1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Provides the Expression parsing implementation.
11 ///
12 /// Expressions in C99 basically consist of a bunch of binary operators with
13 /// unary operators and other random stuff at the leaves.
14 ///
15 /// In the C99 grammar, these unary operators bind tightest and are represented
16 /// as the 'cast-expression' production. Everything else is either a binary
17 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are
18 /// handled by ParseCastExpression, the higher level pieces are handled by
19 /// ParseBinaryExpression.
20 ///
21 //===----------------------------------------------------------------------===//
22
23 #include "clang/Parse/Parser.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/Basic/PrettyStackTrace.h"
27 #include "clang/Parse/RAIIObjectsForParser.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/ParsedTemplate.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/TypoCorrection.h"
32 #include "llvm/ADT/SmallVector.h"
33 using namespace clang;
34
35 /// Simple precedence-based parser for binary/ternary operators.
36 ///
37 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
38 /// production. C99 specifies that the LHS of an assignment operator should be
39 /// parsed as a unary-expression, but consistency dictates that it be a
40 /// conditional-expession. In practice, the important thing here is that the
41 /// LHS of an assignment has to be an l-value, which productions between
42 /// unary-expression and conditional-expression don't produce. Because we want
43 /// consistency, we parse the LHS as a conditional-expression, then check for
44 /// l-value-ness in semantic analysis stages.
45 ///
46 /// \verbatim
47 /// pm-expression: [C++ 5.5]
48 /// cast-expression
49 /// pm-expression '.*' cast-expression
50 /// pm-expression '->*' cast-expression
51 ///
52 /// multiplicative-expression: [C99 6.5.5]
53 /// Note: in C++, apply pm-expression instead of cast-expression
54 /// cast-expression
55 /// multiplicative-expression '*' cast-expression
56 /// multiplicative-expression '/' cast-expression
57 /// multiplicative-expression '%' cast-expression
58 ///
59 /// additive-expression: [C99 6.5.6]
60 /// multiplicative-expression
61 /// additive-expression '+' multiplicative-expression
62 /// additive-expression '-' multiplicative-expression
63 ///
64 /// shift-expression: [C99 6.5.7]
65 /// additive-expression
66 /// shift-expression '<<' additive-expression
67 /// shift-expression '>>' additive-expression
68 ///
69 /// compare-expression: [C++20 expr.spaceship]
70 /// shift-expression
71 /// compare-expression '<=>' shift-expression
72 ///
73 /// relational-expression: [C99 6.5.8]
74 /// compare-expression
75 /// relational-expression '<' compare-expression
76 /// relational-expression '>' compare-expression
77 /// relational-expression '<=' compare-expression
78 /// relational-expression '>=' compare-expression
79 ///
80 /// equality-expression: [C99 6.5.9]
81 /// relational-expression
82 /// equality-expression '==' relational-expression
83 /// equality-expression '!=' relational-expression
84 ///
85 /// AND-expression: [C99 6.5.10]
86 /// equality-expression
87 /// AND-expression '&' equality-expression
88 ///
89 /// exclusive-OR-expression: [C99 6.5.11]
90 /// AND-expression
91 /// exclusive-OR-expression '^' AND-expression
92 ///
93 /// inclusive-OR-expression: [C99 6.5.12]
94 /// exclusive-OR-expression
95 /// inclusive-OR-expression '|' exclusive-OR-expression
96 ///
97 /// logical-AND-expression: [C99 6.5.13]
98 /// inclusive-OR-expression
99 /// logical-AND-expression '&&' inclusive-OR-expression
100 ///
101 /// logical-OR-expression: [C99 6.5.14]
102 /// logical-AND-expression
103 /// logical-OR-expression '||' logical-AND-expression
104 ///
105 /// conditional-expression: [C99 6.5.15]
106 /// logical-OR-expression
107 /// logical-OR-expression '?' expression ':' conditional-expression
108 /// [GNU] logical-OR-expression '?' ':' conditional-expression
109 /// [C++] the third operand is an assignment-expression
110 ///
111 /// assignment-expression: [C99 6.5.16]
112 /// conditional-expression
113 /// unary-expression assignment-operator assignment-expression
114 /// [C++] throw-expression [C++ 15]
115 ///
116 /// assignment-operator: one of
117 /// = *= /= %= += -= <<= >>= &= ^= |=
118 ///
119 /// expression: [C99 6.5.17]
120 /// assignment-expression ...[opt]
121 /// expression ',' assignment-expression ...[opt]
122 /// \endverbatim
ParseExpression(TypeCastState isTypeCast)123 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
124 ExprResult LHS(ParseAssignmentExpression(isTypeCast));
125 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
126 }
127
128 /// This routine is called when the '@' is seen and consumed.
129 /// Current token is an Identifier and is not a 'try'. This
130 /// routine is necessary to disambiguate \@try-statement from,
131 /// for example, \@encode-expression.
132 ///
133 ExprResult
ParseExpressionWithLeadingAt(SourceLocation AtLoc)134 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
135 ExprResult LHS(ParseObjCAtExpression(AtLoc));
136 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
137 }
138
139 /// This routine is called when a leading '__extension__' is seen and
140 /// consumed. This is necessary because the token gets consumed in the
141 /// process of disambiguating between an expression and a declaration.
142 ExprResult
ParseExpressionWithLeadingExtension(SourceLocation ExtLoc)143 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
144 ExprResult LHS(true);
145 {
146 // Silence extension warnings in the sub-expression
147 ExtensionRAIIObject O(Diags);
148
149 LHS = ParseCastExpression(AnyCastExpr);
150 }
151
152 if (!LHS.isInvalid())
153 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
154 LHS.get());
155
156 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
157 }
158
159 /// Parse an expr that doesn't include (top-level) commas.
ParseAssignmentExpression(TypeCastState isTypeCast)160 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
161 if (Tok.is(tok::code_completion)) {
162 cutOffParsing();
163 Actions.CodeCompleteExpression(getCurScope(),
164 PreferredType.get(Tok.getLocation()));
165 return ExprError();
166 }
167
168 if (Tok.is(tok::kw_throw))
169 return ParseThrowExpression();
170 if (Tok.is(tok::kw_co_yield))
171 return ParseCoyieldExpression();
172
173 ExprResult LHS = ParseCastExpression(AnyCastExpr,
174 /*isAddressOfOperand=*/false,
175 isTypeCast);
176 return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
177 }
178
179 /// Parse an assignment expression where part of an Objective-C message
180 /// send has already been parsed.
181 ///
182 /// In this case \p LBracLoc indicates the location of the '[' of the message
183 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
184 /// the receiver of the message.
185 ///
186 /// Since this handles full assignment-expression's, it handles postfix
187 /// expressions and other binary operators for these expressions as well.
188 ExprResult
ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,SourceLocation SuperLoc,ParsedType ReceiverType,Expr * ReceiverExpr)189 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
190 SourceLocation SuperLoc,
191 ParsedType ReceiverType,
192 Expr *ReceiverExpr) {
193 ExprResult R
194 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
195 ReceiverType, ReceiverExpr);
196 R = ParsePostfixExpressionSuffix(R);
197 return ParseRHSOfBinaryExpression(R, prec::Assignment);
198 }
199
200 ExprResult
ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast)201 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) {
202 assert(Actions.ExprEvalContexts.back().Context ==
203 Sema::ExpressionEvaluationContext::ConstantEvaluated &&
204 "Call this function only if your ExpressionEvaluationContext is "
205 "already ConstantEvaluated");
206 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast));
207 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
208 return Actions.ActOnConstantExpression(Res);
209 }
210
ParseConstantExpression(TypeCastState isTypeCast)211 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
212 // C++03 [basic.def.odr]p2:
213 // An expression is potentially evaluated unless it appears where an
214 // integral constant expression is required (see 5.19) [...].
215 // C++98 and C++11 have no such rule, but this is only a defect in C++98.
216 EnterExpressionEvaluationContext ConstantEvaluated(
217 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
218 return ParseConstantExpressionInExprEvalContext(isTypeCast);
219 }
220
ParseCaseExpression(SourceLocation CaseLoc)221 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) {
222 EnterExpressionEvaluationContext ConstantEvaluated(
223 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
224 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast));
225 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
226 return Actions.ActOnCaseExpr(CaseLoc, Res);
227 }
228
229 /// Parse a constraint-expression.
230 ///
231 /// \verbatim
232 /// constraint-expression: C++2a[temp.constr.decl]p1
233 /// logical-or-expression
234 /// \endverbatim
ParseConstraintExpression()235 ExprResult Parser::ParseConstraintExpression() {
236 EnterExpressionEvaluationContext ConstantEvaluated(
237 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
238 ExprResult LHS(ParseCastExpression(AnyCastExpr));
239 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
240 if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) {
241 Actions.CorrectDelayedTyposInExpr(Res);
242 return ExprError();
243 }
244 return Res;
245 }
246
247 /// \brief Parse a constraint-logical-and-expression.
248 ///
249 /// \verbatim
250 /// C++2a[temp.constr.decl]p1
251 /// constraint-logical-and-expression:
252 /// primary-expression
253 /// constraint-logical-and-expression '&&' primary-expression
254 ///
255 /// \endverbatim
256 ExprResult
ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause)257 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) {
258 EnterExpressionEvaluationContext ConstantEvaluated(
259 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
260 bool NotPrimaryExpression = false;
261 auto ParsePrimary = [&] () {
262 ExprResult E = ParseCastExpression(PrimaryExprOnly,
263 /*isAddressOfOperand=*/false,
264 /*isTypeCast=*/NotTypeCast,
265 /*isVectorLiteral=*/false,
266 &NotPrimaryExpression);
267 if (E.isInvalid())
268 return ExprError();
269 auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) {
270 E = ParsePostfixExpressionSuffix(E);
271 // Use InclusiveOr, the precedence just after '&&' to not parse the
272 // next arguments to the logical and.
273 E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr);
274 if (!E.isInvalid())
275 Diag(E.get()->getExprLoc(),
276 Note
277 ? diag::note_unparenthesized_non_primary_expr_in_requires_clause
278 : diag::err_unparenthesized_non_primary_expr_in_requires_clause)
279 << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(")
280 << FixItHint::CreateInsertion(
281 PP.getLocForEndOfToken(E.get()->getEndLoc()), ")")
282 << E.get()->getSourceRange();
283 return E;
284 };
285
286 if (NotPrimaryExpression ||
287 // Check if the following tokens must be a part of a non-primary
288 // expression
289 getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
290 /*CPlusPlus11=*/true) > prec::LogicalAnd ||
291 // Postfix operators other than '(' (which will be checked for in
292 // CheckConstraintExpression).
293 Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) ||
294 (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) {
295 E = RecoverFromNonPrimary(E, /*Note=*/false);
296 if (E.isInvalid())
297 return ExprError();
298 NotPrimaryExpression = false;
299 }
300 bool PossibleNonPrimary;
301 bool IsConstraintExpr =
302 Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary,
303 IsTrailingRequiresClause);
304 if (!IsConstraintExpr || PossibleNonPrimary) {
305 // Atomic constraint might be an unparenthesized non-primary expression
306 // (such as a binary operator), in which case we might get here (e.g. in
307 // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore
308 // the rest of the addition expression). Try to parse the rest of it here.
309 if (PossibleNonPrimary)
310 E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr);
311 Actions.CorrectDelayedTyposInExpr(E);
312 return ExprError();
313 }
314 return E;
315 };
316 ExprResult LHS = ParsePrimary();
317 if (LHS.isInvalid())
318 return ExprError();
319 while (Tok.is(tok::ampamp)) {
320 SourceLocation LogicalAndLoc = ConsumeToken();
321 ExprResult RHS = ParsePrimary();
322 if (RHS.isInvalid()) {
323 Actions.CorrectDelayedTyposInExpr(LHS);
324 return ExprError();
325 }
326 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc,
327 tok::ampamp, LHS.get(), RHS.get());
328 if (!Op.isUsable()) {
329 Actions.CorrectDelayedTyposInExpr(RHS);
330 Actions.CorrectDelayedTyposInExpr(LHS);
331 return ExprError();
332 }
333 LHS = Op;
334 }
335 return LHS;
336 }
337
338 /// \brief Parse a constraint-logical-or-expression.
339 ///
340 /// \verbatim
341 /// C++2a[temp.constr.decl]p1
342 /// constraint-logical-or-expression:
343 /// constraint-logical-and-expression
344 /// constraint-logical-or-expression '||'
345 /// constraint-logical-and-expression
346 ///
347 /// \endverbatim
348 ExprResult
ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause)349 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) {
350 ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause));
351 if (!LHS.isUsable())
352 return ExprError();
353 while (Tok.is(tok::pipepipe)) {
354 SourceLocation LogicalOrLoc = ConsumeToken();
355 ExprResult RHS =
356 ParseConstraintLogicalAndExpression(IsTrailingRequiresClause);
357 if (!RHS.isUsable()) {
358 Actions.CorrectDelayedTyposInExpr(LHS);
359 return ExprError();
360 }
361 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc,
362 tok::pipepipe, LHS.get(), RHS.get());
363 if (!Op.isUsable()) {
364 Actions.CorrectDelayedTyposInExpr(RHS);
365 Actions.CorrectDelayedTyposInExpr(LHS);
366 return ExprError();
367 }
368 LHS = Op;
369 }
370 return LHS;
371 }
372
isNotExpressionStart()373 bool Parser::isNotExpressionStart() {
374 tok::TokenKind K = Tok.getKind();
375 if (K == tok::l_brace || K == tok::r_brace ||
376 K == tok::kw_for || K == tok::kw_while ||
377 K == tok::kw_if || K == tok::kw_else ||
378 K == tok::kw_goto || K == tok::kw_try)
379 return true;
380 // If this is a decl-specifier, we can't be at the start of an expression.
381 return isKnownToBeDeclarationSpecifier();
382 }
383
isFoldOperator(prec::Level Level) const384 bool Parser::isFoldOperator(prec::Level Level) const {
385 return Level > prec::Unknown && Level != prec::Conditional &&
386 Level != prec::Spaceship;
387 }
388
isFoldOperator(tok::TokenKind Kind) const389 bool Parser::isFoldOperator(tok::TokenKind Kind) const {
390 return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true));
391 }
392
393 /// Parse a binary expression that starts with \p LHS and has a
394 /// precedence of at least \p MinPrec.
395 ExprResult
ParseRHSOfBinaryExpression(ExprResult LHS,prec::Level MinPrec)396 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
397 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
398 GreaterThanIsOperator,
399 getLangOpts().CPlusPlus11);
400 SourceLocation ColonLoc;
401
402 auto SavedType = PreferredType;
403 while (1) {
404 // Every iteration may rely on a preferred type for the whole expression.
405 PreferredType = SavedType;
406 // If this token has a lower precedence than we are allowed to parse (e.g.
407 // because we are called recursively, or because the token is not a binop),
408 // then we are done!
409 if (NextTokPrec < MinPrec)
410 return LHS;
411
412 // Consume the operator, saving the operator token for error reporting.
413 Token OpToken = Tok;
414 ConsumeToken();
415
416 if (OpToken.is(tok::caretcaret)) {
417 return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or));
418 }
419
420 // If we're potentially in a template-id, we may now be able to determine
421 // whether we're actually in one or not.
422 if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater,
423 tok::greatergreatergreater) &&
424 checkPotentialAngleBracketDelimiter(OpToken))
425 return ExprError();
426
427 // Bail out when encountering a comma followed by a token which can't
428 // possibly be the start of an expression. For instance:
429 // int f() { return 1, }
430 // We can't do this before consuming the comma, because
431 // isNotExpressionStart() looks at the token stream.
432 if (OpToken.is(tok::comma) && isNotExpressionStart()) {
433 PP.EnterToken(Tok, /*IsReinject*/true);
434 Tok = OpToken;
435 return LHS;
436 }
437
438 // If the next token is an ellipsis, then this is a fold-expression. Leave
439 // it alone so we can handle it in the paren expression.
440 if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
441 // FIXME: We can't check this via lookahead before we consume the token
442 // because that tickles a lexer bug.
443 PP.EnterToken(Tok, /*IsReinject*/true);
444 Tok = OpToken;
445 return LHS;
446 }
447
448 // In Objective-C++, alternative operator tokens can be used as keyword args
449 // in message expressions. Unconsume the token so that it can reinterpreted
450 // as an identifier in ParseObjCMessageExpressionBody. i.e., we support:
451 // [foo meth:0 and:0];
452 // [foo not_eq];
453 if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
454 Tok.isOneOf(tok::colon, tok::r_square) &&
455 OpToken.getIdentifierInfo() != nullptr) {
456 PP.EnterToken(Tok, /*IsReinject*/true);
457 Tok = OpToken;
458 return LHS;
459 }
460
461 // Special case handling for the ternary operator.
462 ExprResult TernaryMiddle(true);
463 if (NextTokPrec == prec::Conditional) {
464 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
465 // Parse a braced-init-list here for error recovery purposes.
