(__is_same);
783           REVERTIBLE_TYPE_TRAIT(__is_scalar);
784           REVERTIBLE_TYPE_TRAIT(__is_sealed);
785           REVERTIBLE_TYPE_TRAIT(__is_signed);
786           REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
787           REVERTIBLE_TYPE_TRAIT(__is_trivial);
788           REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
789           REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
790           REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
791           REVERTIBLE_TYPE_TRAIT(__is_union);
792           REVERTIBLE_TYPE_TRAIT(__is_unsigned);
793           REVERTIBLE_TYPE_TRAIT(__is_void);
794           REVERTIBLE_TYPE_TRAIT(__is_volatile);
795 #undef REVERTIBLE_TYPE_TRAIT
796 #undef RTT_JOIN
797         }
798 
799         // If we find that this is in fact the name of a type trait,
800         // update the token kind in place and parse again to treat it as
801         // the appropriate kind of type trait.
802         llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
803           = RevertibleTypeTraits.find(II);
804         if (Known != RevertibleTypeTraits.end()) {
805           Tok.setKind(Known->second);
806           return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
807                                      NotCastExpr, isTypeCast);
808         }
809       }
810 
811       if (Next.is(tok::coloncolon) ||
812           (!ColonIsSacred && Next.is(tok::colon)) ||
813           Next.is(tok::less) ||
814           Next.is(tok::l_paren) ||
815           Next.is(tok::l_brace)) {
816         // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
817         if (TryAnnotateTypeOrScopeToken())
818           return ExprError();
819         if (!Tok.is(tok::identifier))
820           return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
821       }
822     }
823 
824     // Consume the identifier so that we can see if it is followed by a '(' or
825     // '.'.
826     IdentifierInfo &II = *Tok.getIdentifierInfo();
827     SourceLocation ILoc = ConsumeToken();
828 
829     // Support 'Class.property' and 'super.property' notation.
830     if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
831         (Actions.getTypeName(II, ILoc, getCurScope()) ||
832          // Allow the base to be 'super' if in an objc-method.
833          (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
834       ConsumeToken();
835 
836       // Allow either an identifier or the keyword 'class' (in C++).
837       if (Tok.isNot(tok::identifier) &&
838           !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
839         Diag(Tok, diag::err_expected_property_name);
840         return ExprError();
841       }
842       IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
843       SourceLocation PropertyLoc = ConsumeToken();
844 
845       Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
846                                               ILoc, PropertyLoc);
847       break;
848     }
849 
850     // In an Objective-C method, if we have "super" followed by an identifier,
851     // the token sequence is ill-formed. However, if there's a ':' or ']' after
852     // that identifier, this is probably a message send with a missing open
853     // bracket. Treat it as such.
854     if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
855         getCurScope()->isInObjcMethodScope() &&
856         ((Tok.is(tok::identifier) &&
857          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
858          Tok.is(tok::code_completion))) {
859       Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, ParsedType(),
860                                            nullptr);
861       break;
862     }
863 
864     // If we have an Objective-C class name followed by an identifier
865     // and either ':' or ']', this is an Objective-C class message
866     // send that's missing the opening '['. Recovery
867     // appropriately. Also take this path if we're performing code
868     // completion after an Objective-C class name.
869     if (getLangOpts().ObjC1 &&
870         ((Tok.is(tok::identifier) && !InMessageExpression) ||
871          Tok.is(tok::code_completion))) {
872       const Token& Next = NextToken();
873       if (Tok.is(tok::code_completion) ||
874           Next.is(tok::colon) || Next.is(tok::r_square))
875         if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
876           if (Typ.get()->isObjCObjectOrInterfaceType()) {
877             // Fake up a Declarator to use with ActOnTypeName.
878             DeclSpec DS(AttrFactory);
879             DS.SetRangeStart(ILoc);
880             DS.SetRangeEnd(ILoc);
881             const char *PrevSpec = nullptr;
882             unsigned DiagID;
883             DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
884                                Actions.getASTContext().getPrintingPolicy());
885 
886             Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
887             TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
888                                                   DeclaratorInfo);
889             if (Ty.isInvalid())
890               break;
891 
892             Res = ParseObjCMessageExpressionBody(SourceLocation(),
893                                                  SourceLocation(),
894                                                  Ty.get(), nullptr);
895             break;
896           }
897     }
898 
899     // Make sure to pass down the right value for isAddressOfOperand.
900     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
901       isAddressOfOperand = false;
902 
903     // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
904     // need to know whether or not this identifier is a function designator or
905     // not.
906     UnqualifiedId Name;
907     CXXScopeSpec ScopeSpec;
908     SourceLocation TemplateKWLoc;
909     Token Replacement;
910     auto Validator = llvm::make_unique<CastExpressionIdValidator>(
911         isTypeCast != NotTypeCast, isTypeCast != IsTypeCast);
912     Validator->IsAddressOfOperand = isAddressOfOperand;
913     Validator->WantRemainingKeywords = Tok.isNot(tok::r_paren);
914     Name.setIdentifier(&II, ILoc);
915     Res = Actions.ActOnIdExpression(
916         getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
917         isAddressOfOperand, std::move(Validator),
918         /*IsInlineAsmIdentifier=*/false, &Replacement);
919     if (!Res.isInvalid() && !Res.get()) {
920       UnconsumeToken(Replacement);
921       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
922                                  NotCastExpr, isTypeCast);
923     }
924     break;
925   }
926   case tok::char_constant:     // constant: character-constant
927   case tok::wide_char_constant:
928   case tok::utf8_char_constant:
929   case tok::utf16_char_constant:
930   case tok::utf32_char_constant:
931     Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
932     ConsumeToken();
933     break;
934   case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
935   case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
936   case tok::kw___FUNCDNAME__:   // primary-expression: __FUNCDNAME__ [MS]
937   case tok::kw___FUNCSIG__:     // primary-expression: __FUNCSIG__ [MS]
938   case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
939   case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
940     Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
941     ConsumeToken();
942     break;
943   case tok::string_literal:    // primary-expression: string-literal
944   case tok::wide_string_literal:
945   case tok::utf8_string_literal:
946   case tok::utf16_string_literal:
947   case tok::utf32_string_literal:
948     Res = ParseStringLiteralExpression(true);
949     break;
950   case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
951     Res = ParseGenericSelectionExpression();
952     break;
953   case tok::kw___builtin_va_arg:
954   case tok::kw___builtin_offsetof:
955   case tok::kw___builtin_choose_expr:
956   case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
957   case tok::kw___builtin_convertvector:
958     return ParseBuiltinPrimaryExpression();
959   case tok::kw___null:
960     return Actions.ActOnGNUNullExpr(ConsumeToken());
961 
962   case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
963   case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
964     // C++ [expr.unary] has:
965     //   unary-expression:
966     //     ++ cast-expression
967     //     -- cast-expression
968     SourceLocation SavedLoc = ConsumeToken();
969     // One special case is implicitly handled here: if the preceding tokens are
970     // an ambiguous cast expression, such as "(T())++", then we recurse to
971     // determine whether the '++' is prefix or postfix.
972     Res = ParseCastExpression(!getLangOpts().CPlusPlus,
973                               /*isAddressOfOperand*/false, NotCastExpr,
974                               NotTypeCast);
975     if (!Res.isInvalid())
976       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
977     return Res;
978   }
979   case tok::amp: {         // unary-expression: '&' cast-expression
980     // Special treatment because of member pointers
981     SourceLocation SavedLoc = ConsumeToken();
982     Res = ParseCastExpression(false, true);
983     if (!Res.isInvalid())
984       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
985     return Res;
986   }
987 
988   case tok::star:          // unary-expression: '*' cast-expression
989   case tok::plus:          // unary-expression: '+' cast-expression
990   case tok::minus:         // unary-expression: '-' cast-expression
991   case tok::tilde:         // unary-expression: '~' cast-expression
992   case tok::exclaim:       // unary-expression: '!' cast-expression
993   case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
994   case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
995     SourceLocation SavedLoc = ConsumeToken();
996     Res = ParseCastExpression(false);
997     if (!Res.isInvalid())
998       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
999     return Res;
1000   }
1001 
1002   case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1003     // __extension__ silences extension warnings in the subexpression.
