1 /* utf8.c
2 *
3 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 * by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11 /*
12 * 'What a fix!' said Sam. 'That's the one place in all the lands we've ever
13 * heard of that we don't want to see any closer; and that's the one place
14 * we're trying to get to! And that's just where we can't get, nohow.'
15 *
16 * [p.603 of _The Lord of the Rings_, IV/I: "The Taming of Sméagol"]
17 *
18 * 'Well do I understand your speech,' he answered in the same language;
19 * 'yet few strangers do so. Why then do you not speak in the Common Tongue,
20 * as is the custom in the West, if you wish to be answered?'
21 * --Gandalf, addressing Théoden's door wardens
22 *
23 * [p.508 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
24 *
25 * ...the travellers perceived that the floor was paved with stones of many
26 * hues; branching runes and strange devices intertwined beneath their feet.
27 *
28 * [p.512 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
29 */
30
31 #include "EXTERN.h"
32 #define PERL_IN_UTF8_C
33 #include "perl.h"
34 #include "invlist_inline.h"
35
36 static const char malformed_text[] = "Malformed UTF-8 character";
37 static const char unees[] =
38 "Malformed UTF-8 character (unexpected end of string)";
39
40 /* Be sure to synchronize this message with the similar one in regcomp.c */
41 static const char cp_above_legal_max[] =
42 "Use of code point 0x%" UVXf " is not allowed; the"
43 " permissible max is 0x%" UVXf;
44
45 /*
46 =head1 Unicode Support
47 These are various utility functions for manipulating UTF8-encoded
48 strings. For the uninitiated, this is a method of representing arbitrary
49 Unicode characters as a variable number of bytes, in such a way that
50 characters in the ASCII range are unmodified, and a zero byte never appears
51 within non-zero characters.
52
53 =cut
54 */
55
56 /* helper for Perl__force_out_malformed_utf8_message(). Like
57 * SAVECOMPILEWARNINGS(), but works with PL_curcop rather than
58 * PL_compiling */
59
60 static void
S_restore_cop_warnings(pTHX_ void * p)61 S_restore_cop_warnings(pTHX_ void *p)
62 {
63 if (!specialWARN(PL_curcop->cop_warnings))
64 PerlMemShared_free(PL_curcop->cop_warnings);
65 PL_curcop->cop_warnings = (STRLEN*)p;
66 }
67
68
69 void
Perl__force_out_malformed_utf8_message(pTHX_ const U8 * const p,const U8 * const e,const U32 flags,const bool die_here)70 Perl__force_out_malformed_utf8_message(pTHX_
71 const U8 *const p, /* First byte in UTF-8 sequence */
72 const U8 * const e, /* Final byte in sequence (may include
73 multiple chars */
74 const U32 flags, /* Flags to pass to utf8n_to_uvchr(),
75 usually 0, or some DISALLOW flags */
76 const bool die_here) /* If TRUE, this function does not return */
77 {
78 /* This core-only function is to be called when a malformed UTF-8 character
79 * is found, in order to output the detailed information about the
80 * malformation before dieing. The reason it exists is for the occasions
81 * when such a malformation is fatal, but warnings might be turned off, so
82 * that normally they would not be actually output. This ensures that they
83 * do get output. Because a sequence may be malformed in more than one
84 * way, multiple messages may be generated, so we can't make them fatal, as
85 * that would cause the first one to die.
86 *
87 * Instead we pretend -W was passed to perl, then die afterwards. The
88 * flexibility is here to return to the caller so they can finish up and
89 * die themselves */
90 U32 errors;
91
92 PERL_ARGS_ASSERT__FORCE_OUT_MALFORMED_UTF8_MESSAGE;
93
94 ENTER;
95 SAVEI8(PL_dowarn);
96 SAVESPTR(PL_curcop);
97
98 PL_dowarn = G_WARN_ALL_ON|G_WARN_ON;
99 if (PL_curcop) {
100 /* this is like SAVECOMPILEWARNINGS() except with PL_curcop rather
101 * than PL_compiling */
102 SAVEDESTRUCTOR_X(S_restore_cop_warnings,
103 (void*)PL_curcop->cop_warnings);
104 PL_curcop->cop_warnings = pWARN_ALL;
105 }
106
107 (void) utf8n_to_uvchr_error(p, e - p, NULL, flags & ~UTF8_CHECK_ONLY, &errors);
108
109 LEAVE;
110
111 if (! errors) {
112 Perl_croak(aTHX_ "panic: _force_out_malformed_utf8_message should"
113 " be called only when there are errors found");
114 }
115
116 if (die_here) {
117 Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
118 }
119 }
120
121 STATIC HV *
S_new_msg_hv(pTHX_ const char * const message,U32 categories,U32 flag)122 S_new_msg_hv(pTHX_ const char * const message, /* The message text */
123 U32 categories, /* Packed warning categories */
124 U32 flag) /* Flag associated with this message */
125 {
126 /* Creates, populates, and returns an HV* that describes an error message
127 * for the translators between UTF8 and code point */
128
129 SV* msg_sv = newSVpv(message, 0);
130 SV* category_sv = newSVuv(categories);
131 SV* flag_bit_sv = newSVuv(flag);
132
133 HV* msg_hv = newHV();
134
135 PERL_ARGS_ASSERT_NEW_MSG_HV;
136
137 (void) hv_stores(msg_hv, "text", msg_sv);
138 (void) hv_stores(msg_hv, "warn_categories", category_sv);
139 (void) hv_stores(msg_hv, "flag_bit", flag_bit_sv);
140
141 return msg_hv;
142 }
143
144 /*
145 =for apidoc uvoffuni_to_utf8_flags
146
147 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
148 Instead, B<Almost all code should use L</uvchr_to_utf8> or
149 L</uvchr_to_utf8_flags>>.
150
151 This function is like them, but the input is a strict Unicode
152 (as opposed to native) code point. Only in very rare circumstances should code
153 not be using the native code point.
154
155 For details, see the description for L</uvchr_to_utf8_flags>.
156
157 =cut
158 */
159
160 U8 *
Perl_uvoffuni_to_utf8_flags(pTHX_ U8 * d,UV uv,const UV flags)161 Perl_uvoffuni_to_utf8_flags(pTHX_ U8 *d, UV uv, const UV flags)
162 {
163 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS;
164
165 return uvoffuni_to_utf8_flags_msgs(d, uv, flags, NULL);
166 }
167
168 /* All these formats take a single UV code point argument */
169 const char surrogate_cp_format[] = "UTF-16 surrogate U+%04" UVXf;
170 const char nonchar_cp_format[] = "Unicode non-character U+%04" UVXf
171 " is not recommended for open interchange";
172 const char super_cp_format[] = "Code point 0x%" UVXf " is not Unicode,"
173 " may not be portable";
174 const char perl_extended_cp_format[] = "Code point 0x%" UVXf " is not" \
175 " Unicode, requires a Perl extension," \
176 " and so is not portable";
177
178 #define HANDLE_UNICODE_SURROGATE(uv, flags, msgs) \
179 STMT_START { \
180 if (flags & UNICODE_WARN_SURROGATE) { \
181 U32 category = packWARN(WARN_SURROGATE); \
182 const char * format = surrogate_cp_format; \
183 if (msgs) { \
184 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv), \
185 category, \
186 UNICODE_GOT_SURROGATE); \
187 } \
188 else { \
189 Perl_ck_warner_d(aTHX_ category, format, uv); \
190 } \
191 } \
192 if (flags & UNICODE_DISALLOW_SURROGATE) { \
193 return NULL; \
194 } \
195 } STMT_END;
196
197 #define HANDLE_UNICODE_NONCHAR(uv, flags, msgs) \
198 STMT_START { \
199 if (flags & UNICODE_WARN_NONCHAR) { \
200 U32 category = packWARN(WARN_NONCHAR); \
201 const char * format = nonchar_cp_format; \
202 if (msgs) { \
203 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv), \
204 category, \
205 UNICODE_GOT_NONCHAR); \
206 } \
207 else { \
208 Perl_ck_warner_d(aTHX_ category, format, uv); \
209 } \
210 } \
211 if (flags & UNICODE_DISALLOW_NONCHAR) { \
212 return NULL; \
213 } \
214 } STMT_END;
215
216 /* Use shorter names internally in this file */
217 #define SHIFT UTF_ACCUMULATION_SHIFT
218 #undef MARK
219 #define MARK UTF_CONTINUATION_MARK
220 #define MASK UTF_CONTINUATION_MASK
221
222 /*
223 =for apidoc uvchr_to_utf8_flags_msgs
224
225 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
226
227 Most code should use C<L</uvchr_to_utf8_flags>()> rather than call this directly.
228
229 This function is for code that wants any warning and/or error messages to be
230 returned to the caller rather than be displayed. All messages that would have
231 been displayed if all lexical warnings are enabled will be returned.
232
233 It is just like C<L</uvchr_to_utf8_flags>> but it takes an extra parameter
234 placed after all the others, C<msgs>. If this parameter is 0, this function
235 behaves identically to C<L</uvchr_to_utf8_flags>>. Otherwise, C<msgs> should
236 be a pointer to an C<HV *> variable, in which this function creates a new HV to
237 contain any appropriate messages. The hash has three key-value pairs, as
238 follows:
239
240 =over 4
241
242 =item C<text>
243
244 The text of the message as a C<SVpv>.
245
246 =item C<warn_categories>
247
248 The warning category (or categories) packed into a C<SVuv>.
249
250 =item C<flag>
251
252 A single flag bit associated with this message, in a C<SVuv>.
253 The bit corresponds to some bit in the C<*errors> return value,
254 such as C<UNICODE_GOT_SURROGATE>.
255
256 =back
257
258 It's important to note that specifying this parameter as non-null will cause
259 any warnings this function would otherwise generate to be suppressed, and
260 instead be placed in C<*msgs>. The caller can check the lexical warnings state
261 (or not) when choosing what to do with the returned messages.
262
263 The caller, of course, is responsible for freeing any returned HV.
264
265 =cut
266 */
267
268 /* Undocumented; we don't want people using this. Instead they should use
269 * uvchr_to_utf8_flags_msgs() */
270 U8 *
Perl_uvoffuni_to_utf8_flags_msgs(pTHX_ U8 * d,UV uv,const UV flags,HV ** msgs)271 Perl_uvoffuni_to_utf8_flags_msgs(pTHX_ U8 *d, UV uv, const UV flags, HV** msgs)
272 {
273 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS_MSGS;
274
275 if (msgs) {
276 *msgs = NULL;
277 }
278
279 if (OFFUNI_IS_INVARIANT(uv)) {
280 *d++ = LATIN1_TO_NATIVE(uv);
281 return d;
282 }
283
284 if (uv <= MAX_UTF8_TWO_BYTE) {
285 *d++ = I8_TO_NATIVE_UTF8(( uv >> SHIFT) | UTF_START_MARK(2));
286 *d++ = I8_TO_NATIVE_UTF8(( uv & MASK) | MARK);
287 return d;
288 }
289
290 /* Not 2-byte; test for and handle 3-byte result. In the test immediately
291 * below, the 16 is for start bytes E0-EF (which are all the possible ones
292 * for 3 byte characters). The 2 is for 2 continuation bytes; these each
293 * contribute SHIFT bits. This yields 0x4000 on EBCDIC platforms, 0x1_0000
294 * on ASCII; so 3 bytes covers the range 0x400-0x3FFF on EBCDIC;
295 * 0x800-0xFFFF on ASCII */
296 if (uv < (16 * (1U << (2 * SHIFT)))) {
297 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((3 - 1) * SHIFT)) | UTF_START_MARK(3));
298 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
299 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
300
301 #ifndef EBCDIC /* These problematic code points are 4 bytes on EBCDIC, so
302 aren't tested here */
303 /* The most likely code points in this range are below the surrogates.
304 * Do an extra test to quickly exclude those. */
305 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST)) {
306 if (UNLIKELY( UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv)
307 || UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv)))
308 {
309 HANDLE_UNICODE_NONCHAR(uv, flags, msgs);
310 }
311 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
312 HANDLE_UNICODE_SURROGATE(uv, flags, msgs);
313 }
314 }
315 #endif
316 return d;
317 }
318
319 /* Not 3-byte; that means the code point is at least 0x1_0000 on ASCII
320 * platforms, and 0x4000 on EBCDIC. There are problematic cases that can
321 * happen starting with 4-byte characters on ASCII platforms. We unify the
322 * code for these with EBCDIC, even though some of them require 5-bytes on
323 * those, because khw believes the code saving is worth the very slight
324 * performance hit on these high EBCDIC code points. */
325
326 if (UNLIKELY(UNICODE_IS_SUPER(uv))) {
327 if (UNLIKELY(uv > MAX_LEGAL_CP)) {
328 Perl_croak(aTHX_ cp_above_legal_max, uv, MAX_LEGAL_CP);
329 }
330 if ( (flags & UNICODE_WARN_SUPER)
331 || ( (flags & UNICODE_WARN_PERL_EXTENDED)
332 && UNICODE_IS_PERL_EXTENDED(uv)))
333 {
334 const char * format = super_cp_format;
335 U32 category = packWARN(WARN_NON_UNICODE);
336 U32 flag = UNICODE_GOT_SUPER;
337
338 /* Choose the more dire applicable warning */
339 if (UNICODE_IS_PERL_EXTENDED(uv)) {
340 format = perl_extended_cp_format;
341 if (flags & (UNICODE_WARN_PERL_EXTENDED
342 |UNICODE_DISALLOW_PERL_EXTENDED))
343 {
344 flag = UNICODE_GOT_PERL_EXTENDED;
345 }
346 }
347
348 if (msgs) {
349 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv),
350 category, flag);
351 }
352 else {
353 Perl_ck_warner_d(aTHX_ packWARN(WARN_NON_UNICODE), format, uv);
354 }
355 }
356 if ( (flags & UNICODE_DISALLOW_SUPER)
357 || ( (flags & UNICODE_DISALLOW_PERL_EXTENDED)
358 && UNICODE_IS_PERL_EXTENDED(uv)))
359 {
360 return NULL;
361 }
362 }
363 else if (UNLIKELY(UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv))) {
364 HANDLE_UNICODE_NONCHAR(uv, flags, msgs);
365 }
366
367 /* Test for and handle 4-byte result. In the test immediately below, the
368 * 8 is for start bytes F0-F7 (which are all the possible ones for 4 byte
369 * characters). The 3 is for 3 continuation bytes; these each contribute
370 * SHIFT bits. This yields 0x4_0000 on EBCDIC platforms, 0x20_0000 on
371 * ASCII, so 4 bytes covers the range 0x4000-0x3_FFFF on EBCDIC;
372 * 0x1_0000-0x1F_FFFF on ASCII */
373 if (uv < (8 * (1U << (3 * SHIFT)))) {
374 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((4 - 1) * SHIFT)) | UTF_START_MARK(4));
375 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((3 - 1) * SHIFT)) & MASK) | MARK);
376 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
377 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
378
379 #ifdef EBCDIC /* These were handled on ASCII platforms in the code for 3-byte
380 characters. The end-plane non-characters for EBCDIC were
381 handled just above */
382 if (UNLIKELY(UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv))) {
383 HANDLE_UNICODE_NONCHAR(uv, flags, msgs);
384 }
385 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
386 HANDLE_UNICODE_SURROGATE(uv, flags, msgs);
387 }
388 #endif
389
390 return d;
391 }
392
393 /* Not 4-byte; that means the code point is at least 0x20_0000 on ASCII
394 * platforms, and 0x4000 on EBCDIC. At this point we switch to a loop
395 * format. The unrolled version above turns out to not save all that much
396 * time, and at these high code points (well above the legal Unicode range
397 * on ASCII platforms, and well above anything in common use in EBCDIC),
398 * khw believes that less code outweighs slight performance gains. */
399
400 {
401 STRLEN len = OFFUNISKIP(uv);
402 U8 *p = d+len-1;
403 while (p > d) {
404 *p-- = I8_TO_NATIVE_UTF8((uv & MASK) | MARK);
405 uv >>= SHIFT;
406 }
407 *p = I8_TO_NATIVE_UTF8((uv & UTF_START_MASK(len)) | UTF_START_MARK(len));
408 return d+len;
409 }
410 }
411
412 /*
413 =for apidoc uvchr_to_utf8
414
415 Adds the UTF-8 representation of the native code point C<uv> to the end
416 of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
417 C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
418 the byte after the end of the new character. In other words,
419
420 d = uvchr_to_utf8(d, uv);
421
422 is the recommended wide native character-aware way of saying
423
424 *(d++) = uv;
425
426 This function accepts any code point from 0..C<IV_MAX> as input.
427 C<IV_MAX> is typically 0x7FFF_FFFF in a 32-bit word.
428
429 It is possible to forbid or warn on non-Unicode code points, or those that may
430 be problematic by using L</uvchr_to_utf8_flags>.
431
432 =cut
433 */
434
435 /* This is also a macro */
436 PERL_CALLCONV U8* Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv);
437
438 U8 *
Perl_uvchr_to_utf8(pTHX_ U8 * d,UV uv)439 Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv)
440 {
441 return uvchr_to_utf8(d, uv);
442 }
443
444 /*
445 =for apidoc uvchr_to_utf8_flags
446
447 Adds the UTF-8 representation of the native code point C<uv> to the end
448 of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
449 C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
450 the byte after the end of the new character. In other words,
451
452 d = uvchr_to_utf8_flags(d, uv, flags);
453
454 or, in most cases,
455
456 d = uvchr_to_utf8_flags(d, uv, 0);
457
458 This is the Unicode-aware way of saying
459
460 *(d++) = uv;
461
462 If C<flags> is 0, this function accepts any code point from 0..C<IV_MAX> as
463 input. C<IV_MAX> is typically 0x7FFF_FFFF in a 32-bit word.
464
465 Specifying C<flags> can further restrict what is allowed and not warned on, as
466 follows:
467
468 If C<uv> is a Unicode surrogate code point and C<UNICODE_WARN_SURROGATE> is set,
469 the function will raise a warning, provided UTF8 warnings are enabled. If
470 instead C<UNICODE_DISALLOW_SURROGATE> is set, the function will fail and return
471 NULL. If both flags are set, the function will both warn and return NULL.
472
473 Similarly, the C<UNICODE_WARN_NONCHAR> and C<UNICODE_DISALLOW_NONCHAR> flags
474 affect how the function handles a Unicode non-character.
475
476 And likewise, the C<UNICODE_WARN_SUPER> and C<UNICODE_DISALLOW_SUPER> flags
477 affect the handling of code points that are above the Unicode maximum of
478 0x10FFFF. Languages other than Perl may not be able to accept files that
479 contain these.
480
481 The flag C<UNICODE_WARN_ILLEGAL_INTERCHANGE> selects all three of
482 the above WARN flags; and C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> selects all
483 three DISALLOW flags. C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> restricts the
484 allowed inputs to the strict UTF-8 traditionally defined by Unicode.
485 Similarly, C<UNICODE_WARN_ILLEGAL_C9_INTERCHANGE> and
486 C<UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE> are shortcuts to select the
487 above-Unicode and surrogate flags, but not the non-character ones, as
488 defined in
489 L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
490 See L<perlunicode/Noncharacter code points>.
491
492 Extremely high code points were never specified in any standard, and require an
493 extension to UTF-8 to express, which Perl does. It is likely that programs
494 written in something other than Perl would not be able to read files that
495 contain these; nor would Perl understand files written by something that uses a
496 different extension. For these reasons, there is a separate set of flags that
497 can warn and/or disallow these extremely high code points, even if other
498 above-Unicode ones are accepted. They are the C<UNICODE_WARN_PERL_EXTENDED>
499 and C<UNICODE_DISALLOW_PERL_EXTENDED> flags. For more information see
500 L</C<UTF8_GOT_PERL_EXTENDED>>. Of course C<UNICODE_DISALLOW_SUPER> will
501 treat all above-Unicode code points, including these, as malformations. (Note
502 that the Unicode standard considers anything above 0x10FFFF to be illegal, but
503 there are standards predating it that allow up to 0x7FFF_FFFF (2**31 -1))
504
505 A somewhat misleadingly named synonym for C<UNICODE_WARN_PERL_EXTENDED> is
506 retained for backward compatibility: C<UNICODE_WARN_ABOVE_31_BIT>. Similarly,
507 C<UNICODE_DISALLOW_ABOVE_31_BIT> is usable instead of the more accurately named
508 C<UNICODE_DISALLOW_PERL_EXTENDED>. The names are misleading because on EBCDIC
509 platforms,these flags can apply to code points that actually do fit in 31 bits.
510 The new names accurately describe the situation in all cases.
511
512 =cut
513 */
514
515 /* This is also a macro */
516 PERL_CALLCONV U8* Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags);
517
518 U8 *
Perl_uvchr_to_utf8_flags(pTHX_ U8 * d,UV uv,UV flags)519 Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
520 {
521 return uvchr_to_utf8_flags(d, uv, flags);
522 }
523
524 #ifndef UV_IS_QUAD
525
526 STATIC int
S_is_utf8_cp_above_31_bits(const U8 * const s,const U8 * const e,const bool consider_overlongs)527 S_is_utf8_cp_above_31_bits(const U8 * const s,
528 const U8 * const e,
529 const bool consider_overlongs)
530 {
531 /* Returns TRUE if the first code point represented by the Perl-extended-
532 * UTF-8-encoded string starting at 's', and looking no further than 'e -
533 * 1' doesn't fit into 31 bytes. That is, that if it is >= 2**31.
534 *
535 * The function handles the case where the input bytes do not include all
536 * the ones necessary to represent a full character. That is, they may be
537 * the intial bytes of the representation of a code point, but possibly
538 * the final ones necessary for the complete representation may be beyond
539 * 'e - 1'.
540 *
541 * The function also can handle the case where the input is an overlong
542 * sequence. If 'consider_overlongs' is 0, the function assumes the
543 * input is not overlong, without checking, and will return based on that
544 * assumption. If this parameter is 1, the function will go to the trouble
545 * of figuring out if it actually evaluates to above or below 31 bits.
546 *
547 * The sequence is otherwise assumed to be well-formed, without checking.
548 */
549
550 const STRLEN len = e - s;
551 int is_overlong;
552
553 PERL_ARGS_ASSERT_IS_UTF8_CP_ABOVE_31_BITS;
554
555 assert(! UTF8_IS_INVARIANT(*s) && e > s);
556
557 #ifdef EBCDIC
558
559 PERL_UNUSED_ARG(consider_overlongs);
560
561 /* On the EBCDIC code pages we handle, only the native start byte 0xFE can
562 * mean a 32-bit or larger code point (0xFF is an invariant). 0xFE can
563 * also be the start byte for a 31-bit code point; we need at least 2
564 * bytes, and maybe up through 8 bytes, to determine that. (It can also be
565 * the start byte for an overlong sequence, but for 30-bit or smaller code
566 * points, so we don't have to worry about overlongs on EBCDIC.) */
567 if (*s != 0xFE) {
568 return 0;
569 }
570
571 if (len == 1) {
572 return -1;
573 }
574
575 #else
576
577 /* On ASCII, FE and FF are the only start bytes that can evaluate to
578 * needing more than 31 bits. */
579 if (LIKELY(*s < 0xFE)) {
580 return 0;
581 }
582
583 /* What we have left are FE and FF. Both of these require more than 31
584 * bits unless they are for overlongs. */
585 if (! consider_overlongs) {
586 return 1;
587 }
588
589 /* Here, we have FE or FF. If the input isn't overlong, it evaluates to
590 * above 31 bits. But we need more than one byte to discern this, so if
591 * passed just the start byte, it could be an overlong evaluating to
592 * smaller */
593 if (len == 1) {
594 return -1;
595 }
596
597 /* Having excluded len==1, and knowing that FE and FF are both valid start
598 * bytes, we can call the function below to see if the sequence is
599 * overlong. (We don't need the full generality of the called function,
600 * but for these huge code points, speed shouldn't be a consideration, and
601 * the compiler does have enough information, since it's static to this
602 * file, to optimize to just the needed parts.) */
603 is_overlong = is_utf8_overlong_given_start_byte_ok(s, len);
604
605 /* If it isn't overlong, more than 31 bits are required. */
606 if (is_overlong == 0) {
607 return 1;
608 }
609
610 /* If it is indeterminate if it is overlong, return that */
611 if (is_overlong < 0) {
612 return -1;
613 }
614
615 /* Here is overlong. Such a sequence starting with FE is below 31 bits, as
616 * the max it can be is 2**31 - 1 */
617 if (*s == 0xFE) {
618 return 0;
619 }
620
621 #endif
622
623 /* Here, ASCII and EBCDIC rejoin:
624 * On ASCII: We have an overlong sequence starting with FF
625 * On EBCDIC: We have a sequence starting with FE. */
626
627 { /* For C89, use a block so the declaration can be close to its use */
628
629 #ifdef EBCDIC
630
631 /* U+7FFFFFFF (2 ** 31 - 1)
632 * [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 10 11 12 13
633 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x42\x73\x73\x73\x73\x73\x73
634 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x42\x72\x72\x72\x72\x72\x72
635 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x42\x75\x75\x75\x75\x75\x75
636 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA1\xBF\xBF\xBF\xBF\xBF\xBF
637 * U+80000000 (2 ** 31):
638 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
639 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
640 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
641 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA2\xA0\xA0\xA0\xA0\xA0\xA0
642 *
643 * and since we know that *s = \xfe, any continuation sequcence
644 * following it that is gt the below is above 31 bits
645 [0] [1] [2] [3] [4] [5] [6] */
646 const U8 conts_for_highest_30_bit[] = "\x41\x41\x41\x41\x41\x41\x42";
647
648 #else
649
650 /* FF overlong for U+7FFFFFFF (2 ** 31 - 1)
651 * ASCII: \xFF\x80\x80\x80\x80\x80\x80\x81\xBF\xBF\xBF\xBF\xBF
652 * FF overlong for U+80000000 (2 ** 31):
653 * ASCII: \xFF\x80\x80\x80\x80\x80\x80\x82\x80\x80\x80\x80\x80
654 * and since we know that *s = \xff, any continuation sequcence
655 * following it that is gt the below is above 30 bits
656 [0] [1] [2] [3] [4] [5] [6] */
657 const U8 conts_for_highest_30_bit[] = "\x80\x80\x80\x80\x80\x80\x81";
658
659
660 #endif
661 const STRLEN conts_len = sizeof(conts_for_highest_30_bit) - 1;
662 const STRLEN cmp_len = MIN(conts_len, len - 1);
663
664 /* Now compare the continuation bytes in s with the ones we have
665 * compiled in that are for the largest 30 bit code point. If we have
666 * enough bytes available to determine the answer, or the bytes we do
667 * have differ from them, we can compare the two to get a definitive
668 * answer (Note that in UTF-EBCDIC, the two lowest possible
669 * continuation bytes are \x41 and \x42.) */
670 if (cmp_len >= conts_len || memNE(s + 1,
671 conts_for_highest_30_bit,
672 cmp_len))
673 {
674 return cBOOL(memGT(s + 1, conts_for_highest_30_bit, cmp_len));
675 }
676
677 /* Here, all the bytes we have are the same as the highest 30-bit code
678 * point, but we are missing so many bytes that we can't make the
679 * determination */
680 return -1;
681 }
682 }
683
684 #endif
685
686 PERL_STATIC_INLINE int
S_is_utf8_overlong_given_start_byte_ok(const U8 * const s,const STRLEN len)687 S_is_utf8_overlong_given_start_byte_ok(const U8 * const s, const STRLEN len)
688 {
689 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
690 * 's' + 'len' - 1 is an overlong. It returns 1 if it is an overlong; 0 if
691 * it isn't, and -1 if there isn't enough information to tell. This last
692 * return value can happen if the sequence is incomplete, missing some
693 * trailing bytes that would form a complete character. If there are
694 * enough bytes to make a definitive decision, this function does so.
695 * Usually 2 bytes sufficient.
696 *
697 * Overlongs can occur whenever the number of continuation bytes changes.
