1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements decl-related attribute processing.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/Basic/CharInfo.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Lex/Preprocessor.h"
27 #include "clang/Sema/DeclSpec.h"
28 #include "clang/Sema/DelayedDiagnostic.h"
29 #include "clang/Sema/Lookup.h"
30 #include "clang/Sema/Scope.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Support/MathExtras.h"
33 using namespace clang;
34 using namespace sema;
35 
36 namespace AttributeLangSupport {
37   enum LANG {
38     C,
39     Cpp,
40     ObjC
41   };
42 }
43 
44 //===----------------------------------------------------------------------===//
45 //  Helper functions
46 //===----------------------------------------------------------------------===//
47 
48 /// isFunctionOrMethod - Return true if the given decl has function
49 /// type (function or function-typed variable) or an Objective-C
50 /// method.
isFunctionOrMethod(const Decl * D)51 static bool isFunctionOrMethod(const Decl *D) {
52   return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
53 }
54 
55 /// Return true if the given decl has a declarator that should have
56 /// been processed by Sema::GetTypeForDeclarator.
hasDeclarator(const Decl * D)57 static bool hasDeclarator(const Decl *D) {
58   // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
59   return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
60          isa<ObjCPropertyDecl>(D);
61 }
62 
63 /// hasFunctionProto - Return true if the given decl has a argument
64 /// information. This decl should have already passed
65 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
hasFunctionProto(const Decl * D)66 static bool hasFunctionProto(const Decl *D) {
67   if (const FunctionType *FnTy = D->getFunctionType())
68     return isa<FunctionProtoType>(FnTy);
69   return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
70 }
71 
72 /// getFunctionOrMethodNumParams - Return number of function or method
73 /// parameters. It is an error to call this on a K&R function (use
74 /// hasFunctionProto first).
getFunctionOrMethodNumParams(const Decl * D)75 static unsigned getFunctionOrMethodNumParams(const Decl *D) {
76   if (const FunctionType *FnTy = D->getFunctionType())
77     return cast<FunctionProtoType>(FnTy)->getNumParams();
78   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
79     return BD->getNumParams();
80   return cast<ObjCMethodDecl>(D)->param_size();
81 }
82 
getFunctionOrMethodParamType(const Decl * D,unsigned Idx)83 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
84   if (const FunctionType *FnTy = D->getFunctionType())
85     return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
86   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
87     return BD->getParamDecl(Idx)->getType();
88 
89   return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
90 }
91 
getFunctionOrMethodParamRange(const Decl * D,unsigned Idx)92 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
93   if (const auto *FD = dyn_cast<FunctionDecl>(D))
94     return FD->getParamDecl(Idx)->getSourceRange();
95   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
96     return MD->parameters()[Idx]->getSourceRange();
97   if (const auto *BD = dyn_cast<BlockDecl>(D))
98     return BD->getParamDecl(Idx)->getSourceRange();
99   return SourceRange();
100 }
101 
getFunctionOrMethodResultType(const Decl * D)102 static QualType getFunctionOrMethodResultType(const Decl *D) {
103   if (const FunctionType *FnTy = D->getFunctionType())
104     return cast<FunctionType>(FnTy)->getReturnType();
105   return cast<ObjCMethodDecl>(D)->getReturnType();
106 }
107 
getFunctionOrMethodResultSourceRange(const Decl * D)108 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
109   if (const auto *FD = dyn_cast<FunctionDecl>(D))
110     return FD->getReturnTypeSourceRange();
111   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
112     return MD->getReturnTypeSourceRange();
113   return SourceRange();
114 }
115 
isFunctionOrMethodVariadic(const Decl * D)116 static bool isFunctionOrMethodVariadic(const Decl *D) {
117   if (const FunctionType *FnTy = D->getFunctionType()) {
118     const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
119     return proto->isVariadic();
120   }
121   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
122     return BD->isVariadic();
123 
124   return cast<ObjCMethodDecl>(D)->isVariadic();
125 }
126 
isInstanceMethod(const Decl * D)127 static bool isInstanceMethod(const Decl *D) {
128   if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
129     return MethodDecl->isInstance();
130   return false;
131 }
132 
isNSStringType(QualType T,ASTContext & Ctx)133 static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
134   const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
135   if (!PT)
136     return false;
137 
138   ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
139   if (!Cls)
140     return false;
141 
142   IdentifierInfo* ClsName = Cls->getIdentifier();
143 
144   // FIXME: Should we walk the chain of classes?
145   return ClsName == &Ctx.Idents.get("NSString") ||
146          ClsName == &Ctx.Idents.get("NSMutableString");
147 }
148 
isCFStringType(QualType T,ASTContext & Ctx)149 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
150   const PointerType *PT = T->getAs<PointerType>();
151   if (!PT)
152     return false;
153 
154   const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
155   if (!RT)
156     return false;
157 
158   const RecordDecl *RD = RT->getDecl();
159   if (RD->getTagKind() != TTK_Struct)
160     return false;
161 
162   return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
163 }
164 
getNumAttributeArgs(const AttributeList & Attr)165 static unsigned getNumAttributeArgs(const AttributeList &Attr) {
166   // FIXME: Include the type in the argument list.
167   return Attr.getNumArgs() + Attr.hasParsedType();
168 }
169 
170 template <typename Compare>
checkAttributeNumArgsImpl(Sema & S,const AttributeList & Attr,unsigned Num,unsigned Diag,Compare Comp)171 static bool checkAttributeNumArgsImpl(Sema &S, const AttributeList &Attr,
172                                       unsigned Num, unsigned Diag,
173                                       Compare Comp) {
174   if (Comp(getNumAttributeArgs(Attr), Num)) {
175     S.Diag(Attr.getLoc(), Diag) << Attr.getName() << Num;
176     return false;
177   }
178 
179   return true;
180 }
181 
182 /// \brief Check if the attribute has exactly as many args as Num. May
183 /// output an error.
checkAttributeNumArgs(Sema & S,const AttributeList & Attr,unsigned Num)184 static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
185                                   unsigned Num) {
186   return checkAttributeNumArgsImpl(S, Attr, Num,
187                                    diag::err_attribute_wrong_number_arguments,
188                                    std::not_equal_to<unsigned>());
189 }
190 
191 /// \brief Check if the attribute has at least as many args as Num. May
192 /// output an error.
checkAttributeAtLeastNumArgs(Sema & S,const AttributeList & Attr,unsigned Num)193 static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr,
194                                          unsigned Num) {
195   return checkAttributeNumArgsImpl(S, Attr, Num,
196                                    diag::err_attribute_too_few_arguments,
197                                    std::less<unsigned>());
198 }
199 
200 /// \brief Check if the attribute has at most as many args as Num. May
201 /// output an error.
checkAttributeAtMostNumArgs(Sema & S,const AttributeList & Attr,unsigned Num)202 static bool checkAttributeAtMostNumArgs(Sema &S, const AttributeList &Attr,
203                                          unsigned Num) {
204   return checkAttributeNumArgsImpl(S, Attr, Num,
205                                    diag::err_attribute_too_many_arguments,
206                                    std::greater<unsigned>());
207 }
208 
209 /// \brief If Expr is a valid integer constant, get the value of the integer
210 /// expression and return success or failure. May output an error.
checkUInt32Argument(Sema & S,const AttributeList & Attr,const Expr * Expr,uint32_t & Val,unsigned Idx=UINT_MAX)211 static bool checkUInt32Argument(Sema &S, const AttributeList &Attr,
212                                 const Expr *Expr, uint32_t &Val,
213                                 unsigned Idx = UINT_MAX) {
214   llvm::APSInt I(32);
215   if (Expr->isTypeDependent() || Expr->isValueDependent() ||
216       !Expr->isIntegerConstantExpr(I, S.Context)) {
217     if (Idx != UINT_MAX)
218       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
219         << Attr.getName() << Idx << AANT_ArgumentIntegerConstant
220         << Expr->getSourceRange();
221     else
222       S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
223         << Attr.getName() << AANT_ArgumentIntegerConstant
224         << Expr->getSourceRange();
225     return false;
226   }
227 
228   if (!I.isIntN(32)) {
229     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
230         << I.toString(10, false) << 32 << /* Unsigned */ 1;
231     return false;
232   }
233 
234   Val = (uint32_t)I.getZExtValue();
235   return true;
236 }
237 
238 /// \brief Diagnose mutually exclusive attributes when present on a given
239 /// declaration. Returns true if diagnosed.
240 template <typename AttrTy>
checkAttrMutualExclusion(Sema & S,Decl * D,const AttributeList & Attr)241 static bool checkAttrMutualExclusion(Sema &S, Decl *D,
242                                      const AttributeList &Attr) {
243   if (AttrTy *A = D->getAttr<AttrTy>()) {
244     S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
245       << Attr.getName() << A;
246     return true;
247   }
248   return false;
249 }
250 
251 /// \brief Check if IdxExpr is a valid parameter index for a function or
252 /// instance method D.  May output an error.
253 ///
254 /// \returns true if IdxExpr is a valid index.
checkFunctionOrMethodParameterIndex(Sema & S,const Decl * D,const AttributeList & Attr,unsigned AttrArgNum,const Expr * IdxExpr,uint64_t & Idx)255 static bool checkFunctionOrMethodParameterIndex(Sema &S, const Decl *D,
256                                                 const AttributeList &Attr,
257                                                 unsigned AttrArgNum,
258                                                 const Expr *IdxExpr,
259                                                 uint64_t &Idx) {
260   assert(isFunctionOrMethod(D));
261 
262   // In C++ the implicit 'this' function parameter also counts.
263   // Parameters are counted from one.
264   bool HP = hasFunctionProto(D);
265   bool HasImplicitThisParam = isInstanceMethod(D);
266   bool IV = HP && isFunctionOrMethodVariadic(D);
267   unsigned NumParams =
268       (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
269 
270   llvm::APSInt IdxInt;
271   if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
272       !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
273     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
274       << Attr.getName() << AttrArgNum << AANT_ArgumentIntegerConstant
275       << IdxExpr->getSourceRange();
276     return false;
277   }
278 
279   Idx = IdxInt.getLimitedValue();
280   if (Idx < 1 || (!IV && Idx > NumParams)) {
281     S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
282       << Attr.getName() << AttrArgNum << IdxExpr->getSourceRange();
283     return false;
284   }
285   Idx--; // Convert to zero-based.
286   if (HasImplicitThisParam) {
287     if (Idx == 0) {
288       S.Diag(Attr.getLoc(),
289              diag::err_attribute_invalid_implicit_this_argument)
290         << Attr.getName() << IdxExpr->getSourceRange();
291       return false;
292     }
293     --Idx;
294   }
295 
296   return true;
297 }
298 
299 /// \brief Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
300 /// If not emit an error and return false. If the argument is an identifier it
301 /// will emit an error with a fixit hint and treat it as if it was a string
302 /// literal.
checkStringLiteralArgumentAttr(const AttributeList & Attr,unsigned ArgNum,StringRef & Str,SourceLocation * ArgLocation)303 bool Sema::checkStringLiteralArgumentAttr(const AttributeList &Attr,
304                                           unsigned ArgNum, StringRef &Str,
305                                           SourceLocation *ArgLocation) {
306   // Look for identifiers. If we have one emit a hint to fix it to a literal.
307   if (Attr.isArgIdent(ArgNum)) {
308     IdentifierLoc *Loc = Attr.getArgAsIdent(ArgNum);
309     Diag(Loc->Loc, diag::err_attribute_argument_type)
310         << Attr.getName() << AANT_ArgumentString
311         << FixItHint::CreateInsertion(Loc->Loc, "\"")
312         << FixItHint::CreateInsertion(PP.getLocForEndOfToken(Loc->Loc), "\"");
313     Str = Loc->Ident->getName();
314     if (ArgLocation)
315       *ArgLocation = Loc->Loc;
316     return true;
317   }
318 
319   // Now check for an actual string literal.
320   Expr *ArgExpr = Attr.getArgAsExpr(ArgNum);
321   StringLiteral *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
322   if (ArgLocation)
323     *ArgLocation = ArgExpr->getLocStart();
324 
325   if (!Literal || !Literal->isAscii()) {
326     Diag(ArgExpr->getLocStart(), diag::err_attribute_argument_type)
327         << Attr.getName() << AANT_ArgumentString;
328     return false;
329   }
330 
331   Str = Literal->getString();
332   return true;
333 }
334 
335 /// \brief Applies the given attribute to the Decl without performing any
336 /// additional semantic checking.
337 template <typename AttrType>
handleSimpleAttribute(Sema & S,Decl * D,const AttributeList & Attr)338 static void handleSimpleAttribute(Sema &S, Decl *D,
339                                   const AttributeList &Attr) {
340   D->addAttr(::new (S.Context) AttrType(Attr.getRange(), S.Context,
341                                         Attr.getAttributeSpellingListIndex()));
342 }
343 
344 /// \brief Check if the passed-in expression is of type int or bool.
isIntOrBool(Expr * Exp)345 static bool isIntOrBool(Expr *Exp) {
346   QualType QT = Exp->getType();
347   return QT->isBooleanType() || QT->isIntegerType();
348 }
349 
350 
351 // Check to see if the type is a smart pointer of some kind.  We assume
352 // it's a smart pointer if it defines both operator-> and operator*.
threadSafetyCheckIsSmartPointer(Sema & S,const RecordType * RT)353 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
354   DeclContextLookupConstResult Res1 = RT->getDecl()->lookup(
355     S.Context.DeclarationNames.getCXXOperatorName(OO_Star));
356   if (Res1.empty())
357     return false;
358 
359   DeclContextLookupConstResult Res2 = RT->getDecl()->lookup(
360     S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow));
361   if (Res2.empty())
362     return false;
363 
364   return true;
365 }
366 
367 /// \brief Check if passed in Decl is a pointer type.
368 /// Note that this function may produce an error message.
369 /// \return true if the Decl is a pointer type; false otherwise
threadSafetyCheckIsPointer(Sema & S,const Decl * D,const AttributeList & Attr)370 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
371                                        const AttributeList &Attr) {
372   const ValueDecl *vd = cast<ValueDecl>(D);
373   QualType QT = vd->getType();
374   if (QT->isAnyPointerType())
375     return true;
376 
377   if (const RecordType *RT = QT->getAs<RecordType>()) {
378     // If it's an incomplete type, it could be a smart pointer; skip it.
379     // (We don't want to force template instantiation if we can avoid it,
380     // since that would alter the order in which templates are instantiated.)
381     if (RT->isIncompleteType())
382       return true;
383 
384     if (threadSafetyCheckIsSmartPointer(S, RT))
385       return true;
386   }
387 
388   S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_pointer)
389     << Attr.getName() << QT;
390   return false;
391 }
392 
393 /// \brief Checks that the passed in QualType either is of RecordType or points
394 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
getRecordType(QualType QT)395 static const RecordType *getRecordType(QualType QT) {
396   if (const RecordType *RT = QT->getAs<RecordType>())
397     return RT;
398 
399   // Now check if we point to record type.
400   if (const PointerType *PT = QT->getAs<PointerType>())
401     return PT->getPointeeType()->getAs<RecordType>();
402 
403   return nullptr;
404 }
405 
checkRecordTypeForCapability(Sema & S,QualType Ty)406 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
407   const RecordType *RT = getRecordType(Ty);
408 
409   if (!RT)
410     return false;
411 
412   // Don't check for the capability if the class hasn't been defined yet.
413   if (RT->isIncompleteType())
414     return true;
415 
416   // Allow smart pointers to be used as capability objects.
417   // FIXME -- Check the type that the smart pointer points to.
418   if (threadSafetyCheckIsSmartPointer(S, RT))
419     return true;
420 
421   // Check if the record itself has a capability.
422   RecordDecl *RD = RT->getDecl();
423   if (RD->hasAttr<CapabilityAttr>())
424     return true;
425 
426   // Else check if any base classes have a capability.
427   if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
428     CXXBasePaths BPaths(false, false);
429     if (CRD->lookupInBases([](const CXXBaseSpecifier *BS, CXXBasePath &P,
430       void *) {
431       return BS->getType()->getAs<RecordType>()
432         ->getDecl()->hasAttr<CapabilityAttr>();
433     }, nullptr, BPaths))
434       return true;
435   }
436   return false;
437 }
438 
checkTypedefTypeForCapability(QualType Ty)439 static bool checkTypedefTypeForCapability(QualType Ty) {
440   const auto *TD = Ty->getAs<TypedefType>();
441   if (!TD)
442     return false;
443 
444   TypedefNameDecl *TN = TD->getDecl();
445   if (!TN)
446     return false;
447 
448   return TN->hasAttr<CapabilityAttr>();
449 }
450 
typeHasCapability(Sema & S,QualType Ty)451 static bool typeHasCapability(Sema &S, QualType Ty) {
452   if (checkTypedefTypeForCapability(Ty))
453     return true;
454 
455   if (checkRecordTypeForCapability(S, Ty))
456     return true;
457 
458   return false;
459 }
460 
isCapabilityExpr(Sema & S,const Expr * Ex)461 static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
462   // Capability expressions are simple expressions involving the boolean logic
463   // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
464   // a DeclRefExpr is found, its type should be checked to determine whether it
465   // is a capability or not.
466 
467   if (const auto *E = dyn_cast<DeclRefExpr>(Ex))
468     return typeHasCapability(S, E->getType());
469   else if (const auto *E = dyn_cast<CastExpr>(Ex))
470     return isCapabilityExpr(S, E->getSubExpr());
471   else if (const auto *E = dyn_cast<ParenExpr>(Ex))
472     return isCapabilityExpr(S, E->getSubExpr());
473   else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
474     if (E->getOpcode() == UO_LNot)
475       return isCapabilityExpr(S, E->getSubExpr());
476     return false;
477   } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
478     if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
479       return isCapabilityExpr(S, E->getLHS()) &&
480              isCapabilityExpr(S, E->getRHS());
481     return false;
482   }
483 
484   return false;
485 }
486 
487 /// \brief Checks that all attribute arguments, starting from Sidx, resolve to
488 /// a capability object.
489 /// \param Sidx The attribute argument index to start checking with.
490 /// \param ParamIdxOk Whether an argument can be indexing into a function
491 /// parameter list.
checkAttrArgsAreCapabilityObjs(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args,int Sidx=0,bool ParamIdxOk=false)492 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
493                                            const AttributeList &Attr,
494                                            SmallVectorImpl<Expr *> &Args,
495                                            int Sidx = 0,
496                                            bool ParamIdxOk = false) {
497   for (unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) {
498     Expr *ArgExp = Attr.getArgAsExpr(Idx);
499 
500     if (ArgExp->isTypeDependent()) {
501       // FIXME -- need to check this again on template instantiation
502       Args.push_back(ArgExp);
503       continue;
504     }
505 
506     if (StringLiteral *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
507       if (StrLit->getLength() == 0 ||
508           (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
509         // Pass empty strings to the analyzer without warnings.
510         // Treat "*" as the universal lock.
511         Args.push_back(ArgExp);
512         continue;
513       }
514 
515       // We allow constant strings to be used as a placeholder for expressions
516       // that are not valid C++ syntax, but warn that they are ignored.
517       S.Diag(Attr.getLoc(), diag::warn_thread_attribute_ignored) <<
518         Attr.getName();
519       Args.push_back(ArgExp);
520       continue;
521     }
522 
523     QualType ArgTy = ArgExp->getType();
524 
525     // A pointer to member expression of the form  &MyClass::mu is treated
526     // specially -- we need to look at the type of the member.
527     if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(ArgExp))
528       if (UOp->getOpcode() == UO_AddrOf)
529         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
530           if (DRE->getDecl()->isCXXInstanceMember())
531             ArgTy = DRE->getDecl()->getType();
532 
533     // First see if we can just cast to record type, or pointer to record type.
534     const RecordType *RT = getRecordType(ArgTy);
535 
536     // Now check if we index into a record type function param.
537     if(!RT && ParamIdxOk) {
538       FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
539       IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp);
540       if(FD && IL) {
541         unsigned int NumParams = FD->getNumParams();
542         llvm::APInt ArgValue = IL->getValue();
543         uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
544         uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
545         if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
546           S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range)
547             << Attr.getName() << Idx + 1 << NumParams;
548           continue;
549         }
550         ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
551       }
552     }
553 
554     // If the type does not have a capability, see if the components of the
555     // expression have capabilities. This allows for writing C code where the
556     // capability may be on the type, and the expression is a capability
557     // boolean logic expression. Eg) requires_capability(A || B && !C)
558     if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
559       S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
560           << Attr.getName() << ArgTy;
561 
562     Args.push_back(ArgExp);
563   }
564 }
565 
566 //===----------------------------------------------------------------------===//
567 // Attribute Implementations
568 //===----------------------------------------------------------------------===//
569 
handlePtGuardedVarAttr(Sema & S,Decl * D,const AttributeList & Attr)570 static void handlePtGuardedVarAttr(Sema &S, Decl *D,
571                                    const AttributeList &Attr) {
572   if (!threadSafetyCheckIsPointer(S, D, Attr))
573     return;
574 
575   D->addAttr(::new (S.Context)
576              PtGuardedVarAttr(Attr.getRange(), S.Context,
577                               Attr.getAttributeSpellingListIndex()));
578 }
579 
checkGuardedByAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,Expr * & Arg)580 static bool checkGuardedByAttrCommon(Sema &S, Decl *D,
581                                      const AttributeList &Attr,
582                                      Expr* &Arg) {
583   SmallVector<Expr*, 1> Args;
584   // check that all arguments are lockable objects
585   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
586   unsigned Size = Args.size();
587   if (Size != 1)
588     return false;
589 
590   Arg = Args[0];
591 
592   return true;
593 }
594 
handleGuardedByAttr(Sema & S,Decl * D,const AttributeList & Attr)595 static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr) {
596   Expr *Arg = nullptr;
597   if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
598     return;
599 
600   D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg,
601                                         Attr.getAttributeSpellingListIndex()));
602 }
603 
handlePtGuardedByAttr(Sema & S,Decl * D,const AttributeList & Attr)604 static void handlePtGuardedByAttr(Sema &S, Decl *D,
605                                   const AttributeList &Attr) {
606   Expr *Arg = nullptr;
607   if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
608     return;
609 
610   if (!threadSafetyCheckIsPointer(S, D, Attr))
611     return;
612 
613   D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(),
614                                                S.Context, Arg,
615                                         Attr.getAttributeSpellingListIndex()));
616 }
617 
checkAcquireOrderAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args)618 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D,
619                                         const AttributeList &Attr,
620                                         SmallVectorImpl<Expr *> &Args) {
621   if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
622     return false;
623 
624   // Check that this attribute only applies to lockable types.
625   QualType QT = cast<ValueDecl>(D)->getType();
626   if (!QT->isDependentType()) {
627     const RecordType *RT = getRecordType(QT);
628     if (!RT || !RT->getDecl()->hasAttr<CapabilityAttr>()) {
629       S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_lockable)
630         << Attr.getName();
631       return false;
632     }
633   }
634 
635   // Check that all arguments are lockable objects.
