1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements decl-related attribute processing.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/Basic/CharInfo.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Lex/Preprocessor.h"
27 #include "clang/Sema/DeclSpec.h"
28 #include "clang/Sema/DelayedDiagnostic.h"
29 #include "clang/Sema/Lookup.h"
30 #include "clang/Sema/Scope.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Support/MathExtras.h"
33 using namespace clang;
34 using namespace sema;
35
36 namespace AttributeLangSupport {
37 enum LANG {
38 C,
39 Cpp,
40 ObjC
41 };
42 }
43
44 //===----------------------------------------------------------------------===//
45 // Helper functions
46 //===----------------------------------------------------------------------===//
47
48 /// isFunctionOrMethod - Return true if the given decl has function
49 /// type (function or function-typed variable) or an Objective-C
50 /// method.
isFunctionOrMethod(const Decl * D)51 static bool isFunctionOrMethod(const Decl *D) {
52 return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
53 }
54
55 /// Return true if the given decl has a declarator that should have
56 /// been processed by Sema::GetTypeForDeclarator.
hasDeclarator(const Decl * D)57 static bool hasDeclarator(const Decl *D) {
58 // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
59 return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
60 isa<ObjCPropertyDecl>(D);
61 }
62
63 /// hasFunctionProto - Return true if the given decl has a argument
64 /// information. This decl should have already passed
65 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
hasFunctionProto(const Decl * D)66 static bool hasFunctionProto(const Decl *D) {
67 if (const FunctionType *FnTy = D->getFunctionType())
68 return isa<FunctionProtoType>(FnTy);
69 return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
70 }
71
72 /// getFunctionOrMethodNumParams - Return number of function or method
73 /// parameters. It is an error to call this on a K&R function (use
74 /// hasFunctionProto first).
getFunctionOrMethodNumParams(const Decl * D)75 static unsigned getFunctionOrMethodNumParams(const Decl *D) {
76 if (const FunctionType *FnTy = D->getFunctionType())
77 return cast<FunctionProtoType>(FnTy)->getNumParams();
78 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
79 return BD->getNumParams();
80 return cast<ObjCMethodDecl>(D)->param_size();
81 }
82
getFunctionOrMethodParamType(const Decl * D,unsigned Idx)83 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
84 if (const FunctionType *FnTy = D->getFunctionType())
85 return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
86 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
87 return BD->getParamDecl(Idx)->getType();
88
89 return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
90 }
91
getFunctionOrMethodParamRange(const Decl * D,unsigned Idx)92 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
93 if (const auto *FD = dyn_cast<FunctionDecl>(D))
94 return FD->getParamDecl(Idx)->getSourceRange();
95 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
96 return MD->parameters()[Idx]->getSourceRange();
97 if (const auto *BD = dyn_cast<BlockDecl>(D))
98 return BD->getParamDecl(Idx)->getSourceRange();
99 return SourceRange();
100 }
101
getFunctionOrMethodResultType(const Decl * D)102 static QualType getFunctionOrMethodResultType(const Decl *D) {
103 if (const FunctionType *FnTy = D->getFunctionType())
104 return cast<FunctionType>(FnTy)->getReturnType();
105 return cast<ObjCMethodDecl>(D)->getReturnType();
106 }
107
getFunctionOrMethodResultSourceRange(const Decl * D)108 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
109 if (const auto *FD = dyn_cast<FunctionDecl>(D))
110 return FD->getReturnTypeSourceRange();
111 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
112 return MD->getReturnTypeSourceRange();
113 return SourceRange();
114 }
115
isFunctionOrMethodVariadic(const Decl * D)116 static bool isFunctionOrMethodVariadic(const Decl *D) {
117 if (const FunctionType *FnTy = D->getFunctionType()) {
118 const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
119 return proto->isVariadic();
120 }
121 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
122 return BD->isVariadic();
123
124 return cast<ObjCMethodDecl>(D)->isVariadic();
125 }
126
isInstanceMethod(const Decl * D)127 static bool isInstanceMethod(const Decl *D) {
128 if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
129 return MethodDecl->isInstance();
130 return false;
131 }
132
isNSStringType(QualType T,ASTContext & Ctx)133 static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
134 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
135 if (!PT)
136 return false;
137
138 ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
139 if (!Cls)
140 return false;
141
142 IdentifierInfo* ClsName = Cls->getIdentifier();
143
144 // FIXME: Should we walk the chain of classes?
145 return ClsName == &Ctx.Idents.get("NSString") ||
146 ClsName == &Ctx.Idents.get("NSMutableString");
147 }
148
isCFStringType(QualType T,ASTContext & Ctx)149 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
150 const PointerType *PT = T->getAs<PointerType>();
151 if (!PT)
152 return false;
153
154 const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
155 if (!RT)
156 return false;
157
158 const RecordDecl *RD = RT->getDecl();
159 if (RD->getTagKind() != TTK_Struct)
160 return false;
161
162 return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
163 }
164
getNumAttributeArgs(const AttributeList & Attr)165 static unsigned getNumAttributeArgs(const AttributeList &Attr) {
166 // FIXME: Include the type in the argument list.
167 return Attr.getNumArgs() + Attr.hasParsedType();
168 }
169
170 template <typename Compare>
checkAttributeNumArgsImpl(Sema & S,const AttributeList & Attr,unsigned Num,unsigned Diag,Compare Comp)171 static bool checkAttributeNumArgsImpl(Sema &S, const AttributeList &Attr,
172 unsigned Num, unsigned Diag,
173 Compare Comp) {
174 if (Comp(getNumAttributeArgs(Attr), Num)) {
175 S.Diag(Attr.getLoc(), Diag) << Attr.getName() << Num;
176 return false;
177 }
178
179 return true;
180 }
181
182 /// \brief Check if the attribute has exactly as many args as Num. May
183 /// output an error.
checkAttributeNumArgs(Sema & S,const AttributeList & Attr,unsigned Num)184 static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
185 unsigned Num) {
186 return checkAttributeNumArgsImpl(S, Attr, Num,
187 diag::err_attribute_wrong_number_arguments,
188 std::not_equal_to<unsigned>());
189 }
190
191 /// \brief Check if the attribute has at least as many args as Num. May
192 /// output an error.
checkAttributeAtLeastNumArgs(Sema & S,const AttributeList & Attr,unsigned Num)193 static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr,
194 unsigned Num) {
195 return checkAttributeNumArgsImpl(S, Attr, Num,
196 diag::err_attribute_too_few_arguments,
197 std::less<unsigned>());
198 }
199
200 /// \brief Check if the attribute has at most as many args as Num. May
201 /// output an error.
checkAttributeAtMostNumArgs(Sema & S,const AttributeList & Attr,unsigned Num)202 static bool checkAttributeAtMostNumArgs(Sema &S, const AttributeList &Attr,
203 unsigned Num) {
204 return checkAttributeNumArgsImpl(S, Attr, Num,
205 diag::err_attribute_too_many_arguments,
206 std::greater<unsigned>());
207 }
208
209 /// \brief If Expr is a valid integer constant, get the value of the integer
210 /// expression and return success or failure. May output an error.
checkUInt32Argument(Sema & S,const AttributeList & Attr,const Expr * Expr,uint32_t & Val,unsigned Idx=UINT_MAX)211 static bool checkUInt32Argument(Sema &S, const AttributeList &Attr,
212 const Expr *Expr, uint32_t &Val,
213 unsigned Idx = UINT_MAX) {
214 llvm::APSInt I(32);
215 if (Expr->isTypeDependent() || Expr->isValueDependent() ||
216 !Expr->isIntegerConstantExpr(I, S.Context)) {
217 if (Idx != UINT_MAX)
218 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
219 << Attr.getName() << Idx << AANT_ArgumentIntegerConstant
220 << Expr->getSourceRange();
221 else
222 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
223 << Attr.getName() << AANT_ArgumentIntegerConstant
224 << Expr->getSourceRange();
225 return false;
226 }
227
228 if (!I.isIntN(32)) {
229 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
230 << I.toString(10, false) << 32 << /* Unsigned */ 1;
231 return false;
232 }
233
234 Val = (uint32_t)I.getZExtValue();
235 return true;
236 }
237
238 /// \brief Diagnose mutually exclusive attributes when present on a given
239 /// declaration. Returns true if diagnosed.
240 template <typename AttrTy>
checkAttrMutualExclusion(Sema & S,Decl * D,const AttributeList & Attr)241 static bool checkAttrMutualExclusion(Sema &S, Decl *D,
242 const AttributeList &Attr) {
243 if (AttrTy *A = D->getAttr<AttrTy>()) {
244 S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
245 << Attr.getName() << A;
246 return true;
247 }
248 return false;
249 }
250
251 /// \brief Check if IdxExpr is a valid parameter index for a function or
252 /// instance method D. May output an error.
253 ///
254 /// \returns true if IdxExpr is a valid index.
checkFunctionOrMethodParameterIndex(Sema & S,const Decl * D,const AttributeList & Attr,unsigned AttrArgNum,const Expr * IdxExpr,uint64_t & Idx)255 static bool checkFunctionOrMethodParameterIndex(Sema &S, const Decl *D,
256 const AttributeList &Attr,
257 unsigned AttrArgNum,
258 const Expr *IdxExpr,
259 uint64_t &Idx) {
260 assert(isFunctionOrMethod(D));
261
262 // In C++ the implicit 'this' function parameter also counts.
263 // Parameters are counted from one.
264 bool HP = hasFunctionProto(D);
265 bool HasImplicitThisParam = isInstanceMethod(D);
266 bool IV = HP && isFunctionOrMethodVariadic(D);
267 unsigned NumParams =
268 (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
269
270 llvm::APSInt IdxInt;
271 if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
272 !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
273 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
274 << Attr.getName() << AttrArgNum << AANT_ArgumentIntegerConstant
275 << IdxExpr->getSourceRange();
276 return false;
277 }
278
279 Idx = IdxInt.getLimitedValue();
280 if (Idx < 1 || (!IV && Idx > NumParams)) {
281 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
282 << Attr.getName() << AttrArgNum << IdxExpr->getSourceRange();
283 return false;
284 }
285 Idx--; // Convert to zero-based.
286 if (HasImplicitThisParam) {
287 if (Idx == 0) {
288 S.Diag(Attr.getLoc(),
289 diag::err_attribute_invalid_implicit_this_argument)
290 << Attr.getName() << IdxExpr->getSourceRange();
291 return false;
292 }
293 --Idx;
294 }
295
296 return true;
297 }
298
299 /// \brief Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
300 /// If not emit an error and return false. If the argument is an identifier it
301 /// will emit an error with a fixit hint and treat it as if it was a string
302 /// literal.
checkStringLiteralArgumentAttr(const AttributeList & Attr,unsigned ArgNum,StringRef & Str,SourceLocation * ArgLocation)303 bool Sema::checkStringLiteralArgumentAttr(const AttributeList &Attr,
304 unsigned ArgNum, StringRef &Str,
305 SourceLocation *ArgLocation) {
306 // Look for identifiers. If we have one emit a hint to fix it to a literal.
307 if (Attr.isArgIdent(ArgNum)) {
308 IdentifierLoc *Loc = Attr.getArgAsIdent(ArgNum);
309 Diag(Loc->Loc, diag::err_attribute_argument_type)
310 << Attr.getName() << AANT_ArgumentString
311 << FixItHint::CreateInsertion(Loc->Loc, "\"")
312 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(Loc->Loc), "\"");
313 Str = Loc->Ident->getName();
314 if (ArgLocation)
315 *ArgLocation = Loc->Loc;
316 return true;
317 }
318
319 // Now check for an actual string literal.