466 SourceLocation BraceLoc = Tok.getLocation();
467 TernaryMiddle = ParseBraceInitializer();
468 if (!TernaryMiddle.isInvalid()) {
469 Diag(BraceLoc, diag::err_init_list_bin_op)
470 << /*RHS*/ 1 << PP.getSpelling(OpToken)
471 << Actions.getExprRange(TernaryMiddle.get());
472 TernaryMiddle = ExprError();
473 }
474 } else if (Tok.isNot(tok::colon)) {
475 // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
476 ColonProtectionRAIIObject X(*this);
477
478 // Handle this production specially:
479 // logical-OR-expression '?' expression ':' conditional-expression
480 // In particular, the RHS of the '?' is 'expression', not
481 // 'logical-OR-expression' as we might expect.
482 TernaryMiddle = ParseExpression();
483 } else {
484 // Special case handling of "X ? Y : Z" where Y is empty:
485 // logical-OR-expression '?' ':' conditional-expression [GNU]
486 TernaryMiddle = nullptr;
487 Diag(Tok, diag::ext_gnu_conditional_expr);
488 }
489
490 if (TernaryMiddle.isInvalid()) {
491 Actions.CorrectDelayedTyposInExpr(LHS);
492 LHS = ExprError();
493 TernaryMiddle = nullptr;
494 }
495
496 if (!TryConsumeToken(tok::colon, ColonLoc)) {
497 // Otherwise, we're missing a ':'. Assume that this was a typo that
498 // the user forgot. If we're not in a macro expansion, we can suggest
499 // a fixit hint. If there were two spaces before the current token,
500 // suggest inserting the colon in between them, otherwise insert ": ".
501 SourceLocation FILoc = Tok.getLocation();
502 const char *FIText = ": ";
503 const SourceManager &SM = PP.getSourceManager();
504 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
505 assert(FILoc.isFileID());
506 bool IsInvalid = false;
507 const char *SourcePtr =
508 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
509 if (!IsInvalid && *SourcePtr == ' ') {
510 SourcePtr =
511 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
512 if (!IsInvalid && *SourcePtr == ' ') {
513 FILoc = FILoc.getLocWithOffset(-1);
514 FIText = ":";
515 }
516 }
517 }
518
519 Diag(Tok, diag::err_expected)
520 << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
521 Diag(OpToken, diag::note_matching) << tok::question;
522 ColonLoc = Tok.getLocation();
523 }
524 }
525
526 PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(),
527 OpToken.getKind());
528 // Parse another leaf here for the RHS of the operator.
529 // ParseCastExpression works here because all RHS expressions in C have it
530 // as a prefix, at least. However, in C++, an assignment-expression could
531 // be a throw-expression, which is not a valid cast-expression.
532 // Therefore we need some special-casing here.
533 // Also note that the third operand of the conditional operator is
534 // an assignment-expression in C++, and in C++11, we can have a
535 // braced-init-list on the RHS of an assignment. For better diagnostics,
536 // parse as if we were allowed braced-init-lists everywhere, and check that
537 // they only appear on the RHS of assignments later.
538 ExprResult RHS;
539 bool RHSIsInitList = false;
540 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
541 RHS = ParseBraceInitializer();
542 RHSIsInitList = true;
543 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
544 RHS = ParseAssignmentExpression();
545 else
546 RHS = ParseCastExpression(AnyCastExpr);
547
548 if (RHS.isInvalid()) {
549 // FIXME: Errors generated by the delayed typo correction should be
550 // printed before errors from parsing the RHS, not after.
551 Actions.CorrectDelayedTyposInExpr(LHS);
552 if (TernaryMiddle.isUsable())
553 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
554 LHS = ExprError();
555 }
556
557 // Remember the precedence of this operator and get the precedence of the
558 // operator immediately to the right of the RHS.
559 prec::Level ThisPrec = NextTokPrec;
560 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
561 getLangOpts().CPlusPlus11);
562
563 // Assignment and conditional expressions are right-associative.
564 bool isRightAssoc = ThisPrec == prec::Conditional ||
565 ThisPrec == prec::Assignment;
566
567 // Get the precedence of the operator to the right of the RHS. If it binds
568 // more tightly with RHS than we do, evaluate it completely first.
569 if (ThisPrec < NextTokPrec ||
570 (ThisPrec == NextTokPrec && isRightAssoc)) {
571 if (!RHS.isInvalid() && RHSIsInitList) {
572 Diag(Tok, diag::err_init_list_bin_op)
573 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
574 RHS = ExprError();
575 }
576 // If this is left-associative, only parse things on the RHS that bind
577 // more tightly than the current operator. If it is left-associative, it
578 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as
579 // A=(B=(C=D)), where each paren is a level of recursion here.
580 // The function takes ownership of the RHS.
581 RHS = ParseRHSOfBinaryExpression(RHS,
582 static_cast<prec::Level>(ThisPrec + !isRightAssoc));
583 RHSIsInitList = false;
584
585 if (RHS.isInvalid()) {
586 // FIXME: Errors generated by the delayed typo correction should be
587 // printed before errors from ParseRHSOfBinaryExpression, not after.
588 Actions.CorrectDelayedTyposInExpr(LHS);
589 if (TernaryMiddle.isUsable())
590 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
591 LHS = ExprError();
592 }
593
594 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
595 getLangOpts().CPlusPlus11);
596 }
597
598 if (!RHS.isInvalid() && RHSIsInitList) {
599 if (ThisPrec == prec::Assignment) {
600 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
601 << Actions.getExprRange(RHS.get());
602 } else if (ColonLoc.isValid()) {
603 Diag(ColonLoc, diag::err_init_list_bin_op)
604 << /*RHS*/1 << ":"
605 << Actions.getExprRange(RHS.get());
606 LHS = ExprError();
607 } else {
608 Diag(OpToken, diag::err_init_list_bin_op)
609 << /*RHS*/1 << PP.getSpelling(OpToken)
610 << Actions.getExprRange(RHS.get());
611 LHS = ExprError();
612 }
613 }
614
615 ExprResult OrigLHS = LHS;
616 if (!LHS.isInvalid()) {
617 // Combine the LHS and RHS into the LHS (e.g. build AST).
618 if (TernaryMiddle.isInvalid()) {
619 // If we're using '>>' as an operator within a template
620 // argument list (in C++98), suggest the addition of
621 // parentheses so that the code remains well-formed in C++0x.
622 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
623 SuggestParentheses(OpToken.getLocation(),
624 diag::warn_cxx11_right_shift_in_template_arg,
625 SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
626 Actions.getExprRange(RHS.get()).getEnd()));
627
628 ExprResult BinOp =
629 Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
630 OpToken.getKind(), LHS.get(), RHS.get());
631 if (BinOp.isInvalid())
632 BinOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
633 RHS.get()->getEndLoc(),
634 {LHS.get(), RHS.get()});
635
636 LHS = BinOp;
637 } else {
638 ExprResult CondOp = Actions.ActOnConditionalOp(
639 OpToken.getLocation(), ColonLoc, LHS.get(), TernaryMiddle.get(),
640 RHS.get());
641 if (CondOp.isInvalid()) {
642 std::vector<clang::Expr *> Args;
643 // TernaryMiddle can be null for the GNU conditional expr extension.
644 if (TernaryMiddle.get())
645 Args = {LHS.get(), TernaryMiddle.get(), RHS.get()};
646 else
647 Args = {LHS.get(), RHS.get()};
648 CondOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
649 RHS.get()->getEndLoc(), Args);
650 }
651
652 LHS = CondOp;
653 }
654 // In this case, ActOnBinOp or ActOnConditionalOp performed the
655 // CorrectDelayedTyposInExpr check.
656 if (!getLangOpts().CPlusPlus)
657 continue;
658 }
659
660 // Ensure potential typos aren't left undiagnosed.
661 if (LHS.isInvalid()) {
662 Actions.CorrectDelayedTyposInExpr(OrigLHS);
663 Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
664 Actions.CorrectDelayedTyposInExpr(RHS);
665 }
666 }
667 }
668
669 /// Parse a cast-expression, unary-expression or primary-expression, based
670 /// on \p ExprType.
671 ///
672 /// \p isAddressOfOperand exists because an id-expression that is the
673 /// operand of address-of gets special treatment due to member pointers.
674 ///
ParseCastExpression(CastParseKind ParseKind,bool isAddressOfOperand,TypeCastState isTypeCast,bool isVectorLiteral,bool * NotPrimaryExpression)675 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
676 bool isAddressOfOperand,
677 TypeCastState isTypeCast,
678 bool isVectorLiteral,
679 bool *NotPrimaryExpression) {
680 bool NotCastExpr;
681 ExprResult Res = ParseCastExpression(ParseKind,
682 isAddressOfOperand,
683 NotCastExpr,
684 isTypeCast,
685 isVectorLiteral,
686 NotPrimaryExpression);
687 if (NotCastExpr)
688 Diag(Tok, diag::err_expected_expression);
689 return Res;
690 }
691
692 namespace {
693 class CastExpressionIdValidator final : public CorrectionCandidateCallback {
694 public:
CastExpressionIdValidator(Token Next,bool AllowTypes,bool AllowNonTypes)695 CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
696 : NextToken(Next), AllowNonTypes(AllowNonTypes) {
697 WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
698 }
699
ValidateCandidate(const TypoCorrection & candidate)700 bool ValidateCandidate(const TypoCorrection &candidate) override {
701 NamedDecl *ND = candidate.getCorrectionDecl();
702 if (!ND)
703 return candidate.isKeyword();
704
705 if (isa<TypeDecl>(ND))
706 return WantTypeSpecifiers;
707
708 if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
709 return false;
710
711 if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
712 return true;
713
714 for (auto *C : candidate) {
715 NamedDecl *ND = C->getUnderlyingDecl();
716 if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
717 return true;
718 }
719 return false;
720 }
721
clone()722 std::unique_ptr<CorrectionCandidateCallback> clone() override {
723 return std::make_unique<CastExpressionIdValidator>(*this);
724 }
725
726 private:
727 Token NextToken;
728 bool AllowNonTypes;
729 };
730 }
731
732 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse
733 /// a unary-expression.
734 ///
735 /// \p isAddressOfOperand exists because an id-expression that is the operand
736 /// of address-of gets special treatment due to member pointers. NotCastExpr
737 /// is set to true if the token is not the start of a cast-expression, and no
738 /// diagnostic is emitted in this case and no tokens are consumed.
739 ///
740 /// \verbatim
741 /// cast-expression: [C99 6.5.4]
742 /// unary-expression
743 /// '(' type-name ')' cast-expression
744 ///
745 /// unary-expression: [C99 6.5.3]
746 /// postfix-expression
747 /// '++' unary-expression
748 /// '--' unary-expression
749 /// [Coro] 'co_await' cast-expression
750 /// unary-operator cast-expression
751 /// 'sizeof' unary-expression
752 /// 'sizeof' '(' type-name ')'
753 /// [C++11] 'sizeof' '...' '(' identifier ')'
754 /// [GNU] '__alignof' unary-expression
755 /// [GNU] '__alignof' '(' type-name ')'
756 /// [C11] '_Alignof' '(' type-name ')'
757 /// [C++11] 'alignof' '(' type-id ')'
758 /// [GNU] '&&' identifier
759 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
760 /// [C++] new-expression
761 /// [C++] delete-expression
762 ///
763 /// unary-operator: one of
764 /// '&' '*' '+' '-' '~' '!'
765 /// [GNU] '__extension__' '__real' '__imag'
766 ///
767 /// primary-expression: [C99 6.5.1]
768 /// [C99] identifier
769 /// [C++] id-expression
770 /// constant
771 /// string-literal
772 /// [C++] boolean-literal [C++ 2.13.5]
773 /// [C++11] 'nullptr' [C++11 2.14.7]
774 /// [C++11] user-defined-literal
775 /// '(' expression ')'
776 /// [C11] generic-selection
777 /// [C++2a] requires-expression
778 /// '__func__' [C99 6.4.2.2]
779 /// [GNU] '__FUNCTION__'
780 /// [MS] '__FUNCDNAME__'
781 /// [MS] 'L__FUNCTION__'
782 /// [MS] '__FUNCSIG__'
783 /// [MS] 'L__FUNCSIG__'
784 /// [GNU] '__PRETTY_FUNCTION__'
785 /// [GNU] '(' compound-statement ')'
786 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
787 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
788 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
789 /// assign-expr ')'
790 /// [GNU] '__builtin_FILE' '(' ')'
791 /// [GNU] '__builtin_FUNCTION' '(' ')'
792 /// [GNU] '__builtin_LINE' '(' ')'
793 /// [CLANG] '__builtin_COLUMN' '(' ')'
794 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
795 /// [GNU] '__null'
796 /// [OBJC] '[' objc-message-expr ']'
797 /// [OBJC] '\@selector' '(' objc-selector-arg ')'
798 /// [OBJC] '\@protocol' '(' identifier ')'
799 /// [OBJC] '\@encode' '(' type-name ')'
800 /// [OBJC] objc-string-literal
801 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
802 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3]
803 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
804 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3]
805 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
806 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
807 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
808 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
809 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1]
810 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1]
811 /// [C++] 'this' [C++ 9.3.2]
812 /// [G++] unary-type-trait '(' type-id ')'
813 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO]
814 /// [EMBT] array-type-trait '(' type-id ',' integer ')'
815 /// [clang] '^' block-literal
816 ///
817 /// constant: [C99 6.4.4]
818 /// integer-constant
819 /// floating-constant
820 /// enumeration-constant -> identifier
821 /// character-constant
822 ///
823 /// id-expression: [C++ 5.1]
824 /// unqualified-id
825 /// qualified-id
826 ///
827 /// unqualified-id: [C++ 5.1]
828 /// identifier
829 /// operator-function-id
830 /// conversion-function-id
831 /// '~' class-name
832 /// template-id
833 ///
834 /// new-expression: [C++ 5.3.4]
835 /// '::'[opt] 'new' new-placement[opt] new-type-id
836 /// new-initializer[opt]
837 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
838 /// new-initializer[opt]
839 ///
840 /// delete-expression: [C++ 5.3.5]
841 /// '::'[opt] 'delete' cast-expression
842 /// '::'[opt] 'delete' '[' ']' cast-expression
843 ///
844 /// [GNU/Embarcadero] unary-type-trait:
845 /// '__is_arithmetic'
846 /// '__is_floating_point'
847 /// '__is_integral'
848 /// '__is_lvalue_expr'
849 /// '__is_rvalue_expr'
850 /// '__is_complete_type'
851 /// '__is_void'
852 /// '__is_array'
853 /// '__is_function'
854 /// '__is_reference'
855 /// '__is_lvalue_reference'
856 /// '__is_rvalue_reference'
857 /// '__is_fundamental'
858 /// '__is_object'
859 /// '__is_scalar'
860 /// '__is_compound'
861 /// '__is_pointer'
862 /// '__is_member_object_pointer'
863 /// '__is_member_function_pointer'
864 /// '__is_member_pointer'
865 /// '__is_const'
866 /// '__is_volatile'
867 /// '__is_trivial'
868 /// '__is_standard_layout'
869 /// '__is_signed'
870 /// '__is_unsigned'
871 ///
872 /// [GNU] unary-type-trait:
873 /// '__has_nothrow_assign'
874 /// '__has_nothrow_copy'
875 /// '__has_nothrow_constructor'
876 /// '__has_trivial_assign' [TODO]
877 /// '__has_trivial_copy' [TODO]
878 /// '__has_trivial_constructor'
879 /// '__has_trivial_destructor'
880 /// '__has_virtual_destructor'
881 /// '__is_abstract' [TODO]
882 /// '__is_class'
883 /// '__is_empty' [TODO]
884 /// '__is_enum'
885 /// '__is_final'
886 /// '__is_pod'
887 /// '__is_polymorphic'
888 /// '__is_sealed' [MS]
889 /// '__is_trivial'
890 /// '__is_union'
891 /// '__has_unique_object_representations'
892 ///
893 /// [Clang] unary-type-trait:
894 /// '__is_aggregate'
895 /// '__trivially_copyable'
896 ///
897 /// binary-type-trait:
898 /// [GNU] '__is_base_of'
899 /// [MS] '__is_convertible_to'
900 /// '__is_convertible'
901 /// '__is_same'
902 ///
903 /// [Embarcadero] array-type-trait:
904 /// '__array_rank'
905 /// '__array_extent'
906 ///
907 /// [Embarcadero] expression-trait:
908 /// '__is_lvalue_expr'
909 /// '__is_rvalue_expr'
910 /// \endverbatim
911 ///
ParseCastExpression(CastParseKind ParseKind,bool isAddressOfOperand,bool & NotCastExpr,TypeCastState isTypeCast,bool isVectorLiteral,bool * NotPrimaryExpression)912 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
913 bool isAddressOfOperand,
914 bool &NotCastExpr,
915 TypeCastState isTypeCast,
916 bool isVectorLiteral,
917 bool *NotPrimaryExpression) {
918 ExprResult Res;
919 tok::TokenKind SavedKind = Tok.getKind();
920 auto SavedType = PreferredType;
921 NotCastExpr = false;
922
923 // Are postfix-expression suffix operators permitted after this
924 // cast-expression? If not, and we find some, we'll parse them anyway and
925 // diagnose them.