636   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
637   if (Args.empty())
638     return false;
639 
640   return true;
641 }
642 
handleAcquiredAfterAttr(Sema & S,Decl * D,const AttributeList & Attr)643 static void handleAcquiredAfterAttr(Sema &S, Decl *D,
644                                     const AttributeList &Attr) {
645   SmallVector<Expr*, 1> Args;
646   if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
647     return;
648 
649   Expr **StartArg = &Args[0];
650   D->addAttr(::new (S.Context)
651              AcquiredAfterAttr(Attr.getRange(), S.Context,
652                                StartArg, Args.size(),
653                                Attr.getAttributeSpellingListIndex()));
654 }
655 
handleAcquiredBeforeAttr(Sema & S,Decl * D,const AttributeList & Attr)656 static void handleAcquiredBeforeAttr(Sema &S, Decl *D,
657                                      const AttributeList &Attr) {
658   SmallVector<Expr*, 1> Args;
659   if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
660     return;
661 
662   Expr **StartArg = &Args[0];
663   D->addAttr(::new (S.Context)
664              AcquiredBeforeAttr(Attr.getRange(), S.Context,
665                                 StartArg, Args.size(),
666                                 Attr.getAttributeSpellingListIndex()));
667 }
668 
checkLockFunAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args)669 static bool checkLockFunAttrCommon(Sema &S, Decl *D,
670                                    const AttributeList &Attr,
671                                    SmallVectorImpl<Expr *> &Args) {
672   // zero or more arguments ok
673   // check that all arguments are lockable objects
674   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
675 
676   return true;
677 }
678 
handleAssertSharedLockAttr(Sema & S,Decl * D,const AttributeList & Attr)679 static void handleAssertSharedLockAttr(Sema &S, Decl *D,
680                                        const AttributeList &Attr) {
681   SmallVector<Expr*, 1> Args;
682   if (!checkLockFunAttrCommon(S, D, Attr, Args))
683     return;
684 
685   unsigned Size = Args.size();
686   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
687   D->addAttr(::new (S.Context)
688              AssertSharedLockAttr(Attr.getRange(), S.Context, StartArg, Size,
689                                   Attr.getAttributeSpellingListIndex()));
690 }
691 
handleAssertExclusiveLockAttr(Sema & S,Decl * D,const AttributeList & Attr)692 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
693                                           const AttributeList &Attr) {
694   SmallVector<Expr*, 1> Args;
695   if (!checkLockFunAttrCommon(S, D, Attr, Args))
696     return;
697 
698   unsigned Size = Args.size();
699   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
700   D->addAttr(::new (S.Context)
701              AssertExclusiveLockAttr(Attr.getRange(), S.Context,
702                                      StartArg, Size,
703                                      Attr.getAttributeSpellingListIndex()));
704 }
705 
706 
checkTryLockFunAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args)707 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D,
708                                       const AttributeList &Attr,
709                                       SmallVectorImpl<Expr *> &Args) {
710   if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
711     return false;
712 
713   if (!isIntOrBool(Attr.getArgAsExpr(0))) {
714     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
715       << Attr.getName() << 1 << AANT_ArgumentIntOrBool;
716     return false;
717   }
718 
719   // check that all arguments are lockable objects
720   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 1);
721 
722   return true;
723 }
724 
handleSharedTrylockFunctionAttr(Sema & S,Decl * D,const AttributeList & Attr)725 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
726                                             const AttributeList &Attr) {
727   SmallVector<Expr*, 2> Args;
728   if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
729     return;
730 
731   D->addAttr(::new (S.Context)
732              SharedTrylockFunctionAttr(Attr.getRange(), S.Context,
733                                        Attr.getArgAsExpr(0),
734                                        Args.data(), Args.size(),
735                                        Attr.getAttributeSpellingListIndex()));
736 }
737 
handleExclusiveTrylockFunctionAttr(Sema & S,Decl * D,const AttributeList & Attr)738 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
739                                                const AttributeList &Attr) {
740   SmallVector<Expr*, 2> Args;
741   if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
742     return;
743 
744   D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
745       Attr.getRange(), S.Context, Attr.getArgAsExpr(0), Args.data(),
746       Args.size(), Attr.getAttributeSpellingListIndex()));
747 }
748 
handleLockReturnedAttr(Sema & S,Decl * D,const AttributeList & Attr)749 static void handleLockReturnedAttr(Sema &S, Decl *D,
750                                    const AttributeList &Attr) {
751   // check that the argument is lockable object
752   SmallVector<Expr*, 1> Args;
753   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
754   unsigned Size = Args.size();
755   if (Size == 0)
756     return;
757 
758   D->addAttr(::new (S.Context)
759              LockReturnedAttr(Attr.getRange(), S.Context, Args[0],
760                               Attr.getAttributeSpellingListIndex()));
761 }
762 
handleLocksExcludedAttr(Sema & S,Decl * D,const AttributeList & Attr)763 static void handleLocksExcludedAttr(Sema &S, Decl *D,
764                                     const AttributeList &Attr) {
765   if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
766     return;
767 
768   // check that all arguments are lockable objects
769   SmallVector<Expr*, 1> Args;
770   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
771   unsigned Size = Args.size();
772   if (Size == 0)
773     return;
774   Expr **StartArg = &Args[0];
775 
776   D->addAttr(::new (S.Context)
777              LocksExcludedAttr(Attr.getRange(), S.Context, StartArg, Size,
778                                Attr.getAttributeSpellingListIndex()));
779 }
780 
handleEnableIfAttr(Sema & S,Decl * D,const AttributeList & Attr)781 static void handleEnableIfAttr(Sema &S, Decl *D, const AttributeList &Attr) {
782   Expr *Cond = Attr.getArgAsExpr(0);
783   if (!Cond->isTypeDependent()) {
784     ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
785     if (Converted.isInvalid())
786       return;
787     Cond = Converted.get();
788   }
789 
790   StringRef Msg;
791   if (!S.checkStringLiteralArgumentAttr(Attr, 1, Msg))
792     return;
793 
794   SmallVector<PartialDiagnosticAt, 8> Diags;
795   if (!Cond->isValueDependent() &&
796       !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
797                                                 Diags)) {
798     S.Diag(Attr.getLoc(), diag::err_enable_if_never_constant_expr);
799     for (int I = 0, N = Diags.size(); I != N; ++I)
800       S.Diag(Diags[I].first, Diags[I].second);
801     return;
802   }
803 
804   D->addAttr(::new (S.Context)
805              EnableIfAttr(Attr.getRange(), S.Context, Cond, Msg,
806                           Attr.getAttributeSpellingListIndex()));
807 }
808 
handleConsumableAttr(Sema & S,Decl * D,const AttributeList & Attr)809 static void handleConsumableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
810   ConsumableAttr::ConsumedState DefaultState;
811 
812   if (Attr.isArgIdent(0)) {
813     IdentifierLoc *IL = Attr.getArgAsIdent(0);
814     if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
815                                                    DefaultState)) {
816       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
817         << Attr.getName() << IL->Ident;
818       return;
819     }
820   } else {
821     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
822         << Attr.getName() << AANT_ArgumentIdentifier;
823     return;
824   }
825 
826   D->addAttr(::new (S.Context)
827              ConsumableAttr(Attr.getRange(), S.Context, DefaultState,
828                             Attr.getAttributeSpellingListIndex()));
829 }
830 
831 
checkForConsumableClass(Sema & S,const CXXMethodDecl * MD,const AttributeList & Attr)832 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
833                                         const AttributeList &Attr) {
834   ASTContext &CurrContext = S.getASTContext();
835   QualType ThisType = MD->getThisType(CurrContext)->getPointeeType();
836 
837   if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
838     if (!RD->hasAttr<ConsumableAttr>()) {
839       S.Diag(Attr.getLoc(), diag::warn_attr_on_unconsumable_class) <<
840         RD->getNameAsString();
841 
842       return false;
843     }
844   }
845 
846   return true;
847 }
848 
849 
handleCallableWhenAttr(Sema & S,Decl * D,const AttributeList & Attr)850 static void handleCallableWhenAttr(Sema &S, Decl *D,
851                                    const AttributeList &Attr) {
852   if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
853     return;
854 
855   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
856     return;
857 
858   SmallVector<CallableWhenAttr::ConsumedState, 3> States;
859   for (unsigned ArgIndex = 0; ArgIndex < Attr.getNumArgs(); ++ArgIndex) {
860     CallableWhenAttr::ConsumedState CallableState;
861 
862     StringRef StateString;
863     SourceLocation Loc;
864     if (Attr.isArgIdent(ArgIndex)) {
865       IdentifierLoc *Ident = Attr.getArgAsIdent(ArgIndex);
866       StateString = Ident->Ident->getName();
867       Loc = Ident->Loc;
868     } else {
869       if (!S.checkStringLiteralArgumentAttr(Attr, ArgIndex, StateString, &Loc))
870         return;
871     }
872 
873     if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
874                                                      CallableState)) {
875       S.Diag(Loc, diag::warn_attribute_type_not_supported)
876         << Attr.getName() << StateString;
877       return;
878     }
879 
880     States.push_back(CallableState);
881   }
882 
883   D->addAttr(::new (S.Context)
884              CallableWhenAttr(Attr.getRange(), S.Context, States.data(),
885                States.size(), Attr.getAttributeSpellingListIndex()));
886 }
887 
888 
handleParamTypestateAttr(Sema & S,Decl * D,const AttributeList & Attr)889 static void handleParamTypestateAttr(Sema &S, Decl *D,
890                                     const AttributeList &Attr) {
891   ParamTypestateAttr::ConsumedState ParamState;
892 
893   if (Attr.isArgIdent(0)) {
894     IdentifierLoc *Ident = Attr.getArgAsIdent(0);
895     StringRef StateString = Ident->Ident->getName();
896 
897     if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
898                                                        ParamState)) {
899       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
900         << Attr.getName() << StateString;
901       return;
902     }
903   } else {
904     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
905       Attr.getName() << AANT_ArgumentIdentifier;
906     return;
907   }
908 
909   // FIXME: This check is currently being done in the analysis.  It can be
910   //        enabled here only after the parser propagates attributes at
911   //        template specialization definition, not declaration.
912   //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
913   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
914   //
915   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
916   //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
917   //      ReturnType.getAsString();
918   //    return;
919   //}
920 
921   D->addAttr(::new (S.Context)
922              ParamTypestateAttr(Attr.getRange(), S.Context, ParamState,
923                                 Attr.getAttributeSpellingListIndex()));
924 }
925 
926 
handleReturnTypestateAttr(Sema & S,Decl * D,const AttributeList & Attr)927 static void handleReturnTypestateAttr(Sema &S, Decl *D,
928                                       const AttributeList &Attr) {
929   ReturnTypestateAttr::ConsumedState ReturnState;
930 
931   if (Attr.isArgIdent(0)) {
932     IdentifierLoc *IL = Attr.getArgAsIdent(0);
933     if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
934                                                         ReturnState)) {
935       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
936         << Attr.getName() << IL->Ident;
937       return;
938     }
939   } else {
940     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
941       Attr.getName() << AANT_ArgumentIdentifier;
942     return;
943   }
944 
945   // FIXME: This check is currently being done in the analysis.  It can be
946   //        enabled here only after the parser propagates attributes at
947   //        template specialization definition, not declaration.
948   //QualType ReturnType;
949   //
950   //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
951   //  ReturnType = Param->getType();
952   //
953   //} else if (const CXXConstructorDecl *Constructor =
954   //             dyn_cast<CXXConstructorDecl>(D)) {
955   //  ReturnType = Constructor->getThisType(S.getASTContext())->getPointeeType();
956   //
957   //} else {
958   //
959   //  ReturnType = cast<FunctionDecl>(D)->getCallResultType();
960   //}
961   //
962   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
963   //
964   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
965   //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
966   //      ReturnType.getAsString();
967   //    return;
968   //}
969 
970   D->addAttr(::new (S.Context)
971              ReturnTypestateAttr(Attr.getRange(), S.Context, ReturnState,
972                                  Attr.getAttributeSpellingListIndex()));
973 }
974 
975 
handleSetTypestateAttr(Sema & S,Decl * D,const AttributeList & Attr)976 static void handleSetTypestateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
977   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
978     return;
979 
980   SetTypestateAttr::ConsumedState NewState;
981   if (Attr.isArgIdent(0)) {
982     IdentifierLoc *Ident = Attr.getArgAsIdent(0);
983     StringRef Param = Ident->Ident->getName();
984     if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
985       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
986         << Attr.getName() << Param;
987       return;
988     }
989   } else {
990     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
991       Attr.getName() << AANT_ArgumentIdentifier;
992     return;
993   }
994 
995   D->addAttr(::new (S.Context)
996              SetTypestateAttr(Attr.getRange(), S.Context, NewState,
997                               Attr.getAttributeSpellingListIndex()));
998 }
999 
handleTestTypestateAttr(Sema & S,Decl * D,const AttributeList & Attr)1000 static void handleTestTypestateAttr(Sema &S, Decl *D,
1001                                     const AttributeList &Attr) {
1002   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
1003     return;
1004 
1005   TestTypestateAttr::ConsumedState TestState;
1006   if (Attr.isArgIdent(0)) {
1007     IdentifierLoc *Ident = Attr.getArgAsIdent(0);
1008     StringRef Param = Ident->Ident->getName();
1009     if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1010       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1011         << Attr.getName() << Param;
1012       return;
1013     }
1014   } else {
1015     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
1016       Attr.getName() << AANT_ArgumentIdentifier;
1017     return;
1018   }
1019 
1020   D->addAttr(::new (S.Context)
1021              TestTypestateAttr(Attr.getRange(), S.Context, TestState,
1022                                 Attr.getAttributeSpellingListIndex()));
1023 }
1024 
handleExtVectorTypeAttr(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr)1025 static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
1026                                     const AttributeList &Attr) {
1027   // Remember this typedef decl, we will need it later for diagnostics.
1028   S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
1029 }
1030 
handlePackedAttr(Sema & S,Decl * D,const AttributeList & Attr)1031 static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1032   if (TagDecl *TD = dyn_cast<TagDecl>(D))
1033     TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context,
1034                                         Attr.getAttributeSpellingListIndex()));
1035   else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1036     // If the alignment is less than or equal to 8 bits, the packed attribute
1037     // has no effect.
1038     if (!FD->getType()->isDependentType() &&
1039         !FD->getType()->isIncompleteType() &&
1040         S.Context.getTypeAlign(FD->getType()) <= 8)
1041       S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1042         << Attr.getName() << FD->getType();
1043     else
1044       FD->addAttr(::new (S.Context)
1045                   PackedAttr(Attr.getRange(), S.Context,
1046                              Attr.getAttributeSpellingListIndex()));
1047   } else
1048     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
1049 }
1050 
checkIBOutletCommon(Sema & S,Decl * D,const AttributeList & Attr)1051 static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) {
1052   // The IBOutlet/IBOutletCollection attributes only apply to instance
1053   // variables or properties of Objective-C classes.  The outlet must also
1054   // have an object reference type.
1055   if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) {
1056     if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1057       S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
1058         << Attr.getName() << VD->getType() << 0;
1059       return false;
1060     }
1061   }
1062   else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1063     if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1064       S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
1065         << Attr.getName() << PD->getType() << 1;
1066       return false;
1067     }
1068   }
1069   else {
1070     S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
1071     return false;
1072   }
1073 
1074   return true;
1075 }
1076 
handleIBOutlet(Sema & S,Decl * D,const AttributeList & Attr)1077 static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
1078   if (!checkIBOutletCommon(S, D, Attr))
1079     return;
1080 
1081   D->addAttr(::new (S.Context)
1082              IBOutletAttr(Attr.getRange(), S.Context,
1083                           Attr.getAttributeSpellingListIndex()));
1084 }
1085 
handleIBOutletCollection(Sema & S,Decl * D,const AttributeList & Attr)1086 static void handleIBOutletCollection(Sema &S, Decl *D,
1087                                      const AttributeList &Attr) {
1088 
1089   // The iboutletcollection attribute can have zero or one arguments.
1090   if (Attr.getNumArgs() > 1) {
1091     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
1092       << Attr.getName() << 1;
1093     return;
1094   }
1095 
1096   if (!checkIBOutletCommon(S, D, Attr))
1097     return;
1098 
1099   ParsedType PT;
1100 
1101   if (Attr.hasParsedType())
1102     PT = Attr.getTypeArg();
1103   else {
1104     PT = S.getTypeName(S.Context.Idents.get("NSObject"), Attr.getLoc(),
1105                        S.getScopeForContext(D->getDeclContext()->getParent()));
1106     if (!PT) {
1107       S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
1108       return;
1109     }
1110   }
1111 
1112   TypeSourceInfo *QTLoc = nullptr;
1113   QualType QT = S.GetTypeFromParser(PT, &QTLoc);
1114   if (!QTLoc)
1115     QTLoc = S.Context.getTrivialTypeSourceInfo(QT, Attr.getLoc());
1116 
1117   // Diagnose use of non-object type in iboutletcollection attribute.
1118   // FIXME. Gnu attribute extension ignores use of builtin types in
1119   // attributes. So, __attribute__((iboutletcollection(char))) will be
1120   // treated as __attribute__((iboutletcollection())).
1121   if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1122     S.Diag(Attr.getLoc(),
1123            QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
1124                                : diag::err_iboutletcollection_type) << QT;
1125     return;
1126   }
1127 
1128   D->addAttr(::new (S.Context)
1129              IBOutletCollectionAttr(Attr.getRange(), S.Context, QTLoc,
1130                                     Attr.getAttributeSpellingListIndex()));
1131 }
1132 
isValidPointerAttrType(QualType T,bool RefOkay)1133 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
1134   if (RefOkay) {
1135     if (T->isReferenceType())
1136       return true;
1137   } else {
1138     T = T.getNonReferenceType();
1139   }
1140 
1141   // The nonnull attribute, and other similar attributes, can be applied to a
1142   // transparent union that contains a pointer type.
1143   if (const RecordType *UT = T->getAsUnionType()) {
1144     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1145       RecordDecl *UD = UT->getDecl();
1146       for (const auto *I : UD->fields()) {
1147         QualType QT = I->getType();
1148         if (QT->isAnyPointerType() || QT->isBlockPointerType())
1149           return true;
1150       }
1151     }
1152   }
1153 
1154   return T->isAnyPointerType() || T->isBlockPointerType();
1155 }
1156 
attrNonNullArgCheck(Sema & S,QualType T,const AttributeList & Attr,SourceRange AttrParmRange,SourceRange TypeRange,bool isReturnValue=false)1157 static bool attrNonNullArgCheck(Sema &S, QualType T, const AttributeList &Attr,
1158                                 SourceRange AttrParmRange,
1159                                 SourceRange TypeRange,
1160                                 bool isReturnValue = false) {
1161   if (!S.isValidPointerAttrType(T)) {
1162     S.Diag(Attr.getLoc(), isReturnValue
1163                               ? diag::warn_attribute_return_pointers_only
1164                               : diag::warn_attribute_pointers_only)
1165         << Attr.getName() << AttrParmRange << TypeRange;
1166     return false;
1167   }
1168   return true;
1169 }
1170 
handleNonNullAttr(Sema & S,Decl * D,const AttributeList & Attr)1171 static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1172   SmallVector<unsigned, 8> NonNullArgs;
1173   for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {
1174     Expr *Ex = Attr.getArgAsExpr(I);
1175     uint64_t Idx;
1176     if (!checkFunctionOrMethodParameterIndex(S, D, Attr, I + 1, Ex, Idx))
1177       return;
1178 
1179     // Is the function argument a pointer type?
1180     if (Idx < getFunctionOrMethodNumParams(D) &&
1181         !attrNonNullArgCheck(S, getFunctionOrMethodParamType(D, Idx), Attr,
1182                              Ex->getSourceRange(),
1183                              getFunctionOrMethodParamRange(D, Idx)))
1184       continue;
1185 
1186     NonNullArgs.push_back(Idx);
1187   }
1188 
1189   // If no arguments were specified to __attribute__((nonnull)) then all pointer
1190   // arguments have a nonnull attribute; warn if there aren't any. Skip this
1191   // check if the attribute came from a macro expansion or a template
1192   // instantiation.
1193   if (NonNullArgs.empty() && Attr.getLoc().isFileID() &&
1194       S.ActiveTemplateInstantiations.empty()) {
1195     bool AnyPointers = isFunctionOrMethodVariadic(D);
1196     for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1197          I != E && !AnyPointers; ++I) {
1198       QualType T = getFunctionOrMethodParamType(D, I);
1199       if (T->isDependentType() || S.isValidPointerAttrType(T))
1200         AnyPointers = true;
1201     }
1202 
1203     if (!AnyPointers)
1204       S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1205   }
1206 
1207   unsigned *Start = NonNullArgs.data();
1208   unsigned Size = NonNullArgs.size();
1209   llvm::array_pod_sort(Start, Start + Size);
1210   D->addAttr(::new (S.Context)
1211              NonNullAttr(Attr.getRange(), S.Context, Start, Size,
1212                          Attr.getAttributeSpellingListIndex()));
1213 }
1214 
handleNonNullAttrParameter(Sema & S,ParmVarDecl * D,const AttributeList & Attr)1215 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
1216                                        const AttributeList &Attr) {
1217   if (Attr.getNumArgs() > 0) {
1218     if (D->getFunctionType()) {
1219       handleNonNullAttr(S, D, Attr);
1220     } else {
1221       S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1222         << D->getSourceRange();
1223     }
1224     return;
1225   }
1226 
1227   // Is the argument a pointer type?
1228   if (!attrNonNullArgCheck(S, D->getType(), Attr, SourceRange(),
1229                            D->getSourceRange()))
1230     return;
1231 
1232   D->addAttr(::new (S.Context)
1233              NonNullAttr(Attr.getRange(), S.Context, nullptr, 0,
1234                          Attr.getAttributeSpellingListIndex()));
1235 }
1236 
handleReturnsNonNullAttr(Sema & S,Decl * D,const AttributeList & Attr)1237 static void handleReturnsNonNullAttr(Sema &S, Decl *D,
1238                                      const AttributeList &Attr) {
1239   QualType ResultType = getFunctionOrMethodResultType(D);
1240   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1241   if (!attrNonNullArgCheck(S, ResultType, Attr, SourceRange(), SR,
1242                            /* isReturnValue */ true))
1243     return;
1244 
1245   D->addAttr(::new (S.Context)
1246             ReturnsNonNullAttr(Attr.getRange(), S.Context,
1247                                Attr.getAttributeSpellingListIndex()));
1248 }
1249 
handleAssumeAlignedAttr(Sema & S,Decl * D,const AttributeList & Attr)1250 static void handleAssumeAlignedAttr(Sema &S, Decl *D,
1251                                     const AttributeList &Attr) {
1252   Expr *E = Attr.getArgAsExpr(0),
1253        *OE = Attr.getNumArgs() > 1 ? Attr.getArgAsExpr(1) : nullptr;
1254   S.AddAssumeAlignedAttr(Attr.getRange(), D, E, OE,
1255                          Attr.getAttributeSpellingListIndex());
1256 }
1257 
AddAssumeAlignedAttr(SourceRange AttrRange,Decl * D,Expr * E,Expr * OE,unsigned SpellingListIndex)1258 void Sema::AddAssumeAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
1259                                 Expr *OE, unsigned SpellingListIndex) {
1260   QualType ResultType = getFunctionOrMethodResultType(D);
1261   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1262 
1263   AssumeAlignedAttr TmpAttr(AttrRange, Context, E, OE, SpellingListIndex);
1264   SourceLocation AttrLoc = AttrRange.getBegin();
1265 
1266   if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1267     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1268       << &TmpAttr << AttrRange << SR;
1269     return;
1270   }
1271 
1272   if (!E->isValueDependent()) {
1273     llvm::APSInt I(64);
1274     if (!E->isIntegerConstantExpr(I, Context)) {
1275       if (OE)
1276         Diag(AttrLoc, diag::err_attribute_argument_n_type)
1277           << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
1278           << E->getSourceRange();
1279       else
1280         Diag(AttrLoc, diag::err_attribute_argument_type)
1281           << &TmpAttr << AANT_ArgumentIntegerConstant
1282           << E->getSourceRange();
1283       return;
1284     }
1285 
1286     if (!I.isPowerOf2()) {
1287       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1288         << E->getSourceRange();
1289       return;
1290     }
1291   }
1292 
1293   if (OE) {
1294     if (!OE->isValueDependent()) {
1295       llvm::APSInt I(64);
1296       if (!OE->isIntegerConstantExpr(I, Context)) {
1297         Diag(AttrLoc, diag::err_attribute_argument_n_type)
1298           << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
1299           << OE->getSourceRange();
1300         return;
1301       }
1302     }
1303   }
1304 
1305   D->addAttr(::new (Context)
1306             AssumeAlignedAttr(AttrRange, Context, E, OE, SpellingListIndex));
1307 }
1308 
handleOwnershipAttr(Sema & S,Decl * D,const AttributeList & AL)1309 static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
1310   // This attribute must be applied to a function declaration. The first
1311   // argument to the attribute must be an identifier, the name of the resource,
1312   // for example: malloc. The following arguments must be argument indexes, the
1313   // arguments must be of integer type for Returns, otherwise of pointer type.
1314   // The difference between Holds and Takes is that a pointer may still be used
1315   // after being held. free() should be __attribute((ownership_takes)), whereas
1316   // a list append function may well be __attribute((ownership_holds)).
1317 
1318   if (!AL.isArgIdent(0)) {
1319     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1320       << AL.getName() << 1 << AANT_ArgumentIdentifier;
1321     return;
1322   }
1323 
1324   // Figure out our Kind.
1325   OwnershipAttr::OwnershipKind K =
1326       OwnershipAttr(AL.getLoc(), S.Context, nullptr, nullptr, 0,
1327                     AL.getAttributeSpellingListIndex()).getOwnKind();
1328 
1329   // Check arguments.
1330   switch (K) {
1331   case OwnershipAttr::Takes:
1332   case OwnershipAttr::Holds:
1333     if (AL.getNumArgs() < 2) {
1334       S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments)
1335         << AL.getName() << 2;
1336       return;
1337     }
1338     break;
1339   case OwnershipAttr::Returns:
1340     if (AL.getNumArgs() > 2) {
1341       S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments)
1342         << AL.getName() << 1;
1343       return;
1344     }
1345     break;
1346   }
1347 
1348   IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
1349 
1350   // Normalize the argument, __foo__ becomes foo.
1351   StringRef ModuleName = Module->getName();
1352   if (ModuleName.startswith("__") && ModuleName.endswith("__") &&
1353       ModuleName.size() > 4) {
1354     ModuleName = ModuleName.drop_front(2).drop_back(2);
1355     Module = &S.PP.getIdentifierTable().get(ModuleName);
1356   }
1357 
1358   SmallVector<unsigned, 8> OwnershipArgs;
1359   for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1360     Expr *Ex = AL.getArgAsExpr(i);
1361     uint64_t Idx;
1362     if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
1363       return;
1364 
1365     // Is the function argument a pointer type?
1366     QualType T = getFunctionOrMethodParamType(D, Idx);
1367     int Err = -1;  // No error
1368     switch (K) {
1369       case OwnershipAttr::Takes:
1370       case OwnershipAttr::Holds:
1371         if (!T->isAnyPointerType() && !T->isBlockPointerType())
1372           Err = 0;
1373         break;
1374       case OwnershipAttr::Returns:
1375         if (!T->isIntegerType())
1376           Err = 1;
1377         break;
1378     }
1379     if (-1 != Err) {
1380       S.Diag(AL.getLoc(), diag::err_ownership_type) << AL.getName() << Err
1381         << Ex->getSourceRange();
1382       return;
1383     }
1384 
1385     // Check we don't have a conflict with another ownership attribute.