320 Expr *ArgExpr = Attr.getArgAsExpr(ArgNum);
321 StringLiteral *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
322 if (ArgLocation)
323 *ArgLocation = ArgExpr->getLocStart();
324
325 if (!Literal || !Literal->isAscii()) {
326 Diag(ArgExpr->getLocStart(), diag::err_attribute_argument_type)
327 << Attr.getName() << AANT_ArgumentString;
328 return false;
329 }
330
331 Str = Literal->getString();
332 return true;
333 }
334
335 /// \brief Applies the given attribute to the Decl without performing any
336 /// additional semantic checking.
337 template <typename AttrType>
handleSimpleAttribute(Sema & S,Decl * D,const AttributeList & Attr)338 static void handleSimpleAttribute(Sema &S, Decl *D,
339 const AttributeList &Attr) {
340 D->addAttr(::new (S.Context) AttrType(Attr.getRange(), S.Context,
341 Attr.getAttributeSpellingListIndex()));
342 }
343
344 /// \brief Check if the passed-in expression is of type int or bool.
isIntOrBool(Expr * Exp)345 static bool isIntOrBool(Expr *Exp) {
346 QualType QT = Exp->getType();
347 return QT->isBooleanType() || QT->isIntegerType();
348 }
349
350
351 // Check to see if the type is a smart pointer of some kind. We assume
352 // it's a smart pointer if it defines both operator-> and operator*.
threadSafetyCheckIsSmartPointer(Sema & S,const RecordType * RT)353 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
354 DeclContextLookupConstResult Res1 = RT->getDecl()->lookup(
355 S.Context.DeclarationNames.getCXXOperatorName(OO_Star));
356 if (Res1.empty())
357 return false;
358
359 DeclContextLookupConstResult Res2 = RT->getDecl()->lookup(
360 S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow));
361 if (Res2.empty())
362 return false;
363
364 return true;
365 }
366
367 /// \brief Check if passed in Decl is a pointer type.
368 /// Note that this function may produce an error message.
369 /// \return true if the Decl is a pointer type; false otherwise
threadSafetyCheckIsPointer(Sema & S,const Decl * D,const AttributeList & Attr)370 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
371 const AttributeList &Attr) {
372 const ValueDecl *vd = cast<ValueDecl>(D);
373 QualType QT = vd->getType();
374 if (QT->isAnyPointerType())
375 return true;
376
377 if (const RecordType *RT = QT->getAs<RecordType>()) {
378 // If it's an incomplete type, it could be a smart pointer; skip it.
379 // (We don't want to force template instantiation if we can avoid it,
380 // since that would alter the order in which templates are instantiated.)
381 if (RT->isIncompleteType())
382 return true;
383
384 if (threadSafetyCheckIsSmartPointer(S, RT))
385 return true;
386 }
387
388 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_pointer)
389 << Attr.getName() << QT;
390 return false;
391 }
392
393 /// \brief Checks that the passed in QualType either is of RecordType or points
394 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
getRecordType(QualType QT)395 static const RecordType *getRecordType(QualType QT) {
396 if (const RecordType *RT = QT->getAs<RecordType>())
397 return RT;
398
399 // Now check if we point to record type.
400 if (const PointerType *PT = QT->getAs<PointerType>())
401 return PT->getPointeeType()->getAs<RecordType>();
402
403 return nullptr;
404 }
405
checkRecordTypeForCapability(Sema & S,QualType Ty)406 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
407 const RecordType *RT = getRecordType(Ty);
408
409 if (!RT)
410 return false;
411
412 // Don't check for the capability if the class hasn't been defined yet.
413 if (RT->isIncompleteType())
414 return true;
415
416 // Allow smart pointers to be used as capability objects.
417 // FIXME -- Check the type that the smart pointer points to.
418 if (threadSafetyCheckIsSmartPointer(S, RT))
419 return true;
420
421 // Check if the record itself has a capability.
422 RecordDecl *RD = RT->getDecl();
423 if (RD->hasAttr<CapabilityAttr>())
424 return true;
425
426 // Else check if any base classes have a capability.
427 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
428 CXXBasePaths BPaths(false, false);
429 if (CRD->lookupInBases([](const CXXBaseSpecifier *BS, CXXBasePath &P,
430 void *) {
431 return BS->getType()->getAs<RecordType>()
432 ->getDecl()->hasAttr<CapabilityAttr>();
433 }, nullptr, BPaths))
434 return true;
435 }
436 return false;
437 }
438
checkTypedefTypeForCapability(QualType Ty)439 static bool checkTypedefTypeForCapability(QualType Ty) {
440 const auto *TD = Ty->getAs<TypedefType>();
441 if (!TD)
442 return false;
443
444 TypedefNameDecl *TN = TD->getDecl();
445 if (!TN)
446 return false;
447
448 return TN->hasAttr<CapabilityAttr>();
449 }
450
typeHasCapability(Sema & S,QualType Ty)451 static bool typeHasCapability(Sema &S, QualType Ty) {
452 if (checkTypedefTypeForCapability(Ty))
453 return true;
454
455 if (checkRecordTypeForCapability(S, Ty))
456 return true;
457
458 return false;
459 }
460
isCapabilityExpr(Sema & S,const Expr * Ex)461 static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
462 // Capability expressions are simple expressions involving the boolean logic
463 // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
464 // a DeclRefExpr is found, its type should be checked to determine whether it
465 // is a capability or not.
466
467 if (const auto *E = dyn_cast<DeclRefExpr>(Ex))
468 return typeHasCapability(S, E->getType());
469 else if (const auto *E = dyn_cast<CastExpr>(Ex))
470 return isCapabilityExpr(S, E->getSubExpr());
471 else if (const auto *E = dyn_cast<ParenExpr>(Ex))
472 return isCapabilityExpr(S, E->getSubExpr());
473 else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
474 if (E->getOpcode() == UO_LNot)
475 return isCapabilityExpr(S, E->getSubExpr());
476 return false;
477 } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
478 if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
479 return isCapabilityExpr(S, E->getLHS()) &&
480 isCapabilityExpr(S, E->getRHS());
481 return false;
482 }
483
484 return false;
485 }
486
487 /// \brief Checks that all attribute arguments, starting from Sidx, resolve to
488 /// a capability object.
489 /// \param Sidx The attribute argument index to start checking with.
490 /// \param ParamIdxOk Whether an argument can be indexing into a function
491 /// parameter list.
checkAttrArgsAreCapabilityObjs(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args,int Sidx=0,bool ParamIdxOk=false)492 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
493 const AttributeList &Attr,
494 SmallVectorImpl<Expr *> &Args,
495 int Sidx = 0,
496 bool ParamIdxOk = false) {
497 for (unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) {
498 Expr *ArgExp = Attr.getArgAsExpr(Idx);
499
500 if (ArgExp->isTypeDependent()) {
501 // FIXME -- need to check this again on template instantiation
502 Args.push_back(ArgExp);
503 continue;
504 }
505
506 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
507 if (StrLit->getLength() == 0 ||
508 (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
509 // Pass empty strings to the analyzer without warnings.
510 // Treat "*" as the universal lock.
511 Args.push_back(ArgExp);
512 continue;
513 }
514
515 // We allow constant strings to be used as a placeholder for expressions
516 // that are not valid C++ syntax, but warn that they are ignored.
517 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_ignored) <<
518 Attr.getName();
519 Args.push_back(ArgExp);
520 continue;
521 }
522
523 QualType ArgTy = ArgExp->getType();
524
525 // A pointer to member expression of the form &MyClass::mu is treated
526 // specially -- we need to look at the type of the member.
527 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(ArgExp))
528 if (UOp->getOpcode() == UO_AddrOf)
529 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
530 if (DRE->getDecl()->isCXXInstanceMember())
531 ArgTy = DRE->getDecl()->getType();
532
533 // First see if we can just cast to record type, or pointer to record type.
534 const RecordType *RT = getRecordType(ArgTy);
535
536 // Now check if we index into a record type function param.
537 if(!RT && ParamIdxOk) {
538 FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
539 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp);
540 if(FD && IL) {
541 unsigned int NumParams = FD->getNumParams();
542 llvm::APInt ArgValue = IL->getValue();
543 uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
544 uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
545 if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
546 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range)
547 << Attr.getName() << Idx + 1 << NumParams;
548 continue;
549 }
550 ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
551 }
552 }
553
554 // If the type does not have a capability, see if the components of the
555 // expression have capabilities. This allows for writing C code where the
556 // capability may be on the type, and the expression is a capability
557 // boolean logic expression. Eg) requires_capability(A || B && !C)
558 if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
559 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
560 << Attr.getName() << ArgTy;
561
562 Args.push_back(ArgExp);
563 }
564 }
565
566 //===----------------------------------------------------------------------===//
567 // Attribute Implementations
568 //===----------------------------------------------------------------------===//
569
handlePtGuardedVarAttr(Sema & S,Decl * D,const AttributeList & Attr)570 static void handlePtGuardedVarAttr(Sema &S, Decl *D,
571 const AttributeList &Attr) {
572 if (!threadSafetyCheckIsPointer(S, D, Attr))
573 return;
574
575 D->addAttr(::new (S.Context)
576 PtGuardedVarAttr(Attr.getRange(), S.Context,
577 Attr.getAttributeSpellingListIndex()));
578 }
579
checkGuardedByAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,Expr * & Arg)580 static bool checkGuardedByAttrCommon(Sema &S, Decl *D,
581 const AttributeList &Attr,
582 Expr* &Arg) {
583 SmallVector<Expr*, 1> Args;
584 // check that all arguments are lockable objects
585 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
586 unsigned Size = Args.size();
587 if (Size != 1)
588 return false;
589
590 Arg = Args[0];
591
592 return true;
593 }
594
handleGuardedByAttr(Sema & S,Decl * D,const AttributeList & Attr)595 static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr) {
596 Expr *Arg = nullptr;
597 if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
598 return;
599
600 D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg,
601 Attr.getAttributeSpellingListIndex()));
602 }
603
handlePtGuardedByAttr(Sema & S,Decl * D,const AttributeList & Attr)604 static void handlePtGuardedByAttr(Sema &S, Decl *D,
605 const AttributeList &Attr) {
606 Expr *Arg = nullptr;
607 if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
608 return;
609
610 if (!threadSafetyCheckIsPointer(S, D, Attr))
611 return;
612
613 D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(),
614 S.Context, Arg,
615 Attr.getAttributeSpellingListIndex()));
616 }
617
checkAcquireOrderAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args)618 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D,
619 const AttributeList &Attr,
620 SmallVectorImpl<Expr *> &Args) {
621 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
622 return false;
623
624 // Check that this attribute only applies to lockable types.
625 QualType QT = cast<ValueDecl>(D)->getType();
626 if (!QT->isDependentType()) {
627 const RecordType *RT = getRecordType(QT);
628 if (!RT || !RT->getDecl()->hasAttr<CapabilityAttr>()) {
629 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_lockable)
630 << Attr.getName();
631 return false;
632 }
633 }
634
635 // Check that all arguments are lockable objects.