698 * That means whenever the number of leading 1 bits in a start byte
699 * increases from the next lower start byte. That happens for start bytes
700 * C0, E0, F0, F8, FC, FE, and FF. On modern perls, the following illegal
701 * start bytes have already been excluded, so don't need to be tested here;
702 * ASCII platforms: C0, C1
703 * EBCDIC platforms C0, C1, C2, C3, C4, E0
704 */
705
706 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
707 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
708
709 PERL_ARGS_ASSERT_IS_UTF8_OVERLONG_GIVEN_START_BYTE_OK;
710 assert(len > 1 && UTF8_IS_START(*s));
711
712 /* Each platform has overlongs after the start bytes given above (expressed
713 * in I8 for EBCDIC). What constitutes an overlong varies by platform, but
714 * the logic is the same, except the E0 overlong has already been excluded
715 * on EBCDIC platforms. The values below were found by manually
716 * inspecting the UTF-8 patterns. See the tables in utf8.h and
717 * utfebcdic.h. */
718
719 # ifdef EBCDIC
720 # define F0_ABOVE_OVERLONG 0xB0
721 # define F8_ABOVE_OVERLONG 0xA8
722 # define FC_ABOVE_OVERLONG 0xA4
723 # define FE_ABOVE_OVERLONG 0xA2
724 # define FF_OVERLONG_PREFIX "\xfe\x41\x41\x41\x41\x41\x41\x41"
725 /* I8(0xfe) is FF */
726 # else
727
728 if (s0 == 0xE0 && UNLIKELY(s1 < 0xA0)) {
729 return 1;
730 }
731
732 # define F0_ABOVE_OVERLONG 0x90
733 # define F8_ABOVE_OVERLONG 0x88
734 # define FC_ABOVE_OVERLONG 0x84
735 # define FE_ABOVE_OVERLONG 0x82
736 # define FF_OVERLONG_PREFIX "\xff\x80\x80\x80\x80\x80\x80"
737 # endif
738
739
740 if ( (s0 == 0xF0 && UNLIKELY(s1 < F0_ABOVE_OVERLONG))
741 || (s0 == 0xF8 && UNLIKELY(s1 < F8_ABOVE_OVERLONG))
742 || (s0 == 0xFC && UNLIKELY(s1 < FC_ABOVE_OVERLONG))
743 || (s0 == 0xFE && UNLIKELY(s1 < FE_ABOVE_OVERLONG)))
744 {
745 return 1;
746 }
747
748 /* Check for the FF overlong */
749 return isFF_OVERLONG(s, len);
750 }
751
752 PERL_STATIC_INLINE int
S_isFF_OVERLONG(const U8 * const s,const STRLEN len)753 S_isFF_OVERLONG(const U8 * const s, const STRLEN len)
754 {
755 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
756 * 'e' - 1 is an overlong beginning with \xFF. It returns 1 if it is; 0 if
757 * it isn't, and -1 if there isn't enough information to tell. This last
758 * return value can happen if the sequence is incomplete, missing some
759 * trailing bytes that would form a complete character. If there are
760 * enough bytes to make a definitive decision, this function does so. */
761
762 PERL_ARGS_ASSERT_ISFF_OVERLONG;
763
764 /* To be an FF overlong, all the available bytes must match */
765 if (LIKELY(memNE(s, FF_OVERLONG_PREFIX,
766 MIN(len, sizeof(FF_OVERLONG_PREFIX) - 1))))
767 {
768 return 0;
769 }
770
771 /* To be an FF overlong sequence, all the bytes in FF_OVERLONG_PREFIX must
772 * be there; what comes after them doesn't matter. See tables in utf8.h,
773 * utfebcdic.h. */
774 if (len >= sizeof(FF_OVERLONG_PREFIX) - 1) {
775 return 1;
776 }
777
778 /* The missing bytes could cause the result to go one way or the other, so
779 * the result is indeterminate */
780 return -1;
781 }
782
783 #if defined(UV_IS_QUAD) /* These assume IV_MAX is 2**63-1 */
784 # ifdef EBCDIC /* Actually is I8 */
785 # define HIGHEST_REPRESENTABLE_UTF8 \
786 "\xFF\xA7\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
787 # else
788 # define HIGHEST_REPRESENTABLE_UTF8 \
789 "\xFF\x80\x87\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
790 # endif
791 #endif
792
793 PERL_STATIC_INLINE int
S_does_utf8_overflow(const U8 * const s,const U8 * e,const bool consider_overlongs)794 S_does_utf8_overflow(const U8 * const s,
795 const U8 * e,
796 const bool consider_overlongs)
797 {
798 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
799 * 'e' - 1 would overflow an IV on this platform; that is if it represents
800 * a code point larger than the highest representable code point. It
801 * returns 1 if it does overflow; 0 if it doesn't, and -1 if there isn't
802 * enough information to tell. This last return value can happen if the
803 * sequence is incomplete, missing some trailing bytes that would form a
804 * complete character. If there are enough bytes to make a definitive
805 * decision, this function does so.
806 *
807 * If 'consider_overlongs' is TRUE, the function checks for the possibility
808 * that the sequence is an overlong that doesn't overflow. Otherwise, it
809 * assumes the sequence is not an overlong. This can give different
810 * results only on ASCII 32-bit platforms.
811 *
812 * (For ASCII platforms, we could use memcmp() because we don't have to
813 * convert each byte to I8, but it's very rare input indeed that would
814 * approach overflow, so the loop below will likely only get executed once.)
815 *
816 * 'e' - 1 must not be beyond a full character. */
817
818
819 PERL_ARGS_ASSERT_DOES_UTF8_OVERFLOW;
820 assert(s <= e && s + UTF8SKIP(s) >= e);
821
822 #if ! defined(UV_IS_QUAD)
823
824 return is_utf8_cp_above_31_bits(s, e, consider_overlongs);
825
826 #else
827
828 PERL_UNUSED_ARG(consider_overlongs);
829
830 {
831 const STRLEN len = e - s;
832 const U8 *x;
833 const U8 * y = (const U8 *) HIGHEST_REPRESENTABLE_UTF8;
834
835 for (x = s; x < e; x++, y++) {
836
837 if (UNLIKELY(NATIVE_UTF8_TO_I8(*x) == *y)) {
838 continue;
839 }
840
841 /* If this byte is larger than the corresponding highest UTF-8
842 * byte, the sequence overflow; otherwise the byte is less than,
843 * and so the sequence doesn't overflow */
844 return NATIVE_UTF8_TO_I8(*x) > *y;
845
846 }
847
848 /* Got to the end and all bytes are the same. If the input is a whole
849 * character, it doesn't overflow. And if it is a partial character,
850 * there's not enough information to tell */
851 if (len < sizeof(HIGHEST_REPRESENTABLE_UTF8) - 1) {
852 return -1;
853 }
854
855 return 0;
856 }
857
858 #endif
859
860 }
861
862 #if 0
863
864 /* This is the portions of the above function that deal with UV_MAX instead of
865 * IV_MAX. They are left here in case we want to combine them so that internal
866 * uses can have larger code points. The only logic difference is that the
867 * 32-bit EBCDIC platform is treate like the 64-bit, and the 32-bit ASCII has
868 * different logic.
869 */
870
871 /* Anything larger than this will overflow the word if it were converted into a UV */
872 #if defined(UV_IS_QUAD)
873 # ifdef EBCDIC /* Actually is I8 */
874 # define HIGHEST_REPRESENTABLE_UTF8 \
875 "\xFF\xAF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
876 # else
877 # define HIGHEST_REPRESENTABLE_UTF8 \
878 "\xFF\x80\x8F\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
879 # endif
880 #else /* 32-bit */
881 # ifdef EBCDIC
882 # define HIGHEST_REPRESENTABLE_UTF8 \
883 "\xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA3\xBF\xBF\xBF\xBF\xBF\xBF"
884 # else
885 # define HIGHEST_REPRESENTABLE_UTF8 "\xFE\x83\xBF\xBF\xBF\xBF\xBF"
886 # endif
887 #endif
888
889 #if ! defined(UV_IS_QUAD) && ! defined(EBCDIC)
890
891 /* On 32 bit ASCII machines, many overlongs that start with FF don't
892 * overflow */
893 if (consider_overlongs && isFF_OVERLONG(s, len) > 0) {
894
895 /* To be such an overlong, the first bytes of 's' must match
896 * FF_OVERLONG_PREFIX, which is "\xff\x80\x80\x80\x80\x80\x80". If we
897 * don't have any additional bytes available, the sequence, when
898 * completed might or might not fit in 32 bits. But if we have that
899 * next byte, we can tell for sure. If it is <= 0x83, then it does
900 * fit. */
901 if (len <= sizeof(FF_OVERLONG_PREFIX) - 1) {
902 return -1;
903 }
904
905 return s[sizeof(FF_OVERLONG_PREFIX) - 1] > 0x83;
906 }
907
908 /* Starting with the #else, the rest of the function is identical except
909 * 1. we need to move the 'len' declaration to be global to the function
910 * 2. the endif move to just after the UNUSED_ARG.
911 * An empty endif is given just below to satisfy the preprocessor
912 */
913 #endif
914
915 #endif
916
917 #undef F0_ABOVE_OVERLONG
918 #undef F8_ABOVE_OVERLONG
919 #undef FC_ABOVE_OVERLONG
920 #undef FE_ABOVE_OVERLONG
921 #undef FF_OVERLONG_PREFIX
922
923 STRLEN
Perl__is_utf8_char_helper(const U8 * const s,const U8 * e,const U32 flags)924 Perl__is_utf8_char_helper(const U8 * const s, const U8 * e, const U32 flags)
925 {
926 STRLEN len;
927 const U8 *x;
928
929 /* A helper function that should not be called directly.
930 *
931 * This function returns non-zero if the string beginning at 's' and
932 * looking no further than 'e - 1' is well-formed Perl-extended-UTF-8 for a
933 * code point; otherwise it returns 0. The examination stops after the
934 * first code point in 's' is validated, not looking at the rest of the
935 * input. If 'e' is such that there are not enough bytes to represent a
936 * complete code point, this function will return non-zero anyway, if the
937 * bytes it does have are well-formed UTF-8 as far as they go, and aren't
938 * excluded by 'flags'.
939 *
940 * A non-zero return gives the number of bytes required to represent the
941 * code point. Be aware that if the input is for a partial character, the
942 * return will be larger than 'e - s'.
943 *
944 * This function assumes that the code point represented is UTF-8 variant.
945 * The caller should have excluded the possibility of it being invariant
946 * before calling this function.
947 *
948 * 'flags' can be 0, or any combination of the UTF8_DISALLOW_foo flags
949 * accepted by L</utf8n_to_uvchr>. If non-zero, this function will return
950 * 0 if the code point represented is well-formed Perl-extended-UTF-8, but
951 * disallowed by the flags. If the input is only for a partial character,
952 * the function will return non-zero if there is any sequence of
953 * well-formed UTF-8 that, when appended to the input sequence, could
954 * result in an allowed code point; otherwise it returns 0. Non characters
955 * cannot be determined based on partial character input. But many of the
956 * other excluded types can be determined with just the first one or two
957 * bytes.
958 *
959 */
960
961 PERL_ARGS_ASSERT__IS_UTF8_CHAR_HELPER;
962
963 assert(0 == (flags & ~(UTF8_DISALLOW_ILLEGAL_INTERCHANGE
964 |UTF8_DISALLOW_PERL_EXTENDED)));
965 assert(! UTF8_IS_INVARIANT(*s));
966
967 /* A variant char must begin with a start byte */
968 if (UNLIKELY(! UTF8_IS_START(*s))) {
969 return 0;
970 }
971
972 /* Examine a maximum of a single whole code point */
973 if (e - s > UTF8SKIP(s)) {
974 e = s + UTF8SKIP(s);
975 }
976
977 len = e - s;
978
979 if (flags && isUTF8_POSSIBLY_PROBLEMATIC(*s)) {
980 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
981
982 /* Here, we are disallowing some set of largish code points, and the
983 * first byte indicates the sequence is for a code point that could be
984 * in the excluded set. We generally don't have to look beyond this or
985 * the second byte to see if the sequence is actually for one of the
986 * excluded classes. The code below is derived from this table:
987 *
988 * UTF-8 UTF-EBCDIC I8
989 * U+D800: \xED\xA0\x80 \xF1\xB6\xA0\xA0 First surrogate
990 * U+DFFF: \xED\xBF\xBF \xF1\xB7\xBF\xBF Final surrogate
991 * U+110000: \xF4\x90\x80\x80 \xF9\xA2\xA0\xA0\xA0 First above Unicode
992 *
993 * Keep in mind that legal continuation bytes range between \x80..\xBF
994 * for UTF-8, and \xA0..\xBF for I8. Anything above those aren't
995 * continuation bytes. Hence, we don't have to test the upper edge
996 * because if any of those is encountered, the sequence is malformed,
997 * and would fail elsewhere in this function.
998 *
999 * The code here likewise assumes that there aren't other
1000 * malformations; again the function should fail elsewhere because of
1001 * these. For example, an overlong beginning with FC doesn't actually
1002 * have to be a super; it could actually represent a small code point,
1003 * even U+0000. But, since overlongs (and other malformations) are
1004 * illegal, the function should return FALSE in either case.
1005 */
1006
1007 #ifdef EBCDIC /* On EBCDIC, these are actually I8 bytes */
1008 # define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xFA
1009 # define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF9 && (s1) >= 0xA2)
1010
1011 # define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xF1 \
1012 /* B6 and B7 */ \
1013 && ((s1) & 0xFE ) == 0xB6)
1014 # define isUTF8_PERL_EXTENDED(s) (*s == I8_TO_NATIVE_UTF8(0xFF))
1015 #else
1016 # define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xF5
1017 # define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF4 && (s1) >= 0x90)
1018 # define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xED && (s1) >= 0xA0)
1019 # define isUTF8_PERL_EXTENDED(s) (*s >= 0xFE)
1020 #endif
1021
1022 if ( (flags & UTF8_DISALLOW_SUPER)
1023 && UNLIKELY(s0 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
1024 {
1025 return 0; /* Above Unicode */
1026 }
1027
1028 if ( (flags & UTF8_DISALLOW_PERL_EXTENDED)
1029 && UNLIKELY(isUTF8_PERL_EXTENDED(s)))
1030 {
1031 return 0;
1032 }
1033
1034 if (len > 1) {
1035 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
1036
1037 if ( (flags & UTF8_DISALLOW_SUPER)
1038 && UNLIKELY(IS_UTF8_2_BYTE_SUPER(s0, s1)))
1039 {
1040 return 0; /* Above Unicode */
1041 }
1042
1043 if ( (flags & UTF8_DISALLOW_SURROGATE)
1044 && UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(s0, s1)))
1045 {
1046 return 0; /* Surrogate */
1047 }
1048
1049 if ( (flags & UTF8_DISALLOW_NONCHAR)
1050 && UNLIKELY(UTF8_IS_NONCHAR(s, e)))
1051 {
1052 return 0; /* Noncharacter code point */
1053 }
1054 }
1055 }
1056
1057 /* Make sure that all that follows are continuation bytes */
1058 for (x = s + 1; x < e; x++) {
1059 if (UNLIKELY(! UTF8_IS_CONTINUATION(*x))) {
1060 return 0;
1061 }
1062 }
1063
1064 /* Here is syntactically valid. Next, make sure this isn't the start of an
1065 * overlong. */
1066 if (len > 1 && is_utf8_overlong_given_start_byte_ok(s, len) > 0) {
1067 return 0;
1068 }
1069
1070 /* And finally, that the code point represented fits in a word on this
1071 * platform */
1072 if (0 < does_utf8_overflow(s, e,
1073 0 /* Don't consider overlongs */
1074 ))
1075 {
1076 return 0;
1077 }
1078
1079 return UTF8SKIP(s);
1080 }
1081
1082 char *
Perl__byte_dump_string(pTHX_ const U8 * const start,const STRLEN len,const bool format)1083 Perl__byte_dump_string(pTHX_ const U8 * const start, const STRLEN len, const bool format)
1084 {
1085 /* Returns a mortalized C string that is a displayable copy of the 'len'
1086 * bytes starting at 'start'. 'format' gives how to display each byte.
1087 * Currently, there are only two formats, so it is currently a bool:
1088 * 0 \xab
1089 * 1 ab (that is a space between two hex digit bytes)
1090 */
1091
1092 const STRLEN output_len = 4 * len + 1; /* 4 bytes per each input, plus a
1093 trailing NUL */
1094 const U8 * s = start;
1095 const U8 * const e = start + len;
1096 char * output;
1097 char * d;
1098
1099 PERL_ARGS_ASSERT__BYTE_DUMP_STRING;
1100
1101 Newx(output, output_len, char);
1102 SAVEFREEPV(output);
1103
1104 d = output;
1105 for (s = start; s < e; s++) {
1106 const unsigned high_nibble = (*s & 0xF0) >> 4;
1107 const unsigned low_nibble = (*s & 0x0F);
1108
1109 if (format) {
1110 if (s > start) {
1111 *d++ = ' ';
1112 }
1113 }
1114 else {
1115 *d++ = '\\';
1116 *d++ = 'x';
1117 }
1118
1119 if (high_nibble < 10) {
1120 *d++ = high_nibble + '0';
1121 }
1122 else {
1123 *d++ = high_nibble - 10 + 'a';
1124 }
1125
1126 if (low_nibble < 10) {
1127 *d++ = low_nibble + '0';
1128 }
1129 else {
1130 *d++ = low_nibble - 10 + 'a';
1131 }
1132 }
1133
1134 *d = '\0';
1135 return output;
1136 }
1137
1138 PERL_STATIC_INLINE char *
S_unexpected_non_continuation_text(pTHX_ const U8 * const s,STRLEN print_len,const STRLEN non_cont_byte_pos,const STRLEN expect_len)1139 S_unexpected_non_continuation_text(pTHX_ const U8 * const s,
1140
1141 /* Max number of bytes to print */
1142 STRLEN print_len,
1143
1144 /* Which one is the non-continuation */
1145 const STRLEN non_cont_byte_pos,
1146
1147 /* How many bytes should there be? */
1148 const STRLEN expect_len)
1149 {
1150 /* Return the malformation warning text for an unexpected continuation
1151 * byte. */
1152
1153 const char * const where = (non_cont_byte_pos == 1)
1154 ? "immediately"
1155 : Perl_form(aTHX_ "%d bytes",
1156 (int) non_cont_byte_pos);
1157 const U8 * x = s + non_cont_byte_pos;
1158 const U8 * e = s + print_len;
1159
1160 PERL_ARGS_ASSERT_UNEXPECTED_NON_CONTINUATION_TEXT;
1161
1162 /* We don't need to pass this parameter, but since it has already been
1163 * calculated, it's likely faster to pass it; verify under DEBUGGING */
1164 assert(expect_len == UTF8SKIP(s));
1165
1166 /* As a defensive coding measure, don't output anything past a NUL. Such
1167 * bytes shouldn't be in the middle of a malformation, and could mark the
1168 * end of the allocated string, and what comes after is undefined */
1169 for (; x < e; x++) {
1170 if (*x == '\0') {
1171 x++; /* Output this particular NUL */
1172 break;
1173 }
1174 }
1175
1176 return Perl_form(aTHX_ "%s: %s (unexpected non-continuation byte 0x%02x,"
1177 " %s after start byte 0x%02x; need %d bytes, got %d)",
1178 malformed_text,
1179 _byte_dump_string(s, x - s, 0),
1180 *(s + non_cont_byte_pos),
1181 where,
1182 *s,
1183 (int) expect_len,
1184 (int) non_cont_byte_pos);
1185 }
1186
1187 /*
1188
1189 =for apidoc utf8n_to_uvchr
1190
1191 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1192 Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
1193
1194 Bottom level UTF-8 decode routine.
1195 Returns the native code point value of the first character in the string C<s>,
1196 which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than
1197 C<curlen> bytes; C<*retlen> (if C<retlen> isn't NULL) will be set to
1198 the length, in bytes, of that character.
1199
1200 The value of C<flags> determines the behavior when C<s> does not point to a
1201 well-formed UTF-8 character. If C<flags> is 0, encountering a malformation
1202 causes zero to be returned and C<*retlen> is set so that (S<C<s> + C<*retlen>>)
1203 is the next possible position in C<s> that could begin a non-malformed
1204 character. Also, if UTF-8 warnings haven't been lexically disabled, a warning
1205 is raised. Some UTF-8 input sequences may contain multiple malformations.
1206 This function tries to find every possible one in each call, so multiple
1207 warnings can be raised for the same sequence.
1208
1209 Various ALLOW flags can be set in C<flags> to allow (and not warn on)
1210 individual types of malformations, such as the sequence being overlong (that
1211 is, when there is a shorter sequence that can express the same code point;
1212 overlong sequences are expressly forbidden in the UTF-8 standard due to
1213 potential security issues). Another malformation example is the first byte of
1214 a character not being a legal first byte. See F<utf8.h> for the list of such
1215 flags. Even if allowed, this function generally returns the Unicode
1216 REPLACEMENT CHARACTER when it encounters a malformation. There are flags in
1217 F<utf8.h> to override this behavior for the overlong malformations, but don't
1218 do that except for very specialized purposes.
1219
1220 The C<UTF8_CHECK_ONLY> flag overrides the behavior when a non-allowed (by other
1221 flags) malformation is found. If this flag is set, the routine assumes that
1222 the caller will raise a warning, and this function will silently just set
1223 C<retlen> to C<-1> (cast to C<STRLEN>) and return zero.
1224
1225 Note that this API requires disambiguation between successful decoding a C<NUL>
1226 character, and an error return (unless the C<UTF8_CHECK_ONLY> flag is set), as
1227 in both cases, 0 is returned, and, depending on the malformation, C<retlen> may
1228 be set to 1. To disambiguate, upon a zero return, see if the first byte of
1229 C<s> is 0 as well. If so, the input was a C<NUL>; if not, the input had an
1230 error. Or you can use C<L</utf8n_to_uvchr_error>>.
1231
1232 Certain code points are considered problematic. These are Unicode surrogates,
1233 Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
1234 By default these are considered regular code points, but certain situations
1235 warrant special handling for them, which can be specified using the C<flags>
1236 parameter. If C<flags> contains C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>, all
1237 three classes are treated as malformations and handled as such. The flags
1238 C<UTF8_DISALLOW_SURROGATE>, C<UTF8_DISALLOW_NONCHAR>, and
1239 C<UTF8_DISALLOW_SUPER> (meaning above the legal Unicode maximum) can be set to
1240 disallow these categories individually. C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>
1241 restricts the allowed inputs to the strict UTF-8 traditionally defined by
1242 Unicode. Use C<UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE> to use the strictness
1243 definition given by
1244 L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
1245 The difference between traditional strictness and C9 strictness is that the
1246 latter does not forbid non-character code points. (They are still discouraged,
1247 however.) For more discussion see L<perlunicode/Noncharacter code points>.
1248
1249 The flags C<UTF8_WARN_ILLEGAL_INTERCHANGE>,
1250 C<UTF8_WARN_ILLEGAL_C9_INTERCHANGE>, C<UTF8_WARN_SURROGATE>,
1251 C<UTF8_WARN_NONCHAR>, and C<UTF8_WARN_SUPER> will cause warning messages to be
1252 raised for their respective categories, but otherwise the code points are
1253 considered valid (not malformations). To get a category to both be treated as
1254 a malformation and raise a warning, specify both the WARN and DISALLOW flags.
1255 (But note that warnings are not raised if lexically disabled nor if
1256 C<UTF8_CHECK_ONLY> is also specified.)
1257
1258 Extremely high code points were never specified in any standard, and require an
1259 extension to UTF-8 to express, which Perl does. It is likely that programs
1260 written in something other than Perl would not be able to read files that
1261 contain these; nor would Perl understand files written by something that uses a
1262 different extension. For these reasons, there is a separate set of flags that
1263 can warn and/or disallow these extremely high code points, even if other
1264 above-Unicode ones are accepted. They are the C<UTF8_WARN_PERL_EXTENDED> and
1265 C<UTF8_DISALLOW_PERL_EXTENDED> flags. For more information see
1266 L</C<UTF8_GOT_PERL_EXTENDED>>. Of course C<UTF8_DISALLOW_SUPER> will treat all
1267 above-Unicode code points, including these, as malformations.
1268 (Note that the Unicode standard considers anything above 0x10FFFF to be
1269 illegal, but there are standards predating it that allow up to 0x7FFF_FFFF
1270 (2**31 -1))
1271
1272 A somewhat misleadingly named synonym for C<UTF8_WARN_PERL_EXTENDED> is
1273 retained for backward compatibility: C<UTF8_WARN_ABOVE_31_BIT>. Similarly,
1274 C<UTF8_DISALLOW_ABOVE_31_BIT> is usable instead of the more accurately named
1275 C<UTF8_DISALLOW_PERL_EXTENDED>. The names are misleading because these flags
1276 can apply to code points that actually do fit in 31 bits. This happens on
1277 EBCDIC platforms, and sometimes when the L<overlong
1278 malformation|/C<UTF8_GOT_LONG>> is also present. The new names accurately
1279 describe the situation in all cases.
1280
1281
1282 All other code points corresponding to Unicode characters, including private
1283 use and those yet to be assigned, are never considered malformed and never
1284 warn.
1285
1286 =cut
1287
1288 Also implemented as a macro in utf8.h
1289 */
1290
1291 UV
Perl_utf8n_to_uvchr(const U8 * s,STRLEN curlen,STRLEN * retlen,const U32 flags)1292 Perl_utf8n_to_uvchr(const U8 *s,
1293 STRLEN curlen,
1294 STRLEN *retlen,
1295 const U32 flags)
1296 {
1297 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR;
1298
1299 return utf8n_to_uvchr_error(s, curlen, retlen, flags, NULL);
1300 }
1301
1302 /*
1303
1304 =for apidoc utf8n_to_uvchr_error
1305
1306 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1307 Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
1308
1309 This function is for code that needs to know what the precise malformation(s)
1310 are when an error is found. If you also need to know the generated warning
1311 messages, use L</utf8n_to_uvchr_msgs>() instead.
1312
1313 It is like C<L</utf8n_to_uvchr>> but it takes an extra parameter placed after
1314 all the others, C<errors>. If this parameter is 0, this function behaves
1315 identically to C<L</utf8n_to_uvchr>>. Otherwise, C<errors> should be a pointer
1316 to a C<U32> variable, which this function sets to indicate any errors found.
1317 Upon return, if C<*errors> is 0, there were no errors found. Otherwise,
1318 C<*errors> is the bit-wise C<OR> of the bits described in the list below. Some
1319 of these bits will be set if a malformation is found, even if the input
1320 C<flags> parameter indicates that the given malformation is allowed; those
1321 exceptions are noted:
1322
1323 =over 4
1324
1325 =item C<UTF8_GOT_PERL_EXTENDED>
1326
1327 The input sequence is not standard UTF-8, but a Perl extension. This bit is
1328 set only if the input C<flags> parameter contains either the
1329 C<UTF8_DISALLOW_PERL_EXTENDED> or the C<UTF8_WARN_PERL_EXTENDED> flags.
1330
1331 Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
1332 and so some extension must be used to express them. Perl uses a natural
1333 extension to UTF-8 to represent the ones up to 2**36-1, and invented a further
1334 extension to represent even higher ones, so that any code point that fits in a
1335 64-bit word can be represented. Text using these extensions is not likely to
1336 be portable to non-Perl code. We lump both of these extensions together and
1337 refer to them as Perl extended UTF-8. There exist other extensions that people
1338 have invented, incompatible with Perl's.
1339
1340 On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
1341 extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
1342 than on ASCII. Prior to that, code points 2**31 and higher were simply
1343 unrepresentable, and a different, incompatible method was used to represent
1344 code points between 2**30 and 2**31 - 1.
1345
1346 On both platforms, ASCII and EBCDIC, C<UTF8_GOT_PERL_EXTENDED> is set if
1347 Perl extended UTF-8 is used.
1348
1349 In earlier Perls, this bit was named C<UTF8_GOT_ABOVE_31_BIT>, which you still
1350 may use for backward compatibility. That name is misleading, as this flag may
1351 be set when the code point actually does fit in 31 bits. This happens on
1352 EBCDIC platforms, and sometimes when the L<overlong
1353 malformation|/C<UTF8_GOT_LONG>> is also present. The new name accurately
1354 describes the situation in all cases.