1386     for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1387       // Cannot have two ownership attributes of different kinds for the same
1388       // index.
1389       if (I->getOwnKind() != K && I->args_end() !=
1390           std::find(I->args_begin(), I->args_end(), Idx)) {
1391         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
1392           << AL.getName() << I;
1393         return;
1394       } else if (K == OwnershipAttr::Returns &&
1395                  I->getOwnKind() == OwnershipAttr::Returns) {
1396         // A returns attribute conflicts with any other returns attribute using
1397         // a different index. Note, diagnostic reporting is 1-based, but stored
1398         // argument indexes are 0-based.
1399         if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) {
1400           S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1401               << *(I->args_begin()) + 1;
1402           if (I->args_size())
1403             S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1404                 << (unsigned)Idx + 1 << Ex->getSourceRange();
1405           return;
1406         }
1407       }
1408     }
1409     OwnershipArgs.push_back(Idx);
1410   }
1411 
1412   unsigned* start = OwnershipArgs.data();
1413   unsigned size = OwnershipArgs.size();
1414   llvm::array_pod_sort(start, start + size);
1415 
1416   D->addAttr(::new (S.Context)
1417              OwnershipAttr(AL.getLoc(), S.Context, Module, start, size,
1418                            AL.getAttributeSpellingListIndex()));
1419 }
1420 
handleWeakRefAttr(Sema & S,Decl * D,const AttributeList & Attr)1421 static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1422   // Check the attribute arguments.
1423   if (Attr.getNumArgs() > 1) {
1424     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
1425       << Attr.getName() << 1;
1426     return;
1427   }
1428 
1429   NamedDecl *nd = cast<NamedDecl>(D);
1430 
1431   // gcc rejects
1432   // class c {
1433   //   static int a __attribute__((weakref ("v2")));
1434   //   static int b() __attribute__((weakref ("f3")));
1435   // };
1436   // and ignores the attributes of
1437   // void f(void) {
1438   //   static int a __attribute__((weakref ("v2")));
1439   // }
1440   // we reject them
1441   const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1442   if (!Ctx->isFileContext()) {
1443     S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context)
1444       << nd;
1445     return;
1446   }
1447 
1448   // The GCC manual says
1449   //
1450   // At present, a declaration to which `weakref' is attached can only
1451   // be `static'.
1452   //
1453   // It also says
1454   //
1455   // Without a TARGET,
1456   // given as an argument to `weakref' or to `alias', `weakref' is
1457   // equivalent to `weak'.
1458   //
1459   // gcc 4.4.1 will accept
1460   // int a7 __attribute__((weakref));
1461   // as
1462   // int a7 __attribute__((weak));
1463   // This looks like a bug in gcc. We reject that for now. We should revisit
1464   // it if this behaviour is actually used.
1465 
1466   // GCC rejects
1467   // static ((alias ("y"), weakref)).
1468   // Should we? How to check that weakref is before or after alias?
1469 
1470   // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1471   // of transforming it into an AliasAttr.  The WeakRefAttr never uses the
1472   // StringRef parameter it was given anyway.
1473   StringRef Str;
1474   if (Attr.getNumArgs() && S.checkStringLiteralArgumentAttr(Attr, 0, Str))
1475     // GCC will accept anything as the argument of weakref. Should we
1476     // check for an existing decl?
1477     D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str,
1478                                         Attr.getAttributeSpellingListIndex()));
1479 
1480   D->addAttr(::new (S.Context)
1481              WeakRefAttr(Attr.getRange(), S.Context,
1482                          Attr.getAttributeSpellingListIndex()));
1483 }
1484 
handleAliasAttr(Sema & S,Decl * D,const AttributeList & Attr)1485 static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1486   StringRef Str;
1487   if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
1488     return;
1489 
1490   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1491     S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
1492     return;
1493   }
1494 
1495   // FIXME: check if target symbol exists in current file
1496 
1497   D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str,
1498                                          Attr.getAttributeSpellingListIndex()));
1499 }
1500 
handleColdAttr(Sema & S,Decl * D,const AttributeList & Attr)1501 static void handleColdAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1502   if (checkAttrMutualExclusion<HotAttr>(S, D, Attr))
1503     return;
1504 
1505   D->addAttr(::new (S.Context) ColdAttr(Attr.getRange(), S.Context,
1506                                         Attr.getAttributeSpellingListIndex()));
1507 }
1508 
handleHotAttr(Sema & S,Decl * D,const AttributeList & Attr)1509 static void handleHotAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1510   if (checkAttrMutualExclusion<ColdAttr>(S, D, Attr))
1511     return;
1512 
1513   D->addAttr(::new (S.Context) HotAttr(Attr.getRange(), S.Context,
1514                                        Attr.getAttributeSpellingListIndex()));
1515 }
1516 
handleTLSModelAttr(Sema & S,Decl * D,const AttributeList & Attr)1517 static void handleTLSModelAttr(Sema &S, Decl *D,
1518                                const AttributeList &Attr) {
1519   StringRef Model;
1520   SourceLocation LiteralLoc;
1521   // Check that it is a string.
1522   if (!S.checkStringLiteralArgumentAttr(Attr, 0, Model, &LiteralLoc))
1523     return;
1524 
1525   // Check that the value.
1526   if (Model != "global-dynamic" && Model != "local-dynamic"
1527       && Model != "initial-exec" && Model != "local-exec") {
1528     S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
1529     return;
1530   }
1531 
1532   D->addAttr(::new (S.Context)
1533              TLSModelAttr(Attr.getRange(), S.Context, Model,
1534                           Attr.getAttributeSpellingListIndex()));
1535 }
1536 
handleMallocAttr(Sema & S,Decl * D,const AttributeList & Attr)1537 static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1538   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1539     QualType RetTy = FD->getReturnType();
1540     if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) {
1541       D->addAttr(::new (S.Context)
1542                  MallocAttr(Attr.getRange(), S.Context,
1543                             Attr.getAttributeSpellingListIndex()));
1544       return;
1545     }
1546   }
1547 
1548   S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only);
1549 }
1550 
handleCommonAttr(Sema & S,Decl * D,const AttributeList & Attr)1551 static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1552   if (S.LangOpts.CPlusPlus) {
1553     S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
1554       << Attr.getName() << AttributeLangSupport::Cpp;
1555     return;
1556   }
1557 
1558   D->addAttr(::new (S.Context) CommonAttr(Attr.getRange(), S.Context,
1559                                         Attr.getAttributeSpellingListIndex()));
1560 }
1561 
handleNoReturnAttr(Sema & S,Decl * D,const AttributeList & attr)1562 static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
1563   if (hasDeclarator(D)) return;
1564 
1565   if (S.CheckNoReturnAttr(attr)) return;
1566 
1567   if (!isa<ObjCMethodDecl>(D)) {
1568     S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1569       << attr.getName() << ExpectedFunctionOrMethod;
1570     return;
1571   }
1572 
1573   D->addAttr(::new (S.Context)
1574              NoReturnAttr(attr.getRange(), S.Context,
1575                           attr.getAttributeSpellingListIndex()));
1576 }
1577 
CheckNoReturnAttr(const AttributeList & attr)1578 bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
1579   if (!checkAttributeNumArgs(*this, attr, 0)) {
1580     attr.setInvalid();
1581     return true;
1582   }
1583 
1584   return false;
1585 }
1586 
handleAnalyzerNoReturnAttr(Sema & S,Decl * D,const AttributeList & Attr)1587 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
1588                                        const AttributeList &Attr) {
1589 
1590   // The checking path for 'noreturn' and 'analyzer_noreturn' are different
1591   // because 'analyzer_noreturn' does not impact the type.
1592   if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) {
1593     ValueDecl *VD = dyn_cast<ValueDecl>(D);
1594     if (!VD || (!VD->getType()->isBlockPointerType() &&
1595                 !VD->getType()->isFunctionPointerType())) {
1596       S.Diag(Attr.getLoc(),
1597              Attr.isCXX11Attribute() ? diag::err_attribute_wrong_decl_type
1598              : diag::warn_attribute_wrong_decl_type)
1599         << Attr.getName() << ExpectedFunctionMethodOrBlock;
1600       return;
1601     }
1602   }
1603 
1604   D->addAttr(::new (S.Context)
1605              AnalyzerNoReturnAttr(Attr.getRange(), S.Context,
1606                                   Attr.getAttributeSpellingListIndex()));
1607 }
1608 
1609 // PS3 PPU-specific.
handleVecReturnAttr(Sema & S,Decl * D,const AttributeList & Attr)1610 static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1611 /*
1612   Returning a Vector Class in Registers
1613 
1614   According to the PPU ABI specifications, a class with a single member of
1615   vector type is returned in memory when used as the return value of a function.
1616   This results in inefficient code when implementing vector classes. To return
1617   the value in a single vector register, add the vecreturn attribute to the
1618   class definition. This attribute is also applicable to struct types.
1619 
1620   Example:
1621 
1622   struct Vector
1623   {
1624     __vector float xyzw;
1625   } __attribute__((vecreturn));
1626 
1627   Vector Add(Vector lhs, Vector rhs)
1628   {
1629     Vector result;
1630     result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
1631     return result; // This will be returned in a register
1632   }
1633 */
1634   if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
1635     S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << A;
1636     return;
1637   }
1638 
1639   RecordDecl *record = cast<RecordDecl>(D);
1640   int count = 0;
1641 
1642   if (!isa<CXXRecordDecl>(record)) {
1643     S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1644     return;
1645   }
1646 
1647   if (!cast<CXXRecordDecl>(record)->isPOD()) {
1648     S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
1649     return;
1650   }
1651 
1652   for (const auto *I : record->fields()) {
1653     if ((count == 1) || !I->getType()->isVectorType()) {
1654       S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1655       return;
1656     }
1657     count++;
1658   }
1659 
1660   D->addAttr(::new (S.Context)
1661              VecReturnAttr(Attr.getRange(), S.Context,
1662                            Attr.getAttributeSpellingListIndex()));
1663 }
1664 
handleDependencyAttr(Sema & S,Scope * Scope,Decl * D,const AttributeList & Attr)1665 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
1666                                  const AttributeList &Attr) {
1667   if (isa<ParmVarDecl>(D)) {
1668     // [[carries_dependency]] can only be applied to a parameter if it is a
1669     // parameter of a function declaration or lambda.
1670     if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
1671       S.Diag(Attr.getLoc(),
1672              diag::err_carries_dependency_param_not_function_decl);
1673       return;
1674     }
1675   }
1676 
1677   D->addAttr(::new (S.Context) CarriesDependencyAttr(
1678                                    Attr.getRange(), S.Context,
1679                                    Attr.getAttributeSpellingListIndex()));
1680 }
1681 
handleUsedAttr(Sema & S,Decl * D,const AttributeList & Attr)1682 static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1683   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1684     if (VD->hasLocalStorage()) {
1685       S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
1686       return;
1687     }
1688   } else if (!isFunctionOrMethod(D)) {
1689     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1690       << Attr.getName() << ExpectedVariableOrFunction;
1691     return;
1692   }
1693 
1694   D->addAttr(::new (S.Context)
1695              UsedAttr(Attr.getRange(), S.Context,
1696                       Attr.getAttributeSpellingListIndex()));
1697 }
1698 
handleConstructorAttr(Sema & S,Decl * D,const AttributeList & Attr)1699 static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1700   uint32_t priority = ConstructorAttr::DefaultPriority;
1701   if (Attr.getNumArgs() &&
1702       !checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority))
1703     return;
1704 
1705   D->addAttr(::new (S.Context)
1706              ConstructorAttr(Attr.getRange(), S.Context, priority,
1707                              Attr.getAttributeSpellingListIndex()));
1708 }
1709 
handleDestructorAttr(Sema & S,Decl * D,const AttributeList & Attr)1710 static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1711   uint32_t priority = DestructorAttr::DefaultPriority;
1712   if (Attr.getNumArgs() &&
1713       !checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority))
1714     return;
1715 
1716   D->addAttr(::new (S.Context)
1717              DestructorAttr(Attr.getRange(), S.Context, priority,
1718                             Attr.getAttributeSpellingListIndex()));
1719 }
1720 
1721 template <typename AttrTy>
handleAttrWithMessage(Sema & S,Decl * D,const AttributeList & Attr)1722 static void handleAttrWithMessage(Sema &S, Decl *D,
1723                                   const AttributeList &Attr) {
1724   // Handle the case where the attribute has a text message.
1725   StringRef Str;
1726   if (Attr.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(Attr, 0, Str))
1727     return;
1728 
1729   D->addAttr(::new (S.Context) AttrTy(Attr.getRange(), S.Context, Str,
1730                                       Attr.getAttributeSpellingListIndex()));
1731 }
1732 
handleObjCSuppresProtocolAttr(Sema & S,Decl * D,const AttributeList & Attr)1733 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
1734                                           const AttributeList &Attr) {
1735   if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
1736     S.Diag(Attr.getLoc(), diag::err_objc_attr_protocol_requires_definition)
1737       << Attr.getName() << Attr.getRange();
1738     return;
1739   }
1740 
1741   D->addAttr(::new (S.Context)
1742           ObjCExplicitProtocolImplAttr(Attr.getRange(), S.Context,
1743                                        Attr.getAttributeSpellingListIndex()));
1744 }
1745 
checkAvailabilityAttr(Sema & S,SourceRange Range,IdentifierInfo * Platform,VersionTuple Introduced,VersionTuple Deprecated,VersionTuple Obsoleted)1746 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
1747                                   IdentifierInfo *Platform,
1748                                   VersionTuple Introduced,
1749                                   VersionTuple Deprecated,
1750                                   VersionTuple Obsoleted) {
1751   StringRef PlatformName
1752     = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
1753   if (PlatformName.empty())
1754     PlatformName = Platform->getName();
1755 
1756   // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
1757   // of these steps are needed).
1758   if (!Introduced.empty() && !Deprecated.empty() &&
1759       !(Introduced <= Deprecated)) {
1760     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
1761       << 1 << PlatformName << Deprecated.getAsString()
1762       << 0 << Introduced.getAsString();
1763     return true;
1764   }
1765 
1766   if (!Introduced.empty() && !Obsoleted.empty() &&
1767       !(Introduced <= Obsoleted)) {
1768     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
1769       << 2 << PlatformName << Obsoleted.getAsString()
1770       << 0 << Introduced.getAsString();
1771     return true;
1772   }
1773 
1774   if (!Deprecated.empty() && !Obsoleted.empty() &&
1775       !(Deprecated <= Obsoleted)) {
1776     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
1777       << 2 << PlatformName << Obsoleted.getAsString()
1778       << 1 << Deprecated.getAsString();
1779     return true;
1780   }
1781 
1782   return false;
1783 }
1784 
1785 /// \brief Check whether the two versions match.
1786 ///
1787 /// If either version tuple is empty, then they are assumed to match. If
1788 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
versionsMatch(const VersionTuple & X,const VersionTuple & Y,bool BeforeIsOkay)1789 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
1790                           bool BeforeIsOkay) {
1791   if (X.empty() || Y.empty())
1792     return true;
1793 
1794   if (X == Y)
1795     return true;
1796 
1797   if (BeforeIsOkay && X < Y)
1798     return true;
1799 
1800   return false;
1801 }
1802 
mergeAvailabilityAttr(NamedDecl * D,SourceRange Range,IdentifierInfo * Platform,VersionTuple Introduced,VersionTuple Deprecated,VersionTuple Obsoleted,bool IsUnavailable,StringRef Message,bool Override,unsigned AttrSpellingListIndex)1803 AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range,
1804                                               IdentifierInfo *Platform,
1805                                               VersionTuple Introduced,
1806                                               VersionTuple Deprecated,
1807                                               VersionTuple Obsoleted,
1808                                               bool IsUnavailable,
1809                                               StringRef Message,
1810                                               bool Override,
1811                                               unsigned AttrSpellingListIndex) {
1812   VersionTuple MergedIntroduced = Introduced;
1813   VersionTuple MergedDeprecated = Deprecated;
1814   VersionTuple MergedObsoleted = Obsoleted;
1815   bool FoundAny = false;
1816 
1817   if (D->hasAttrs()) {
1818     AttrVec &Attrs = D->getAttrs();
1819     for (unsigned i = 0, e = Attrs.size(); i != e;) {
1820       const AvailabilityAttr *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
1821       if (!OldAA) {
1822         ++i;
1823         continue;
1824       }
1825 
1826       IdentifierInfo *OldPlatform = OldAA->getPlatform();
1827       if (OldPlatform != Platform) {
1828         ++i;
1829         continue;
1830       }
1831 
1832       FoundAny = true;
1833       VersionTuple OldIntroduced = OldAA->getIntroduced();
1834       VersionTuple OldDeprecated = OldAA->getDeprecated();
1835       VersionTuple OldObsoleted = OldAA->getObsoleted();
1836       bool OldIsUnavailable = OldAA->getUnavailable();
1837 
1838       if (!versionsMatch(OldIntroduced, Introduced, Override) ||
1839           !versionsMatch(Deprecated, OldDeprecated, Override) ||
1840           !versionsMatch(Obsoleted, OldObsoleted, Override) ||
1841           !(OldIsUnavailable == IsUnavailable ||
1842             (Override && !OldIsUnavailable && IsUnavailable))) {
1843         if (Override) {
1844           int Which = -1;
1845           VersionTuple FirstVersion;
1846           VersionTuple SecondVersion;
1847           if (!versionsMatch(OldIntroduced, Introduced, Override)) {
1848             Which = 0;
1849             FirstVersion = OldIntroduced;
1850             SecondVersion = Introduced;
1851           } else if (!versionsMatch(Deprecated, OldDeprecated, Override)) {
1852             Which = 1;
1853             FirstVersion = Deprecated;
1854             SecondVersion = OldDeprecated;
1855           } else if (!versionsMatch(Obsoleted, OldObsoleted, Override)) {
1856             Which = 2;
1857             FirstVersion = Obsoleted;
1858             SecondVersion = OldObsoleted;
1859           }
1860 
1861           if (Which == -1) {
1862             Diag(OldAA->getLocation(),
1863                  diag::warn_mismatched_availability_override_unavail)
1864               << AvailabilityAttr::getPrettyPlatformName(Platform->getName());
1865           } else {
1866             Diag(OldAA->getLocation(),
1867                  diag::warn_mismatched_availability_override)
1868               << Which
1869               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
1870               << FirstVersion.getAsString() << SecondVersion.getAsString();
1871           }
1872           Diag(Range.getBegin(), diag::note_overridden_method);
1873         } else {
1874           Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
1875           Diag(Range.getBegin(), diag::note_previous_attribute);
1876         }
1877 
1878         Attrs.erase(Attrs.begin() + i);
1879         --e;
1880         continue;
1881       }
1882 
1883       VersionTuple MergedIntroduced2 = MergedIntroduced;
1884       VersionTuple MergedDeprecated2 = MergedDeprecated;
1885       VersionTuple MergedObsoleted2 = MergedObsoleted;
1886 
1887       if (MergedIntroduced2.empty())
1888         MergedIntroduced2 = OldIntroduced;
1889       if (MergedDeprecated2.empty())
1890         MergedDeprecated2 = OldDeprecated;
1891       if (MergedObsoleted2.empty())
1892         MergedObsoleted2 = OldObsoleted;
1893 
1894       if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
1895                                 MergedIntroduced2, MergedDeprecated2,
1896                                 MergedObsoleted2)) {
1897         Attrs.erase(Attrs.begin() + i);
1898         --e;
1899         continue;
1900       }
1901 
1902       MergedIntroduced = MergedIntroduced2;
1903       MergedDeprecated = MergedDeprecated2;
1904       MergedObsoleted = MergedObsoleted2;
1905       ++i;
1906     }
1907   }
1908 
1909   if (FoundAny &&
1910       MergedIntroduced == Introduced &&
1911       MergedDeprecated == Deprecated &&
1912       MergedObsoleted == Obsoleted)
1913     return nullptr;
1914 
1915   // Only create a new attribute if !Override, but we want to do
1916   // the checking.
1917   if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced,
1918                              MergedDeprecated, MergedObsoleted) &&
1919       !Override) {
1920     return ::new (Context) AvailabilityAttr(Range, Context, Platform,
1921                                             Introduced, Deprecated,
1922                                             Obsoleted, IsUnavailable, Message,
1923                                             AttrSpellingListIndex);
1924   }
1925   return nullptr;
1926 }
1927 
handleAvailabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)1928 static void handleAvailabilityAttr(Sema &S, Decl *D,
1929                                    const AttributeList &Attr) {
1930   if (!checkAttributeNumArgs(S, Attr, 1))
1931     return;
1932   IdentifierLoc *Platform = Attr.getArgAsIdent(0);
1933   unsigned Index = Attr.getAttributeSpellingListIndex();
1934 
1935   IdentifierInfo *II = Platform->Ident;
1936   if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
1937     S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
1938       << Platform->Ident;
1939 
1940   NamedDecl *ND = dyn_cast<NamedDecl>(D);
1941   if (!ND) {
1942     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
1943     return;
1944   }
1945 
1946   AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
1947   AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
1948   AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
1949   bool IsUnavailable = Attr.getUnavailableLoc().isValid();
1950   StringRef Str;
1951   if (const StringLiteral *SE =
1952           dyn_cast_or_null<StringLiteral>(Attr.getMessageExpr()))
1953     Str = SE->getString();
1954 
1955   AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, Attr.getRange(), II,
1956                                                       Introduced.Version,
1957                                                       Deprecated.Version,
1958                                                       Obsoleted.Version,
1959                                                       IsUnavailable, Str,
1960                                                       /*Override=*/false,
1961                                                       Index);
1962   if (NewAttr)
1963     D->addAttr(NewAttr);
1964 }
1965 
1966 template <class T>
mergeVisibilityAttr(Sema & S,Decl * D,SourceRange range,typename T::VisibilityType value,unsigned attrSpellingListIndex)1967 static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range,
1968                               typename T::VisibilityType value,
1969                               unsigned attrSpellingListIndex) {
1970   T *existingAttr = D->getAttr<T>();
1971   if (existingAttr) {
1972     typename T::VisibilityType existingValue = existingAttr->getVisibility();
1973     if (existingValue == value)
1974       return nullptr;
1975     S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
1976     S.Diag(range.getBegin(), diag::note_previous_attribute);
1977     D->dropAttr<T>();
1978   }
1979   return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex);
1980 }
1981 
mergeVisibilityAttr(Decl * D,SourceRange Range,VisibilityAttr::VisibilityType Vis,unsigned AttrSpellingListIndex)1982 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range,
1983                                           VisibilityAttr::VisibilityType Vis,
1984                                           unsigned AttrSpellingListIndex) {
1985   return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, Range, Vis,
1986                                                AttrSpellingListIndex);
1987 }
1988 
mergeTypeVisibilityAttr(Decl * D,SourceRange Range,TypeVisibilityAttr::VisibilityType Vis,unsigned AttrSpellingListIndex)1989 TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range,
1990                                       TypeVisibilityAttr::VisibilityType Vis,
1991                                       unsigned AttrSpellingListIndex) {
1992   return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, Range, Vis,
1993                                                    AttrSpellingListIndex);
1994 }
1995 
handleVisibilityAttr(Sema & S,Decl * D,const AttributeList & Attr,bool isTypeVisibility)1996 static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr,
1997                                  bool isTypeVisibility) {
1998   // Visibility attributes don't mean anything on a typedef.
1999   if (isa<TypedefNameDecl>(D)) {
2000     S.Diag(Attr.getRange().getBegin(), diag::warn_attribute_ignored)
2001       << Attr.getName();
2002     return;
2003   }
2004 
2005   // 'type_visibility' can only go on a type or namespace.
2006   if (isTypeVisibility &&
2007       !(isa<TagDecl>(D) ||
2008         isa<ObjCInterfaceDecl>(D) ||
2009         isa<NamespaceDecl>(D))) {
2010     S.Diag(Attr.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2011       << Attr.getName() << ExpectedTypeOrNamespace;
2012     return;
2013   }
2014 
2015   // Check that the argument is a string literal.
2016   StringRef TypeStr;
2017   SourceLocation LiteralLoc;
2018   if (!S.checkStringLiteralArgumentAttr(Attr, 0, TypeStr, &LiteralLoc))
2019     return;
2020 
2021   VisibilityAttr::VisibilityType type;
2022   if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2023     S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
2024       << Attr.getName() << TypeStr;
2025     return;
2026   }
2027 
2028   // Complain about attempts to use protected visibility on targets
2029   // (like Darwin) that don't support it.