1004     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1005     SourceLocation SavedLoc = ConsumeToken();
1006     Res = ParseCastExpression(false);
1007     if (!Res.isInvalid())
1008       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1009     return Res;
1010   }
1011   case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
1012     if (!getLangOpts().C11)
1013       Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
1014     // fallthrough
1015   case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
1016   case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
1017                            // unary-expression: '__alignof' '(' type-name ')'
1018   case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
1019                            // unary-expression: 'sizeof' '(' type-name ')'
1020   case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
1021     return ParseUnaryExprOrTypeTraitExpression();
1022   case tok::ampamp: {      // unary-expression: '&&' identifier
1023     SourceLocation AmpAmpLoc = ConsumeToken();
1024     if (Tok.isNot(tok::identifier))
1025       return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1026 
1027     if (getCurScope()->getFnParent() == nullptr)
1028       return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1029 
1030     Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1031     LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1032                                                 Tok.getLocation());
1033     Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1034     ConsumeToken();
1035     return Res;
1036   }
1037   case tok::kw_const_cast:
1038   case tok::kw_dynamic_cast:
1039   case tok::kw_reinterpret_cast:
1040   case tok::kw_static_cast:
1041     Res = ParseCXXCasts();
1042     break;
1043   case tok::kw_typeid:
1044     Res = ParseCXXTypeid();
1045     break;
1046   case tok::kw___uuidof:
1047     Res = ParseCXXUuidof();
1048     break;
1049   case tok::kw_this:
1050     Res = ParseCXXThis();
1051     break;
1052 
1053   case tok::annot_typename:
1054     if (isStartOfObjCClassMessageMissingOpenBracket()) {
1055       ParsedType Type = getTypeAnnotation(Tok);
1056 
1057       // Fake up a Declarator to use with ActOnTypeName.
1058       DeclSpec DS(AttrFactory);
1059       DS.SetRangeStart(Tok.getLocation());
1060       DS.SetRangeEnd(Tok.getLastLoc());
1061 
1062       const char *PrevSpec = nullptr;
1063       unsigned DiagID;
1064       DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1065                          PrevSpec, DiagID, Type,
1066                          Actions.getASTContext().getPrintingPolicy());
1067 
1068       Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1069       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1070       if (Ty.isInvalid())
1071         break;
1072 
1073       ConsumeToken();
1074       Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1075                                            Ty.get(), nullptr);
1076       break;
1077     }
1078     // Fall through
1079 
1080   case tok::annot_decltype:
1081   case tok::kw_char:
1082   case tok::kw_wchar_t:
1083   case tok::kw_char16_t:
1084   case tok::kw_char32_t:
1085   case tok::kw_bool:
1086   case tok::kw_short:
1087   case tok::kw_int:
1088   case tok::kw_long:
1089   case tok::kw___int64:
1090   case tok::kw___int128:
1091   case tok::kw_signed:
1092   case tok::kw_unsigned:
1093   case tok::kw_half:
1094   case tok::kw_float:
1095   case tok::kw_double:
1096   case tok::kw_void:
1097   case tok::kw_typename:
1098   case tok::kw_typeof:
1099   case tok::kw___vector: {
1100     if (!getLangOpts().CPlusPlus) {
1101       Diag(Tok, diag::err_expected_expression);
1102       return ExprError();
1103     }
1104 
1105     if (SavedKind == tok::kw_typename) {
1106       // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1107       //                     typename-specifier braced-init-list
1108       if (TryAnnotateTypeOrScopeToken())
1109         return ExprError();
1110 
1111       if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1112         // We are trying to parse a simple-type-specifier but might not get such
1113         // a token after error recovery.
1114         return ExprError();
1115     }
1116 
1117     // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1118     //                     simple-type-specifier braced-init-list
1119     //
1120     DeclSpec DS(AttrFactory);
1121 
1122     ParseCXXSimpleTypeSpecifier(DS);
1123     if (Tok.isNot(tok::l_paren) &&
1124         (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1125       return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1126                          << DS.getSourceRange());
1127 
1128     if (Tok.is(tok::l_brace))
1129       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1130 
1131     Res = ParseCXXTypeConstructExpression(DS);
1132     break;
1133   }
1134 
1135   case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1136     // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1137     // (We can end up in this situation after tentative parsing.)
1138     if (TryAnnotateTypeOrScopeToken())
1139       return ExprError();
1140     if (!Tok.is(tok::annot_cxxscope))
1141       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1142                                  NotCastExpr, isTypeCast);
1143 
1144     Token Next = NextToken();
1145     if (Next.is(tok::annot_template_id)) {
1146       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1147       if (TemplateId->Kind == TNK_Type_template) {
1148         // We have a qualified template-id that we know refers to a
1149         // type, translate it into a type and continue parsing as a
1150         // cast expression.
1151         CXXScopeSpec SS;
1152         ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
1153                                        /*EnteringContext=*/false);
1154         AnnotateTemplateIdTokenAsType();
1155         return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1156                                    NotCastExpr, isTypeCast);
1157       }
1158     }
1159 
1160     // Parse as an id-expression.
1161     Res = ParseCXXIdExpression(isAddressOfOperand);
1162     break;
1163   }
1164 
1165   case tok::annot_template_id: { // [C++]          template-id
1166     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1167     if (TemplateId->Kind == TNK_Type_template) {
1168       // We have a template-id that we know refers to a type,
1169       // translate it into a type and continue parsing as a cast
1170       // expression.
1171       AnnotateTemplateIdTokenAsType();
1172       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1173                                  NotCastExpr, isTypeCast);
1174     }
1175 
1176     // Fall through to treat the template-id as an id-expression.
1177   }
1178 
1179   case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1180     Res = ParseCXXIdExpression(isAddressOfOperand);
1181     break;
1182 
1183   case tok::coloncolon: {
1184     // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
1185     // annotates the token, tail recurse.
1186     if (TryAnnotateTypeOrScopeToken())
1187       return ExprError();
1188     if (!Tok.is(tok::coloncolon))
1189       return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
1190 
1191     // ::new -> [C++] new-expression
1192     // ::delete -> [C++] delete-expression
1193     SourceLocation CCLoc = ConsumeToken();
1194     if (Tok.is(tok::kw_new))
1195       return ParseCXXNewExpression(true, CCLoc);
1196     if (Tok.is(tok::kw_delete))
1197       return ParseCXXDeleteExpression(true, CCLoc);
1198 
1199     // This is not a type name or scope specifier, it is an invalid expression.
1200     Diag(CCLoc, diag::err_expected_expression);
1201     return ExprError();
1202   }
1203 
1204   case tok::kw_new: // [C++] new-expression
1205     return ParseCXXNewExpression(false, Tok.getLocation());
1206 
1207   case tok::kw_delete: // [C++] delete-expression
1208     return ParseCXXDeleteExpression(false, Tok.getLocation());
1209 
1210   case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1211     Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1212     SourceLocation KeyLoc = ConsumeToken();
1213     BalancedDelimiterTracker T(*this, tok::l_paren);
1214 
1215     if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1216       return ExprError();
1217     // C++11 [expr.unary.noexcept]p1:
1218     //   The noexcept operator determines whether the evaluation of its operand,
1219     //   which is an unevaluated operand, can throw an exception.
1220     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1221     ExprResult Result = ParseExpression();
1222 
1223     T.consumeClose();
1224 
1225     if (!Result.isInvalid())
1226       Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
1227                                          Result.get(), T.getCloseLocation());
1228     return Result;
1229   }
1230 
1231 #define TYPE_TRAIT(N,Spelling,K) \
1232   case tok::kw_##Spelling:
1233 #include "clang/Basic/TokenKinds.def"
1234     return ParseTypeTrait();
1235 
1236   case tok::kw___array_rank:
1237   case tok::kw___array_extent:
1238     return ParseArrayTypeTrait();
1239 
1240   case tok::kw___is_lvalue_expr:
1241   case tok::kw___is_rvalue_expr:
1242     return ParseExpressionTrait();
1243 
1244   case tok::at: {
1245     SourceLocation AtLoc = ConsumeToken();
1246     return ParseObjCAtExpression(AtLoc);
1247   }
1248   case tok::caret:
1249     Res = ParseBlockLiteralExpression();
1250     break;
1251   case tok::code_completion: {
1252     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
1253     cutOffParsing();
1254     return ExprError();
1255   }
1256   case tok::l_square:
1257     if (getLangOpts().CPlusPlus11) {
1258       if (getLangOpts().ObjC1) {
1259         // C++11 lambda expressions and Objective-C message sends both start with a
1260         // square bracket.  There are three possibilities here:
1261         // we have a valid lambda expression, we have an invalid lambda
1262         // expression, or we have something that doesn't appear to be a lambda.
1263         // If we're in the last case, we fall back to ParseObjCMessageExpression.
1264         Res = TryParseLambdaExpression();
1265         if (!Res.isInvalid() && !Res.get())
1266           Res = ParseObjCMessageExpression();
1267         break;
1268       }
1269       Res = ParseLambdaExpression();
1270       break;
1271     }
1272     if (getLangOpts().ObjC1) {
1273       Res = ParseObjCMessageExpression();
1274       break;
1275     }
1276     // FALL THROUGH.
1277   default:
1278     NotCastExpr = true;
1279     return ExprError();
1280   }
1281 
1282   // These can be followed by postfix-expr pieces.
1283   return ParsePostfixExpressionSuffix(Res);
1284 }
1285 
1286 /// \brief Once the leading part of a postfix-expression is parsed, this
1287 /// method parses any suffixes that apply.