636 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
637 if (Args.empty())
638 return false;
639
640 return true;
641 }
642
handleAcquiredAfterAttr(Sema & S,Decl * D,const AttributeList & Attr)643 static void handleAcquiredAfterAttr(Sema &S, Decl *D,
644 const AttributeList &Attr) {
645 SmallVector<Expr*, 1> Args;
646 if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
647 return;
648
649 Expr **StartArg = &Args[0];
650 D->addAttr(::new (S.Context)
651 AcquiredAfterAttr(Attr.getRange(), S.Context,
652 StartArg, Args.size(),
653 Attr.getAttributeSpellingListIndex()));
654 }
655
handleAcquiredBeforeAttr(Sema & S,Decl * D,const AttributeList & Attr)656 static void handleAcquiredBeforeAttr(Sema &S, Decl *D,
657 const AttributeList &Attr) {
658 SmallVector<Expr*, 1> Args;
659 if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
660 return;
661
662 Expr **StartArg = &Args[0];
663 D->addAttr(::new (S.Context)
664 AcquiredBeforeAttr(Attr.getRange(), S.Context,
665 StartArg, Args.size(),
666 Attr.getAttributeSpellingListIndex()));
667 }
668
checkLockFunAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args)669 static bool checkLockFunAttrCommon(Sema &S, Decl *D,
670 const AttributeList &Attr,
671 SmallVectorImpl<Expr *> &Args) {
672 // zero or more arguments ok
673 // check that all arguments are lockable objects
674 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
675
676 return true;
677 }
678
handleAssertSharedLockAttr(Sema & S,Decl * D,const AttributeList & Attr)679 static void handleAssertSharedLockAttr(Sema &S, Decl *D,
680 const AttributeList &Attr) {
681 SmallVector<Expr*, 1> Args;
682 if (!checkLockFunAttrCommon(S, D, Attr, Args))
683 return;
684
685 unsigned Size = Args.size();
686 Expr **StartArg = Size == 0 ? nullptr : &Args[0];
687 D->addAttr(::new (S.Context)
688 AssertSharedLockAttr(Attr.getRange(), S.Context, StartArg, Size,
689 Attr.getAttributeSpellingListIndex()));
690 }
691
handleAssertExclusiveLockAttr(Sema & S,Decl * D,const AttributeList & Attr)692 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
693 const AttributeList &Attr) {
694 SmallVector<Expr*, 1> Args;
695 if (!checkLockFunAttrCommon(S, D, Attr, Args))
696 return;
697
698 unsigned Size = Args.size();
699 Expr **StartArg = Size == 0 ? nullptr : &Args[0];
700 D->addAttr(::new (S.Context)
701 AssertExclusiveLockAttr(Attr.getRange(), S.Context,
702 StartArg, Size,
703 Attr.getAttributeSpellingListIndex()));
704 }
705
706
checkTryLockFunAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args)707 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D,
708 const AttributeList &Attr,
709 SmallVectorImpl<Expr *> &Args) {
710 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
711 return false;
712
713 if (!isIntOrBool(Attr.getArgAsExpr(0))) {
714 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
715 << Attr.getName() << 1 << AANT_ArgumentIntOrBool;
716 return false;
717 }
718
719 // check that all arguments are lockable objects
720 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 1);
721
722 return true;
723 }
724
handleSharedTrylockFunctionAttr(Sema & S,Decl * D,const AttributeList & Attr)725 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
726 const AttributeList &Attr) {
727 SmallVector<Expr*, 2> Args;
728 if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
729 return;
730
731 D->addAttr(::new (S.Context)
732 SharedTrylockFunctionAttr(Attr.getRange(), S.Context,
733 Attr.getArgAsExpr(0),
734 Args.data(), Args.size(),
735 Attr.getAttributeSpellingListIndex()));
736 }
737
handleExclusiveTrylockFunctionAttr(Sema & S,Decl * D,const AttributeList & Attr)738 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
739 const AttributeList &Attr) {
740 SmallVector<Expr*, 2> Args;
741 if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
742 return;
743
744 D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
745 Attr.getRange(), S.Context, Attr.getArgAsExpr(0), Args.data(),
746 Args.size(), Attr.getAttributeSpellingListIndex()));
747 }
748
handleLockReturnedAttr(Sema & S,Decl * D,const AttributeList & Attr)749 static void handleLockReturnedAttr(Sema &S, Decl *D,
750 const AttributeList &Attr) {
751 // check that the argument is lockable object
752 SmallVector<Expr*, 1> Args;
753 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
754 unsigned Size = Args.size();
755 if (Size == 0)
756 return;
757
758 D->addAttr(::new (S.Context)
759 LockReturnedAttr(Attr.getRange(), S.Context, Args[0],
760 Attr.getAttributeSpellingListIndex()));
761 }
762
handleLocksExcludedAttr(Sema & S,Decl * D,const AttributeList & Attr)763 static void handleLocksExcludedAttr(Sema &S, Decl *D,
764 const AttributeList &Attr) {
765 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
766 return;
767
768 // check that all arguments are lockable objects
769 SmallVector<Expr*, 1> Args;
770 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
771 unsigned Size = Args.size();
772 if (Size == 0)
773 return;
774 Expr **StartArg = &Args[0];
775
776 D->addAttr(::new (S.Context)
777 LocksExcludedAttr(Attr.getRange(), S.Context, StartArg, Size,
778 Attr.getAttributeSpellingListIndex()));
779 }
780
handleEnableIfAttr(Sema & S,Decl * D,const AttributeList & Attr)781 static void handleEnableIfAttr(Sema &S, Decl *D, const AttributeList &Attr) {
782 Expr *Cond = Attr.getArgAsExpr(0);
783 if (!Cond->isTypeDependent()) {
784 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
785 if (Converted.isInvalid())
786 return;
787 Cond = Converted.get();
788 }
789
790 StringRef Msg;
791 if (!S.checkStringLiteralArgumentAttr(Attr, 1, Msg))
792 return;
793
794 SmallVector<PartialDiagnosticAt, 8> Diags;
795 if (!Cond->isValueDependent() &&
796 !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
797 Diags)) {
798 S.Diag(Attr.getLoc(), diag::err_enable_if_never_constant_expr);
799 for (int I = 0, N = Diags.size(); I != N; ++I)
800 S.Diag(Diags[I].first, Diags[I].second);
801 return;
802 }
803
804 D->addAttr(::new (S.Context)
805 EnableIfAttr(Attr.getRange(), S.Context, Cond, Msg,
806 Attr.getAttributeSpellingListIndex()));
807 }
808
handleConsumableAttr(Sema & S,Decl * D,const AttributeList & Attr)809 static void handleConsumableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
810 ConsumableAttr::ConsumedState DefaultState;
811
812 if (Attr.isArgIdent(0)) {
813 IdentifierLoc *IL = Attr.getArgAsIdent(0);
814 if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
815 DefaultState)) {
816 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
817 << Attr.getName() << IL->Ident;
818 return;
819 }
820 } else {
821 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
822 << Attr.getName() << AANT_ArgumentIdentifier;
823 return;
824 }
825
826 D->addAttr(::new (S.Context)
827 ConsumableAttr(Attr.getRange(), S.Context, DefaultState,
828 Attr.getAttributeSpellingListIndex()));
829 }
830
831
checkForConsumableClass(Sema & S,const CXXMethodDecl * MD,const AttributeList & Attr)832 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
833 const AttributeList &Attr) {
834 ASTContext &CurrContext = S.getASTContext();
835 QualType ThisType = MD->getThisType(CurrContext)->getPointeeType();
836
837 if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
838 if (!RD->hasAttr<ConsumableAttr>()) {
839 S.Diag(Attr.getLoc(), diag::warn_attr_on_unconsumable_class) <<
840 RD->getNameAsString();
841
842 return false;
843 }
844 }
845
846 return true;
847 }
848
849
handleCallableWhenAttr(Sema & S,Decl * D,const AttributeList & Attr)850 static void handleCallableWhenAttr(Sema &S, Decl *D,
851 const AttributeList &Attr) {
852 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
853 return;
854
855 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
856 return;
857
858 SmallVector<CallableWhenAttr::ConsumedState, 3> States;
859 for (unsigned ArgIndex = 0; ArgIndex < Attr.getNumArgs(); ++ArgIndex) {
860 CallableWhenAttr::ConsumedState CallableState;
861
862 StringRef StateString;
863 SourceLocation Loc;
864 if (Attr.isArgIdent(ArgIndex)) {
865 IdentifierLoc *Ident = Attr.getArgAsIdent(ArgIndex);
866 StateString = Ident->Ident->getName();
867 Loc = Ident->Loc;
868 } else {
869 if (!S.checkStringLiteralArgumentAttr(Attr, ArgIndex, StateString, &Loc))
870 return;
871 }
872
873 if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
874 CallableState)) {
875 S.Diag(Loc, diag::warn_attribute_type_not_supported)
876 << Attr.getName() << StateString;
877 return;
878 }
879
880 States.push_back(CallableState);
881 }
882
883 D->addAttr(::new (S.Context)
884 CallableWhenAttr(Attr.getRange(), S.Context, States.data(),
885 States.size(), Attr.getAttributeSpellingListIndex()));
886 }
887
888
handleParamTypestateAttr(Sema & S,Decl * D,const AttributeList & Attr)889 static void handleParamTypestateAttr(Sema &S, Decl *D,
890 const AttributeList &Attr) {
891 ParamTypestateAttr::ConsumedState ParamState;
892
893 if (Attr.isArgIdent(0)) {
894 IdentifierLoc *Ident = Attr.getArgAsIdent(0);
895 StringRef StateString = Ident->Ident->getName();
896
897 if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
898 ParamState)) {
899 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
900 << Attr.getName() << StateString;
901 return;
902 }
903 } else {
904 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
905 Attr.getName() << AANT_ArgumentIdentifier;
906 return;
907 }
908
909 // FIXME: This check is currently being done in the analysis. It can be
910 // enabled here only after the parser propagates attributes at
911 // template specialization definition, not declaration.
912 //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
913 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
914 //
915 //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
916 // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
917 // ReturnType.getAsString();
918 // return;
919 //}
920
921 D->addAttr(::new (S.Context)
922 ParamTypestateAttr(Attr.getRange(), S.Context, ParamState,
923 Attr.getAttributeSpellingListIndex()));
924 }
925
926
handleReturnTypestateAttr(Sema & S,Decl * D,const AttributeList & Attr)927 static void handleReturnTypestateAttr(Sema &S, Decl *D,
928 const AttributeList &Attr) {
929 ReturnTypestateAttr::ConsumedState ReturnState;
930
931 if (Attr.isArgIdent(0)) {
932 IdentifierLoc *IL = Attr.getArgAsIdent(0);
933 if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
934 ReturnState)) {
935 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
936 << Attr.getName() << IL->Ident;
937 return;
938 }
939 } else {
940 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
941 Attr.getName() << AANT_ArgumentIdentifier;
942 return;
943 }
944
945 // FIXME: This check is currently being done in the analysis. It can be
946 // enabled here only after the parser propagates attributes at
947 // template specialization definition, not declaration.