1355
1356 =item C<UTF8_GOT_CONTINUATION>
1357
1358 The input sequence was malformed in that the first byte was a a UTF-8
1359 continuation byte.
1360
1361 =item C<UTF8_GOT_EMPTY>
1362
1363 The input C<curlen> parameter was 0.
1364
1365 =item C<UTF8_GOT_LONG>
1366
1367 The input sequence was malformed in that there is some other sequence that
1368 evaluates to the same code point, but that sequence is shorter than this one.
1369
1370 Until Unicode 3.1, it was legal for programs to accept this malformation, but
1371 it was discovered that this created security issues.
1372
1373 =item C<UTF8_GOT_NONCHAR>
1374
1375 The code point represented by the input UTF-8 sequence is for a Unicode
1376 non-character code point.
1377 This bit is set only if the input C<flags> parameter contains either the
1378 C<UTF8_DISALLOW_NONCHAR> or the C<UTF8_WARN_NONCHAR> flags.
1379
1380 =item C<UTF8_GOT_NON_CONTINUATION>
1381
1382 The input sequence was malformed in that a non-continuation type byte was found
1383 in a position where only a continuation type one should be. See also
1384 L</C<UTF8_GOT_SHORT>>.
1385
1386 =item C<UTF8_GOT_OVERFLOW>
1387
1388 The input sequence was malformed in that it is for a code point that is not
1389 representable in the number of bits available in an IV on the current platform.
1390
1391 =item C<UTF8_GOT_SHORT>
1392
1393 The input sequence was malformed in that C<curlen> is smaller than required for
1394 a complete sequence. In other words, the input is for a partial character
1395 sequence.
1396
1397
1398 C<UTF8_GOT_SHORT> and C<UTF8_GOT_NON_CONTINUATION> both indicate a too short
1399 sequence. The difference is that C<UTF8_GOT_NON_CONTINUATION> indicates always
1400 that there is an error, while C<UTF8_GOT_SHORT> means that an incomplete
1401 sequence was looked at. If no other flags are present, it means that the
1402 sequence was valid as far as it went. Depending on the application, this could
1403 mean one of three things:
1404
1405 =over
1406
1407 =item *
1408
1409 The C<curlen> length parameter passed in was too small, and the function was
1410 prevented from examining all the necessary bytes.
1411
1412 =item *
1413
1414 The buffer being looked at is based on reading data, and the data received so
1415 far stopped in the middle of a character, so that the next read will
1416 read the remainder of this character. (It is up to the caller to deal with the
1417 split bytes somehow.)
1418
1419 =item *
1420
1421 This is a real error, and the partial sequence is all we're going to get.
1422
1423 =back
1424
1425 =item C<UTF8_GOT_SUPER>
1426
1427 The input sequence was malformed in that it is for a non-Unicode code point;
1428 that is, one above the legal Unicode maximum.
1429 This bit is set only if the input C<flags> parameter contains either the
1430 C<UTF8_DISALLOW_SUPER> or the C<UTF8_WARN_SUPER> flags.
1431
1432 =item C<UTF8_GOT_SURROGATE>
1433
1434 The input sequence was malformed in that it is for a -Unicode UTF-16 surrogate
1435 code point.
1436 This bit is set only if the input C<flags> parameter contains either the
1437 C<UTF8_DISALLOW_SURROGATE> or the C<UTF8_WARN_SURROGATE> flags.
1438
1439 =back
1440
1441 To do your own error handling, call this function with the C<UTF8_CHECK_ONLY>
1442 flag to suppress any warnings, and then examine the C<*errors> return.
1443
1444 =cut
1445
1446 Also implemented as a macro in utf8.h
1447 */
1448
1449 UV
Perl_utf8n_to_uvchr_error(const U8 * s,STRLEN curlen,STRLEN * retlen,const U32 flags,U32 * errors)1450 Perl_utf8n_to_uvchr_error(const U8 *s,
1451 STRLEN curlen,
1452 STRLEN *retlen,
1453 const U32 flags,
1454 U32 * errors)
1455 {
1456 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR_ERROR;
1457
1458 return utf8n_to_uvchr_msgs(s, curlen, retlen, flags, errors, NULL);
1459 }
1460
1461 /*
1462
1463 =for apidoc utf8n_to_uvchr_msgs
1464
1465 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1466 Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
1467
1468 This function is for code that needs to know what the precise malformation(s)
1469 are when an error is found, and wants the corresponding warning and/or error
1470 messages to be returned to the caller rather than be displayed. All messages
1471 that would have been displayed if all lexcial warnings are enabled will be
1472 returned.
1473
1474 It is just like C<L</utf8n_to_uvchr_error>> but it takes an extra parameter
1475 placed after all the others, C<msgs>. If this parameter is 0, this function
1476 behaves identically to C<L</utf8n_to_uvchr_error>>. Otherwise, C<msgs> should
1477 be a pointer to an C<AV *> variable, in which this function creates a new AV to
1478 contain any appropriate messages. The elements of the array are ordered so
1479 that the first message that would have been displayed is in the 0th element,
1480 and so on. Each element is a hash with three key-value pairs, as follows:
1481
1482 =over 4
1483
1484 =item C<text>
1485
1486 The text of the message as a C<SVpv>.
1487
1488 =item C<warn_categories>
1489
1490 The warning category (or categories) packed into a C<SVuv>.
1491
1492 =item C<flag>
1493
1494 A single flag bit associated with this message, in a C<SVuv>.
1495 The bit corresponds to some bit in the C<*errors> return value,
1496 such as C<UTF8_GOT_LONG>.
1497
1498 =back
1499
1500 It's important to note that specifying this parameter as non-null will cause
1501 any warnings this function would otherwise generate to be suppressed, and
1502 instead be placed in C<*msgs>. The caller can check the lexical warnings state
1503 (or not) when choosing what to do with the returned messages.
1504
1505 If the flag C<UTF8_CHECK_ONLY> is passed, no warnings are generated, and hence
1506 no AV is created.
1507
1508 The caller, of course, is responsible for freeing any returned AV.
1509
1510 =cut
1511 */
1512
1513 UV
Perl__utf8n_to_uvchr_msgs_helper(const U8 * s,STRLEN curlen,STRLEN * retlen,const U32 flags,U32 * errors,AV ** msgs)1514 Perl__utf8n_to_uvchr_msgs_helper(const U8 *s,
1515 STRLEN curlen,
1516 STRLEN *retlen,
1517 const U32 flags,
1518 U32 * errors,
1519 AV ** msgs)
1520 {
1521 const U8 * const s0 = s;
1522 const U8 * send = s0 + curlen;
1523 U32 possible_problems; /* A bit is set here for each potential problem
1524 found as we go along */
1525 UV uv;
1526 STRLEN expectlen; /* How long should this sequence be? */
1527 STRLEN avail_len; /* When input is too short, gives what that is */
1528 U32 discard_errors; /* Used to save branches when 'errors' is NULL; this
1529 gets set and discarded */
1530
1531 /* The below are used only if there is both an overlong malformation and a
1532 * too short one. Otherwise the first two are set to 's0' and 'send', and
1533 * the third not used at all */
1534 U8 * adjusted_s0;
1535 U8 temp_char_buf[UTF8_MAXBYTES + 1]; /* Used to avoid a Newx in this
1536 routine; see [perl #130921] */
1537 UV uv_so_far;
1538 dTHX;
1539
1540 PERL_ARGS_ASSERT__UTF8N_TO_UVCHR_MSGS_HELPER;
1541
1542 /* Here, is one of: a) malformed; b) a problematic code point (surrogate,
1543 * non-unicode, or nonchar); or c) on ASCII platforms, one of the Hangul
1544 * syllables that the dfa doesn't properly handle. Quickly dispose of the
1545 * final case. */
1546
1547 #ifndef EBCDIC
1548
1549 /* Each of the affected Hanguls starts with \xED */
1550
1551 if (is_HANGUL_ED_utf8_safe(s0, send)) {
1552 if (retlen) {
1553 *retlen = 3;
1554 }
1555 if (errors) {
1556 *errors = 0;
1557 }
1558 if (msgs) {
1559 *msgs = NULL;
1560 }
1561
1562 return ((0xED & UTF_START_MASK(3)) << (2 * UTF_ACCUMULATION_SHIFT))
1563 | ((s0[1] & UTF_CONTINUATION_MASK) << UTF_ACCUMULATION_SHIFT)
1564 | (s0[2] & UTF_CONTINUATION_MASK);
1565 }
1566
1567 #endif
1568
1569 /* In conjunction with the exhaustive tests that can be enabled in
1570 * APItest/t/utf8_warn_base.pl, this can make sure the dfa does precisely
1571 * what it is intended to do, and that no flaws in it are masked by
1572 * dropping down and executing the code below
1573 assert(! isUTF8_CHAR(s0, send)
1574 || UTF8_IS_SURROGATE(s0, send)
1575 || UTF8_IS_SUPER(s0, send)
1576 || UTF8_IS_NONCHAR(s0,send));
1577 */
1578
1579 s = s0;
1580 uv = *s0;
1581 possible_problems = 0;
1582 expectlen = 0;
1583 avail_len = 0;
1584 discard_errors = 0;
1585 adjusted_s0 = (U8 *) s0;
1586 uv_so_far = 0;
1587
1588 if (errors) {
1589 *errors = 0;
1590 }
1591 else {
1592 errors = &discard_errors;
1593 }
1594
1595 /* The order of malformation tests here is important. We should consume as
1596 * few bytes as possible in order to not skip any valid character. This is
1597 * required by the Unicode Standard (section 3.9 of Unicode 6.0); see also
1598 * http://unicode.org/reports/tr36 for more discussion as to why. For
1599 * example, once we've done a UTF8SKIP, we can tell the expected number of
1600 * bytes, and could fail right off the bat if the input parameters indicate
1601 * that there are too few available. But it could be that just that first
1602 * byte is garbled, and the intended character occupies fewer bytes. If we
1603 * blindly assumed that the first byte is correct, and skipped based on
1604 * that number, we could skip over a valid input character. So instead, we
1605 * always examine the sequence byte-by-byte.
1606 *
1607 * We also should not consume too few bytes, otherwise someone could inject
1608 * things. For example, an input could be deliberately designed to
1609 * overflow, and if this code bailed out immediately upon discovering that,
1610 * returning to the caller C<*retlen> pointing to the very next byte (one
1611 * which is actually part of of the overflowing sequence), that could look
1612 * legitimate to the caller, which could discard the initial partial
1613 * sequence and process the rest, inappropriately.
1614 *
1615 * Some possible input sequences are malformed in more than one way. This
1616 * function goes to lengths to try to find all of them. This is necessary
1617 * for correctness, as the inputs may allow one malformation but not
1618 * another, and if we abandon searching for others after finding the
1619 * allowed one, we could allow in something that shouldn't have been.
1620 */
1621
1622 if (UNLIKELY(curlen == 0)) {
1623 possible_problems |= UTF8_GOT_EMPTY;
1624 curlen = 0;
1625 uv = UNICODE_REPLACEMENT;
1626 goto ready_to_handle_errors;
1627 }
1628
1629 expectlen = UTF8SKIP(s);
1630
1631 /* A well-formed UTF-8 character, as the vast majority of calls to this
1632 * function will be for, has this expected length. For efficiency, set
1633 * things up here to return it. It will be overriden only in those rare
1634 * cases where a malformation is found */
1635 if (retlen) {
1636 *retlen = expectlen;
1637 }
1638
1639 /* A continuation character can't start a valid sequence */
1640 if (UNLIKELY(UTF8_IS_CONTINUATION(uv))) {
1641 possible_problems |= UTF8_GOT_CONTINUATION;
1642 curlen = 1;
1643 uv = UNICODE_REPLACEMENT;
1644 goto ready_to_handle_errors;
1645 }
1646
1647 /* Here is not a continuation byte, nor an invariant. The only thing left
1648 * is a start byte (possibly for an overlong). (We can't use UTF8_IS_START
1649 * because it excludes start bytes like \xC0 that always lead to
1650 * overlongs.) */
1651
1652 /* Convert to I8 on EBCDIC (no-op on ASCII), then remove the leading bits
1653 * that indicate the number of bytes in the character's whole UTF-8
1654 * sequence, leaving just the bits that are part of the value. */
1655 uv = NATIVE_UTF8_TO_I8(uv) & UTF_START_MASK(expectlen);
1656
1657 /* Setup the loop end point, making sure to not look past the end of the
1658 * input string, and flag it as too short if the size isn't big enough. */
1659 if (UNLIKELY(curlen < expectlen)) {
1660 possible_problems |= UTF8_GOT_SHORT;
1661 avail_len = curlen;
1662 }
1663 else {
1664 send = (U8*) s0 + expectlen;
1665 }
1666
1667 /* Now, loop through the remaining bytes in the character's sequence,
1668 * accumulating each into the working value as we go. */
1669 for (s = s0 + 1; s < send; s++) {
1670 if (LIKELY(UTF8_IS_CONTINUATION(*s))) {
1671 uv = UTF8_ACCUMULATE(uv, *s);
1672 continue;
1673 }
1674
1675 /* Here, found a non-continuation before processing all expected bytes.
1676 * This byte indicates the beginning of a new character, so quit, even
1677 * if allowing this malformation. */
1678 possible_problems |= UTF8_GOT_NON_CONTINUATION;
1679 break;
1680 } /* End of loop through the character's bytes */
1681
1682 /* Save how many bytes were actually in the character */
1683 curlen = s - s0;
1684
1685 /* Note that there are two types of too-short malformation. One is when
1686 * there is actual wrong data before the normal termination of the
1687 * sequence. The other is that the sequence wasn't complete before the end
1688 * of the data we are allowed to look at, based on the input 'curlen'.
1689 * This means that we were passed data for a partial character, but it is
1690 * valid as far as we saw. The other is definitely invalid. This
1691 * distinction could be important to a caller, so the two types are kept
1692 * separate.
1693 *
1694 * A convenience macro that matches either of the too-short conditions. */
1695 # define UTF8_GOT_TOO_SHORT (UTF8_GOT_SHORT|UTF8_GOT_NON_CONTINUATION)
1696
1697 if (UNLIKELY(possible_problems & UTF8_GOT_TOO_SHORT)) {
1698 uv_so_far = uv;
1699 uv = UNICODE_REPLACEMENT;
1700 }
1701
1702 /* Check for overflow. The algorithm requires us to not look past the end
1703 * of the current character, even if partial, so the upper limit is 's' */
1704 if (UNLIKELY(0 < does_utf8_overflow(s0, s,
1705 1 /* Do consider overlongs */
1706 )))
1707 {
1708 possible_problems |= UTF8_GOT_OVERFLOW;
1709 uv = UNICODE_REPLACEMENT;
1710 }
1711
1712 /* Check for overlong. If no problems so far, 'uv' is the correct code
1713 * point value. Simply see if it is expressible in fewer bytes. Otherwise
1714 * we must look at the UTF-8 byte sequence itself to see if it is for an
1715 * overlong */
1716 if ( ( LIKELY(! possible_problems)
1717 && UNLIKELY(expectlen > (STRLEN) OFFUNISKIP(uv)))
1718 || ( UNLIKELY(possible_problems)
1719 && ( UNLIKELY(! UTF8_IS_START(*s0))
1720 || ( curlen > 1
1721 && UNLIKELY(0 < is_utf8_overlong_given_start_byte_ok(s0,
1722 s - s0))))))
1723 {
1724 possible_problems |= UTF8_GOT_LONG;
1725
1726 if ( UNLIKELY( possible_problems & UTF8_GOT_TOO_SHORT)
1727
1728 /* The calculation in the 'true' branch of this 'if'
1729 * below won't work if overflows, and isn't needed
1730 * anyway. Further below we handle all overflow
1731 * cases */
1732 && LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW)))
1733 {
1734 UV min_uv = uv_so_far;
1735 STRLEN i;
1736
1737 /* Here, the input is both overlong and is missing some trailing
1738 * bytes. There is no single code point it could be for, but there
1739 * may be enough information present to determine if what we have
1740 * so far is for an unallowed code point, such as for a surrogate.
1741 * The code further below has the intelligence to determine this,
1742 * but just for non-overlong UTF-8 sequences. What we do here is
1743 * calculate the smallest code point the input could represent if
1744 * there were no too short malformation. Then we compute and save
1745 * the UTF-8 for that, which is what the code below looks at
1746 * instead of the raw input. It turns out that the smallest such
1747 * code point is all we need. */
1748 for (i = curlen; i < expectlen; i++) {
1749 min_uv = UTF8_ACCUMULATE(min_uv,
1750 I8_TO_NATIVE_UTF8(UTF_CONTINUATION_MARK));
1751 }
1752
1753 adjusted_s0 = temp_char_buf;
1754 (void) uvoffuni_to_utf8_flags(adjusted_s0, min_uv, 0);
1755 }
1756 }
1757
1758 /* Here, we have found all the possible problems, except for when the input
1759 * is for a problematic code point not allowed by the input parameters. */
1760
1761 /* uv is valid for overlongs */
1762 if ( ( ( LIKELY(! (possible_problems & ~UTF8_GOT_LONG))
1763
1764 /* isn't problematic if < this */
1765 && uv >= UNICODE_SURROGATE_FIRST)
1766 || ( UNLIKELY(possible_problems)
1767
1768 /* if overflow, we know without looking further
1769 * precisely which of the problematic types it is,
1770 * and we deal with those in the overflow handling
1771 * code */
1772 && LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW))
1773 && ( isUTF8_POSSIBLY_PROBLEMATIC(*adjusted_s0)
1774 || UNLIKELY(isUTF8_PERL_EXTENDED(s0)))))
1775 && ((flags & ( UTF8_DISALLOW_NONCHAR
1776 |UTF8_DISALLOW_SURROGATE
1777 |UTF8_DISALLOW_SUPER
1778 |UTF8_DISALLOW_PERL_EXTENDED
1779 |UTF8_WARN_NONCHAR
1780 |UTF8_WARN_SURROGATE
1781 |UTF8_WARN_SUPER
1782 |UTF8_WARN_PERL_EXTENDED))))
1783 {
1784 /* If there were no malformations, or the only malformation is an
1785 * overlong, 'uv' is valid */
1786 if (LIKELY(! (possible_problems & ~UTF8_GOT_LONG))) {
1787 if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
1788 possible_problems |= UTF8_GOT_SURROGATE;
1789 }
1790 else if (UNLIKELY(uv > PERL_UNICODE_MAX)) {
1791 possible_problems |= UTF8_GOT_SUPER;
1792 }
1793 else if (UNLIKELY(UNICODE_IS_NONCHAR(uv))) {
1794 possible_problems |= UTF8_GOT_NONCHAR;
1795 }
1796 }
1797 else { /* Otherwise, need to look at the source UTF-8, possibly
1798 adjusted to be non-overlong */
1799
1800 if (UNLIKELY(NATIVE_UTF8_TO_I8(*adjusted_s0)
1801 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
1802 {
1803 possible_problems |= UTF8_GOT_SUPER;
1804 }
1805 else if (curlen > 1) {
1806 if (UNLIKELY(IS_UTF8_2_BYTE_SUPER(
1807 NATIVE_UTF8_TO_I8(*adjusted_s0),
1808 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1809 {
1810 possible_problems |= UTF8_GOT_SUPER;
1811 }
1812 else if (UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(
1813 NATIVE_UTF8_TO_I8(*adjusted_s0),
1814 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1815 {
1816 possible_problems |= UTF8_GOT_SURROGATE;
1817 }
1818 }
1819
1820 /* We need a complete well-formed UTF-8 character to discern
1821 * non-characters, so can't look for them here */
1822 }
1823 }
1824
1825 ready_to_handle_errors:
1826
1827 /* At this point:
1828 * curlen contains the number of bytes in the sequence that
1829 * this call should advance the input by.
1830 * avail_len gives the available number of bytes passed in, but
1831 * only if this is less than the expected number of
1832 * bytes, based on the code point's start byte.
1833 * possible_problems' is 0 if there weren't any problems; otherwise a bit
1834 * is set in it for each potential problem found.
1835 * uv contains the code point the input sequence
1836 * represents; or if there is a problem that prevents
1837 * a well-defined value from being computed, it is
1838 * some subsitute value, typically the REPLACEMENT
1839 * CHARACTER.
1840 * s0 points to the first byte of the character
1841 * s points to just after were we left off processing
1842 * the character
1843 * send points to just after where that character should
1844 * end, based on how many bytes the start byte tells
1845 * us should be in it, but no further than s0 +
1846 * avail_len
1847 */
1848
1849 if (UNLIKELY(possible_problems)) {
1850 bool disallowed = FALSE;
1851 const U32 orig_problems = possible_problems;
1852
1853 if (msgs) {
1854 *msgs = NULL;
1855 }
1856
1857 while (possible_problems) { /* Handle each possible problem */
1858 UV pack_warn = 0;
1859 char * message = NULL;
1860 U32 this_flag_bit = 0;
1861
1862 /* Each 'if' clause handles one problem. They are ordered so that
1863 * the first ones' messages will be displayed before the later
1864 * ones; this is kinda in decreasing severity order. But the
1865 * overlong must come last, as it changes 'uv' looked at by the
1866 * others */
1867 if (possible_problems & UTF8_GOT_OVERFLOW) {
1868
1869 /* Overflow means also got a super and are using Perl's
1870 * extended UTF-8, but we handle all three cases here */
1871 possible_problems
1872 &= ~(UTF8_GOT_OVERFLOW|UTF8_GOT_SUPER|UTF8_GOT_PERL_EXTENDED);
1873 *errors |= UTF8_GOT_OVERFLOW;
1874
1875 /* But the API says we flag all errors found */
1876 if (flags & (UTF8_WARN_SUPER|UTF8_DISALLOW_SUPER)) {
1877 *errors |= UTF8_GOT_SUPER;
1878 }
1879 if (flags
1880 & (UTF8_WARN_PERL_EXTENDED|UTF8_DISALLOW_PERL_EXTENDED))
1881 {
1882 *errors |= UTF8_GOT_PERL_EXTENDED;
1883 }
1884
1885 /* Disallow if any of the three categories say to */
1886 if ( ! (flags & UTF8_ALLOW_OVERFLOW)
1887 || (flags & ( UTF8_DISALLOW_SUPER
1888 |UTF8_DISALLOW_PERL_EXTENDED)))
1889 {
1890 disallowed = TRUE;
1891 }
1892
1893 /* Likewise, warn if any say to */
1894 if ( ! (flags & UTF8_ALLOW_OVERFLOW)
1895 || (flags & (UTF8_WARN_SUPER|UTF8_WARN_PERL_EXTENDED)))
1896 {
1897
1898 /* The warnings code explicitly says it doesn't handle the
1899 * case of packWARN2 and two categories which have
1900 * parent-child relationship. Even if it works now to
1901 * raise the warning if either is enabled, it wouldn't
1902 * necessarily do so in the future. We output (only) the
1903 * most dire warning */
1904 if (! (flags & UTF8_CHECK_ONLY)) {
1905 if (msgs || ckWARN_d(WARN_UTF8)) {
1906 pack_warn = packWARN(WARN_UTF8);
1907 }
1908 else if (msgs || ckWARN_d(WARN_NON_UNICODE)) {
1909 pack_warn = packWARN(WARN_NON_UNICODE);
1910 }
1911 if (pack_warn) {
1912 message = Perl_form(aTHX_ "%s: %s (overflows)",
1913 malformed_text,
1914 _byte_dump_string(s0, curlen, 0));
1915 this_flag_bit = UTF8_GOT_OVERFLOW;
1916 }
1917 }
1918 }
1919 }
1920 else if (possible_problems & UTF8_GOT_EMPTY) {
1921 possible_problems &= ~UTF8_GOT_EMPTY;
1922 *errors |= UTF8_GOT_EMPTY;
1923
1924 if (! (flags & UTF8_ALLOW_EMPTY)) {
1925
1926 /* This so-called malformation is now treated as a bug in
1927 * the caller. If you have nothing to decode, skip calling
1928 * this function */
1929 assert(0);
1930
1931 disallowed = TRUE;
1932 if ( (msgs
1933 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
1934 {
1935 pack_warn = packWARN(WARN_UTF8);
1936 message = Perl_form(aTHX_ "%s (empty string)",
1937 malformed_text);
1938 this_flag_bit = UTF8_GOT_EMPTY;
1939 }
1940 }
1941 }
1942 else if (possible_problems & UTF8_GOT_CONTINUATION) {
1943 possible_problems &= ~UTF8_GOT_CONTINUATION;
1944 *errors |= UTF8_GOT_CONTINUATION;
1945
1946 if (! (flags & UTF8_ALLOW_CONTINUATION)) {
1947 disallowed = TRUE;
1948 if (( msgs
1949 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
1950 {
1951 pack_warn = packWARN(WARN_UTF8);
1952 message = Perl_form(aTHX_
1953 "%s: %s (unexpected continuation byte 0x%02x,"
1954 " with no preceding start byte)",
1955 malformed_text,
1956 _byte_dump_string(s0, 1, 0), *s0);
1957 this_flag_bit = UTF8_GOT_CONTINUATION;
1958 }
1959 }
1960 }
1961 else if (possible_problems & UTF8_GOT_SHORT) {
1962 possible_problems &= ~UTF8_GOT_SHORT;
1963 *errors |= UTF8_GOT_SHORT;
1964
1965 if (! (flags & UTF8_ALLOW_SHORT)) {
1966 disallowed = TRUE;
1967 if (( msgs
1968 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
1969 {
1970 pack_warn = packWARN(WARN_UTF8);
1971 message = Perl_form(aTHX_
1972 "%s: %s (too short; %d byte%s available, need %d)",
1973 malformed_text,
1974 _byte_dump_string(s0, send - s0, 0),
1975 (int)avail_len,
1976 avail_len == 1 ? "" : "s",
1977 (int)expectlen);
1978 this_flag_bit = UTF8_GOT_SHORT;
1979 }
1980 }
1981
1982 }
1983 else if (possible_problems & UTF8_GOT_NON_CONTINUATION) {
1984 possible_problems &= ~UTF8_GOT_NON_CONTINUATION;
1985 *errors |= UTF8_GOT_NON_CONTINUATION;
1986
1987 if (! (flags & UTF8_ALLOW_NON_CONTINUATION)) {
1988 disallowed = TRUE;
1989 if (( msgs
1990 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
1991 {
1992
1993 /* If we don't know for sure that the input length is
1994 * valid, avoid as much as possible reading past the
1995 * end of the buffer */
1996 int printlen = (flags & _UTF8_NO_CONFIDENCE_IN_CURLEN)
1997 ? s - s0
1998 : send - s0;
1999 pack_warn = packWARN(WARN_UTF8);
2000 message = Perl_form(aTHX_ "%s",
2001 unexpected_non_continuation_text(s0,
2002 printlen,
2003 s - s0,
2004 (int) expectlen));
2005 this_flag_bit = UTF8_GOT_NON_CONTINUATION;
2006 }
2007 }
2008 }
2009 else if (possible_problems & UTF8_GOT_SURROGATE) {
2010 possible_problems &= ~UTF8_GOT_SURROGATE;
2011
2012 if (flags & UTF8_WARN_SURROGATE) {
2013 *errors |= UTF8_GOT_SURROGATE;
2014
2015 if ( ! (flags & UTF8_CHECK_ONLY)
2016 && (msgs || ckWARN_d(WARN_SURROGATE)))
2017 {
2018 pack_warn = packWARN(WARN_SURROGATE);
2019
2020 /* These are the only errors that can occur with a
2021 * surrogate when the 'uv' isn't valid */
2022 if (orig_problems & UTF8_GOT_TOO_SHORT) {
2023 message = Perl_form(aTHX_
2024 "UTF-16 surrogate (any UTF-8 sequence that"
2025 " starts with \"%s\" is for a surrogate)",
2026 _byte_dump_string(s0, curlen, 0));
2027 }
2028 else {
2029 message = Perl_form(aTHX_ surrogate_cp_format, uv);
2030 }
2031 this_flag_bit = UTF8_GOT_SURROGATE;
2032 }
2033 }
2034
2035 if (flags & UTF8_DISALLOW_SURROGATE) {
2036 disallowed = TRUE;
2037 *errors |= UTF8_GOT_SURROGATE;
2038 }
2039 }
2040 else if (possible_problems & UTF8_GOT_SUPER) {
2041 possible_problems &= ~UTF8_GOT_SUPER;
2042
2043 if (flags & UTF8_WARN_SUPER) {
2044 *errors |= UTF8_GOT_SUPER;
2045
2046 if ( ! (flags & UTF8_CHECK_ONLY)
2047 && (msgs || ckWARN_d(WARN_NON_UNICODE)))
2048 {
2049 pack_warn = packWARN(WARN_NON_UNICODE);
2050
2051 if (orig_problems & UTF8_GOT_TOO_SHORT) {
2052 message = Perl_form(aTHX_
2053 "Any UTF-8 sequence that starts with"
2054 " \"%s\" is for a non-Unicode code point,"
2055 " may not be portable",
2056 _byte_dump_string(s0, curlen, 0));
2057 }
2058 else {
2059 message = Perl_form(aTHX_ super_cp_format, uv);
2060 }
2061 this_flag_bit = UTF8_GOT_SUPER;
2062 }
2063 }
2064
2065 /* Test for Perl's extended UTF-8 after the regular SUPER ones,
2066 * and before possibly bailing out, so that the more dire
2067 * warning will override the regular one. */
2068 if (UNLIKELY(isUTF8_PERL_EXTENDED(s0))) {
2069 if ( ! (flags & UTF8_CHECK_ONLY)
2070 && (flags & (UTF8_WARN_PERL_EXTENDED|UTF8_WARN_SUPER))
2071 && (msgs || ckWARN_d(WARN_NON_UNICODE)))
2072 {
2073 pack_warn = packWARN(WARN_NON_UNICODE);
2074
2075 /* If it is an overlong that evaluates to a code point
2076 * that doesn't have to use the Perl extended UTF-8, it
2077 * still used it, and so we output a message that
2078 * doesn't refer to the code point. The same is true
2079 * if there was a SHORT malformation where the code
2080 * point is not valid. In that case, 'uv' will have
2081 * been set to the REPLACEMENT CHAR, and the message
2082 * below without the code point in it will be selected
2083 * */
2084 if (UNICODE_IS_PERL_EXTENDED(uv)) {
2085 message = Perl_form(aTHX_
2086 perl_extended_cp_format, uv);
2087 }
2088 else {
2089 message = Perl_form(aTHX_
2090 "Any UTF-8 sequence that starts with"
2091 " \"%s\" is a Perl extension, and"
2092 " so is not portable",
2093 _byte_dump_string(s0, curlen, 0));
2094 }
2095 this_flag_bit = UTF8_GOT_PERL_EXTENDED;
2096 }
2097
2098 if (flags & ( UTF8_WARN_PERL_EXTENDED
2099 |UTF8_DISALLOW_PERL_EXTENDED))
2100 {
2101 *errors |= UTF8_GOT_PERL_EXTENDED;
2102
2103 if (flags & UTF8_DISALLOW_PERL_EXTENDED) {
2104 disallowed = TRUE;
2105 }
2106 }
2107 }
2108
2109 if (flags & UTF8_DISALLOW_SUPER) {
2110 *errors |= UTF8_GOT_SUPER;
2111 disallowed = TRUE;
2112 }
2113 }
2114 else if (possible_problems & UTF8_GOT_NONCHAR) {
2115 possible_problems &= ~UTF8_GOT_NONCHAR;
2116
2117 if (flags & UTF8_WARN_NONCHAR) {
2118 *errors |= UTF8_GOT_NONCHAR;
2119
2120 if ( ! (flags & UTF8_CHECK_ONLY)
2121 && (msgs || ckWARN_d(WARN_NONCHAR)))
2122 {
2123 /* The code above should have guaranteed that we don't
2124 * get here with errors other than overlong */
2125 assert (! (orig_problems
2126 & ~(UTF8_GOT_LONG|UTF8_GOT_NONCHAR)));
2127
2128 pack_warn = packWARN(WARN_NONCHAR);
2129 message = Perl_form(aTHX_ nonchar_cp_format, uv);
2130 this_flag_bit = UTF8_GOT_NONCHAR;
2131 }
2132 }
2133
2134 if (flags & UTF8_DISALLOW_NONCHAR) {
2135 disallowed = TRUE;
2136 *errors |= UTF8_GOT_NONCHAR;
2137 }
2138 }
2139 else if (possible_problems & UTF8_GOT_LONG) {
2140 possible_problems &= ~UTF8_GOT_LONG;
2141 *errors |= UTF8_GOT_LONG;
2142
2143 if (flags & UTF8_ALLOW_LONG) {
2144
2145 /* We don't allow the actual overlong value, unless the
2146 * special extra bit is also set */
2147 if (! (flags & ( UTF8_ALLOW_LONG_AND_ITS_VALUE
2148 & ~UTF8_ALLOW_LONG)))
2149 {
2150 uv = UNICODE_REPLACEMENT;
2151 }
2152 }
2153 else {
2154 disallowed = TRUE;
2155
2156 if (( msgs
2157 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
2158 {
2159 pack_warn = packWARN(WARN_UTF8);
2160
2161 /* These error types cause 'uv' to be something that
2162 * isn't what was intended, so can't use it in the
2163 * message. The other error types either can't
2164 * generate an overlong, or else the 'uv' is valid */
2165 if (orig_problems &
2166 (UTF8_GOT_TOO_SHORT|UTF8_GOT_OVERFLOW))
2167 {
2168 message = Perl_form(aTHX_
2169 "%s: %s (any UTF-8 sequence that starts"
2170 " with \"%s\" is overlong which can and"
2171 " should be represented with a"
2172 " different, shorter sequence)",
2173 malformed_text,
2174 _byte_dump_string(s0, send - s0, 0),
2175 _byte_dump_string(s0, curlen, 0));
2176 }
2177 else {
2178 U8 tmpbuf[UTF8_MAXBYTES+1];
2179 const U8 * const e = uvoffuni_to_utf8_flags(tmpbuf,
2180 uv, 0);
2181 /* Don't use U+ for non-Unicode code points, which
2182 * includes those in the Latin1 range */
2183 const char * preface = ( uv > PERL_UNICODE_MAX
2184 #ifdef EBCDIC
2185 || uv <= 0xFF
2186 #endif
2187 )
2188 ? "0x"
2189 : "U+";
2190 message = Perl_form(aTHX_
2191 "%s: %s (overlong; instead use %s to represent"
2192 " %s%0*" UVXf ")",
2193 malformed_text,
2194 _byte_dump_string(s0, send - s0, 0),
2195 _byte_dump_string(tmpbuf, e - tmpbuf, 0),
2196 preface,
2197 ((uv < 256) ? 2 : 4), /* Field width of 2 for
2198 small code points */
2199 UNI_TO_NATIVE(uv));
2200 }
2201 this_flag_bit = UTF8_GOT_LONG;
2202 }
2203 }
2204 } /* End of looking through the possible flags */
2205
2206 /* Display the message (if any) for the problem being handled in
2207 * this iteration of the loop */
2208 if (message) {
2209 if (msgs) {
2210 assert(this_flag_bit);
2211
2212 if (*msgs == NULL) {
2213 *msgs = newAV();
2214 }
2215
2216 av_push(*msgs, newRV_noinc((SV*) new_msg_hv(message,
2217 pack_warn,
2218 this_flag_bit)));
2219 }
2220 else if (PL_op)
2221 Perl_warner(aTHX_ pack_warn, "%s in %s", message,
2222 OP_DESC(PL_op));
2223 else
2224 Perl_warner(aTHX_ pack_warn, "%s", message);
2225 }
2226 } /* End of 'while (possible_problems)' */
2227
2228 /* Since there was a possible problem, the returned length may need to
2229 * be changed from the one stored at the beginning of this function.
