1 //===- llvm/Transforms/Utils/LoopUtils.h - Loop utilities -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines some loop transformation utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
14 #define LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
15 
16 #include "llvm/Analysis/IVDescriptors.h"
17 #include "llvm/Analysis/LoopAccessAnalysis.h"
18 #include "llvm/Transforms/Utils/ValueMapper.h"
19 
20 namespace llvm {
21 
22 template <typename T> class DomTreeNodeBase;
23 using DomTreeNode = DomTreeNodeBase<BasicBlock>;
24 class AssumptionCache;
25 class StringRef;
26 class AnalysisUsage;
27 class TargetTransformInfo;
28 class AAResults;
29 class BasicBlock;
30 class ICFLoopSafetyInfo;
31 class IRBuilderBase;
32 class Loop;
33 class LoopInfo;
34 class MemoryAccess;
35 class MemorySSA;
36 class MemorySSAUpdater;
37 class OptimizationRemarkEmitter;
38 class PredIteratorCache;
39 class ScalarEvolution;
40 class SCEV;
41 class SCEVExpander;
42 class TargetLibraryInfo;
43 class LPPassManager;
44 class Instruction;
45 struct RuntimeCheckingPtrGroup;
46 typedef std::pair<const RuntimeCheckingPtrGroup *,
47                   const RuntimeCheckingPtrGroup *>
48     RuntimePointerCheck;
49 
50 template <typename T, unsigned N> class SmallSetVector;
51 template <typename T, unsigned N> class SmallPriorityWorklist;
52 
53 BasicBlock *InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
54                                    MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
55 
56 /// Ensure that all exit blocks of the loop are dedicated exits.
57 ///
58 /// For any loop exit block with non-loop predecessors, we split the loop
59 /// predecessors to use a dedicated loop exit block. We update the dominator
60 /// tree and loop info if provided, and will preserve LCSSA if requested.
61 bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
62                              MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
63 
64 /// Ensures LCSSA form for every instruction from the Worklist in the scope of
65 /// innermost containing loop.
66 ///
67 /// For the given instruction which have uses outside of the loop, an LCSSA PHI
68 /// node is inserted and the uses outside the loop are rewritten to use this
69 /// node.
70 ///
71 /// LoopInfo and DominatorTree are required and, since the routine makes no
72 /// changes to CFG, preserved.
73 ///
74 /// Returns true if any modifications are made.
75 ///
76 /// This function may introduce unused PHI nodes. If \p PHIsToRemove is not
77 /// nullptr, those are added to it (before removing, the caller has to check if
78 /// they still do not have any uses). Otherwise the PHIs are directly removed.
79 bool formLCSSAForInstructions(
80     SmallVectorImpl<Instruction *> &Worklist, const DominatorTree &DT,
81     const LoopInfo &LI, ScalarEvolution *SE, IRBuilderBase &Builder,
82     SmallVectorImpl<PHINode *> *PHIsToRemove = nullptr);
83 
84 /// Put loop into LCSSA form.
85 ///
86 /// Looks at all instructions in the loop which have uses outside of the
87 /// current loop. For each, an LCSSA PHI node is inserted and the uses outside
88 /// the loop are rewritten to use this node. Sub-loops must be in LCSSA form
89 /// already.
90 ///
91 /// LoopInfo and DominatorTree are required and preserved.
92 ///
93 /// If ScalarEvolution is passed in, it will be preserved.
94 ///
95 /// Returns true if any modifications are made to the loop.
96 bool formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
97                ScalarEvolution *SE);
98 
99 /// Put a loop nest into LCSSA form.
100 ///
101 /// This recursively forms LCSSA for a loop nest.
102 ///
103 /// LoopInfo and DominatorTree are required and preserved.
104 ///
105 /// If ScalarEvolution is passed in, it will be preserved.
106 ///
107 /// Returns true if any modifications are made to the loop.
108 bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
109                           ScalarEvolution *SE);
110 
111 /// Flags controlling how much is checked when sinking or hoisting
112 /// instructions.  The number of memory access in the loop (and whether there
113 /// are too many) is determined in the constructors when using MemorySSA.
114 class SinkAndHoistLICMFlags {
115 public:
116   // Explicitly set limits.
117   SinkAndHoistLICMFlags(unsigned LicmMssaOptCap,
118                         unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
119                         Loop *L = nullptr, MemorySSA *MSSA = nullptr);
120   // Use default limits.