1288 ///
1289 /// \verbatim
1290 ///       postfix-expression: [C99 6.5.2]
1291 ///         primary-expression
1292 ///         postfix-expression '[' expression ']'
1293 ///         postfix-expression '[' braced-init-list ']'
1294 ///         postfix-expression '(' argument-expression-list[opt] ')'
1295 ///         postfix-expression '.' identifier
1296 ///         postfix-expression '->' identifier
1297 ///         postfix-expression '++'
1298 ///         postfix-expression '--'
1299 ///         '(' type-name ')' '{' initializer-list '}'
1300 ///         '(' type-name ')' '{' initializer-list ',' '}'
1301 ///
1302 ///       argument-expression-list: [C99 6.5.2]
1303 ///         argument-expression ...[opt]
1304 ///         argument-expression-list ',' assignment-expression ...[opt]
1305 /// \endverbatim
1306 ExprResult
ParsePostfixExpressionSuffix(ExprResult LHS)1307 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1308   // Now that the primary-expression piece of the postfix-expression has been
1309   // parsed, see if there are any postfix-expression pieces here.
1310   SourceLocation Loc;
1311   while (1) {
1312     switch (Tok.getKind()) {
1313     case tok::code_completion:
1314       if (InMessageExpression)
1315         return LHS;
1316 
1317       Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
1318       cutOffParsing();
1319       return ExprError();
1320 
1321     case tok::identifier:
1322       // If we see identifier: after an expression, and we're not already in a
1323       // message send, then this is probably a message send with a missing
1324       // opening bracket '['.
1325       if (getLangOpts().ObjC1 && !InMessageExpression &&
1326           (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1327         LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1328                                              ParsedType(), LHS.get());
1329         break;
1330       }
1331 
1332       // Fall through; this isn't a message send.
1333 
1334     default:  // Not a postfix-expression suffix.
1335       return LHS;
1336     case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
1337       // If we have a array postfix expression that starts on a new line and
1338       // Objective-C is enabled, it is highly likely that the user forgot a
1339       // semicolon after the base expression and that the array postfix-expr is
1340       // actually another message send.  In this case, do some look-ahead to see
1341       // if the contents of the square brackets are obviously not a valid
1342       // expression and recover by pretending there is no suffix.
1343       if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
1344           isSimpleObjCMessageExpression())
1345         return LHS;
1346 
1347       // Reject array indices starting with a lambda-expression. '[[' is
1348       // reserved for attributes.
1349       if (CheckProhibitedCXX11Attribute())
1350         return ExprError();
1351 
1352       BalancedDelimiterTracker T(*this, tok::l_square);
1353       T.consumeOpen();
1354       Loc = T.getOpenLocation();
1355       ExprResult Idx;
1356       if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1357         Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1358         Idx = ParseBraceInitializer();
1359       } else
1360         Idx = ParseExpression();
1361 
1362       SourceLocation RLoc = Tok.getLocation();
1363 
1364       if (!LHS.isInvalid() && !Idx.isInvalid() && Tok.is(tok::r_square)) {
1365         LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
1366                                               Idx.get(), RLoc);
1367       } else {
1368         (void)Actions.CorrectDelayedTyposInExpr(LHS);
1369         (void)Actions.CorrectDelayedTyposInExpr(Idx);
1370         LHS = ExprError();
1371         Idx = ExprError();
1372       }
1373 
1374       // Match the ']'.
1375       T.consumeClose();
1376       break;
1377     }
1378 
1379     case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
1380     case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
1381                                //   '(' argument-expression-list[opt] ')'
1382       tok::TokenKind OpKind = Tok.getKind();
1383       InMessageExpressionRAIIObject InMessage(*this, false);
1384 
1385       Expr *ExecConfig = nullptr;
1386 
1387       BalancedDelimiterTracker PT(*this, tok::l_paren);
1388 
1389       if (OpKind == tok::lesslessless) {
1390         ExprVector ExecConfigExprs;
1391         CommaLocsTy ExecConfigCommaLocs;
1392         SourceLocation OpenLoc = ConsumeToken();
1393 
1394         if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1395           (void)Actions.CorrectDelayedTyposInExpr(LHS);
1396           LHS = ExprError();
1397         }
1398 
1399         SourceLocation CloseLoc;
1400         if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
1401         } else if (LHS.isInvalid()) {
1402           SkipUntil(tok::greatergreatergreater, StopAtSemi);
1403         } else {
1404           // There was an error closing the brackets
1405           Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
1406           Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
1407           SkipUntil(tok::greatergreatergreater, StopAtSemi);
1408           LHS = ExprError();
1409         }
1410 
1411         if (!LHS.isInvalid()) {
1412           if (ExpectAndConsume(tok::l_paren))
1413             LHS = ExprError();
1414           else
1415             Loc = PrevTokLocation;
1416         }
1417 
1418         if (!LHS.isInvalid()) {
1419           ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
1420                                     OpenLoc,
1421                                     ExecConfigExprs,
1422                                     CloseLoc);
1423           if (ECResult.isInvalid())
1424             LHS = ExprError();
1425           else
1426             ExecConfig = ECResult.get();
1427         }
1428       } else {
1429         PT.consumeOpen();
1430         Loc = PT.getOpenLocation();
1431       }
1432 
1433       ExprVector ArgExprs;
1434       CommaLocsTy CommaLocs;
1435 
1436       if (Tok.is(tok::code_completion)) {
1437         Actions.CodeCompleteCall(getCurScope(), LHS.get(), None);
1438         cutOffParsing();
1439         return ExprError();
1440       }
1441 
1442       if (OpKind == tok::l_paren || !LHS.isInvalid()) {
1443         if (Tok.isNot(tok::r_paren)) {
1444           if (ParseExpressionList(ArgExprs, CommaLocs, &Sema::CodeCompleteCall,
1445                                   LHS.get())) {
1446             (void)Actions.CorrectDelayedTyposInExpr(LHS);
1447             LHS = ExprError();
1448           }
1449         }
1450       }
1451 
1452       // Match the ')'.
1453       if (LHS.isInvalid()) {
1454         SkipUntil(tok::r_paren, StopAtSemi);
1455       } else if (Tok.isNot(tok::r_paren)) {
1456         PT.consumeClose();
1457         LHS = ExprError();
1458       } else {
1459         assert((ArgExprs.size() == 0 ||
1460                 ArgExprs.size()-1 == CommaLocs.size())&&
1461                "Unexpected number of commas!");
1462         LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc,
1463                                     ArgExprs, Tok.getLocation(),
1464                                     ExecConfig);
1465         PT.consumeClose();
1466       }
1467 
1468       break;
1469     }
1470     case tok::arrow:
1471     case tok::period: {
1472       // postfix-expression: p-e '->' template[opt] id-expression
1473       // postfix-expression: p-e '.' template[opt] id-expression
1474       tok::TokenKind OpKind = Tok.getKind();
1475       SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
1476 
1477       CXXScopeSpec SS;
1478       ParsedType ObjectType;
1479       bool MayBePseudoDestructor = false;
1480       if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
1481         Expr *Base = LHS.get();
1482         const Type* BaseType = Base->getType().getTypePtrOrNull();
1483         if (BaseType && Tok.is(tok::l_paren) &&
1484             (BaseType->isFunctionType() ||
1485              BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
1486           Diag(OpLoc, diag::err_function_is_not_record)
1487               << OpKind << Base->getSourceRange()
1488               << FixItHint::CreateRemoval(OpLoc);
1489           return ParsePostfixExpressionSuffix(Base);
1490         }
1491 
1492         LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
1493                                                    OpLoc, OpKind, ObjectType,
1494                                                    MayBePseudoDestructor);
1495         if (LHS.isInvalid())
1496           break;
1497 
1498         ParseOptionalCXXScopeSpecifier(SS, ObjectType,
1499                                        /*EnteringContext=*/false,
1500                                        &MayBePseudoDestructor);
1501         if (SS.isNotEmpty())
1502           ObjectType = ParsedType();
1503       }
1504 
1505       if (Tok.is(tok::code_completion)) {
1506         // Code completion for a member access expression.
1507         Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(),
1508                                                 OpLoc, OpKind == tok::arrow);
1509 
1510         cutOffParsing();
1511         return ExprError();
1512       }
1513 
1514       if (MayBePseudoDestructor && !LHS.isInvalid()) {
1515         LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
1516                                        ObjectType);
1517         break;
1518       }
1519 
1520       // Either the action has told is that this cannot be a
1521       // pseudo-destructor expression (based on the type of base
1522       // expression), or we didn't see a '~' in the right place. We
1523       // can still parse a destructor name here, but in that case it
1524       // names a real destructor.
1525       // Allow explicit constructor calls in Microsoft mode.
1526       // FIXME: Add support for explicit call of template constructor.
1527       SourceLocation TemplateKWLoc;
1528       UnqualifiedId Name;
1529       if (getLangOpts().ObjC2 && OpKind == tok::period && Tok.is(tok::kw_class)) {
1530         // Objective-C++:
1531         //   After a '.' in a member access expression, treat the keyword
1532         //   'class' as if it were an identifier.
1533         //
1534         // This hack allows property access to the 'class' method because it is
1535         // such a common method name. For other C++ keywords that are
1536         // Objective-C method names, one must use the message send syntax.