2030   if (type == VisibilityAttr::Protected &&
2031       !S.Context.getTargetInfo().hasProtectedVisibility()) {
2032     S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility);
2033     type = VisibilityAttr::Default;
2034   }
2035 
2036   unsigned Index = Attr.getAttributeSpellingListIndex();
2037   clang::Attr *newAttr;
2038   if (isTypeVisibility) {
2039     newAttr = S.mergeTypeVisibilityAttr(D, Attr.getRange(),
2040                                     (TypeVisibilityAttr::VisibilityType) type,
2041                                         Index);
2042   } else {
2043     newAttr = S.mergeVisibilityAttr(D, Attr.getRange(), type, Index);
2044   }
2045   if (newAttr)
2046     D->addAttr(newAttr);
2047 }
2048 
handleObjCMethodFamilyAttr(Sema & S,Decl * decl,const AttributeList & Attr)2049 static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
2050                                        const AttributeList &Attr) {
2051   ObjCMethodDecl *method = cast<ObjCMethodDecl>(decl);
2052   if (!Attr.isArgIdent(0)) {
2053     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2054       << Attr.getName() << 1 << AANT_ArgumentIdentifier;
2055     return;
2056   }
2057 
2058   IdentifierLoc *IL = Attr.getArgAsIdent(0);
2059   ObjCMethodFamilyAttr::FamilyKind F;
2060   if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
2061     S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << Attr.getName()
2062       << IL->Ident;
2063     return;
2064   }
2065 
2066   if (F == ObjCMethodFamilyAttr::OMF_init &&
2067       !method->getReturnType()->isObjCObjectPointerType()) {
2068     S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
2069         << method->getReturnType();
2070     // Ignore the attribute.
2071     return;
2072   }
2073 
2074   method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(),
2075                                                        S.Context, F,
2076                                         Attr.getAttributeSpellingListIndex()));
2077 }
2078 
handleObjCNSObject(Sema & S,Decl * D,const AttributeList & Attr)2079 static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
2080   if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
2081     QualType T = TD->getUnderlyingType();
2082     if (!T->isCARCBridgableType()) {
2083       S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2084       return;
2085     }
2086   }
2087   else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
2088     QualType T = PD->getType();
2089     if (!T->isCARCBridgableType()) {
2090       S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
2091       return;
2092     }
2093   }
2094   else {
2095     // It is okay to include this attribute on properties, e.g.:
2096     //
2097     //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2098     //
2099     // In this case it follows tradition and suppresses an error in the above
2100     // case.
2101     S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
2102   }
2103   D->addAttr(::new (S.Context)
2104              ObjCNSObjectAttr(Attr.getRange(), S.Context,
2105                               Attr.getAttributeSpellingListIndex()));
2106 }
2107 
handleBlocksAttr(Sema & S,Decl * D,const AttributeList & Attr)2108 static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2109   if (!Attr.isArgIdent(0)) {
2110     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2111       << Attr.getName() << 1 << AANT_ArgumentIdentifier;
2112     return;
2113   }
2114 
2115   IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident;
2116   BlocksAttr::BlockType type;
2117   if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
2118     S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
2119       << Attr.getName() << II;
2120     return;
2121   }
2122 
2123   D->addAttr(::new (S.Context)
2124              BlocksAttr(Attr.getRange(), S.Context, type,
2125                         Attr.getAttributeSpellingListIndex()));
2126 }
2127 
handleSentinelAttr(Sema & S,Decl * D,const AttributeList & Attr)2128 static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2129   unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
2130   if (Attr.getNumArgs() > 0) {
2131     Expr *E = Attr.getArgAsExpr(0);
2132     llvm::APSInt Idx(32);
2133     if (E->isTypeDependent() || E->isValueDependent() ||
2134         !E->isIntegerConstantExpr(Idx, S.Context)) {
2135       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2136         << Attr.getName() << 1 << AANT_ArgumentIntegerConstant
2137         << E->getSourceRange();
2138       return;
2139     }
2140 
2141     if (Idx.isSigned() && Idx.isNegative()) {
2142       S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2143         << E->getSourceRange();
2144       return;
2145     }
2146 
2147     sentinel = Idx.getZExtValue();
2148   }
2149 
2150   unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
2151   if (Attr.getNumArgs() > 1) {
2152     Expr *E = Attr.getArgAsExpr(1);
2153     llvm::APSInt Idx(32);
2154     if (E->isTypeDependent() || E->isValueDependent() ||
2155         !E->isIntegerConstantExpr(Idx, S.Context)) {
2156       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2157         << Attr.getName() << 2 << AANT_ArgumentIntegerConstant
2158         << E->getSourceRange();
2159       return;
2160     }
2161     nullPos = Idx.getZExtValue();
2162 
2163     if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
2164       // FIXME: This error message could be improved, it would be nice
2165       // to say what the bounds actually are.
2166       S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2167         << E->getSourceRange();
2168       return;
2169     }
2170   }
2171 
2172   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2173     const FunctionType *FT = FD->getType()->castAs<FunctionType>();
2174     if (isa<FunctionNoProtoType>(FT)) {
2175       S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
2176       return;
2177     }
2178 
2179     if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2180       S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2181       return;
2182     }
2183   } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
2184     if (!MD->isVariadic()) {
2185       S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2186       return;
2187     }
2188   } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
2189     if (!BD->isVariadic()) {
2190       S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
2191       return;
2192     }
2193   } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
2194     QualType Ty = V->getType();
2195     if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
2196       const FunctionType *FT = Ty->isFunctionPointerType()
2197        ? D->getFunctionType()
2198        : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
2199       if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2200         int m = Ty->isFunctionPointerType() ? 0 : 1;
2201         S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
2202         return;
2203       }
2204     } else {
2205       S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2206         << Attr.getName() << ExpectedFunctionMethodOrBlock;
2207       return;
2208     }
2209   } else {
2210     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2211       << Attr.getName() << ExpectedFunctionMethodOrBlock;
2212     return;
2213   }
2214   D->addAttr(::new (S.Context)
2215              SentinelAttr(Attr.getRange(), S.Context, sentinel, nullPos,
2216                           Attr.getAttributeSpellingListIndex()));
2217 }
2218 
handleWarnUnusedResult(Sema & S,Decl * D,const AttributeList & Attr)2219 static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
2220   if (D->getFunctionType() &&
2221       D->getFunctionType()->getReturnType()->isVoidType()) {
2222     S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
2223       << Attr.getName() << 0;
2224     return;
2225   }
2226   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
2227     if (MD->getReturnType()->isVoidType()) {
2228       S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
2229       << Attr.getName() << 1;
2230       return;
2231     }
2232 
2233   D->addAttr(::new (S.Context)
2234              WarnUnusedResultAttr(Attr.getRange(), S.Context,
2235                                   Attr.getAttributeSpellingListIndex()));
2236 }
2237 
handleWeakImportAttr(Sema & S,Decl * D,const AttributeList & Attr)2238 static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2239   // weak_import only applies to variable & function declarations.
2240   bool isDef = false;
2241   if (!D->canBeWeakImported(isDef)) {
2242     if (isDef)
2243       S.Diag(Attr.getLoc(), diag::warn_attribute_invalid_on_definition)
2244         << "weak_import";
2245     else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
2246              (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
2247               (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
2248       // Nothing to warn about here.
2249     } else
2250       S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2251         << Attr.getName() << ExpectedVariableOrFunction;
2252 
2253     return;
2254   }
2255 
2256   D->addAttr(::new (S.Context)
2257              WeakImportAttr(Attr.getRange(), S.Context,
2258                             Attr.getAttributeSpellingListIndex()));
2259 }
2260 
2261 // Handles reqd_work_group_size and work_group_size_hint.
2262 template <typename WorkGroupAttr>
handleWorkGroupSize(Sema & S,Decl * D,const AttributeList & Attr)2263 static void handleWorkGroupSize(Sema &S, Decl *D,
2264                                 const AttributeList &Attr) {
2265   uint32_t WGSize[3];
2266   for (unsigned i = 0; i < 3; ++i) {
2267     const Expr *E = Attr.getArgAsExpr(i);
2268     if (!checkUInt32Argument(S, Attr, E, WGSize[i], i))
2269       return;
2270     if (WGSize[i] == 0) {
2271       S.Diag(Attr.getLoc(), diag::err_attribute_argument_is_zero)
2272         << Attr.getName() << E->getSourceRange();
2273       return;
2274     }
2275   }
2276 
2277   WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
2278   if (Existing && !(Existing->getXDim() == WGSize[0] &&
2279                     Existing->getYDim() == WGSize[1] &&
2280                     Existing->getZDim() == WGSize[2]))
2281     S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
2282 
2283   D->addAttr(::new (S.Context) WorkGroupAttr(Attr.getRange(), S.Context,
2284                                              WGSize[0], WGSize[1], WGSize[2],
2285                                        Attr.getAttributeSpellingListIndex()));
2286 }
2287 
handleVecTypeHint(Sema & S,Decl * D,const AttributeList & Attr)2288 static void handleVecTypeHint(Sema &S, Decl *D, const AttributeList &Attr) {
2289   if (!Attr.hasParsedType()) {
2290     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
2291       << Attr.getName() << 1;
2292     return;
2293   }
2294 
2295   TypeSourceInfo *ParmTSI = nullptr;
2296   QualType ParmType = S.GetTypeFromParser(Attr.getTypeArg(), &ParmTSI);
2297   assert(ParmTSI && "no type source info for attribute argument");
2298 
2299   if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
2300       (ParmType->isBooleanType() ||
2301        !ParmType->isIntegralType(S.getASTContext()))) {
2302     S.Diag(Attr.getLoc(), diag::err_attribute_argument_vec_type_hint)
2303         << ParmType;
2304     return;
2305   }
2306 
2307   if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
2308     if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
2309       S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
2310       return;
2311     }
2312   }
2313 
2314   D->addAttr(::new (S.Context) VecTypeHintAttr(Attr.getLoc(), S.Context,
2315                                                ParmTSI,
2316                                         Attr.getAttributeSpellingListIndex()));
2317 }
2318 
mergeSectionAttr(Decl * D,SourceRange Range,StringRef Name,unsigned AttrSpellingListIndex)2319 SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range,
2320                                     StringRef Name,
2321                                     unsigned AttrSpellingListIndex) {
2322   if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
2323     if (ExistingAttr->getName() == Name)
2324       return nullptr;
2325     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section);
2326     Diag(Range.getBegin(), diag::note_previous_attribute);
2327     return nullptr;
2328   }
2329   return ::new (Context) SectionAttr(Range, Context, Name,
2330                                      AttrSpellingListIndex);
2331 }
2332 
handleSectionAttr(Sema & S,Decl * D,const AttributeList & Attr)2333 static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2334   // Make sure that there is a string literal as the sections's single
2335   // argument.
2336   StringRef Str;
2337   SourceLocation LiteralLoc;
2338   if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &LiteralLoc))
2339     return;
2340 
2341   // If the target wants to validate the section specifier, make it happen.
2342   std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str);
2343   if (!Error.empty()) {
2344     S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
2345     << Error;
2346     return;
2347   }
2348 
2349   unsigned Index = Attr.getAttributeSpellingListIndex();
2350   SectionAttr *NewAttr = S.mergeSectionAttr(D, Attr.getRange(), Str, Index);
2351   if (NewAttr)
2352     D->addAttr(NewAttr);
2353 }
2354 
2355 
handleCleanupAttr(Sema & S,Decl * D,const AttributeList & Attr)2356 static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2357   VarDecl *VD = cast<VarDecl>(D);
2358   if (!VD->hasLocalStorage()) {
2359     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2360     return;
2361   }
2362 
2363   Expr *E = Attr.getArgAsExpr(0);
2364   SourceLocation Loc = E->getExprLoc();
2365   FunctionDecl *FD = nullptr;
2366   DeclarationNameInfo NI;
2367 
2368   // gcc only allows for simple identifiers. Since we support more than gcc, we
2369   // will warn the user.
2370   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
2371     if (DRE->hasQualifier())
2372       S.Diag(Loc, diag::warn_cleanup_ext);
2373     FD = dyn_cast<FunctionDecl>(DRE->getDecl());
2374     NI = DRE->getNameInfo();
2375     if (!FD) {
2376       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
2377         << NI.getName();
2378       return;
2379     }
2380   } else if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
2381     if (ULE->hasExplicitTemplateArgs())
2382       S.Diag(Loc, diag::warn_cleanup_ext);
2383     FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
2384     NI = ULE->getNameInfo();
2385     if (!FD) {
2386       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
2387         << NI.getName();
2388       if (ULE->getType() == S.Context.OverloadTy)
2389         S.NoteAllOverloadCandidates(ULE);
2390       return;
2391     }
2392   } else {
2393     S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
2394     return;
2395   }
2396 
2397   if (FD->getNumParams() != 1) {
2398     S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
2399       << NI.getName();
2400     return;
2401   }
2402 
2403   // We're currently more strict than GCC about what function types we accept.
2404   // If this ever proves to be a problem it should be easy to fix.
2405   QualType Ty = S.Context.getPointerType(VD->getType());
2406   QualType ParamTy = FD->getParamDecl(0)->getType();
2407   if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
2408                                    ParamTy, Ty) != Sema::Compatible) {
2409     S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
2410       << NI.getName() << ParamTy << Ty;
2411     return;
2412   }
2413 
2414   D->addAttr(::new (S.Context)
2415              CleanupAttr(Attr.getRange(), S.Context, FD,
2416                          Attr.getAttributeSpellingListIndex()));
2417 }
2418 
2419 /// Handle __attribute__((format_arg((idx)))) attribute based on
2420 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
handleFormatArgAttr(Sema & S,Decl * D,const AttributeList & Attr)2421 static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2422   Expr *IdxExpr = Attr.getArgAsExpr(0);
2423   uint64_t Idx;
2424   if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 1, IdxExpr, Idx))
2425     return;
2426 
2427   // make sure the format string is really a string
2428   QualType Ty = getFunctionOrMethodParamType(D, Idx);
2429 
2430   bool not_nsstring_type = !isNSStringType(Ty, S.Context);
2431   if (not_nsstring_type &&
2432       !isCFStringType(Ty, S.Context) &&
2433       (!Ty->isPointerType() ||
2434        !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2435     S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2436         << (not_nsstring_type ? "a string type" : "an NSString")
2437         << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
2438     return;
2439   }
2440   Ty = getFunctionOrMethodResultType(D);
2441   if (!isNSStringType(Ty, S.Context) &&
2442       !isCFStringType(Ty, S.Context) &&
2443       (!Ty->isPointerType() ||
2444        !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2445     S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
2446         << (not_nsstring_type ? "string type" : "NSString")
2447         << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
2448     return;
2449   }
2450 
2451   // We cannot use the Idx returned from checkFunctionOrMethodParameterIndex
2452   // because that has corrected for the implicit this parameter, and is zero-
2453   // based.  The attribute expects what the user wrote explicitly.
2454   llvm::APSInt Val;
2455   IdxExpr->EvaluateAsInt(Val, S.Context);
2456 
2457   D->addAttr(::new (S.Context)
2458              FormatArgAttr(Attr.getRange(), S.Context, Val.getZExtValue(),
2459                            Attr.getAttributeSpellingListIndex()));
2460 }
2461 
2462 enum FormatAttrKind {
2463   CFStringFormat,
2464   NSStringFormat,
2465   StrftimeFormat,
2466   SupportedFormat,
2467   IgnoredFormat,
2468   InvalidFormat
2469 };
2470 
2471 /// getFormatAttrKind - Map from format attribute names to supported format
2472 /// types.
getFormatAttrKind(StringRef Format)2473 static FormatAttrKind getFormatAttrKind(StringRef Format) {
2474   return llvm::StringSwitch<FormatAttrKind>(Format)
2475     // Check for formats that get handled specially.
2476     .Case("NSString", NSStringFormat)
2477     .Case("CFString", CFStringFormat)
2478     .Case("strftime", StrftimeFormat)
2479 
2480     // Otherwise, check for supported formats.
2481     .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
2482     .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
2483     .Case("kprintf", SupportedFormat) // OpenBSD.
2484 
2485     .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
2486     .Default(InvalidFormat);
2487 }
2488 
2489 /// Handle __attribute__((init_priority(priority))) attributes based on
2490 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
handleInitPriorityAttr(Sema & S,Decl * D,const AttributeList & Attr)2491 static void handleInitPriorityAttr(Sema &S, Decl *D,
2492                                    const AttributeList &Attr) {
2493   if (!S.getLangOpts().CPlusPlus) {
2494     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2495     return;
2496   }
2497 
2498   if (S.getCurFunctionOrMethodDecl()) {
2499     S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
2500     Attr.setInvalid();
2501     return;
2502   }
2503   QualType T = cast<VarDecl>(D)->getType();
2504   if (S.Context.getAsArrayType(T))
2505     T = S.Context.getBaseElementType(T);
2506   if (!T->getAs<RecordType>()) {
2507     S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
2508     Attr.setInvalid();
2509     return;
2510   }
2511 
2512   Expr *E = Attr.getArgAsExpr(0);
2513   uint32_t prioritynum;
2514   if (!checkUInt32Argument(S, Attr, E, prioritynum)) {
2515     Attr.setInvalid();
2516     return;
2517   }
2518 
2519   if (prioritynum < 101 || prioritynum > 65535) {
2520     S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
2521       << E->getSourceRange();
2522     Attr.setInvalid();
2523     return;
2524   }
2525   D->addAttr(::new (S.Context)
2526              InitPriorityAttr(Attr.getRange(), S.Context, prioritynum,
2527                               Attr.getAttributeSpellingListIndex()));
2528 }
2529 
mergeFormatAttr(Decl * D,SourceRange Range,IdentifierInfo * Format,int FormatIdx,int FirstArg,unsigned AttrSpellingListIndex)2530 FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range,
2531                                   IdentifierInfo *Format, int FormatIdx,
2532                                   int FirstArg,
2533                                   unsigned AttrSpellingListIndex) {
2534   // Check whether we already have an equivalent format attribute.
2535   for (auto *F : D->specific_attrs<FormatAttr>()) {
2536     if (F->getType() == Format &&
2537         F->getFormatIdx() == FormatIdx &&
2538         F->getFirstArg() == FirstArg) {
2539       // If we don't have a valid location for this attribute, adopt the
2540       // location.
2541       if (F->getLocation().isInvalid())
2542         F->setRange(Range);
2543       return nullptr;
2544     }
2545   }
2546 
2547   return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx,
2548                                     FirstArg, AttrSpellingListIndex);
2549 }
2550 
2551 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
2552 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
handleFormatAttr(Sema & S,Decl * D,const AttributeList & Attr)2553 static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2554   if (!Attr.isArgIdent(0)) {
2555     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2556       << Attr.getName() << 1 << AANT_ArgumentIdentifier;
2557     return;
2558   }
2559 
2560   // In C++ the implicit 'this' function parameter also counts, and they are
2561   // counted from one.
2562   bool HasImplicitThisParam = isInstanceMethod(D);
2563   unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
2564 
2565   IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident;
2566   StringRef Format = II->getName();
2567 
2568   // Normalize the argument, __foo__ becomes foo.
2569   if (Format.startswith("__") && Format.endswith("__")) {
2570     Format = Format.substr(2, Format.size() - 4);
2571     // If we've modified the string name, we need a new identifier for it.
2572     II = &S.Context.Idents.get(Format);
2573   }
2574 
2575   // Check for supported formats.
2576   FormatAttrKind Kind = getFormatAttrKind(Format);
2577 
2578   if (Kind == IgnoredFormat)
2579     return;
2580 
2581   if (Kind == InvalidFormat) {
2582     S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
2583       << Attr.getName() << II->getName();
2584     return;
2585   }
2586 
2587   // checks for the 2nd argument
2588   Expr *IdxExpr = Attr.getArgAsExpr(1);
2589   uint32_t Idx;
2590   if (!checkUInt32Argument(S, Attr, IdxExpr, Idx, 2))
2591     return;
2592 
2593   if (Idx < 1 || Idx > NumArgs) {
2594     S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2595       << Attr.getName() << 2 << IdxExpr->getSourceRange();
2596     return;
2597   }
2598 
2599   // FIXME: Do we need to bounds check?
2600   unsigned ArgIdx = Idx - 1;
2601 
2602   if (HasImplicitThisParam) {
2603     if (ArgIdx == 0) {
2604       S.Diag(Attr.getLoc(),
2605              diag::err_format_attribute_implicit_this_format_string)
2606         << IdxExpr->getSourceRange();
2607       return;
2608     }
2609     ArgIdx--;
2610   }
2611 
2612   // make sure the format string is really a string
2613   QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
2614 
2615   if (Kind == CFStringFormat) {
2616     if (!isCFStringType(Ty, S.Context)) {
2617       S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2618         << "a CFString" << IdxExpr->getSourceRange()
2619         << getFunctionOrMethodParamRange(D, ArgIdx);
2620       return;
2621     }
2622   } else if (Kind == NSStringFormat) {
2623     // FIXME: do we need to check if the type is NSString*?  What are the
2624     // semantics?
2625     if (!isNSStringType(Ty, S.Context)) {
2626       S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2627         << "an NSString" << IdxExpr->getSourceRange()
2628         << getFunctionOrMethodParamRange(D, ArgIdx);
2629       return;
2630     }
2631   } else if (!Ty->isPointerType() ||
2632              !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
2633     S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2634       << "a string type" << IdxExpr->getSourceRange()
2635       << getFunctionOrMethodParamRange(D, ArgIdx);
2636     return;
2637   }
2638 
2639   // check the 3rd argument
2640   Expr *FirstArgExpr = Attr.getArgAsExpr(2);
2641   uint32_t FirstArg;
2642   if (!checkUInt32Argument(S, Attr, FirstArgExpr, FirstArg, 3))
2643     return;
2644 
2645   // check if the function is variadic if the 3rd argument non-zero
2646   if (FirstArg != 0) {
2647     if (isFunctionOrMethodVariadic(D)) {
2648       ++NumArgs; // +1 for ...
2649     } else {
2650       S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
2651       return;
2652     }
2653   }
2654 
2655   // strftime requires FirstArg to be 0 because it doesn't read from any
2656   // variable the input is just the current time + the format string.
2657   if (Kind == StrftimeFormat) {
2658     if (FirstArg != 0) {
2659       S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
2660         << FirstArgExpr->getSourceRange();
2661       return;
2662     }
2663   // if 0 it disables parameter checking (to use with e.g. va_list)
2664   } else if (FirstArg != 0 && FirstArg != NumArgs) {
2665     S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2666       << Attr.getName() << 3 << FirstArgExpr->getSourceRange();
2667     return;
2668   }
2669 
2670   FormatAttr *NewAttr = S.mergeFormatAttr(D, Attr.getRange(), II,
2671                                           Idx, FirstArg,
2672                                           Attr.getAttributeSpellingListIndex());
2673   if (NewAttr)
2674     D->addAttr(NewAttr);
2675 }
2676 
handleTransparentUnionAttr(Sema & S,Decl * D,const AttributeList & Attr)2677 static void handleTransparentUnionAttr(Sema &S, Decl *D,
2678                                        const AttributeList &Attr) {
2679   // Try to find the underlying union declaration.
2680   RecordDecl *RD = nullptr;
2681   TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
2682   if (TD && TD->getUnderlyingType()->isUnionType())
2683     RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
2684   else
2685     RD = dyn_cast<RecordDecl>(D);
2686 
2687   if (!RD || !RD->isUnion()) {
2688     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2689       << Attr.getName() << ExpectedUnion;
2690     return;
2691   }
2692 
2693   if (!RD->isCompleteDefinition()) {
2694     S.Diag(Attr.getLoc(),
2695         diag::warn_transparent_union_attribute_not_definition);
2696     return;
2697   }
2698 
2699   RecordDecl::field_iterator Field = RD->field_begin(),
2700                           FieldEnd = RD->field_end();
2701   if (Field == FieldEnd) {
2702     S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
2703     return;
2704   }
2705 
2706   FieldDecl *FirstField = *Field;
2707   QualType FirstType = FirstField->getType();
2708   if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
2709     S.Diag(FirstField->getLocation(),
2710            diag::warn_transparent_union_attribute_floating)
2711       << FirstType->isVectorType() << FirstType;
2712     return;
2713   }
2714 
2715   uint64_t FirstSize = S.Context.getTypeSize(FirstType);
2716   uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
2717   for (; Field != FieldEnd; ++Field) {
2718     QualType FieldType = Field->getType();
2719     // FIXME: this isn't fully correct; we also need to test whether the
2720     // members of the union would all have the same calling convention as the
2721     // first member of the union. Checking just the size and alignment isn't
2722     // sufficient (consider structs passed on the stack instead of in registers
2723     // as an example).
2724     if (S.Context.getTypeSize(FieldType) != FirstSize ||
2725         S.Context.getTypeAlign(FieldType) > FirstAlign) {
2726       // Warn if we drop the attribute.
2727       bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
2728       unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
2729                                  : S.Context.getTypeAlign(FieldType);
2730       S.Diag(Field->getLocation(),
2731           diag::warn_transparent_union_attribute_field_size_align)
2732         << isSize << Field->getDeclName() << FieldBits;
2733       unsigned FirstBits = isSize? FirstSize : FirstAlign;
2734       S.Diag(FirstField->getLocation(),
2735              diag::note_transparent_union_first_field_size_align)
2736         << isSize << FirstBits;
2737       return;
2738     }
2739   }
2740 
2741   RD->addAttr(::new (S.Context)
2742               TransparentUnionAttr(Attr.getRange(), S.Context,
2743                                    Attr.getAttributeSpellingListIndex()));
2744 }
2745 
handleAnnotateAttr(Sema & S,Decl * D,const AttributeList & Attr)2746 static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2747   // Make sure that there is a string literal as the annotation's single
2748   // argument.
2749   StringRef Str;
2750   if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
2751     return;
2752 
2753   // Don't duplicate annotations that are already set.