926 bool AllowSuffix = true;
927
928 // This handles all of cast-expression, unary-expression, postfix-expression,
929 // and primary-expression. We handle them together like this for efficiency
930 // and to simplify handling of an expression starting with a '(' token: which
931 // may be one of a parenthesized expression, cast-expression, compound literal
932 // expression, or statement expression.
933 //
934 // If the parsed tokens consist of a primary-expression, the cases below
935 // break out of the switch; at the end we call ParsePostfixExpressionSuffix
936 // to handle the postfix expression suffixes. Cases that cannot be followed
937 // by postfix exprs should set AllowSuffix to false.
938 switch (SavedKind) {
939 case tok::l_paren: {
940 // If this expression is limited to being a unary-expression, the paren can
941 // not start a cast expression.
942 ParenParseOption ParenExprType;
943 switch (ParseKind) {
944 case CastParseKind::UnaryExprOnly:
945 if (!getLangOpts().CPlusPlus)
946 ParenExprType = CompoundLiteral;
947 LLVM_FALLTHROUGH;
948 case CastParseKind::AnyCastExpr:
949 ParenExprType = ParenParseOption::CastExpr;
950 break;
951 case CastParseKind::PrimaryExprOnly:
952 ParenExprType = FoldExpr;
953 break;
954 }
955 ParsedType CastTy;
956 SourceLocation RParenLoc;
957 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
958 isTypeCast == IsTypeCast, CastTy, RParenLoc);
959
960 // FIXME: What should we do if a vector literal is followed by a
961 // postfix-expression suffix? Usually postfix operators are permitted on
962 // literals.
963 if (isVectorLiteral)
964 return Res;
965
966 switch (ParenExprType) {
967 case SimpleExpr: break; // Nothing else to do.
968 case CompoundStmt: break; // Nothing else to do.
969 case CompoundLiteral:
970 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of
971 // postfix-expression exist, parse them now.
972 break;
973 case CastExpr:
974 // We have parsed the cast-expression and no postfix-expr pieces are
975 // following.
976 return Res;
977 case FoldExpr:
978 // We only parsed a fold-expression. There might be postfix-expr pieces
979 // afterwards; parse them now.
980 break;
981 }
982
983 break;
984 }
985
986 // primary-expression
987 case tok::numeric_constant:
988 // constant: integer-constant
989 // constant: floating-constant
990
991 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
992 ConsumeToken();
993 break;
994
995 case tok::kw_true:
996 case tok::kw_false:
997 Res = ParseCXXBoolLiteral();
998 break;
999
1000 case tok::kw___objc_yes:
1001 case tok::kw___objc_no:
1002 Res = ParseObjCBoolLiteral();
1003 break;
1004
1005 case tok::kw_nullptr:
1006 Diag(Tok, diag::warn_cxx98_compat_nullptr);
1007 Res = Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
1008 break;
1009
1010 case tok::annot_primary_expr:
1011 case tok::annot_overload_set:
1012 Res = getExprAnnotation(Tok);
1013 if (!Res.isInvalid() && Tok.getKind() == tok::annot_overload_set)
1014 Res = Actions.ActOnNameClassifiedAsOverloadSet(getCurScope(), Res.get());
1015 ConsumeAnnotationToken();
1016 if (!Res.isInvalid() && Tok.is(tok::less))
1017 checkPotentialAngleBracket(Res);
1018 break;
1019
1020 case tok::annot_non_type:
1021 case tok::annot_non_type_dependent:
1022 case tok::annot_non_type_undeclared: {
1023 CXXScopeSpec SS;
1024 Token Replacement;
1025 Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
1026 assert(!Res.isUnset() &&
1027 "should not perform typo correction on annotation token");
1028 break;
1029 }
1030
1031 case tok::kw___super:
1032 case tok::kw_decltype:
1033 // Annotate the token and tail recurse.
1034 if (TryAnnotateTypeOrScopeToken())
1035 return ExprError();
1036 assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
1037 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1038 isVectorLiteral, NotPrimaryExpression);
1039
1040 case tok::identifier: { // primary-expression: identifier
1041 // unqualified-id: identifier
1042 // constant: enumeration-constant
1043 // Turn a potentially qualified name into a annot_typename or
1044 // annot_cxxscope if it would be valid. This handles things like x::y, etc.
1045 if (getLangOpts().CPlusPlus) {
1046 // Avoid the unnecessary parse-time lookup in the common case
1047 // where the syntax forbids a type.
1048 const Token &Next = NextToken();
1049
1050 // If this identifier was reverted from a token ID, and the next token
1051 // is a parenthesis, this is likely to be a use of a type trait. Check
1052 // those tokens.
1053 if (Next.is(tok::l_paren) &&
1054 Tok.is(tok::identifier) &&
1055 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
1056 IdentifierInfo *II = Tok.getIdentifierInfo();
1057 // Build up the mapping of revertible type traits, for future use.
1058 if (RevertibleTypeTraits.empty()) {
1059 #define RTT_JOIN(X,Y) X##Y
1060 #define REVERTIBLE_TYPE_TRAIT(Name) \
1061 RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
1062 = RTT_JOIN(tok::kw_,Name)
1063
1064 REVERTIBLE_TYPE_TRAIT(__is_abstract);
1065 REVERTIBLE_TYPE_TRAIT(__is_aggregate);
1066 REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
1067 REVERTIBLE_TYPE_TRAIT(__is_array);
1068 REVERTIBLE_TYPE_TRAIT(__is_assignable);
1069 REVERTIBLE_TYPE_TRAIT(__is_base_of);
1070 REVERTIBLE_TYPE_TRAIT(__is_class);
1071 REVERTIBLE_TYPE_TRAIT(__is_complete_type);
1072 REVERTIBLE_TYPE_TRAIT(__is_compound);
1073 REVERTIBLE_TYPE_TRAIT(__is_const);
1074 REVERTIBLE_TYPE_TRAIT(__is_constructible);
1075 REVERTIBLE_TYPE_TRAIT(__is_convertible);
1076 REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
1077 REVERTIBLE_TYPE_TRAIT(__is_destructible);
1078 REVERTIBLE_TYPE_TRAIT(__is_empty);
1079 REVERTIBLE_TYPE_TRAIT(__is_enum);
1080 REVERTIBLE_TYPE_TRAIT(__is_floating_point);
1081 REVERTIBLE_TYPE_TRAIT(__is_final);
1082 REVERTIBLE_TYPE_TRAIT(__is_function);
1083 REVERTIBLE_TYPE_TRAIT(__is_fundamental);
1084 REVERTIBLE_TYPE_TRAIT(__is_integral);
1085 REVERTIBLE_TYPE_TRAIT(__is_interface_class);
1086 REVERTIBLE_TYPE_TRAIT(__is_literal);
1087 REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
1088 REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
1089 REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
1090 REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
1091 REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
1092 REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
1093 REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
1094 REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
1095 REVERTIBLE_TYPE_TRAIT(__is_object);
1096 REVERTIBLE_TYPE_TRAIT(__is_pod);
1097 REVERTIBLE_TYPE_TRAIT(__is_pointer);
1098 REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
1099 REVERTIBLE_TYPE_TRAIT(__is_reference);
1100 REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
1101 REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
1102 REVERTIBLE_TYPE_TRAIT(__is_same);
1103 REVERTIBLE_TYPE_TRAIT(__is_scalar);
1104 REVERTIBLE_TYPE_TRAIT(__is_sealed);
1105 REVERTIBLE_TYPE_TRAIT(__is_signed);
1106 REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
1107 REVERTIBLE_TYPE_TRAIT(__is_trivial);
1108 REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
1109 REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
1110 REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
1111 REVERTIBLE_TYPE_TRAIT(__is_union);
1112 REVERTIBLE_TYPE_TRAIT(__is_unsigned);
1113 REVERTIBLE_TYPE_TRAIT(__is_void);
1114 REVERTIBLE_TYPE_TRAIT(__is_volatile);
1115 #undef REVERTIBLE_TYPE_TRAIT
1116 #undef RTT_JOIN
1117 }
1118
1119 // If we find that this is in fact the name of a type trait,
1120 // update the token kind in place and parse again to treat it as
1121 // the appropriate kind of type trait.
1122 llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
1123 = RevertibleTypeTraits.find(II);
1124 if (Known != RevertibleTypeTraits.end()) {
1125 Tok.setKind(Known->second);
1126 return ParseCastExpression(ParseKind, isAddressOfOperand,
1127 NotCastExpr, isTypeCast,
1128 isVectorLiteral, NotPrimaryExpression);
1129 }
1130 }
1131
1132 if ((!ColonIsSacred && Next.is(tok::colon)) ||
1133 Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
1134 tok::l_brace)) {
1135 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1136 if (TryAnnotateTypeOrScopeToken())
1137 return ExprError();
1138 if (!Tok.is(tok::identifier))
1139 return ParseCastExpression(ParseKind, isAddressOfOperand,
1140 NotCastExpr, isTypeCast,
1141 isVectorLiteral,
1142 NotPrimaryExpression);
1143 }
1144 }
1145
1146 // Consume the identifier so that we can see if it is followed by a '(' or
1147 // '.'.
1148 IdentifierInfo &II = *Tok.getIdentifierInfo();
1149 SourceLocation ILoc = ConsumeToken();
1150
1151 // Support 'Class.property' and 'super.property' notation.
1152 if (getLangOpts().ObjC && Tok.is(tok::period) &&
1153 (Actions.getTypeName(II, ILoc, getCurScope()) ||
1154 // Allow the base to be 'super' if in an objc-method.
1155 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
1156 ConsumeToken();
1157
1158 if (Tok.is(tok::code_completion) && &II != Ident_super) {
1159 cutOffParsing();
1160 Actions.CodeCompleteObjCClassPropertyRefExpr(
1161 getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc);
1162 return ExprError();
1163 }
1164 // Allow either an identifier or the keyword 'class' (in C++).
1165 if (Tok.isNot(tok::identifier) &&
1166 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
1167 Diag(Tok, diag::err_expected_property_name);
1168 return ExprError();
1169 }
1170 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
1171 SourceLocation PropertyLoc = ConsumeToken();
1172
1173 Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
1174 ILoc, PropertyLoc);
1175 break;
1176 }
1177
1178 // In an Objective-C method, if we have "super" followed by an identifier,
1179 // the token sequence is ill-formed. However, if there's a ':' or ']' after
1180 // that identifier, this is probably a message send with a missing open
1181 // bracket. Treat it as such.
1182 if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression &&
1183 getCurScope()->isInObjcMethodScope() &&
1184 ((Tok.is(tok::identifier) &&
1185 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
1186 Tok.is(tok::code_completion))) {
1187 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr,
1188 nullptr);
1189 break;
1190 }
1191
1192 // If we have an Objective-C class name followed by an identifier
1193 // and either ':' or ']', this is an Objective-C class message
1194 // send that's missing the opening '['. Recovery
1195 // appropriately. Also take this path if we're performing code
1196 // completion after an Objective-C class name.
1197 if (getLangOpts().ObjC &&
1198 ((Tok.is(tok::identifier) && !InMessageExpression) ||
1199 Tok.is(tok::code_completion))) {
1200 const Token& Next = NextToken();
1201 if (Tok.is(tok::code_completion) ||
1202 Next.is(tok::colon) || Next.is(tok::r_square))
1203 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
1204 if (Typ.get()->isObjCObjectOrInterfaceType()) {
1205 // Fake up a Declarator to use with ActOnTypeName.
1206 DeclSpec DS(AttrFactory);
1207 DS.SetRangeStart(ILoc);
1208 DS.SetRangeEnd(ILoc);
1209 const char *PrevSpec = nullptr;
1210 unsigned DiagID;
1211 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
1212 Actions.getASTContext().getPrintingPolicy());
1213
1214 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
1215 TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
1216 DeclaratorInfo);
1217 if (Ty.isInvalid())
1218 break;
1219
1220 Res = ParseObjCMessageExpressionBody(SourceLocation(),
1221 SourceLocation(),
1222 Ty.get(), nullptr);
1223 break;
1224 }
1225 }
1226
1227 // Make sure to pass down the right value for isAddressOfOperand.
1228 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
1229 isAddressOfOperand = false;
1230
1231 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
1232 // need to know whether or not this identifier is a function designator or
1233 // not.
1234 UnqualifiedId Name;
1235 CXXScopeSpec ScopeSpec;
1236 SourceLocation TemplateKWLoc;
1237 Token Replacement;
1238 CastExpressionIdValidator Validator(
1239 /*Next=*/Tok,
1240 /*AllowTypes=*/isTypeCast != NotTypeCast,
1241 /*AllowNonTypes=*/isTypeCast != IsTypeCast);
1242 Validator.IsAddressOfOperand = isAddressOfOperand;
1243 if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
1244 Validator.WantExpressionKeywords = false;
1245 Validator.WantRemainingKeywords = false;
1246 } else {
1247 Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren);
1248 }
1249 Name.setIdentifier(&II, ILoc);
1250 Res = Actions.ActOnIdExpression(
1251 getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
1252 isAddressOfOperand, &Validator,
1253 /*IsInlineAsmIdentifier=*/false,
1254 Tok.is(tok::r_paren) ? nullptr : &Replacement);
1255 if (!Res.isInvalid() && Res.isUnset()) {
1256 UnconsumeToken(Replacement);
1257 return ParseCastExpression(ParseKind, isAddressOfOperand,
1258 NotCastExpr, isTypeCast,
1259 /*isVectorLiteral=*/false,
1260 NotPrimaryExpression);
1261 }
1262 if (!Res.isInvalid() && Tok.is(tok::less))
1263 checkPotentialAngleBracket(Res);
1264 break;
1265 }
1266 case tok::char_constant: // constant: character-constant
1267 case tok::wide_char_constant:
1268 case tok::utf8_char_constant:
1269 case tok::utf16_char_constant:
1270 case tok::utf32_char_constant:
1271 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
1272 ConsumeToken();
1273 break;
1274 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
1275 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
1276 case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS]
1277 case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS]
1278 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS]
1279 case tok::kw_L__FUNCSIG__: // primary-expression: L__FUNCSIG__ [MS]
1280 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
1281 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
1282 ConsumeToken();
1283 break;
1284 case tok::string_literal: // primary-expression: string-literal
1285 case tok::wide_string_literal:
1286 case tok::utf8_string_literal:
1287 case tok::utf16_string_literal:
1288 case tok::utf32_string_literal:
1289 Res = ParseStringLiteralExpression(true);
1290 break;
1291 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1]
1292 Res = ParseGenericSelectionExpression();
1293 break;
1294 case tok::kw___builtin_available:
1295 Res = ParseAvailabilityCheckExpr(Tok.getLocation());
1296 break;
1297 case tok::kw___builtin_va_arg:
1298 case tok::kw___builtin_offsetof:
1299 case tok::kw___builtin_choose_expr:
1300 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
1301 case tok::kw___builtin_convertvector:
1302 case tok::kw___builtin_COLUMN:
1303 case tok::kw___builtin_FILE:
1304 case tok::kw___builtin_FUNCTION:
1305 case tok::kw___builtin_LINE:
1306 if (NotPrimaryExpression)
1307 *NotPrimaryExpression = true;
1308 // This parses the complete suffix; we can return early.
1309 return ParseBuiltinPrimaryExpression();
1310 case tok::kw___null:
1311 Res = Actions.ActOnGNUNullExpr(ConsumeToken());
1312 break;
1313
1314 case tok::plusplus: // unary-expression: '++' unary-expression [C99]
1315 case tok::minusminus: { // unary-expression: '--' unary-expression [C99]
1316 if (NotPrimaryExpression)
1317 *NotPrimaryExpression = true;
1318 // C++ [expr.unary] has:
1319 // unary-expression:
1320 // ++ cast-expression
1321 // -- cast-expression
1322 Token SavedTok = Tok;
1323 ConsumeToken();
1324
1325 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(),
1326 SavedTok.getLocation());
1327 // One special case is implicitly handled here: if the preceding tokens are
1328 // an ambiguous cast expression, such as "(T())++", then we recurse to
1329 // determine whether the '++' is prefix or postfix.
1330 Res = ParseCastExpression(getLangOpts().CPlusPlus ?
1331 UnaryExprOnly : AnyCastExpr,
1332 /*isAddressOfOperand*/false, NotCastExpr,
1333 NotTypeCast);
1334 if (NotCastExpr) {
1335 // If we return with NotCastExpr = true, we must not consume any tokens,
1336 // so put the token back where we found it.