121   SinkAndHoistLICMFlags(bool IsSink, Loop *L = nullptr,
122                         MemorySSA *MSSA = nullptr);
123 
setIsSink(bool B)124   void setIsSink(bool B) { IsSink = B; }
getIsSink()125   bool getIsSink() { return IsSink; }
tooManyMemoryAccesses()126   bool tooManyMemoryAccesses() { return NoOfMemAccTooLarge; }
tooManyClobberingCalls()127   bool tooManyClobberingCalls() { return LicmMssaOptCounter >= LicmMssaOptCap; }
incrementClobberingCalls()128   void incrementClobberingCalls() { ++LicmMssaOptCounter; }
129 
130 protected:
131   bool NoOfMemAccTooLarge = false;
132   unsigned LicmMssaOptCounter = 0;
133   unsigned LicmMssaOptCap;
134   unsigned LicmMssaNoAccForPromotionCap;
135   bool IsSink;
136 };
137 
138 /// Walk the specified region of the CFG (defined by all blocks
139 /// dominated by the specified block, and that are in the current loop) in
140 /// reverse depth first order w.r.t the DominatorTree. This allows us to visit
141 /// uses before definitions, allowing us to sink a loop body in one pass without
142 /// iteration. Takes DomTreeNode, AAResults, LoopInfo, DominatorTree,
143 /// TargetLibraryInfo, Loop, AliasSet information for all
144 /// instructions of the loop and loop safety information as
145 /// arguments. Diagnostics is emitted via \p ORE. It returns changed status.
146 /// \p CurLoop is a loop to do sinking on. \p OutermostLoop is used only when
147 /// this function is called by \p sinkRegionForLoopNest.
148 bool sinkRegion(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *,
149                 TargetLibraryInfo *, TargetTransformInfo *, Loop *CurLoop,
150                 MemorySSAUpdater &, ICFLoopSafetyInfo *,
151                 SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *,
152                 Loop *OutermostLoop = nullptr);
153 
154 /// Call sinkRegion on loops contained within the specified loop
155 /// in order from innermost to outermost.
156 bool sinkRegionForLoopNest(DomTreeNode *, AAResults *, LoopInfo *,
157                            DominatorTree *, TargetLibraryInfo *,
158                            TargetTransformInfo *, Loop *, MemorySSAUpdater &,
159                            ICFLoopSafetyInfo *, SinkAndHoistLICMFlags &,
160                            OptimizationRemarkEmitter *);
161 
162 /// Walk the specified region of the CFG (defined by all blocks
163 /// dominated by the specified block, and that are in the current loop) in depth
164 /// first order w.r.t the DominatorTree.  This allows us to visit definitions
165 /// before uses, allowing us to hoist a loop body in one pass without iteration.
166 /// Takes DomTreeNode, AAResults, LoopInfo, DominatorTree,
167 /// TargetLibraryInfo, Loop, AliasSet information for all
168 /// instructions of the loop and loop safety information as arguments.
169 /// Diagnostics is emitted via \p ORE. It returns changed status.
170 /// \p AllowSpeculation is whether values should be hoisted even if they are not
171 /// guaranteed to execute in the loop, but are safe to speculatively execute.
172 bool hoistRegion(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *,
173                  AssumptionCache *, TargetLibraryInfo *, Loop *,
174                  MemorySSAUpdater &, ScalarEvolution *, ICFLoopSafetyInfo *,
175                  SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *, bool,
176                  bool AllowSpeculation);
177 
178 /// This function deletes dead loops. The caller of this function needs to
179 /// guarantee that the loop is infact dead.
180 /// The function requires a bunch or prerequisites to be present:
181 ///   - The loop needs to be in LCSSA form
182 ///   - The loop needs to have a Preheader
183 ///   - A unique dedicated exit block must exist
184 ///
185 /// This also updates the relevant analysis information in \p DT, \p SE, \p LI
186 /// and \p MSSA if pointers to those are provided.
187 /// It also updates the loop PM if an updater struct is provided.
188 
189 void deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
190                     LoopInfo *LI, MemorySSA *MSSA = nullptr);
191 
192 /// Remove the backedge of the specified loop.  Handles loop nests and general
193 /// loop structures subject to the precondition that the loop has no parent
194 /// loop and has a single latch block.  Preserves all listed analyses.