948 //QualType ReturnType;
949 //
950 //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
951 // ReturnType = Param->getType();
952 //
953 //} else if (const CXXConstructorDecl *Constructor =
954 // dyn_cast<CXXConstructorDecl>(D)) {
955 // ReturnType = Constructor->getThisType(S.getASTContext())->getPointeeType();
956 //
957 //} else {
958 //
959 // ReturnType = cast<FunctionDecl>(D)->getCallResultType();
960 //}
961 //
962 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
963 //
964 //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
965 // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
966 // ReturnType.getAsString();
967 // return;
968 //}
969
970 D->addAttr(::new (S.Context)
971 ReturnTypestateAttr(Attr.getRange(), S.Context, ReturnState,
972 Attr.getAttributeSpellingListIndex()));
973 }
974
975
handleSetTypestateAttr(Sema & S,Decl * D,const AttributeList & Attr)976 static void handleSetTypestateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
977 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
978 return;
979
980 SetTypestateAttr::ConsumedState NewState;
981 if (Attr.isArgIdent(0)) {
982 IdentifierLoc *Ident = Attr.getArgAsIdent(0);
983 StringRef Param = Ident->Ident->getName();
984 if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
985 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
986 << Attr.getName() << Param;
987 return;
988 }
989 } else {
990 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
991 Attr.getName() << AANT_ArgumentIdentifier;
992 return;
993 }
994
995 D->addAttr(::new (S.Context)
996 SetTypestateAttr(Attr.getRange(), S.Context, NewState,
997 Attr.getAttributeSpellingListIndex()));
998 }
999
handleTestTypestateAttr(Sema & S,Decl * D,const AttributeList & Attr)1000 static void handleTestTypestateAttr(Sema &S, Decl *D,
1001 const AttributeList &Attr) {
1002 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
1003 return;
1004
1005 TestTypestateAttr::ConsumedState TestState;
1006 if (Attr.isArgIdent(0)) {
1007 IdentifierLoc *Ident = Attr.getArgAsIdent(0);
1008 StringRef Param = Ident->Ident->getName();
1009 if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1010 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1011 << Attr.getName() << Param;
1012 return;
1013 }
1014 } else {
1015 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
1016 Attr.getName() << AANT_ArgumentIdentifier;
1017 return;
1018 }
1019
1020 D->addAttr(::new (S.Context)
1021 TestTypestateAttr(Attr.getRange(), S.Context, TestState,
1022 Attr.getAttributeSpellingListIndex()));
1023 }
1024
handleExtVectorTypeAttr(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr)1025 static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
1026 const AttributeList &Attr) {
1027 // Remember this typedef decl, we will need it later for diagnostics.
1028 S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
1029 }
1030
handlePackedAttr(Sema & S,Decl * D,const AttributeList & Attr)1031 static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1032 if (TagDecl *TD = dyn_cast<TagDecl>(D))
1033 TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context,
1034 Attr.getAttributeSpellingListIndex()));
1035 else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1036 // If the alignment is less than or equal to 8 bits, the packed attribute
1037 // has no effect.
1038 if (!FD->getType()->isDependentType() &&
1039 !FD->getType()->isIncompleteType() &&
1040 S.Context.getTypeAlign(FD->getType()) <= 8)
1041 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1042 << Attr.getName() << FD->getType();
1043 else
1044 FD->addAttr(::new (S.Context)
1045 PackedAttr(Attr.getRange(), S.Context,
1046 Attr.getAttributeSpellingListIndex()));
1047 } else
1048 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
1049 }
1050
checkIBOutletCommon(Sema & S,Decl * D,const AttributeList & Attr)1051 static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) {
1052 // The IBOutlet/IBOutletCollection attributes only apply to instance
1053 // variables or properties of Objective-C classes. The outlet must also
1054 // have an object reference type.
1055 if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) {
1056 if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1057 S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
1058 << Attr.getName() << VD->getType() << 0;
1059 return false;
1060 }
1061 }
1062 else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1063 if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1064 S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
1065 << Attr.getName() << PD->getType() << 1;
1066 return false;
1067 }
1068 }
1069 else {
1070 S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
1071 return false;
1072 }
1073
1074 return true;
1075 }
1076
handleIBOutlet(Sema & S,Decl * D,const AttributeList & Attr)1077 static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
1078 if (!checkIBOutletCommon(S, D, Attr))
1079 return;
1080
1081 D->addAttr(::new (S.Context)
1082 IBOutletAttr(Attr.getRange(), S.Context,
1083 Attr.getAttributeSpellingListIndex()));
1084 }
1085
handleIBOutletCollection(Sema & S,Decl * D,const AttributeList & Attr)1086 static void handleIBOutletCollection(Sema &S, Decl *D,
1087 const AttributeList &Attr) {
1088
1089 // The iboutletcollection attribute can have zero or one arguments.
1090 if (Attr.getNumArgs() > 1) {
1091 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
1092 << Attr.getName() << 1;
1093 return;
1094 }
1095
1096 if (!checkIBOutletCommon(S, D, Attr))
1097 return;
1098
1099 ParsedType PT;
1100
1101 if (Attr.hasParsedType())
1102 PT = Attr.getTypeArg();
1103 else {
1104 PT = S.getTypeName(S.Context.Idents.get("NSObject"), Attr.getLoc(),
1105 S.getScopeForContext(D->getDeclContext()->getParent()));
1106 if (!PT) {
1107 S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
1108 return;
1109 }
1110 }
1111
1112 TypeSourceInfo *QTLoc = nullptr;
1113 QualType QT = S.GetTypeFromParser(PT, &QTLoc);
1114 if (!QTLoc)
1115 QTLoc = S.Context.getTrivialTypeSourceInfo(QT, Attr.getLoc());
1116
1117 // Diagnose use of non-object type in iboutletcollection attribute.
1118 // FIXME. Gnu attribute extension ignores use of builtin types in
1119 // attributes. So, __attribute__((iboutletcollection(char))) will be
1120 // treated as __attribute__((iboutletcollection())).
1121 if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1122 S.Diag(Attr.getLoc(),
1123 QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
1124 : diag::err_iboutletcollection_type) << QT;
1125 return;
1126 }
1127
1128 D->addAttr(::new (S.Context)
1129 IBOutletCollectionAttr(Attr.getRange(), S.Context, QTLoc,
1130 Attr.getAttributeSpellingListIndex()));
1131 }
1132
isValidPointerAttrType(QualType T,bool RefOkay)1133 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
1134 if (RefOkay) {
1135 if (T->isReferenceType())
1136 return true;
1137 } else {
1138 T = T.getNonReferenceType();
1139 }
1140
1141 // The nonnull attribute, and other similar attributes, can be applied to a
1142 // transparent union that contains a pointer type.
1143 if (const RecordType *UT = T->getAsUnionType()) {
1144 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1145 RecordDecl *UD = UT->getDecl();
1146 for (const auto *I : UD->fields()) {
1147 QualType QT = I->getType();
1148 if (QT->isAnyPointerType() || QT->isBlockPointerType())
1149 return true;
1150 }
1151 }
1152 }
1153
1154 return T->isAnyPointerType() || T->isBlockPointerType();
1155 }
1156
attrNonNullArgCheck(Sema & S,QualType T,const AttributeList & Attr,SourceRange AttrParmRange,SourceRange TypeRange,bool isReturnValue=false)1157 static bool attrNonNullArgCheck(Sema &S, QualType T, const AttributeList &Attr,
1158 SourceRange AttrParmRange,
1159 SourceRange TypeRange,
1160 bool isReturnValue = false) {
1161 if (!S.isValidPointerAttrType(T)) {
1162 S.Diag(Attr.getLoc(), isReturnValue
1163 ? diag::warn_attribute_return_pointers_only
1164 : diag::warn_attribute_pointers_only)
1165 << Attr.getName() << AttrParmRange << TypeRange;
1166 return false;
1167 }
1168 return true;
1169 }
1170
handleNonNullAttr(Sema & S,Decl * D,const AttributeList & Attr)1171 static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1172 SmallVector<unsigned, 8> NonNullArgs;
1173 for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {
1174 Expr *Ex = Attr.getArgAsExpr(I);
1175 uint64_t Idx;
1176 if (!checkFunctionOrMethodParameterIndex(S, D, Attr, I + 1, Ex, Idx))
1177 return;
1178
1179 // Is the function argument a pointer type?
1180 if (Idx < getFunctionOrMethodNumParams(D) &&
1181 !attrNonNullArgCheck(S, getFunctionOrMethodParamType(D, Idx), Attr,
1182 Ex->getSourceRange(),
1183 getFunctionOrMethodParamRange(D, Idx)))
1184 continue;
1185
1186 NonNullArgs.push_back(Idx);
1187 }
1188
1189 // If no arguments were specified to __attribute__((nonnull)) then all pointer
1190 // arguments have a nonnull attribute; warn if there aren't any. Skip this
1191 // check if the attribute came from a macro expansion or a template
1192 // instantiation.
1193 if (NonNullArgs.empty() && Attr.getLoc().isFileID() &&
1194 S.ActiveTemplateInstantiations.empty()) {
1195 bool AnyPointers = isFunctionOrMethodVariadic(D);
1196 for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1197 I != E && !AnyPointers; ++I) {
1198 QualType T = getFunctionOrMethodParamType(D, I);
1199 if (T->isDependentType() || S.isValidPointerAttrType(T))
1200 AnyPointers = true;
1201 }
1202
1203 if (!AnyPointers)
1204 S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1205 }
1206
1207 unsigned *Start = NonNullArgs.data();
1208 unsigned Size = NonNullArgs.size();
1209 llvm::array_pod_sort(Start, Start + Size);
1210 D->addAttr(::new (S.Context)
1211 NonNullAttr(Attr.getRange(), S.Context, Start, Size,
1212 Attr.getAttributeSpellingListIndex()));
1213 }
1214
handleNonNullAttrParameter(Sema & S,ParmVarDecl * D,const AttributeList & Attr)1215 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
1216 const AttributeList &Attr) {
1217 if (Attr.getNumArgs() > 0) {
1218 if (D->getFunctionType()) {
1219 handleNonNullAttr(S, D, Attr);
1220 } else {
1221 S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1222 << D->getSourceRange();
1223 }
1224 return;
1225 }
1226
1227 // Is the argument a pointer type?