1337 assert(Res.isInvalid());
1338 UnconsumeToken(SavedTok);
1339 return ExprError();
1340 }
1341 if (!Res.isInvalid()) {
1342 Expr *Arg = Res.get();
1343 Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(),
1344 SavedKind, Arg);
1345 if (Res.isInvalid())
1346 Res = Actions.CreateRecoveryExpr(SavedTok.getLocation(),
1347 Arg->getEndLoc(), Arg);
1348 }
1349 return Res;
1350 }
1351 case tok::amp: { // unary-expression: '&' cast-expression
1352 if (NotPrimaryExpression)
1353 *NotPrimaryExpression = true;
1354 // Special treatment because of member pointers
1355 SourceLocation SavedLoc = ConsumeToken();
1356 PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc);
1357 Res = ParseCastExpression(AnyCastExpr, true);
1358 if (!Res.isInvalid()) {
1359 Expr *Arg = Res.get();
1360 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg);
1361 if (Res.isInvalid())
1362 Res = Actions.CreateRecoveryExpr(Tok.getLocation(), Arg->getEndLoc(),
1363 Arg);
1364 }
1365 return Res;
1366 }
1367
1368 case tok::star: // unary-expression: '*' cast-expression
1369 case tok::plus: // unary-expression: '+' cast-expression
1370 case tok::minus: // unary-expression: '-' cast-expression
1371 case tok::tilde: // unary-expression: '~' cast-expression
1372 case tok::exclaim: // unary-expression: '!' cast-expression
1373 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU]
1374 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU]
1375 if (NotPrimaryExpression)
1376 *NotPrimaryExpression = true;
1377 SourceLocation SavedLoc = ConsumeToken();
1378 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc);
1379 Res = ParseCastExpression(AnyCastExpr);
1380 if (!Res.isInvalid()) {
1381 Expr *Arg = Res.get();
1382 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg);
1383 if (Res.isInvalid())
1384 Res = Actions.CreateRecoveryExpr(SavedLoc, Arg->getEndLoc(), Arg);
1385 }
1386 return Res;
1387 }
1388
1389 case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression
1390 if (NotPrimaryExpression)
1391 *NotPrimaryExpression = true;
1392 SourceLocation CoawaitLoc = ConsumeToken();
1393 Res = ParseCastExpression(AnyCastExpr);
1394 if (!Res.isInvalid())
1395 Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
1396 return Res;
1397 }
1398
1399 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1400 // __extension__ silences extension warnings in the subexpression.
1401 if (NotPrimaryExpression)
1402 *NotPrimaryExpression = true;
1403 ExtensionRAIIObject O(Diags); // Use RAII to do this.
1404 SourceLocation SavedLoc = ConsumeToken();
1405 Res = ParseCastExpression(AnyCastExpr);
1406 if (!Res.isInvalid())
1407 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1408 return Res;
1409 }
1410 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')'
1411 if (!getLangOpts().C11)
1412 Diag(Tok, diag::ext_c11_feature) << Tok.getName();
1413 LLVM_FALLTHROUGH;
1414 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')'
1415 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression
1416 // unary-expression: '__alignof' '(' type-name ')'
1417 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression
1418 // unary-expression: 'sizeof' '(' type-name ')'
1419 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression
1420 // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
1421 case tok::kw___builtin_omp_required_simd_align:
1422 if (NotPrimaryExpression)
1423 *NotPrimaryExpression = true;
1424 AllowSuffix = false;
1425 Res = ParseUnaryExprOrTypeTraitExpression();
1426 break;
1427 case tok::ampamp: { // unary-expression: '&&' identifier
1428 if (NotPrimaryExpression)
1429 *NotPrimaryExpression = true;
1430 SourceLocation AmpAmpLoc = ConsumeToken();
1431 if (Tok.isNot(tok::identifier))
1432 return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1433
1434 if (getCurScope()->getFnParent() == nullptr)
1435 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1436
1437 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1438 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1439 Tok.getLocation());
1440 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1441 ConsumeToken();
1442 AllowSuffix = false;
1443 break;
1444 }
1445 case tok::kw_const_cast:
1446 case tok::kw_dynamic_cast:
1447 case tok::kw_reinterpret_cast:
1448 case tok::kw_static_cast:
1449 case tok::kw_addrspace_cast:
1450 if (NotPrimaryExpression)
1451 *NotPrimaryExpression = true;
1452 Res = ParseCXXCasts();
1453 break;
1454 case tok::kw___builtin_bit_cast:
1455 if (NotPrimaryExpression)
1456 *NotPrimaryExpression = true;
1457 Res = ParseBuiltinBitCast();
1458 break;
1459 case tok::kw_typeid:
1460 if (NotPrimaryExpression)
1461 *NotPrimaryExpression = true;
1462 Res = ParseCXXTypeid();
1463 break;
1464 case tok::kw___uuidof:
1465 if (NotPrimaryExpression)
1466 *NotPrimaryExpression = true;
1467 Res = ParseCXXUuidof();
1468 break;
1469 case tok::kw_this:
1470 Res = ParseCXXThis();
1471 break;
1472
1473 case tok::annot_typename:
1474 if (isStartOfObjCClassMessageMissingOpenBracket()) {
1475 TypeResult Type = getTypeAnnotation(Tok);
1476
1477 // Fake up a Declarator to use with ActOnTypeName.
1478 DeclSpec DS(AttrFactory);
1479 DS.SetRangeStart(Tok.getLocation());
1480 DS.SetRangeEnd(Tok.getLastLoc());
1481
1482 const char *PrevSpec = nullptr;
1483 unsigned DiagID;
1484 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1485 PrevSpec, DiagID, Type,
1486 Actions.getASTContext().getPrintingPolicy());
1487
1488 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
1489 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1490 if (Ty.isInvalid())
1491 break;
1492
1493 ConsumeAnnotationToken();
1494 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1495 Ty.get(), nullptr);
1496 break;
1497 }
1498 LLVM_FALLTHROUGH;
1499
1500 case tok::annot_decltype:
1501 case tok::kw_char:
1502 case tok::kw_wchar_t:
1503 case tok::kw_char8_t:
1504 case tok::kw_char16_t:
1505 case tok::kw_char32_t:
1506 case tok::kw_bool:
1507 case tok::kw_short:
1508 case tok::kw_int:
1509 case tok::kw_long:
1510 case tok::kw___int64:
1511 case tok::kw___int128:
1512 case tok::kw__ExtInt:
1513 case tok::kw_signed:
1514 case tok::kw_unsigned:
1515 case tok::kw_half:
1516 case tok::kw_float:
1517 case tok::kw_double:
1518 case tok::kw___bf16:
1519 case tok::kw__Float16:
1520 case tok::kw___float128:
1521 case tok::kw_void:
1522 case tok::kw_typename:
1523 case tok::kw_typeof:
1524 case tok::kw___vector:
1525 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
1526 #include "clang/Basic/OpenCLImageTypes.def"
1527 {
1528 if (!getLangOpts().CPlusPlus) {
1529 Diag(Tok, diag::err_expected_expression);
1530 return ExprError();
1531 }
1532
1533 // Everything henceforth is a postfix-expression.
1534 if (NotPrimaryExpression)
1535 *NotPrimaryExpression = true;
1536
1537 if (SavedKind == tok::kw_typename) {
1538 // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1539 // typename-specifier braced-init-list
1540 if (TryAnnotateTypeOrScopeToken())
1541 return ExprError();
1542
1543 if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1544 // We are trying to parse a simple-type-specifier but might not get such
1545 // a token after error recovery.
1546 return ExprError();
1547 }
1548
1549 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1550 // simple-type-specifier braced-init-list
1551 //
1552 DeclSpec DS(AttrFactory);
1553
1554 ParseCXXSimpleTypeSpecifier(DS);
1555 if (Tok.isNot(tok::l_paren) &&
1556 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1557 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1558 << DS.getSourceRange());
1559
1560 if (Tok.is(tok::l_brace))
1561 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1562
1563 Res = ParseCXXTypeConstructExpression(DS);
1564 break;
1565 }
1566
1567 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1568 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1569 // (We can end up in this situation after tentative parsing.)
1570 if (TryAnnotateTypeOrScopeToken())
1571 return ExprError();
1572 if (!Tok.is(tok::annot_cxxscope))
1573 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1574 isTypeCast, isVectorLiteral,
1575 NotPrimaryExpression);
1576
1577 Token Next = NextToken();
1578 if (Next.is(tok::annot_template_id)) {
1579 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1580 if (TemplateId->Kind == TNK_Type_template) {
1581 // We have a qualified template-id that we know refers to a
1582 // type, translate it into a type and continue parsing as a
1583 // cast expression.
1584 CXXScopeSpec SS;
1585 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
1586 /*ObjectHadErrors=*/false,
1587 /*EnteringContext=*/false);
1588 AnnotateTemplateIdTokenAsType(SS);
1589 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1590 isTypeCast, isVectorLiteral,
1591 NotPrimaryExpression);
1592 }
1593 }
1594
1595 // Parse as an id-expression.
1596 Res = ParseCXXIdExpression(isAddressOfOperand);
1597 break;
1598 }
1599
1600 case tok::annot_template_id: { // [C++] template-id
1601 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1602 if (TemplateId->Kind == TNK_Type_template) {
1603 // We have a template-id that we know refers to a type,
1604 // translate it into a type and continue parsing as a cast
1605 // expression.
1606 CXXScopeSpec SS;
1607 AnnotateTemplateIdTokenAsType(SS);
1608 return ParseCastExpression(ParseKind, isAddressOfOperand,
1609 NotCastExpr, isTypeCast, isVectorLiteral,
1610 NotPrimaryExpression);
1611 }
1612
1613 // Fall through to treat the template-id as an id-expression.
1614 LLVM_FALLTHROUGH;
1615 }
1616
1617 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1618 Res = ParseCXXIdExpression(isAddressOfOperand);
1619 break;
1620
1621 case tok::coloncolon: {
1622 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken
1623 // annotates the token, tail recurse.
1624 if (TryAnnotateTypeOrScopeToken())
1625 return ExprError();
1626 if (!Tok.is(tok::coloncolon))
1627 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1628 isVectorLiteral, NotPrimaryExpression);
1629
1630 // ::new -> [C++] new-expression
1631 // ::delete -> [C++] delete-expression
1632 SourceLocation CCLoc = ConsumeToken();
1633 if (Tok.is(tok::kw_new)) {
1634 if (NotPrimaryExpression)
1635 *NotPrimaryExpression = true;
1636 Res = ParseCXXNewExpression(true, CCLoc);
1637 AllowSuffix = false;
1638 break;
1639 }
1640 if (Tok.is(tok::kw_delete)) {
1641 if (NotPrimaryExpression)
1642 *NotPrimaryExpression = true;
1643 Res = ParseCXXDeleteExpression(true, CCLoc);
1644 AllowSuffix = false;
1645 break;
1646 }
1647
1648 // This is not a type name or scope specifier, it is an invalid expression.
1649 Diag(CCLoc, diag::err_expected_expression);
1650 return ExprError();
1651 }
1652
1653 case tok::kw_new: // [C++] new-expression
1654 if (NotPrimaryExpression)
1655 *NotPrimaryExpression = true;
1656 Res = ParseCXXNewExpression(false, Tok.getLocation());
1657 AllowSuffix = false;
1658 break;
1659
1660 case tok::kw_delete: // [C++] delete-expression
1661 if (NotPrimaryExpression)
1662 *NotPrimaryExpression = true;
1663 Res = ParseCXXDeleteExpression(false, Tok.getLocation());
1664 AllowSuffix = false;
1665 break;
1666
1667 case tok::kw_requires: // [C++2a] requires-expression
1668 Res = ParseRequiresExpression();
1669 AllowSuffix = false;
1670 break;
1671
1672 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1673 if (NotPrimaryExpression)
1674 *NotPrimaryExpression = true;
1675 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1676 SourceLocation KeyLoc = ConsumeToken();
1677 BalancedDelimiterTracker T(*this, tok::l_paren);
1678
1679 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1680 return ExprError();
1681 // C++11 [expr.unary.noexcept]p1:
1682 // The noexcept operator determines whether the evaluation of its operand,
1683 // which is an unevaluated operand, can throw an exception.
1684 EnterExpressionEvaluationContext Unevaluated(
1685 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1686 Res = ParseExpression();
1687
1688 T.consumeClose();
1689
1690 if (!Res.isInvalid())
1691 Res = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Res.get(),
1692 T.getCloseLocation());
1693 AllowSuffix = false;
1694 break;
1695 }
1696
1697 #define TYPE_TRAIT(N,Spelling,K) \
1698 case tok::kw_##Spelling:
1699 #include "clang/Basic/TokenKinds.def"
1700 Res = ParseTypeTrait();
1701 break;
1702
1703 case tok::kw___array_rank:
1704 case tok::kw___array_extent:
1705 if (NotPrimaryExpression)
1706 *NotPrimaryExpression = true;
1707 Res = ParseArrayTypeTrait();
1708 break;
1709
1710 case tok::kw___is_lvalue_expr:
1711 case tok::kw___is_rvalue_expr:
1712 if (NotPrimaryExpression)
1713 *NotPrimaryExpression = true;
1714 Res = ParseExpressionTrait();
1715 break;
1716
1717 case tok::at: {
1718 if (NotPrimaryExpression)
1719 *NotPrimaryExpression = true;
1720 SourceLocation AtLoc = ConsumeToken();
1721 return ParseObjCAtExpression(AtLoc);
1722 }
1723 case tok::caret:
1724 Res = ParseBlockLiteralExpression();
1725 break;
1726 case tok::code_completion: {
1727 cutOffParsing();
1728 Actions.CodeCompleteExpression(getCurScope(),
1729 PreferredType.get(Tok.getLocation()));
1730 return ExprError();
1731 }
1732 case tok::l_square:
1733 if (getLangOpts().CPlusPlus11) {
1734 if (getLangOpts().ObjC) {
1735 // C++11 lambda expressions and Objective-C message sends both start with a
1736 // square bracket. There are three possibilities here:
1737 // we have a valid lambda expression, we have an invalid lambda
1738 // expression, or we have something that doesn't appear to be a lambda.
1739 // If we're in the last case, we fall back to ParseObjCMessageExpression.
1740 Res = TryParseLambdaExpression();
1741 if (!Res.isInvalid() && !Res.get()) {
1742 // We assume Objective-C++ message expressions are not
1743 // primary-expressions.
1744 if (NotPrimaryExpression)
1745 *NotPrimaryExpression = true;
1746 Res = ParseObjCMessageExpression();
1747 }
1748 break;
1749 }
1750 Res = ParseLambdaExpression();
1751 break;
1752 }
1753 if (getLangOpts().ObjC) {
1754 Res = ParseObjCMessageExpression();
1755 break;
1756 }
1757 LLVM_FALLTHROUGH;
1758 default:
1759 NotCastExpr = true;
1760 return ExprError();
1761 }
1762
1763 // Check to see whether Res is a function designator only. If it is and we
1764 // are compiling for OpenCL, we need to return an error as this implies
1765 // that the address of the function is being taken, which is illegal in CL.
1766
1767 if (ParseKind == PrimaryExprOnly)
1768 // This is strictly a primary-expression - no postfix-expr pieces should be
1769 // parsed.
1770 return Res;
1771
1772 if (!AllowSuffix) {
1773 // FIXME: Don't parse a primary-expression suffix if we encountered a parse
1774 // error already.
1775 if (Res.isInvalid())
1776 return Res;
1777
1778 switch (Tok.getKind()) {
1779 case tok::l_square:
1780 case tok::l_paren:
1781 case tok::plusplus:
1782 case tok::minusminus:
1783 // "expected ';'" or similar is probably the right diagnostic here. Let
1784 // the caller decide what to do.
1785 if (Tok.isAtStartOfLine())
1786 return Res;
1787
1788 LLVM_FALLTHROUGH;
1789 case tok::period:
1790 case tok::arrow:
1791 break;
1792
1793 default:
1794 return Res;
1795 }
1796
1797 // This was a unary-expression for which a postfix-expression suffix is
1798 // not permitted by the grammar (eg, a sizeof expression or
1799 // new-expression or similar). Diagnose but parse the suffix anyway.
1800 Diag(Tok.getLocation(), diag::err_postfix_after_unary_requires_parens)
1801 << Tok.getKind() << Res.get()->getSourceRange()
1802 << FixItHint::CreateInsertion(Res.get()->getBeginLoc(), "(")
1803 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(PrevTokLocation),
1804 ")");
1805 }
1806
1807 // These can be followed by postfix-expr pieces.
1808 PreferredType = SavedType;
1809 Res = ParsePostfixExpressionSuffix(Res);
1810 if (getLangOpts().OpenCL &&
1811 !getActions().getOpenCLOptions().isAvailableOption(
1812 "__cl_clang_function_pointers", getLangOpts()))
1813 if (Expr *PostfixExpr = Res.get()) {
1814 QualType Ty = PostfixExpr->getType();
1815 if (!Ty.isNull() && Ty->isFunctionType()) {
1816 Diag(PostfixExpr->getExprLoc(),
1817 diag::err_opencl_taking_function_address_parser);
1818 return ExprError();
1819 }
1820 }
1821
1822 return Res;
1823 }
1824
1825 /// Once the leading part of a postfix-expression is parsed, this
1826 /// method parses any suffixes that apply.