2754   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2755     if (I->getAnnotation() == Str)
2756       return;
2757   }
2758 
2759   D->addAttr(::new (S.Context)
2760              AnnotateAttr(Attr.getRange(), S.Context, Str,
2761                           Attr.getAttributeSpellingListIndex()));
2762 }
2763 
handleAlignValueAttr(Sema & S,Decl * D,const AttributeList & Attr)2764 static void handleAlignValueAttr(Sema &S, Decl *D,
2765                                  const AttributeList &Attr) {
2766   S.AddAlignValueAttr(Attr.getRange(), D, Attr.getArgAsExpr(0),
2767                       Attr.getAttributeSpellingListIndex());
2768 }
2769 
AddAlignValueAttr(SourceRange AttrRange,Decl * D,Expr * E,unsigned SpellingListIndex)2770 void Sema::AddAlignValueAttr(SourceRange AttrRange, Decl *D, Expr *E,
2771                              unsigned SpellingListIndex) {
2772   AlignValueAttr TmpAttr(AttrRange, Context, E, SpellingListIndex);
2773   SourceLocation AttrLoc = AttrRange.getBegin();
2774 
2775   QualType T;
2776   if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
2777     T = TD->getUnderlyingType();
2778   else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
2779     T = VD->getType();
2780   else
2781     llvm_unreachable("Unknown decl type for align_value");
2782 
2783   if (!T->isDependentType() && !T->isAnyPointerType() &&
2784       !T->isReferenceType() && !T->isMemberPointerType()) {
2785     Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
2786       << &TmpAttr /*TmpAttr.getName()*/ << T << D->getSourceRange();
2787     return;
2788   }
2789 
2790   if (!E->isValueDependent()) {
2791     llvm::APSInt Alignment(32);
2792     ExprResult ICE
2793       = VerifyIntegerConstantExpression(E, &Alignment,
2794           diag::err_align_value_attribute_argument_not_int,
2795             /*AllowFold*/ false);
2796     if (ICE.isInvalid())
2797       return;
2798 
2799     if (!Alignment.isPowerOf2()) {
2800       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
2801         << E->getSourceRange();
2802       return;
2803     }
2804 
2805     D->addAttr(::new (Context)
2806                AlignValueAttr(AttrRange, Context, ICE.get(),
2807                SpellingListIndex));
2808     return;
2809   }
2810 
2811   // Save dependent expressions in the AST to be instantiated.
2812   D->addAttr(::new (Context) AlignValueAttr(TmpAttr));
2813   return;
2814 }
2815 
handleAlignedAttr(Sema & S,Decl * D,const AttributeList & Attr)2816 static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2817   // check the attribute arguments.
2818   if (Attr.getNumArgs() > 1) {
2819     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
2820       << Attr.getName() << 1;
2821     return;
2822   }
2823 
2824   if (Attr.getNumArgs() == 0) {
2825     D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context,
2826                true, nullptr, Attr.getAttributeSpellingListIndex()));
2827     return;
2828   }
2829 
2830   Expr *E = Attr.getArgAsExpr(0);
2831   if (Attr.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
2832     S.Diag(Attr.getEllipsisLoc(),
2833            diag::err_pack_expansion_without_parameter_packs);
2834     return;
2835   }
2836 
2837   if (!Attr.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
2838     return;
2839 
2840   S.AddAlignedAttr(Attr.getRange(), D, E, Attr.getAttributeSpellingListIndex(),
2841                    Attr.isPackExpansion());
2842 }
2843 
AddAlignedAttr(SourceRange AttrRange,Decl * D,Expr * E,unsigned SpellingListIndex,bool IsPackExpansion)2844 void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
2845                           unsigned SpellingListIndex, bool IsPackExpansion) {
2846   AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex);
2847   SourceLocation AttrLoc = AttrRange.getBegin();
2848 
2849   // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
2850   if (TmpAttr.isAlignas()) {
2851     // C++11 [dcl.align]p1:
2852     //   An alignment-specifier may be applied to a variable or to a class
2853     //   data member, but it shall not be applied to a bit-field, a function
2854     //   parameter, the formal parameter of a catch clause, or a variable
2855     //   declared with the register storage class specifier. An
2856     //   alignment-specifier may also be applied to the declaration of a class
2857     //   or enumeration type.
2858     // C11 6.7.5/2:
2859     //   An alignment attribute shall not be specified in a declaration of
2860     //   a typedef, or a bit-field, or a function, or a parameter, or an
2861     //   object declared with the register storage-class specifier.
2862     int DiagKind = -1;
2863     if (isa<ParmVarDecl>(D)) {
2864       DiagKind = 0;
2865     } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2866       if (VD->getStorageClass() == SC_Register)
2867         DiagKind = 1;
2868       if (VD->isExceptionVariable())
2869         DiagKind = 2;
2870     } else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
2871       if (FD->isBitField())
2872         DiagKind = 3;
2873     } else if (!isa<TagDecl>(D)) {
2874       Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
2875         << (TmpAttr.isC11() ? ExpectedVariableOrField
2876                             : ExpectedVariableFieldOrTag);
2877       return;
2878     }
2879     if (DiagKind != -1) {
2880       Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
2881         << &TmpAttr << DiagKind;
2882       return;
2883     }
2884   }
2885 
2886   if (E->isTypeDependent() || E->isValueDependent()) {
2887     // Save dependent expressions in the AST to be instantiated.
2888     AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr);
2889     AA->setPackExpansion(IsPackExpansion);
2890     D->addAttr(AA);
2891     return;
2892   }
2893 
2894   // FIXME: Cache the number on the Attr object?
2895   llvm::APSInt Alignment(32);
2896   ExprResult ICE
2897     = VerifyIntegerConstantExpression(E, &Alignment,
2898         diag::err_aligned_attribute_argument_not_int,
2899         /*AllowFold*/ false);
2900   if (ICE.isInvalid())
2901     return;
2902 
2903   // C++11 [dcl.align]p2:
2904   //   -- if the constant expression evaluates to zero, the alignment
2905   //      specifier shall have no effect
2906   // C11 6.7.5p6:
2907   //   An alignment specification of zero has no effect.
2908   if (!(TmpAttr.isAlignas() && !Alignment) &&
2909       !llvm::isPowerOf2_64(Alignment.getZExtValue())) {
2910     Diag(AttrLoc, diag::err_alignment_not_power_of_two)
2911       << E->getSourceRange();
2912     return;
2913   }
2914 
2915   // Alignment calculations can wrap around if it's greater than 2**28.
2916   unsigned MaxValidAlignment = TmpAttr.isDeclspec() ? 8192 : 268435456;
2917   if (Alignment.getZExtValue() > MaxValidAlignment) {
2918     Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaxValidAlignment
2919                                                          << E->getSourceRange();
2920     return;
2921   }
2922 
2923   AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true,
2924                                                 ICE.get(), SpellingListIndex);
2925   AA->setPackExpansion(IsPackExpansion);
2926   D->addAttr(AA);
2927 }
2928 
AddAlignedAttr(SourceRange AttrRange,Decl * D,TypeSourceInfo * TS,unsigned SpellingListIndex,bool IsPackExpansion)2929 void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS,
2930                           unsigned SpellingListIndex, bool IsPackExpansion) {
2931   // FIXME: Cache the number on the Attr object if non-dependent?
2932   // FIXME: Perform checking of type validity
2933   AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS,
2934                                                 SpellingListIndex);
2935   AA->setPackExpansion(IsPackExpansion);
2936   D->addAttr(AA);
2937 }
2938 
CheckAlignasUnderalignment(Decl * D)2939 void Sema::CheckAlignasUnderalignment(Decl *D) {
2940   assert(D->hasAttrs() && "no attributes on decl");
2941 
2942   QualType Ty;
2943   if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
2944     Ty = VD->getType();
2945   else
2946     Ty = Context.getTagDeclType(cast<TagDecl>(D));
2947   if (Ty->isDependentType() || Ty->isIncompleteType())
2948     return;
2949 
2950   // C++11 [dcl.align]p5, C11 6.7.5/4:
2951   //   The combined effect of all alignment attributes in a declaration shall
2952   //   not specify an alignment that is less strict than the alignment that
2953   //   would otherwise be required for the entity being declared.
2954   AlignedAttr *AlignasAttr = nullptr;
2955   unsigned Align = 0;
2956   for (auto *I : D->specific_attrs<AlignedAttr>()) {
2957     if (I->isAlignmentDependent())
2958       return;
2959     if (I->isAlignas())
2960       AlignasAttr = I;
2961     Align = std::max(Align, I->getAlignment(Context));
2962   }
2963 
2964   if (AlignasAttr && Align) {
2965     CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
2966     CharUnits NaturalAlign = Context.getTypeAlignInChars(Ty);
2967     if (NaturalAlign > RequestedAlign)
2968       Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
2969         << Ty << (unsigned)NaturalAlign.getQuantity();
2970   }
2971 }
2972 
checkMSInheritanceAttrOnDefinition(CXXRecordDecl * RD,SourceRange Range,bool BestCase,MSInheritanceAttr::Spelling SemanticSpelling)2973 bool Sema::checkMSInheritanceAttrOnDefinition(
2974     CXXRecordDecl *RD, SourceRange Range, bool BestCase,
2975     MSInheritanceAttr::Spelling SemanticSpelling) {
2976   assert(RD->hasDefinition() && "RD has no definition!");
2977 
2978   // We may not have seen base specifiers or any virtual methods yet.  We will
2979   // have to wait until the record is defined to catch any mismatches.
2980   if (!RD->getDefinition()->isCompleteDefinition())
2981     return false;
2982 
2983   // The unspecified model never matches what a definition could need.
2984   if (SemanticSpelling == MSInheritanceAttr::Keyword_unspecified_inheritance)
2985     return false;
2986 
2987   if (BestCase) {
2988     if (RD->calculateInheritanceModel() == SemanticSpelling)
2989       return false;
2990   } else {
2991     if (RD->calculateInheritanceModel() <= SemanticSpelling)
2992       return false;
2993   }
2994 
2995   Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
2996       << 0 /*definition*/;
2997   Diag(RD->getDefinition()->getLocation(), diag::note_defined_here)
2998       << RD->getNameAsString();
2999   return true;
3000 }
3001 
3002 /// handleModeAttr - This attribute modifies the width of a decl with primitive
3003 /// type.
3004 ///
3005 /// Despite what would be logical, the mode attribute is a decl attribute, not a
3006 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
3007 /// HImode, not an intermediate pointer.
handleModeAttr(Sema & S,Decl * D,const AttributeList & Attr)3008 static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3009   // This attribute isn't documented, but glibc uses it.  It changes
3010   // the width of an int or unsigned int to the specified size.
3011   if (!Attr.isArgIdent(0)) {
3012     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
3013       << AANT_ArgumentIdentifier;
3014     return;
3015   }
3016 
3017   IdentifierInfo *Name = Attr.getArgAsIdent(0)->Ident;
3018   StringRef Str = Name->getName();
3019 
3020   // Normalize the attribute name, __foo__ becomes foo.
3021   if (Str.startswith("__") && Str.endswith("__"))
3022     Str = Str.substr(2, Str.size() - 4);
3023 
3024   unsigned DestWidth = 0;
3025   bool IntegerMode = true;
3026   bool ComplexMode = false;
3027   switch (Str.size()) {
3028   case 2:
3029     switch (Str[0]) {
3030     case 'Q': DestWidth = 8; break;
3031     case 'H': DestWidth = 16; break;
3032     case 'S': DestWidth = 32; break;
3033     case 'D': DestWidth = 64; break;
3034     case 'X': DestWidth = 96; break;
3035     case 'T': DestWidth = 128; break;
3036     }
3037     if (Str[1] == 'F') {
3038       IntegerMode = false;
3039     } else if (Str[1] == 'C') {
3040       IntegerMode = false;
3041       ComplexMode = true;
3042     } else if (Str[1] != 'I') {
3043       DestWidth = 0;
3044     }
3045     break;
3046   case 4:
3047     // FIXME: glibc uses 'word' to define register_t; this is narrower than a
3048     // pointer on PIC16 and other embedded platforms.
3049     if (Str == "word")
3050       DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
3051     else if (Str == "byte")
3052       DestWidth = S.Context.getTargetInfo().getCharWidth();
3053     break;
3054   case 7:
3055     if (Str == "pointer")
3056       DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
3057     break;
3058   case 11:
3059     if (Str == "unwind_word")
3060       DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
3061     break;
3062   }
3063 
3064   QualType OldTy;
3065   if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
3066     OldTy = TD->getUnderlyingType();
3067   else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
3068     OldTy = VD->getType();
3069   else {
3070     S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
3071       << Attr.getName() << Attr.getRange();
3072     return;
3073   }
3074 
3075   if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
3076     S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
3077   else if (IntegerMode) {
3078     if (!OldTy->isIntegralOrEnumerationType())
3079       S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
3080   } else if (ComplexMode) {
3081     if (!OldTy->isComplexType())
3082       S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
3083   } else {
3084     if (!OldTy->isFloatingType())
3085       S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
3086   }
3087 
3088   // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
3089   // and friends, at least with glibc.
3090   // FIXME: Make sure floating-point mappings are accurate
3091   // FIXME: Support XF and TF types
3092   if (!DestWidth) {
3093     S.Diag(Attr.getLoc(), diag::err_machine_mode) << 0 /*Unknown*/ << Name;
3094     return;
3095   }
3096 
3097   QualType NewTy;
3098 
3099   if (IntegerMode)
3100     NewTy = S.Context.getIntTypeForBitwidth(DestWidth,
3101                                             OldTy->isSignedIntegerType());
3102   else
3103     NewTy = S.Context.getRealTypeForBitwidth(DestWidth);
3104 
3105   if (NewTy.isNull()) {
3106     S.Diag(Attr.getLoc(), diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
3107     return;
3108   }
3109 
3110   if (ComplexMode) {
3111     NewTy = S.Context.getComplexType(NewTy);
3112   }
3113 
3114   // Install the new type.
3115   if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
3116     TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
3117   else
3118     cast<ValueDecl>(D)->setType(NewTy);
3119 
3120   D->addAttr(::new (S.Context)
3121              ModeAttr(Attr.getRange(), S.Context, Name,
3122                       Attr.getAttributeSpellingListIndex()));
3123 }
3124 
handleNoDebugAttr(Sema & S,Decl * D,const AttributeList & Attr)3125 static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3126   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3127     if (!VD->hasGlobalStorage())
3128       S.Diag(Attr.getLoc(),
3129              diag::warn_attribute_requires_functions_or_static_globals)
3130         << Attr.getName();
3131   } else if (!isFunctionOrMethod(D)) {
3132     S.Diag(Attr.getLoc(),
3133            diag::warn_attribute_requires_functions_or_static_globals)
3134       << Attr.getName();
3135     return;
3136   }
3137 
3138   D->addAttr(::new (S.Context)
3139              NoDebugAttr(Attr.getRange(), S.Context,
3140                          Attr.getAttributeSpellingListIndex()));
3141 }
3142 
mergeAlwaysInlineAttr(Decl * D,SourceRange Range,IdentifierInfo * Ident,unsigned AttrSpellingListIndex)3143 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, SourceRange Range,
3144                                               IdentifierInfo *Ident,
3145                                               unsigned AttrSpellingListIndex) {
3146   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
3147     Diag(Range.getBegin(), diag::warn_attribute_ignored) << Ident;
3148     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
3149     return nullptr;
3150   }
3151 
3152   if (D->hasAttr<AlwaysInlineAttr>())
3153     return nullptr;
3154 
3155   return ::new (Context) AlwaysInlineAttr(Range, Context,
3156                                           AttrSpellingListIndex);
3157 }
3158 
mergeMinSizeAttr(Decl * D,SourceRange Range,unsigned AttrSpellingListIndex)3159 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, SourceRange Range,
3160                                     unsigned AttrSpellingListIndex) {
3161   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
3162     Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'minsize'";
3163     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
3164     return nullptr;
3165   }
3166 
3167   if (D->hasAttr<MinSizeAttr>())
3168     return nullptr;
3169 
3170   return ::new (Context) MinSizeAttr(Range, Context, AttrSpellingListIndex);
3171 }
3172 
mergeOptimizeNoneAttr(Decl * D,SourceRange Range,unsigned AttrSpellingListIndex)3173 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, SourceRange Range,
3174                                               unsigned AttrSpellingListIndex) {
3175   if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
3176     Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
3177     Diag(Range.getBegin(), diag::note_conflicting_attribute);
3178     D->dropAttr<AlwaysInlineAttr>();
3179   }
3180   if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
3181     Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
3182     Diag(Range.getBegin(), diag::note_conflicting_attribute);
3183     D->dropAttr<MinSizeAttr>();
3184   }
3185 
3186   if (D->hasAttr<OptimizeNoneAttr>())
3187     return nullptr;
3188 
3189   return ::new (Context) OptimizeNoneAttr(Range, Context,
3190                                           AttrSpellingListIndex);
3191 }
3192 
handleAlwaysInlineAttr(Sema & S,Decl * D,const AttributeList & Attr)3193 static void handleAlwaysInlineAttr(Sema &S, Decl *D,
3194                                    const AttributeList &Attr) {
3195   if (AlwaysInlineAttr *Inline = S.mergeAlwaysInlineAttr(
3196           D, Attr.getRange(), Attr.getName(),
3197           Attr.getAttributeSpellingListIndex()))
3198     D->addAttr(Inline);
3199 }
3200 
handleMinSizeAttr(Sema & S,Decl * D,const AttributeList & Attr)3201 static void handleMinSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3202   if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(
3203           D, Attr.getRange(), Attr.getAttributeSpellingListIndex()))
3204     D->addAttr(MinSize);
3205 }
3206 
handleOptimizeNoneAttr(Sema & S,Decl * D,const AttributeList & Attr)3207 static void handleOptimizeNoneAttr(Sema &S, Decl *D,
3208                                    const AttributeList &Attr) {
3209   if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(
3210           D, Attr.getRange(), Attr.getAttributeSpellingListIndex()))
3211     D->addAttr(Optnone);
3212 }
3213 
handleGlobalAttr(Sema & S,Decl * D,const AttributeList & Attr)3214 static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3215   FunctionDecl *FD = cast<FunctionDecl>(D);
3216   if (!FD->getReturnType()->isVoidType()) {
3217     SourceRange RTRange = FD->getReturnTypeSourceRange();
3218     S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
3219         << FD->getType()
3220         << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
3221                               : FixItHint());
3222     return;
3223   }
3224 
3225   D->addAttr(::new (S.Context)
3226               CUDAGlobalAttr(Attr.getRange(), S.Context,
3227                              Attr.getAttributeSpellingListIndex()));
3228 }
3229 
handleGNUInlineAttr(Sema & S,Decl * D,const AttributeList & Attr)3230 static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3231   FunctionDecl *Fn = cast<FunctionDecl>(D);
3232   if (!Fn->isInlineSpecified()) {
3233     S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
3234     return;
3235   }
3236 
3237   D->addAttr(::new (S.Context)
3238              GNUInlineAttr(Attr.getRange(), S.Context,
3239                            Attr.getAttributeSpellingListIndex()));
3240 }
3241 
handleCallConvAttr(Sema & S,Decl * D,const AttributeList & Attr)3242 static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3243   if (hasDeclarator(D)) return;
3244 
3245   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3246   // Diagnostic is emitted elsewhere: here we store the (valid) Attr
3247   // in the Decl node for syntactic reasoning, e.g., pretty-printing.
3248   CallingConv CC;
3249   if (S.CheckCallingConvAttr(Attr, CC, FD))
3250     return;
3251 
3252   if (!isa<ObjCMethodDecl>(D)) {
3253     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3254       << Attr.getName() << ExpectedFunctionOrMethod;
3255     return;
3256   }
3257 
3258   switch (Attr.getKind()) {
3259   case AttributeList::AT_FastCall:
3260     D->addAttr(::new (S.Context)
3261                FastCallAttr(Attr.getRange(), S.Context,
3262                             Attr.getAttributeSpellingListIndex()));
3263     return;
3264   case AttributeList::AT_StdCall:
3265     D->addAttr(::new (S.Context)
3266                StdCallAttr(Attr.getRange(), S.Context,
3267                            Attr.getAttributeSpellingListIndex()));
3268     return;
3269   case AttributeList::AT_ThisCall:
3270     D->addAttr(::new (S.Context)
3271                ThisCallAttr(Attr.getRange(), S.Context,
3272                             Attr.getAttributeSpellingListIndex()));
3273     return;
3274   case AttributeList::AT_CDecl:
3275     D->addAttr(::new (S.Context)
3276                CDeclAttr(Attr.getRange(), S.Context,
3277                          Attr.getAttributeSpellingListIndex()));
3278     return;
3279   case AttributeList::AT_Pascal:
3280     D->addAttr(::new (S.Context)
3281                PascalAttr(Attr.getRange(), S.Context,
3282                           Attr.getAttributeSpellingListIndex()));
3283     return;
3284   case AttributeList::AT_VectorCall:
3285     D->addAttr(::new (S.Context)
3286                VectorCallAttr(Attr.getRange(), S.Context,
3287                               Attr.getAttributeSpellingListIndex()));
3288     return;
3289   case AttributeList::AT_MSABI:
3290     D->addAttr(::new (S.Context)
3291                MSABIAttr(Attr.getRange(), S.Context,
3292                          Attr.getAttributeSpellingListIndex()));
3293     return;
3294   case AttributeList::AT_SysVABI:
3295     D->addAttr(::new (S.Context)
3296                SysVABIAttr(Attr.getRange(), S.Context,
3297                            Attr.getAttributeSpellingListIndex()));
3298     return;
3299   case AttributeList::AT_Pcs: {
3300     PcsAttr::PCSType PCS;
3301     switch (CC) {
3302     case CC_AAPCS:
3303       PCS = PcsAttr::AAPCS;
3304       break;
3305     case CC_AAPCS_VFP:
3306       PCS = PcsAttr::AAPCS_VFP;
3307       break;
3308     default:
3309       llvm_unreachable("unexpected calling convention in pcs attribute");
3310     }
3311 
3312     D->addAttr(::new (S.Context)
3313                PcsAttr(Attr.getRange(), S.Context, PCS,
3314                        Attr.getAttributeSpellingListIndex()));
3315     return;
3316   }
3317   case AttributeList::AT_PnaclCall:
3318     D->addAttr(::new (S.Context)
3319                PnaclCallAttr(Attr.getRange(), S.Context,
3320                              Attr.getAttributeSpellingListIndex()));
3321     return;
3322   case AttributeList::AT_IntelOclBicc:
3323     D->addAttr(::new (S.Context)
3324                IntelOclBiccAttr(Attr.getRange(), S.Context,
3325                                 Attr.getAttributeSpellingListIndex()));
3326     return;
3327 
3328   default:
3329     llvm_unreachable("unexpected attribute kind");
3330   }
3331 }
3332 
CheckCallingConvAttr(const AttributeList & attr,CallingConv & CC,const FunctionDecl * FD)3333 bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC,
3334                                 const FunctionDecl *FD) {
3335   if (attr.isInvalid())
3336     return true;
3337 
3338   unsigned ReqArgs = attr.getKind() == AttributeList::AT_Pcs ? 1 : 0;
3339   if (!checkAttributeNumArgs(*this, attr, ReqArgs)) {
3340     attr.setInvalid();
3341     return true;
3342   }
3343 
3344   // TODO: diagnose uses of these conventions on the wrong target.
3345   switch (attr.getKind()) {
3346   case AttributeList::AT_CDecl: CC = CC_C; break;
3347   case AttributeList::AT_FastCall: CC = CC_X86FastCall; break;
3348   case AttributeList::AT_StdCall: CC = CC_X86StdCall; break;
3349   case AttributeList::AT_ThisCall: CC = CC_X86ThisCall; break;
3350   case AttributeList::AT_Pascal: CC = CC_X86Pascal; break;
3351   case AttributeList::AT_VectorCall: CC = CC_X86VectorCall; break;
3352   case AttributeList::AT_MSABI:
3353     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
3354                                                              CC_X86_64Win64;
3355     break;
3356   case AttributeList::AT_SysVABI:
3357     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
3358                                                              CC_C;
3359     break;
3360   case AttributeList::AT_Pcs: {
3361     StringRef StrRef;
3362     if (!checkStringLiteralArgumentAttr(attr, 0, StrRef)) {
3363       attr.setInvalid();
3364       return true;
3365     }
3366     if (StrRef == "aapcs") {
3367       CC = CC_AAPCS;
3368       break;
3369     } else if (StrRef == "aapcs-vfp") {
3370       CC = CC_AAPCS_VFP;
3371       break;
3372     }
3373 
3374     attr.setInvalid();
3375     Diag(attr.getLoc(), diag::err_invalid_pcs);
3376     return true;
3377   }
3378   case AttributeList::AT_PnaclCall: CC = CC_PnaclCall; break;
3379   case AttributeList::AT_IntelOclBicc: CC = CC_IntelOclBicc; break;
3380   default: llvm_unreachable("unexpected attribute kind");
3381   }
3382 
3383   const TargetInfo &TI = Context.getTargetInfo();
3384   TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC);
3385   if (A == TargetInfo::CCCR_Warning) {
3386     Diag(attr.getLoc(), diag::warn_cconv_ignored) << attr.getName();
3387 
3388     TargetInfo::CallingConvMethodType MT = TargetInfo::CCMT_Unknown;
3389     if (FD)
3390       MT = FD->isCXXInstanceMember() ? TargetInfo::CCMT_Member :
3391                                     TargetInfo::CCMT_NonMember;
3392     CC = TI.getDefaultCallingConv(MT);
3393   }
3394 
3395   return false;
3396 }
3397 
3398 /// Checks a regparm attribute, returning true if it is ill-formed and
3399 /// otherwise setting numParams to the appropriate value.