1228 if (!attrNonNullArgCheck(S, D->getType(), Attr, SourceRange(),
1229 D->getSourceRange()))
1230 return;
1231
1232 D->addAttr(::new (S.Context)
1233 NonNullAttr(Attr.getRange(), S.Context, nullptr, 0,
1234 Attr.getAttributeSpellingListIndex()));
1235 }
1236
handleReturnsNonNullAttr(Sema & S,Decl * D,const AttributeList & Attr)1237 static void handleReturnsNonNullAttr(Sema &S, Decl *D,
1238 const AttributeList &Attr) {
1239 QualType ResultType = getFunctionOrMethodResultType(D);
1240 SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1241 if (!attrNonNullArgCheck(S, ResultType, Attr, SourceRange(), SR,
1242 /* isReturnValue */ true))
1243 return;
1244
1245 D->addAttr(::new (S.Context)
1246 ReturnsNonNullAttr(Attr.getRange(), S.Context,
1247 Attr.getAttributeSpellingListIndex()));
1248 }
1249
handleAssumeAlignedAttr(Sema & S,Decl * D,const AttributeList & Attr)1250 static void handleAssumeAlignedAttr(Sema &S, Decl *D,
1251 const AttributeList &Attr) {
1252 Expr *E = Attr.getArgAsExpr(0),
1253 *OE = Attr.getNumArgs() > 1 ? Attr.getArgAsExpr(1) : nullptr;
1254 S.AddAssumeAlignedAttr(Attr.getRange(), D, E, OE,
1255 Attr.getAttributeSpellingListIndex());
1256 }
1257
AddAssumeAlignedAttr(SourceRange AttrRange,Decl * D,Expr * E,Expr * OE,unsigned SpellingListIndex)1258 void Sema::AddAssumeAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
1259 Expr *OE, unsigned SpellingListIndex) {
1260 QualType ResultType = getFunctionOrMethodResultType(D);
1261 SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1262
1263 AssumeAlignedAttr TmpAttr(AttrRange, Context, E, OE, SpellingListIndex);
1264 SourceLocation AttrLoc = AttrRange.getBegin();
1265
1266 if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1267 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1268 << &TmpAttr << AttrRange << SR;
1269 return;
1270 }
1271
1272 if (!E->isValueDependent()) {
1273 llvm::APSInt I(64);
1274 if (!E->isIntegerConstantExpr(I, Context)) {
1275 if (OE)
1276 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1277 << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
1278 << E->getSourceRange();
1279 else
1280 Diag(AttrLoc, diag::err_attribute_argument_type)
1281 << &TmpAttr << AANT_ArgumentIntegerConstant
1282 << E->getSourceRange();
1283 return;
1284 }
1285
1286 if (!I.isPowerOf2()) {
1287 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1288 << E->getSourceRange();
1289 return;
1290 }
1291 }
1292
1293 if (OE) {
1294 if (!OE->isValueDependent()) {
1295 llvm::APSInt I(64);
1296 if (!OE->isIntegerConstantExpr(I, Context)) {
1297 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1298 << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
1299 << OE->getSourceRange();
1300 return;
1301 }
1302 }
1303 }
1304
1305 D->addAttr(::new (Context)
1306 AssumeAlignedAttr(AttrRange, Context, E, OE, SpellingListIndex));
1307 }
1308
handleOwnershipAttr(Sema & S,Decl * D,const AttributeList & AL)1309 static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
1310 // This attribute must be applied to a function declaration. The first
1311 // argument to the attribute must be an identifier, the name of the resource,
1312 // for example: malloc. The following arguments must be argument indexes, the
1313 // arguments must be of integer type for Returns, otherwise of pointer type.
1314 // The difference between Holds and Takes is that a pointer may still be used
1315 // after being held. free() should be __attribute((ownership_takes)), whereas
1316 // a list append function may well be __attribute((ownership_holds)).
1317
1318 if (!AL.isArgIdent(0)) {
1319 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1320 << AL.getName() << 1 << AANT_ArgumentIdentifier;
1321 return;
1322 }
1323
1324 // Figure out our Kind.
1325 OwnershipAttr::OwnershipKind K =
1326 OwnershipAttr(AL.getLoc(), S.Context, nullptr, nullptr, 0,
1327 AL.getAttributeSpellingListIndex()).getOwnKind();
1328
1329 // Check arguments.
1330 switch (K) {
1331 case OwnershipAttr::Takes:
1332 case OwnershipAttr::Holds:
1333 if (AL.getNumArgs() < 2) {
1334 S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments)
1335 << AL.getName() << 2;
1336 return;
1337 }
1338 break;
1339 case OwnershipAttr::Returns:
1340 if (AL.getNumArgs() > 2) {
1341 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments)
1342 << AL.getName() << 1;
1343 return;
1344 }
1345 break;
1346 }
1347
1348 IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
1349
1350 // Normalize the argument, __foo__ becomes foo.
1351 StringRef ModuleName = Module->getName();
1352 if (ModuleName.startswith("__") && ModuleName.endswith("__") &&
1353 ModuleName.size() > 4) {
1354 ModuleName = ModuleName.drop_front(2).drop_back(2);
1355 Module = &S.PP.getIdentifierTable().get(ModuleName);
1356 }
1357
1358 SmallVector<unsigned, 8> OwnershipArgs;
1359 for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1360 Expr *Ex = AL.getArgAsExpr(i);
1361 uint64_t Idx;
1362 if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
1363 return;
1364
1365 // Is the function argument a pointer type?
1366 QualType T = getFunctionOrMethodParamType(D, Idx);
1367 int Err = -1; // No error
1368 switch (K) {
1369 case OwnershipAttr::Takes:
1370 case OwnershipAttr::Holds:
1371 if (!T->isAnyPointerType() && !T->isBlockPointerType())
1372 Err = 0;
1373 break;
1374 case OwnershipAttr::Returns:
1375 if (!T->isIntegerType())
1376 Err = 1;
1377 break;
1378 }
1379 if (-1 != Err) {
1380 S.Diag(AL.getLoc(), diag::err_ownership_type) << AL.getName() << Err
1381 << Ex->getSourceRange();
1382 return;
1383 }
1384
1385 // Check we don't have a conflict with another ownership attribute.
1386 for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1387 // Cannot have two ownership attributes of different kinds for the same
1388 // index.
1389 if (I->getOwnKind() != K && I->args_end() !=
1390 std::find(I->args_begin(), I->args_end(), Idx)) {
1391 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
1392 << AL.getName() << I;
1393 return;
1394 } else if (K == OwnershipAttr::Returns &&
1395 I->getOwnKind() == OwnershipAttr::Returns) {
1396 // A returns attribute conflicts with any other returns attribute using
1397 // a different index. Note, diagnostic reporting is 1-based, but stored
1398 // argument indexes are 0-based.
1399 if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) {
1400 S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1401 << *(I->args_begin()) + 1;
1402 if (I->args_size())
1403 S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1404 << (unsigned)Idx + 1 << Ex->getSourceRange();
1405 return;
1406 }
1407 }
1408 }
1409 OwnershipArgs.push_back(Idx);
1410 }
1411
1412 unsigned* start = OwnershipArgs.data();
1413 unsigned size = OwnershipArgs.size();
1414 llvm::array_pod_sort(start, start + size);
1415
1416 D->addAttr(::new (S.Context)
1417 OwnershipAttr(AL.getLoc(), S.Context, Module, start, size,
1418 AL.getAttributeSpellingListIndex()));
1419 }
1420
handleWeakRefAttr(Sema & S,Decl * D,const AttributeList & Attr)1421 static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1422 // Check the attribute arguments.
1423 if (Attr.getNumArgs() > 1) {
1424 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
1425 << Attr.getName() << 1;
1426 return;
1427 }
1428
1429 NamedDecl *nd = cast<NamedDecl>(D);
1430
1431 // gcc rejects
1432 // class c {
1433 // static int a __attribute__((weakref ("v2")));
1434 // static int b() __attribute__((weakref ("f3")));
1435 // };
1436 // and ignores the attributes of
1437 // void f(void) {
1438 // static int a __attribute__((weakref ("v2")));
1439 // }
1440 // we reject them
1441 const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1442 if (!Ctx->isFileContext()) {
1443 S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context)
1444 << nd;
1445 return;
1446 }
1447
1448 // The GCC manual says
1449 //
1450 // At present, a declaration to which `weakref' is attached can only
1451 // be `static'.
1452 //
1453 // It also says
1454 //
1455 // Without a TARGET,
1456 // given as an argument to `weakref' or to `alias', `weakref' is
1457 // equivalent to `weak'.
1458 //
1459 // gcc 4.4.1 will accept
1460 // int a7 __attribute__((weakref));
1461 // as
1462 // int a7 __attribute__((weak));
1463 // This looks like a bug in gcc. We reject that for now. We should revisit
1464 // it if this behaviour is actually used.
1465
1466 // GCC rejects
1467 // static ((alias ("y"), weakref)).
1468 // Should we? How to check that weakref is before or after alias?
1469
1470 // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1471 // of transforming it into an AliasAttr. The WeakRefAttr never uses the
1472 // StringRef parameter it was given anyway.
1473 StringRef Str;
1474 if (Attr.getNumArgs() && S.checkStringLiteralArgumentAttr(Attr, 0, Str))
1475 // GCC will accept anything as the argument of weakref. Should we
1476 // check for an existing decl?
1477 D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str,
1478 Attr.getAttributeSpellingListIndex()));
1479
1480 D->addAttr(::new (S.Context)
1481 WeakRefAttr(Attr.getRange(), S.Context,
1482 Attr.getAttributeSpellingListIndex()));
1483 }
1484
handleAliasAttr(Sema & S,Decl * D,const AttributeList & Attr)1485 static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1486 StringRef Str;
1487 if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
1488 return;
1489
1490 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1491 S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
1492 return;
1493 }
1494
1495 // FIXME: check if target symbol exists in current file
1496
1497 D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str,
1498 Attr.getAttributeSpellingListIndex()));
1499 }
1500
handleColdAttr(Sema & S,Decl * D,const AttributeList & Attr)1501 static void handleColdAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1502 if (checkAttrMutualExclusion<HotAttr>(S, D, Attr))
1503 return;
1504
1505 D->addAttr(::new (S.Context) ColdAttr(Attr.getRange(), S.Context,
1506 Attr.getAttributeSpellingListIndex()));
1507 }
1508
handleHotAttr(Sema & S,Decl * D,const AttributeList & Attr)1509 static void handleHotAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1510 if (checkAttrMutualExclusion<ColdAttr>(S, D, Attr))
1511 return;
1512
1513 D->addAttr(::new (S.Context) HotAttr(Attr.getRange(), S.Context,
1514 Attr.getAttributeSpellingListIndex()));
1515 }
1516
handleTLSModelAttr(Sema & S,Decl * D,const AttributeList & Attr)1517 static void handleTLSModelAttr(Sema &S, Decl *D,
1518 const AttributeList &Attr) {
1519 StringRef Model;
1520 SourceLocation LiteralLoc;
1521 // Check that it is a string.
1522 if (!S.checkStringLiteralArgumentAttr(Attr, 0, Model, &LiteralLoc))
1523 return;
1524
1525 // Check that the value.
1526 if (Model != "global-dynamic" && Model != "local-dynamic"
1527 && Model != "initial-exec" && Model != "local-exec") {
1528 S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
1529 return;
1530 }
1531
1532 D->addAttr(::new (S.Context)
1533 TLSModelAttr(Attr.getRange(), S.Context, Model,
1534 Attr.getAttributeSpellingListIndex()));
1535 }
1536
handleMallocAttr(Sema & S,Decl * D,const AttributeList & Attr)1537 static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1538 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1539 QualType RetTy = FD->getReturnType();
1540 if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) {
1541 D->addAttr(::new (S.Context)
1542 MallocAttr(Attr.getRange(), S.Context,
1543 Attr.getAttributeSpellingListIndex()));
1544 return;
1545 }
1546 }
1547
1548 S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only);
1549 }
1550
handleCommonAttr(Sema & S,Decl * D,const AttributeList & Attr)1551 static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1552 if (S.LangOpts.CPlusPlus) {
1553 S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
1554 << Attr.getName() << AttributeLangSupport::Cpp;
1555 return;
1556 }
1557
1558 D->addAttr(::new (S.Context) CommonAttr(Attr.getRange(), S.Context,
1559 Attr.getAttributeSpellingListIndex()));
1560 }
1561
handleNoReturnAttr(Sema & S,Decl * D,const AttributeList & attr)1562 static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
1563 if (hasDeclarator(D)) return;
1564
1565 if (S.CheckNoReturnAttr(attr)) return;
1566
1567 if (!isa<ObjCMethodDecl>(D)) {
1568 S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1569 << attr.getName() << ExpectedFunctionOrMethod;
1570 return;
1571 }
1572
1573 D->addAttr(::new (S.Context)
1574 NoReturnAttr(attr.getRange(), S.Context,
1575 attr.getAttributeSpellingListIndex()));
1576 }
1577
CheckNoReturnAttr(const AttributeList & attr)1578 bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
1579 if (!checkAttributeNumArgs(*this, attr, 0)) {
1580 attr.setInvalid();
1581 return true;
1582 }
1583
1584 return false;
1585 }
1586
handleAnalyzerNoReturnAttr(Sema & S,Decl * D,const AttributeList & Attr)1587 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
1588 const AttributeList &Attr) {
1589
1590 // The checking path for 'noreturn' and 'analyzer_noreturn' are different
1591 // because 'analyzer_noreturn' does not impact the type.