2230 * Instead of trying to figure out if that's needed, just do it. */
2231 if (retlen) {
2232 *retlen = curlen;
2233 }
2234
2235 if (disallowed) {
2236 if (flags & UTF8_CHECK_ONLY && retlen) {
2237 *retlen = ((STRLEN) -1);
2238 }
2239 return 0;
2240 }
2241 }
2242
2243 return UNI_TO_NATIVE(uv);
2244 }
2245
2246 /*
2247 =for apidoc utf8_to_uvchr_buf
2248
2249 Returns the native code point of the first character in the string C<s> which
2250 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
2251 C<*retlen> will be set to the length, in bytes, of that character.
2252
2253 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
2254 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
2255 C<NULL>) to -1. If those warnings are off, the computed value, if well-defined
2256 (or the Unicode REPLACEMENT CHARACTER if not), is silently returned, and
2257 C<*retlen> is set (if C<retlen> isn't C<NULL>) so that (S<C<s> + C<*retlen>>) is
2258 the next possible position in C<s> that could begin a non-malformed character.
2259 See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is
2260 returned.
2261
2262 =cut
2263
2264 Also implemented as a macro in utf8.h
2265
2266 */
2267
2268
2269 UV
Perl_utf8_to_uvchr_buf(pTHX_ const U8 * s,const U8 * send,STRLEN * retlen)2270 Perl_utf8_to_uvchr_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
2271 {
2272 PERL_ARGS_ASSERT_UTF8_TO_UVCHR_BUF;
2273
2274 assert(s < send);
2275
2276 return utf8n_to_uvchr(s, send - s, retlen,
2277 ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY);
2278 }
2279
2280 /* This is marked as deprecated
2281 *
2282 =for apidoc utf8_to_uvuni_buf
2283
2284 Only in very rare circumstances should code need to be dealing in Unicode
2285 (as opposed to native) code points. In those few cases, use
2286 C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|/utf8_to_uvchr_buf>> instead. If you
2287 are not absolutely sure this is one of those cases, then assume it isn't and
2288 use plain C<utf8_to_uvchr_buf> instead.
2289
2290 Returns the Unicode (not-native) code point of the first character in the
2291 string C<s> which
2292 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
2293 C<retlen> will be set to the length, in bytes, of that character.
2294
2295 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
2296 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
2297 NULL) to -1. If those warnings are off, the computed value if well-defined (or
2298 the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
2299 is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
2300 next possible position in C<s> that could begin a non-malformed character.
2301 See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is returned.
2302
2303 =cut
2304 */
2305
2306 UV
Perl_utf8_to_uvuni_buf(pTHX_ const U8 * s,const U8 * send,STRLEN * retlen)2307 Perl_utf8_to_uvuni_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
2308 {
2309 PERL_ARGS_ASSERT_UTF8_TO_UVUNI_BUF;
2310
2311 assert(send > s);
2312
2313 return NATIVE_TO_UNI(utf8_to_uvchr_buf(s, send, retlen));
2314 }
2315
2316 /*
2317 =for apidoc utf8_length
2318
2319 Returns the number of characters in the sequence of UTF-8-encoded bytes starting
2320 at C<s> and ending at the byte just before C<e>. If <s> and <e> point to the
2321 same place, it returns 0 with no warning raised.
2322
2323 If C<e E<lt> s> or if the scan would end up past C<e>, it raises a UTF8 warning
2324 and returns the number of valid characters.
2325
2326 =cut
2327 */
2328
2329 STRLEN
Perl_utf8_length(pTHX_ const U8 * s,const U8 * e)2330 Perl_utf8_length(pTHX_ const U8 *s, const U8 *e)
2331 {
2332 STRLEN len = 0;
2333
2334 PERL_ARGS_ASSERT_UTF8_LENGTH;
2335
2336 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g.
2337 * the bitops (especially ~) can create illegal UTF-8.
2338 * In other words: in Perl UTF-8 is not just for Unicode. */
2339
2340 if (UNLIKELY(e < s))
2341 goto warn_and_return;
2342 while (s < e) {
2343 s += UTF8SKIP(s);
2344 len++;
2345 }
2346
2347 if (UNLIKELY(e != s)) {
2348 len--;
2349 warn_and_return:
2350 if (PL_op)
2351 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2352 "%s in %s", unees, OP_DESC(PL_op));
2353 else
2354 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
2355 }
2356
2357 return len;
2358 }
2359
2360 /*
2361 =for apidoc bytes_cmp_utf8
2362
2363 Compares the sequence of characters (stored as octets) in C<b>, C<blen> with the
2364 sequence of characters (stored as UTF-8)
2365 in C<u>, C<ulen>. Returns 0 if they are
2366 equal, -1 or -2 if the first string is less than the second string, +1 or +2
2367 if the first string is greater than the second string.
2368
2369 -1 or +1 is returned if the shorter string was identical to the start of the
2370 longer string. -2 or +2 is returned if
2371 there was a difference between characters
2372 within the strings.
2373
2374 =cut
2375 */
2376
2377 int
Perl_bytes_cmp_utf8(pTHX_ const U8 * b,STRLEN blen,const U8 * u,STRLEN ulen)2378 Perl_bytes_cmp_utf8(pTHX_ const U8 *b, STRLEN blen, const U8 *u, STRLEN ulen)
2379 {
2380 const U8 *const bend = b + blen;
2381 const U8 *const uend = u + ulen;
2382
2383 PERL_ARGS_ASSERT_BYTES_CMP_UTF8;
2384
2385 while (b < bend && u < uend) {
2386 U8 c = *u++;
2387 if (!UTF8_IS_INVARIANT(c)) {
2388 if (UTF8_IS_DOWNGRADEABLE_START(c)) {
2389 if (u < uend) {
2390 U8 c1 = *u++;
2391 if (UTF8_IS_CONTINUATION(c1)) {
2392 c = EIGHT_BIT_UTF8_TO_NATIVE(c, c1);
2393 } else {
2394 /* diag_listed_as: Malformed UTF-8 character%s */
2395 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2396 "%s %s%s",
2397 unexpected_non_continuation_text(u - 2, 2, 1, 2),
2398 PL_op ? " in " : "",
2399 PL_op ? OP_DESC(PL_op) : "");
2400 return -2;
2401 }
2402 } else {
2403 if (PL_op)
2404 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2405 "%s in %s", unees, OP_DESC(PL_op));
2406 else
2407 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
2408 return -2; /* Really want to return undef :-) */
2409 }
2410 } else {
2411 return -2;
2412 }
2413 }
2414 if (*b != c) {
2415 return *b < c ? -2 : +2;
2416 }
2417 ++b;
2418 }
2419
2420 if (b == bend && u == uend)
2421 return 0;
2422
2423 return b < bend ? +1 : -1;
2424 }
2425
2426 /*
2427 =for apidoc utf8_to_bytes
2428
2429 Converts a string C<"s"> of length C<*lenp> from UTF-8 into native byte encoding.
2430 Unlike L</bytes_to_utf8>, this over-writes the original string, and
2431 updates C<*lenp> to contain the new length.
2432 Returns zero on failure (leaving C<"s"> unchanged) setting C<*lenp> to -1.
2433
2434 Upon successful return, the number of variants in the string can be computed by
2435 having saved the value of C<*lenp> before the call, and subtracting the
2436 after-call value of C<*lenp> from it.
2437
2438 If you need a copy of the string, see L</bytes_from_utf8>.
2439
2440 =cut
2441 */
2442
2443 U8 *
Perl_utf8_to_bytes(pTHX_ U8 * s,STRLEN * lenp)2444 Perl_utf8_to_bytes(pTHX_ U8 *s, STRLEN *lenp)
2445 {
2446 U8 * first_variant;
2447
2448 PERL_ARGS_ASSERT_UTF8_TO_BYTES;
2449 PERL_UNUSED_CONTEXT;
2450
2451 /* This is a no-op if no variants at all in the input */
2452 if (is_utf8_invariant_string_loc(s, *lenp, (const U8 **) &first_variant)) {
2453 return s;
2454 }
2455
2456 {
2457 U8 * const save = s;
2458 U8 * const send = s + *lenp;
2459 U8 * d;
2460
2461 /* Nothing before the first variant needs to be changed, so start the real
2462 * work there */
2463 s = first_variant;
2464 while (s < send) {
2465 if (! UTF8_IS_INVARIANT(*s)) {
2466 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
2467 *lenp = ((STRLEN) -1);
2468 return 0;
2469 }
2470 s++;
2471 }
2472 s++;
2473 }
2474
2475 /* Is downgradable, so do it */
2476 d = s = first_variant;
2477 while (s < send) {
2478 U8 c = *s++;
2479 if (! UVCHR_IS_INVARIANT(c)) {
2480 /* Then it is two-byte encoded */
2481 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
2482 s++;
2483 }
2484 *d++ = c;
2485 }
2486 *d = '\0';
2487 *lenp = d - save;
2488
2489 return save;
2490 }
2491 }
2492
2493 /*
2494 =for apidoc bytes_from_utf8
2495
2496 Converts a potentially UTF-8 encoded string C<s> of length C<*lenp> into native
2497 byte encoding. On input, the boolean C<*is_utf8p> gives whether or not C<s> is
2498 actually encoded in UTF-8.
2499
2500 Unlike L</utf8_to_bytes> but like L</bytes_to_utf8>, this is non-destructive of
2501 the input string.
2502
2503 Do nothing if C<*is_utf8p> is 0, or if there are code points in the string
2504 not expressible in native byte encoding. In these cases, C<*is_utf8p> and
2505 C<*lenp> are unchanged, and the return value is the original C<s>.
2506
2507 Otherwise, C<*is_utf8p> is set to 0, and the return value is a pointer to a
2508 newly created string containing a downgraded copy of C<s>, and whose length is
2509 returned in C<*lenp>, updated. The new string is C<NUL>-terminated. The
2510 caller is responsible for arranging for the memory used by this string to get
2511 freed.
2512
2513 Upon successful return, the number of variants in the string can be computed by
2514 having saved the value of C<*lenp> before the call, and subtracting the
2515 after-call value of C<*lenp> from it.
2516
2517 =cut
2518
2519 There is a macro that avoids this function call, but this is retained for
2520 anyone who calls it with the Perl_ prefix */
2521
2522 U8 *
Perl_bytes_from_utf8(pTHX_ const U8 * s,STRLEN * lenp,bool * is_utf8p)2523 Perl_bytes_from_utf8(pTHX_ const U8 *s, STRLEN *lenp, bool *is_utf8p)
2524 {
2525 PERL_ARGS_ASSERT_BYTES_FROM_UTF8;
2526 PERL_UNUSED_CONTEXT;
2527
2528 return bytes_from_utf8_loc(s, lenp, is_utf8p, NULL);
2529 }
2530
2531 /*
2532 No = here because currently externally undocumented
2533 for apidoc bytes_from_utf8_loc
2534
2535 Like C<L</bytes_from_utf8>()>, but takes an extra parameter, a pointer to where
2536 to store the location of the first character in C<"s"> that cannot be
2537 converted to non-UTF8.
2538
2539 If that parameter is C<NULL>, this function behaves identically to
2540 C<bytes_from_utf8>.
2541
2542 Otherwise if C<*is_utf8p> is 0 on input, the function behaves identically to
2543 C<bytes_from_utf8>, except it also sets C<*first_non_downgradable> to C<NULL>.
2544
2545 Otherwise, the function returns a newly created C<NUL>-terminated string
2546 containing the non-UTF8 equivalent of the convertible first portion of
2547 C<"s">. C<*lenp> is set to its length, not including the terminating C<NUL>.
2548 If the entire input string was converted, C<*is_utf8p> is set to a FALSE value,
2549 and C<*first_non_downgradable> is set to C<NULL>.
2550
2551 Otherwise, C<*first_non_downgradable> set to point to the first byte of the
2552 first character in the original string that wasn't converted. C<*is_utf8p> is
2553 unchanged. Note that the new string may have length 0.
2554
2555 Another way to look at it is, if C<*first_non_downgradable> is non-C<NULL> and
2556 C<*is_utf8p> is TRUE, this function starts at the beginning of C<"s"> and
2557 converts as many characters in it as possible stopping at the first one it
2558 finds that can't be converted to non-UTF-8. C<*first_non_downgradable> is
2559 set to point to that. The function returns the portion that could be converted
2560 in a newly created C<NUL>-terminated string, and C<*lenp> is set to its length,
2561 not including the terminating C<NUL>. If the very first character in the
2562 original could not be converted, C<*lenp> will be 0, and the new string will
2563 contain just a single C<NUL>. If the entire input string was converted,
2564 C<*is_utf8p> is set to FALSE and C<*first_non_downgradable> is set to C<NULL>.
2565
2566 Upon successful return, the number of variants in the converted portion of the
2567 string can be computed by having saved the value of C<*lenp> before the call,
2568 and subtracting the after-call value of C<*lenp> from it.
2569
2570 =cut
2571
2572
2573 */
2574
2575 U8 *
Perl_bytes_from_utf8_loc(const U8 * s,STRLEN * lenp,bool * is_utf8p,const U8 ** first_unconverted)2576 Perl_bytes_from_utf8_loc(const U8 *s, STRLEN *lenp, bool *is_utf8p, const U8** first_unconverted)
2577 {
2578 U8 *d;
2579 const U8 *original = s;
2580 U8 *converted_start;
2581 const U8 *send = s + *lenp;
2582
2583 PERL_ARGS_ASSERT_BYTES_FROM_UTF8_LOC;
2584
2585 if (! *is_utf8p) {
2586 if (first_unconverted) {
2587 *first_unconverted = NULL;
2588 }
2589
2590 return (U8 *) original;
2591 }
2592
2593 Newx(d, (*lenp) + 1, U8);
2594
2595 converted_start = d;
2596 while (s < send) {
2597 U8 c = *s++;
2598 if (! UTF8_IS_INVARIANT(c)) {
2599
2600 /* Then it is multi-byte encoded. If the code point is above 0xFF,
2601 * have to stop now */
2602 if (UNLIKELY (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s - 1, send))) {
2603 if (first_unconverted) {
2604 *first_unconverted = s - 1;
2605 goto finish_and_return;
2606 }
2607 else {
2608 Safefree(converted_start);
2609 return (U8 *) original;
2610 }
2611 }
2612
2613 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
2614 s++;
2615 }
2616 *d++ = c;
2617 }
2618
2619 /* Here, converted the whole of the input */
2620 *is_utf8p = FALSE;
2621 if (first_unconverted) {
2622 *first_unconverted = NULL;
2623 }
2624
2625 finish_and_return:
2626 *d = '\0';
2627 *lenp = d - converted_start;
2628
2629 /* Trim unused space */
2630 Renew(converted_start, *lenp + 1, U8);
2631
2632 return converted_start;
2633 }
2634
2635 /*
2636 =for apidoc bytes_to_utf8
2637
2638 Converts a string C<s> of length C<*lenp> bytes from the native encoding into
2639 UTF-8.
2640 Returns a pointer to the newly-created string, and sets C<*lenp> to
2641 reflect the new length in bytes. The caller is responsible for arranging for
2642 the memory used by this string to get freed.
2643
2644 Upon successful return, the number of variants in the string can be computed by
2645 having saved the value of C<*lenp> before the call, and subtracting it from the
2646 after-call value of C<*lenp>.
2647
2648 A C<NUL> character will be written after the end of the string.
2649
2650 If you want to convert to UTF-8 from encodings other than
2651 the native (Latin1 or EBCDIC),
2652 see L</sv_recode_to_utf8>().
2653
2654 =cut
2655 */
2656
2657 U8*
Perl_bytes_to_utf8(pTHX_ const U8 * s,STRLEN * lenp)2658 Perl_bytes_to_utf8(pTHX_ const U8 *s, STRLEN *lenp)
2659 {
2660 const U8 * const send = s + (*lenp);
2661 U8 *d;
2662 U8 *dst;
2663
2664 PERL_ARGS_ASSERT_BYTES_TO_UTF8;
2665 PERL_UNUSED_CONTEXT;
2666
2667 /* 1 for each byte + 1 for each byte that expands to two, + trailing NUL */
2668 Newx(d, (*lenp) + variant_under_utf8_count(s, send) + 1, U8);
2669 dst = d;
2670
2671 while (s < send) {
2672 append_utf8_from_native_byte(*s, &d);
2673 s++;
2674 }
2675
2676 *d = '\0';
2677 *lenp = d-dst;
2678
2679 return dst;
2680 }
2681
2682 /*
2683 * Convert native (big-endian) UTF-16 to UTF-8. For reversed (little-endian),
2684 * use utf16_to_utf8_reversed().
2685 *
2686 * UTF-16 requires 2 bytes for every code point below 0x10000; otherwise 4 bytes.
2687 * UTF-8 requires 1-3 bytes for every code point below 0x1000; otherwise 4 bytes.
2688 * UTF-EBCDIC requires 1-4 bytes for every code point below 0x1000; otherwise 4-5 bytes.
2689 *
2690 * These functions don't check for overflow. The worst case is every code
2691 * point in the input is 2 bytes, and requires 4 bytes on output. (If the code
2692 * is never going to run in EBCDIC, it is 2 bytes requiring 3 on output.) Therefore the
2693 * destination must be pre-extended to 2 times the source length.