1537         IdentifierInfo *Id = Tok.getIdentifierInfo();
1538         SourceLocation Loc = ConsumeToken();
1539         Name.setIdentifier(Id, Loc);
1540       } else if (ParseUnqualifiedId(SS,
1541                                     /*EnteringContext=*/false,
1542                                     /*AllowDestructorName=*/true,
1543                                     /*AllowConstructorName=*/
1544                                       getLangOpts().MicrosoftExt,
1545                                     ObjectType, TemplateKWLoc, Name)) {
1546         (void)Actions.CorrectDelayedTyposInExpr(LHS);
1547         LHS = ExprError();
1548       }
1549 
1550       if (!LHS.isInvalid())
1551         LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
1552                                             OpKind, SS, TemplateKWLoc, Name,
1553                                  CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
1554                                                    : nullptr,
1555                                             Tok.is(tok::l_paren));
1556       break;
1557     }
1558     case tok::plusplus:    // postfix-expression: postfix-expression '++'
1559     case tok::minusminus:  // postfix-expression: postfix-expression '--'
1560       if (!LHS.isInvalid()) {
1561         LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
1562                                           Tok.getKind(), LHS.get());
1563       }
1564       ConsumeToken();
1565       break;
1566     }
1567   }
1568 }
1569 
1570 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
1571 /// vec_step and we are at the start of an expression or a parenthesized
1572 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
1573 /// expression (isCastExpr == false) or the type (isCastExpr == true).
1574 ///
1575 /// \verbatim
1576 ///       unary-expression:  [C99 6.5.3]
1577 ///         'sizeof' unary-expression
1578 ///         'sizeof' '(' type-name ')'
1579 /// [GNU]   '__alignof' unary-expression
1580 /// [GNU]   '__alignof' '(' type-name ')'
1581 /// [C11]   '_Alignof' '(' type-name ')'
1582 /// [C++0x] 'alignof' '(' type-id ')'
1583 ///
1584 /// [GNU]   typeof-specifier:
1585 ///           typeof ( expressions )
1586 ///           typeof ( type-name )
1587 /// [GNU/C++] typeof unary-expression
1588 ///
1589 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
1590 ///           vec_step ( expressions )
1591 ///           vec_step ( type-name )
1592 /// \endverbatim
1593 ExprResult
ParseExprAfterUnaryExprOrTypeTrait(const Token & OpTok,bool & isCastExpr,ParsedType & CastTy,SourceRange & CastRange)1594 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
1595                                            bool &isCastExpr,
1596                                            ParsedType &CastTy,
1597                                            SourceRange &CastRange) {
1598 
1599   assert((OpTok.is(tok::kw_typeof)    || OpTok.is(tok::kw_sizeof) ||
1600           OpTok.is(tok::kw___alignof) || OpTok.is(tok::kw_alignof) ||
1601           OpTok.is(tok::kw__Alignof)  || OpTok.is(tok::kw_vec_step)) &&
1602           "Not a typeof/sizeof/alignof/vec_step expression!");
1603 
1604   ExprResult Operand;
1605 
1606   // If the operand doesn't start with an '(', it must be an expression.
1607   if (Tok.isNot(tok::l_paren)) {
1608     // If construct allows a form without parenthesis, user may forget to put
1609     // pathenthesis around type name.
1610     if (OpTok.is(tok::kw_sizeof)  || OpTok.is(tok::kw___alignof) ||
1611         OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof)) {
1612       if (isTypeIdUnambiguously()) {
1613         DeclSpec DS(AttrFactory);
1614         ParseSpecifierQualifierList(DS);
1615         Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1616         ParseDeclarator(DeclaratorInfo);
1617 
1618         SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
1619         SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
1620         Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
1621           << OpTok.getName()
1622           << FixItHint::CreateInsertion(LParenLoc, "(")
1623           << FixItHint::CreateInsertion(RParenLoc, ")");
1624         isCastExpr = true;
1625         return ExprEmpty();
1626       }
1627     }
1628 
1629     isCastExpr = false;
1630     if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
1631       Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
1632                                           << tok::l_paren;
1633       return ExprError();
1634     }
1635 
1636     Operand = ParseCastExpression(true/*isUnaryExpression*/);
1637   } else {
1638     // If it starts with a '(', we know that it is either a parenthesized
1639     // type-name, or it is a unary-expression that starts with a compound
1640     // literal, or starts with a primary-expression that is a parenthesized
1641     // expression.
1642     ParenParseOption ExprType = CastExpr;
1643     SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
1644 
1645     Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
1646                                    false, CastTy, RParenLoc);
1647     CastRange = SourceRange(LParenLoc, RParenLoc);
1648 
1649     // If ParseParenExpression parsed a '(typename)' sequence only, then this is
1650     // a type.
1651     if (ExprType == CastExpr) {
1652       isCastExpr = true;
1653       return ExprEmpty();
1654     }
1655 
1656     if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
1657       // GNU typeof in C requires the expression to be parenthesized. Not so for
1658       // sizeof/alignof or in C++. Therefore, the parenthesized expression is
1659       // the start of a unary-expression, but doesn't include any postfix
1660       // pieces. Parse these now if present.
1661       if (!Operand.isInvalid())
1662         Operand = ParsePostfixExpressionSuffix(Operand.get());
1663     }
1664   }
1665 
1666   // If we get here, the operand to the typeof/sizeof/alignof was an expresion.
1667   isCastExpr = false;
1668   return Operand;
1669 }
1670 
1671 
1672 /// \brief Parse a sizeof or alignof expression.
1673 ///
1674 /// \verbatim
1675 ///       unary-expression:  [C99 6.5.3]
1676 ///         'sizeof' unary-expression
1677 ///         'sizeof' '(' type-name ')'
1678 /// [C++11] 'sizeof' '...' '(' identifier ')'
1679 /// [GNU]   '__alignof' unary-expression
1680 /// [GNU]   '__alignof' '(' type-name ')'
1681 /// [C11]   '_Alignof' '(' type-name ')'
1682 /// [C++11] 'alignof' '(' type-id ')'
1683 /// \endverbatim
ParseUnaryExprOrTypeTraitExpression()1684 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
1685   assert((Tok.is(tok::kw_sizeof) || Tok.is(tok::kw___alignof) ||
1686           Tok.is(tok::kw_alignof) || Tok.is(tok::kw__Alignof) ||
1687           Tok.is(tok::kw_vec_step)) &&
1688          "Not a sizeof/alignof/vec_step expression!");
1689   Token OpTok = Tok;
1690   ConsumeToken();
1691 
1692   // [C++11] 'sizeof' '...' '(' identifier ')'
1693   if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
1694     SourceLocation EllipsisLoc = ConsumeToken();
1695     SourceLocation LParenLoc, RParenLoc;
1696     IdentifierInfo *Name = nullptr;
1697     SourceLocation NameLoc;
1698     if (Tok.is(tok::l_paren)) {
1699       BalancedDelimiterTracker T(*this, tok::l_paren);
1700       T.consumeOpen();
1701       LParenLoc = T.getOpenLocation();
1702       if (Tok.is(tok::identifier)) {
1703         Name = Tok.getIdentifierInfo();
1704         NameLoc = ConsumeToken();
1705         T.consumeClose();
1706         RParenLoc = T.getCloseLocation();
1707         if (RParenLoc.isInvalid())
1708           RParenLoc = PP.getLocForEndOfToken(NameLoc);
1709       } else {
1710         Diag(Tok, diag::err_expected_parameter_pack);
1711         SkipUntil(tok::r_paren, StopAtSemi);
1712       }
1713     } else if (Tok.is(tok::identifier)) {
1714       Name = Tok.getIdentifierInfo();
1715       NameLoc = ConsumeToken();
1716       LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
1717       RParenLoc = PP.getLocForEndOfToken(NameLoc);
1718       Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
1719         << Name
1720         << FixItHint::CreateInsertion(LParenLoc, "(")
1721         << FixItHint::CreateInsertion(RParenLoc, ")");
1722     } else {
1723       Diag(Tok, diag::err_sizeof_parameter_pack);
1724     }
1725 
1726     if (!Name)
1727       return ExprError();
1728 
1729     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1730                                                  Sema::ReuseLambdaContextDecl);
1731 
1732     return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
1733                                                 OpTok.getLocation(),
1734                                                 *Name, NameLoc,
1735                                                 RParenLoc);
1736   }
1737 
1738   if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1739     Diag(OpTok, diag::warn_cxx98_compat_alignof);
1740 
1741   EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1742                                                Sema::ReuseLambdaContextDecl);
1743 
1744   bool isCastExpr;
1745   ParsedType CastTy;
1746   SourceRange CastRange;
1747   ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
1748                                                           isCastExpr,
1749                                                           CastTy,
1750                                                           CastRange);
1751 
1752   UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
1753   if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw___alignof) ||
1754       OpTok.is(tok::kw__Alignof))
1755     ExprKind = UETT_AlignOf;
1756   else if (OpTok.is(tok::kw_vec_step))
1757     ExprKind = UETT_VecStep;
1758 
1759   if (isCastExpr)
1760     return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1761                                                  ExprKind,
1762                                                  /*isType=*/true,
1763                                                  CastTy.getAsOpaquePtr(),
1764                                                  CastRange);
1765 
1766   if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1767     Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
1768 
1769   // If we get here, the operand to the sizeof/alignof was an expresion.