1592 if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) {
1593 ValueDecl *VD = dyn_cast<ValueDecl>(D);
1594 if (!VD || (!VD->getType()->isBlockPointerType() &&
1595 !VD->getType()->isFunctionPointerType())) {
1596 S.Diag(Attr.getLoc(),
1597 Attr.isCXX11Attribute() ? diag::err_attribute_wrong_decl_type
1598 : diag::warn_attribute_wrong_decl_type)
1599 << Attr.getName() << ExpectedFunctionMethodOrBlock;
1600 return;
1601 }
1602 }
1603
1604 D->addAttr(::new (S.Context)
1605 AnalyzerNoReturnAttr(Attr.getRange(), S.Context,
1606 Attr.getAttributeSpellingListIndex()));
1607 }
1608
1609 // PS3 PPU-specific.
handleVecReturnAttr(Sema & S,Decl * D,const AttributeList & Attr)1610 static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1611 /*
1612 Returning a Vector Class in Registers
1613
1614 According to the PPU ABI specifications, a class with a single member of
1615 vector type is returned in memory when used as the return value of a function.
1616 This results in inefficient code when implementing vector classes. To return
1617 the value in a single vector register, add the vecreturn attribute to the
1618 class definition. This attribute is also applicable to struct types.
1619
1620 Example:
1621
1622 struct Vector
1623 {
1624 __vector float xyzw;
1625 } __attribute__((vecreturn));
1626
1627 Vector Add(Vector lhs, Vector rhs)
1628 {
1629 Vector result;
1630 result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
1631 return result; // This will be returned in a register
1632 }
1633 */
1634 if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
1635 S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << A;
1636 return;
1637 }
1638
1639 RecordDecl *record = cast<RecordDecl>(D);
1640 int count = 0;
1641
1642 if (!isa<CXXRecordDecl>(record)) {
1643 S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1644 return;
1645 }
1646
1647 if (!cast<CXXRecordDecl>(record)->isPOD()) {
1648 S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
1649 return;
1650 }
1651
1652 for (const auto *I : record->fields()) {
1653 if ((count == 1) || !I->getType()->isVectorType()) {
1654 S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1655 return;
1656 }
1657 count++;
1658 }
1659
1660 D->addAttr(::new (S.Context)
1661 VecReturnAttr(Attr.getRange(), S.Context,
1662 Attr.getAttributeSpellingListIndex()));
1663 }
1664
handleDependencyAttr(Sema & S,Scope * Scope,Decl * D,const AttributeList & Attr)1665 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
1666 const AttributeList &Attr) {
1667 if (isa<ParmVarDecl>(D)) {
1668 // [[carries_dependency]] can only be applied to a parameter if it is a
1669 // parameter of a function declaration or lambda.
1670 if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
1671 S.Diag(Attr.getLoc(),
1672 diag::err_carries_dependency_param_not_function_decl);
1673 return;
1674 }
1675 }
1676
1677 D->addAttr(::new (S.Context) CarriesDependencyAttr(
1678 Attr.getRange(), S.Context,
1679 Attr.getAttributeSpellingListIndex()));
1680 }
1681
handleUsedAttr(Sema & S,Decl * D,const AttributeList & Attr)1682 static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1683 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1684 if (VD->hasLocalStorage()) {
1685 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
1686 return;
1687 }
1688 } else if (!isFunctionOrMethod(D)) {
1689 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1690 << Attr.getName() << ExpectedVariableOrFunction;
1691 return;
1692 }
1693
1694 D->addAttr(::new (S.Context)
1695 UsedAttr(Attr.getRange(), S.Context,
1696 Attr.getAttributeSpellingListIndex()));
1697 }
1698
handleConstructorAttr(Sema & S,Decl * D,const AttributeList & Attr)1699 static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1700 uint32_t priority = ConstructorAttr::DefaultPriority;
1701 if (Attr.getNumArgs() &&
1702 !checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority))
1703 return;
1704
1705 D->addAttr(::new (S.Context)
1706 ConstructorAttr(Attr.getRange(), S.Context, priority,
1707 Attr.getAttributeSpellingListIndex()));
1708 }
1709
handleDestructorAttr(Sema & S,Decl * D,const AttributeList & Attr)1710 static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1711 uint32_t priority = DestructorAttr::DefaultPriority;
1712 if (Attr.getNumArgs() &&
1713 !checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority))
1714 return;
1715
1716 D->addAttr(::new (S.Context)
1717 DestructorAttr(Attr.getRange(), S.Context, priority,
1718 Attr.getAttributeSpellingListIndex()));
1719 }
1720
1721 template <typename AttrTy>
handleAttrWithMessage(Sema & S,Decl * D,const AttributeList & Attr)1722 static void handleAttrWithMessage(Sema &S, Decl *D,
1723 const AttributeList &Attr) {
1724 // Handle the case where the attribute has a text message.
1725 StringRef Str;
1726 if (Attr.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(Attr, 0, Str))
1727 return;
1728
1729 D->addAttr(::new (S.Context) AttrTy(Attr.getRange(), S.Context, Str,
1730 Attr.getAttributeSpellingListIndex()));
1731 }
1732
handleObjCSuppresProtocolAttr(Sema & S,Decl * D,const AttributeList & Attr)1733 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
1734 const AttributeList &Attr) {
1735 if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
1736 S.Diag(Attr.getLoc(), diag::err_objc_attr_protocol_requires_definition)
1737 << Attr.getName() << Attr.getRange();
1738 return;
1739 }
1740
1741 D->addAttr(::new (S.Context)
1742 ObjCExplicitProtocolImplAttr(Attr.getRange(), S.Context,
1743 Attr.getAttributeSpellingListIndex()));
1744 }
1745
checkAvailabilityAttr(Sema & S,SourceRange Range,IdentifierInfo * Platform,VersionTuple Introduced,VersionTuple Deprecated,VersionTuple Obsoleted)1746 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
1747 IdentifierInfo *Platform,
1748 VersionTuple Introduced,
1749 VersionTuple Deprecated,
1750 VersionTuple Obsoleted) {
1751 StringRef PlatformName
1752 = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
1753 if (PlatformName.empty())
1754 PlatformName = Platform->getName();
1755
1756 // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
1757 // of these steps are needed).
1758 if (!Introduced.empty() && !Deprecated.empty() &&
1759 !(Introduced <= Deprecated)) {
1760 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
1761 << 1 << PlatformName << Deprecated.getAsString()
1762 << 0 << Introduced.getAsString();
1763 return true;
1764 }
1765
1766 if (!Introduced.empty() && !Obsoleted.empty() &&
1767 !(Introduced <= Obsoleted)) {
1768 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
1769 << 2 << PlatformName << Obsoleted.getAsString()
1770 << 0 << Introduced.getAsString();
1771 return true;
1772 }
1773
1774 if (!Deprecated.empty() && !Obsoleted.empty() &&
1775 !(Deprecated <= Obsoleted)) {
1776 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
1777 << 2 << PlatformName << Obsoleted.getAsString()
1778 << 1 << Deprecated.getAsString();
1779 return true;
1780 }
1781
1782 return false;
1783 }
1784
1785 /// \brief Check whether the two versions match.
1786 ///
1787 /// If either version tuple is empty, then they are assumed to match. If
1788 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
versionsMatch(const VersionTuple & X,const VersionTuple & Y,bool BeforeIsOkay)1789 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
1790 bool BeforeIsOkay) {
1791 if (X.empty() || Y.empty())
1792 return true;
1793
1794 if (X == Y)
1795 return true;
1796
1797 if (BeforeIsOkay && X < Y)
1798 return true;
1799
1800 return false;
1801 }
1802
mergeAvailabilityAttr(NamedDecl * D,SourceRange Range,IdentifierInfo * Platform,VersionTuple Introduced,VersionTuple Deprecated,VersionTuple Obsoleted,bool IsUnavailable,StringRef Message,bool Override,unsigned AttrSpellingListIndex)1803 AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range,
1804 IdentifierInfo *Platform,
1805 VersionTuple Introduced,
1806 VersionTuple Deprecated,
1807 VersionTuple Obsoleted,
1808 bool IsUnavailable,
1809 StringRef Message,
1810 bool Override,
1811 unsigned AttrSpellingListIndex) {
1812 VersionTuple MergedIntroduced = Introduced;
1813 VersionTuple MergedDeprecated = Deprecated;
1814 VersionTuple MergedObsoleted = Obsoleted;
1815 bool FoundAny = false;
1816
1817 if (D->hasAttrs()) {
1818 AttrVec &Attrs = D->getAttrs();
1819 for (unsigned i = 0, e = Attrs.size(); i != e;) {
1820 const AvailabilityAttr *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
1821 if (!OldAA) {
1822 ++i;
1823 continue;
1824 }
1825
1826 IdentifierInfo *OldPlatform = OldAA->getPlatform();
1827 if (OldPlatform != Platform) {
1828 ++i;
1829 continue;
1830 }
1831
1832 FoundAny = true;
1833 VersionTuple OldIntroduced = OldAA->getIntroduced();
1834 VersionTuple OldDeprecated = OldAA->getDeprecated();
1835 VersionTuple OldObsoleted = OldAA->getObsoleted();
1836 bool OldIsUnavailable = OldAA->getUnavailable();
1837
1838 if (!versionsMatch(OldIntroduced, Introduced, Override) ||
1839 !versionsMatch(Deprecated, OldDeprecated, Override) ||
1840 !versionsMatch(Obsoleted, OldObsoleted, Override) ||
1841 !(OldIsUnavailable == IsUnavailable ||
1842 (Override && !OldIsUnavailable && IsUnavailable))) {
1843 if (Override) {
1844 int Which = -1;
1845 VersionTuple FirstVersion;
1846 VersionTuple SecondVersion;
1847 if (!versionsMatch(OldIntroduced, Introduced, Override)) {
1848 Which = 0;
1849 FirstVersion = OldIntroduced;
1850 SecondVersion = Introduced;
1851 } else if (!versionsMatch(Deprecated, OldDeprecated, Override)) {
1852 Which = 1;
1853 FirstVersion = Deprecated;
1854 SecondVersion = OldDeprecated;
1855 } else if (!versionsMatch(Obsoleted, OldObsoleted, Override)) {
1856 Which = 2;
1857 FirstVersion = Obsoleted;
1858 SecondVersion = OldObsoleted;
1859 }
1860
1861 if (Which == -1) {
1862 Diag(OldAA->getLocation(),
1863 diag::warn_mismatched_availability_override_unavail)
1864 << AvailabilityAttr::getPrettyPlatformName(Platform->getName());
1865 } else {
1866 Diag(OldAA->getLocation(),
1867 diag::warn_mismatched_availability_override)
1868 << Which
1869 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
1870 << FirstVersion.getAsString() << SecondVersion.getAsString();
1871 }
1872 Diag(Range.getBegin(), diag::note_overridden_method);
1873 } else {
1874 Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
1875 Diag(Range.getBegin(), diag::note_previous_attribute);
1876 }
1877
1878 Attrs.erase(Attrs.begin() + i);
1879 --e;
1880 continue;
1881 }
1882
1883 VersionTuple MergedIntroduced2 = MergedIntroduced;
1884 VersionTuple MergedDeprecated2 = MergedDeprecated;
1885 VersionTuple MergedObsoleted2 = MergedObsoleted;
1886
1887 if (MergedIntroduced2.empty())
1888 MergedIntroduced2 = OldIntroduced;
1889 if (MergedDeprecated2.empty())
1890 MergedDeprecated2 = OldDeprecated;
1891 if (MergedObsoleted2.empty())
1892 MergedObsoleted2 = OldObsoleted;
1893
1894 if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
1895 MergedIntroduced2, MergedDeprecated2,
1896 MergedObsoleted2)) {
1897 Attrs.erase(Attrs.begin() + i);
1898 --e;
1899 continue;
1900 }
1901
1902 MergedIntroduced = MergedIntroduced2;
1903 MergedDeprecated = MergedDeprecated2;
1904 MergedObsoleted = MergedObsoleted2;
1905 ++i;
1906 }
1907 }
1908
1909 if (FoundAny &&
1910 MergedIntroduced == Introduced &&
1911 MergedDeprecated == Deprecated &&
1912 MergedObsoleted == Obsoleted)
1913 return nullptr;
1914
1915 // Only create a new attribute if !Override, but we want to do
1916 // the checking.