2694 *
2695 * Do not use in-place. We optimize for native, for obvious reasons. */
2696
2697 U8*
Perl_utf16_to_utf8(pTHX_ U8 * p,U8 * d,I32 bytelen,I32 * newlen)2698 Perl_utf16_to_utf8(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2699 {
2700 U8* pend;
2701 U8* dstart = d;
2702
2703 PERL_ARGS_ASSERT_UTF16_TO_UTF8;
2704
2705 if (bytelen & 1)
2706 Perl_croak(aTHX_ "panic: utf16_to_utf8: odd bytelen %" UVuf,
2707 (UV)bytelen);
2708
2709 pend = p + bytelen;
2710
2711 while (p < pend) {
2712 UV uv = (p[0] << 8) + p[1]; /* UTF-16BE */
2713 p += 2;
2714 if (OFFUNI_IS_INVARIANT(uv)) {
2715 *d++ = LATIN1_TO_NATIVE((U8) uv);
2716 continue;
2717 }
2718 if (uv <= MAX_UTF8_TWO_BYTE) {
2719 *d++ = UTF8_TWO_BYTE_HI(UNI_TO_NATIVE(uv));
2720 *d++ = UTF8_TWO_BYTE_LO(UNI_TO_NATIVE(uv));
2721 continue;
2722 }
2723
2724 #define FIRST_HIGH_SURROGATE UNICODE_SURROGATE_FIRST
2725 #define LAST_HIGH_SURROGATE 0xDBFF
2726 #define FIRST_LOW_SURROGATE 0xDC00
2727 #define LAST_LOW_SURROGATE UNICODE_SURROGATE_LAST
2728 #define FIRST_IN_PLANE1 0x10000
2729
2730 /* This assumes that most uses will be in the first Unicode plane, not
2731 * needing surrogates */
2732 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST
2733 && uv <= UNICODE_SURROGATE_LAST))
2734 {
2735 if (UNLIKELY(p >= pend) || UNLIKELY(uv > LAST_HIGH_SURROGATE)) {
2736 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2737 }
2738 else {
2739 UV low = (p[0] << 8) + p[1];
2740 if ( UNLIKELY(low < FIRST_LOW_SURROGATE)
2741 || UNLIKELY(low > LAST_LOW_SURROGATE))
2742 {
2743 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2744 }
2745 p += 2;
2746 uv = ((uv - FIRST_HIGH_SURROGATE) << 10)
2747 + (low - FIRST_LOW_SURROGATE) + FIRST_IN_PLANE1;
2748 }
2749 }
2750 #ifdef EBCDIC
2751 d = uvoffuni_to_utf8_flags(d, uv, 0);
2752 #else
2753 if (uv < FIRST_IN_PLANE1) {
2754 *d++ = (U8)(( uv >> 12) | 0xe0);
2755 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
2756 *d++ = (U8)(( uv & 0x3f) | 0x80);
2757 continue;
2758 }
2759 else {
2760 *d++ = (U8)(( uv >> 18) | 0xf0);
2761 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
2762 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
2763 *d++ = (U8)(( uv & 0x3f) | 0x80);
2764 continue;
2765 }
2766 #endif
2767 }
2768 *newlen = d - dstart;
2769 return d;
2770 }
2771
2772 /* Note: this one is slightly destructive of the source. */
2773
2774 U8*
Perl_utf16_to_utf8_reversed(pTHX_ U8 * p,U8 * d,I32 bytelen,I32 * newlen)2775 Perl_utf16_to_utf8_reversed(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2776 {
2777 U8* s = (U8*)p;
2778 U8* const send = s + bytelen;
2779
2780 PERL_ARGS_ASSERT_UTF16_TO_UTF8_REVERSED;
2781
2782 if (bytelen & 1)
2783 Perl_croak(aTHX_ "panic: utf16_to_utf8_reversed: odd bytelen %" UVuf,
2784 (UV)bytelen);
2785
2786 while (s < send) {
2787 const U8 tmp = s[0];
2788 s[0] = s[1];
2789 s[1] = tmp;
2790 s += 2;
2791 }
2792 return utf16_to_utf8(p, d, bytelen, newlen);
2793 }
2794
2795 bool
Perl__is_uni_FOO(pTHX_ const U8 classnum,const UV c)2796 Perl__is_uni_FOO(pTHX_ const U8 classnum, const UV c)
2797 {
2798 dVAR;
2799 return _invlist_contains_cp(PL_XPosix_ptrs[classnum], c);
2800 }
2801
2802 /* Internal function so we can deprecate the external one, and call
2803 this one from other deprecated functions in this file */
2804
2805 bool
Perl__is_utf8_idstart(pTHX_ const U8 * p)2806 Perl__is_utf8_idstart(pTHX_ const U8 *p)
2807 {
2808 dVAR;
2809
2810 PERL_ARGS_ASSERT__IS_UTF8_IDSTART;
2811
2812 if (*p == '_')
2813 return TRUE;
2814 return is_utf8_common(p, PL_utf8_idstart);
2815 }
2816
2817 bool
Perl__is_uni_perl_idcont(pTHX_ UV c)2818 Perl__is_uni_perl_idcont(pTHX_ UV c)
2819 {
2820 dVAR;
2821 return _invlist_contains_cp(PL_utf8_perl_idcont, c);
2822 }
2823
2824 bool
Perl__is_uni_perl_idstart(pTHX_ UV c)2825 Perl__is_uni_perl_idstart(pTHX_ UV c)
2826 {
2827 dVAR;
2828 return _invlist_contains_cp(PL_utf8_perl_idstart, c);
2829 }
2830
2831 UV
Perl__to_upper_title_latin1(pTHX_ const U8 c,U8 * p,STRLEN * lenp,const char S_or_s)2832 Perl__to_upper_title_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp,
2833 const char S_or_s)
2834 {
2835 /* We have the latin1-range values compiled into the core, so just use
2836 * those, converting the result to UTF-8. The only difference between upper
2837 * and title case in this range is that LATIN_SMALL_LETTER_SHARP_S is
2838 * either "SS" or "Ss". Which one to use is passed into the routine in
2839 * 'S_or_s' to avoid a test */
2840
2841 UV converted = toUPPER_LATIN1_MOD(c);
2842
2843 PERL_ARGS_ASSERT__TO_UPPER_TITLE_LATIN1;
2844
2845 assert(S_or_s == 'S' || S_or_s == 's');
2846
2847 if (UVCHR_IS_INVARIANT(converted)) { /* No difference between the two for
2848 characters in this range */
2849 *p = (U8) converted;
2850 *lenp = 1;
2851 return converted;
2852 }
2853
2854 /* toUPPER_LATIN1_MOD gives the correct results except for three outliers,
2855 * which it maps to one of them, so as to only have to have one check for
2856 * it in the main case */
2857 if (UNLIKELY(converted == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
2858 switch (c) {
2859 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
2860 converted = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
2861 break;
2862 case MICRO_SIGN:
2863 converted = GREEK_CAPITAL_LETTER_MU;
2864 break;
2865 #if UNICODE_MAJOR_VERSION > 2 \
2866 || (UNICODE_MAJOR_VERSION == 2 && UNICODE_DOT_VERSION >= 1 \
2867 && UNICODE_DOT_DOT_VERSION >= 8)
2868 case LATIN_SMALL_LETTER_SHARP_S:
2869 *(p)++ = 'S';
2870 *p = S_or_s;
2871 *lenp = 2;
2872 return 'S';
2873 #endif
2874 default:
2875 Perl_croak(aTHX_ "panic: to_upper_title_latin1 did not expect"
2876 " '%c' to map to '%c'",
2877 c, LATIN_SMALL_LETTER_Y_WITH_DIAERESIS);
2878 NOT_REACHED; /* NOTREACHED */
2879 }
2880 }
2881
2882 *(p)++ = UTF8_TWO_BYTE_HI(converted);
2883 *p = UTF8_TWO_BYTE_LO(converted);
2884 *lenp = 2;
2885
2886 return converted;
2887 }
2888
2889 /* If compiled on an early Unicode version, there may not be auxiliary tables
2890 * */
2891 #ifndef HAS_UC_AUX_TABLES
2892 # define UC_AUX_TABLE_ptrs NULL
2893 # define UC_AUX_TABLE_lengths NULL
2894 #endif
2895 #ifndef HAS_TC_AUX_TABLES
2896 # define TC_AUX_TABLE_ptrs NULL
2897 # define TC_AUX_TABLE_lengths NULL
2898 #endif
2899 #ifndef HAS_LC_AUX_TABLES
2900 # define LC_AUX_TABLE_ptrs NULL
2901 # define LC_AUX_TABLE_lengths NULL
2902 #endif
2903 #ifndef HAS_CF_AUX_TABLES
2904 # define CF_AUX_TABLE_ptrs NULL
2905 # define CF_AUX_TABLE_lengths NULL
2906 #endif
2907 #ifndef HAS_UC_AUX_TABLES
2908 # define UC_AUX_TABLE_ptrs NULL
2909 # define UC_AUX_TABLE_lengths NULL
2910 #endif
2911
2912 /* Call the function to convert a UTF-8 encoded character to the specified case.
2913 * Note that there may be more than one character in the result.
2914 * 's' is a pointer to the first byte of the input character
2915 * 'd' will be set to the first byte of the string of changed characters. It
2916 * needs to have space for UTF8_MAXBYTES_CASE+1 bytes
2917 * 'lenp' will be set to the length in bytes of the string of changed characters
2918 *
2919 * The functions return the ordinal of the first character in the string of
2920 * 'd' */
2921 #define CALL_UPPER_CASE(uv, s, d, lenp) \
2922 _to_utf8_case(uv, s, d, lenp, PL_utf8_toupper, \
2923 Uppercase_Mapping_invmap, \
2924 UC_AUX_TABLE_ptrs, \
2925 UC_AUX_TABLE_lengths, \
2926 "uppercase")
2927 #define CALL_TITLE_CASE(uv, s, d, lenp) \
2928 _to_utf8_case(uv, s, d, lenp, PL_utf8_totitle, \
2929 Titlecase_Mapping_invmap, \
2930 TC_AUX_TABLE_ptrs, \
2931 TC_AUX_TABLE_lengths, \
2932 "titlecase")
2933 #define CALL_LOWER_CASE(uv, s, d, lenp) \
2934 _to_utf8_case(uv, s, d, lenp, PL_utf8_tolower, \
2935 Lowercase_Mapping_invmap, \
2936 LC_AUX_TABLE_ptrs, \
2937 LC_AUX_TABLE_lengths, \
2938 "lowercase")
2939
2940
2941 /* This additionally has the input parameter 'specials', which if non-zero will
2942 * cause this to use the specials hash for folding (meaning get full case
2943 * folding); otherwise, when zero, this implies a simple case fold */
2944 #define CALL_FOLD_CASE(uv, s, d, lenp, specials) \
2945 (specials) \
2946 ? _to_utf8_case(uv, s, d, lenp, PL_utf8_tofold, \
2947 Case_Folding_invmap, \
2948 CF_AUX_TABLE_ptrs, \
2949 CF_AUX_TABLE_lengths, \
2950 "foldcase") \
2951 : _to_utf8_case(uv, s, d, lenp, PL_utf8_tosimplefold, \
2952 Simple_Case_Folding_invmap, \
2953 NULL, NULL, \
2954 "foldcase")
2955
2956 UV
Perl_to_uni_upper(pTHX_ UV c,U8 * p,STRLEN * lenp)2957 Perl_to_uni_upper(pTHX_ UV c, U8* p, STRLEN *lenp)
2958 {
2959 /* Convert the Unicode character whose ordinal is <c> to its uppercase
2960 * version and store that in UTF-8 in <p> and its length in bytes in <lenp>.
2961 * Note that the <p> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
2962 * the changed version may be longer than the original character.
2963 *
2964 * The ordinal of the first character of the changed version is returned
2965 * (but note, as explained above, that there may be more.) */
2966
2967 dVAR;
2968 PERL_ARGS_ASSERT_TO_UNI_UPPER;
2969
2970 if (c < 256) {
2971 return _to_upper_title_latin1((U8) c, p, lenp, 'S');
2972 }
2973
2974 return CALL_UPPER_CASE(c, NULL, p, lenp);
2975 }
2976
2977 UV
Perl_to_uni_title(pTHX_ UV c,U8 * p,STRLEN * lenp)2978 Perl_to_uni_title(pTHX_ UV c, U8* p, STRLEN *lenp)
2979 {
2980 dVAR;
2981 PERL_ARGS_ASSERT_TO_UNI_TITLE;
2982
2983 if (c < 256) {
2984 return _to_upper_title_latin1((U8) c, p, lenp, 's');
2985 }
2986
2987 return CALL_TITLE_CASE(c, NULL, p, lenp);
2988 }
2989
2990 STATIC U8
S_to_lower_latin1(const U8 c,U8 * p,STRLEN * lenp,const char dummy)2991 S_to_lower_latin1(const U8 c, U8* p, STRLEN *lenp, const char dummy)
2992 {
2993 /* We have the latin1-range values compiled into the core, so just use
2994 * those, converting the result to UTF-8. Since the result is always just
2995 * one character, we allow <p> to be NULL */
2996
2997 U8 converted = toLOWER_LATIN1(c);
2998
2999 PERL_UNUSED_ARG(dummy);
3000
3001 if (p != NULL) {
3002 if (NATIVE_BYTE_IS_INVARIANT(converted)) {
3003 *p = converted;
3004 *lenp = 1;
3005 }
3006 else {
3007 /* Result is known to always be < 256, so can use the EIGHT_BIT
3008 * macros */
3009 *p = UTF8_EIGHT_BIT_HI(converted);
3010 *(p+1) = UTF8_EIGHT_BIT_LO(converted);
3011 *lenp = 2;
3012 }
3013 }
3014 return converted;
3015 }
3016
3017 UV
Perl_to_uni_lower(pTHX_ UV c,U8 * p,STRLEN * lenp)3018 Perl_to_uni_lower(pTHX_ UV c, U8* p, STRLEN *lenp)
3019 {
3020 dVAR;
3021 PERL_ARGS_ASSERT_TO_UNI_LOWER;
3022
3023 if (c < 256) {
3024 return to_lower_latin1((U8) c, p, lenp, 0 /* 0 is a dummy arg */ );
3025 }
3026
3027 return CALL_LOWER_CASE(c, NULL, p, lenp);
3028 }
3029
3030 UV
Perl__to_fold_latin1(const U8 c,U8 * p,STRLEN * lenp,const unsigned int flags)3031 Perl__to_fold_latin1(const U8 c, U8* p, STRLEN *lenp, const unsigned int flags)
3032 {
3033 /* Corresponds to to_lower_latin1(); <flags> bits meanings:
3034 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
3035 * FOLD_FLAGS_FULL iff full folding is to be used;
3036 *
3037 * Not to be used for locale folds
3038 */
3039
3040 UV converted;
3041
3042 PERL_ARGS_ASSERT__TO_FOLD_LATIN1;
3043
3044 assert (! (flags & FOLD_FLAGS_LOCALE));
3045
3046 if (UNLIKELY(c == MICRO_SIGN)) {
3047 converted = GREEK_SMALL_LETTER_MU;
3048 }
3049 #if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
3050 || (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
3051 || UNICODE_DOT_DOT_VERSION > 0)
3052 else if ( (flags & FOLD_FLAGS_FULL)
3053 && UNLIKELY(c == LATIN_SMALL_LETTER_SHARP_S))
3054 {
3055 /* If can't cross 127/128 boundary, can't return "ss"; instead return
3056 * two U+017F characters, as fc("\df") should eq fc("\x{17f}\x{17f}")
3057 * under those circumstances. */
3058 if (flags & FOLD_FLAGS_NOMIX_ASCII) {
3059 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
3060 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
3061 p, *lenp, U8);
3062 return LATIN_SMALL_LETTER_LONG_S;
3063 }
3064 else {
3065 *(p)++ = 's';
3066 *p = 's';
3067 *lenp = 2;
3068 return 's';
3069 }
3070 }
3071 #endif
3072 else { /* In this range the fold of all other characters is their lower
3073 case */
3074 converted = toLOWER_LATIN1(c);
3075 }
3076
3077 if (UVCHR_IS_INVARIANT(converted)) {
3078 *p = (U8) converted;
3079 *lenp = 1;
3080 }
3081 else {
3082 *(p)++ = UTF8_TWO_BYTE_HI(converted);
3083 *p = UTF8_TWO_BYTE_LO(converted);
3084 *lenp = 2;
3085 }
3086
3087 return converted;
3088 }
3089
3090 UV
Perl__to_uni_fold_flags(pTHX_ UV c,U8 * p,STRLEN * lenp,U8 flags)3091 Perl__to_uni_fold_flags(pTHX_ UV c, U8* p, STRLEN *lenp, U8 flags)
3092 {
3093
3094 /* Not currently externally documented, and subject to change
3095 * <flags> bits meanings:
3096 * FOLD_FLAGS_FULL iff full folding is to be used;
3097 * FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
3098 * locale are to be used.
3099 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
3100 */
3101
3102 dVAR;
3103 PERL_ARGS_ASSERT__TO_UNI_FOLD_FLAGS;
3104
3105 if (flags & FOLD_FLAGS_LOCALE) {
3106 /* Treat a non-Turkic UTF-8 locale as not being in locale at all,
3107 * except for potentially warning */
3108 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
3109 if (IN_UTF8_CTYPE_LOCALE && ! PL_in_utf8_turkic_locale) {
3110 flags &= ~FOLD_FLAGS_LOCALE;
3111 }
3112 else {
3113 goto needs_full_generality;
3114 }
3115 }
3116
3117 if (c < 256) {
3118 return _to_fold_latin1((U8) c, p, lenp,
3119 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
3120 }
3121
3122 /* Here, above 255. If no special needs, just use the macro */
3123 if ( ! (flags & (FOLD_FLAGS_LOCALE|FOLD_FLAGS_NOMIX_ASCII))) {
3124 return CALL_FOLD_CASE(c, NULL, p, lenp, flags & FOLD_FLAGS_FULL);
3125 }
3126 else { /* Otherwise, _toFOLD_utf8_flags has the intelligence to deal with
3127 the special flags. */
3128 U8 utf8_c[UTF8_MAXBYTES + 1];
3129
3130 needs_full_generality:
3131 uvchr_to_utf8(utf8_c, c);
3132 return _toFOLD_utf8_flags(utf8_c, utf8_c + sizeof(utf8_c),
3133 p, lenp, flags);
3134 }
3135 }
3136
3137 PERL_STATIC_INLINE bool
S_is_utf8_common(pTHX_ const U8 * const p,SV * const invlist)3138 S_is_utf8_common(pTHX_ const U8 *const p, SV* const invlist)
3139 {
3140 /* returns a boolean giving whether or not the UTF8-encoded character that
3141 * starts at <p> is in the inversion list indicated by <invlist>.
3142 *
3143 * Note that it is assumed that the buffer length of <p> is enough to
3144 * contain all the bytes that comprise the character. Thus, <*p> should
3145 * have been checked before this call for mal-formedness enough to assure
3146 * that. This function, does make sure to not look past any NUL, so it is
3147 * safe to use on C, NUL-terminated, strings */
3148 STRLEN len = my_strnlen((char *) p, UTF8SKIP(p));
3149
3150 PERL_ARGS_ASSERT_IS_UTF8_COMMON;
3151
3152 /* The API should have included a length for the UTF-8 character in <p>,
3153 * but it doesn't. We therefore assume that p has been validated at least
3154 * as far as there being enough bytes available in it to accommodate the
3155 * character without reading beyond the end, and pass that number on to the
3156 * validating routine */
3157 if (! isUTF8_CHAR(p, p + len)) {
3158 _force_out_malformed_utf8_message(p, p + len, _UTF8_NO_CONFIDENCE_IN_CURLEN,
3159 1 /* Die */ );
3160 NOT_REACHED; /* NOTREACHED */
3161 }
3162
3163 return is_utf8_common_with_len(p, p + len, invlist);
3164 }
3165
3166 PERL_STATIC_INLINE bool
S_is_utf8_common_with_len(pTHX_ const U8 * const p,const U8 * const e,SV * const invlist)3167 S_is_utf8_common_with_len(pTHX_ const U8 *const p, const U8 * const e,
3168 SV* const invlist)
3169 {
3170 /* returns a boolean giving whether or not the UTF8-encoded character that
3171 * starts at <p>, and extending no further than <e - 1> is in the inversion
3172 * list <invlist>. */
3173
3174 UV cp = utf8n_to_uvchr(p, e - p, NULL, 0);
3175
3176 PERL_ARGS_ASSERT_IS_UTF8_COMMON_WITH_LEN;
3177
3178 if (cp == 0 && (p >= e || *p != '\0')) {
3179 _force_out_malformed_utf8_message(p, e, 0, 1);
3180 NOT_REACHED; /* NOTREACHED */
3181 }
3182
3183 assert(invlist);
3184 return _invlist_contains_cp(invlist, cp);
3185 }
3186
3187 STATIC void
S_warn_on_first_deprecated_use(pTHX_ const char * const name,const char * const alternative,const bool use_locale,const char * const file,const unsigned line)3188 S_warn_on_first_deprecated_use(pTHX_ const char * const name,
3189 const char * const alternative,
3190 const bool use_locale,
3191 const char * const file,
3192 const unsigned line)
3193 {
3194 const char * key;
3195
3196 PERL_ARGS_ASSERT_WARN_ON_FIRST_DEPRECATED_USE;
3197
3198 if (ckWARN_d(WARN_DEPRECATED)) {
3199
3200 key = Perl_form(aTHX_ "%s;%d;%s;%d", name, use_locale, file, line);
3201 if (! hv_fetch(PL_seen_deprecated_macro, key, strlen(key), 0)) {
3202 if (! PL_seen_deprecated_macro) {
3203 PL_seen_deprecated_macro = newHV();
3204 }
3205 if (! hv_store(PL_seen_deprecated_macro, key,
3206 strlen(key), &PL_sv_undef, 0))
3207 {
3208 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3209 }
3210
3211 if (instr(file, "mathoms.c")) {
3212 Perl_warner(aTHX_ WARN_DEPRECATED,
3213 "In %s, line %d, starting in Perl v5.32, %s()"
3214 " will be removed. Avoid this message by"
3215 " converting to use %s().\n",
3216 file, line, name, alternative);
3217 }
3218 else {
3219 Perl_warner(aTHX_ WARN_DEPRECATED,
3220 "In %s, line %d, starting in Perl v5.32, %s() will"
3221 " require an additional parameter. Avoid this"
3222 " message by converting to use %s().\n",
3223 file, line, name, alternative);
3224 }
3225 }
3226 }
3227 }
3228
3229 bool
Perl__is_utf8_FOO(pTHX_ U8 classnum,const U8 * const p,const char * const name,const char * const alternative,const bool use_utf8,const bool use_locale,const char * const file,const unsigned line)3230 Perl__is_utf8_FOO(pTHX_ U8 classnum,
3231 const U8 * const p,
3232 const char * const name,
3233 const char * const alternative,
3234 const bool use_utf8,
3235 const bool use_locale,
3236 const char * const file,
3237 const unsigned line)
3238 {
3239 dVAR;
3240 PERL_ARGS_ASSERT__IS_UTF8_FOO;
3241
3242 warn_on_first_deprecated_use(name, alternative, use_locale, file, line);
3243
3244 if (use_utf8 && UTF8_IS_ABOVE_LATIN1(*p)) {
3245
3246 switch (classnum) {
3247 case _CC_WORDCHAR:
3248 case _CC_DIGIT:
3249 case _CC_ALPHA:
3250 case _CC_LOWER:
3251 case _CC_UPPER:
3252 case _CC_PUNCT:
3253 case _CC_PRINT:
3254 case _CC_ALPHANUMERIC:
3255 case _CC_GRAPH:
3256 case _CC_CASED:
3257
3258 return is_utf8_common(p, PL_XPosix_ptrs[classnum]);
3259
3260 case _CC_SPACE:
3261 return is_XPERLSPACE_high(p);
3262 case _CC_BLANK:
3263 return is_HORIZWS_high(p);
3264 case _CC_XDIGIT:
3265 return is_XDIGIT_high(p);
3266 case _CC_CNTRL:
3267 return 0;
3268 case _CC_ASCII:
3269 return 0;
3270 case _CC_VERTSPACE:
3271 return is_VERTWS_high(p);
3272 case _CC_IDFIRST:
3273 return is_utf8_common(p, PL_utf8_perl_idstart);
3274 case _CC_IDCONT:
3275 return is_utf8_common(p, PL_utf8_perl_idcont);
3276 }
3277 }
3278
3279 /* idcont is the same as wordchar below 256 */
3280 if (classnum == _CC_IDCONT) {
3281 classnum = _CC_WORDCHAR;
3282 }
3283 else if (classnum == _CC_IDFIRST) {
3284 if (*p == '_') {
3285 return TRUE;
3286 }
3287 classnum = _CC_ALPHA;
3288 }
3289
3290 if (! use_locale) {
3291 if (! use_utf8 || UTF8_IS_INVARIANT(*p)) {
3292 return _generic_isCC(*p, classnum);
3293 }
3294
3295 return _generic_isCC(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p + 1 )), classnum);
3296 }
3297 else {
3298 if (! use_utf8 || UTF8_IS_INVARIANT(*p)) {
3299 return isFOO_lc(classnum, *p);
3300 }
3301
3302 return isFOO_lc(classnum, EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p + 1 )));
3303 }
3304
3305 NOT_REACHED; /* NOTREACHED */
3306 }
3307
3308 bool
Perl__is_utf8_FOO_with_len(pTHX_ const U8 classnum,const U8 * p,const U8 * const e)3309 Perl__is_utf8_FOO_with_len(pTHX_ const U8 classnum, const U8 *p,
3310 const U8 * const e)
3311 {
3312 dVAR;
3313 PERL_ARGS_ASSERT__IS_UTF8_FOO_WITH_LEN;
3314
3315 return is_utf8_common_with_len(p, e, PL_XPosix_ptrs[classnum]);
3316 }
3317
3318 bool
Perl__is_utf8_perl_idstart_with_len(pTHX_ const U8 * p,const U8 * const e)3319 Perl__is_utf8_perl_idstart_with_len(pTHX_ const U8 *p, const U8 * const e)
3320 {
3321 dVAR;
3322 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDSTART_WITH_LEN;
3323
3324 return is_utf8_common_with_len(p, e, PL_utf8_perl_idstart);
3325 }
3326
3327 bool
Perl__is_utf8_xidstart(pTHX_ const U8 * p)3328 Perl__is_utf8_xidstart(pTHX_ const U8 *p)
3329 {
3330 dVAR;
3331 PERL_ARGS_ASSERT__IS_UTF8_XIDSTART;
3332
3333 if (*p == '_')
3334 return TRUE;
3335 return is_utf8_common(p, PL_utf8_xidstart);
3336 }
3337
3338 bool
Perl__is_utf8_perl_idcont_with_len(pTHX_ const U8 * p,const U8 * const e)3339 Perl__is_utf8_perl_idcont_with_len(pTHX_ const U8 *p, const U8 * const e)
3340 {
3341 dVAR;
3342 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDCONT_WITH_LEN;
3343
3344 return is_utf8_common_with_len(p, e, PL_utf8_perl_idcont);
3345 }
3346
3347 bool
Perl__is_utf8_idcont(pTHX_ const U8 * p)3348 Perl__is_utf8_idcont(pTHX_ const U8 *p)
3349 {
3350 dVAR;
3351 PERL_ARGS_ASSERT__IS_UTF8_IDCONT;
3352
3353 return is_utf8_common(p, PL_utf8_idcont);
3354 }
3355
3356 bool
Perl__is_utf8_xidcont(pTHX_ const U8 * p)3357 Perl__is_utf8_xidcont(pTHX_ const U8 *p)
3358 {
3359 dVAR;
3360 PERL_ARGS_ASSERT__IS_UTF8_XIDCONT;
3361
3362 return is_utf8_common(p, PL_utf8_xidcont);
3363 }
3364
3365 bool
Perl__is_utf8_mark(pTHX_ const U8 * p)3366 Perl__is_utf8_mark(pTHX_ const U8 *p)
3367 {
3368 dVAR;
3369 PERL_ARGS_ASSERT__IS_UTF8_MARK;
3370
3371 return is_utf8_common(p, PL_utf8_mark);
3372 }
3373
3374 STATIC UV
S__to_utf8_case(pTHX_ const UV uv1,const U8 * p,U8 * ustrp,STRLEN * lenp,SV * invlist,const int * const invmap,const unsigned int * const * const aux_tables,const U8 * const aux_table_lengths,const char * const normal)3375 S__to_utf8_case(pTHX_ const UV uv1, const U8 *p,
3376 U8* ustrp, STRLEN *lenp,
3377 SV *invlist, const int * const invmap,
3378 const unsigned int * const * const aux_tables,
3379 const U8 * const aux_table_lengths,
3380 const char * const normal)
3381 {
3382 STRLEN len = 0;
3383
3384 /* Change the case of code point 'uv1' whose UTF-8 representation (assumed
3385 * by this routine to be valid) begins at 'p'. 'normal' is a string to use
3386 * to name the new case in any generated messages, as a fallback if the
3387 * operation being used is not available. The new case is given by the
3388 * data structures in the remaining arguments.
3389 *
3390 * On return 'ustrp' points to '*lenp' UTF-8 encoded bytes representing the
3391 * entire changed case string, and the return value is the first code point
3392 * in that string */
3393
3394 PERL_ARGS_ASSERT__TO_UTF8_CASE;
3395
3396 /* For code points that don't change case, we already know that the output
3397 * of this function is the unchanged input, so we can skip doing look-ups
3398 * for them. Unfortunately the case-changing code points are scattered
3399 * around. But there are some long consecutive ranges where there are no
3400 * case changing code points. By adding tests, we can eliminate the lookup
3401 * for all the ones in such ranges. This is currently done here only for
3402 * just a few cases where the scripts are in common use in modern commerce
3403 * (and scripts adjacent to those which can be included without additional
3404 * tests). */
3405
3406 if (uv1 >= 0x0590) {
3407 /* This keeps from needing further processing the code points most
3408 * likely to be used in the following non-cased scripts: Hebrew,
3409 * Arabic, Syriac, Thaana, NKo, Samaritan, Mandaic, Devanagari,
3410 * Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada,
3411 * Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar */
3412 if (uv1 < 0x10A0) {
3413 goto cases_to_self;
3414 }
3415
3416 /* The following largish code point ranges also don't have case
3417 * changes, but khw didn't think they warranted extra tests to speed
3418 * them up (which would slightly slow down everything else above them):
3419 * 1100..139F Hangul Jamo, Ethiopic
3420 * 1400..1CFF Unified Canadian Aboriginal Syllabics, Ogham, Runic,
3421 * Tagalog, Hanunoo, Buhid, Tagbanwa, Khmer, Mongolian,
3422 * Limbu, Tai Le, New Tai Lue, Buginese, Tai Tham,
3423 * Combining Diacritical Marks Extended, Balinese,
3424 * Sundanese, Batak, Lepcha, Ol Chiki
3425 * 2000..206F General Punctuation
3426 */
3427
3428 if (uv1 >= 0x2D30) {
3429
3430 /* This keeps the from needing further processing the code points
3431 * most likely to be used in the following non-cased major scripts:
3432 * CJK, Katakana, Hiragana, plus some less-likely scripts.