1770   if (!Operand.isInvalid())
1771     Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1772                                                     ExprKind,
1773                                                     /*isType=*/false,
1774                                                     Operand.get(),
1775                                                     CastRange);
1776   return Operand;
1777 }
1778 
1779 /// ParseBuiltinPrimaryExpression
1780 ///
1781 /// \verbatim
1782 ///       primary-expression: [C99 6.5.1]
1783 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
1784 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
1785 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
1786 ///                                     assign-expr ')'
1787 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
1788 /// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
1789 ///
1790 /// [GNU] offsetof-member-designator:
1791 /// [GNU]   identifier
1792 /// [GNU]   offsetof-member-designator '.' identifier
1793 /// [GNU]   offsetof-member-designator '[' expression ']'
1794 /// \endverbatim
ParseBuiltinPrimaryExpression()1795 ExprResult Parser::ParseBuiltinPrimaryExpression() {
1796   ExprResult Res;
1797   const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
1798 
1799   tok::TokenKind T = Tok.getKind();
1800   SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
1801 
1802   // All of these start with an open paren.
1803   if (Tok.isNot(tok::l_paren))
1804     return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
1805                                                          << tok::l_paren);
1806 
1807   BalancedDelimiterTracker PT(*this, tok::l_paren);
1808   PT.consumeOpen();
1809 
1810   // TODO: Build AST.
1811 
1812   switch (T) {
1813   default: llvm_unreachable("Not a builtin primary expression!");
1814   case tok::kw___builtin_va_arg: {
1815     ExprResult Expr(ParseAssignmentExpression());
1816 
1817     if (ExpectAndConsume(tok::comma)) {
1818       SkipUntil(tok::r_paren, StopAtSemi);
1819       Expr = ExprError();
1820     }
1821 
1822     TypeResult Ty = ParseTypeName();
1823 
1824     if (Tok.isNot(tok::r_paren)) {
1825       Diag(Tok, diag::err_expected) << tok::r_paren;
1826       Expr = ExprError();
1827     }
1828 
1829     if (Expr.isInvalid() || Ty.isInvalid())
1830       Res = ExprError();
1831     else
1832       Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
1833     break;
1834   }
1835   case tok::kw___builtin_offsetof: {
1836     SourceLocation TypeLoc = Tok.getLocation();
1837     TypeResult Ty = ParseTypeName();
1838     if (Ty.isInvalid()) {
1839       SkipUntil(tok::r_paren, StopAtSemi);
1840       return ExprError();
1841     }
1842 
1843     if (ExpectAndConsume(tok::comma)) {
1844       SkipUntil(tok::r_paren, StopAtSemi);
1845       return ExprError();
1846     }
1847 
1848     // We must have at least one identifier here.
1849     if (Tok.isNot(tok::identifier)) {
1850       Diag(Tok, diag::err_expected) << tok::identifier;
1851       SkipUntil(tok::r_paren, StopAtSemi);
1852       return ExprError();
1853     }
1854 
1855     // Keep track of the various subcomponents we see.
1856     SmallVector<Sema::OffsetOfComponent, 4> Comps;
1857 
1858     Comps.push_back(Sema::OffsetOfComponent());
1859     Comps.back().isBrackets = false;
1860     Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1861     Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
1862 
1863     // FIXME: This loop leaks the index expressions on error.
1864     while (1) {
1865       if (Tok.is(tok::period)) {
1866         // offsetof-member-designator: offsetof-member-designator '.' identifier
1867         Comps.push_back(Sema::OffsetOfComponent());
1868         Comps.back().isBrackets = false;
1869         Comps.back().LocStart = ConsumeToken();
1870 
1871         if (Tok.isNot(tok::identifier)) {
1872           Diag(Tok, diag::err_expected) << tok::identifier;
1873           SkipUntil(tok::r_paren, StopAtSemi);
1874           return ExprError();
1875         }
1876         Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1877         Comps.back().LocEnd = ConsumeToken();
1878 
1879       } else if (Tok.is(tok::l_square)) {
1880         if (CheckProhibitedCXX11Attribute())
1881           return ExprError();
1882 
1883         // offsetof-member-designator: offsetof-member-design '[' expression ']'
1884         Comps.push_back(Sema::OffsetOfComponent());
1885         Comps.back().isBrackets = true;
1886         BalancedDelimiterTracker ST(*this, tok::l_square);
1887         ST.consumeOpen();
1888         Comps.back().LocStart = ST.getOpenLocation();
1889         Res = ParseExpression();
1890         if (Res.isInvalid()) {
1891           SkipUntil(tok::r_paren, StopAtSemi);
1892           return Res;
1893         }
1894         Comps.back().U.E = Res.get();
1895 
1896         ST.consumeClose();
1897         Comps.back().LocEnd = ST.getCloseLocation();
1898       } else {
1899         if (Tok.isNot(tok::r_paren)) {
1900           PT.consumeClose();
1901           Res = ExprError();
1902         } else if (Ty.isInvalid()) {
1903           Res = ExprError();
1904         } else {
1905           PT.consumeClose();
1906           Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
1907                                              Ty.get(), &Comps[0], Comps.size(),
1908                                              PT.getCloseLocation());
1909         }
1910         break;
1911       }
1912     }
1913     break;
1914   }
1915   case tok::kw___builtin_choose_expr: {
1916     ExprResult Cond(ParseAssignmentExpression());
1917     if (Cond.isInvalid()) {
1918       SkipUntil(tok::r_paren, StopAtSemi);
1919       return Cond;
1920     }
1921     if (ExpectAndConsume(tok::comma)) {
1922       SkipUntil(tok::r_paren, StopAtSemi);
1923       return ExprError();
1924     }
1925 
1926     ExprResult Expr1(ParseAssignmentExpression());
1927     if (Expr1.isInvalid()) {
1928       SkipUntil(tok::r_paren, StopAtSemi);
1929       return Expr1;
1930     }
1931     if (ExpectAndConsume(tok::comma)) {
1932       SkipUntil(tok::r_paren, StopAtSemi);
1933       return ExprError();
1934     }
1935 
1936     ExprResult Expr2(ParseAssignmentExpression());
1937     if (Expr2.isInvalid()) {
1938       SkipUntil(tok::r_paren, StopAtSemi);
1939       return Expr2;
1940     }
1941     if (Tok.isNot(tok::r_paren)) {
1942       Diag(Tok, diag::err_expected) << tok::r_paren;
1943       return ExprError();
1944     }
1945     Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
1946                                   Expr2.get(), ConsumeParen());
1947     break;
1948   }
1949   case tok::kw___builtin_astype: {
1950     // The first argument is an expression to be converted, followed by a comma.
1951     ExprResult Expr(ParseAssignmentExpression());
1952     if (Expr.isInvalid()) {
1953       SkipUntil(tok::r_paren, StopAtSemi);
1954       return ExprError();
1955     }
1956 
1957     if (ExpectAndConsume(tok::comma)) {
1958       SkipUntil(tok::r_paren, StopAtSemi);
1959       return ExprError();
1960     }
1961 
1962     // Second argument is the type to bitcast to.
1963     TypeResult DestTy = ParseTypeName();
1964     if (DestTy.isInvalid())
1965       return ExprError();
1966 
1967     // Attempt to consume the r-paren.
1968     if (Tok.isNot(tok::r_paren)) {
1969       Diag(Tok, diag::err_expected) << tok::r_paren;
1970       SkipUntil(tok::r_paren, StopAtSemi);
1971       return ExprError();
1972     }
1973 
1974     Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
1975                                   ConsumeParen());
1976     break;
1977   }
1978   case tok::kw___builtin_convertvector: {
1979     // The first argument is an expression to be converted, followed by a comma.
1980     ExprResult Expr(ParseAssignmentExpression());
1981     if (Expr.isInvalid()) {
1982       SkipUntil(tok::r_paren, StopAtSemi);
1983       return ExprError();
1984     }
1985 
1986     if (ExpectAndConsume(tok::comma)) {
1987       SkipUntil(tok::r_paren, StopAtSemi);
1988       return ExprError();
1989     }
1990 
1991     // Second argument is the type to bitcast to.
1992     TypeResult DestTy = ParseTypeName();
1993     if (DestTy.isInvalid())
1994       return ExprError();
1995 
1996     // Attempt to consume the r-paren.
1997     if (Tok.isNot(tok::r_paren)) {
1998       Diag(Tok, diag::err_expected) << tok::r_paren;
1999       SkipUntil(tok::r_paren, StopAtSemi);
2000       return ExprError();
2001     }
2002 
2003     Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2004                                          ConsumeParen());
2005     break;
2006   }
2007   }
2008 
2009   if (Res.isInvalid())
2010     return ExprError();
2011 
2012   // These can be followed by postfix-expr pieces because they are
2013   // primary-expressions.