1917 if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced,
1918 MergedDeprecated, MergedObsoleted) &&
1919 !Override) {
1920 return ::new (Context) AvailabilityAttr(Range, Context, Platform,
1921 Introduced, Deprecated,
1922 Obsoleted, IsUnavailable, Message,
1923 AttrSpellingListIndex);
1924 }
1925 return nullptr;
1926 }
1927
handleAvailabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)1928 static void handleAvailabilityAttr(Sema &S, Decl *D,
1929 const AttributeList &Attr) {
1930 if (!checkAttributeNumArgs(S, Attr, 1))
1931 return;
1932 IdentifierLoc *Platform = Attr.getArgAsIdent(0);
1933 unsigned Index = Attr.getAttributeSpellingListIndex();
1934
1935 IdentifierInfo *II = Platform->Ident;
1936 if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
1937 S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
1938 << Platform->Ident;
1939
1940 NamedDecl *ND = dyn_cast<NamedDecl>(D);
1941 if (!ND) {
1942 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
1943 return;
1944 }
1945
1946 AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
1947 AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
1948 AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
1949 bool IsUnavailable = Attr.getUnavailableLoc().isValid();
1950 StringRef Str;
1951 if (const StringLiteral *SE =
1952 dyn_cast_or_null<StringLiteral>(Attr.getMessageExpr()))
1953 Str = SE->getString();
1954
1955 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, Attr.getRange(), II,
1956 Introduced.Version,
1957 Deprecated.Version,
1958 Obsoleted.Version,
1959 IsUnavailable, Str,
1960 /*Override=*/false,
1961 Index);
1962 if (NewAttr)
1963 D->addAttr(NewAttr);
1964 }
1965
1966 template <class T>
mergeVisibilityAttr(Sema & S,Decl * D,SourceRange range,typename T::VisibilityType value,unsigned attrSpellingListIndex)1967 static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range,
1968 typename T::VisibilityType value,
1969 unsigned attrSpellingListIndex) {
1970 T *existingAttr = D->getAttr<T>();
1971 if (existingAttr) {
1972 typename T::VisibilityType existingValue = existingAttr->getVisibility();
1973 if (existingValue == value)
1974 return nullptr;
1975 S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
1976 S.Diag(range.getBegin(), diag::note_previous_attribute);
1977 D->dropAttr<T>();
1978 }
1979 return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex);
1980 }
1981
mergeVisibilityAttr(Decl * D,SourceRange Range,VisibilityAttr::VisibilityType Vis,unsigned AttrSpellingListIndex)1982 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range,
1983 VisibilityAttr::VisibilityType Vis,
1984 unsigned AttrSpellingListIndex) {
1985 return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, Range, Vis,
1986 AttrSpellingListIndex);
1987 }
1988
mergeTypeVisibilityAttr(Decl * D,SourceRange Range,TypeVisibilityAttr::VisibilityType Vis,unsigned AttrSpellingListIndex)1989 TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range,
1990 TypeVisibilityAttr::VisibilityType Vis,
1991 unsigned AttrSpellingListIndex) {
1992 return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, Range, Vis,
1993 AttrSpellingListIndex);
1994 }
1995
handleVisibilityAttr(Sema & S,Decl * D,const AttributeList & Attr,bool isTypeVisibility)1996 static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr,
1997 bool isTypeVisibility) {
1998 // Visibility attributes don't mean anything on a typedef.
1999 if (isa<TypedefNameDecl>(D)) {
2000 S.Diag(Attr.getRange().getBegin(), diag::warn_attribute_ignored)
2001 << Attr.getName();
2002 return;
2003 }
2004
2005 // 'type_visibility' can only go on a type or namespace.
2006 if (isTypeVisibility &&
2007 !(isa<TagDecl>(D) ||
2008 isa<ObjCInterfaceDecl>(D) ||
2009 isa<NamespaceDecl>(D))) {
2010 S.Diag(Attr.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2011 << Attr.getName() << ExpectedTypeOrNamespace;
2012 return;
2013 }
2014
2015 // Check that the argument is a string literal.
2016 StringRef TypeStr;
2017 SourceLocation LiteralLoc;
2018 if (!S.checkStringLiteralArgumentAttr(Attr, 0, TypeStr, &LiteralLoc))
2019 return;
2020
2021 VisibilityAttr::VisibilityType type;
2022 if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2023 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
2024 << Attr.getName() << TypeStr;
2025 return;
2026 }
2027
2028 // Complain about attempts to use protected visibility on targets
2029 // (like Darwin) that don't support it.
2030 if (type == VisibilityAttr::Protected &&
2031 !S.Context.getTargetInfo().hasProtectedVisibility()) {
2032 S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility);
2033 type = VisibilityAttr::Default;
2034 }
2035
2036 unsigned Index = Attr.getAttributeSpellingListIndex();
2037 clang::Attr *newAttr;
2038 if (isTypeVisibility) {
2039 newAttr = S.mergeTypeVisibilityAttr(D, Attr.getRange(),
2040 (TypeVisibilityAttr::VisibilityType) type,
2041 Index);
2042 } else {
2043 newAttr = S.mergeVisibilityAttr(D, Attr.getRange(), type, Index);
2044 }
2045 if (newAttr)
2046 D->addAttr(newAttr);
2047 }
2048
handleObjCMethodFamilyAttr(Sema & S,Decl * decl,const AttributeList & Attr)2049 static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
2050 const AttributeList &Attr) {
2051 ObjCMethodDecl *method = cast<ObjCMethodDecl>(decl);
2052 if (!Attr.isArgIdent(0)) {
2053 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2054 << Attr.getName() << 1 << AANT_ArgumentIdentifier;
2055 return;
2056 }
2057
2058 IdentifierLoc *IL = Attr.getArgAsIdent(0);
2059 ObjCMethodFamilyAttr::FamilyKind F;
2060 if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
2061 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << Attr.getName()
2062 << IL->Ident;
2063 return;
2064 }
2065
2066 if (F == ObjCMethodFamilyAttr::OMF_init &&
2067 !method->getReturnType()->isObjCObjectPointerType()) {
2068 S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
2069 << method->getReturnType();
2070 // Ignore the attribute.
2071 return;
2072 }
2073
2074 method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(),
2075 S.Context, F,
2076 Attr.getAttributeSpellingListIndex()));
2077 }
2078
handleObjCNSObject(Sema & S,Decl * D,const AttributeList & Attr)2079 static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
2080 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
2081 QualType T = TD->getUnderlyingType();
2082 if (!T->isCARCBridgableType()) {
2083 S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2084 return;
2085 }
2086 }
2087 else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
2088 QualType T = PD->getType();
2089 if (!T->isCARCBridgableType()) {
2090 S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
2091 return;
2092 }
2093 }
2094 else {
2095 // It is okay to include this attribute on properties, e.g.:
2096 //
2097 // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2098 //
2099 // In this case it follows tradition and suppresses an error in the above
2100 // case.
2101 S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
2102 }
2103 D->addAttr(::new (S.Context)
2104 ObjCNSObjectAttr(Attr.getRange(), S.Context,
2105 Attr.getAttributeSpellingListIndex()));
2106 }
2107
handleBlocksAttr(Sema & S,Decl * D,const AttributeList & Attr)2108 static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2109 if (!Attr.isArgIdent(0)) {
2110 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2111 << Attr.getName() << 1 << AANT_ArgumentIdentifier;
2112 return;
2113 }
2114
2115 IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident;
2116 BlocksAttr::BlockType type;
2117 if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
2118 S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
2119 << Attr.getName() << II;
2120 return;
2121 }
2122
2123 D->addAttr(::new (S.Context)
2124 BlocksAttr(Attr.getRange(), S.Context, type,
2125 Attr.getAttributeSpellingListIndex()));
2126 }
2127
handleSentinelAttr(Sema & S,Decl * D,const AttributeList & Attr)2128 static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2129 unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
2130 if (Attr.getNumArgs() > 0) {
2131 Expr *E = Attr.getArgAsExpr(0);
2132 llvm::APSInt Idx(32);
2133 if (E->isTypeDependent() || E->isValueDependent() ||
2134 !E->isIntegerConstantExpr(Idx, S.Context)) {
2135 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2136 << Attr.getName() << 1 << AANT_ArgumentIntegerConstant
2137 << E->getSourceRange();
2138 return;
2139 }
2140
2141 if (Idx.isSigned() && Idx.isNegative()) {
2142 S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2143 << E->getSourceRange();
2144 return;
2145 }
2146
2147 sentinel = Idx.getZExtValue();
2148 }
2149
2150 unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
2151 if (Attr.getNumArgs() > 1) {
2152 Expr *E = Attr.getArgAsExpr(1);
2153 llvm::APSInt Idx(32);
2154 if (E->isTypeDependent() || E->isValueDependent() ||
2155 !E->isIntegerConstantExpr(Idx, S.Context)) {
2156 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2157 << Attr.getName() << 2 << AANT_ArgumentIntegerConstant
2158 << E->getSourceRange();
2159 return;
2160 }
2161 nullPos = Idx.getZExtValue();
2162
2163 if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
2164 // FIXME: This error message could be improved, it would be nice
2165 // to say what the bounds actually are.