3433 *
3434 * (0x2D30 above might have to be changed to 2F00 in the unlikely
3435 * event that Unicode eventually allocates the unused block as of
3436 * v8.0 2FE0..2FEF to code points that are cased. khw has verified
3437 * that the test suite will start having failures to alert you
3438 * should that happen) */
3439 if (uv1 < 0xA640) {
3440 goto cases_to_self;
3441 }
3442
3443 if (uv1 >= 0xAC00) {
3444 if (UNLIKELY(UNICODE_IS_SURROGATE(uv1))) {
3445 if (ckWARN_d(WARN_SURROGATE)) {
3446 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
3447 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
3448 "Operation \"%s\" returns its argument for"
3449 " UTF-16 surrogate U+%04" UVXf, desc, uv1);
3450 }
3451 goto cases_to_self;
3452 }
3453
3454 /* AC00..FAFF Catches Hangul syllables and private use, plus
3455 * some others */
3456 if (uv1 < 0xFB00) {
3457 goto cases_to_self;
3458 }
3459
3460 if (UNLIKELY(UNICODE_IS_SUPER(uv1))) {
3461 if (UNLIKELY(uv1 > MAX_LEGAL_CP)) {
3462 Perl_croak(aTHX_ cp_above_legal_max, uv1,
3463 MAX_LEGAL_CP);
3464 }
3465 if (ckWARN_d(WARN_NON_UNICODE)) {
3466 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
3467 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
3468 "Operation \"%s\" returns its argument for"
3469 " non-Unicode code point 0x%04" UVXf, desc, uv1);
3470 }
3471 goto cases_to_self;
3472 }
3473 #ifdef HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C
3474 if (UNLIKELY(uv1
3475 > HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C))
3476 {
3477
3478 /* As of Unicode 10.0, this means we avoid swash creation
3479 * for anything beyond high Plane 1 (below emojis) */
3480 goto cases_to_self;
3481 }
3482 #endif
3483 }
3484 }
3485
3486 /* Note that non-characters are perfectly legal, so no warning should
3487 * be given. */
3488 }
3489
3490 {
3491 unsigned int i;
3492 const unsigned int * cp_list;
3493 U8 * d;
3494
3495 /* 'index' is guaranteed to be non-negative, as this is an inversion
3496 * map that covers all possible inputs. See [perl #133365] */
3497 SSize_t index = _invlist_search(invlist, uv1);
3498 IV base = invmap[index];
3499
3500 /* The data structures are set up so that if 'base' is non-negative,
3501 * the case change is 1-to-1; and if 0, the change is to itself */
3502 if (base >= 0) {
3503 IV lc;
3504
3505 if (base == 0) {
3506 goto cases_to_self;
3507 }
3508
3509 /* This computes, e.g. lc(H) as 'H - A + a', using the lc table */
3510 lc = base + uv1 - invlist_array(invlist)[index];
3511 *lenp = uvchr_to_utf8(ustrp, lc) - ustrp;
3512 return lc;
3513 }
3514
3515 /* Here 'base' is negative. That means the mapping is 1-to-many, and
3516 * requires an auxiliary table look up. abs(base) gives the index into
3517 * a list of such tables which points to the proper aux table. And a
3518 * parallel list gives the length of each corresponding aux table. */
3519 cp_list = aux_tables[-base];
3520
3521 /* Create the string of UTF-8 from the mapped-to code points */
3522 d = ustrp;
3523 for (i = 0; i < aux_table_lengths[-base]; i++) {
3524 d = uvchr_to_utf8(d, cp_list[i]);
3525 }
3526 *d = '\0';
3527 *lenp = d - ustrp;
3528
3529 return cp_list[0];
3530 }
3531
3532 /* Here, there was no mapping defined, which means that the code point maps
3533 * to itself. Return the inputs */
3534 cases_to_self:
3535 if (p) {
3536 len = UTF8SKIP(p);
3537 if (p != ustrp) { /* Don't copy onto itself */
3538 Copy(p, ustrp, len, U8);
3539 }
3540 *lenp = len;
3541 }
3542 else {
3543 *lenp = uvchr_to_utf8(ustrp, uv1) - ustrp;
3544 }
3545
3546 return uv1;
3547
3548 }
3549
3550 Size_t
Perl__inverse_folds(pTHX_ const UV cp,unsigned int * first_folds_to,const unsigned int ** remaining_folds_to)3551 Perl__inverse_folds(pTHX_ const UV cp, unsigned int * first_folds_to,
3552 const unsigned int ** remaining_folds_to)
3553 {
3554 /* Returns the count of the number of code points that fold to the input
3555 * 'cp' (besides itself).
3556 *
3557 * If the return is 0, there is nothing else that folds to it, and
3558 * '*first_folds_to' is set to 0, and '*remaining_folds_to' is set to NULL.
3559 *
3560 * If the return is 1, '*first_folds_to' is set to the single code point,
3561 * and '*remaining_folds_to' is set to NULL.
3562 *
3563 * Otherwise, '*first_folds_to' is set to a code point, and
3564 * '*remaining_fold_to' is set to an array that contains the others. The
3565 * length of this array is the returned count minus 1.
3566 *
3567 * The reason for this convolution is to avoid having to deal with
3568 * allocating and freeing memory. The lists are already constructed, so
3569 * the return can point to them, but single code points aren't, so would
3570 * need to be constructed if we didn't employ something like this API */
3571
3572 dVAR;
3573 /* 'index' is guaranteed to be non-negative, as this is an inversion map
3574 * that covers all possible inputs. See [perl #133365] */
3575 SSize_t index = _invlist_search(PL_utf8_foldclosures, cp);
3576 int base = _Perl_IVCF_invmap[index];
3577
3578 PERL_ARGS_ASSERT__INVERSE_FOLDS;
3579
3580 if (base == 0) { /* No fold */
3581 *first_folds_to = 0;
3582 *remaining_folds_to = NULL;
3583 return 0;
3584 }
3585
3586 #ifndef HAS_IVCF_AUX_TABLES /* This Unicode version only has 1-1 folds */
3587
3588 assert(base > 0);
3589
3590 #else
3591
3592 if (UNLIKELY(base < 0)) { /* Folds to more than one character */
3593
3594 /* The data structure is set up so that the absolute value of 'base' is
3595 * an index into a table of pointers to arrays, with the array
3596 * corresponding to the index being the list of code points that fold
3597 * to 'cp', and the parallel array containing the length of the list
3598 * array */
3599 *first_folds_to = IVCF_AUX_TABLE_ptrs[-base][0];
3600 *remaining_folds_to = IVCF_AUX_TABLE_ptrs[-base] + 1; /* +1 excludes
3601 *first_folds_to
3602 */
3603 return IVCF_AUX_TABLE_lengths[-base];
3604 }
3605
3606 #endif
3607
3608 /* Only the single code point. This works like 'fc(G) = G - A + a' */
3609 *first_folds_to = base + cp - invlist_array(PL_utf8_foldclosures)[index];
3610 *remaining_folds_to = NULL;
3611 return 1;
3612 }
3613
3614 STATIC UV
S_check_locale_boundary_crossing(pTHX_ const U8 * const p,const UV result,U8 * const ustrp,STRLEN * lenp)3615 S_check_locale_boundary_crossing(pTHX_ const U8* const p, const UV result,
3616 U8* const ustrp, STRLEN *lenp)
3617 {
3618 /* This is called when changing the case of a UTF-8-encoded character above
3619 * the Latin1 range, and the operation is in a non-UTF-8 locale. If the
3620 * result contains a character that crosses the 255/256 boundary, disallow
3621 * the change, and return the original code point. See L<perlfunc/lc> for
3622 * why;
3623 *
3624 * p points to the original string whose case was changed; assumed
3625 * by this routine to be well-formed
3626 * result the code point of the first character in the changed-case string
3627 * ustrp points to the changed-case string (<result> represents its
3628 * first char)
3629 * lenp points to the length of <ustrp> */
3630
3631 UV original; /* To store the first code point of <p> */
3632
3633 PERL_ARGS_ASSERT_CHECK_LOCALE_BOUNDARY_CROSSING;
3634
3635 assert(UTF8_IS_ABOVE_LATIN1(*p));
3636
3637 /* We know immediately if the first character in the string crosses the
3638 * boundary, so can skip testing */
3639 if (result > 255) {
3640
3641 /* Look at every character in the result; if any cross the
3642 * boundary, the whole thing is disallowed */
3643 U8* s = ustrp + UTF8SKIP(ustrp);
3644 U8* e = ustrp + *lenp;
3645 while (s < e) {
3646 if (! UTF8_IS_ABOVE_LATIN1(*s)) {
3647 goto bad_crossing;
3648 }
3649 s += UTF8SKIP(s);
3650 }
3651
3652 /* Here, no characters crossed, result is ok as-is, but we warn. */
3653 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(p, p + UTF8SKIP(p));
3654 return result;
3655 }
3656
3657 bad_crossing:
3658
3659 /* Failed, have to return the original */
3660 original = valid_utf8_to_uvchr(p, lenp);
3661
3662 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3663 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3664 "Can't do %s(\"\\x{%" UVXf "}\") on non-UTF-8"
3665 " locale; resolved to \"\\x{%" UVXf "}\".",
3666 OP_DESC(PL_op),
3667 original,
3668 original);
3669 Copy(p, ustrp, *lenp, char);
3670 return original;
3671 }
3672
3673 STATIC U32
S_check_and_deprecate(pTHX_ const U8 * p,const U8 ** e,const unsigned int type,const bool use_locale,const char * const file,const unsigned line)3674 S_check_and_deprecate(pTHX_ const U8 *p,
3675 const U8 **e,
3676 const unsigned int type, /* See below */
3677 const bool use_locale, /* Is this a 'LC_'
3678 macro call? */
3679 const char * const file,
3680 const unsigned line)
3681 {
3682 /* This is a temporary function to deprecate the unsafe calls to the case
3683 * changing macros and functions. It keeps all the special stuff in just
3684 * one place.
3685 *
3686 * It updates *e with the pointer to the end of the input string. If using
3687 * the old-style macros, *e is NULL on input, and so this function assumes
3688 * the input string is long enough to hold the entire UTF-8 sequence, and
3689 * sets *e accordingly, but it then returns a flag to pass the
3690 * utf8n_to_uvchr(), to tell it that this size is a guess, and to avoid
3691 * using the full length if possible.
3692 *
3693 * It also does the assert that *e > p when *e is not NULL. This should be
3694 * migrated to the callers when this function gets deleted.
3695 *
3696 * The 'type' parameter is used for the caller to specify which case
3697 * changing function this is called from: */
3698
3699 # define DEPRECATE_TO_UPPER 0
3700 # define DEPRECATE_TO_TITLE 1
3701 # define DEPRECATE_TO_LOWER 2
3702 # define DEPRECATE_TO_FOLD 3
3703
3704 U32 utf8n_flags = 0;
3705 const char * name;
3706 const char * alternative;
3707
3708 PERL_ARGS_ASSERT_CHECK_AND_DEPRECATE;
3709
3710 if (*e == NULL) {
3711 utf8n_flags = _UTF8_NO_CONFIDENCE_IN_CURLEN;
3712
3713 /* strnlen() makes this function safe for the common case of
3714 * NUL-terminated strings */
3715 *e = p + my_strnlen((char *) p, UTF8SKIP(p));
3716
3717 /* For mathoms.c calls, we use the function name we know is stored
3718 * there. It could be part of a larger path */
3719 if (type == DEPRECATE_TO_UPPER) {
3720 name = instr(file, "mathoms.c")
3721 ? "to_utf8_upper"
3722 : "toUPPER_utf8";
3723 alternative = "toUPPER_utf8_safe";
3724 }
3725 else if (type == DEPRECATE_TO_TITLE) {
3726 name = instr(file, "mathoms.c")
3727 ? "to_utf8_title"
3728 : "toTITLE_utf8";
3729 alternative = "toTITLE_utf8_safe";
3730 }
3731 else if (type == DEPRECATE_TO_LOWER) {
3732 name = instr(file, "mathoms.c")
3733 ? "to_utf8_lower"
3734 : "toLOWER_utf8";
3735 alternative = "toLOWER_utf8_safe";
3736 }
3737 else if (type == DEPRECATE_TO_FOLD) {
3738 name = instr(file, "mathoms.c")
3739 ? "to_utf8_fold"
3740 : "toFOLD_utf8";
3741 alternative = "toFOLD_utf8_safe";
3742 }
3743 else Perl_croak(aTHX_ "panic: Unexpected case change type");
3744
3745 warn_on_first_deprecated_use(name, alternative, use_locale, file, line);
3746 }
3747 else {
3748 assert (p < *e);
3749 }
3750
3751 return utf8n_flags;
3752 }
3753
3754 STATIC UV
S_turkic_fc(pTHX_ const U8 * const p,const U8 * const e,U8 * ustrp,STRLEN * lenp)3755 S_turkic_fc(pTHX_ const U8 * const p, const U8 * const e,
3756 U8 * ustrp, STRLEN *lenp)
3757 {
3758 /* Returns 0 if the foldcase of the input UTF-8 encoded sequence from
3759 * p0..e-1 according to Turkic rules is the same as for non-Turkic.
3760 * Otherwise, it returns the first code point of the Turkic foldcased
3761 * sequence, and the entire sequence will be stored in *ustrp. ustrp will
3762 * contain *lenp bytes
3763 *
3764 * Turkic differs only from non-Turkic in that 'i' and LATIN CAPITAL LETTER
3765 * I WITH DOT ABOVE form a case pair, as do 'I' and LATIN SMALL LETTER
3766 * DOTLESS I */
3767
3768 PERL_ARGS_ASSERT_TURKIC_FC;
3769 assert(e > p);
3770
3771 if (UNLIKELY(*p == 'I')) {
3772 *lenp = 2;
3773 ustrp[0] = UTF8_TWO_BYTE_HI(LATIN_SMALL_LETTER_DOTLESS_I);
3774 ustrp[1] = UTF8_TWO_BYTE_LO(LATIN_SMALL_LETTER_DOTLESS_I);
3775 return LATIN_SMALL_LETTER_DOTLESS_I;
3776 }
3777
3778 if (UNLIKELY(memBEGINs(p, e - p,
3779 LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8)))
3780 {
3781 *lenp = 1;
3782 *ustrp = 'i';
3783 return 'i';
3784 }
3785
3786 return 0;
3787 }
3788
3789 STATIC UV
S_turkic_lc(pTHX_ const U8 * const p0,const U8 * const e,U8 * ustrp,STRLEN * lenp)3790 S_turkic_lc(pTHX_ const U8 * const p0, const U8 * const e,
3791 U8 * ustrp, STRLEN *lenp)
3792 {
3793 /* Returns 0 if the lowercase of the input UTF-8 encoded sequence from
3794 * p0..e-1 according to Turkic rules is the same as for non-Turkic.
3795 * Otherwise, it returns the first code point of the Turkic lowercased
3796 * sequence, and the entire sequence will be stored in *ustrp. ustrp will
3797 * contain *lenp bytes */
3798
3799 dVAR;
3800 PERL_ARGS_ASSERT_TURKIC_LC;
3801 assert(e > p0);
3802
3803 /* A 'I' requires context as to what to do */
3804 if (UNLIKELY(*p0 == 'I')) {
3805 const U8 * p = p0 + 1;
3806
3807 /* According to the Unicode SpecialCasing.txt file, a capital 'I'
3808 * modified by a dot above lowercases to 'i' even in turkic locales. */
3809 while (p < e) {
3810 UV cp;
3811
3812 if (memBEGINs(p, e - p, COMBINING_DOT_ABOVE_UTF8)) {
3813 ustrp[0] = 'i';
3814 *lenp = 1;
3815 return 'i';
3816 }
3817
3818 /* For the dot above to modify the 'I', it must be part of a
3819 * combining sequence immediately following the 'I', and no other
3820 * modifier with a ccc of 230 may intervene */
3821 cp = utf8_to_uvchr_buf(p, e, NULL);
3822 if (! _invlist_contains_cp(PL_CCC_non0_non230, cp)) {
3823 break;
3824 }
3825
3826 /* Here the combining sequence continues */
3827 p += UTF8SKIP(p);
3828 }
3829 }
3830
3831 /* In all other cases the lc is the same as the fold */
3832 return turkic_fc(p0, e, ustrp, lenp);
3833 }
3834
3835 STATIC UV
S_turkic_uc(pTHX_ const U8 * const p,const U8 * const e,U8 * ustrp,STRLEN * lenp)3836 S_turkic_uc(pTHX_ const U8 * const p, const U8 * const e,
3837 U8 * ustrp, STRLEN *lenp)
3838 {
3839 /* Returns 0 if the upper or title-case of the input UTF-8 encoded sequence
3840 * from p0..e-1 according to Turkic rules is the same as for non-Turkic.
3841 * Otherwise, it returns the first code point of the Turkic upper or
3842 * title-cased sequence, and the entire sequence will be stored in *ustrp.
3843 * ustrp will contain *lenp bytes
3844 *
3845 * Turkic differs only from non-Turkic in that 'i' and LATIN CAPITAL LETTER
3846 * I WITH DOT ABOVE form a case pair, as do 'I' and and LATIN SMALL LETTER
3847 * DOTLESS I */
3848
3849 PERL_ARGS_ASSERT_TURKIC_UC;
3850 assert(e > p);
3851
3852 if (*p == 'i') {
3853 *lenp = 2;
3854 ustrp[0] = UTF8_TWO_BYTE_HI(LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
3855 ustrp[1] = UTF8_TWO_BYTE_LO(LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
3856 return LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE;
3857 }
3858
3859 if (memBEGINs(p, e - p, LATIN_SMALL_LETTER_DOTLESS_I_UTF8)) {
3860 *lenp = 1;
3861 *ustrp = 'I';
3862 return 'I';
3863 }
3864
3865 return 0;
3866 }
3867
3868 /* The process for changing the case is essentially the same for the four case
3869 * change types, except there are complications for folding. Otherwise the
3870 * difference is only which case to change to. To make sure that they all do
3871 * the same thing, the bodies of the functions are extracted out into the
3872 * following two macros. The functions are written with the same variable
3873 * names, and these are known and used inside these macros. It would be
3874 * better, of course, to have inline functions to do it, but since different
3875 * macros are called, depending on which case is being changed to, this is not
3876 * feasible in C (to khw's knowledge). Two macros are created so that the fold
3877 * function can start with the common start macro, then finish with its special
3878 * handling; while the other three cases can just use the common end macro.
3879 *
3880 * The algorithm is to use the proper (passed in) macro or function to change
3881 * the case for code points that are below 256. The macro is used if using
3882 * locale rules for the case change; the function if not. If the code point is
3883 * above 255, it is computed from the input UTF-8, and another macro is called
3884 * to do the conversion. If necessary, the output is converted to UTF-8. If
3885 * using a locale, we have to check that the change did not cross the 255/256
3886 * boundary, see check_locale_boundary_crossing() for further details.
3887 *
3888 * The macros are split with the correct case change for the below-256 case
3889 * stored into 'result', and in the middle of an else clause for the above-255
3890 * case. At that point in the 'else', 'result' is not the final result, but is
3891 * the input code point calculated from the UTF-8. The fold code needs to
3892 * realize all this and take it from there.
3893 *
3894 * To deal with Turkic locales, the function specified by the parameter
3895 * 'turkic' is called when appropriate.
3896 *
3897 * If you read the two macros as sequential, it's easier to understand what's
3898 * going on. */
3899 #define CASE_CHANGE_BODY_START(locale_flags, LC_L1_change_macro, L1_func, \
3900 L1_func_extra_param, turkic) \
3901 \
3902 if (flags & (locale_flags)) { \
3903 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
3904 if (IN_UTF8_CTYPE_LOCALE) { \
3905 if (UNLIKELY(PL_in_utf8_turkic_locale)) { \
3906 UV ret = turkic(p, e, ustrp, lenp); \
3907 if (ret) return ret; \
3908 } \
3909 \
3910 /* Otherwise, treat a UTF-8 locale as not being in locale at \
3911 * all */ \
3912 flags &= ~(locale_flags); \
3913 } \
3914 } \
3915 \
3916 if (UTF8_IS_INVARIANT(*p)) { \
3917 if (flags & (locale_flags)) { \
3918 result = LC_L1_change_macro(*p); \
3919 } \
3920 else { \
3921 return L1_func(*p, ustrp, lenp, L1_func_extra_param); \
3922 } \
3923 } \
3924 else if UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, e) { \
3925 U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)); \
3926 if (flags & (locale_flags)) { \
3927 result = LC_L1_change_macro(c); \
3928 } \
3929 else { \
3930 return L1_func(c, ustrp, lenp, L1_func_extra_param); \
3931 } \
3932 } \
3933 else { /* malformed UTF-8 or ord above 255 */ \
3934 STRLEN len_result; \
3935 result = utf8n_to_uvchr(p, e - p, &len_result, UTF8_CHECK_ONLY); \
3936 if (len_result == (STRLEN) -1) { \
3937 _force_out_malformed_utf8_message(p, e, utf8n_flags, \
3938 1 /* Die */ ); \
3939 }
3940
3941 #define CASE_CHANGE_BODY_END(locale_flags, change_macro) \
3942 result = change_macro(result, p, ustrp, lenp); \
3943 \
3944 if (flags & (locale_flags)) { \
3945 result = check_locale_boundary_crossing(p, result, ustrp, lenp); \
3946 } \
3947 return result; \
3948 } \
3949 \
3950 /* Here, used locale rules. Convert back to UTF-8 */ \
3951 if (UTF8_IS_INVARIANT(result)) { \
3952 *ustrp = (U8) result; \
3953 *lenp = 1; \
3954 } \
3955 else { \
3956 *ustrp = UTF8_EIGHT_BIT_HI((U8) result); \
3957 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result); \
3958 *lenp = 2; \
3959 } \
3960 \
3961 return result;
3962
3963 /*
3964 =for apidoc to_utf8_upper
3965
3966 Instead use L</toUPPER_utf8_safe>.
3967
3968 =cut */
3969
3970 /* Not currently externally documented, and subject to change:
3971 * <flags> is set iff iff the rules from the current underlying locale are to
3972 * be used. */
3973
3974 UV
Perl__to_utf8_upper_flags(pTHX_ const U8 * p,const U8 * e,U8 * ustrp,STRLEN * lenp,bool flags,const char * const file,const int line)3975 Perl__to_utf8_upper_flags(pTHX_ const U8 *p,
3976 const U8 *e,
3977 U8* ustrp,
3978 STRLEN *lenp,
3979 bool flags,
3980 const char * const file,
3981 const int line)
3982 {
3983 dVAR;
3984 UV result;
3985 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_UPPER,
3986 cBOOL(flags), file, line);
3987
3988 PERL_ARGS_ASSERT__TO_UTF8_UPPER_FLAGS;
3989
3990 /* ~0 makes anything non-zero in 'flags' mean we are using locale rules */
3991 /* 2nd char of uc(U+DF) is 'S' */
3992 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 'S',
3993 turkic_uc);
3994 CASE_CHANGE_BODY_END (~0, CALL_UPPER_CASE);
3995 }
3996
3997 /*
3998 =for apidoc to_utf8_title
3999
4000 Instead use L</toTITLE_utf8_safe>.
4001
4002 =cut */
4003
4004 /* Not currently externally documented, and subject to change:
4005 * <flags> is set iff the rules from the current underlying locale are to be
4006 * used. Since titlecase is not defined in POSIX, for other than a
4007 * UTF-8 locale, uppercase is used instead for code points < 256.
4008 */
4009
4010 UV
Perl__to_utf8_title_flags(pTHX_ const U8 * p,const U8 * e,U8 * ustrp,STRLEN * lenp,bool flags,const char * const file,const int line)4011 Perl__to_utf8_title_flags(pTHX_ const U8 *p,
4012 const U8 *e,
4013 U8* ustrp,
4014 STRLEN *lenp,
4015 bool flags,
4016 const char * const file,
4017 const int line)
4018 {
4019 dVAR;
4020 UV result;
4021 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_TITLE,
4022 cBOOL(flags), file, line);
4023
4024 PERL_ARGS_ASSERT__TO_UTF8_TITLE_FLAGS;
4025
4026 /* 2nd char of ucfirst(U+DF) is 's' */
4027 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 's',
4028 turkic_uc);
4029 CASE_CHANGE_BODY_END (~0, CALL_TITLE_CASE);
4030 }
4031
4032 /*
4033 =for apidoc to_utf8_lower
4034
4035 Instead use L</toLOWER_utf8_safe>.
4036
4037 =cut */
4038
4039 /* Not currently externally documented, and subject to change:
4040 * <flags> is set iff iff the rules from the current underlying locale are to
4041 * be used.
4042 */
4043
4044 UV
Perl__to_utf8_lower_flags(pTHX_ const U8 * p,const U8 * e,U8 * ustrp,STRLEN * lenp,bool flags,const char * const file,const int line)4045 Perl__to_utf8_lower_flags(pTHX_ const U8 *p,
4046 const U8 *e,
4047 U8* ustrp,
4048 STRLEN *lenp,
4049 bool flags,
4050 const char * const file,
4051 const int line)
4052 {
4053 dVAR;
4054 UV result;
4055 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_LOWER,
4056 cBOOL(flags), file, line);
4057
4058 PERL_ARGS_ASSERT__TO_UTF8_LOWER_FLAGS;
4059
4060 CASE_CHANGE_BODY_START(~0, toLOWER_LC, to_lower_latin1, 0 /* 0 is dummy */,
4061 turkic_lc);
4062 CASE_CHANGE_BODY_END (~0, CALL_LOWER_CASE)
4063 }
4064
4065 /*
4066 =for apidoc to_utf8_fold
4067
4068 Instead use L</toFOLD_utf8_safe>.
4069
4070 =cut */
4071
4072 /* Not currently externally documented, and subject to change,
4073 * in <flags>
4074 * bit FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
4075 * locale are to be used.