2014   return ParsePostfixExpressionSuffix(Res.get());
2015 }
2016 
2017 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2018 /// based on what is allowed by ExprType.  The actual thing parsed is returned
2019 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2020 /// not the parsed cast-expression.
2021 ///
2022 /// \verbatim
2023 ///       primary-expression: [C99 6.5.1]
2024 ///         '(' expression ')'
2025 /// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
2026 ///       postfix-expression: [C99 6.5.2]
2027 ///         '(' type-name ')' '{' initializer-list '}'
2028 ///         '(' type-name ')' '{' initializer-list ',' '}'
2029 ///       cast-expression: [C99 6.5.4]
2030 ///         '(' type-name ')' cast-expression
2031 /// [ARC]   bridged-cast-expression
2032 /// [ARC] bridged-cast-expression:
2033 ///         (__bridge type-name) cast-expression
2034 ///         (__bridge_transfer type-name) cast-expression
2035 ///         (__bridge_retained type-name) cast-expression
2036 ///       fold-expression: [C++1z]
2037 ///         '(' cast-expression fold-operator '...' ')'
2038 ///         '(' '...' fold-operator cast-expression ')'
2039 ///         '(' cast-expression fold-operator '...'
2040 ///                 fold-operator cast-expression ')'
2041 /// \endverbatim
2042 ExprResult
ParseParenExpression(ParenParseOption & ExprType,bool stopIfCastExpr,bool isTypeCast,ParsedType & CastTy,SourceLocation & RParenLoc)2043 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2044                              bool isTypeCast, ParsedType &CastTy,
2045                              SourceLocation &RParenLoc) {
2046   assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2047   ColonProtectionRAIIObject ColonProtection(*this, false);
2048   BalancedDelimiterTracker T(*this, tok::l_paren);
2049   if (T.consumeOpen())
2050     return ExprError();
2051   SourceLocation OpenLoc = T.getOpenLocation();
2052 
2053   ExprResult Result(true);
2054   bool isAmbiguousTypeId;
2055   CastTy = ParsedType();
2056 
2057   if (Tok.is(tok::code_completion)) {
2058     Actions.CodeCompleteOrdinaryName(getCurScope(),
2059                  ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
2060                                             : Sema::PCC_Expression);
2061     cutOffParsing();
2062     return ExprError();
2063   }
2064 
2065   // Diagnose use of bridge casts in non-arc mode.
2066   bool BridgeCast = (getLangOpts().ObjC2 &&
2067                      (Tok.is(tok::kw___bridge) ||
2068                       Tok.is(tok::kw___bridge_transfer) ||
2069                       Tok.is(tok::kw___bridge_retained) ||
2070                       Tok.is(tok::kw___bridge_retain)));
2071   if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2072     if (!TryConsumeToken(tok::kw___bridge)) {
2073       StringRef BridgeCastName = Tok.getName();
2074       SourceLocation BridgeKeywordLoc = ConsumeToken();
2075       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2076         Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2077           << BridgeCastName
2078           << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2079     }
2080     BridgeCast = false;
2081   }
2082 
2083   // None of these cases should fall through with an invalid Result
2084   // unless they've already reported an error.
2085   if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2086     Diag(Tok, diag::ext_gnu_statement_expr);
2087 
2088     if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
2089       Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
2090     } else {
2091       Actions.ActOnStartStmtExpr();
2092 
2093       StmtResult Stmt(ParseCompoundStatement(true));
2094       ExprType = CompoundStmt;
2095 
2096       // If the substmt parsed correctly, build the AST node.
2097       if (!Stmt.isInvalid()) {
2098         Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation());
2099       } else {
2100         Actions.ActOnStmtExprError();
2101       }
2102     }
2103   } else if (ExprType >= CompoundLiteral && BridgeCast) {
2104     tok::TokenKind tokenKind = Tok.getKind();
2105     SourceLocation BridgeKeywordLoc = ConsumeToken();
2106 
2107     // Parse an Objective-C ARC ownership cast expression.
2108     ObjCBridgeCastKind Kind;
2109     if (tokenKind == tok::kw___bridge)
2110       Kind = OBC_Bridge;
2111     else if (tokenKind == tok::kw___bridge_transfer)
2112       Kind = OBC_BridgeTransfer;
2113     else if (tokenKind == tok::kw___bridge_retained)
2114       Kind = OBC_BridgeRetained;
2115     else {
2116       // As a hopefully temporary workaround, allow __bridge_retain as
2117       // a synonym for __bridge_retained, but only in system headers.
2118       assert(tokenKind == tok::kw___bridge_retain);
2119       Kind = OBC_BridgeRetained;
2120       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2121         Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2122           << FixItHint::CreateReplacement(BridgeKeywordLoc,
2123                                           "__bridge_retained");
2124     }
2125 
2126     TypeResult Ty = ParseTypeName();
2127     T.consumeClose();
2128     ColonProtection.restore();
2129     RParenLoc = T.getCloseLocation();
2130     ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
2131 
2132     if (Ty.isInvalid() || SubExpr.isInvalid())
2133       return ExprError();
2134 
2135     return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2136                                         BridgeKeywordLoc, Ty.get(),
2137                                         RParenLoc, SubExpr.get());
2138   } else if (ExprType >= CompoundLiteral &&
2139              isTypeIdInParens(isAmbiguousTypeId)) {
2140 
2141     // Otherwise, this is a compound literal expression or cast expression.
2142 
2143     // In C++, if the type-id is ambiguous we disambiguate based on context.
2144     // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2145     // in which case we should treat it as type-id.
2146     // if stopIfCastExpr is false, we need to determine the context past the
2147     // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2148     if (isAmbiguousTypeId && !stopIfCastExpr) {
2149       ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
2150                                                         ColonProtection);
2151       RParenLoc = T.getCloseLocation();
2152       return res;
2153     }
2154 
2155     // Parse the type declarator.
2156     DeclSpec DS(AttrFactory);
2157     ParseSpecifierQualifierList(DS);
2158     Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2159     ParseDeclarator(DeclaratorInfo);
2160 
2161     // If our type is followed by an identifier and either ':' or ']', then
2162     // this is probably an Objective-C message send where the leading '[' is
2163     // missing. Recover as if that were the case.
2164     if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2165         !InMessageExpression && getLangOpts().ObjC1 &&
2166         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2167       TypeResult Ty;
2168       {
2169         InMessageExpressionRAIIObject InMessage(*this, false);
2170         Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2171       }
2172       Result = ParseObjCMessageExpressionBody(SourceLocation(),
2173                                               SourceLocation(),
2174                                               Ty.get(), nullptr);
2175     } else {
2176       // Match the ')'.
2177       T.consumeClose();
2178       ColonProtection.restore();
2179       RParenLoc = T.getCloseLocation();
2180       if (Tok.is(tok::l_brace)) {
2181         ExprType = CompoundLiteral;
2182         TypeResult Ty;
2183         {
2184           InMessageExpressionRAIIObject InMessage(*this, false);
2185           Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2186         }
2187         return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2188       }
2189 
2190       if (ExprType == CastExpr) {
2191         // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2192 
2193         if (DeclaratorInfo.isInvalidType())
2194           return ExprError();
2195 
2196         // Note that this doesn't parse the subsequent cast-expression, it just
2197         // returns the parsed type to the callee.
2198         if (stopIfCastExpr) {
2199           TypeResult Ty;
2200           {
2201             InMessageExpressionRAIIObject InMessage(*this, false);
2202             Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2203           }
2204           CastTy = Ty.get();
2205           return ExprResult();
2206         }
2207 
2208         // Reject the cast of super idiom in ObjC.
2209         if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
2210             Tok.getIdentifierInfo() == Ident_super &&
2211             getCurScope()->isInObjcMethodScope() &&
2212             GetLookAheadToken(1).isNot(tok::period)) {
2213           Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2214             << SourceRange(OpenLoc, RParenLoc);
2215           return ExprError();
2216         }
2217 
2218         // Parse the cast-expression that follows it next.
2219         // TODO: For cast expression with CastTy.
2220         Result = ParseCastExpression(/*isUnaryExpression=*/false,
2221                                      /*isAddressOfOperand=*/false,
2222                                      /*isTypeCast=*/IsTypeCast);
2223         if (!Result.isInvalid()) {
2224           Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2225                                          DeclaratorInfo, CastTy,
2226                                          RParenLoc, Result.get());
2227         }
2228         return Result;
2229       }
2230 
2231       Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
2232       return ExprError();
2233     }
2234   } else if (Tok.is(tok::ellipsis) &&
2235              isFoldOperator(NextToken().getKind())) {
2236     return ParseFoldExpression(ExprResult(), T);
2237   } else if (isTypeCast) {
2238     // Parse the expression-list.
2239     InMessageExpressionRAIIObject InMessage(*this, false);
2240 
2241     ExprVector ArgExprs;
2242     CommaLocsTy CommaLocs;
2243 
2244     if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
2245       // FIXME: If we ever support comma expressions as operands to
2246       // fold-expressions, we'll need to allow multiple ArgExprs here.