195 void breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
196                        LoopInfo &LI, MemorySSA *MSSA);
197 
198 /// Try to promote memory values to scalars by sinking stores out of
199 /// the loop and moving loads to before the loop.  We do this by looping over
200 /// the stores in the loop, looking for stores to Must pointers which are
201 /// loop invariant. It takes a set of must-alias values, Loop exit blocks
202 /// vector, loop exit blocks insertion point vector, PredIteratorCache,
203 /// LoopInfo, DominatorTree, Loop, AliasSet information for all instructions
204 /// of the loop and loop safety information as arguments.
205 /// Diagnostics is emitted via \p ORE. It returns changed status.
206 /// \p AllowSpeculation is whether values should be hoisted even if they are not
207 /// guaranteed to execute in the loop, but are safe to speculatively execute.
208 bool promoteLoopAccessesToScalars(
209     const SmallSetVector<Value *, 8> &, SmallVectorImpl<BasicBlock *> &,
210     SmallVectorImpl<Instruction *> &, SmallVectorImpl<MemoryAccess *> &,
211     PredIteratorCache &, LoopInfo *, DominatorTree *, AssumptionCache *AC,
212     const TargetLibraryInfo *, TargetTransformInfo *, Loop *,
213     MemorySSAUpdater &, ICFLoopSafetyInfo *, OptimizationRemarkEmitter *,
214     bool AllowSpeculation, bool HasReadsOutsideSet);
215 
216 /// Does a BFS from a given node to all of its children inside a given loop.
217 /// The returned vector of nodes includes the starting point.
218 SmallVector<DomTreeNode *, 16> collectChildrenInLoop(DomTreeNode *N,
219                                                      const Loop *CurLoop);
220 
221 /// Returns the instructions that use values defined in the loop.
222 SmallVector<Instruction *, 8> findDefsUsedOutsideOfLoop(Loop *L);
223 
224 /// Find a combination of metadata ("llvm.loop.vectorize.width" and
225 /// "llvm.loop.vectorize.scalable.enable") for a loop and use it to construct a
226 /// ElementCount. If the metadata "llvm.loop.vectorize.width" cannot be found
227 /// then std::nullopt is returned.
228 std::optional<ElementCount>
229 getOptionalElementCountLoopAttribute(const Loop *TheLoop);
230 
231 /// Create a new loop identifier for a loop created from a loop transformation.
232 ///
233 /// @param OrigLoopID The loop ID of the loop before the transformation.
234 /// @param FollowupAttrs List of attribute names that contain attributes to be
235 ///                      added to the new loop ID.
236 /// @param InheritOptionsAttrsPrefix Selects which attributes should be inherited
237 ///                                  from the original loop. The following values
238 ///                                  are considered:
239 ///        nullptr   : Inherit all attributes from @p OrigLoopID.
240 ///        ""        : Do not inherit any attribute from @p OrigLoopID; only use
241 ///                    those specified by a followup attribute.
242 ///        "<prefix>": Inherit all attributes except those which start with
243 ///                    <prefix>; commonly used to remove metadata for the
244 ///                    applied transformation.
245 /// @param AlwaysNew If true, do not try to reuse OrigLoopID and never return
246 ///                  std::nullopt.
247 ///
248 /// @return The loop ID for the after-transformation loop. The following values
249 ///         can be returned:
250 ///         std::nullopt : No followup attribute was found; it is up to the
251 ///                        transformation to choose attributes that make sense.
252 ///         @p OrigLoopID: The original identifier can be reused.
253 ///         nullptr      : The new loop has no attributes.
254 ///         MDNode*      : A new unique loop identifier.
255 std::optional<MDNode *>
256 makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef<StringRef> FollowupAttrs,
257                    const char *InheritOptionsAttrsPrefix = "",
258                    bool AlwaysNew = false);
259 
260 /// Look for the loop attribute that disables all transformation heuristic.
261 bool hasDisableAllTransformsHint(const Loop *L);
262 
263 /// Look for the loop attribute that disables the LICM transformation heuristics.
264 bool hasDisableLICMTransformsHint(const Loop *L);
265 
266 /// The mode sets how eager a transformation should be applied.
267 enum TransformationMode {
268   /// The pass can use heuristics to determine whether a transformation should
269   /// be applied.
270   TM_Unspecified,
271 
272   /// The transformation should be applied without considering a cost model.
273   TM_Enable,
274 
275   /// The transformation should not be applied.
276   TM_Disable,
277 
278   /// Force is a flag and should not be used alone.