4076 * bit FOLD_FLAGS_FULL is set iff full case folds are to be used;
4077 * otherwise simple folds
4078 * bit FOLD_FLAGS_NOMIX_ASCII is set iff folds of non-ASCII to ASCII are
4079 * prohibited
4080 */
4081
4082 UV
Perl__to_utf8_fold_flags(pTHX_ const U8 * p,const U8 * e,U8 * ustrp,STRLEN * lenp,U8 flags,const char * const file,const int line)4083 Perl__to_utf8_fold_flags(pTHX_ const U8 *p,
4084 const U8 *e,
4085 U8* ustrp,
4086 STRLEN *lenp,
4087 U8 flags,
4088 const char * const file,
4089 const int line)
4090 {
4091 dVAR;
4092 UV result;
4093 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_FOLD,
4094 cBOOL(flags), file, line);
4095
4096 PERL_ARGS_ASSERT__TO_UTF8_FOLD_FLAGS;
4097
4098 /* These are mutually exclusive */
4099 assert (! ((flags & FOLD_FLAGS_LOCALE) && (flags & FOLD_FLAGS_NOMIX_ASCII)));
4100
4101 assert(p != ustrp); /* Otherwise overwrites */
4102
4103 CASE_CHANGE_BODY_START(FOLD_FLAGS_LOCALE, toFOLD_LC, _to_fold_latin1,
4104 ((flags) & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII)),
4105 turkic_fc);
4106
4107 result = CALL_FOLD_CASE(result, p, ustrp, lenp, flags & FOLD_FLAGS_FULL);
4108
4109 if (flags & FOLD_FLAGS_LOCALE) {
4110
4111 # define LONG_S_T LATIN_SMALL_LIGATURE_LONG_S_T_UTF8
4112 # ifdef LATIN_CAPITAL_LETTER_SHARP_S_UTF8
4113 # define CAP_SHARP_S LATIN_CAPITAL_LETTER_SHARP_S_UTF8
4114
4115 /* Special case these two characters, as what normally gets
4116 * returned under locale doesn't work */
4117 if (memBEGINs((char *) p, e - p, CAP_SHARP_S))
4118 {
4119 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
4120 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
4121 "Can't do fc(\"\\x{1E9E}\") on non-UTF-8 locale; "
4122 "resolved to \"\\x{17F}\\x{17F}\".");
4123 goto return_long_s;
4124 }
4125 else
4126 #endif
4127 if (memBEGINs((char *) p, e - p, LONG_S_T))
4128 {
4129 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
4130 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
4131 "Can't do fc(\"\\x{FB05}\") on non-UTF-8 locale; "
4132 "resolved to \"\\x{FB06}\".");
4133 goto return_ligature_st;
4134 }
4135
4136 #if UNICODE_MAJOR_VERSION == 3 \
4137 && UNICODE_DOT_VERSION == 0 \
4138 && UNICODE_DOT_DOT_VERSION == 1
4139 # define DOTTED_I LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8
4140
4141 /* And special case this on this Unicode version only, for the same
4142 * reaons the other two are special cased. They would cross the
4143 * 255/256 boundary which is forbidden under /l, and so the code
4144 * wouldn't catch that they are equivalent (which they are only in
4145 * this release) */
4146 else if (memBEGINs((char *) p, e - p, DOTTED_I)) {
4147 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
4148 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
4149 "Can't do fc(\"\\x{0130}\") on non-UTF-8 locale; "
4150 "resolved to \"\\x{0131}\".");
4151 goto return_dotless_i;
4152 }
4153 #endif
4154
4155 return check_locale_boundary_crossing(p, result, ustrp, lenp);
4156 }
4157 else if (! (flags & FOLD_FLAGS_NOMIX_ASCII)) {
4158 return result;
4159 }
4160 else {
4161 /* This is called when changing the case of a UTF-8-encoded
4162 * character above the ASCII range, and the result should not
4163 * contain an ASCII character. */
4164
4165 UV original; /* To store the first code point of <p> */
4166
4167 /* Look at every character in the result; if any cross the
4168 * boundary, the whole thing is disallowed */
4169 U8* s = ustrp;
4170 U8* e = ustrp + *lenp;
4171 while (s < e) {
4172 if (isASCII(*s)) {
4173 /* Crossed, have to return the original */
4174 original = valid_utf8_to_uvchr(p, lenp);
4175
4176 /* But in these instances, there is an alternative we can
4177 * return that is valid */
4178 if (original == LATIN_SMALL_LETTER_SHARP_S
4179 #ifdef LATIN_CAPITAL_LETTER_SHARP_S /* not defined in early Unicode releases */
4180 || original == LATIN_CAPITAL_LETTER_SHARP_S
4181 #endif
4182 ) {
4183 goto return_long_s;
4184 }
4185 else if (original == LATIN_SMALL_LIGATURE_LONG_S_T) {
4186 goto return_ligature_st;
4187 }
4188 #if UNICODE_MAJOR_VERSION == 3 \
4189 && UNICODE_DOT_VERSION == 0 \
4190 && UNICODE_DOT_DOT_VERSION == 1
4191
4192 else if (original == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
4193 goto return_dotless_i;
4194 }
4195 #endif
4196 Copy(p, ustrp, *lenp, char);
4197 return original;
4198 }
4199 s += UTF8SKIP(s);
4200 }
4201
4202 /* Here, no characters crossed, result is ok as-is */
4203 return result;
4204 }
4205 }
4206
4207 /* Here, used locale rules. Convert back to UTF-8 */
4208 if (UTF8_IS_INVARIANT(result)) {
4209 *ustrp = (U8) result;
4210 *lenp = 1;
4211 }
4212 else {
4213 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
4214 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
4215 *lenp = 2;
4216 }
4217
4218 return result;
4219
4220 return_long_s:
4221 /* Certain folds to 'ss' are prohibited by the options, but they do allow
4222 * folds to a string of two of these characters. By returning this
4223 * instead, then, e.g.,
4224 * fc("\x{1E9E}") eq fc("\x{17F}\x{17F}")
4225 * works. */
4226
4227 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
4228 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
4229 ustrp, *lenp, U8);
4230 return LATIN_SMALL_LETTER_LONG_S;
4231
4232 return_ligature_st:
4233 /* Two folds to 'st' are prohibited by the options; instead we pick one and
4234 * have the other one fold to it */
4235
4236 *lenp = sizeof(LATIN_SMALL_LIGATURE_ST_UTF8) - 1;
4237 Copy(LATIN_SMALL_LIGATURE_ST_UTF8, ustrp, *lenp, U8);
4238 return LATIN_SMALL_LIGATURE_ST;
4239
4240 #if UNICODE_MAJOR_VERSION == 3 \
4241 && UNICODE_DOT_VERSION == 0 \
4242 && UNICODE_DOT_DOT_VERSION == 1
4243
4244 return_dotless_i:
4245 *lenp = sizeof(LATIN_SMALL_LETTER_DOTLESS_I_UTF8) - 1;
4246 Copy(LATIN_SMALL_LETTER_DOTLESS_I_UTF8, ustrp, *lenp, U8);
4247 return LATIN_SMALL_LETTER_DOTLESS_I;
4248
4249 #endif
4250
4251 }
4252
4253 /* Note:
4254 * Returns a "swash" which is a hash described in utf8.c:Perl_swash_fetch().
4255 * C<pkg> is a pointer to a package name for SWASHNEW, should be "utf8".
4256 * For other parameters, see utf8::SWASHNEW in lib/utf8_heavy.pl.
4257 */
4258
4259 SV*
4260 Perl_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv,
4261 I32 minbits, I32 none)
4262 {
4263 /* Returns a copy of a swash initiated by the called function. This is the
4264 * public interface, and returning a copy prevents others from doing
4265 * mischief on the original. The only remaining use of this is in tr/// */
4266
4267 /*NOTE NOTE NOTE - If you want to use "return" in this routine you MUST
4268 * use the following define */
4269
4270 #define SWASH_INIT_RETURN(x) \
4271 PL_curpm= old_PL_curpm; \
4272 return newSVsv(x)
4273
4274 /* Initialize and return a swash, creating it if necessary. It does this
4275 * by calling utf8_heavy.pl in the general case.
4276 *
4277 * pkg is the name of the package that <name> should be in.
4278 * name is the name of the swash to find.
4279 * listsv is a string to initialize the swash with. It must be of the form
4280 * documented as the subroutine return value in
4281 * L<perlunicode/User-Defined Character Properties>
4282 * minbits is the number of bits required to represent each data element.
4283 * none I (khw) do not understand this one, but it is used only in tr///.
4284 *
4285 * Thus there are two possible inputs to find the swash: <name> and
4286 * <listsv>. At least one must be specified. The result
4287 * will be the union of the specified ones, although <listsv>'s various
4288 * actions can intersect, etc. what <name> gives. To avoid going out to
4289 * disk at all, <invlist> should specify completely what the swash should
4290 * have, and <listsv> should be &PL_sv_undef and <name> should be "".
4291 */
4292
4293 PMOP *old_PL_curpm= PL_curpm; /* save away the old PL_curpm */
4294
4295 SV* retval = &PL_sv_undef;
4296
4297 PERL_ARGS_ASSERT_SWASH_INIT;
4298
4299 assert(listsv != &PL_sv_undef || strNE(name, ""));
4300
4301 PL_curpm= NULL; /* reset PL_curpm so that we dont get confused between the
4302 regex that triggered the swash init and the swash init
4303 perl logic itself. See perl #122747 */
4304
4305 /* If data was passed in to go out to utf8_heavy to find the swash of, do
4306 * so */
4307 if (listsv != &PL_sv_undef || strNE(name, "")) {
4308 dSP;
4309 const size_t pkg_len = strlen(pkg);
4310 const size_t name_len = strlen(name);
4311 HV * const stash = gv_stashpvn(pkg, pkg_len, 0);
4312 SV* errsv_save;
4313 GV *method;
4314
4315
4316 PUSHSTACKi(PERLSI_MAGIC);
4317 ENTER;
4318 SAVEHINTS();
4319 save_re_context();
4320 /* We might get here via a subroutine signature which uses a utf8
4321 * parameter name, at which point PL_subname will have been set
4322 * but not yet used. */
4323 save_item(PL_subname);
4324 if (PL_parser && PL_parser->error_count)
4325 SAVEI8(PL_parser->error_count), PL_parser->error_count = 0;
4326 method = gv_fetchmeth(stash, "SWASHNEW", 8, -1);
4327 if (!method) { /* demand load UTF-8 */
4328 ENTER;
4329 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
4330 GvSV(PL_errgv) = NULL;
4331 #ifndef NO_TAINT_SUPPORT
4332 /* It is assumed that callers of this routine are not passing in
4333 * any user derived data. */
4334 /* Need to do this after save_re_context() as it will set
4335 * PL_tainted to 1 while saving $1 etc (see the code after getrx:
4336 * in Perl_magic_get). Even line to create errsv_save can turn on
4337 * PL_tainted. */
4338 SAVEBOOL(TAINT_get);
4339 TAINT_NOT;
4340 #endif
4341 require_pv("utf8_heavy.pl");
4342 {
4343 /* Not ERRSV, as there is no need to vivify a scalar we are
4344 about to discard. */
4345 SV * const errsv = GvSV(PL_errgv);
4346 if (!SvTRUE(errsv)) {
4347 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
4348 SvREFCNT_dec(errsv);
4349 }
4350 }
4351 LEAVE;
4352 }
4353 SPAGAIN;
4354 PUSHMARK(SP);
4355 EXTEND(SP,5);
4356 mPUSHp(pkg, pkg_len);
4357 mPUSHp(name, name_len);
4358 PUSHs(listsv);
4359 mPUSHi(minbits);
4360 mPUSHi(none);
4361 PUTBACK;
4362 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
4363 GvSV(PL_errgv) = NULL;
4364 /* If we already have a pointer to the method, no need to use
4365 * call_method() to repeat the lookup. */
4366 if (method
4367 ? call_sv(MUTABLE_SV(method), G_SCALAR)
4368 : call_sv(newSVpvs_flags("SWASHNEW", SVs_TEMP), G_SCALAR | G_METHOD))
4369 {
4370 retval = *PL_stack_sp--;
4371 SvREFCNT_inc(retval);
4372 }
4373 {
4374 /* Not ERRSV. See above. */
4375 SV * const errsv = GvSV(PL_errgv);
4376 if (!SvTRUE(errsv)) {
4377 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
4378 SvREFCNT_dec(errsv);
4379 }
4380 }
4381 LEAVE;
4382 POPSTACK;
4383 if (IN_PERL_COMPILETIME) {
4384 CopHINTS_set(PL_curcop, PL_hints);
4385 }
4386 } /* End of calling the module to find the swash */
4387
4388 SWASH_INIT_RETURN(retval);
4389 #undef SWASH_INIT_RETURN
4390 }
4391
4392
4393 /* This API is wrong for special case conversions since we may need to
4394 * return several Unicode characters for a single Unicode character
4395 * (see lib/unicore/SpecCase.txt) The SWASHGET in lib/utf8_heavy.pl is
4396 * the lower-level routine, and it is similarly broken for returning
4397 * multiple values. --jhi
4398 * For those, you should use S__to_utf8_case() instead */
4399 /* Now SWASHGET is recasted into S_swatch_get in this file. */
4400
4401 /* Note:
4402 * Returns the value of property/mapping C<swash> for the first character
4403 * of the string C<ptr>. If C<do_utf8> is true, the string C<ptr> is
4404 * assumed to be in well-formed UTF-8. If C<do_utf8> is false, the string C<ptr>
4405 * is assumed to be in native 8-bit encoding. Caches the swatch in C<swash>.
4406 *
4407 * A "swash" is a hash which contains initially the keys/values set up by
4408 * SWASHNEW. The purpose is to be able to completely represent a Unicode
4409 * property for all possible code points. Things are stored in a compact form
4410 * (see utf8_heavy.pl) so that calculation is required to find the actual
4411 * property value for a given code point. As code points are looked up, new
4412 * key/value pairs are added to the hash, so that the calculation doesn't have
4413 * to ever be re-done. Further, each calculation is done, not just for the
4414 * desired one, but for a whole block of code points adjacent to that one.
4415 * For binary properties on ASCII machines, the block is usually for 64 code
4416 * points, starting with a code point evenly divisible by 64. Thus if the
4417 * property value for code point 257 is requested, the code goes out and
4418 * calculates the property values for all 64 code points between 256 and 319,
4419 * and stores these as a single 64-bit long bit vector, called a "swatch",
4420 * under the key for code point 256. The key is the UTF-8 encoding for code
4421 * point 256, minus the final byte. Thus, if the length of the UTF-8 encoding
4422 * for a code point is 13 bytes, the key will be 12 bytes long. If the value
4423 * for code point 258 is then requested, this code realizes that it would be
4424 * stored under the key for 256, and would find that value and extract the
4425 * relevant bit, offset from 256.
4426 *
4427 * Non-binary properties are stored in as many bits as necessary to represent
4428 * their values (32 currently, though the code is more general than that), not
4429 * as single bits, but the principle is the same: the value for each key is a
4430 * vector that encompasses the property values for all code points whose UTF-8
4431 * representations are represented by the key. That is, for all code points
4432 * whose UTF-8 representations are length N bytes, and the key is the first N-1
4433 * bytes of that.
4434 */
4435 UV
4436 Perl_swash_fetch(pTHX_ SV *swash, const U8 *ptr, bool do_utf8)
4437 {
4438 HV *const hv = MUTABLE_HV(SvRV(swash));
4439 U32 klen;
4440 U32 off;
4441 STRLEN slen = 0;
4442 STRLEN needents;
4443 const U8 *tmps = NULL;
4444 SV *swatch;
4445 const U8 c = *ptr;
4446
4447 PERL_ARGS_ASSERT_SWASH_FETCH;
4448
4449 /* If it really isn't a hash, it isn't really swash; must be an inversion
4450 * list */
4451 if (SvTYPE(hv) != SVt_PVHV) {
4452 return _invlist_contains_cp((SV*)hv,
4453 (do_utf8)
4454 ? valid_utf8_to_uvchr(ptr, NULL)
4455 : c);
4456 }
4457
4458 /* We store the values in a "swatch" which is a vec() value in a swash
4459 * hash. Code points 0-255 are a single vec() stored with key length
4460 * (klen) 0. All other code points have a UTF-8 representation
4461 * 0xAA..0xYY,0xZZ. A vec() is constructed containing all of them which
4462 * share 0xAA..0xYY, which is the key in the hash to that vec. So the key
4463 * length for them is the length of the encoded char - 1. ptr[klen] is the
4464 * final byte in the sequence representing the character */
4465 if (!do_utf8 || UTF8_IS_INVARIANT(c)) {
4466 klen = 0;
4467 needents = 256;
4468 off = c;
4469 }
4470 else if (UTF8_IS_DOWNGRADEABLE_START(c)) {
4471 klen = 0;
4472 needents = 256;
4473 off = EIGHT_BIT_UTF8_TO_NATIVE(c, *(ptr + 1));
4474 }
4475 else {
4476 klen = UTF8SKIP(ptr) - 1;
4477
4478 /* Each vec() stores 2**UTF_ACCUMULATION_SHIFT values. The offset into
4479 * the vec is the final byte in the sequence. (In EBCDIC this is
4480 * converted to I8 to get consecutive values.) To help you visualize
4481 * all this:
4482 * Straight 1047 After final byte
4483 * UTF-8 UTF-EBCDIC I8 transform
4484 * U+0400: \xD0\x80 \xB8\x41\x41 \xB8\x41\xA0
4485 * U+0401: \xD0\x81 \xB8\x41\x42 \xB8\x41\xA1
4486 * ...
4487 * U+0409: \xD0\x89 \xB8\x41\x4A \xB8\x41\xA9
4488 * U+040A: \xD0\x8A \xB8\x41\x51 \xB8\x41\xAA
4489 * ...
4490 * U+0412: \xD0\x92 \xB8\x41\x59 \xB8\x41\xB2
4491 * U+0413: \xD0\x93 \xB8\x41\x62 \xB8\x41\xB3
4492 * ...
4493 * U+041B: \xD0\x9B \xB8\x41\x6A \xB8\x41\xBB
4494 * U+041C: \xD0\x9C \xB8\x41\x70 \xB8\x41\xBC
4495 * ...
4496 * U+041F: \xD0\x9F \xB8\x41\x73 \xB8\x41\xBF
4497 * U+0420: \xD0\xA0 \xB8\x42\x41 \xB8\x42\x41
4498 *
4499 * (There are no discontinuities in the elided (...) entries.)
4500 * The UTF-8 key for these 33 code points is '\xD0' (which also is the
4501 * key for the next 31, up through U+043F, whose UTF-8 final byte is
4502 * \xBF). Thus in UTF-8, each key is for a vec() for 64 code points.
4503 * The final UTF-8 byte, which ranges between \x80 and \xBF, is an
4504 * index into the vec() swatch (after subtracting 0x80, which we
4505 * actually do with an '&').
4506 * In UTF-EBCDIC, each key is for a 32 code point vec(). The first 32
4507 * code points above have key '\xB8\x41'. The final UTF-EBCDIC byte has
4508 * dicontinuities which go away by transforming it into I8, and we
4509 * effectively subtract 0xA0 to get the index. */
4510 needents = (1 << UTF_ACCUMULATION_SHIFT);
4511 off = NATIVE_UTF8_TO_I8(ptr[klen]) & UTF_CONTINUATION_MASK;
4512 }
4513
4514 /*
4515 * This single-entry cache saves about 1/3 of the UTF-8 overhead in test
4516 * suite. (That is, only 7-8% overall over just a hash cache. Still,
4517 * it's nothing to sniff at.) Pity we usually come through at least
4518 * two function calls to get here...
4519 *
4520 * NB: this code assumes that swatches are never modified, once generated!
4521 */
4522
4523 if (hv == PL_last_swash_hv &&
4524 klen == PL_last_swash_klen &&
4525 (!klen || memEQ((char *)ptr, (char *)PL_last_swash_key, klen)) )
4526 {
4527 tmps = PL_last_swash_tmps;
4528 slen = PL_last_swash_slen;
4529 }
4530 else {
4531 /* Try our second-level swatch cache, kept in a hash. */
4532 SV** svp = hv_fetch(hv, (const char*)ptr, klen, FALSE);
4533
4534 /* If not cached, generate it via swatch_get */
4535 if (!svp || !SvPOK(*svp)
4536 || !(tmps = (const U8*)SvPV_const(*svp, slen)))
4537 {
4538 if (klen) {
4539 const UV code_point = valid_utf8_to_uvchr(ptr, NULL);
4540 swatch = swatch_get(swash,
4541 code_point & ~((UV)needents - 1),
4542 needents);
4543 }
4544 else { /* For the first 256 code points, the swatch has a key of
4545 length 0 */
4546 swatch = swatch_get(swash, 0, needents);
4547 }
4548
4549 if (IN_PERL_COMPILETIME)
4550 CopHINTS_set(PL_curcop, PL_hints);
4551
4552 svp = hv_store(hv, (const char *)ptr, klen, swatch, 0);
4553
4554 if (!svp || !(tmps = (U8*)SvPV(*svp, slen))
4555 || (slen << 3) < needents)
4556 Perl_croak(aTHX_ "panic: swash_fetch got improper swatch, "
4557 "svp=%p, tmps=%p, slen=%" UVuf ", needents=%" UVuf,
4558 svp, tmps, (UV)slen, (UV)needents);
4559 }
4560
4561 PL_last_swash_hv = hv;
4562 assert(klen <= sizeof(PL_last_swash_key));
4563 PL_last_swash_klen = (U8)klen;
4564 /* FIXME change interpvar.h? */
4565 PL_last_swash_tmps = (U8 *) tmps;
4566 PL_last_swash_slen = slen;
4567 if (klen)
4568 Copy(ptr, PL_last_swash_key, klen, U8);
4569 }
4570
4571 switch ((int)((slen << 3) / needents)) {
4572 case 1:
4573 return ((UV) tmps[off >> 3] & (1 << (off & 7))) != 0;
4574 case 8:
4575 return ((UV) tmps[off]);
4576 case 16:
4577 off <<= 1;
4578 return
4579 ((UV) tmps[off ] << 8) +
4580 ((UV) tmps[off + 1]);
4581 case 32:
4582 off <<= 2;
4583 return
4584 ((UV) tmps[off ] << 24) +
4585 ((UV) tmps[off + 1] << 16) +
4586 ((UV) tmps[off + 2] << 8) +
4587 ((UV) tmps[off + 3]);
4588 }
4589 Perl_croak(aTHX_ "panic: swash_fetch got swatch of unexpected bit width, "
4590 "slen=%" UVuf ", needents=%" UVuf, (UV)slen, (UV)needents);
4591 NORETURN_FUNCTION_END;
4592 }
4593
4594 /* Read a single line of the main body of the swash input text. These are of
4595 * the form:
4596 * 0053 0056 0073
4597 * where each number is hex. The first two numbers form the minimum and
4598 * maximum of a range, and the third is the value associated with the range.
4599 * Not all swashes should have a third number
4600 *
4601 * On input: l points to the beginning of the line to be examined; it points
4602 * to somewhere in the string of the whole input text, and is
4603 * terminated by a \n or the null string terminator.
4604 * lend points to the null terminator of that string
4605 * wants_value is non-zero if the swash expects a third number
4606 * typestr is the name of the swash's mapping, like 'ToLower'
4607 * On output: *min, *max, and *val are set to the values read from the line.
4608 * returns a pointer just beyond the line examined. If there was no
4609 * valid min number on the line, returns lend+1
4610 */
4611
4612 STATIC U8*
4613 S_swash_scan_list_line(pTHX_ U8* l, U8* const lend, UV* min, UV* max, UV* val,
4614 const bool wants_value, const U8* const typestr)
4615 {
4616 const int typeto = typestr[0] == 'T' && typestr[1] == 'o';
4617 STRLEN numlen; /* Length of the number */
4618 I32 flags = PERL_SCAN_SILENT_ILLDIGIT
4619 | PERL_SCAN_DISALLOW_PREFIX
4620 | PERL_SCAN_SILENT_NON_PORTABLE;
4621
4622 /* nl points to the next \n in the scan */
4623 U8* const nl = (U8*)memchr(l, '\n', lend - l);
4624
4625 PERL_ARGS_ASSERT_SWASH_SCAN_LIST_LINE;
4626
4627 /* Get the first number on the line: the range minimum */
4628 numlen = lend - l;
4629 *min = grok_hex((char *)l, &numlen, &flags, NULL);
4630 *max = *min; /* So can never return without setting max */
4631 if (numlen) /* If found a hex number, position past it */
4632 l += numlen;
4633 else if (nl) { /* Else, go handle next line, if any */
4634 return nl + 1; /* 1 is length of "\n" */
4635 }
4636 else { /* Else, no next line */
4637 return lend + 1; /* to LIST's end at which \n is not found */
4638 }
4639
4640 /* The max range value follows, separated by a BLANK */
4641 if (isBLANK(*l)) {
4642 ++l;
4643 flags = PERL_SCAN_SILENT_ILLDIGIT
4644 | PERL_SCAN_DISALLOW_PREFIX
4645 | PERL_SCAN_SILENT_NON_PORTABLE;
4646 numlen = lend - l;
4647 *max = grok_hex((char *)l, &numlen, &flags, NULL);
4648 if (numlen)
4649 l += numlen;
4650 else /* If no value here, it is a single element range */
4651 *max = *min;
4652
4653 /* Non-binary tables have a third entry: what the first element of the
4654 * range maps to. The map for those currently read here is in hex */
4655 if (wants_value) {
4656 if (isBLANK(*l)) {
4657 ++l;
4658 flags = PERL_SCAN_SILENT_ILLDIGIT
4659 | PERL_SCAN_DISALLOW_PREFIX
4660 | PERL_SCAN_SILENT_NON_PORTABLE;
4661 numlen = lend - l;
4662 *val = grok_hex((char *)l, &numlen, &flags, NULL);
4663 if (numlen)
4664 l += numlen;
4665 else
4666 *val = 0;
4667 }
4668 else {
4669 *val = 0;
4670 if (typeto) {
4671 /* diag_listed_as: To%s: illegal mapping '%s' */
4672 Perl_croak(aTHX_ "%s: illegal mapping '%s'",
4673 typestr, l);
4674 }
4675 }
4676 }
4677 else
4678 *val = 0; /* bits == 1, then any val should be ignored */
4679 }
4680 else { /* Nothing following range min, should be single element with no
4681 mapping expected */
4682 if (wants_value) {
4683 *val = 0;
4684 if (typeto) {
4685 /* diag_listed_as: To%s: illegal mapping '%s' */
4686 Perl_croak(aTHX_ "%s: illegal mapping '%s'", typestr, l);
4687 }
4688 }
4689 else
4690 *val = 0; /* bits == 1, then val should be ignored */
4691 }
4692
4693 /* Position to next line if any, or EOF */
4694 if (nl)
4695 l = nl + 1;
4696 else
4697 l = lend;
4698
4699 return l;
4700 }
4701
4702 /* Note:
4703 * Returns a swatch (a bit vector string) for a code point sequence
4704 * that starts from the value C<start> and comprises the number C<span>.
4705 * A C<swash> must be an object created by SWASHNEW (see lib/utf8_heavy.pl).
4706 * Should be used via swash_fetch, which will cache the swatch in C<swash>.