2247       if (ArgExprs.size() == 1 && isFoldOperator(Tok.getKind()) &&
2248           NextToken().is(tok::ellipsis))
2249         return ParseFoldExpression(Result, T);
2250 
2251       ExprType = SimpleExpr;
2252       Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
2253                                           ArgExprs);
2254     }
2255   } else {
2256     InMessageExpressionRAIIObject InMessage(*this, false);
2257 
2258     Result = ParseExpression(MaybeTypeCast);
2259     ExprType = SimpleExpr;
2260 
2261     if (isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis))
2262       return ParseFoldExpression(Result, T);
2263 
2264     // Don't build a paren expression unless we actually match a ')'.
2265     if (!Result.isInvalid() && Tok.is(tok::r_paren))
2266       Result =
2267           Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
2268   }
2269 
2270   // Match the ')'.
2271   if (Result.isInvalid()) {
2272     SkipUntil(tok::r_paren, StopAtSemi);
2273     return ExprError();
2274   }
2275 
2276   T.consumeClose();
2277   RParenLoc = T.getCloseLocation();
2278   return Result;
2279 }
2280 
2281 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
2282 /// and we are at the left brace.
2283 ///
2284 /// \verbatim
2285 ///       postfix-expression: [C99 6.5.2]
2286 ///         '(' type-name ')' '{' initializer-list '}'
2287 ///         '(' type-name ')' '{' initializer-list ',' '}'
2288 /// \endverbatim
2289 ExprResult
ParseCompoundLiteralExpression(ParsedType Ty,SourceLocation LParenLoc,SourceLocation RParenLoc)2290 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
2291                                        SourceLocation LParenLoc,
2292                                        SourceLocation RParenLoc) {
2293   assert(Tok.is(tok::l_brace) && "Not a compound literal!");
2294   if (!getLangOpts().C99)   // Compound literals don't exist in C90.
2295     Diag(LParenLoc, diag::ext_c99_compound_literal);
2296   ExprResult Result = ParseInitializer();
2297   if (!Result.isInvalid() && Ty)
2298     return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
2299   return Result;
2300 }
2301 
2302 /// ParseStringLiteralExpression - This handles the various token types that
2303 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
2304 /// translation phase #6].
2305 ///
2306 /// \verbatim
2307 ///       primary-expression: [C99 6.5.1]
2308 ///         string-literal
2309 /// \verbatim
ParseStringLiteralExpression(bool AllowUserDefinedLiteral)2310 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
2311   assert(isTokenStringLiteral() && "Not a string literal!");
2312 
2313   // String concat.  Note that keywords like __func__ and __FUNCTION__ are not
2314   // considered to be strings for concatenation purposes.
2315   SmallVector<Token, 4> StringToks;
2316 
2317   do {
2318     StringToks.push_back(Tok);
2319     ConsumeStringToken();
2320   } while (isTokenStringLiteral());
2321 
2322   // Pass the set of string tokens, ready for concatenation, to the actions.
2323   return Actions.ActOnStringLiteral(StringToks,
2324                                     AllowUserDefinedLiteral ? getCurScope()
2325                                                             : nullptr);
2326 }
2327 
2328 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
2329 /// [C11 6.5.1.1].
2330 ///
2331 /// \verbatim
2332 ///    generic-selection:
2333 ///           _Generic ( assignment-expression , generic-assoc-list )
2334 ///    generic-assoc-list:
2335 ///           generic-association
2336 ///           generic-assoc-list , generic-association
2337 ///    generic-association:
2338 ///           type-name : assignment-expression
2339 ///           default : assignment-expression
2340 /// \endverbatim
ParseGenericSelectionExpression()2341 ExprResult Parser::ParseGenericSelectionExpression() {
2342   assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
2343   SourceLocation KeyLoc = ConsumeToken();
2344 
2345   if (!getLangOpts().C11)
2346     Diag(KeyLoc, diag::ext_c11_generic_selection);
2347 
2348   BalancedDelimiterTracker T(*this, tok::l_paren);
2349   if (T.expectAndConsume())
2350     return ExprError();
2351 
2352   ExprResult ControllingExpr;
2353   {
2354     // C11 6.5.1.1p3 "The controlling expression of a generic selection is
2355     // not evaluated."
2356     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
2357     ControllingExpr = ParseAssignmentExpression();
2358     if (ControllingExpr.isInvalid()) {
2359       SkipUntil(tok::r_paren, StopAtSemi);
2360       return ExprError();
2361     }
2362   }
2363 
2364   if (ExpectAndConsume(tok::comma)) {
2365     SkipUntil(tok::r_paren, StopAtSemi);
2366     return ExprError();
2367   }
2368 
2369   SourceLocation DefaultLoc;
2370   TypeVector Types;
2371   ExprVector Exprs;
2372   do {
2373     ParsedType Ty;
2374     if (Tok.is(tok::kw_default)) {
2375       // C11 6.5.1.1p2 "A generic selection shall have no more than one default
2376       // generic association."
2377       if (!DefaultLoc.isInvalid()) {
2378         Diag(Tok, diag::err_duplicate_default_assoc);
2379         Diag(DefaultLoc, diag::note_previous_default_assoc);
2380         SkipUntil(tok::r_paren, StopAtSemi);
2381         return ExprError();
2382       }
2383       DefaultLoc = ConsumeToken();
2384       Ty = ParsedType();
2385     } else {
2386       ColonProtectionRAIIObject X(*this);
2387       TypeResult TR = ParseTypeName();
2388       if (TR.isInvalid()) {
2389         SkipUntil(tok::r_paren, StopAtSemi);
2390         return ExprError();
2391       }
2392       Ty = TR.get();
2393     }
2394     Types.push_back(Ty);
2395 
2396     if (ExpectAndConsume(tok::colon)) {
2397       SkipUntil(tok::r_paren, StopAtSemi);
2398       return ExprError();
2399     }
2400 
2401     // FIXME: These expressions should be parsed in a potentially potentially
2402     // evaluated context.
2403     ExprResult ER(ParseAssignmentExpression());
2404     if (ER.isInvalid()) {
2405       SkipUntil(tok::r_paren, StopAtSemi);
2406       return ExprError();
2407     }
2408     Exprs.push_back(ER.get());
2409   } while (TryConsumeToken(tok::comma));
2410 
2411   T.consumeClose();
2412   if (T.getCloseLocation().isInvalid())
2413     return ExprError();
2414 
2415   return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
2416                                            T.getCloseLocation(),
2417                                            ControllingExpr.get(),
2418                                            Types, Exprs);
2419 }
2420 
2421 /// \brief Parse A C++1z fold-expression after the opening paren and optional
2422 /// left-hand-side expression.
2423 ///
2424 /// \verbatim
2425 ///   fold-expression:
2426 ///       ( cast-expression fold-operator ... )
2427 ///       ( ... fold-operator cast-expression )
2428 ///       ( cast-expression fold-operator ... fold-operator cast-expression )
ParseFoldExpression(ExprResult LHS,BalancedDelimiterTracker & T)2429 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
2430                                        BalancedDelimiterTracker &T) {
2431   if (LHS.isInvalid()) {
2432     T.skipToEnd();
2433     return true;
2434   }
2435 
2436   tok::TokenKind Kind = tok::unknown;
2437   SourceLocation FirstOpLoc;
2438   if (LHS.isUsable()) {
2439     Kind = Tok.getKind();
2440     assert(isFoldOperator(Kind) && "missing fold-operator");
2441     FirstOpLoc = ConsumeToken();
2442   }
2443 
2444   assert(Tok.is(tok::ellipsis) && "not a fold-expression");
2445   SourceLocation EllipsisLoc = ConsumeToken();
2446 
2447   ExprResult RHS;
2448   if (Tok.isNot(tok::r_paren)) {
2449     if (!isFoldOperator(Tok.getKind()))
2450       return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
2451 
2452     if (Kind != tok::unknown && Tok.getKind() != Kind)
2453       Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
2454         << SourceRange(FirstOpLoc);
2455     Kind = Tok.getKind();
2456     ConsumeToken();
2457 
2458     RHS = ParseExpression();
2459     if (RHS.isInvalid()) {
2460       T.skipToEnd();
2461       return true;
2462     }
2463   }
2464 
2465   Diag(EllipsisLoc, getLangOpts().CPlusPlus1z
2466                         ? diag::warn_cxx14_compat_fold_expression
2467                         : diag::ext_fold_expression);
2468 
2469   T.consumeClose();
2470   return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind,
2471                                   EllipsisLoc, RHS.get(), T.getCloseLocation());
2472 }
2473 
2474 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
2475 ///
2476 /// \verbatim
2477 ///       argument-expression-list:
2478 ///         assignment-expression
2479 ///         argument-expression-list , assignment-expression
2480 ///
2481 /// [C++] expression-list:
2482 /// [C++]   assignment-expression
2483 /// [C++]   expression-list , assignment-expression
2484 ///
2485 /// [C++0x] expression-list:
2486 /// [C++0x]   initializer-list
2487 ///
2488 /// [C++0x] initializer-list
2489 /// [C++0x]   initializer-clause ...[opt]
2490 /// [C++0x]   initializer-list , initializer-clause ...[opt]
2491 ///
2492 /// [C++0x] initializer-clause:
2493 /// [C++0x]   assignment-expression
2494 /// [C++0x]   braced-init-list
2495 /// \endverbatim
ParseExpressionList(SmallVectorImpl<Expr * > & Exprs,SmallVectorImpl<SourceLocation> & CommaLocs,void (Sema::* Completer)(Scope * S,Expr * Data,ArrayRef<Expr * > Args),Expr * Data)2496 bool Parser::ParseExpressionList(SmallVectorImpl<Expr*> &Exprs,
2497                                  SmallVectorImpl<SourceLocation> &CommaLocs,
2498                                  void (Sema::*Completer)(Scope *S,
2499                                                          Expr *Data,
2500                                                          ArrayRef<Expr *> Args),
2501                                  Expr *Data) {
2502   bool SawError = false;
2503   while (1) {
2504     if (Tok.is(tok::code_completion)) {
2505       if (Completer)
2506         (Actions.*Completer)(getCurScope(), Data, Exprs);
2507       else
2508         Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
2509       cutOffParsing();
2510       return true;
2511     }
2512 
2513     ExprResult Expr;
2514     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2515       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2516       Expr = ParseBraceInitializer();
2517     } else
2518       Expr = ParseAssignmentExpression();
2519 
2520     if (Tok.is(tok::ellipsis))
2521       Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
2522     if (Expr.isInvalid()) {
2523       SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
2524       SawError = true;
2525     } else {
2526       Exprs.push_back(Expr.get());
2527     }
2528 
2529     if (Tok.isNot(tok::comma))
2530       break;
2531     // Move to the next argument, remember where the comma was.