CheckRegparmAttr(const AttributeList & Attr,unsigned & numParams)3400 bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
3401   if (Attr.isInvalid())
3402     return true;
3403 
3404   if (!checkAttributeNumArgs(*this, Attr, 1)) {
3405     Attr.setInvalid();
3406     return true;
3407   }
3408 
3409   uint32_t NP;
3410   Expr *NumParamsExpr = Attr.getArgAsExpr(0);
3411   if (!checkUInt32Argument(*this, Attr, NumParamsExpr, NP)) {
3412     Attr.setInvalid();
3413     return true;
3414   }
3415 
3416   if (Context.getTargetInfo().getRegParmMax() == 0) {
3417     Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
3418       << NumParamsExpr->getSourceRange();
3419     Attr.setInvalid();
3420     return true;
3421   }
3422 
3423   numParams = NP;
3424   if (numParams > Context.getTargetInfo().getRegParmMax()) {
3425     Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
3426       << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
3427     Attr.setInvalid();
3428     return true;
3429   }
3430 
3431   return false;
3432 }
3433 
handleLaunchBoundsAttr(Sema & S,Decl * D,const AttributeList & Attr)3434 static void handleLaunchBoundsAttr(Sema &S, Decl *D,
3435                                    const AttributeList &Attr) {
3436   uint32_t MaxThreads, MinBlocks = 0;
3437   if (!checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), MaxThreads, 1))
3438     return;
3439   if (Attr.getNumArgs() > 1 && !checkUInt32Argument(S, Attr,
3440                                                     Attr.getArgAsExpr(1),
3441                                                     MinBlocks, 2))
3442     return;
3443 
3444   D->addAttr(::new (S.Context)
3445               CUDALaunchBoundsAttr(Attr.getRange(), S.Context,
3446                                   MaxThreads, MinBlocks,
3447                                   Attr.getAttributeSpellingListIndex()));
3448 }
3449 
handleArgumentWithTypeTagAttr(Sema & S,Decl * D,const AttributeList & Attr)3450 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
3451                                           const AttributeList &Attr) {
3452   if (!Attr.isArgIdent(0)) {
3453     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
3454       << Attr.getName() << /* arg num = */ 1 << AANT_ArgumentIdentifier;
3455     return;
3456   }
3457 
3458   if (!checkAttributeNumArgs(S, Attr, 3))
3459     return;
3460 
3461   IdentifierInfo *ArgumentKind = Attr.getArgAsIdent(0)->Ident;
3462 
3463   if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
3464     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
3465       << Attr.getName() << ExpectedFunctionOrMethod;
3466     return;
3467   }
3468 
3469   uint64_t ArgumentIdx;
3470   if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 2, Attr.getArgAsExpr(1),
3471                                            ArgumentIdx))
3472     return;
3473 
3474   uint64_t TypeTagIdx;
3475   if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 3, Attr.getArgAsExpr(2),
3476                                            TypeTagIdx))
3477     return;
3478 
3479   bool IsPointer = (Attr.getName()->getName() == "pointer_with_type_tag");
3480   if (IsPointer) {
3481     // Ensure that buffer has a pointer type.
3482     QualType BufferTy = getFunctionOrMethodParamType(D, ArgumentIdx);
3483     if (!BufferTy->isPointerType()) {
3484       S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
3485         << Attr.getName();
3486     }
3487   }
3488 
3489   D->addAttr(::new (S.Context)
3490              ArgumentWithTypeTagAttr(Attr.getRange(), S.Context, ArgumentKind,
3491                                      ArgumentIdx, TypeTagIdx, IsPointer,
3492                                      Attr.getAttributeSpellingListIndex()));
3493 }
3494 
handleTypeTagForDatatypeAttr(Sema & S,Decl * D,const AttributeList & Attr)3495 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
3496                                          const AttributeList &Attr) {
3497   if (!Attr.isArgIdent(0)) {
3498     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
3499       << Attr.getName() << 1 << AANT_ArgumentIdentifier;
3500     return;
3501   }
3502 
3503   if (!checkAttributeNumArgs(S, Attr, 1))
3504     return;
3505 
3506   if (!isa<VarDecl>(D)) {
3507     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
3508       << Attr.getName() << ExpectedVariable;
3509     return;
3510   }
3511 
3512   IdentifierInfo *PointerKind = Attr.getArgAsIdent(0)->Ident;
3513   TypeSourceInfo *MatchingCTypeLoc = nullptr;
3514   S.GetTypeFromParser(Attr.getMatchingCType(), &MatchingCTypeLoc);
3515   assert(MatchingCTypeLoc && "no type source info for attribute argument");
3516 
3517   D->addAttr(::new (S.Context)
3518              TypeTagForDatatypeAttr(Attr.getRange(), S.Context, PointerKind,
3519                                     MatchingCTypeLoc,
3520                                     Attr.getLayoutCompatible(),
3521                                     Attr.getMustBeNull(),
3522                                     Attr.getAttributeSpellingListIndex()));
3523 }
3524 
3525 //===----------------------------------------------------------------------===//
3526 // Checker-specific attribute handlers.
3527 //===----------------------------------------------------------------------===//
3528 
isValidSubjectOfNSReturnsRetainedAttribute(QualType type)3529 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType type) {
3530   return type->isDependentType() ||
3531          type->isObjCRetainableType();
3532 }
3533 
isValidSubjectOfNSAttribute(Sema & S,QualType type)3534 static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
3535   return type->isDependentType() ||
3536          type->isObjCObjectPointerType() ||
3537          S.Context.isObjCNSObjectType(type);
3538 }
isValidSubjectOfCFAttribute(Sema & S,QualType type)3539 static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
3540   return type->isDependentType() ||
3541          type->isPointerType() ||
3542          isValidSubjectOfNSAttribute(S, type);
3543 }
3544 
handleNSConsumedAttr(Sema & S,Decl * D,const AttributeList & Attr)3545 static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3546   ParmVarDecl *param = cast<ParmVarDecl>(D);
3547   bool typeOK, cf;
3548 
3549   if (Attr.getKind() == AttributeList::AT_NSConsumed) {
3550     typeOK = isValidSubjectOfNSAttribute(S, param->getType());
3551     cf = false;
3552   } else {
3553     typeOK = isValidSubjectOfCFAttribute(S, param->getType());
3554     cf = true;
3555   }
3556 
3557   if (!typeOK) {
3558     S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
3559       << Attr.getRange() << Attr.getName() << cf;
3560     return;
3561   }
3562 
3563   if (cf)
3564     param->addAttr(::new (S.Context)
3565                    CFConsumedAttr(Attr.getRange(), S.Context,
3566                                   Attr.getAttributeSpellingListIndex()));
3567   else
3568     param->addAttr(::new (S.Context)
3569                    NSConsumedAttr(Attr.getRange(), S.Context,
3570                                   Attr.getAttributeSpellingListIndex()));
3571 }
3572 
handleNSReturnsRetainedAttr(Sema & S,Decl * D,const AttributeList & Attr)3573 static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
3574                                         const AttributeList &Attr) {
3575 
3576   QualType returnType;
3577 
3578   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
3579     returnType = MD->getReturnType();
3580   else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
3581            (Attr.getKind() == AttributeList::AT_NSReturnsRetained))
3582     return; // ignore: was handled as a type attribute
3583   else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
3584     returnType = PD->getType();
3585   else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
3586     returnType = FD->getReturnType();
3587   else {
3588     S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
3589         << Attr.getRange() << Attr.getName()
3590         << ExpectedFunctionOrMethod;
3591     return;
3592   }
3593 
3594   bool typeOK;
3595   bool cf;
3596   switch (Attr.getKind()) {
3597   default: llvm_unreachable("invalid ownership attribute");
3598   case AttributeList::AT_NSReturnsRetained:
3599     typeOK = isValidSubjectOfNSReturnsRetainedAttribute(returnType);
3600     cf = false;
3601     break;
3602 
3603   case AttributeList::AT_NSReturnsAutoreleased:
3604   case AttributeList::AT_NSReturnsNotRetained:
3605     typeOK = isValidSubjectOfNSAttribute(S, returnType);
3606     cf = false;
3607     break;
3608 
3609   case AttributeList::AT_CFReturnsRetained:
3610   case AttributeList::AT_CFReturnsNotRetained:
3611     typeOK = isValidSubjectOfCFAttribute(S, returnType);
3612     cf = true;
3613     break;
3614   }
3615 
3616   if (!typeOK) {
3617     S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
3618       << Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf;
3619     return;
3620   }
3621 
3622   switch (Attr.getKind()) {
3623     default:
3624       llvm_unreachable("invalid ownership attribute");
3625     case AttributeList::AT_NSReturnsAutoreleased:
3626       D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(
3627           Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
3628       return;
3629     case AttributeList::AT_CFReturnsNotRetained:
3630       D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(
3631           Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
3632       return;
3633     case AttributeList::AT_NSReturnsNotRetained:
3634       D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(
3635           Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
3636       return;
3637     case AttributeList::AT_CFReturnsRetained:
3638       D->addAttr(::new (S.Context) CFReturnsRetainedAttr(
3639           Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
3640       return;
3641     case AttributeList::AT_NSReturnsRetained:
3642       D->addAttr(::new (S.Context) NSReturnsRetainedAttr(
3643           Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
3644       return;
3645   };
3646 }
3647 
handleObjCReturnsInnerPointerAttr(Sema & S,Decl * D,const AttributeList & attr)3648 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
3649                                               const AttributeList &attr) {
3650   const int EP_ObjCMethod = 1;
3651   const int EP_ObjCProperty = 2;
3652 
3653   SourceLocation loc = attr.getLoc();
3654   QualType resultType;
3655   if (isa<ObjCMethodDecl>(D))
3656     resultType = cast<ObjCMethodDecl>(D)->getReturnType();
3657   else
3658     resultType = cast<ObjCPropertyDecl>(D)->getType();
3659 
3660   if (!resultType->isReferenceType() &&
3661       (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
3662     S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
3663       << SourceRange(loc)
3664     << attr.getName()
3665     << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
3666     << /*non-retainable pointer*/ 2;
3667 
3668     // Drop the attribute.
3669     return;
3670   }
3671 
3672   D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(
3673       attr.getRange(), S.Context, attr.getAttributeSpellingListIndex()));
3674 }
3675 
handleObjCRequiresSuperAttr(Sema & S,Decl * D,const AttributeList & attr)3676 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
3677                                         const AttributeList &attr) {
3678   ObjCMethodDecl *method = cast<ObjCMethodDecl>(D);
3679 
3680   DeclContext *DC = method->getDeclContext();
3681   if (const ObjCProtocolDecl *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
3682     S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
3683     << attr.getName() << 0;
3684     S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
3685     return;
3686   }
3687   if (method->getMethodFamily() == OMF_dealloc) {
3688     S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
3689     << attr.getName() << 1;
3690     return;
3691   }
3692 
3693   method->addAttr(::new (S.Context)
3694                   ObjCRequiresSuperAttr(attr.getRange(), S.Context,
3695                                         attr.getAttributeSpellingListIndex()));
3696 }
3697 
handleCFAuditedTransferAttr(Sema & S,Decl * D,const AttributeList & Attr)3698 static void handleCFAuditedTransferAttr(Sema &S, Decl *D,
3699                                         const AttributeList &Attr) {
3700   if (checkAttrMutualExclusion<CFUnknownTransferAttr>(S, D, Attr))
3701     return;
3702 
3703   D->addAttr(::new (S.Context)
3704              CFAuditedTransferAttr(Attr.getRange(), S.Context,
3705                                    Attr.getAttributeSpellingListIndex()));
3706 }
3707 
handleCFUnknownTransferAttr(Sema & S,Decl * D,const AttributeList & Attr)3708 static void handleCFUnknownTransferAttr(Sema &S, Decl *D,
3709                                         const AttributeList &Attr) {
3710   if (checkAttrMutualExclusion<CFAuditedTransferAttr>(S, D, Attr))
3711     return;
3712 
3713   D->addAttr(::new (S.Context)
3714              CFUnknownTransferAttr(Attr.getRange(), S.Context,
3715              Attr.getAttributeSpellingListIndex()));
3716 }
3717 
handleObjCBridgeAttr(Sema & S,Scope * Sc,Decl * D,const AttributeList & Attr)3718 static void handleObjCBridgeAttr(Sema &S, Scope *Sc, Decl *D,
3719                                 const AttributeList &Attr) {
3720   IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : nullptr;
3721 
3722   if (!Parm) {
3723     S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
3724     return;
3725   }
3726 
3727   D->addAttr(::new (S.Context)
3728              ObjCBridgeAttr(Attr.getRange(), S.Context, Parm->Ident,
3729                            Attr.getAttributeSpellingListIndex()));
3730 }
3731 
handleObjCBridgeMutableAttr(Sema & S,Scope * Sc,Decl * D,const AttributeList & Attr)3732 static void handleObjCBridgeMutableAttr(Sema &S, Scope *Sc, Decl *D,
3733                                         const AttributeList &Attr) {
3734   IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : nullptr;
3735 
3736   if (!Parm) {
3737     S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
3738     return;
3739   }
3740 
3741   D->addAttr(::new (S.Context)
3742              ObjCBridgeMutableAttr(Attr.getRange(), S.Context, Parm->Ident,
3743                             Attr.getAttributeSpellingListIndex()));
3744 }
3745 
handleObjCBridgeRelatedAttr(Sema & S,Scope * Sc,Decl * D,const AttributeList & Attr)3746 static void handleObjCBridgeRelatedAttr(Sema &S, Scope *Sc, Decl *D,
3747                                  const AttributeList &Attr) {
3748   IdentifierInfo *RelatedClass =
3749     Attr.isArgIdent(0) ? Attr.getArgAsIdent(0)->Ident : nullptr;
3750   if (!RelatedClass) {
3751     S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
3752     return;
3753   }
3754   IdentifierInfo *ClassMethod =
3755     Attr.getArgAsIdent(1) ? Attr.getArgAsIdent(1)->Ident : nullptr;
3756   IdentifierInfo *InstanceMethod =
3757     Attr.getArgAsIdent(2) ? Attr.getArgAsIdent(2)->Ident : nullptr;
3758   D->addAttr(::new (S.Context)
3759              ObjCBridgeRelatedAttr(Attr.getRange(), S.Context, RelatedClass,
3760                                    ClassMethod, InstanceMethod,
3761                                    Attr.getAttributeSpellingListIndex()));
3762 }
3763 
handleObjCDesignatedInitializer(Sema & S,Decl * D,const AttributeList & Attr)3764 static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
3765                                             const AttributeList &Attr) {
3766   ObjCInterfaceDecl *IFace;
3767   if (ObjCCategoryDecl *CatDecl =
3768           dyn_cast<ObjCCategoryDecl>(D->getDeclContext()))
3769     IFace = CatDecl->getClassInterface();
3770   else
3771     IFace = cast<ObjCInterfaceDecl>(D->getDeclContext());
3772   IFace->setHasDesignatedInitializers();
3773   D->addAttr(::new (S.Context)
3774                   ObjCDesignatedInitializerAttr(Attr.getRange(), S.Context,
3775                                          Attr.getAttributeSpellingListIndex()));
3776 }
3777 
handleObjCRuntimeName(Sema & S,Decl * D,const AttributeList & Attr)3778 static void handleObjCRuntimeName(Sema &S, Decl *D,
3779                                   const AttributeList &Attr) {
3780   StringRef MetaDataName;
3781   if (!S.checkStringLiteralArgumentAttr(Attr, 0, MetaDataName))
3782     return;
3783   D->addAttr(::new (S.Context)
3784              ObjCRuntimeNameAttr(Attr.getRange(), S.Context,
3785                                  MetaDataName,
3786                                  Attr.getAttributeSpellingListIndex()));
3787 }
3788 
handleObjCOwnershipAttr(Sema & S,Decl * D,const AttributeList & Attr)3789 static void handleObjCOwnershipAttr(Sema &S, Decl *D,
3790                                     const AttributeList &Attr) {
3791   if (hasDeclarator(D)) return;
3792 
3793   S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
3794     << Attr.getRange() << Attr.getName() << ExpectedVariable;
3795 }
3796 
handleObjCPreciseLifetimeAttr(Sema & S,Decl * D,const AttributeList & Attr)3797 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
3798                                           const AttributeList &Attr) {
3799   ValueDecl *vd = cast<ValueDecl>(D);
3800   QualType type = vd->getType();
3801 
3802   if (!type->isDependentType() &&
3803       !type->isObjCLifetimeType()) {
3804     S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
3805       << type;
3806     return;
3807   }
3808 
3809   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3810 
3811   // If we have no lifetime yet, check the lifetime we're presumably
3812   // going to infer.
3813   if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
3814     lifetime = type->getObjCARCImplicitLifetime();
3815 
3816   switch (lifetime) {
3817   case Qualifiers::OCL_None:
3818     assert(type->isDependentType() &&
3819            "didn't infer lifetime for non-dependent type?");
3820     break;
3821 
3822   case Qualifiers::OCL_Weak:   // meaningful
3823   case Qualifiers::OCL_Strong: // meaningful
3824     break;
3825 
3826   case Qualifiers::OCL_ExplicitNone:
3827   case Qualifiers::OCL_Autoreleasing:
3828     S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
3829       << (lifetime == Qualifiers::OCL_Autoreleasing);
3830     break;
3831   }
3832 
3833   D->addAttr(::new (S.Context)
3834              ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context,
3835                                      Attr.getAttributeSpellingListIndex()));
3836 }
3837 
3838 //===----------------------------------------------------------------------===//
3839 // Microsoft specific attribute handlers.
3840 //===----------------------------------------------------------------------===//
3841 
handleUuidAttr(Sema & S,Decl * D,const AttributeList & Attr)3842 static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3843   if (!S.LangOpts.CPlusPlus) {
3844     S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
3845       << Attr.getName() << AttributeLangSupport::C;
3846     return;
3847   }
3848 
3849   if (!isa<CXXRecordDecl>(D)) {
3850     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3851       << Attr.getName() << ExpectedClass;
3852     return;
3853   }
3854 
3855   StringRef StrRef;
3856   SourceLocation LiteralLoc;
3857   if (!S.checkStringLiteralArgumentAttr(Attr, 0, StrRef, &LiteralLoc))
3858     return;
3859 
3860   // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
3861   // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
3862   if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
3863     StrRef = StrRef.drop_front().drop_back();
3864 
3865   // Validate GUID length.
3866   if (StrRef.size() != 36) {
3867     S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
3868     return;
3869   }
3870 
3871   for (unsigned i = 0; i < 36; ++i) {
3872     if (i == 8 || i == 13 || i == 18 || i == 23) {
3873       if (StrRef[i] != '-') {
3874         S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
3875         return;
3876       }
3877     } else if (!isHexDigit(StrRef[i])) {
3878       S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
3879       return;
3880     }
3881   }
3882 
3883   D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context, StrRef,
3884                                         Attr.getAttributeSpellingListIndex()));
3885 }
3886 
handleMSInheritanceAttr(Sema & S,Decl * D,const AttributeList & Attr)3887 static void handleMSInheritanceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3888   if (!S.LangOpts.CPlusPlus) {
3889     S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
3890       << Attr.getName() << AttributeLangSupport::C;
3891     return;
3892   }
3893   MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
3894       D, Attr.getRange(), /*BestCase=*/true,
3895       Attr.getAttributeSpellingListIndex(),
3896       (MSInheritanceAttr::Spelling)Attr.getSemanticSpelling());
3897   if (IA)
3898     D->addAttr(IA);
3899 }
3900 
handleDeclspecThreadAttr(Sema & S,Decl * D,const AttributeList & Attr)3901 static void handleDeclspecThreadAttr(Sema &S, Decl *D,
3902                                      const AttributeList &Attr) {
3903   VarDecl *VD = cast<VarDecl>(D);
3904   if (!S.Context.getTargetInfo().isTLSSupported()) {
3905     S.Diag(Attr.getLoc(), diag::err_thread_unsupported);
3906     return;
3907   }
3908   if (VD->getTSCSpec() != TSCS_unspecified) {
3909     S.Diag(Attr.getLoc(), diag::err_declspec_thread_on_thread_variable);
3910     return;
3911   }
3912   if (VD->hasLocalStorage()) {
3913     S.Diag(Attr.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
3914     return;
3915   }
3916   VD->addAttr(::new (S.Context) ThreadAttr(
3917       Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
3918 }
3919 
handleARMInterruptAttr(Sema & S,Decl * D,const AttributeList & Attr)3920 static void handleARMInterruptAttr(Sema &S, Decl *D,
3921                                    const AttributeList &Attr) {
3922   // Check the attribute arguments.
3923   if (Attr.getNumArgs() > 1) {
3924     S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments)
3925       << Attr.getName() << 1;
3926     return;
3927   }
3928 
3929   StringRef Str;
3930   SourceLocation ArgLoc;
3931 
3932   if (Attr.getNumArgs() == 0)
3933     Str = "";
3934   else if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &ArgLoc))
3935     return;
3936 
3937   ARMInterruptAttr::InterruptType Kind;
3938   if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
3939     S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
3940       << Attr.getName() << Str << ArgLoc;
3941     return;
3942   }
3943 
3944   unsigned Index = Attr.getAttributeSpellingListIndex();
3945   D->addAttr(::new (S.Context)
3946              ARMInterruptAttr(Attr.getLoc(), S.Context, Kind, Index));
3947 }
3948 
handleMSP430InterruptAttr(Sema & S,Decl * D,const AttributeList & Attr)3949 static void handleMSP430InterruptAttr(Sema &S, Decl *D,
3950                                       const AttributeList &Attr) {
3951   if (!checkAttributeNumArgs(S, Attr, 1))
3952     return;
3953 
3954   if (!Attr.isArgExpr(0)) {
3955     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
3956       << AANT_ArgumentIntegerConstant;
3957     return;
3958   }
3959 
3960   // FIXME: Check for decl - it should be void ()(void).
3961 
3962   Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
3963   llvm::APSInt NumParams(32);
3964   if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) {
3965     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
3966       << Attr.getName() << AANT_ArgumentIntegerConstant
3967       << NumParamsExpr->getSourceRange();
3968     return;
3969   }
3970 
3971   unsigned Num = NumParams.getLimitedValue(255);
3972   if ((Num & 1) || Num > 30) {
3973     S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
3974       << Attr.getName() << (int)NumParams.getSExtValue()
3975       << NumParamsExpr->getSourceRange();
3976     return;
3977   }
3978 
3979   D->addAttr(::new (S.Context)
3980               MSP430InterruptAttr(Attr.getLoc(), S.Context, Num,
3981                                   Attr.getAttributeSpellingListIndex()));
3982   D->addAttr(UsedAttr::CreateImplicit(S.Context));
3983 }
3984 
handleInterruptAttr(Sema & S,Decl * D,const AttributeList & Attr)3985 static void handleInterruptAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3986   // Dispatch the interrupt attribute based on the current target.
3987   if (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::msp430)
3988     handleMSP430InterruptAttr(S, D, Attr);
3989   else
3990     handleARMInterruptAttr(S, D, Attr);
3991 }
3992 
handleAMDGPUNumVGPRAttr(Sema & S,Decl * D,const AttributeList & Attr)3993 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D,
3994                                     const AttributeList &Attr) {
3995   uint32_t NumRegs;
3996   Expr *NumRegsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
3997   if (!checkUInt32Argument(S, Attr, NumRegsExpr, NumRegs))
3998     return;
3999 
4000   D->addAttr(::new (S.Context)
4001              AMDGPUNumVGPRAttr(Attr.getLoc(), S.Context,
4002                                NumRegs,
4003                                Attr.getAttributeSpellingListIndex()));
4004 }
4005 
handleAMDGPUNumSGPRAttr(Sema & S,Decl * D,const AttributeList & Attr)4006 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D,
4007                                     const AttributeList &Attr) {
4008   uint32_t NumRegs;
4009   Expr *NumRegsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4010   if (!checkUInt32Argument(S, Attr, NumRegsExpr, NumRegs))
4011     return;
4012 
4013   D->addAttr(::new (S.Context)
4014              AMDGPUNumSGPRAttr(Attr.getLoc(), S.Context,
4015                                NumRegs,
4016                                Attr.getAttributeSpellingListIndex()));
4017 }
4018 
handleX86ForceAlignArgPointerAttr(Sema & S,Decl * D,const AttributeList & Attr)4019 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
4020                                               const AttributeList& Attr) {
4021   // If we try to apply it to a function pointer, don't warn, but don't
4022   // do anything, either. It doesn't matter anyway, because there's nothing
4023   // special about calling a force_align_arg_pointer function.
4024   ValueDecl *VD = dyn_cast<ValueDecl>(D);
4025   if (VD && VD->getType()->isFunctionPointerType())
4026     return;
4027   // Also don't warn on function pointer typedefs.