1827 ///
1828 /// \verbatim
1829 /// postfix-expression: [C99 6.5.2]
1830 /// primary-expression
1831 /// postfix-expression '[' expression ']'
1832 /// postfix-expression '[' braced-init-list ']'
1833 /// postfix-expression '(' argument-expression-list[opt] ')'
1834 /// postfix-expression '.' identifier
1835 /// postfix-expression '->' identifier
1836 /// postfix-expression '++'
1837 /// postfix-expression '--'
1838 /// '(' type-name ')' '{' initializer-list '}'
1839 /// '(' type-name ')' '{' initializer-list ',' '}'
1840 ///
1841 /// argument-expression-list: [C99 6.5.2]
1842 /// argument-expression ...[opt]
1843 /// argument-expression-list ',' assignment-expression ...[opt]
1844 /// \endverbatim
1845 ExprResult
ParsePostfixExpressionSuffix(ExprResult LHS)1846 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1847 // Now that the primary-expression piece of the postfix-expression has been
1848 // parsed, see if there are any postfix-expression pieces here.
1849 SourceLocation Loc;
1850 auto SavedType = PreferredType;
1851 while (1) {
1852 // Each iteration relies on preferred type for the whole expression.
1853 PreferredType = SavedType;
1854 switch (Tok.getKind()) {
1855 case tok::code_completion:
1856 if (InMessageExpression)
1857 return LHS;
1858
1859 cutOffParsing();
1860 Actions.CodeCompletePostfixExpression(
1861 getCurScope(), LHS, PreferredType.get(Tok.getLocation()));
1862 return ExprError();
1863
1864 case tok::identifier:
1865 // If we see identifier: after an expression, and we're not already in a
1866 // message send, then this is probably a message send with a missing
1867 // opening bracket '['.
1868 if (getLangOpts().ObjC && !InMessageExpression &&
1869 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1870 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1871 nullptr, LHS.get());
1872 break;
1873 }
1874 // Fall through; this isn't a message send.
1875 LLVM_FALLTHROUGH;
1876
1877 default: // Not a postfix-expression suffix.
1878 return LHS;
1879 case tok::l_square: { // postfix-expression: p-e '[' expression ']'
1880 // If we have a array postfix expression that starts on a new line and
1881 // Objective-C is enabled, it is highly likely that the user forgot a
1882 // semicolon after the base expression and that the array postfix-expr is
1883 // actually another message send. In this case, do some look-ahead to see
1884 // if the contents of the square brackets are obviously not a valid
1885 // expression and recover by pretending there is no suffix.
1886 if (getLangOpts().ObjC && Tok.isAtStartOfLine() &&
1887 isSimpleObjCMessageExpression())
1888 return LHS;
1889
1890 // Reject array indices starting with a lambda-expression. '[[' is
1891 // reserved for attributes.
1892 if (CheckProhibitedCXX11Attribute()) {
1893 (void)Actions.CorrectDelayedTyposInExpr(LHS);
1894 return ExprError();
1895 }
1896
1897 BalancedDelimiterTracker T(*this, tok::l_square);
1898 T.consumeOpen();
1899 Loc = T.getOpenLocation();
1900 ExprResult Idx, Length, Stride;
1901 SourceLocation ColonLocFirst, ColonLocSecond;
1902 PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get());
1903 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1904 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1905 Idx = ParseBraceInitializer();
1906 } else if (getLangOpts().OpenMP) {
1907 ColonProtectionRAIIObject RAII(*this);
1908 // Parse [: or [ expr or [ expr :
1909 if (!Tok.is(tok::colon)) {
1910 // [ expr
1911 Idx = ParseExpression();
1912 }
1913 if (Tok.is(tok::colon)) {
1914 // Consume ':'
1915 ColonLocFirst = ConsumeToken();
1916 if (Tok.isNot(tok::r_square) &&
1917 (getLangOpts().OpenMP < 50 ||
1918 ((Tok.isNot(tok::colon) && getLangOpts().OpenMP >= 50))))
1919 Length = ParseExpression();
1920 }
1921 if (getLangOpts().OpenMP >= 50 &&
1922 (OMPClauseKind == llvm::omp::Clause::OMPC_to ||
1923 OMPClauseKind == llvm::omp::Clause::OMPC_from) &&
1924 Tok.is(tok::colon)) {
1925 // Consume ':'
1926 ColonLocSecond = ConsumeToken();
1927 if (Tok.isNot(tok::r_square)) {
1928 Stride = ParseExpression();
1929 }
1930 }
1931 } else
1932 Idx = ParseExpression();
1933
1934 SourceLocation RLoc = Tok.getLocation();
1935
1936 LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1937 Idx = Actions.CorrectDelayedTyposInExpr(Idx);
1938 Length = Actions.CorrectDelayedTyposInExpr(Length);
1939 if (!LHS.isInvalid() && !Idx.isInvalid() && !Length.isInvalid() &&
1940 !Stride.isInvalid() && Tok.is(tok::r_square)) {
1941 if (ColonLocFirst.isValid() || ColonLocSecond.isValid()) {
1942 LHS = Actions.ActOnOMPArraySectionExpr(
1943 LHS.get(), Loc, Idx.get(), ColonLocFirst, ColonLocSecond,
1944 Length.get(), Stride.get(), RLoc);
1945 } else {
1946 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
1947 Idx.get(), RLoc);
1948 }
1949 } else {
1950 LHS = ExprError();
1951 Idx = ExprError();
1952 }
1953
1954 // Match the ']'.
1955 T.consumeClose();
1956 break;
1957 }
1958
1959 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')'
1960 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>'
1961 // '(' argument-expression-list[opt] ')'
1962 tok::TokenKind OpKind = Tok.getKind();
1963 InMessageExpressionRAIIObject InMessage(*this, false);
1964
1965 Expr *ExecConfig = nullptr;
1966
1967 BalancedDelimiterTracker PT(*this, tok::l_paren);
1968
1969 if (OpKind == tok::lesslessless) {
1970 ExprVector ExecConfigExprs;
1971 CommaLocsTy ExecConfigCommaLocs;
1972 SourceLocation OpenLoc = ConsumeToken();
1973
1974 if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1975 (void)Actions.CorrectDelayedTyposInExpr(LHS);
1976 LHS = ExprError();
1977 }
1978
1979 SourceLocation CloseLoc;
1980 if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
1981 } else if (LHS.isInvalid()) {
1982 SkipUntil(tok::greatergreatergreater, StopAtSemi);
1983 } else {
1984 // There was an error closing the brackets
1985 Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
1986 Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
1987 SkipUntil(tok::greatergreatergreater, StopAtSemi);
1988 LHS = ExprError();
1989 }
1990
1991 if (!LHS.isInvalid()) {
1992 if (ExpectAndConsume(tok::l_paren))
1993 LHS = ExprError();
1994 else
1995 Loc = PrevTokLocation;
1996 }
1997
1998 if (!LHS.isInvalid()) {
1999 ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
2000 OpenLoc,
2001 ExecConfigExprs,
2002 CloseLoc);
2003 if (ECResult.isInvalid())
2004 LHS = ExprError();
2005 else
2006 ExecConfig = ECResult.get();
2007 }
2008 } else {
2009 PT.consumeOpen();
2010 Loc = PT.getOpenLocation();
2011 }
2012
2013 ExprVector ArgExprs;
2014 CommaLocsTy CommaLocs;
2015 auto RunSignatureHelp = [&]() -> QualType {
2016 QualType PreferredType = Actions.ProduceCallSignatureHelp(
2017 getCurScope(), LHS.get(), ArgExprs, PT.getOpenLocation());
2018 CalledSignatureHelp = true;
2019 return PreferredType;
2020 };
2021 if (OpKind == tok::l_paren || !LHS.isInvalid()) {
2022 if (Tok.isNot(tok::r_paren)) {
2023 if (ParseExpressionList(ArgExprs, CommaLocs, [&] {
2024 PreferredType.enterFunctionArgument(Tok.getLocation(),
2025 RunSignatureHelp);
2026 })) {
2027 (void)Actions.CorrectDelayedTyposInExpr(LHS);
2028 // If we got an error when parsing expression list, we don't call
2029 // the CodeCompleteCall handler inside the parser. So call it here
2030 // to make sure we get overload suggestions even when we are in the
2031 // middle of a parameter.
2032 if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
2033 RunSignatureHelp();
2034 LHS = ExprError();
2035 } else if (LHS.isInvalid()) {
2036 for (auto &E : ArgExprs)
2037 Actions.CorrectDelayedTyposInExpr(E);
2038 }
2039 }
2040 }
2041
2042 // Match the ')'.
2043 if (LHS.isInvalid()) {
2044 SkipUntil(tok::r_paren, StopAtSemi);
2045 } else if (Tok.isNot(tok::r_paren)) {
2046 bool HadDelayedTypo = false;
2047 if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
2048 HadDelayedTypo = true;
2049 for (auto &E : ArgExprs)
2050 if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
2051 HadDelayedTypo = true;
2052 // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
2053 // instead of PT.consumeClose() to avoid emitting extra diagnostics for
2054 // the unmatched l_paren.
2055 if (HadDelayedTypo)
2056 SkipUntil(tok::r_paren, StopAtSemi);
2057 else
2058 PT.consumeClose();
2059 LHS = ExprError();
2060 } else {
2061 assert(
2062 (ArgExprs.size() == 0 || ArgExprs.size() - 1 == CommaLocs.size()) &&
2063 "Unexpected number of commas!");
2064 Expr *Fn = LHS.get();
2065 SourceLocation RParLoc = Tok.getLocation();
2066 LHS = Actions.ActOnCallExpr(getCurScope(), Fn, Loc, ArgExprs, RParLoc,
2067 ExecConfig);
2068 if (LHS.isInvalid()) {
2069 ArgExprs.insert(ArgExprs.begin(), Fn);
2070 LHS =
2071 Actions.CreateRecoveryExpr(Fn->getBeginLoc(), RParLoc, ArgExprs);
2072 }
2073 PT.consumeClose();
2074 }
2075
2076 break;
2077 }
2078 case tok::arrow:
2079 case tok::period: {
2080 // postfix-expression: p-e '->' template[opt] id-expression
2081 // postfix-expression: p-e '.' template[opt] id-expression
2082 tok::TokenKind OpKind = Tok.getKind();
2083 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token.
2084
2085 CXXScopeSpec SS;
2086 ParsedType ObjectType;
2087 bool MayBePseudoDestructor = false;
2088 Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr;
2089
2090 PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS);
2091
2092 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
2093 Expr *Base = OrigLHS;
2094 const Type* BaseType = Base->getType().getTypePtrOrNull();
2095 if (BaseType && Tok.is(tok::l_paren) &&
2096 (BaseType->isFunctionType() ||
2097 BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
2098 Diag(OpLoc, diag::err_function_is_not_record)
2099 << OpKind << Base->getSourceRange()
2100 << FixItHint::CreateRemoval(OpLoc);
2101 return ParsePostfixExpressionSuffix(Base);
2102 }
2103
2104 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, OpLoc,
2105 OpKind, ObjectType,
2106 MayBePseudoDestructor);
2107 if (LHS.isInvalid()) {
2108 // Clang will try to perform expression based completion as a
2109 // fallback, which is confusing in case of member references. So we
2110 // stop here without any completions.
2111 if (Tok.is(tok::code_completion)) {
2112 cutOffParsing();
2113 return ExprError();
2114 }
2115 break;
2116 }
2117 ParseOptionalCXXScopeSpecifier(
2118 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2119 /*EnteringContext=*/false, &MayBePseudoDestructor);
2120 if (SS.isNotEmpty())
2121 ObjectType = nullptr;
2122 }
2123
2124 if (Tok.is(tok::code_completion)) {
2125 tok::TokenKind CorrectedOpKind =
2126 OpKind == tok::arrow ? tok::period : tok::arrow;
2127 ExprResult CorrectedLHS(/*Invalid=*/true);
2128 if (getLangOpts().CPlusPlus && OrigLHS) {
2129 // FIXME: Creating a TentativeAnalysisScope from outside Sema is a
2130 // hack.
2131 Sema::TentativeAnalysisScope Trap(Actions);
2132 CorrectedLHS = Actions.ActOnStartCXXMemberReference(
2133 getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType,
2134 MayBePseudoDestructor);
2135 }
2136
2137 Expr *Base = LHS.get();
2138 Expr *CorrectedBase = CorrectedLHS.get();
2139 if (!CorrectedBase && !getLangOpts().CPlusPlus)
2140 CorrectedBase = Base;
2141
2142 // Code completion for a member access expression.
2143 cutOffParsing();
2144 Actions.CodeCompleteMemberReferenceExpr(
2145 getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow,
2146 Base && ExprStatementTokLoc == Base->getBeginLoc(),
2147 PreferredType.get(Tok.getLocation()));
2148
2149 return ExprError();
2150 }
2151
2152 if (MayBePseudoDestructor && !LHS.isInvalid()) {
2153 LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
2154 ObjectType);
2155 break;
2156 }
2157
2158 // Either the action has told us that this cannot be a
2159 // pseudo-destructor expression (based on the type of base
2160 // expression), or we didn't see a '~' in the right place. We
2161 // can still parse a destructor name here, but in that case it
2162 // names a real destructor.
2163 // Allow explicit constructor calls in Microsoft mode.
2164 // FIXME: Add support for explicit call of template constructor.
2165 SourceLocation TemplateKWLoc;
2166 UnqualifiedId Name;
2167 if (getLangOpts().ObjC && OpKind == tok::period &&
2168 Tok.is(tok::kw_class)) {
2169 // Objective-C++:
2170 // After a '.' in a member access expression, treat the keyword
2171 // 'class' as if it were an identifier.
2172 //
2173 // This hack allows property access to the 'class' method because it is
2174 // such a common method name. For other C++ keywords that are
2175 // Objective-C method names, one must use the message send syntax.
2176 IdentifierInfo *Id = Tok.getIdentifierInfo();
2177 SourceLocation Loc = ConsumeToken();
2178 Name.setIdentifier(Id, Loc);
2179 } else if (ParseUnqualifiedId(
2180 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2181 /*EnteringContext=*/false,
2182 /*AllowDestructorName=*/true,
2183 /*AllowConstructorName=*/
2184 getLangOpts().MicrosoftExt && SS.isNotEmpty(),
2185 /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) {
2186 (void)Actions.CorrectDelayedTyposInExpr(LHS);
2187 LHS = ExprError();
2188 }
2189
2190 if (!LHS.isInvalid())
2191 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
2192 OpKind, SS, TemplateKWLoc, Name,
2193 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
2194 : nullptr);
2195 if (!LHS.isInvalid()) {
2196 if (Tok.is(tok::less))
2197 checkPotentialAngleBracket(LHS);
2198 } else if (OrigLHS && Name.isValid()) {
2199 // Preserve the LHS if the RHS is an invalid member.
2200 LHS = Actions.CreateRecoveryExpr(OrigLHS->getBeginLoc(),
2201 Name.getEndLoc(), {OrigLHS});
2202 }
2203 break;
2204 }
2205 case tok::plusplus: // postfix-expression: postfix-expression '++'
2206 case tok::minusminus: // postfix-expression: postfix-expression '--'
2207 if (!LHS.isInvalid()) {
2208 Expr *Arg = LHS.get();
2209 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
2210 Tok.getKind(), Arg);
2211 if (LHS.isInvalid())
2212 LHS = Actions.CreateRecoveryExpr(Arg->getBeginLoc(),
2213 Tok.getLocation(), Arg);
2214 }
2215 ConsumeToken();
2216 break;
2217 }
2218 }
2219 }
2220
2221 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
2222 /// vec_step and we are at the start of an expression or a parenthesized
2223 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
2224 /// expression (isCastExpr == false) or the type (isCastExpr == true).
2225 ///
2226 /// \verbatim
2227 /// unary-expression: [C99 6.5.3]
2228 /// 'sizeof' unary-expression
2229 /// 'sizeof' '(' type-name ')'
2230 /// [GNU] '__alignof' unary-expression
2231 /// [GNU] '__alignof' '(' type-name ')'
2232 /// [C11] '_Alignof' '(' type-name ')'
2233 /// [C++0x] 'alignof' '(' type-id ')'
2234 ///
2235 /// [GNU] typeof-specifier:
2236 /// typeof ( expressions )
2237 /// typeof ( type-name )
2238 /// [GNU/C++] typeof unary-expression
2239 ///
2240 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
2241 /// vec_step ( expressions )
2242 /// vec_step ( type-name )
2243 /// \endverbatim
2244 ExprResult
ParseExprAfterUnaryExprOrTypeTrait(const Token & OpTok,bool & isCastExpr,ParsedType & CastTy,SourceRange & CastRange)2245 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
2246 bool &isCastExpr,
2247 ParsedType &CastTy,
2248 SourceRange &CastRange) {
2249
2250 assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_sizeof, tok::kw___alignof,
2251 tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step,
2252 tok::kw___builtin_omp_required_simd_align) &&
2253 "Not a typeof/sizeof/alignof/vec_step expression!");
2254
2255 ExprResult Operand;
2256
2257 // If the operand doesn't start with an '(', it must be an expression.
2258 if (Tok.isNot(tok::l_paren)) {
2259 // If construct allows a form without parenthesis, user may forget to put
2260 // pathenthesis around type name.