4707 */
4708 STATIC SV*
4709 S_swatch_get(pTHX_ SV* swash, UV start, UV span)
4710 {
4711 SV *swatch;
4712 U8 *l, *lend, *x, *xend, *s;
4713 STRLEN lcur, xcur, scur;
4714 HV *const hv = MUTABLE_HV(SvRV(swash));
4715
4716 SV** listsvp = NULL; /* The string containing the main body of the table */
4717 SV** extssvp = NULL;
4718 U8* typestr = NULL;
4719 STRLEN bits = 0;
4720 STRLEN octets; /* if bits == 1, then octets == 0 */
4721 UV none;
4722 UV end = start + span;
4723
4724 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
4725 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
4726 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
4727 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
4728 listsvp = hv_fetchs(hv, "LIST", FALSE);
4729
4730 bits = SvUV(*bitssvp);
4731 none = SvUV(*nonesvp);
4732 typestr = (U8*)SvPV_nolen(*typesvp);
4733 octets = bits >> 3; /* if bits == 1, then octets == 0 */
4734
4735 PERL_ARGS_ASSERT_SWATCH_GET;
4736
4737 if (bits != 8 && bits != 16 && bits != 32) {
4738 Perl_croak(aTHX_ "panic: swatch_get doesn't expect bits %" UVuf,
4739 (UV)bits);
4740 }
4741
4742 /* If overflowed, use the max possible */
4743 if (end < start) {
4744 end = UV_MAX;
4745 span = end - start;
4746 }
4747
4748 /* create and initialize $swatch */
4749 scur = octets ? (span * octets) : (span + 7) / 8;
4750 swatch = newSV(scur);
4751 SvPOK_on(swatch);
4752 s = (U8*)SvPVX(swatch);
4753 if (octets && none) {
4754 const U8* const e = s + scur;
4755 while (s < e) {
4756 if (bits == 8)
4757 *s++ = (U8)(none & 0xff);
4758 else if (bits == 16) {
4759 *s++ = (U8)((none >> 8) & 0xff);
4760 *s++ = (U8)( none & 0xff);
4761 }
4762 else if (bits == 32) {
4763 *s++ = (U8)((none >> 24) & 0xff);
4764 *s++ = (U8)((none >> 16) & 0xff);
4765 *s++ = (U8)((none >> 8) & 0xff);
4766 *s++ = (U8)( none & 0xff);
4767 }
4768 }
4769 *s = '\0';
4770 }
4771 else {
4772 (void)memzero((U8*)s, scur + 1);
4773 }
4774 SvCUR_set(swatch, scur);
4775 s = (U8*)SvPVX(swatch);
4776
4777 /* read $swash->{LIST} */
4778 l = (U8*)SvPV(*listsvp, lcur);
4779 lend = l + lcur;
4780 while (l < lend) {
4781 UV min = 0, max = 0, val = 0, upper;
4782 l = swash_scan_list_line(l, lend, &min, &max, &val,
4783 cBOOL(octets), typestr);
4784 if (l > lend) {
4785 break;
4786 }
4787
4788 /* If looking for something beyond this range, go try the next one */
4789 if (max < start)
4790 continue;
4791
4792 /* <end> is generally 1 beyond where we want to set things, but at the
4793 * platform's infinity, where we can't go any higher, we want to
4794 * include the code point at <end> */
4795 upper = (max < end)
4796 ? max
4797 : (max != UV_MAX || end != UV_MAX)
4798 ? end - 1
4799 : end;
4800
4801 if (octets) {
4802 UV key;
4803 if (min < start) {
4804 if (!none || val < none) {
4805 val += start - min;
4806 }
4807 min = start;
4808 }
4809 for (key = min; key <= upper; key++) {
4810 STRLEN offset;
4811 /* offset must be non-negative (start <= min <= key < end) */
4812 offset = octets * (key - start);
4813 if (bits == 8)
4814 s[offset] = (U8)(val & 0xff);
4815 else if (bits == 16) {
4816 s[offset ] = (U8)((val >> 8) & 0xff);
4817 s[offset + 1] = (U8)( val & 0xff);
4818 }
4819 else if (bits == 32) {
4820 s[offset ] = (U8)((val >> 24) & 0xff);
4821 s[offset + 1] = (U8)((val >> 16) & 0xff);
4822 s[offset + 2] = (U8)((val >> 8) & 0xff);
4823 s[offset + 3] = (U8)( val & 0xff);
4824 }
4825
4826 if (!none || val < none)
4827 ++val;
4828 }
4829 }
4830 } /* while */
4831
4832 /* read $swash->{EXTRAS} */
4833 x = (U8*)SvPV(*extssvp, xcur);
4834 xend = x + xcur;
4835 while (x < xend) {
4836 STRLEN namelen;
4837 U8 *namestr;
4838 SV** othersvp;
4839 HV* otherhv;
4840 STRLEN otherbits;
4841 SV **otherbitssvp, *other;
4842 U8 *s, *o, *nl;
4843 STRLEN slen, olen;
4844
4845 const U8 opc = *x++;
4846 if (opc == '\n')
4847 continue;
4848
4849 nl = (U8*)memchr(x, '\n', xend - x);
4850
4851 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
4852 if (nl) {
4853 x = nl + 1; /* 1 is length of "\n" */
4854 continue;
4855 }
4856 else {
4857 x = xend; /* to EXTRAS' end at which \n is not found */
4858 break;
4859 }
4860 }
4861
4862 namestr = x;
4863 if (nl) {
4864 namelen = nl - namestr;
4865 x = nl + 1;
4866 }
4867 else {
4868 namelen = xend - namestr;
4869 x = xend;
4870 }
4871
4872 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
4873 otherhv = MUTABLE_HV(SvRV(*othersvp));
4874 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
4875 otherbits = (STRLEN)SvUV(*otherbitssvp);
4876 if (bits < otherbits)
4877 Perl_croak(aTHX_ "panic: swatch_get found swatch size mismatch, "
4878 "bits=%" UVuf ", otherbits=%" UVuf, (UV)bits, (UV)otherbits);
4879
4880 /* The "other" swatch must be destroyed after. */
4881 other = swatch_get(*othersvp, start, span);
4882 o = (U8*)SvPV(other, olen);
4883
4884 if (!olen)
4885 Perl_croak(aTHX_ "panic: swatch_get got improper swatch");
4886
4887 s = (U8*)SvPV(swatch, slen);
4888 {
4889 STRLEN otheroctets = otherbits >> 3;
4890 STRLEN offset = 0;
4891 U8* const send = s + slen;
4892
4893 while (s < send) {
4894 UV otherval = 0;
4895
4896 if (otherbits == 1) {
4897 otherval = (o[offset >> 3] >> (offset & 7)) & 1;
4898 ++offset;
4899 }
4900 else {
4901 STRLEN vlen = otheroctets;
4902 otherval = *o++;
4903 while (--vlen) {
4904 otherval <<= 8;
4905 otherval |= *o++;
4906 }
4907 }
4908
4909 if (opc == '+' && otherval)
4910 NOOP; /* replace with otherval */
4911 else if (opc == '!' && !otherval)
4912 otherval = 1;
4913 else if (opc == '-' && otherval)
4914 otherval = 0;
4915 else if (opc == '&' && !otherval)
4916 otherval = 0;
4917 else {
4918 s += octets; /* no replacement */
4919 continue;
4920 }
4921
4922 if (bits == 8)
4923 *s++ = (U8)( otherval & 0xff);
4924 else if (bits == 16) {
4925 *s++ = (U8)((otherval >> 8) & 0xff);
4926 *s++ = (U8)( otherval & 0xff);
4927 }
4928 else if (bits == 32) {
4929 *s++ = (U8)((otherval >> 24) & 0xff);
4930 *s++ = (U8)((otherval >> 16) & 0xff);
4931 *s++ = (U8)((otherval >> 8) & 0xff);
4932 *s++ = (U8)( otherval & 0xff);
4933 }
4934 }
4935 }
4936 sv_free(other); /* through with it! */
4937 } /* while */
4938 return swatch;
4939 }
4940
4941 bool
4942 Perl_check_utf8_print(pTHX_ const U8* s, const STRLEN len)
4943 {
4944 /* May change: warns if surrogates, non-character code points, or
4945 * non-Unicode code points are in 's' which has length 'len' bytes.
4946 * Returns TRUE if none found; FALSE otherwise. The only other validity
4947 * check is to make sure that this won't exceed the string's length nor
4948 * overflow */
4949
4950 const U8* const e = s + len;
4951 bool ok = TRUE;
4952
4953 PERL_ARGS_ASSERT_CHECK_UTF8_PRINT;
4954
4955 while (s < e) {
4956 if (UTF8SKIP(s) > len) {
4957 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
4958 "%s in %s", unees, PL_op ? OP_DESC(PL_op) : "print");
4959 return FALSE;
4960 }
4961 if (UNLIKELY(isUTF8_POSSIBLY_PROBLEMATIC(*s))) {
4962 if (UNLIKELY(UTF8_IS_SUPER(s, e))) {
4963 if ( ckWARN_d(WARN_NON_UNICODE)
4964 || UNLIKELY(0 < does_utf8_overflow(s, s + len,
4965 0 /* Don't consider overlongs */
4966 )))
4967 {
4968 /* A side effect of this function will be to warn */
4969 (void) utf8n_to_uvchr(s, e - s, NULL, UTF8_WARN_SUPER);
4970 ok = FALSE;
4971 }
4972 }
4973 else if (UNLIKELY(UTF8_IS_SURROGATE(s, e))) {
4974 if (ckWARN_d(WARN_SURROGATE)) {
4975 /* This has a different warning than the one the called
4976 * function would output, so can't just call it, unlike we
4977 * do for the non-chars and above-unicodes */
4978 UV uv = utf8_to_uvchr_buf(s, e, NULL);
4979 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
4980 "Unicode surrogate U+%04" UVXf " is illegal in UTF-8",
4981 uv);
4982 ok = FALSE;
4983 }
4984 }
4985 else if ( UNLIKELY(UTF8_IS_NONCHAR(s, e))
4986 && (ckWARN_d(WARN_NONCHAR)))
4987 {
4988 /* A side effect of this function will be to warn */
4989 (void) utf8n_to_uvchr(s, e - s, NULL, UTF8_WARN_NONCHAR);
4990 ok = FALSE;
4991 }
4992 }
4993 s += UTF8SKIP(s);
4994 }
4995
4996 return ok;
4997 }
4998
4999 /*
5000 =for apidoc pv_uni_display
5001
5002 Build to the scalar C<dsv> a displayable version of the string C<spv>,
5003 length C<len>, the displayable version being at most C<pvlim> bytes long
5004 (if longer, the rest is truncated and C<"..."> will be appended).
5005
5006 The C<flags> argument can have C<UNI_DISPLAY_ISPRINT> set to display
5007 C<isPRINT()>able characters as themselves, C<UNI_DISPLAY_BACKSLASH>
5008 to display the C<\\[nrfta\\]> as the backslashed versions (like C<"\n">)
5009 (C<UNI_DISPLAY_BACKSLASH> is preferred over C<UNI_DISPLAY_ISPRINT> for C<"\\">).
5010 C<UNI_DISPLAY_QQ> (and its alias C<UNI_DISPLAY_REGEX>) have both
5011 C<UNI_DISPLAY_BACKSLASH> and C<UNI_DISPLAY_ISPRINT> turned on.
5012
5013 The pointer to the PV of the C<dsv> is returned.
5014
5015 See also L</sv_uni_display>.
5016
5017 =cut */
5018 char *
5019 Perl_pv_uni_display(pTHX_ SV *dsv, const U8 *spv, STRLEN len, STRLEN pvlim,
5020 UV flags)
5021 {
5022 int truncated = 0;
5023 const char *s, *e;
5024
5025 PERL_ARGS_ASSERT_PV_UNI_DISPLAY;
5026
5027 SvPVCLEAR(dsv);
5028 SvUTF8_off(dsv);
5029 for (s = (const char *)spv, e = s + len; s < e; s += UTF8SKIP(s)) {
5030 UV u;
5031 /* This serves double duty as a flag and a character to print after
5032 a \ when flags & UNI_DISPLAY_BACKSLASH is true.
5033 */
5034 char ok = 0;
5035
5036 if (pvlim && SvCUR(dsv) >= pvlim) {
5037 truncated++;
5038 break;
5039 }
5040 u = utf8_to_uvchr_buf((U8*)s, (U8*)e, 0);
5041 if (u < 256) {
5042 const unsigned char c = (unsigned char)u & 0xFF;
5043 if (flags & UNI_DISPLAY_BACKSLASH) {
5044 switch (c) {
5045 case '\n':
5046 ok = 'n'; break;
5047 case '\r':
5048 ok = 'r'; break;
5049 case '\t':
5050 ok = 't'; break;
5051 case '\f':
5052 ok = 'f'; break;
5053 case '\a':
5054 ok = 'a'; break;
5055 case '\\':
5056 ok = '\\'; break;
5057 default: break;
5058 }
5059 if (ok) {
5060 const char string = ok;
5061 sv_catpvs(dsv, "\\");
5062 sv_catpvn(dsv, &string, 1);
5063 }
5064 }
5065 /* isPRINT() is the locale-blind version. */
5066 if (!ok && (flags & UNI_DISPLAY_ISPRINT) && isPRINT(c)) {
5067 const char string = c;
5068 sv_catpvn(dsv, &string, 1);
5069 ok = 1;
5070 }
5071 }
5072 if (!ok)
5073 Perl_sv_catpvf(aTHX_ dsv, "\\x{%" UVxf "}", u);
5074 }
5075 if (truncated)
5076 sv_catpvs(dsv, "...");
5077
5078 return SvPVX(dsv);
5079 }
5080
5081 /*
5082 =for apidoc sv_uni_display
5083
5084 Build to the scalar C<dsv> a displayable version of the scalar C<sv>,
5085 the displayable version being at most C<pvlim> bytes long
5086 (if longer, the rest is truncated and "..." will be appended).
5087
5088 The C<flags> argument is as in L</pv_uni_display>().
5089
5090 The pointer to the PV of the C<dsv> is returned.
5091
5092 =cut
5093 */
5094 char *
5095 Perl_sv_uni_display(pTHX_ SV *dsv, SV *ssv, STRLEN pvlim, UV flags)
5096 {
5097 const char * const ptr =
5098 isREGEXP(ssv) ? RX_WRAPPED((REGEXP*)ssv) : SvPVX_const(ssv);
5099
5100 PERL_ARGS_ASSERT_SV_UNI_DISPLAY;
5101
5102 return Perl_pv_uni_display(aTHX_ dsv, (const U8*)ptr,
5103 SvCUR(ssv), pvlim, flags);
5104 }
5105
5106 /*
5107 =for apidoc foldEQ_utf8
5108
5109 Returns true if the leading portions of the strings C<s1> and C<s2> (either or
5110 both of which may be in UTF-8) are the same case-insensitively; false
5111 otherwise. How far into the strings to compare is determined by other input
5112 parameters.
5113
5114 If C<u1> is true, the string C<s1> is assumed to be in UTF-8-encoded Unicode;
5115 otherwise it is assumed to be in native 8-bit encoding. Correspondingly for
5116 C<u2> with respect to C<s2>.
5117
5118 If the byte length C<l1> is non-zero, it says how far into C<s1> to check for
5119 fold equality. In other words, C<s1>+C<l1> will be used as a goal to reach.
5120 The scan will not be considered to be a match unless the goal is reached, and
5121 scanning won't continue past that goal. Correspondingly for C<l2> with respect
5122 to C<s2>.
5123
5124 If C<pe1> is non-C<NULL> and the pointer it points to is not C<NULL>, that
5125 pointer is considered an end pointer to the position 1 byte past the maximum
5126 point in C<s1> beyond which scanning will not continue under any circumstances.
5127 (This routine assumes that UTF-8 encoded input strings are not malformed;
5128 malformed input can cause it to read past C<pe1>). This means that if both
5129 C<l1> and C<pe1> are specified, and C<pe1> is less than C<s1>+C<l1>, the match
5130 will never be successful because it can never
5131 get as far as its goal (and in fact is asserted against). Correspondingly for
5132 C<pe2> with respect to C<s2>.
5133
5134 At least one of C<s1> and C<s2> must have a goal (at least one of C<l1> and
5135 C<l2> must be non-zero), and if both do, both have to be
5136 reached for a successful match. Also, if the fold of a character is multiple
5137 characters, all of them must be matched (see tr21 reference below for
5138 'folding').
5139
5140 Upon a successful match, if C<pe1> is non-C<NULL>,
5141 it will be set to point to the beginning of the I<next> character of C<s1>
5142 beyond what was matched. Correspondingly for C<pe2> and C<s2>.
5143
5144 For case-insensitiveness, the "casefolding" of Unicode is used
5145 instead of upper/lowercasing both the characters, see
5146 L<http://www.unicode.org/unicode/reports/tr21/> (Case Mappings).
5147
5148 =cut */
5149
5150 /* A flags parameter has been added which may change, and hence isn't
5151 * externally documented. Currently it is:
5152 * 0 for as-documented above
5153 * FOLDEQ_UTF8_NOMIX_ASCII meaning that if a non-ASCII character folds to an
5154 ASCII one, to not match
5155 * FOLDEQ_LOCALE is set iff the rules from the current underlying
5156 * locale are to be used.
5157 * FOLDEQ_S1_ALREADY_FOLDED s1 has already been folded before calling this
5158 * routine. This allows that step to be skipped.
5159 * Currently, this requires s1 to be encoded as UTF-8
5160 * (u1 must be true), which is asserted for.
5161 * FOLDEQ_S1_FOLDS_SANE With either NOMIX_ASCII or LOCALE, no folds may
5162 * cross certain boundaries. Hence, the caller should
5163 * let this function do the folding instead of
5164 * pre-folding. This code contains an assertion to
5165 * that effect. However, if the caller knows what
5166 * it's doing, it can pass this flag to indicate that,
5167 * and the assertion is skipped.
5168 * FOLDEQ_S2_ALREADY_FOLDED Similar to FOLDEQ_S1_ALREADY_FOLDED, but applies
5169 * to s2, and s2 doesn't have to be UTF-8 encoded.
5170 * This introduces an asymmetry to save a few branches
5171 * in a loop. Currently, this is not a problem, as
5172 * never are both inputs pre-folded. Simply call this
5173 * function with the pre-folded one as the second
5174 * string.
5175 * FOLDEQ_S2_FOLDS_SANE
5176 */
5177 I32
5178 Perl_foldEQ_utf8_flags(pTHX_ const char *s1, char **pe1, UV l1, bool u1,
5179 const char *s2, char **pe2, UV l2, bool u2,
5180 U32 flags)
5181 {
5182 const U8 *p1 = (const U8*)s1; /* Point to current char */
5183 const U8 *p2 = (const U8*)s2;
5184 const U8 *g1 = NULL; /* goal for s1 */
5185 const U8 *g2 = NULL;
5186 const U8 *e1 = NULL; /* Don't scan s1 past this */
5187 U8 *f1 = NULL; /* Point to current folded */
5188 const U8 *e2 = NULL;
5189 U8 *f2 = NULL;
5190 STRLEN n1 = 0, n2 = 0; /* Number of bytes in current char */
5191 U8 foldbuf1[UTF8_MAXBYTES_CASE+1];
5192 U8 foldbuf2[UTF8_MAXBYTES_CASE+1];
5193 U8 flags_for_folder = FOLD_FLAGS_FULL;
5194
5195 PERL_ARGS_ASSERT_FOLDEQ_UTF8_FLAGS;
5196
5197 assert( ! ( (flags & (FOLDEQ_UTF8_NOMIX_ASCII | FOLDEQ_LOCALE))
5198 && (( (flags & FOLDEQ_S1_ALREADY_FOLDED)
5199 && !(flags & FOLDEQ_S1_FOLDS_SANE))
5200 || ( (flags & FOLDEQ_S2_ALREADY_FOLDED)
5201 && !(flags & FOLDEQ_S2_FOLDS_SANE)))));
5202 /* The algorithm is to trial the folds without regard to the flags on
5203 * the first line of the above assert(), and then see if the result
5204 * violates them. This means that the inputs can't be pre-folded to a
5205 * violating result, hence the assert. This could be changed, with the
5206 * addition of extra tests here for the already-folded case, which would
5207 * slow it down. That cost is more than any possible gain for when these
5208 * flags are specified, as the flags indicate /il or /iaa matching which
5209 * is less common than /iu, and I (khw) also believe that real-world /il
5210 * and /iaa matches are most likely to involve code points 0-255, and this
5211 * function only under rare conditions gets called for 0-255. */
5212
5213 if (flags & FOLDEQ_LOCALE) {
5214 if (IN_UTF8_CTYPE_LOCALE) {
5215 if (UNLIKELY(PL_in_utf8_turkic_locale)) {
5216 flags_for_folder |= FOLD_FLAGS_LOCALE;
5217 }
5218 else {
5219 flags &= ~FOLDEQ_LOCALE;
5220 }
5221 }
5222 else {
5223 flags_for_folder |= FOLD_FLAGS_LOCALE;
5224 }
5225 }
5226 if (flags & FOLDEQ_UTF8_NOMIX_ASCII) {
5227 flags_for_folder |= FOLD_FLAGS_NOMIX_ASCII;
5228 }
5229
5230 if (pe1) {
5231 e1 = *(U8**)pe1;
5232 }
5233
5234 if (l1) {
5235 g1 = (const U8*)s1 + l1;
5236 }
5237
5238 if (pe2) {
5239 e2 = *(U8**)pe2;
5240 }
5241
5242 if (l2) {
5243 g2 = (const U8*)s2 + l2;
5244 }
5245
5246 /* Must have at least one goal */
5247 assert(g1 || g2);
5248
5249 if (g1) {
5250
5251 /* Will never match if goal is out-of-bounds */
5252 assert(! e1 || e1 >= g1);
5253
5254 /* Here, there isn't an end pointer, or it is beyond the goal. We
5255 * only go as far as the goal */
5256 e1 = g1;
5257 }
5258 else {
5259 assert(e1); /* Must have an end for looking at s1 */
5260 }
5261
5262 /* Same for goal for s2 */
5263 if (g2) {
5264 assert(! e2 || e2 >= g2);
5265 e2 = g2;
5266 }
5267 else {
5268 assert(e2);
5269 }
5270
5271 /* If both operands are already folded, we could just do a memEQ on the
5272 * whole strings at once, but it would be better if the caller realized
5273 * this and didn't even call us */
5274
5275 /* Look through both strings, a character at a time */
5276 while (p1 < e1 && p2 < e2) {
5277
5278 /* If at the beginning of a new character in s1, get its fold to use
5279 * and the length of the fold. */
5280 if (n1 == 0) {
5281 if (flags & FOLDEQ_S1_ALREADY_FOLDED) {
5282 f1 = (U8 *) p1;
5283 assert(u1);
5284 n1 = UTF8SKIP(f1);
5285 }
5286 else {
5287 if (isASCII(*p1) && ! (flags & FOLDEQ_LOCALE)) {
5288
5289 /* We have to forbid mixing ASCII with non-ASCII if the
5290 * flags so indicate. And, we can short circuit having to
5291 * call the general functions for this common ASCII case,
5292 * all of whose non-locale folds are also ASCII, and hence
5293 * UTF-8 invariants, so the UTF8ness of the strings is not
5294 * relevant. */
5295 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p2)) {
5296 return 0;
5297 }
5298 n1 = 1;
5299 *foldbuf1 = toFOLD(*p1);
5300 }
5301 else if (u1) {
5302 _toFOLD_utf8_flags(p1, e1, foldbuf1, &n1, flags_for_folder);
5303 }
5304 else { /* Not UTF-8, get UTF-8 fold */
5305 _to_uni_fold_flags(*p1, foldbuf1, &n1, flags_for_folder);
5306 }
5307 f1 = foldbuf1;
5308 }
5309 }
5310
5311 if (n2 == 0) { /* Same for s2 */
5312 if (flags & FOLDEQ_S2_ALREADY_FOLDED) {
5313
5314 /* Point to the already-folded character. But for non-UTF-8
5315 * variants, convert to UTF-8 for the algorithm below */
5316 if (UTF8_IS_INVARIANT(*p2)) {
5317 f2 = (U8 *) p2;
5318 n2 = 1;
5319 }
5320 else if (u2) {
5321 f2 = (U8 *) p2;
5322 n2 = UTF8SKIP(f2);
5323 }
5324 else {
5325 foldbuf2[0] = UTF8_EIGHT_BIT_HI(*p2);
5326 foldbuf2[1] = UTF8_EIGHT_BIT_LO(*p2);
5327 f2 = foldbuf2;
5328 n2 = 2;
5329 }
5330 }
5331 else {
5332 if (isASCII(*p2) && ! (flags & FOLDEQ_LOCALE)) {
5333 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p1)) {
5334 return 0;
5335 }
5336 n2 = 1;
5337 *foldbuf2 = toFOLD(*p2);
5338 }
5339 else if (u2) {
5340 _toFOLD_utf8_flags(p2, e2, foldbuf2, &n2, flags_for_folder);
5341 }
5342 else {
5343 _to_uni_fold_flags(*p2, foldbuf2, &n2, flags_for_folder);
5344 }
5345 f2 = foldbuf2;
5346 }
5347 }
5348
5349 /* Here f1 and f2 point to the beginning of the strings to compare.
5350 * These strings are the folds of the next character from each input
5351 * string, stored in UTF-8. */
5352
5353 /* While there is more to look for in both folds, see if they
5354 * continue to match */
5355 while (n1 && n2) {
5356 U8 fold_length = UTF8SKIP(f1);
5357 if (fold_length != UTF8SKIP(f2)
5358 || (fold_length == 1 && *f1 != *f2) /* Short circuit memNE
5359 function call for single
5360 byte */
5361 || memNE((char*)f1, (char*)f2, fold_length))
5362 {
5363 return 0; /* mismatch */
5364 }
5365
5366 /* Here, they matched, advance past them */
5367 n1 -= fold_length;
5368 f1 += fold_length;
5369 n2 -= fold_length;
5370 f2 += fold_length;
5371 }
5372
5373 /* When reach the end of any fold, advance the input past it */
5374 if (n1 == 0) {
5375 p1 += u1 ? UTF8SKIP(p1) : 1;
5376 }
5377 if (n2 == 0) {
5378 p2 += u2 ? UTF8SKIP(p2) : 1;
5379 }
5380 } /* End of loop through both strings */
5381
5382 /* A match is defined by each scan that specified an explicit length
5383 * reaching its final goal, and the other not having matched a partial
5384 * character (which can happen when the fold of a character is more than one
5385 * character). */
5386 if (! ((g1 == 0 || p1 == g1) && (g2 == 0 || p2 == g2)) || n1 || n2) {
5387 return 0;
5388 }
5389
5390 /* Successful match. Set output pointers */
5391 if (pe1) {
5392 *pe1 = (char*)p1;
5393 }
5394 if (pe2) {
5395 *pe2 = (char*)p2;
5396 }
5397 return 1;
5398 }
5399
5400 /* XXX The next two functions should likely be moved to mathoms.c once all
5401 * occurrences of them are removed from the core; some cpan-upstream modules
5402 * still use them */
5403
5404 U8 *
5405 Perl_uvuni_to_utf8(pTHX_ U8 *d, UV uv)
5406 {
5407 PERL_ARGS_ASSERT_UVUNI_TO_UTF8;
5408
5409 return uvoffuni_to_utf8_flags(d, uv, 0);
5410 }
5411
5412 /*
5413 =for apidoc utf8n_to_uvuni
5414
5415 Instead use L</utf8_to_uvchr_buf>, or rarely, L</utf8n_to_uvchr>.
5416
5417 This function was useful for code that wanted to handle both EBCDIC and
5418 ASCII platforms with Unicode properties, but starting in Perl v5.20, the
5419 distinctions between the platforms have mostly been made invisible to most
5420 code, so this function is quite unlikely to be what you want. If you do need
5421 this precise functionality, use instead
5422 C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|/utf8_to_uvchr_buf>>
5423 or C<L<NATIVE_TO_UNI(utf8n_to_uvchr(...))|/utf8n_to_uvchr>>.
5424
5425 =cut
5426 */
5427
5428 UV
5429 Perl_utf8n_to_uvuni(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags)
5430 {
5431 PERL_ARGS_ASSERT_UTF8N_TO_UVUNI;
5432
5433 return NATIVE_TO_UNI(utf8n_to_uvchr(s, curlen, retlen, flags));
5434 }
5435
5436 /*
5437 =for apidoc uvuni_to_utf8_flags
5438
5439 Instead you almost certainly want to use L</uvchr_to_utf8> or
5440 L</uvchr_to_utf8_flags>.
5441
5442 This function is a deprecated synonym for L</uvoffuni_to_utf8_flags>,
5443 which itself, while not deprecated, should be used only in isolated
5444 circumstances. These functions were useful for code that wanted to handle
5445 both EBCDIC and ASCII platforms with Unicode properties, but starting in Perl
5446 v5.20, the distinctions between the platforms have mostly been made invisible
5447 to most code, so this function is quite unlikely to be what you want.
5448
5449 =cut
5450 */
5451
5452 U8 *
5453 Perl_uvuni_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
5454 {
5455 PERL_ARGS_ASSERT_UVUNI_TO_UTF8_FLAGS;
5456
5457 return uvoffuni_to_utf8_flags(d, uv, flags);
5458 }
5459
5460 /*
5461 =for apidoc utf8_to_uvchr
5462
5463 Returns the native code point of the first character in the string C<s>
5464 which is assumed to be in UTF-8 encoding; C<retlen> will be set to the
5465 length, in bytes, of that character.
5466
5467 Some, but not all, UTF-8 malformations are detected, and in fact, some
5468 malformed input could cause reading beyond the end of the input buffer, which
5469 is why this function is deprecated. Use L</utf8_to_uvchr_buf> instead.
5470
5471 If C<s> points to one of the detected malformations, and UTF8 warnings are
5472 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
5473 C<NULL>) to -1. If those warnings are off, the computed value if well-defined (or
5474 the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
5475 is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
5476 next possible position in C<s> that could begin a non-malformed character.
5477 See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is returned.
5478
5479 =cut
5480 */
5481
5482 UV
5483 Perl_utf8_to_uvchr(pTHX_ const U8 *s, STRLEN *retlen)
5484 {
5485 PERL_ARGS_ASSERT_UTF8_TO_UVCHR;
5486
5487 /* This function is unsafe if malformed UTF-8 input is given it, which is
5488 * why the function is deprecated. If the first byte of the input
5489 * indicates that there are more bytes remaining in the sequence that forms
5490 * the character than there are in the input buffer, it can read past the
5491 * end. But we can make it safe if the input string happens to be
5492 * NUL-terminated, as many strings in Perl are, by refusing to read past a
5493 * NUL. A NUL indicates the start of the next character anyway. If the
5494 * input isn't NUL-terminated, the function remains unsafe, as it always
5495 * has been.
5496 *
5497 * An initial NUL has to be handled separately, but all ASCIIs can be
5498 * handled the same way, speeding up this common case */
5499
5500 if (UTF8_IS_INVARIANT(*s)) { /* Assumes 's' contains at least 1 byte */
5501 if (retlen) {
5502 *retlen = 1;
5503 }
5504 return (UV) *s;
5505 }
5506
5507 return utf8_to_uvchr_buf(s,
5508 s + my_strnlen((char *) s, UTF8SKIP(s)),
5509 retlen);
5510 }
5511
5512 /*
5513 * ex: set ts=8 sts=4 sw=4 et:
5514 */
5515