4028   TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
4029   if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
4030     TD->getUnderlyingType()->isFunctionType()))
4031     return;
4032   // Attribute can only be applied to function types.
4033   if (!isa<FunctionDecl>(D)) {
4034     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
4035       << Attr.getName() << /* function */0;
4036     return;
4037   }
4038 
4039   D->addAttr(::new (S.Context)
4040               X86ForceAlignArgPointerAttr(Attr.getRange(), S.Context,
4041                                         Attr.getAttributeSpellingListIndex()));
4042 }
4043 
mergeDLLImportAttr(Decl * D,SourceRange Range,unsigned AttrSpellingListIndex)4044 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, SourceRange Range,
4045                                         unsigned AttrSpellingListIndex) {
4046   if (D->hasAttr<DLLExportAttr>()) {
4047     Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'dllimport'";
4048     return nullptr;
4049   }
4050 
4051   if (D->hasAttr<DLLImportAttr>())
4052     return nullptr;
4053 
4054   return ::new (Context) DLLImportAttr(Range, Context, AttrSpellingListIndex);
4055 }
4056 
mergeDLLExportAttr(Decl * D,SourceRange Range,unsigned AttrSpellingListIndex)4057 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, SourceRange Range,
4058                                         unsigned AttrSpellingListIndex) {
4059   if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
4060     Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
4061     D->dropAttr<DLLImportAttr>();
4062   }
4063 
4064   if (D->hasAttr<DLLExportAttr>())
4065     return nullptr;
4066 
4067   return ::new (Context) DLLExportAttr(Range, Context, AttrSpellingListIndex);
4068 }
4069 
handleDLLAttr(Sema & S,Decl * D,const AttributeList & A)4070 static void handleDLLAttr(Sema &S, Decl *D, const AttributeList &A) {
4071   if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
4072       S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4073     S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored)
4074         << A.getName();
4075     return;
4076   }
4077 
4078   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4079     if (FD->isInlined() && A.getKind() == AttributeList::AT_DLLImport &&
4080         !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4081       // MinGW doesn't allow dllimport on inline functions.
4082       S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
4083           << A.getName();
4084       return;
4085     }
4086   }
4087 
4088   unsigned Index = A.getAttributeSpellingListIndex();
4089   Attr *NewAttr = A.getKind() == AttributeList::AT_DLLExport
4090                       ? (Attr *)S.mergeDLLExportAttr(D, A.getRange(), Index)
4091                       : (Attr *)S.mergeDLLImportAttr(D, A.getRange(), Index);
4092   if (NewAttr)
4093     D->addAttr(NewAttr);
4094 }
4095 
4096 MSInheritanceAttr *
mergeMSInheritanceAttr(Decl * D,SourceRange Range,bool BestCase,unsigned AttrSpellingListIndex,MSInheritanceAttr::Spelling SemanticSpelling)4097 Sema::mergeMSInheritanceAttr(Decl *D, SourceRange Range, bool BestCase,
4098                              unsigned AttrSpellingListIndex,
4099                              MSInheritanceAttr::Spelling SemanticSpelling) {
4100   if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
4101     if (IA->getSemanticSpelling() == SemanticSpelling)
4102       return nullptr;
4103     Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
4104         << 1 /*previous declaration*/;
4105     Diag(Range.getBegin(), diag::note_previous_ms_inheritance);
4106     D->dropAttr<MSInheritanceAttr>();
4107   }
4108 
4109   CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
4110   if (RD->hasDefinition()) {
4111     if (checkMSInheritanceAttrOnDefinition(RD, Range, BestCase,
4112                                            SemanticSpelling)) {
4113       return nullptr;
4114     }
4115   } else {
4116     if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
4117       Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
4118           << 1 /*partial specialization*/;
4119       return nullptr;
4120     }
4121     if (RD->getDescribedClassTemplate()) {
4122       Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
4123           << 0 /*primary template*/;
4124       return nullptr;
4125     }
4126   }
4127 
4128   return ::new (Context)
4129       MSInheritanceAttr(Range, Context, BestCase, AttrSpellingListIndex);
4130 }
4131 
handleCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)4132 static void handleCapabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4133   // The capability attributes take a single string parameter for the name of
4134   // the capability they represent. The lockable attribute does not take any
4135   // parameters. However, semantically, both attributes represent the same
4136   // concept, and so they use the same semantic attribute. Eventually, the
4137   // lockable attribute will be removed.
4138   //
4139   // For backward compatibility, any capability which has no specified string
4140   // literal will be considered a "mutex."
4141   StringRef N("mutex");
4142   SourceLocation LiteralLoc;
4143   if (Attr.getKind() == AttributeList::AT_Capability &&
4144       !S.checkStringLiteralArgumentAttr(Attr, 0, N, &LiteralLoc))
4145     return;
4146 
4147   // Currently, there are only two names allowed for a capability: role and
4148   // mutex (case insensitive). Diagnose other capability names.
4149   if (!N.equals_lower("mutex") && !N.equals_lower("role"))
4150     S.Diag(LiteralLoc, diag::warn_invalid_capability_name) << N;
4151 
4152   D->addAttr(::new (S.Context) CapabilityAttr(Attr.getRange(), S.Context, N,
4153                                         Attr.getAttributeSpellingListIndex()));
4154 }
4155 
handleAssertCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)4156 static void handleAssertCapabilityAttr(Sema &S, Decl *D,
4157                                        const AttributeList &Attr) {
4158   D->addAttr(::new (S.Context) AssertCapabilityAttr(Attr.getRange(), S.Context,
4159                                                     Attr.getArgAsExpr(0),
4160                                         Attr.getAttributeSpellingListIndex()));
4161 }
4162 
handleAcquireCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)4163 static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
4164                                         const AttributeList &Attr) {
4165   SmallVector<Expr*, 1> Args;
4166   if (!checkLockFunAttrCommon(S, D, Attr, Args))
4167     return;
4168 
4169   D->addAttr(::new (S.Context) AcquireCapabilityAttr(Attr.getRange(),
4170                                                      S.Context,
4171                                                      Args.data(), Args.size(),
4172                                         Attr.getAttributeSpellingListIndex()));
4173 }
4174 
handleTryAcquireCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)4175 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
4176                                            const AttributeList &Attr) {
4177   SmallVector<Expr*, 2> Args;
4178   if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
4179     return;
4180 
4181   D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(Attr.getRange(),
4182                                                         S.Context,
4183                                                         Attr.getArgAsExpr(0),
4184                                                         Args.data(),
4185                                                         Args.size(),
4186                                         Attr.getAttributeSpellingListIndex()));
4187 }
4188 
handleReleaseCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)4189 static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
4190                                         const AttributeList &Attr) {
4191   // Check that all arguments are lockable objects.
4192   SmallVector<Expr *, 1> Args;
4193   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 0, true);
4194 
4195   D->addAttr(::new (S.Context) ReleaseCapabilityAttr(
4196       Attr.getRange(), S.Context, Args.data(), Args.size(),
4197       Attr.getAttributeSpellingListIndex()));
4198 }
4199 
handleRequiresCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)4200 static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
4201                                          const AttributeList &Attr) {
4202   if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
4203     return;
4204 
4205   // check that all arguments are lockable objects
4206   SmallVector<Expr*, 1> Args;
4207   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
4208   if (Args.empty())
4209     return;
4210 
4211   RequiresCapabilityAttr *RCA = ::new (S.Context)
4212     RequiresCapabilityAttr(Attr.getRange(), S.Context, Args.data(),
4213                            Args.size(), Attr.getAttributeSpellingListIndex());
4214 
4215   D->addAttr(RCA);
4216 }
4217 
handleDeprecatedAttr(Sema & S,Decl * D,const AttributeList & Attr)4218 static void handleDeprecatedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4219   if (auto *NSD = dyn_cast<NamespaceDecl>(D)) {
4220     if (NSD->isAnonymousNamespace()) {
4221       S.Diag(Attr.getLoc(), diag::warn_deprecated_anonymous_namespace);
4222       // Do not want to attach the attribute to the namespace because that will
4223       // cause confusing diagnostic reports for uses of declarations within the
4224       // namespace.
4225       return;
4226     }
4227   }
4228   handleAttrWithMessage<DeprecatedAttr>(S, D, Attr);
4229 }
4230 
4231 /// Handles semantic checking for features that are common to all attributes,
4232 /// such as checking whether a parameter was properly specified, or the correct
4233 /// number of arguments were passed, etc.
handleCommonAttributeFeatures(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr)4234 static bool handleCommonAttributeFeatures(Sema &S, Scope *scope, Decl *D,
4235                                           const AttributeList &Attr) {
4236   // Several attributes carry different semantics than the parsing requires, so
4237   // those are opted out of the common handling.
4238   //
4239   // We also bail on unknown and ignored attributes because those are handled
4240   // as part of the target-specific handling logic.
4241   if (Attr.hasCustomParsing() ||
4242       Attr.getKind() == AttributeList::UnknownAttribute)
4243     return false;
4244 
4245   // Check whether the attribute requires specific language extensions to be
4246   // enabled.
4247   if (!Attr.diagnoseLangOpts(S))
4248     return true;
4249 
4250   if (Attr.getMinArgs() == Attr.getMaxArgs()) {
4251     // If there are no optional arguments, then checking for the argument count
4252     // is trivial.
4253     if (!checkAttributeNumArgs(S, Attr, Attr.getMinArgs()))
4254       return true;
4255   } else {
4256     // There are optional arguments, so checking is slightly more involved.
4257     if (Attr.getMinArgs() &&
4258         !checkAttributeAtLeastNumArgs(S, Attr, Attr.getMinArgs()))
4259       return true;
4260     else if (!Attr.hasVariadicArg() && Attr.getMaxArgs() &&
4261              !checkAttributeAtMostNumArgs(S, Attr, Attr.getMaxArgs()))
4262       return true;
4263   }
4264 
4265   // Check whether the attribute appertains to the given subject.
4266   if (!Attr.diagnoseAppertainsTo(S, D))
4267     return true;
4268 
4269   return false;
4270 }
4271 
4272 //===----------------------------------------------------------------------===//
4273 // Top Level Sema Entry Points
4274 //===----------------------------------------------------------------------===//
4275 
4276 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
4277 /// the attribute applies to decls.  If the attribute is a type attribute, just
4278 /// silently ignore it if a GNU attribute.
ProcessDeclAttribute(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr,bool IncludeCXX11Attributes)4279 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
4280                                  const AttributeList &Attr,
4281                                  bool IncludeCXX11Attributes) {
4282   if (Attr.isInvalid() || Attr.getKind() == AttributeList::IgnoredAttribute)
4283     return;
4284 
4285   // Ignore C++11 attributes on declarator chunks: they appertain to the type
4286   // instead.
4287   if (Attr.isCXX11Attribute() && !IncludeCXX11Attributes)
4288     return;
4289 
4290   // Unknown attributes are automatically warned on. Target-specific attributes
4291   // which do not apply to the current target architecture are treated as
4292   // though they were unknown attributes.
4293   if (Attr.getKind() == AttributeList::UnknownAttribute ||
4294       !Attr.existsInTarget(S.Context.getTargetInfo().getTriple())) {
4295     S.Diag(Attr.getLoc(), Attr.isDeclspecAttribute()
4296                               ? diag::warn_unhandled_ms_attribute_ignored
4297                               : diag::warn_unknown_attribute_ignored)
4298         << Attr.getName();
4299     return;
4300   }
4301 
4302   if (handleCommonAttributeFeatures(S, scope, D, Attr))
4303     return;
4304 
4305   switch (Attr.getKind()) {
4306   default:
4307     // Type attributes are handled elsewhere; silently move on.
4308     assert(Attr.isTypeAttr() && "Non-type attribute not handled");
4309     break;
4310   case AttributeList::AT_Interrupt:
4311     handleInterruptAttr(S, D, Attr);
4312     break;
4313   case AttributeList::AT_X86ForceAlignArgPointer:
4314     handleX86ForceAlignArgPointerAttr(S, D, Attr);
4315     break;
4316   case AttributeList::AT_DLLExport:
4317   case AttributeList::AT_DLLImport:
4318     handleDLLAttr(S, D, Attr);
4319     break;
4320   case AttributeList::AT_Mips16:
4321     handleSimpleAttribute<Mips16Attr>(S, D, Attr);
4322     break;
4323   case AttributeList::AT_NoMips16:
4324     handleSimpleAttribute<NoMips16Attr>(S, D, Attr);
4325     break;
4326   case AttributeList::AT_AMDGPUNumVGPR:
4327     handleAMDGPUNumVGPRAttr(S, D, Attr);
4328     break;
4329   case AttributeList::AT_AMDGPUNumSGPR:
4330     handleAMDGPUNumSGPRAttr(S, D, Attr);
4331     break;
4332   case AttributeList::AT_IBAction:
4333     handleSimpleAttribute<IBActionAttr>(S, D, Attr);
4334     break;
4335   case AttributeList::AT_IBOutlet:
4336     handleIBOutlet(S, D, Attr);
4337     break;
4338   case AttributeList::AT_IBOutletCollection:
4339     handleIBOutletCollection(S, D, Attr);
4340     break;
4341   case AttributeList::AT_Alias:
4342     handleAliasAttr(S, D, Attr);
4343     break;
4344   case AttributeList::AT_Aligned:
4345     handleAlignedAttr(S, D, Attr);
4346     break;
4347   case AttributeList::AT_AlignValue:
4348     handleAlignValueAttr(S, D, Attr);
4349     break;
4350   case AttributeList::AT_AlwaysInline:
4351     handleAlwaysInlineAttr(S, D, Attr);
4352     break;
4353   case AttributeList::AT_AnalyzerNoReturn:
4354     handleAnalyzerNoReturnAttr(S, D, Attr);
4355     break;
4356   case AttributeList::AT_TLSModel:
4357     handleTLSModelAttr(S, D, Attr);
4358     break;
4359   case AttributeList::AT_Annotate:
4360     handleAnnotateAttr(S, D, Attr);
4361     break;
4362   case AttributeList::AT_Availability:
4363     handleAvailabilityAttr(S, D, Attr);
4364     break;
4365   case AttributeList::AT_CarriesDependency:
4366     handleDependencyAttr(S, scope, D, Attr);
4367     break;
4368   case AttributeList::AT_Common:
4369     handleCommonAttr(S, D, Attr);
4370     break;
4371   case AttributeList::AT_CUDAConstant:
4372     handleSimpleAttribute<CUDAConstantAttr>(S, D, Attr);
4373     break;
4374   case AttributeList::AT_Constructor:
4375     handleConstructorAttr(S, D, Attr);
4376     break;
4377   case AttributeList::AT_CXX11NoReturn:
4378     handleSimpleAttribute<CXX11NoReturnAttr>(S, D, Attr);
4379     break;
4380   case AttributeList::AT_Deprecated:
4381     handleDeprecatedAttr(S, D, Attr);
4382     break;
4383   case AttributeList::AT_Destructor:
4384     handleDestructorAttr(S, D, Attr);
4385     break;
4386   case AttributeList::AT_EnableIf:
4387     handleEnableIfAttr(S, D, Attr);
4388     break;
4389   case AttributeList::AT_ExtVectorType:
4390     handleExtVectorTypeAttr(S, scope, D, Attr);
4391     break;
4392   case AttributeList::AT_MinSize:
4393     handleMinSizeAttr(S, D, Attr);
4394     break;
4395   case AttributeList::AT_OptimizeNone:
4396     handleOptimizeNoneAttr(S, D, Attr);
4397     break;
4398   case AttributeList::AT_Flatten:
4399     handleSimpleAttribute<FlattenAttr>(S, D, Attr);
4400     break;
4401   case AttributeList::AT_Format:
4402     handleFormatAttr(S, D, Attr);
4403     break;
4404   case AttributeList::AT_FormatArg:
4405     handleFormatArgAttr(S, D, Attr);
4406     break;
4407   case AttributeList::AT_CUDAGlobal:
4408     handleGlobalAttr(S, D, Attr);
4409     break;
4410   case AttributeList::AT_CUDADevice:
4411     handleSimpleAttribute<CUDADeviceAttr>(S, D, Attr);
4412     break;
4413   case AttributeList::AT_CUDAHost:
4414     handleSimpleAttribute<CUDAHostAttr>(S, D, Attr);
4415     break;
4416   case AttributeList::AT_GNUInline:
4417     handleGNUInlineAttr(S, D, Attr);
4418     break;
4419   case AttributeList::AT_CUDALaunchBounds:
4420     handleLaunchBoundsAttr(S, D, Attr);
4421     break;
4422   case AttributeList::AT_Malloc:
4423     handleMallocAttr(S, D, Attr);
4424     break;
4425   case AttributeList::AT_MayAlias:
4426     handleSimpleAttribute<MayAliasAttr>(S, D, Attr);
4427     break;
4428   case AttributeList::AT_Mode:
4429     handleModeAttr(S, D, Attr);
4430     break;
4431   case AttributeList::AT_NoCommon:
4432     handleSimpleAttribute<NoCommonAttr>(S, D, Attr);
4433     break;
4434   case AttributeList::AT_NoSplitStack:
4435     handleSimpleAttribute<NoSplitStackAttr>(S, D, Attr);
4436     break;
4437   case AttributeList::AT_NonNull:
4438     if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(D))
4439       handleNonNullAttrParameter(S, PVD, Attr);
4440     else
4441       handleNonNullAttr(S, D, Attr);
4442     break;
4443   case AttributeList::AT_ReturnsNonNull:
4444     handleReturnsNonNullAttr(S, D, Attr);
4445     break;
4446   case AttributeList::AT_AssumeAligned:
4447     handleAssumeAlignedAttr(S, D, Attr);
4448     break;
4449   case AttributeList::AT_Overloadable:
4450     handleSimpleAttribute<OverloadableAttr>(S, D, Attr);
4451     break;
4452   case AttributeList::AT_Ownership:
4453     handleOwnershipAttr(S, D, Attr);
4454     break;
4455   case AttributeList::AT_Cold:
4456     handleColdAttr(S, D, Attr);
4457     break;
4458   case AttributeList::AT_Hot:
4459     handleHotAttr(S, D, Attr);
4460     break;
4461   case AttributeList::AT_Naked:
4462     handleSimpleAttribute<NakedAttr>(S, D, Attr);
4463     break;
4464   case AttributeList::AT_NoReturn:
4465     handleNoReturnAttr(S, D, Attr);
4466     break;
4467   case AttributeList::AT_NoThrow:
4468     handleSimpleAttribute<NoThrowAttr>(S, D, Attr);
4469     break;
4470   case AttributeList::AT_CUDAShared:
4471     handleSimpleAttribute<CUDASharedAttr>(S, D, Attr);
4472     break;
4473   case AttributeList::AT_VecReturn:
4474     handleVecReturnAttr(S, D, Attr);
4475     break;
4476 
4477   case AttributeList::AT_ObjCOwnership:
4478     handleObjCOwnershipAttr(S, D, Attr);
4479     break;
4480   case AttributeList::AT_ObjCPreciseLifetime:
4481     handleObjCPreciseLifetimeAttr(S, D, Attr);
4482     break;
4483 
4484   case AttributeList::AT_ObjCReturnsInnerPointer:
4485     handleObjCReturnsInnerPointerAttr(S, D, Attr);
4486     break;
4487 
4488   case AttributeList::AT_ObjCRequiresSuper:
4489     handleObjCRequiresSuperAttr(S, D, Attr);
4490     break;
4491 
4492   case AttributeList::AT_ObjCBridge:
4493     handleObjCBridgeAttr(S, scope, D, Attr);
4494     break;
4495 
4496   case AttributeList::AT_ObjCBridgeMutable:
4497     handleObjCBridgeMutableAttr(S, scope, D, Attr);
4498     break;
4499 
4500   case AttributeList::AT_ObjCBridgeRelated:
4501     handleObjCBridgeRelatedAttr(S, scope, D, Attr);
4502     break;
4503 
4504   case AttributeList::AT_ObjCDesignatedInitializer:
4505     handleObjCDesignatedInitializer(S, D, Attr);
4506     break;
4507 
4508   case AttributeList::AT_ObjCRuntimeName:
4509     handleObjCRuntimeName(S, D, Attr);
4510     break;
4511 
4512   case AttributeList::AT_CFAuditedTransfer:
4513     handleCFAuditedTransferAttr(S, D, Attr);
4514     break;
4515   case AttributeList::AT_CFUnknownTransfer:
4516     handleCFUnknownTransferAttr(S, D, Attr);
4517     break;
4518 
4519   case AttributeList::AT_CFConsumed:
4520   case AttributeList::AT_NSConsumed:
4521     handleNSConsumedAttr(S, D, Attr);
4522     break;
4523   case AttributeList::AT_NSConsumesSelf:
4524     handleSimpleAttribute<NSConsumesSelfAttr>(S, D, Attr);
4525     break;
4526 
4527   case AttributeList::AT_NSReturnsAutoreleased:
4528   case AttributeList::AT_NSReturnsNotRetained:
4529   case AttributeList::AT_CFReturnsNotRetained:
4530   case AttributeList::AT_NSReturnsRetained:
4531   case AttributeList::AT_CFReturnsRetained:
4532     handleNSReturnsRetainedAttr(S, D, Attr);
4533     break;
4534   case AttributeList::AT_WorkGroupSizeHint:
4535     handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, Attr);
4536     break;
4537   case AttributeList::AT_ReqdWorkGroupSize:
4538     handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, Attr);
4539     break;
4540   case AttributeList::AT_VecTypeHint:
4541     handleVecTypeHint(S, D, Attr);
4542     break;
4543 
4544   case AttributeList::AT_InitPriority:
4545     handleInitPriorityAttr(S, D, Attr);
4546     break;
4547 
4548   case AttributeList::AT_Packed:
4549     handlePackedAttr(S, D, Attr);
4550     break;
4551   case AttributeList::AT_Section:
4552     handleSectionAttr(S, D, Attr);
4553     break;
4554   case AttributeList::AT_Unavailable:
4555     handleAttrWithMessage<UnavailableAttr>(S, D, Attr);
4556     break;
4557   case AttributeList::AT_ArcWeakrefUnavailable:
4558     handleSimpleAttribute<ArcWeakrefUnavailableAttr>(S, D, Attr);
4559     break;
4560   case AttributeList::AT_ObjCRootClass:
4561     handleSimpleAttribute<ObjCRootClassAttr>(S, D, Attr);
4562     break;
4563   case AttributeList::AT_ObjCExplicitProtocolImpl:
4564     handleObjCSuppresProtocolAttr(S, D, Attr);
4565     break;
4566   case AttributeList::AT_ObjCRequiresPropertyDefs:
4567     handleSimpleAttribute<ObjCRequiresPropertyDefsAttr>(S, D, Attr);
4568     break;
4569   case AttributeList::AT_Unused:
4570     handleSimpleAttribute<UnusedAttr>(S, D, Attr);
4571     break;
4572   case AttributeList::AT_ReturnsTwice:
4573     handleSimpleAttribute<ReturnsTwiceAttr>(S, D, Attr);
4574     break;
4575   case AttributeList::AT_Used:
4576     handleUsedAttr(S, D, Attr);
4577     break;
4578   case AttributeList::AT_Visibility:
4579     handleVisibilityAttr(S, D, Attr, false);
4580     break;
4581   case AttributeList::AT_TypeVisibility:
4582     handleVisibilityAttr(S, D, Attr, true);
4583     break;
4584   case AttributeList::AT_WarnUnused:
4585     handleSimpleAttribute<WarnUnusedAttr>(S, D, Attr);
4586     break;
4587   case AttributeList::AT_WarnUnusedResult:
4588     handleWarnUnusedResult(S, D, Attr);
4589     break;
4590   case AttributeList::AT_Weak:
4591     handleSimpleAttribute<WeakAttr>(S, D, Attr);
4592     break;
4593   case AttributeList::AT_WeakRef:
4594     handleWeakRefAttr(S, D, Attr);
4595     break;
4596   case AttributeList::AT_WeakImport:
4597     handleWeakImportAttr(S, D, Attr);
4598     break;
4599   case AttributeList::AT_TransparentUnion:
4600     handleTransparentUnionAttr(S, D, Attr);
4601     break;
4602   case AttributeList::AT_ObjCException:
4603     handleSimpleAttribute<ObjCExceptionAttr>(S, D, Attr);
4604     break;
4605   case AttributeList::AT_ObjCMethodFamily:
4606     handleObjCMethodFamilyAttr(S, D, Attr);
4607     break;
4608   case AttributeList::AT_ObjCNSObject:
4609     handleObjCNSObject(S, D, Attr);
4610     break;
4611   case AttributeList::AT_Blocks:
4612     handleBlocksAttr(S, D, Attr);
4613     break;
4614   case AttributeList::AT_Sentinel:
4615     handleSentinelAttr(S, D, Attr);
4616     break;
4617   case AttributeList::AT_Const:
4618     handleSimpleAttribute<ConstAttr>(S, D, Attr);
4619     break;
4620   case AttributeList::AT_Pure:
4621     handleSimpleAttribute<PureAttr>(S, D, Attr);
4622     break;
4623   case AttributeList::AT_Cleanup:
4624     handleCleanupAttr(S, D, Attr);
4625     break;
4626   case AttributeList::AT_NoDebug:
4627     handleNoDebugAttr(S, D, Attr);
4628     break;
4629   case AttributeList::AT_NoDuplicate:
4630     handleSimpleAttribute<NoDuplicateAttr>(S, D, Attr);
4631     break;
4632   case AttributeList::AT_NoInline:
4633     handleSimpleAttribute<NoInlineAttr>(S, D, Attr);
4634     break;
4635   case AttributeList::AT_NoInstrumentFunction: // Interacts with -pg.