2532     CommaLocs.push_back(ConsumeToken());
2533   }
2534   if (SawError) {
2535     // Ensure typos get diagnosed when errors were encountered while parsing the
2536     // expression list.
2537     for (auto &E : Exprs) {
2538       ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
2539       if (Expr.isUsable()) E = Expr.get();
2540     }
2541   }
2542   return SawError;
2543 }
2544 
2545 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
2546 /// used for misc language extensions.
2547 ///
2548 /// \verbatim
2549 ///       simple-expression-list:
2550 ///         assignment-expression
2551 ///         simple-expression-list , assignment-expression
2552 /// \endverbatim
2553 bool
ParseSimpleExpressionList(SmallVectorImpl<Expr * > & Exprs,SmallVectorImpl<SourceLocation> & CommaLocs)2554 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
2555                                   SmallVectorImpl<SourceLocation> &CommaLocs) {
2556   while (1) {
2557     ExprResult Expr = ParseAssignmentExpression();
2558     if (Expr.isInvalid())
2559       return true;
2560 
2561     Exprs.push_back(Expr.get());
2562 
2563     if (Tok.isNot(tok::comma))
2564       return false;
2565 
2566     // Move to the next argument, remember where the comma was.
2567     CommaLocs.push_back(ConsumeToken());
2568   }
2569 }
2570 
2571 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
2572 ///
2573 /// \verbatim
2574 /// [clang] block-id:
2575 /// [clang]   specifier-qualifier-list block-declarator
2576 /// \endverbatim
ParseBlockId(SourceLocation CaretLoc)2577 void Parser::ParseBlockId(SourceLocation CaretLoc) {
2578   if (Tok.is(tok::code_completion)) {
2579     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
2580     return cutOffParsing();
2581   }
2582 
2583   // Parse the specifier-qualifier-list piece.
2584   DeclSpec DS(AttrFactory);
2585   ParseSpecifierQualifierList(DS);
2586 
2587   // Parse the block-declarator.
2588   Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext);
2589   ParseDeclarator(DeclaratorInfo);
2590 
2591   // We do this for: ^ __attribute__((noreturn)) {, as DS has the attributes.
2592   DeclaratorInfo.takeAttributes(DS.getAttributes(), SourceLocation());
2593 
2594   MaybeParseGNUAttributes(DeclaratorInfo);
2595 
2596   // Inform sema that we are starting a block.
2597   Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
2598 }
2599 
2600 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
2601 /// like ^(int x){ return x+1; }
2602 ///
2603 /// \verbatim
2604 ///         block-literal:
2605 /// [clang]   '^' block-args[opt] compound-statement
2606 /// [clang]   '^' block-id compound-statement
2607 /// [clang] block-args:
2608 /// [clang]   '(' parameter-list ')'
2609 /// \endverbatim
ParseBlockLiteralExpression()2610 ExprResult Parser::ParseBlockLiteralExpression() {
2611   assert(Tok.is(tok::caret) && "block literal starts with ^");
2612   SourceLocation CaretLoc = ConsumeToken();
2613 
2614   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
2615                                 "block literal parsing");
2616 
2617   // Enter a scope to hold everything within the block.  This includes the
2618   // argument decls, decls within the compound expression, etc.  This also
2619   // allows determining whether a variable reference inside the block is
2620   // within or outside of the block.
2621   ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
2622                               Scope::DeclScope);
2623 
2624   // Inform sema that we are starting a block.
2625   Actions.ActOnBlockStart(CaretLoc, getCurScope());
2626 
2627   // Parse the return type if present.
2628   DeclSpec DS(AttrFactory);
2629   Declarator ParamInfo(DS, Declarator::BlockLiteralContext);
2630   // FIXME: Since the return type isn't actually parsed, it can't be used to
2631   // fill ParamInfo with an initial valid range, so do it manually.
2632   ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
2633 
2634   // If this block has arguments, parse them.  There is no ambiguity here with
2635   // the expression case, because the expression case requires a parameter list.
2636   if (Tok.is(tok::l_paren)) {
2637     ParseParenDeclarator(ParamInfo);
2638     // Parse the pieces after the identifier as if we had "int(...)".
2639     // SetIdentifier sets the source range end, but in this case we're past
2640     // that location.
2641     SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
2642     ParamInfo.SetIdentifier(nullptr, CaretLoc);
2643     ParamInfo.SetRangeEnd(Tmp);
2644     if (ParamInfo.isInvalidType()) {
2645       // If there was an error parsing the arguments, they may have
2646       // tried to use ^(x+y) which requires an argument list.  Just
2647       // skip the whole block literal.
2648       Actions.ActOnBlockError(CaretLoc, getCurScope());
2649       return ExprError();
2650     }
2651 
2652     MaybeParseGNUAttributes(ParamInfo);
2653 
2654     // Inform sema that we are starting a block.
2655     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2656   } else if (!Tok.is(tok::l_brace)) {
2657     ParseBlockId(CaretLoc);
2658   } else {
2659     // Otherwise, pretend we saw (void).
2660     ParsedAttributes attrs(AttrFactory);
2661     SourceLocation NoLoc;
2662     ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/true,
2663                                              /*IsAmbiguous=*/false,
2664                                              /*RParenLoc=*/NoLoc,
2665                                              /*ArgInfo=*/nullptr,
2666                                              /*NumArgs=*/0,
2667                                              /*EllipsisLoc=*/NoLoc,
2668                                              /*RParenLoc=*/NoLoc,
2669                                              /*TypeQuals=*/0,
2670                                              /*RefQualifierIsLvalueRef=*/true,
2671                                              /*RefQualifierLoc=*/NoLoc,
2672                                              /*ConstQualifierLoc=*/NoLoc,
2673                                              /*VolatileQualifierLoc=*/NoLoc,
2674                                              /*RestrictQualifierLoc=*/NoLoc,
2675                                              /*MutableLoc=*/NoLoc,
2676                                              EST_None,
2677                                              /*ESpecLoc=*/NoLoc,
2678                                              /*Exceptions=*/nullptr,
2679                                              /*ExceptionRanges=*/nullptr,
2680                                              /*NumExceptions=*/0,
2681                                              /*NoexceptExpr=*/nullptr,
2682                                              /*ExceptionSpecTokens=*/nullptr,
2683                                              CaretLoc, CaretLoc,
2684                                              ParamInfo),
2685                           attrs, CaretLoc);
2686 
2687     MaybeParseGNUAttributes(ParamInfo);
2688 
2689     // Inform sema that we are starting a block.
2690     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2691   }
2692 
2693 
2694   ExprResult Result(true);
2695   if (!Tok.is(tok::l_brace)) {
2696     // Saw something like: ^expr
2697     Diag(Tok, diag::err_expected_expression);
2698     Actions.ActOnBlockError(CaretLoc, getCurScope());
2699     return ExprError();
2700   }
2701 
2702   StmtResult Stmt(ParseCompoundStatementBody());
2703   BlockScope.Exit();
2704   if (!Stmt.isInvalid())
2705     Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
2706   else
2707     Actions.ActOnBlockError(CaretLoc, getCurScope());
2708   return Result;
2709 }
2710 
2711 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
2712 ///
2713 ///         '__objc_yes'
2714 ///         '__objc_no'
ParseObjCBoolLiteral()2715 ExprResult Parser::ParseObjCBoolLiteral() {
2716   tok::TokenKind Kind = Tok.getKind();
2717   return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
2718 }
2719