279   TM_Force = 0x04,
280 
281   /// The transformation was directed by the user, e.g. by a #pragma in
282   /// the source code. If the transformation could not be applied, a
283   /// warning should be emitted.
284   TM_ForcedByUser = TM_Enable | TM_Force,
285 
286   /// The transformation must not be applied. For instance, `#pragma clang loop
287   /// unroll(disable)` explicitly forbids any unrolling to take place. Unlike
288   /// general loop metadata, it must not be dropped. Most passes should not
289   /// behave differently under TM_Disable and TM_SuppressedByUser.
290   TM_SuppressedByUser = TM_Disable | TM_Force
291 };
292 
293 /// @{
294 /// Get the mode for LLVM's supported loop transformations.
295 TransformationMode hasUnrollTransformation(const Loop *L);
296 TransformationMode hasUnrollAndJamTransformation(const Loop *L);
297 TransformationMode hasVectorizeTransformation(const Loop *L);
298 TransformationMode hasDistributeTransformation(const Loop *L);
299 TransformationMode hasLICMVersioningTransformation(const Loop *L);
300 /// @}
301 
302 /// Set input string into loop metadata by keeping other values intact.
303 /// If the string is already in loop metadata update value if it is
304 /// different.
305 void addStringMetadataToLoop(Loop *TheLoop, const char *MDString,
306                              unsigned V = 0);
307 
308 /// Returns a loop's estimated trip count based on branch weight metadata.
309 /// In addition if \p EstimatedLoopInvocationWeight is not null it is
310 /// initialized with weight of loop's latch leading to the exit.
311 /// Returns 0 when the count is estimated to be 0, or std::nullopt when a
312 /// meaningful estimate can not be made.
313 std::optional<unsigned>
314 getLoopEstimatedTripCount(Loop *L,
315                           unsigned *EstimatedLoopInvocationWeight = nullptr);
316 
317 /// Set a loop's branch weight metadata to reflect that loop has \p
318 /// EstimatedTripCount iterations and \p EstimatedLoopInvocationWeight exits
319 /// through latch. Returns true if metadata is successfully updated, false
320 /// otherwise. Note that loop must have a latch block which controls loop exit
321 /// in order to succeed.
322 bool setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
323                                unsigned EstimatedLoopInvocationWeight);
324 
325 /// Check inner loop (L) backedge count is known to be invariant on all
326 /// iterations of its outer loop. If the loop has no parent, this is trivially
327 /// true.
328 bool hasIterationCountInvariantInParent(Loop *L, ScalarEvolution &SE);
329 
330 /// Helper to consistently add the set of standard passes to a loop pass's \c
331 /// AnalysisUsage.
332 ///
333 /// All loop passes should call this as part of implementing their \c
334 /// getAnalysisUsage.
335 void getLoopAnalysisUsage(AnalysisUsage &AU);
336 
337 /// Returns true if is legal to hoist or sink this instruction disregarding the
338 /// possible introduction of faults.  Reasoning about potential faulting
339 /// instructions is the responsibility of the caller since it is challenging to
340 /// do efficiently from within this routine.
341 /// \p TargetExecutesOncePerLoop is true only when it is guaranteed that the
342 /// target executes at most once per execution of the loop body.  This is used
343 /// to assess the legality of duplicating atomic loads.  Generally, this is
344 /// true when moving out of loop and not true when moving into loops.
345 /// If \p ORE is set use it to emit optimization remarks.
346 bool canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
347                         Loop *CurLoop, MemorySSAUpdater &MSSAU,
348                         bool TargetExecutesOncePerLoop,
349                         SinkAndHoistLICMFlags &LICMFlags,
350                         OptimizationRemarkEmitter *ORE = nullptr);
351 
352 /// Returns the comparison predicate used when expanding a min/max reduction.
353 CmpInst::Predicate getMinMaxReductionPredicate(RecurKind RK);
354 
355 /// See RecurrenceDescriptor::isSelectCmpPattern for a description of the
356 /// pattern we are trying to match. In this pattern we are only ever selecting
357 /// between two values: 1) an initial PHI start value, and 2) a loop invariant
358 /// value. This function uses \p LoopExitInst to determine 2), which we then use
359 /// to select between \p Left and \p Right. Any lane value in \p Left that
360 /// matches 2) will be merged into \p Right.
361 Value *createSelectCmpOp(IRBuilderBase &Builder, Value *StartVal, RecurKind RK,
362                          Value *Left, Value *Right);
363 
364 /// Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
365 /// The Builder's fast-math-flags must be set to propagate the expected values.