2261 if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
2262 tok::kw__Alignof)) {
2263 if (isTypeIdUnambiguously()) {
2264 DeclSpec DS(AttrFactory);
2265 ParseSpecifierQualifierList(DS);
2266 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
2267 ParseDeclarator(DeclaratorInfo);
2268
2269 SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
2270 SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
2271 if (LParenLoc.isInvalid() || RParenLoc.isInvalid()) {
2272 Diag(OpTok.getLocation(),
2273 diag::err_expected_parentheses_around_typename)
2274 << OpTok.getName();
2275 } else {
2276 Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
2277 << OpTok.getName() << FixItHint::CreateInsertion(LParenLoc, "(")
2278 << FixItHint::CreateInsertion(RParenLoc, ")");
2279 }
2280 isCastExpr = true;
2281 return ExprEmpty();
2282 }
2283 }
2284
2285 isCastExpr = false;
2286 if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
2287 Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
2288 << tok::l_paren;
2289 return ExprError();
2290 }
2291
2292 Operand = ParseCastExpression(UnaryExprOnly);
2293 } else {
2294 // If it starts with a '(', we know that it is either a parenthesized
2295 // type-name, or it is a unary-expression that starts with a compound
2296 // literal, or starts with a primary-expression that is a parenthesized
2297 // expression.
2298 ParenParseOption ExprType = CastExpr;
2299 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
2300
2301 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
2302 false, CastTy, RParenLoc);
2303 CastRange = SourceRange(LParenLoc, RParenLoc);
2304
2305 // If ParseParenExpression parsed a '(typename)' sequence only, then this is
2306 // a type.
2307 if (ExprType == CastExpr) {
2308 isCastExpr = true;
2309 return ExprEmpty();
2310 }
2311
2312 if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
2313 // GNU typeof in C requires the expression to be parenthesized. Not so for
2314 // sizeof/alignof or in C++. Therefore, the parenthesized expression is
2315 // the start of a unary-expression, but doesn't include any postfix
2316 // pieces. Parse these now if present.
2317 if (!Operand.isInvalid())
2318 Operand = ParsePostfixExpressionSuffix(Operand.get());
2319 }
2320 }
2321
2322 // If we get here, the operand to the typeof/sizeof/alignof was an expression.
2323 isCastExpr = false;
2324 return Operand;
2325 }
2326
2327
2328 /// Parse a sizeof or alignof expression.
2329 ///
2330 /// \verbatim
2331 /// unary-expression: [C99 6.5.3]
2332 /// 'sizeof' unary-expression
2333 /// 'sizeof' '(' type-name ')'
2334 /// [C++11] 'sizeof' '...' '(' identifier ')'
2335 /// [GNU] '__alignof' unary-expression
2336 /// [GNU] '__alignof' '(' type-name ')'
2337 /// [C11] '_Alignof' '(' type-name ')'
2338 /// [C++11] 'alignof' '(' type-id ')'
2339 /// \endverbatim
ParseUnaryExprOrTypeTraitExpression()2340 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
2341 assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
2342 tok::kw__Alignof, tok::kw_vec_step,
2343 tok::kw___builtin_omp_required_simd_align) &&
2344 "Not a sizeof/alignof/vec_step expression!");
2345 Token OpTok = Tok;
2346 ConsumeToken();
2347
2348 // [C++11] 'sizeof' '...' '(' identifier ')'
2349 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
2350 SourceLocation EllipsisLoc = ConsumeToken();
2351 SourceLocation LParenLoc, RParenLoc;
2352 IdentifierInfo *Name = nullptr;
2353 SourceLocation NameLoc;
2354 if (Tok.is(tok::l_paren)) {
2355 BalancedDelimiterTracker T(*this, tok::l_paren);
2356 T.consumeOpen();
2357 LParenLoc = T.getOpenLocation();
2358 if (Tok.is(tok::identifier)) {
2359 Name = Tok.getIdentifierInfo();
2360 NameLoc = ConsumeToken();
2361 T.consumeClose();
2362 RParenLoc = T.getCloseLocation();
2363 if (RParenLoc.isInvalid())
2364 RParenLoc = PP.getLocForEndOfToken(NameLoc);
2365 } else {
2366 Diag(Tok, diag::err_expected_parameter_pack);
2367 SkipUntil(tok::r_paren, StopAtSemi);
2368 }
2369 } else if (Tok.is(tok::identifier)) {
2370 Name = Tok.getIdentifierInfo();
2371 NameLoc = ConsumeToken();
2372 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
2373 RParenLoc = PP.getLocForEndOfToken(NameLoc);
2374 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
2375 << Name
2376 << FixItHint::CreateInsertion(LParenLoc, "(")
2377 << FixItHint::CreateInsertion(RParenLoc, ")");
2378 } else {
2379 Diag(Tok, diag::err_sizeof_parameter_pack);
2380 }
2381
2382 if (!Name)
2383 return ExprError();
2384
2385 EnterExpressionEvaluationContext Unevaluated(
2386 Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2387 Sema::ReuseLambdaContextDecl);
2388
2389 return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
2390 OpTok.getLocation(),
2391 *Name, NameLoc,
2392 RParenLoc);
2393 }
2394
2395 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2396 Diag(OpTok, diag::warn_cxx98_compat_alignof);
2397
2398 EnterExpressionEvaluationContext Unevaluated(
2399 Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2400 Sema::ReuseLambdaContextDecl);
2401
2402 bool isCastExpr;
2403 ParsedType CastTy;
2404 SourceRange CastRange;
2405 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
2406 isCastExpr,
2407 CastTy,
2408 CastRange);
2409
2410 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
2411 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2412 ExprKind = UETT_AlignOf;
2413 else if (OpTok.is(tok::kw___alignof))
2414 ExprKind = UETT_PreferredAlignOf;
2415 else if (OpTok.is(tok::kw_vec_step))
2416 ExprKind = UETT_VecStep;
2417 else if (OpTok.is(tok::kw___builtin_omp_required_simd_align))
2418 ExprKind = UETT_OpenMPRequiredSimdAlign;
2419
2420 if (isCastExpr)
2421 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2422 ExprKind,
2423 /*IsType=*/true,
2424 CastTy.getAsOpaquePtr(),
2425 CastRange);
2426
2427 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2428 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
2429
2430 // If we get here, the operand to the sizeof/alignof was an expression.
2431 if (!Operand.isInvalid())
2432 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2433 ExprKind,
2434 /*IsType=*/false,
2435 Operand.get(),
2436 CastRange);
2437 return Operand;
2438 }
2439
2440 /// ParseBuiltinPrimaryExpression
2441 ///
2442 /// \verbatim
2443 /// primary-expression: [C99 6.5.1]
2444 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
2445 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
2446 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
2447 /// assign-expr ')'
2448 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
2449 /// [GNU] '__builtin_FILE' '(' ')'
2450 /// [GNU] '__builtin_FUNCTION' '(' ')'
2451 /// [GNU] '__builtin_LINE' '(' ')'
2452 /// [CLANG] '__builtin_COLUMN' '(' ')'
2453 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')'
2454 ///
2455 /// [GNU] offsetof-member-designator:
2456 /// [GNU] identifier
2457 /// [GNU] offsetof-member-designator '.' identifier
2458 /// [GNU] offsetof-member-designator '[' expression ']'
2459 /// \endverbatim
ParseBuiltinPrimaryExpression()2460 ExprResult Parser::ParseBuiltinPrimaryExpression() {
2461 ExprResult Res;
2462 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2463
2464 tok::TokenKind T = Tok.getKind();
2465 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier.
2466
2467 // All of these start with an open paren.
2468 if (Tok.isNot(tok::l_paren))
2469 return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
2470 << tok::l_paren);
2471
2472 BalancedDelimiterTracker PT(*this, tok::l_paren);
2473 PT.consumeOpen();
2474
2475 // TODO: Build AST.
2476
2477 switch (T) {
2478 default: llvm_unreachable("Not a builtin primary expression!");
2479 case tok::kw___builtin_va_arg: {
2480 ExprResult Expr(ParseAssignmentExpression());
2481
2482 if (ExpectAndConsume(tok::comma)) {
2483 SkipUntil(tok::r_paren, StopAtSemi);
2484 Expr = ExprError();
2485 }
2486
2487 TypeResult Ty = ParseTypeName();
2488
2489 if (Tok.isNot(tok::r_paren)) {
2490 Diag(Tok, diag::err_expected) << tok::r_paren;
2491 Expr = ExprError();
2492 }
2493
2494 if (Expr.isInvalid() || Ty.isInvalid())
2495 Res = ExprError();
2496 else
2497 Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
2498 break;
2499 }
2500 case tok::kw___builtin_offsetof: {
2501 SourceLocation TypeLoc = Tok.getLocation();
2502 TypeResult Ty = ParseTypeName();
2503 if (Ty.isInvalid()) {
2504 SkipUntil(tok::r_paren, StopAtSemi);
2505 return ExprError();
2506 }
2507
2508 if (ExpectAndConsume(tok::comma)) {
2509 SkipUntil(tok::r_paren, StopAtSemi);
2510 return ExprError();
2511 }
2512
2513 // We must have at least one identifier here.
2514 if (Tok.isNot(tok::identifier)) {
2515 Diag(Tok, diag::err_expected) << tok::identifier;
2516 SkipUntil(tok::r_paren, StopAtSemi);
2517 return ExprError();
2518 }
2519
2520 // Keep track of the various subcomponents we see.
2521 SmallVector<Sema::OffsetOfComponent, 4> Comps;
2522
2523 Comps.push_back(Sema::OffsetOfComponent());
2524 Comps.back().isBrackets = false;
2525 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2526 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
2527
2528 // FIXME: This loop leaks the index expressions on error.
2529 while (1) {
2530 if (Tok.is(tok::period)) {
2531 // offsetof-member-designator: offsetof-member-designator '.' identifier
2532 Comps.push_back(Sema::OffsetOfComponent());
2533 Comps.back().isBrackets = false;
2534 Comps.back().LocStart = ConsumeToken();
2535
2536 if (Tok.isNot(tok::identifier)) {
2537 Diag(Tok, diag::err_expected) << tok::identifier;
2538 SkipUntil(tok::r_paren, StopAtSemi);
2539 return ExprError();
2540 }
2541 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2542 Comps.back().LocEnd = ConsumeToken();
2543
2544 } else if (Tok.is(tok::l_square)) {
2545 if (CheckProhibitedCXX11Attribute())
2546 return ExprError();
2547
2548 // offsetof-member-designator: offsetof-member-design '[' expression ']'
2549 Comps.push_back(Sema::OffsetOfComponent());
2550 Comps.back().isBrackets = true;
2551 BalancedDelimiterTracker ST(*this, tok::l_square);
2552 ST.consumeOpen();
2553 Comps.back().LocStart = ST.getOpenLocation();
2554 Res = ParseExpression();
2555 if (Res.isInvalid()) {
2556 SkipUntil(tok::r_paren, StopAtSemi);
2557 return Res;
2558 }
2559 Comps.back().U.E = Res.get();
2560
2561 ST.consumeClose();
2562 Comps.back().LocEnd = ST.getCloseLocation();
2563 } else {
2564 if (Tok.isNot(tok::r_paren)) {
2565 PT.consumeClose();
2566 Res = ExprError();
2567 } else if (Ty.isInvalid()) {
2568 Res = ExprError();
2569 } else {
2570 PT.consumeClose();
2571 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
2572 Ty.get(), Comps,
2573 PT.getCloseLocation());
2574 }
2575 break;
2576 }
2577 }
2578 break;
2579 }
2580 case tok::kw___builtin_choose_expr: {
2581 ExprResult Cond(ParseAssignmentExpression());
2582 if (Cond.isInvalid()) {
2583 SkipUntil(tok::r_paren, StopAtSemi);
2584 return Cond;
2585 }
2586 if (ExpectAndConsume(tok::comma)) {
2587 SkipUntil(tok::r_paren, StopAtSemi);
2588 return ExprError();
2589 }
2590
2591 ExprResult Expr1(ParseAssignmentExpression());
2592 if (Expr1.isInvalid()) {
2593 SkipUntil(tok::r_paren, StopAtSemi);
2594 return Expr1;
2595 }
2596 if (ExpectAndConsume(tok::comma)) {
2597 SkipUntil(tok::r_paren, StopAtSemi);
2598 return ExprError();
2599 }
2600
2601 ExprResult Expr2(ParseAssignmentExpression());
2602 if (Expr2.isInvalid()) {
2603 SkipUntil(tok::r_paren, StopAtSemi);
2604 return Expr2;
2605 }
2606 if (Tok.isNot(tok::r_paren)) {
2607 Diag(Tok, diag::err_expected) << tok::r_paren;
2608 return ExprError();
2609 }
2610 Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
2611 Expr2.get(), ConsumeParen());
2612 break;
2613 }
2614 case tok::kw___builtin_astype: {
2615 // The first argument is an expression to be converted, followed by a comma.
2616 ExprResult Expr(ParseAssignmentExpression());
2617 if (Expr.isInvalid()) {
2618 SkipUntil(tok::r_paren, StopAtSemi);
2619 return ExprError();
2620 }
2621
2622 if (ExpectAndConsume(tok::comma)) {
2623 SkipUntil(tok::r_paren, StopAtSemi);
2624 return ExprError();
2625 }
2626
2627 // Second argument is the type to bitcast to.
2628 TypeResult DestTy = ParseTypeName();
2629 if (DestTy.isInvalid())
2630 return ExprError();
2631
2632 // Attempt to consume the r-paren.
2633 if (Tok.isNot(tok::r_paren)) {
2634 Diag(Tok, diag::err_expected) << tok::r_paren;
2635 SkipUntil(tok::r_paren, StopAtSemi);
2636 return ExprError();
2637 }
2638
2639 Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
2640 ConsumeParen());
2641 break;
2642 }
2643 case tok::kw___builtin_convertvector: {
2644 // The first argument is an expression to be converted, followed by a comma.
2645 ExprResult Expr(ParseAssignmentExpression());
2646 if (Expr.isInvalid()) {
2647 SkipUntil(tok::r_paren, StopAtSemi);
2648 return ExprError();
2649 }
2650
2651 if (ExpectAndConsume(tok::comma)) {
2652 SkipUntil(tok::r_paren, StopAtSemi);
2653 return ExprError();
2654 }
2655
2656 // Second argument is the type to bitcast to.
2657 TypeResult DestTy = ParseTypeName();
2658 if (DestTy.isInvalid())
2659 return ExprError();
2660
2661 // Attempt to consume the r-paren.
2662 if (Tok.isNot(tok::r_paren)) {
2663 Diag(Tok, diag::err_expected) << tok::r_paren;
2664 SkipUntil(tok::r_paren, StopAtSemi);
2665 return ExprError();
2666 }
2667
2668 Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2669 ConsumeParen());
2670 break;
2671 }
2672 case tok::kw___builtin_COLUMN:
2673 case tok::kw___builtin_FILE:
2674 case tok::kw___builtin_FUNCTION:
2675 case tok::kw___builtin_LINE: {
2676 // Attempt to consume the r-paren.
2677 if (Tok.isNot(tok::r_paren)) {
2678 Diag(Tok, diag::err_expected) << tok::r_paren;
2679 SkipUntil(tok::r_paren, StopAtSemi);
2680 return ExprError();
2681 }
2682 SourceLocExpr::IdentKind Kind = [&] {
2683 switch (T) {
2684 case tok::kw___builtin_FILE:
2685 return SourceLocExpr::File;
2686 case tok::kw___builtin_FUNCTION:
2687 return SourceLocExpr::Function;
2688 case tok::kw___builtin_LINE:
2689 return SourceLocExpr::Line;
2690 case tok::kw___builtin_COLUMN:
2691 return SourceLocExpr::Column;
2692 default:
2693 llvm_unreachable("invalid keyword");
2694 }
2695 }();
2696 Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen());
2697 break;
2698 }
2699 }
2700
2701 if (Res.isInvalid())
2702 return ExprError();
2703
2704 // These can be followed by postfix-expr pieces because they are
2705 // primary-expressions.
2706 return ParsePostfixExpressionSuffix(Res.get());
2707 }
2708
tryParseOpenMPArrayShapingCastPart()2709 bool Parser::tryParseOpenMPArrayShapingCastPart() {
2710 assert(Tok.is(tok::l_square) && "Expected open bracket");
2711 bool ErrorFound = true;
2712 TentativeParsingAction TPA(*this);
2713 do {
2714 if (Tok.isNot(tok::l_square))
2715 break;
2716 // Consume '['
2717 ConsumeBracket();
2718 // Skip inner expression.
2719 while (!SkipUntil(tok::r_square, tok::annot_pragma_openmp_end,
2720 StopAtSemi | StopBeforeMatch))
2721 ;
2722 if (Tok.isNot(tok::r_square))
2723 break;
2724 // Consume ']'
2725 ConsumeBracket();
2726 // Found ')' - done.
2727 if (Tok.is(tok::r_paren)) {
2728 ErrorFound = false;
2729 break;
2730 }
2731 } while (Tok.isNot(tok::annot_pragma_openmp_end));
2732 TPA.Revert();
2733 return !ErrorFound;
2734 }
2735
2736 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2737 /// based on what is allowed by ExprType. The actual thing parsed is returned
2738 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2739 /// not the parsed cast-expression.