4636     handleSimpleAttribute<NoInstrumentFunctionAttr>(S, D, Attr);
4637     break;
4638   case AttributeList::AT_StdCall:
4639   case AttributeList::AT_CDecl:
4640   case AttributeList::AT_FastCall:
4641   case AttributeList::AT_ThisCall:
4642   case AttributeList::AT_Pascal:
4643   case AttributeList::AT_VectorCall:
4644   case AttributeList::AT_MSABI:
4645   case AttributeList::AT_SysVABI:
4646   case AttributeList::AT_Pcs:
4647   case AttributeList::AT_PnaclCall:
4648   case AttributeList::AT_IntelOclBicc:
4649     handleCallConvAttr(S, D, Attr);
4650     break;
4651   case AttributeList::AT_OpenCLKernel:
4652     handleSimpleAttribute<OpenCLKernelAttr>(S, D, Attr);
4653     break;
4654   case AttributeList::AT_OpenCLImageAccess:
4655     handleSimpleAttribute<OpenCLImageAccessAttr>(S, D, Attr);
4656     break;
4657 
4658   // Microsoft attributes:
4659   case AttributeList::AT_MsStruct:
4660     handleSimpleAttribute<MsStructAttr>(S, D, Attr);
4661     break;
4662   case AttributeList::AT_Uuid:
4663     handleUuidAttr(S, D, Attr);
4664     break;
4665   case AttributeList::AT_MSInheritance:
4666     handleMSInheritanceAttr(S, D, Attr);
4667     break;
4668   case AttributeList::AT_SelectAny:
4669     handleSimpleAttribute<SelectAnyAttr>(S, D, Attr);
4670     break;
4671   case AttributeList::AT_Thread:
4672     handleDeclspecThreadAttr(S, D, Attr);
4673     break;
4674 
4675   // Thread safety attributes:
4676   case AttributeList::AT_AssertExclusiveLock:
4677     handleAssertExclusiveLockAttr(S, D, Attr);
4678     break;
4679   case AttributeList::AT_AssertSharedLock:
4680     handleAssertSharedLockAttr(S, D, Attr);
4681     break;
4682   case AttributeList::AT_GuardedVar:
4683     handleSimpleAttribute<GuardedVarAttr>(S, D, Attr);
4684     break;
4685   case AttributeList::AT_PtGuardedVar:
4686     handlePtGuardedVarAttr(S, D, Attr);
4687     break;
4688   case AttributeList::AT_ScopedLockable:
4689     handleSimpleAttribute<ScopedLockableAttr>(S, D, Attr);
4690     break;
4691   case AttributeList::AT_NoSanitizeAddress:
4692     handleSimpleAttribute<NoSanitizeAddressAttr>(S, D, Attr);
4693     break;
4694   case AttributeList::AT_NoThreadSafetyAnalysis:
4695     handleSimpleAttribute<NoThreadSafetyAnalysisAttr>(S, D, Attr);
4696     break;
4697   case AttributeList::AT_NoSanitizeThread:
4698     handleSimpleAttribute<NoSanitizeThreadAttr>(S, D, Attr);
4699     break;
4700   case AttributeList::AT_NoSanitizeMemory:
4701     handleSimpleAttribute<NoSanitizeMemoryAttr>(S, D, Attr);
4702     break;
4703   case AttributeList::AT_GuardedBy:
4704     handleGuardedByAttr(S, D, Attr);
4705     break;
4706   case AttributeList::AT_PtGuardedBy:
4707     handlePtGuardedByAttr(S, D, Attr);
4708     break;
4709   case AttributeList::AT_ExclusiveTrylockFunction:
4710     handleExclusiveTrylockFunctionAttr(S, D, Attr);
4711     break;
4712   case AttributeList::AT_LockReturned:
4713     handleLockReturnedAttr(S, D, Attr);
4714     break;
4715   case AttributeList::AT_LocksExcluded:
4716     handleLocksExcludedAttr(S, D, Attr);
4717     break;
4718   case AttributeList::AT_SharedTrylockFunction:
4719     handleSharedTrylockFunctionAttr(S, D, Attr);
4720     break;
4721   case AttributeList::AT_AcquiredBefore:
4722     handleAcquiredBeforeAttr(S, D, Attr);
4723     break;
4724   case AttributeList::AT_AcquiredAfter:
4725     handleAcquiredAfterAttr(S, D, Attr);
4726     break;
4727 
4728   // Capability analysis attributes.
4729   case AttributeList::AT_Capability:
4730   case AttributeList::AT_Lockable:
4731     handleCapabilityAttr(S, D, Attr);
4732     break;
4733   case AttributeList::AT_RequiresCapability:
4734     handleRequiresCapabilityAttr(S, D, Attr);
4735     break;
4736 
4737   case AttributeList::AT_AssertCapability:
4738     handleAssertCapabilityAttr(S, D, Attr);
4739     break;
4740   case AttributeList::AT_AcquireCapability:
4741     handleAcquireCapabilityAttr(S, D, Attr);
4742     break;
4743   case AttributeList::AT_ReleaseCapability:
4744     handleReleaseCapabilityAttr(S, D, Attr);
4745     break;
4746   case AttributeList::AT_TryAcquireCapability:
4747     handleTryAcquireCapabilityAttr(S, D, Attr);
4748     break;
4749 
4750   // Consumed analysis attributes.
4751   case AttributeList::AT_Consumable:
4752     handleConsumableAttr(S, D, Attr);
4753     break;
4754   case AttributeList::AT_ConsumableAutoCast:
4755     handleSimpleAttribute<ConsumableAutoCastAttr>(S, D, Attr);
4756     break;
4757   case AttributeList::AT_ConsumableSetOnRead:
4758     handleSimpleAttribute<ConsumableSetOnReadAttr>(S, D, Attr);
4759     break;
4760   case AttributeList::AT_CallableWhen:
4761     handleCallableWhenAttr(S, D, Attr);
4762     break;
4763   case AttributeList::AT_ParamTypestate:
4764     handleParamTypestateAttr(S, D, Attr);
4765     break;
4766   case AttributeList::AT_ReturnTypestate:
4767     handleReturnTypestateAttr(S, D, Attr);
4768     break;
4769   case AttributeList::AT_SetTypestate:
4770     handleSetTypestateAttr(S, D, Attr);
4771     break;
4772   case AttributeList::AT_TestTypestate:
4773     handleTestTypestateAttr(S, D, Attr);
4774     break;
4775 
4776   // Type safety attributes.
4777   case AttributeList::AT_ArgumentWithTypeTag:
4778     handleArgumentWithTypeTagAttr(S, D, Attr);
4779     break;
4780   case AttributeList::AT_TypeTagForDatatype:
4781     handleTypeTagForDatatypeAttr(S, D, Attr);
4782     break;
4783   }
4784 }
4785 
4786 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
4787 /// attribute list to the specified decl, ignoring any type attributes.
ProcessDeclAttributeList(Scope * S,Decl * D,const AttributeList * AttrList,bool IncludeCXX11Attributes)4788 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
4789                                     const AttributeList *AttrList,
4790                                     bool IncludeCXX11Attributes) {
4791   for (const AttributeList* l = AttrList; l; l = l->getNext())
4792     ProcessDeclAttribute(*this, S, D, *l, IncludeCXX11Attributes);
4793 
4794   // FIXME: We should be able to handle these cases in TableGen.
4795   // GCC accepts
4796   // static int a9 __attribute__((weakref));
4797   // but that looks really pointless. We reject it.
4798   if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
4799     Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias)
4800       << cast<NamedDecl>(D);
4801     D->dropAttr<WeakRefAttr>();
4802     return;
4803   }
4804 
4805   // FIXME: We should be able to handle this in TableGen as well. It would be
4806   // good to have a way to specify "these attributes must appear as a group",
4807   // for these. Additionally, it would be good to have a way to specify "these
4808   // attribute must never appear as a group" for attributes like cold and hot.
4809   if (!D->hasAttr<OpenCLKernelAttr>()) {
4810     // These attributes cannot be applied to a non-kernel function.
4811     if (Attr *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
4812       // FIXME: This emits a different error message than
4813       // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
4814       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
4815       D->setInvalidDecl();
4816     } else if (Attr *A = D->getAttr<WorkGroupSizeHintAttr>()) {
4817       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
4818       D->setInvalidDecl();
4819     } else if (Attr *A = D->getAttr<VecTypeHintAttr>()) {
4820       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
4821       D->setInvalidDecl();
4822     } else if (Attr *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
4823       Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
4824         << A << ExpectedKernelFunction;
4825       D->setInvalidDecl();
4826     } else if (Attr *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
4827       Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
4828         << A << ExpectedKernelFunction;
4829       D->setInvalidDecl();
4830     }
4831   }
4832 }
4833 
4834 // Annotation attributes are the only attributes allowed after an access
4835 // specifier.
ProcessAccessDeclAttributeList(AccessSpecDecl * ASDecl,const AttributeList * AttrList)4836 bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
4837                                           const AttributeList *AttrList) {
4838   for (const AttributeList* l = AttrList; l; l = l->getNext()) {
4839     if (l->getKind() == AttributeList::AT_Annotate) {
4840       ProcessDeclAttribute(*this, nullptr, ASDecl, *l, l->isCXX11Attribute());
4841     } else {
4842       Diag(l->getLoc(), diag::err_only_annotate_after_access_spec);
4843       return true;
4844     }
4845   }
4846 
4847   return false;
4848 }
4849 
4850 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
4851 /// contains any decl attributes that we should warn about.
checkUnusedDeclAttributes(Sema & S,const AttributeList * A)4852 static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) {
4853   for ( ; A; A = A->getNext()) {
4854     // Only warn if the attribute is an unignored, non-type attribute.
4855     if (A->isUsedAsTypeAttr() || A->isInvalid()) continue;
4856     if (A->getKind() == AttributeList::IgnoredAttribute) continue;
4857 
4858     if (A->getKind() == AttributeList::UnknownAttribute) {
4859       S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored)
4860         << A->getName() << A->getRange();
4861     } else {
4862       S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl)
4863         << A->getName() << A->getRange();
4864     }
4865   }
4866 }
4867 
4868 /// checkUnusedDeclAttributes - Given a declarator which is not being
4869 /// used to build a declaration, complain about any decl attributes
4870 /// which might be lying around on it.
checkUnusedDeclAttributes(Declarator & D)4871 void Sema::checkUnusedDeclAttributes(Declarator &D) {
4872   ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList());
4873   ::checkUnusedDeclAttributes(*this, D.getAttributes());
4874   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
4875     ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
4876 }
4877 
4878 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
4879 /// \#pragma weak needs a non-definition decl and source may not have one.
DeclClonePragmaWeak(NamedDecl * ND,IdentifierInfo * II,SourceLocation Loc)4880 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
4881                                       SourceLocation Loc) {
4882   assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
4883   NamedDecl *NewD = nullptr;
4884   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
4885     FunctionDecl *NewFD;
4886     // FIXME: Missing call to CheckFunctionDeclaration().
4887     // FIXME: Mangling?
4888     // FIXME: Is the qualifier info correct?
4889     // FIXME: Is the DeclContext correct?
4890     NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
4891                                  Loc, Loc, DeclarationName(II),
4892                                  FD->getType(), FD->getTypeSourceInfo(),
4893                                  SC_None, false/*isInlineSpecified*/,
4894                                  FD->hasPrototype(),
4895                                  false/*isConstexprSpecified*/);
4896     NewD = NewFD;
4897 
4898     if (FD->getQualifier())
4899       NewFD->setQualifierInfo(FD->getQualifierLoc());
4900 
4901     // Fake up parameter variables; they are declared as if this were
4902     // a typedef.
4903     QualType FDTy = FD->getType();
4904     if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) {
4905       SmallVector<ParmVarDecl*, 16> Params;
4906       for (const auto &AI : FT->param_types()) {
4907         ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
4908         Param->setScopeInfo(0, Params.size());
4909         Params.push_back(Param);
4910       }
4911       NewFD->setParams(Params);
4912     }
4913   } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
4914     NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
4915                            VD->getInnerLocStart(), VD->getLocation(), II,
4916                            VD->getType(), VD->getTypeSourceInfo(),
4917                            VD->getStorageClass());
4918     if (VD->getQualifier()) {
4919       VarDecl *NewVD = cast<VarDecl>(NewD);
4920       NewVD->setQualifierInfo(VD->getQualifierLoc());
4921     }
4922   }
4923   return NewD;
4924 }
4925 
4926 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
4927 /// applied to it, possibly with an alias.
DeclApplyPragmaWeak(Scope * S,NamedDecl * ND,WeakInfo & W)4928 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
4929   if (W.getUsed()) return; // only do this once
4930   W.setUsed(true);
4931   if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
4932     IdentifierInfo *NDId = ND->getIdentifier();
4933     NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
4934     NewD->addAttr(AliasAttr::CreateImplicit(Context, NDId->getName(),
4935                                             W.getLocation()));
4936     NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
4937     WeakTopLevelDecl.push_back(NewD);
4938     // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
4939     // to insert Decl at TU scope, sorry.
4940     DeclContext *SavedContext = CurContext;
4941     CurContext = Context.getTranslationUnitDecl();
4942     NewD->setDeclContext(CurContext);
4943     NewD->setLexicalDeclContext(CurContext);
4944     PushOnScopeChains(NewD, S);
4945     CurContext = SavedContext;
4946   } else { // just add weak to existing
4947     ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
4948   }
4949 }
4950 
ProcessPragmaWeak(Scope * S,Decl * D)4951 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
4952   // It's valid to "forward-declare" #pragma weak, in which case we
4953   // have to do this.
4954   LoadExternalWeakUndeclaredIdentifiers();
4955   if (!WeakUndeclaredIdentifiers.empty()) {
4956     NamedDecl *ND = nullptr;
4957     if (VarDecl *VD = dyn_cast<VarDecl>(D))
4958       if (VD->isExternC())
4959         ND = VD;
4960     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
4961       if (FD->isExternC())
4962         ND = FD;
4963     if (ND) {
4964       if (IdentifierInfo *Id = ND->getIdentifier()) {
4965         llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I
4966           = WeakUndeclaredIdentifiers.find(Id);
4967         if (I != WeakUndeclaredIdentifiers.end()) {
4968           WeakInfo W = I->second;
4969           DeclApplyPragmaWeak(S, ND, W);
4970           WeakUndeclaredIdentifiers[Id] = W;
4971         }
4972       }
4973     }
4974   }
4975 }
4976 
4977 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
4978 /// it, apply them to D.  This is a bit tricky because PD can have attributes
4979 /// specified in many different places, and we need to find and apply them all.
ProcessDeclAttributes(Scope * S,Decl * D,const Declarator & PD)4980 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
4981   // Apply decl attributes from the DeclSpec if present.
4982   if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
4983     ProcessDeclAttributeList(S, D, Attrs);
4984 
4985   // Walk the declarator structure, applying decl attributes that were in a type
4986   // position to the decl itself.  This handles cases like:
4987   //   int *__attr__(x)** D;
4988   // when X is a decl attribute.
4989   for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
4990     if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
4991       ProcessDeclAttributeList(S, D, Attrs, /*IncludeCXX11Attributes=*/false);
4992 
4993   // Finally, apply any attributes on the decl itself.
4994   if (const AttributeList *Attrs = PD.getAttributes())
4995     ProcessDeclAttributeList(S, D, Attrs);
4996 }
4997 
4998 /// Is the given declaration allowed to use a forbidden type?
isForbiddenTypeAllowed(Sema & S,Decl * decl)4999 static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) {
5000   // Private ivars are always okay.  Unfortunately, people don't
5001   // always properly make their ivars private, even in system headers.
5002   // Plus we need to make fields okay, too.
5003   // Function declarations in sys headers will be marked unavailable.
5004   if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) &&
5005       !isa<FunctionDecl>(decl))
5006     return false;
5007 
5008   // Require it to be declared in a system header.
5009   return S.Context.getSourceManager().isInSystemHeader(decl->getLocation());
5010 }
5011 
5012 /// Handle a delayed forbidden-type diagnostic.
handleDelayedForbiddenType(Sema & S,DelayedDiagnostic & diag,Decl * decl)5013 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
5014                                        Decl *decl) {
5015   if (decl && isForbiddenTypeAllowed(S, decl)) {
5016     decl->addAttr(UnavailableAttr::CreateImplicit(S.Context,
5017                         "this system declaration uses an unsupported type",
5018                         diag.Loc));
5019     return;
5020   }
5021   if (S.getLangOpts().ObjCAutoRefCount)
5022     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) {
5023       // FIXME: we may want to suppress diagnostics for all
5024       // kind of forbidden type messages on unavailable functions.
5025       if (FD->hasAttr<UnavailableAttr>() &&
5026           diag.getForbiddenTypeDiagnostic() ==
5027           diag::err_arc_array_param_no_ownership) {
5028         diag.Triggered = true;
5029         return;
5030       }
5031     }
5032 
5033   S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
5034     << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
5035   diag.Triggered = true;
5036 }
5037 
5038 
isDeclDeprecated(Decl * D)5039 static bool isDeclDeprecated(Decl *D) {
5040   do {
5041     if (D->isDeprecated())
5042       return true;
5043     // A category implicitly has the availability of the interface.
5044     if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
5045       return CatD->getClassInterface()->isDeprecated();
5046   } while ((D = cast_or_null<Decl>(D->getDeclContext())));
5047   return false;
5048 }
5049 
isDeclUnavailable(Decl * D)5050 static bool isDeclUnavailable(Decl *D) {
5051   do {
5052     if (D->isUnavailable())
5053       return true;
5054     // A category implicitly has the availability of the interface.
5055     if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
5056       return CatD->getClassInterface()->isUnavailable();
5057   } while ((D = cast_or_null<Decl>(D->getDeclContext())));
5058   return false;
5059 }
5060 
DoEmitAvailabilityWarning(Sema & S,DelayedDiagnostic::DDKind K,Decl * Ctx,const NamedDecl * D,StringRef Message,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass,const ObjCPropertyDecl * ObjCProperty,bool ObjCPropertyAccess)5061 static void DoEmitAvailabilityWarning(Sema &S, DelayedDiagnostic::DDKind K,
5062                                       Decl *Ctx, const NamedDecl *D,
5063                                       StringRef Message, SourceLocation Loc,
5064                                       const ObjCInterfaceDecl *UnknownObjCClass,
5065                                       const ObjCPropertyDecl *ObjCProperty,
5066                                       bool ObjCPropertyAccess) {
5067   // Diagnostics for deprecated or unavailable.
5068   unsigned diag, diag_message, diag_fwdclass_message;
5069 
5070   // Matches 'diag::note_property_attribute' options.
5071   unsigned property_note_select;
5072 
5073   // Matches diag::note_availability_specified_here.
5074   unsigned available_here_select_kind;
5075 
5076   // Don't warn if our current context is deprecated or unavailable.
5077   switch (K) {
5078   case DelayedDiagnostic::Deprecation:
5079     if (isDeclDeprecated(Ctx))
5080       return;
5081     diag = !ObjCPropertyAccess ? diag::warn_deprecated
5082                                : diag::warn_property_method_deprecated;
5083     diag_message = diag::warn_deprecated_message;
5084     diag_fwdclass_message = diag::warn_deprecated_fwdclass_message;
5085     property_note_select = /* deprecated */ 0;
5086     available_here_select_kind = /* deprecated */ 2;
5087     break;
5088 
5089   case DelayedDiagnostic::Unavailable:
5090     if (isDeclUnavailable(Ctx))
5091       return;
5092     diag = !ObjCPropertyAccess ? diag::err_unavailable
5093                                : diag::err_property_method_unavailable;
5094     diag_message = diag::err_unavailable_message;
5095     diag_fwdclass_message = diag::warn_unavailable_fwdclass_message;
5096     property_note_select = /* unavailable */ 1;
5097     available_here_select_kind = /* unavailable */ 0;
5098     break;
5099 
5100   default:
5101     llvm_unreachable("Neither a deprecation or unavailable kind");
5102   }
5103 
5104   if (!Message.empty()) {
5105     S.Diag(Loc, diag_message) << D << Message;
5106     if (ObjCProperty)
5107       S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
5108           << ObjCProperty->getDeclName() << property_note_select;
5109   } else if (!UnknownObjCClass) {
5110     S.Diag(Loc, diag) << D;
5111     if (ObjCProperty)
5112       S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
5113           << ObjCProperty->getDeclName() << property_note_select;
5114   } else {
5115     S.Diag(Loc, diag_fwdclass_message) << D;
5116     S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
5117   }
5118 
5119   S.Diag(D->getLocation(), diag::note_availability_specified_here)
5120       << D << available_here_select_kind;
5121 }
5122 
handleDelayedAvailabilityCheck(Sema & S,DelayedDiagnostic & DD,Decl * Ctx)5123 static void handleDelayedAvailabilityCheck(Sema &S, DelayedDiagnostic &DD,
5124                                            Decl *Ctx) {
5125   DD.Triggered = true;
5126   DoEmitAvailabilityWarning(S, (DelayedDiagnostic::DDKind)DD.Kind, Ctx,
5127                             DD.getDeprecationDecl(), DD.getDeprecationMessage(),
5128                             DD.Loc, DD.getUnknownObjCClass(),
5129                             DD.getObjCProperty(), false);
5130 }
5131 
PopParsingDeclaration(ParsingDeclState state,Decl * decl)5132 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
5133   assert(DelayedDiagnostics.getCurrentPool());
5134   DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
5135   DelayedDiagnostics.popWithoutEmitting(state);
5136 
5137   // When delaying diagnostics to run in the context of a parsed
5138   // declaration, we only want to actually emit anything if parsing
5139   // succeeds.
5140   if (!decl) return;
5141 
5142   // We emit all the active diagnostics in this pool or any of its
5143   // parents.  In general, we'll get one pool for the decl spec
5144   // and a child pool for each declarator; in a decl group like:
5145   //   deprecated_typedef foo, *bar, baz();
5146   // only the declarator pops will be passed decls.  This is correct;
5147   // we really do need to consider delayed diagnostics from the decl spec
5148   // for each of the different declarations.
5149   const DelayedDiagnosticPool *pool = &poppedPool;
5150   do {
5151     for (DelayedDiagnosticPool::pool_iterator
5152            i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
5153       // This const_cast is a bit lame.  Really, Triggered should be mutable.
5154       DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
5155       if (diag.Triggered)
5156         continue;
5157 
5158       switch (diag.Kind) {
5159       case DelayedDiagnostic::Deprecation:
5160       case DelayedDiagnostic::Unavailable:
5161         // Don't bother giving deprecation/unavailable diagnostics if
5162         // the decl is invalid.
5163         if (!decl->isInvalidDecl())
5164           handleDelayedAvailabilityCheck(*this, diag, decl);
5165         break;
5166 
5167       case DelayedDiagnostic::Access:
5168         HandleDelayedAccessCheck(diag, decl);
5169         break;
5170 
5171       case DelayedDiagnostic::ForbiddenType:
5172         handleDelayedForbiddenType(*this, diag, decl);
5173         break;
5174       }
5175     }
5176   } while ((pool = pool->getParent()));
5177 }
5178 
5179 /// Given a set of delayed diagnostics, re-emit them as if they had
5180 /// been delayed in the current context instead of in the given pool.
5181 /// Essentially, this just moves them to the current pool.
redelayDiagnostics(DelayedDiagnosticPool & pool)5182 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
5183   DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
5184   assert(curPool && "re-emitting in undelayed context not supported");
5185   curPool->steal(pool);
5186 }
5187 
EmitAvailabilityWarning(AvailabilityDiagnostic AD,NamedDecl * D,StringRef Message,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass,const ObjCPropertyDecl * ObjCProperty,bool ObjCPropertyAccess)5188 void Sema::EmitAvailabilityWarning(AvailabilityDiagnostic AD,
5189                                    NamedDecl *D, StringRef Message,
5190                                    SourceLocation Loc,
5191                                    const ObjCInterfaceDecl *UnknownObjCClass,
5192                                    const ObjCPropertyDecl  *ObjCProperty,
5193                                    bool ObjCPropertyAccess) {
5194   // Delay if we're currently parsing a declaration.
5195   if (DelayedDiagnostics.shouldDelayDiagnostics()) {
5196     DelayedDiagnostics.add(DelayedDiagnostic::makeAvailability(
5197         AD, Loc, D, UnknownObjCClass, ObjCProperty, Message,
5198         ObjCPropertyAccess));
5199     return;
5200   }
5201 
5202   Decl *Ctx = cast<Decl>(getCurLexicalContext());
5203   DelayedDiagnostic::DDKind K;
5204   switch (AD) {
5205     case AD_Deprecation:
5206       K = DelayedDiagnostic::Deprecation;
5207       break;
5208     case AD_Unavailable:
5209       K = DelayedDiagnostic::Unavailable;
5210       break;
5211   }
5212 
5213   DoEmitAvailabilityWarning(*this, K, Ctx, D, Message, Loc,
5214                             UnknownObjCClass, ObjCProperty, ObjCPropertyAccess);
5215 }
5216