366 Value *createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
367                       Value *Right);
368 
369 /// Generates an ordered vector reduction using extracts to reduce the value.
370 Value *getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
371                            unsigned Op, RecurKind MinMaxKind = RecurKind::None);
372 
373 /// Generates a vector reduction using shufflevectors to reduce the value.
374 /// Fast-math-flags are propagated using the IRBuilder's setting.
375 Value *getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op,
376                            RecurKind MinMaxKind = RecurKind::None);
377 
378 /// Create a target reduction of the given vector. The reduction operation
379 /// is described by the \p Opcode parameter. min/max reductions require
380 /// additional information supplied in \p RdxKind.
381 /// The target is queried to determine if intrinsics or shuffle sequences are
382 /// required to implement the reduction.
383 /// Fast-math-flags are propagated using the IRBuilder's setting.
384 Value *createSimpleTargetReduction(IRBuilderBase &B,
385                                    const TargetTransformInfo *TTI, Value *Src,
386                                    RecurKind RdxKind);
387 
388 /// Create a target reduction of the given vector \p Src for a reduction of the
389 /// kind RecurKind::SelectICmp or RecurKind::SelectFCmp. The reduction operation
390 /// is described by \p Desc.
391 Value *createSelectCmpTargetReduction(IRBuilderBase &B,
392                                       const TargetTransformInfo *TTI,
393                                       Value *Src,
394                                       const RecurrenceDescriptor &Desc,
395                                       PHINode *OrigPhi);
396 
397 /// Create a generic target reduction using a recurrence descriptor \p Desc
398 /// The target is queried to determine if intrinsics or shuffle sequences are
399 /// required to implement the reduction.
400 /// Fast-math-flags are propagated using the RecurrenceDescriptor.
401 Value *createTargetReduction(IRBuilderBase &B, const TargetTransformInfo *TTI,
402                              const RecurrenceDescriptor &Desc, Value *Src,
403                              PHINode *OrigPhi = nullptr);
404 
405 /// Create an ordered reduction intrinsic using the given recurrence
406 /// descriptor \p Desc.
407 Value *createOrderedReduction(IRBuilderBase &B,
408                               const RecurrenceDescriptor &Desc, Value *Src,
409                               Value *Start);
410 
411 /// Get the intersection (logical and) of all of the potential IR flags
412 /// of each scalar operation (VL) that will be converted into a vector (I).
413 /// If OpValue is non-null, we only consider operations similar to OpValue
414 /// when intersecting.
415 /// Flag set: NSW, NUW (if IncludeWrapFlags is true), exact, and all of
416 /// fast-math.
417 void propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue = nullptr,
418                       bool IncludeWrapFlags = true);
419 
420 /// Returns true if we can prove that \p S is defined and always negative in
421 /// loop \p L.
422 bool isKnownNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE);
423 
424 /// Returns true if we can prove that \p S is defined and always non-negative in
425 /// loop \p L.
426 bool isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
427                               ScalarEvolution &SE);
428 
429 /// Returns true if \p S is defined and never is equal to signed/unsigned max.
430 bool cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
431                        bool Signed);
432 
433 /// Returns true if \p S is defined and never is equal to signed/unsigned min.
434 bool cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
435                        bool Signed);
436 
437 enum ReplaceExitVal {
438   NeverRepl,
439   OnlyCheapRepl,
440   NoHardUse,
441   UnusedIndVarInLoop,
442   AlwaysRepl
443 };
444 
445 /// If the final value of any expressions that are recurrent in the loop can
446 /// be computed, substitute the exit values from the loop into any instructions
447 /// outside of the loop that use the final values of the current expressions.
448 /// Return the number of loop exit values that have been replaced, and the
449 /// corresponding phi node will be added to DeadInsts.
450 int rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
451                           ScalarEvolution *SE, const TargetTransformInfo *TTI,
452                           SCEVExpander &Rewriter, DominatorTree *DT,
453                           ReplaceExitVal ReplaceExitValue,
454                           SmallVector<WeakTrackingVH, 16> &DeadInsts);
455 
456 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
457 /// \p OrigLoop and the following distribution of \p OrigLoop iteration among \p
458 /// UnrolledLoop and \p RemainderLoop. \p UnrolledLoop receives weights that
459 /// reflect TC/UF iterations, and \p RemainderLoop receives weights that reflect
460 /// the remaining TC%UF iterations.