2740 ///
2741 /// \verbatim
2742 /// primary-expression: [C99 6.5.1]
2743 /// '(' expression ')'
2744 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly)
2745 /// postfix-expression: [C99 6.5.2]
2746 /// '(' type-name ')' '{' initializer-list '}'
2747 /// '(' type-name ')' '{' initializer-list ',' '}'
2748 /// cast-expression: [C99 6.5.4]
2749 /// '(' type-name ')' cast-expression
2750 /// [ARC] bridged-cast-expression
2751 /// [ARC] bridged-cast-expression:
2752 /// (__bridge type-name) cast-expression
2753 /// (__bridge_transfer type-name) cast-expression
2754 /// (__bridge_retained type-name) cast-expression
2755 /// fold-expression: [C++1z]
2756 /// '(' cast-expression fold-operator '...' ')'
2757 /// '(' '...' fold-operator cast-expression ')'
2758 /// '(' cast-expression fold-operator '...'
2759 /// fold-operator cast-expression ')'
2760 /// [OPENMP] Array shaping operation
2761 /// '(' '[' expression ']' { '[' expression ']' } cast-expression
2762 /// \endverbatim
2763 ExprResult
ParseParenExpression(ParenParseOption & ExprType,bool stopIfCastExpr,bool isTypeCast,ParsedType & CastTy,SourceLocation & RParenLoc)2764 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2765 bool isTypeCast, ParsedType &CastTy,
2766 SourceLocation &RParenLoc) {
2767 assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2768 ColonProtectionRAIIObject ColonProtection(*this, false);
2769 BalancedDelimiterTracker T(*this, tok::l_paren);
2770 if (T.consumeOpen())
2771 return ExprError();
2772 SourceLocation OpenLoc = T.getOpenLocation();
2773
2774 PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc);
2775
2776 ExprResult Result(true);
2777 bool isAmbiguousTypeId;
2778 CastTy = nullptr;
2779
2780 if (Tok.is(tok::code_completion)) {
2781 cutOffParsing();
2782 Actions.CodeCompleteExpression(
2783 getCurScope(), PreferredType.get(Tok.getLocation()),
2784 /*IsParenthesized=*/ExprType >= CompoundLiteral);
2785 return ExprError();
2786 }
2787
2788 // Diagnose use of bridge casts in non-arc mode.
2789 bool BridgeCast = (getLangOpts().ObjC &&
2790 Tok.isOneOf(tok::kw___bridge,
2791 tok::kw___bridge_transfer,
2792 tok::kw___bridge_retained,
2793 tok::kw___bridge_retain));
2794 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2795 if (!TryConsumeToken(tok::kw___bridge)) {
2796 StringRef BridgeCastName = Tok.getName();
2797 SourceLocation BridgeKeywordLoc = ConsumeToken();
2798 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2799 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2800 << BridgeCastName
2801 << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2802 }
2803 BridgeCast = false;
2804 }
2805
2806 // None of these cases should fall through with an invalid Result
2807 // unless they've already reported an error.
2808 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2809 Diag(Tok, diag::ext_gnu_statement_expr);
2810
2811 checkCompoundToken(OpenLoc, tok::l_paren, CompoundToken::StmtExprBegin);
2812
2813 if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
2814 Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
2815 } else {
2816 // Find the nearest non-record decl context. Variables declared in a
2817 // statement expression behave as if they were declared in the enclosing
2818 // function, block, or other code construct.
2819 DeclContext *CodeDC = Actions.CurContext;
2820 while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
2821 CodeDC = CodeDC->getParent();
2822 assert(CodeDC && !CodeDC->isFileContext() &&
2823 "statement expr not in code context");
2824 }
2825 Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
2826
2827 Actions.ActOnStartStmtExpr();
2828
2829 StmtResult Stmt(ParseCompoundStatement(true));
2830 ExprType = CompoundStmt;
2831
2832 // If the substmt parsed correctly, build the AST node.
2833 if (!Stmt.isInvalid()) {
2834 Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(),
2835 Tok.getLocation());
2836 } else {
2837 Actions.ActOnStmtExprError();
2838 }
2839 }
2840 } else if (ExprType >= CompoundLiteral && BridgeCast) {
2841 tok::TokenKind tokenKind = Tok.getKind();
2842 SourceLocation BridgeKeywordLoc = ConsumeToken();
2843
2844 // Parse an Objective-C ARC ownership cast expression.
2845 ObjCBridgeCastKind Kind;
2846 if (tokenKind == tok::kw___bridge)
2847 Kind = OBC_Bridge;
2848 else if (tokenKind == tok::kw___bridge_transfer)
2849 Kind = OBC_BridgeTransfer;
2850 else if (tokenKind == tok::kw___bridge_retained)
2851 Kind = OBC_BridgeRetained;
2852 else {
2853 // As a hopefully temporary workaround, allow __bridge_retain as
2854 // a synonym for __bridge_retained, but only in system headers.
2855 assert(tokenKind == tok::kw___bridge_retain);
2856 Kind = OBC_BridgeRetained;
2857 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2858 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2859 << FixItHint::CreateReplacement(BridgeKeywordLoc,
2860 "__bridge_retained");
2861 }
2862
2863 TypeResult Ty = ParseTypeName();
2864 T.consumeClose();
2865 ColonProtection.restore();
2866 RParenLoc = T.getCloseLocation();
2867
2868 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get());
2869 ExprResult SubExpr = ParseCastExpression(AnyCastExpr);
2870
2871 if (Ty.isInvalid() || SubExpr.isInvalid())
2872 return ExprError();
2873
2874 return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2875 BridgeKeywordLoc, Ty.get(),
2876 RParenLoc, SubExpr.get());
2877 } else if (ExprType >= CompoundLiteral &&
2878 isTypeIdInParens(isAmbiguousTypeId)) {
2879
2880 // Otherwise, this is a compound literal expression or cast expression.
2881
2882 // In C++, if the type-id is ambiguous we disambiguate based on context.
2883 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2884 // in which case we should treat it as type-id.
2885 // if stopIfCastExpr is false, we need to determine the context past the
2886 // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2887 if (isAmbiguousTypeId && !stopIfCastExpr) {
2888 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
2889 ColonProtection);
2890 RParenLoc = T.getCloseLocation();
2891 return res;
2892 }
2893
2894 // Parse the type declarator.
2895 DeclSpec DS(AttrFactory);
2896 ParseSpecifierQualifierList(DS);
2897 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
2898 ParseDeclarator(DeclaratorInfo);
2899
2900 // If our type is followed by an identifier and either ':' or ']', then
2901 // this is probably an Objective-C message send where the leading '[' is
2902 // missing. Recover as if that were the case.
2903 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2904 !InMessageExpression && getLangOpts().ObjC &&
2905 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2906 TypeResult Ty;
2907 {
2908 InMessageExpressionRAIIObject InMessage(*this, false);
2909 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2910 }
2911 Result = ParseObjCMessageExpressionBody(SourceLocation(),
2912 SourceLocation(),
2913 Ty.get(), nullptr);
2914 } else {
2915 // Match the ')'.
2916 T.consumeClose();
2917 ColonProtection.restore();
2918 RParenLoc = T.getCloseLocation();
2919 if (Tok.is(tok::l_brace)) {
2920 ExprType = CompoundLiteral;
2921 TypeResult Ty;
2922 {
2923 InMessageExpressionRAIIObject InMessage(*this, false);
2924 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2925 }
2926 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2927 }
2928
2929 if (Tok.is(tok::l_paren)) {
2930 // This could be OpenCL vector Literals
2931 if (getLangOpts().OpenCL)
2932 {
2933 TypeResult Ty;
2934 {
2935 InMessageExpressionRAIIObject InMessage(*this, false);
2936 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2937 }
2938 if(Ty.isInvalid())
2939 {
2940 return ExprError();
2941 }
2942 QualType QT = Ty.get().get().getCanonicalType();
2943 if (QT->isVectorType())
2944 {
2945 // We parsed '(' vector-type-name ')' followed by '('
2946
2947 // Parse the cast-expression that follows it next.
2948 // isVectorLiteral = true will make sure we don't parse any
2949 // Postfix expression yet
2950 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
2951 /*isAddressOfOperand=*/false,
2952 /*isTypeCast=*/IsTypeCast,
2953 /*isVectorLiteral=*/true);
2954
2955 if (!Result.isInvalid()) {
2956 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2957 DeclaratorInfo, CastTy,
2958 RParenLoc, Result.get());
2959 }
2960
2961 // After we performed the cast we can check for postfix-expr pieces.
2962 if (!Result.isInvalid()) {
2963 Result = ParsePostfixExpressionSuffix(Result);
2964 }
2965
2966 return Result;
2967 }
2968 }
2969 }
2970
2971 if (ExprType == CastExpr) {
2972 // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2973
2974 if (DeclaratorInfo.isInvalidType())
2975 return ExprError();
2976
2977 // Note that this doesn't parse the subsequent cast-expression, it just
2978 // returns the parsed type to the callee.
2979 if (stopIfCastExpr) {
2980 TypeResult Ty;
2981 {
2982 InMessageExpressionRAIIObject InMessage(*this, false);
2983 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2984 }
2985 CastTy = Ty.get();
2986 return ExprResult();
2987 }
2988
2989 // Reject the cast of super idiom in ObjC.
2990 if (Tok.is(tok::identifier) && getLangOpts().ObjC &&
2991 Tok.getIdentifierInfo() == Ident_super &&
2992 getCurScope()->isInObjcMethodScope() &&
2993 GetLookAheadToken(1).isNot(tok::period)) {
2994 Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2995 << SourceRange(OpenLoc, RParenLoc);
2996 return ExprError();
2997 }
2998
2999 PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get());
3000 // Parse the cast-expression that follows it next.
3001 // TODO: For cast expression with CastTy.
3002 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3003 /*isAddressOfOperand=*/false,
3004 /*isTypeCast=*/IsTypeCast);
3005 if (!Result.isInvalid()) {
3006 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3007 DeclaratorInfo, CastTy,
3008 RParenLoc, Result.get());
3009 }
3010 return Result;
3011 }
3012
3013 Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
3014 return ExprError();
3015 }
3016 } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) &&
3017 isFoldOperator(NextToken().getKind())) {
3018 ExprType = FoldExpr;
3019 return ParseFoldExpression(ExprResult(), T);
3020 } else if (isTypeCast) {
3021 // Parse the expression-list.
3022 InMessageExpressionRAIIObject InMessage(*this, false);
3023
3024 ExprVector ArgExprs;
3025 CommaLocsTy CommaLocs;
3026
3027 if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
3028 // FIXME: If we ever support comma expressions as operands to
3029 // fold-expressions, we'll need to allow multiple ArgExprs here.
3030 if (ExprType >= FoldExpr && ArgExprs.size() == 1 &&
3031 isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) {
3032 ExprType = FoldExpr;
3033 return ParseFoldExpression(ArgExprs[0], T);
3034 }
3035
3036 ExprType = SimpleExpr;
3037 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
3038 ArgExprs);
3039 }
3040 } else if (getLangOpts().OpenMP >= 50 && OpenMPDirectiveParsing &&
3041 ExprType == CastExpr && Tok.is(tok::l_square) &&
3042 tryParseOpenMPArrayShapingCastPart()) {
3043 bool ErrorFound = false;
3044 SmallVector<Expr *, 4> OMPDimensions;
3045 SmallVector<SourceRange, 4> OMPBracketsRanges;
3046 do {
3047 BalancedDelimiterTracker TS(*this, tok::l_square);
3048 TS.consumeOpen();
3049 ExprResult NumElements =
3050 Actions.CorrectDelayedTyposInExpr(ParseExpression());
3051 if (!NumElements.isUsable()) {
3052 ErrorFound = true;
3053 while (!SkipUntil(tok::r_square, tok::r_paren,
3054 StopAtSemi | StopBeforeMatch))
3055 ;
3056 }
3057 TS.consumeClose();
3058 OMPDimensions.push_back(NumElements.get());
3059 OMPBracketsRanges.push_back(TS.getRange());
3060 } while (Tok.isNot(tok::r_paren));
3061 // Match the ')'.
3062 T.consumeClose();
3063 RParenLoc = T.getCloseLocation();
3064 Result = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3065 if (ErrorFound) {
3066 Result = ExprError();
3067 } else if (!Result.isInvalid()) {
3068 Result = Actions.ActOnOMPArrayShapingExpr(
3069 Result.get(), OpenLoc, RParenLoc, OMPDimensions, OMPBracketsRanges);
3070 }
3071 return Result;
3072 } else {
3073 InMessageExpressionRAIIObject InMessage(*this, false);
3074
3075 Result = ParseExpression(MaybeTypeCast);
3076 if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) {
3077 // Correct typos in non-C++ code earlier so that implicit-cast-like
3078 // expressions are parsed correctly.
3079 Result = Actions.CorrectDelayedTyposInExpr(Result);
3080 }
3081
3082 if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) &&
3083 NextToken().is(tok::ellipsis)) {
3084 ExprType = FoldExpr;
3085 return ParseFoldExpression(Result, T);
3086 }
3087 ExprType = SimpleExpr;
3088
3089 // Don't build a paren expression unless we actually match a ')'.
3090 if (!Result.isInvalid() && Tok.is(tok::r_paren))
3091 Result =
3092 Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
3093 }
3094
3095 // Match the ')'.
3096 if (Result.isInvalid()) {
3097 SkipUntil(tok::r_paren, StopAtSemi);
3098 return ExprError();
3099 }
3100
3101 T.consumeClose();
3102 RParenLoc = T.getCloseLocation();
3103 return Result;
3104 }
3105
3106 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
3107 /// and we are at the left brace.
3108 ///
3109 /// \verbatim
3110 /// postfix-expression: [C99 6.5.2]
3111 /// '(' type-name ')' '{' initializer-list '}'
3112 /// '(' type-name ')' '{' initializer-list ',' '}'
3113 /// \endverbatim
3114 ExprResult
ParseCompoundLiteralExpression(ParsedType Ty,SourceLocation LParenLoc,SourceLocation RParenLoc)3115 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
3116 SourceLocation LParenLoc,
3117 SourceLocation RParenLoc) {
3118 assert(Tok.is(tok::l_brace) && "Not a compound literal!");
3119 if (!getLangOpts().C99) // Compound literals don't exist in C90.
3120 Diag(LParenLoc, diag::ext_c99_compound_literal);
3121 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get());
3122 ExprResult Result = ParseInitializer();
3123 if (!Result.isInvalid() && Ty)
3124 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
3125 return Result;
3126 }
3127
3128 /// ParseStringLiteralExpression - This handles the various token types that
3129 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
3130 /// translation phase #6].
3131 ///
3132 /// \verbatim
3133 /// primary-expression: [C99 6.5.1]
3134 /// string-literal
3135 /// \verbatim
ParseStringLiteralExpression(bool AllowUserDefinedLiteral)3136 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
3137 assert(isTokenStringLiteral() && "Not a string literal!");
3138
3139 // String concat. Note that keywords like __func__ and __FUNCTION__ are not
3140 // considered to be strings for concatenation purposes.
3141 SmallVector<Token, 4> StringToks;
3142
3143 do {
3144 StringToks.push_back(Tok);
3145 ConsumeStringToken();
3146 } while (isTokenStringLiteral());
3147
3148 // Pass the set of string tokens, ready for concatenation, to the actions.
3149 return Actions.ActOnStringLiteral(StringToks,
3150 AllowUserDefinedLiteral ? getCurScope()
3151 : nullptr);
3152 }
3153
3154 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
3155 /// [C11 6.5.1.1].
3156 ///
3157 /// \verbatim
3158 /// generic-selection:
3159 /// _Generic ( assignment-expression , generic-assoc-list )
3160 /// generic-assoc-list:
3161 /// generic-association
3162 /// generic-assoc-list , generic-association
3163 /// generic-association:
3164 /// type-name : assignment-expression
3165 /// default : assignment-expression
3166 /// \endverbatim
ParseGenericSelectionExpression()3167 ExprResult Parser::ParseGenericSelectionExpression() {
3168 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
3169 if (!getLangOpts().C11)
3170 Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3171
3172 SourceLocation KeyLoc = ConsumeToken();
3173 BalancedDelimiterTracker T(*this, tok::l_paren);
3174 if (T.expectAndConsume())
3175 return ExprError();
3176
3177 ExprResult ControllingExpr;
3178 {
3179 // C11 6.5.1.1p3 "The controlling expression of a generic selection is
3180 // not evaluated."
3181 EnterExpressionEvaluationContext Unevaluated(
3182 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3183 ControllingExpr =
3184 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3185 if (ControllingExpr.isInvalid()) {
3186 SkipUntil(tok::r_paren, StopAtSemi);
3187 return ExprError();
3188 }
3189 }
3190
3191 if (ExpectAndConsume(tok::comma)) {
3192 SkipUntil(tok::r_paren, StopAtSemi);
3193 return ExprError();
3194 }
3195
3196 SourceLocation DefaultLoc;
3197 TypeVector Types;
3198 ExprVector Exprs;
3199 do {
3200 ParsedType Ty;
3201 if (Tok.is(tok::kw_default)) {
3202 // C11 6.5.1.1p2 "A generic selection shall have no more than one default
3203 // generic association."