461 ///
462 /// Note that \p OrigLoop may be equal to either \p UnrolledLoop or \p
463 /// RemainderLoop in which case weights for \p OrigLoop are updated accordingly.
464 /// Note also behavior is undefined if \p UnrolledLoop and \p RemainderLoop are
465 /// equal. \p UF must be greater than zero.
466 /// If \p OrigLoop has no profile info associated nothing happens.
467 ///
468 /// This utility may be useful for such optimizations as unroller and
469 /// vectorizer as it's typical transformation for them.
470 void setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
471                                   Loop *RemainderLoop, uint64_t UF);
472 
473 /// Utility that implements appending of loops onto a worklist given a range.
474 /// We want to process loops in postorder, but the worklist is a LIFO data
475 /// structure, so we append to it in *reverse* postorder.
476 /// For trees, a preorder traversal is a viable reverse postorder, so we
477 /// actually append using a preorder walk algorithm.
478 template <typename RangeT>
479 void appendLoopsToWorklist(RangeT &&, SmallPriorityWorklist<Loop *, 4> &);
480 /// Utility that implements appending of loops onto a worklist given a range.
481 /// It has the same behavior as appendLoopsToWorklist, but assumes the range of
482 /// loops has already been reversed, so it processes loops in the given order.
483 template <typename RangeT>
484 void appendReversedLoopsToWorklist(RangeT &&,
485                                    SmallPriorityWorklist<Loop *, 4> &);
486 
487 /// Utility that implements appending of loops onto a worklist given LoopInfo.
488 /// Calls the templated utility taking a Range of loops, handing it the Loops
489 /// in LoopInfo, iterated in reverse. This is because the loops are stored in
490 /// RPO w.r.t. the control flow graph in LoopInfo. For the purpose of unrolling,
491 /// loop deletion, and LICM, we largely want to work forward across the CFG so
492 /// that we visit defs before uses and can propagate simplifications from one
493 /// loop nest into the next. Calls appendReversedLoopsToWorklist with the
494 /// already reversed loops in LI.
495 /// FIXME: Consider changing the order in LoopInfo.
496 void appendLoopsToWorklist(LoopInfo &, SmallPriorityWorklist<Loop *, 4> &);
497 
498 /// Recursively clone the specified loop and all of its children,
499 /// mapping the blocks with the specified map.
500 Loop *cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
501                 LoopInfo *LI, LPPassManager *LPM);
502 
503 /// Add code that checks at runtime if the accessed arrays in \p PointerChecks
504 /// overlap. Returns the final comparator value or NULL if no check is needed.
505 Value *
506 addRuntimeChecks(Instruction *Loc, Loop *TheLoop,
507                  const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
508                  SCEVExpander &Expander);
509 
510 Value *addDiffRuntimeChecks(
511     Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander,
512     function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC);
513 
514 /// Struct to hold information about a partially invariant condition.
515 struct IVConditionInfo {
516   /// Instructions that need to be duplicated and checked for the unswitching
517   /// condition.
518   SmallVector<Instruction *> InstToDuplicate;
519 
520   /// Constant to indicate for which value the condition is invariant.
521   Constant *KnownValue = nullptr;
522 
523   /// True if the partially invariant path is no-op (=does not have any
524   /// side-effects and no loop value is used outside the loop).
525   bool PathIsNoop = true;
526 
527   /// If the partially invariant path reaches a single exit block, ExitForPath
528   /// is set to that block. Otherwise it is nullptr.
529   BasicBlock *ExitForPath = nullptr;
530 };
531 
532 /// Check if the loop header has a conditional branch that is not
533 /// loop-invariant, because it involves load instructions. If all paths from
534 /// either the true or false successor to the header or loop exists do not
535 /// modify the memory feeding the condition, perform 'partial unswitching'. That
536 /// is, duplicate the instructions feeding the condition in the pre-header. Then
537 /// unswitch on the duplicated condition. The condition is now known in the
538 /// unswitched version for the 'invariant' path through the original loop.
539 ///
540 /// If the branch condition of the header is partially invariant, return a pair
541 /// containing the instructions to duplicate and a boolean Constant to update
542 /// the condition in the loops created for the true or false successors.
543 std::optional<IVConditionInfo> hasPartialIVCondition(const Loop &L,
544                                                      unsigned MSSAThreshold,
545                                                      const MemorySSA &MSSA,
546                                                      AAResults &AA);
547 
548 } // end namespace llvm
549 
550 #endif // LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
551