3204 if (!DefaultLoc.isInvalid()) {
3205 Diag(Tok, diag::err_duplicate_default_assoc);
3206 Diag(DefaultLoc, diag::note_previous_default_assoc);
3207 SkipUntil(tok::r_paren, StopAtSemi);
3208 return ExprError();
3209 }
3210 DefaultLoc = ConsumeToken();
3211 Ty = nullptr;
3212 } else {
3213 ColonProtectionRAIIObject X(*this);
3214 TypeResult TR = ParseTypeName();
3215 if (TR.isInvalid()) {
3216 SkipUntil(tok::r_paren, StopAtSemi);
3217 return ExprError();
3218 }
3219 Ty = TR.get();
3220 }
3221 Types.push_back(Ty);
3222
3223 if (ExpectAndConsume(tok::colon)) {
3224 SkipUntil(tok::r_paren, StopAtSemi);
3225 return ExprError();
3226 }
3227
3228 // FIXME: These expressions should be parsed in a potentially potentially
3229 // evaluated context.
3230 ExprResult ER(
3231 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
3232 if (ER.isInvalid()) {
3233 SkipUntil(tok::r_paren, StopAtSemi);
3234 return ExprError();
3235 }
3236 Exprs.push_back(ER.get());
3237 } while (TryConsumeToken(tok::comma));
3238
3239 T.consumeClose();
3240 if (T.getCloseLocation().isInvalid())
3241 return ExprError();
3242
3243 return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
3244 T.getCloseLocation(),
3245 ControllingExpr.get(),
3246 Types, Exprs);
3247 }
3248
3249 /// Parse A C++1z fold-expression after the opening paren and optional
3250 /// left-hand-side expression.
3251 ///
3252 /// \verbatim
3253 /// fold-expression:
3254 /// ( cast-expression fold-operator ... )
3255 /// ( ... fold-operator cast-expression )
3256 /// ( cast-expression fold-operator ... fold-operator cast-expression )
ParseFoldExpression(ExprResult LHS,BalancedDelimiterTracker & T)3257 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
3258 BalancedDelimiterTracker &T) {
3259 if (LHS.isInvalid()) {
3260 T.skipToEnd();
3261 return true;
3262 }
3263
3264 tok::TokenKind Kind = tok::unknown;
3265 SourceLocation FirstOpLoc;
3266 if (LHS.isUsable()) {
3267 Kind = Tok.getKind();
3268 assert(isFoldOperator(Kind) && "missing fold-operator");
3269 FirstOpLoc = ConsumeToken();
3270 }
3271
3272 assert(Tok.is(tok::ellipsis) && "not a fold-expression");
3273 SourceLocation EllipsisLoc = ConsumeToken();
3274
3275 ExprResult RHS;
3276 if (Tok.isNot(tok::r_paren)) {
3277 if (!isFoldOperator(Tok.getKind()))
3278 return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
3279
3280 if (Kind != tok::unknown && Tok.getKind() != Kind)
3281 Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
3282 << SourceRange(FirstOpLoc);
3283 Kind = Tok.getKind();
3284 ConsumeToken();
3285
3286 RHS = ParseExpression();
3287 if (RHS.isInvalid()) {
3288 T.skipToEnd();
3289 return true;
3290 }
3291 }
3292
3293 Diag(EllipsisLoc, getLangOpts().CPlusPlus17
3294 ? diag::warn_cxx14_compat_fold_expression
3295 : diag::ext_fold_expression);
3296
3297 T.consumeClose();
3298 return Actions.ActOnCXXFoldExpr(getCurScope(), T.getOpenLocation(), LHS.get(),
3299 Kind, EllipsisLoc, RHS.get(),
3300 T.getCloseLocation());
3301 }
3302
3303 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
3304 ///
3305 /// \verbatim
3306 /// argument-expression-list:
3307 /// assignment-expression
3308 /// argument-expression-list , assignment-expression
3309 ///
3310 /// [C++] expression-list:
3311 /// [C++] assignment-expression
3312 /// [C++] expression-list , assignment-expression
3313 ///
3314 /// [C++0x] expression-list:
3315 /// [C++0x] initializer-list
3316 ///
3317 /// [C++0x] initializer-list
3318 /// [C++0x] initializer-clause ...[opt]
3319 /// [C++0x] initializer-list , initializer-clause ...[opt]
3320 ///
3321 /// [C++0x] initializer-clause:
3322 /// [C++0x] assignment-expression
3323 /// [C++0x] braced-init-list
3324 /// \endverbatim
ParseExpressionList(SmallVectorImpl<Expr * > & Exprs,SmallVectorImpl<SourceLocation> & CommaLocs,llvm::function_ref<void ()> ExpressionStarts)3325 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
3326 SmallVectorImpl<SourceLocation> &CommaLocs,
3327 llvm::function_ref<void()> ExpressionStarts) {
3328 bool SawError = false;
3329 while (1) {
3330 if (ExpressionStarts)
3331 ExpressionStarts();
3332
3333 ExprResult Expr;
3334 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
3335 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
3336 Expr = ParseBraceInitializer();
3337 } else
3338 Expr = ParseAssignmentExpression();
3339
3340 if (Tok.is(tok::ellipsis))
3341 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
3342 else if (Tok.is(tok::code_completion)) {
3343 // There's nothing to suggest in here as we parsed a full expression.
3344 // Instead fail and propogate the error since caller might have something
3345 // the suggest, e.g. signature help in function call. Note that this is
3346 // performed before pushing the \p Expr, so that signature help can report
3347 // current argument correctly.
3348 SawError = true;
3349 cutOffParsing();
3350 break;
3351 }
3352 if (Expr.isInvalid()) {
3353 SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
3354 SawError = true;
3355 } else {
3356 Exprs.push_back(Expr.get());
3357 }
3358
3359 if (Tok.isNot(tok::comma))
3360 break;
3361 // Move to the next argument, remember where the comma was.
3362 Token Comma = Tok;
3363 CommaLocs.push_back(ConsumeToken());
3364
3365 checkPotentialAngleBracketDelimiter(Comma);
3366 }
3367 if (SawError) {
3368 // Ensure typos get diagnosed when errors were encountered while parsing the
3369 // expression list.
3370 for (auto &E : Exprs) {
3371 ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
3372 if (Expr.isUsable()) E = Expr.get();
3373 }
3374 }
3375 return SawError;
3376 }
3377
3378 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
3379 /// used for misc language extensions.
3380 ///
3381 /// \verbatim
3382 /// simple-expression-list:
3383 /// assignment-expression
3384 /// simple-expression-list , assignment-expression
3385 /// \endverbatim
3386 bool
ParseSimpleExpressionList(SmallVectorImpl<Expr * > & Exprs,SmallVectorImpl<SourceLocation> & CommaLocs)3387 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
3388 SmallVectorImpl<SourceLocation> &CommaLocs) {
3389 while (1) {
3390 ExprResult Expr = ParseAssignmentExpression();
3391 if (Expr.isInvalid())
3392 return true;
3393
3394 Exprs.push_back(Expr.get());
3395
3396 if (Tok.isNot(tok::comma))
3397 return false;
3398
3399 // Move to the next argument, remember where the comma was.
3400 Token Comma = Tok;
3401 CommaLocs.push_back(ConsumeToken());
3402
3403 checkPotentialAngleBracketDelimiter(Comma);
3404 }
3405 }
3406
3407 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
3408 ///
3409 /// \verbatim
3410 /// [clang] block-id:
3411 /// [clang] specifier-qualifier-list block-declarator
3412 /// \endverbatim
ParseBlockId(SourceLocation CaretLoc)3413 void Parser::ParseBlockId(SourceLocation CaretLoc) {
3414 if (Tok.is(tok::code_completion)) {
3415 cutOffParsing();
3416 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
3417 return;
3418 }
3419
3420 // Parse the specifier-qualifier-list piece.
3421 DeclSpec DS(AttrFactory);
3422 ParseSpecifierQualifierList(DS);
3423
3424 // Parse the block-declarator.
3425 Declarator DeclaratorInfo(DS, DeclaratorContext::BlockLiteral);
3426 DeclaratorInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3427 ParseDeclarator(DeclaratorInfo);
3428
3429 MaybeParseGNUAttributes(DeclaratorInfo);
3430
3431 // Inform sema that we are starting a block.
3432 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
3433 }
3434
3435 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
3436 /// like ^(int x){ return x+1; }
3437 ///
3438 /// \verbatim
3439 /// block-literal:
3440 /// [clang] '^' block-args[opt] compound-statement
3441 /// [clang] '^' block-id compound-statement
3442 /// [clang] block-args:
3443 /// [clang] '(' parameter-list ')'
3444 /// \endverbatim
ParseBlockLiteralExpression()3445 ExprResult Parser::ParseBlockLiteralExpression() {
3446 assert(Tok.is(tok::caret) && "block literal starts with ^");
3447 SourceLocation CaretLoc = ConsumeToken();
3448
3449 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
3450 "block literal parsing");
3451
3452 // Enter a scope to hold everything within the block. This includes the
3453 // argument decls, decls within the compound expression, etc. This also
3454 // allows determining whether a variable reference inside the block is
3455 // within or outside of the block.
3456 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
3457 Scope::CompoundStmtScope | Scope::DeclScope);
3458
3459 // Inform sema that we are starting a block.
3460 Actions.ActOnBlockStart(CaretLoc, getCurScope());
3461
3462 // Parse the return type if present.
3463 DeclSpec DS(AttrFactory);
3464 Declarator ParamInfo(DS, DeclaratorContext::BlockLiteral);
3465 ParamInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3466 // FIXME: Since the return type isn't actually parsed, it can't be used to
3467 // fill ParamInfo with an initial valid range, so do it manually.
3468 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
3469
3470 // If this block has arguments, parse them. There is no ambiguity here with
3471 // the expression case, because the expression case requires a parameter list.
3472 if (Tok.is(tok::l_paren)) {
3473 ParseParenDeclarator(ParamInfo);
3474 // Parse the pieces after the identifier as if we had "int(...)".
3475 // SetIdentifier sets the source range end, but in this case we're past
3476 // that location.
3477 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
3478 ParamInfo.SetIdentifier(nullptr, CaretLoc);
3479 ParamInfo.SetRangeEnd(Tmp);
3480 if (ParamInfo.isInvalidType()) {
3481 // If there was an error parsing the arguments, they may have
3482 // tried to use ^(x+y) which requires an argument list. Just
3483 // skip the whole block literal.
3484 Actions.ActOnBlockError(CaretLoc, getCurScope());
3485 return ExprError();
3486 }
3487
3488 MaybeParseGNUAttributes(ParamInfo);
3489
3490 // Inform sema that we are starting a block.
3491 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3492 } else if (!Tok.is(tok::l_brace)) {
3493 ParseBlockId(CaretLoc);
3494 } else {
3495 // Otherwise, pretend we saw (void).
3496 SourceLocation NoLoc;
3497 ParamInfo.AddTypeInfo(
3498 DeclaratorChunk::getFunction(/*HasProto=*/true,
3499 /*IsAmbiguous=*/false,
3500 /*RParenLoc=*/NoLoc,
3501 /*ArgInfo=*/nullptr,
3502 /*NumParams=*/0,
3503 /*EllipsisLoc=*/NoLoc,
3504 /*RParenLoc=*/NoLoc,
3505 /*RefQualifierIsLvalueRef=*/true,
3506 /*RefQualifierLoc=*/NoLoc,
3507 /*MutableLoc=*/NoLoc, EST_None,
3508 /*ESpecRange=*/SourceRange(),
3509 /*Exceptions=*/nullptr,
3510 /*ExceptionRanges=*/nullptr,
3511 /*NumExceptions=*/0,
3512 /*NoexceptExpr=*/nullptr,
3513 /*ExceptionSpecTokens=*/nullptr,
3514 /*DeclsInPrototype=*/None, CaretLoc,
3515 CaretLoc, ParamInfo),
3516 CaretLoc);
3517
3518 MaybeParseGNUAttributes(ParamInfo);
3519
3520 // Inform sema that we are starting a block.
3521 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3522 }
3523
3524
3525 ExprResult Result(true);
3526 if (!Tok.is(tok::l_brace)) {
3527 // Saw something like: ^expr
3528 Diag(Tok, diag::err_expected_expression);
3529 Actions.ActOnBlockError(CaretLoc, getCurScope());
3530 return ExprError();
3531 }
3532
3533 StmtResult Stmt(ParseCompoundStatementBody());
3534 BlockScope.Exit();
3535 if (!Stmt.isInvalid())
3536 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
3537 else
3538 Actions.ActOnBlockError(CaretLoc, getCurScope());
3539 return Result;
3540 }
3541
3542 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
3543 ///
3544 /// '__objc_yes'
3545 /// '__objc_no'
ParseObjCBoolLiteral()3546 ExprResult Parser::ParseObjCBoolLiteral() {
3547 tok::TokenKind Kind = Tok.getKind();
3548 return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
3549 }
3550
3551 /// Validate availability spec list, emitting diagnostics if necessary. Returns
3552 /// true if invalid.
CheckAvailabilitySpecList(Parser & P,ArrayRef<AvailabilitySpec> AvailSpecs)3553 static bool CheckAvailabilitySpecList(Parser &P,
3554 ArrayRef<AvailabilitySpec> AvailSpecs) {
3555 llvm::SmallSet<StringRef, 4> Platforms;
3556 bool HasOtherPlatformSpec = false;
3557 bool Valid = true;
3558 for (const auto &Spec : AvailSpecs) {
3559 if (Spec.isOtherPlatformSpec()) {
3560 if (HasOtherPlatformSpec) {
3561 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star);
3562 Valid = false;
3563 }
3564
3565 HasOtherPlatformSpec = true;
3566 continue;
3567 }
3568
3569 bool Inserted = Platforms.insert(Spec.getPlatform()).second;
3570 if (!Inserted) {
3571 // Rule out multiple version specs referring to the same platform.
3572 // For example, we emit an error for:
3573 // @available(macos 10.10, macos 10.11, *)
3574 StringRef Platform = Spec.getPlatform();
3575 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform)
3576 << Spec.getEndLoc() << Platform;
3577 Valid = false;
3578 }
3579 }
3580
3581 if (!HasOtherPlatformSpec) {
3582 SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc();
3583 P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required)
3584 << FixItHint::CreateInsertion(InsertWildcardLoc, ", *");
3585 return true;
3586 }
3587
3588 return !Valid;
3589 }
3590
3591 /// Parse availability query specification.
3592 ///
3593 /// availability-spec:
3594 /// '*'
3595 /// identifier version-tuple
ParseAvailabilitySpec()3596 Optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() {
3597 if (Tok.is(tok::star)) {
3598 return AvailabilitySpec(ConsumeToken());
3599 } else {
3600 // Parse the platform name.
3601 if (Tok.is(tok::code_completion)) {
3602 cutOffParsing();
3603 Actions.CodeCompleteAvailabilityPlatformName();
3604 return None;
3605 }
3606 if (Tok.isNot(tok::identifier)) {
3607 Diag(Tok, diag::err_avail_query_expected_platform_name);
3608 return None;
3609 }
3610
3611 IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc();
3612 SourceRange VersionRange;
3613 VersionTuple Version = ParseVersionTuple(VersionRange);
3614
3615 if (Version.empty())
3616 return None;
3617
3618 StringRef GivenPlatform = PlatformIdentifier->Ident->getName();
3619 StringRef Platform =
3620 AvailabilityAttr::canonicalizePlatformName(GivenPlatform);
3621
3622 if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) {
3623 Diag(PlatformIdentifier->Loc,
3624 diag::err_avail_query_unrecognized_platform_name)
3625 << GivenPlatform;
3626 return None;
3627 }
3628
3629 return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc,
3630 VersionRange.getEnd());
3631 }
3632 }
3633
ParseAvailabilityCheckExpr(SourceLocation BeginLoc)3634 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) {
3635 assert(Tok.is(tok::kw___builtin_available) ||
3636 Tok.isObjCAtKeyword(tok::objc_available));
3637
3638 // Eat the available or __builtin_available.
3639 ConsumeToken();
3640
3641 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3642 if (Parens.expectAndConsume())
3643 return ExprError();
3644
3645 SmallVector<AvailabilitySpec, 4> AvailSpecs;
3646 bool HasError = false;
3647 while (true) {
3648 Optional<AvailabilitySpec> Spec = ParseAvailabilitySpec();
3649 if (!Spec)
3650 HasError = true;
3651 else
3652 AvailSpecs.push_back(*Spec);
3653
3654 if (!TryConsumeToken(tok::comma))
3655 break;
3656 }
3657
3658 if (HasError) {
3659 SkipUntil(tok::r_paren, StopAtSemi);
3660 return ExprError();
3661 }
3662
3663 CheckAvailabilitySpecList(*this, AvailSpecs);
3664
3665 if (Parens.consumeClose())
3666 return ExprError();
3667
3668 return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc,
3669 Parens.getCloseLocation());
3670 }
3671