2166 S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2167 << E->getSourceRange();
2168 return;
2169 }
2170 }
2171
2172 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2173 const FunctionType *FT = FD->getType()->castAs<FunctionType>();
2174 if (isa<FunctionNoProtoType>(FT)) {
2175 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
2176 return;
2177 }
2178
2179 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2180 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2181 return;
2182 }
2183 } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
2184 if (!MD->isVariadic()) {
2185 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2186 return;
2187 }
2188 } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
2189 if (!BD->isVariadic()) {
2190 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
2191 return;
2192 }
2193 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
2194 QualType Ty = V->getType();
2195 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
2196 const FunctionType *FT = Ty->isFunctionPointerType()
2197 ? D->getFunctionType()
2198 : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
2199 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2200 int m = Ty->isFunctionPointerType() ? 0 : 1;
2201 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
2202 return;
2203 }
2204 } else {
2205 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2206 << Attr.getName() << ExpectedFunctionMethodOrBlock;
2207 return;
2208 }
2209 } else {
2210 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2211 << Attr.getName() << ExpectedFunctionMethodOrBlock;
2212 return;
2213 }
2214 D->addAttr(::new (S.Context)
2215 SentinelAttr(Attr.getRange(), S.Context, sentinel, nullPos,
2216 Attr.getAttributeSpellingListIndex()));
2217 }
2218
handleWarnUnusedResult(Sema & S,Decl * D,const AttributeList & Attr)2219 static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
2220 if (D->getFunctionType() &&
2221 D->getFunctionType()->getReturnType()->isVoidType()) {
2222 S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
2223 << Attr.getName() << 0;
2224 return;
2225 }
2226 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
2227 if (MD->getReturnType()->isVoidType()) {
2228 S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
2229 << Attr.getName() << 1;
2230 return;
2231 }
2232
2233 D->addAttr(::new (S.Context)
2234 WarnUnusedResultAttr(Attr.getRange(), S.Context,
2235 Attr.getAttributeSpellingListIndex()));
2236 }
2237
handleWeakImportAttr(Sema & S,Decl * D,const AttributeList & Attr)2238 static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2239 // weak_import only applies to variable & function declarations.
2240 bool isDef = false;
2241 if (!D->canBeWeakImported(isDef)) {
2242 if (isDef)
2243 S.Diag(Attr.getLoc(), diag::warn_attribute_invalid_on_definition)
2244 << "weak_import";
2245 else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
2246 (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
2247 (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
2248 // Nothing to warn about here.
2249 } else
2250 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2251 << Attr.getName() << ExpectedVariableOrFunction;
2252
2253 return;
2254 }
2255
2256 D->addAttr(::new (S.Context)
2257 WeakImportAttr(Attr.getRange(), S.Context,
2258 Attr.getAttributeSpellingListIndex()));
2259 }
2260
2261 // Handles reqd_work_group_size and work_group_size_hint.
2262 template <typename WorkGroupAttr>
handleWorkGroupSize(Sema & S,Decl * D,const AttributeList & Attr)2263 static void handleWorkGroupSize(Sema &S, Decl *D,
2264 const AttributeList &Attr) {
2265 uint32_t WGSize[3];
2266 for (unsigned i = 0; i < 3; ++i) {
2267 const Expr *E = Attr.getArgAsExpr(i);
2268 if (!checkUInt32Argument(S, Attr, E, WGSize[i], i))
2269 return;
2270 if (WGSize[i] == 0) {
2271 S.Diag(Attr.getLoc(), diag::err_attribute_argument_is_zero)
2272 << Attr.getName() << E->getSourceRange();
2273 return;
2274 }
2275 }
2276
2277 WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
2278 if (Existing && !(Existing->getXDim() == WGSize[0] &&
2279 Existing->getYDim() == WGSize[1] &&
2280 Existing->getZDim() == WGSize[2]))
2281 S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
2282
2283 D->addAttr(::new (S.Context) WorkGroupAttr(Attr.getRange(), S.Context,
2284 WGSize[0], WGSize[1], WGSize[2],
2285 Attr.getAttributeSpellingListIndex()));
2286 }
2287
handleVecTypeHint(Sema & S,Decl * D,const AttributeList & Attr)2288 static void handleVecTypeHint(Sema &S, Decl *D, const AttributeList &Attr) {
2289 if (!Attr.hasParsedType()) {
2290 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
2291 << Attr.getName() << 1;
2292 return;
2293 }
2294
2295 TypeSourceInfo *ParmTSI = nullptr;
2296 QualType ParmType = S.GetTypeFromParser(Attr.getTypeArg(), &ParmTSI);
2297 assert(ParmTSI && "no type source info for attribute argument");
2298
2299 if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
2300 (ParmType->isBooleanType() ||
2301 !ParmType->isIntegralType(S.getASTContext()))) {
2302 S.Diag(Attr.getLoc(), diag::err_attribute_argument_vec_type_hint)
2303 << ParmType;
2304 return;
2305 }
2306
2307 if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
2308 if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
2309 S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
2310 return;
2311 }
2312 }
2313
2314 D->addAttr(::new (S.Context) VecTypeHintAttr(Attr.getLoc(), S.Context,
2315 ParmTSI,
2316 Attr.getAttributeSpellingListIndex()));
2317 }
2318
mergeSectionAttr(Decl * D,SourceRange Range,StringRef Name,unsigned AttrSpellingListIndex)2319 SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range,
2320 StringRef Name,
2321 unsigned AttrSpellingListIndex) {
2322 if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
2323 if (ExistingAttr->getName() == Name)
2324 return nullptr;
2325 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section);
2326 Diag(Range.getBegin(), diag::note_previous_attribute);
2327 return nullptr;
2328 }
2329 return ::new (Context) SectionAttr(Range, Context, Name,
2330 AttrSpellingListIndex);
2331 }
2332
handleSectionAttr(Sema & S,Decl * D,const AttributeList & Attr)2333 static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2334 // Make sure that there is a string literal as the sections's single
2335 // argument.
2336 StringRef Str;
2337 SourceLocation LiteralLoc;
2338 if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &LiteralLoc))
2339 return;
2340
2341 // If the target wants to validate the section specifier, make it happen.
2342 std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str);
2343 if (!Error.empty()) {
2344 S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
2345 << Error;
2346 return;
2347 }
2348
2349 unsigned Index = Attr.getAttributeSpellingListIndex();
2350 SectionAttr *NewAttr = S.mergeSectionAttr(D, Attr.getRange(), Str, Index);
2351 if (NewAttr)
2352 D->addAttr(NewAttr);
2353 }
2354
2355
handleCleanupAttr(Sema & S,Decl * D,const AttributeList & Attr)2356 static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2357 VarDecl *VD = cast<VarDecl>(D);
2358 if (!VD->hasLocalStorage()) {
2359 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2360 return;
2361 }
2362
2363 Expr *E = Attr.getArgAsExpr(0);
2364 SourceLocation Loc = E->getExprLoc();
2365 FunctionDecl *FD = nullptr;
2366 DeclarationNameInfo NI;
2367
2368 // gcc only allows for simple identifiers. Since we support more than gcc, we
2369 // will warn the user.
2370 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
2371 if (DRE->hasQualifier())
2372 S.Diag(Loc, diag::warn_cleanup_ext);
2373 FD = dyn_cast<FunctionDecl>(DRE->getDecl());
2374 NI = DRE->getNameInfo();
2375 if (!FD) {
2376 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
2377 << NI.getName();
2378 return;
2379 }
2380 } else if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
2381 if (ULE->hasExplicitTemplateArgs())
2382 S.Diag(Loc, diag::warn_cleanup_ext);
2383 FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
2384 NI = ULE->getNameInfo();
2385 if (!FD) {
2386 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
2387 << NI.getName();
2388 if (ULE->getType() == S.Context.OverloadTy)
2389 S.NoteAllOverloadCandidates(ULE);
2390 return;
2391 }
2392 } else {
2393 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
2394 return;
2395 }
2396
2397 if (FD->getNumParams() != 1) {
2398 S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
2399 << NI.getName();
2400 return;
2401 }
2402
2403 // We're currently more strict than GCC about what function types we accept.
2404 // If this ever proves to be a problem it should be easy to fix.
2405 QualType Ty = S.Context.getPointerType(VD->getType());
2406 QualType ParamTy = FD->getParamDecl(0)->getType();
2407 if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
2408 ParamTy, Ty) != Sema::Compatible) {
2409 S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
2410 << NI.getName() << ParamTy << Ty;
2411 return;
2412 }
2413
2414 D->addAttr(::new (S.Context)
2415 CleanupAttr(Attr.getRange(), S.Context, FD,
2416 Attr.getAttributeSpellingListIndex()));
2417 }
2418
2419 /// Handle __attribute__((format_arg((idx)))) attribute based on
2420 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
handleFormatArgAttr(Sema & S,Decl * D,const AttributeList & Attr)2421 static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2422 Expr *IdxExpr = Attr.getArgAsExpr(0);
2423 uint64_t Idx;
2424 if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 1, IdxExpr, Idx))
2425 return;
2426
2427 // make sure the format string is really a string
2428 QualType Ty = getFunctionOrMethodParamType(D, Idx);
2429
2430 bool not_nsstring_type = !isNSStringType(Ty, S.Context);
2431 if (not_nsstring_type &&
2432 !isCFStringType(Ty, S.Context) &&
2433 (!Ty->isPointerType() ||
2434 !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2435 S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2436 << (not_nsstring_type ? "a string type" : "an NSString")
2437 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
2438 return;
2439 }
2440 Ty = getFunctionOrMethodResultType(D);
2441 if (!isNSStringType(Ty, S.Context) &&
2442 !isCFStringType(Ty, S.Context) &&
2443 (!Ty->isPointerType() ||
2444 !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2445 S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
2446 << (not_nsstring_type ? "string type" : "NSString")
2447 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
2448 return;
2449 }
2450
2451 // We cannot use the Idx returned from checkFunctionOrMethodParameterIndex
2452 // because that has corrected for the implicit this parameter, and is zero-
2453 // based. The attribute expects what the user wrote explicitly.
2454 llvm::APSInt Val;
2455 IdxExpr->EvaluateAsInt(Val, S.Context);
2456
2457 D->addAttr(::new (S.Context)
2458 FormatArgAttr(Attr.getRange(), S.Context, Val.getZExtValue(),
2459 Attr.getAttributeSpellingListIndex()));
2460 }
2461
2462 enum FormatAttrKind {
2463 CFStringFormat,
2464 NSStringFormat,
2465 StrftimeFormat,
2466 SupportedFormat,
2467 IgnoredFormat,
2468 InvalidFormat
2469 };
2470
2471 /// getFormatAttrKind - Map from format attribute names to supported format
2472 /// types.
getFormatAttrKind(StringRef Format)2473 static FormatAttrKind getFormatAttrKind(StringRef Format) {
2474 return llvm::StringSwitch<FormatAttrKind>(Format)
2475 // Check for formats that get handled specially.
2476 .Case("NSString", NSStringFormat)
2477 .Case("CFString", CFStringFormat)
2478 .Case("strftime", StrftimeFormat)
2479
2480 // Otherwise, check for supported formats.
2481 .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
2482 .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
2483 .Case("kprintf", SupportedFormat) // OpenBSD.
2484
2485 .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
2486 .Default(InvalidFormat);
2487 }
2488
2489 /// Handle __attribute__((init_priority(priority))) attributes based on
2490 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
handleInitPriorityAttr(Sema & S,Decl * D,const AttributeList & Attr)2491 static void handleInitPriorityAttr(Sema &S, Decl *D,
2492 const AttributeList &Attr) {
2493 if (!S.getLangOpts().CPlusPlus) {
2494 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2495 return;
2496 }
2497
2498 if (S.getCurFunctionOrMethodDecl()) {
2499 S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
2500 Attr.setInvalid();
2501 return;
2502 }
2503 QualType T = cast<VarDecl>(D)->getType();
2504 if (S.Context.getAsArrayType(T))
2505 T = S.Context.getBaseElementType(T);
2506 if (!T->getAs<RecordType>()) {
2507 S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
2508 Attr.setInvalid();
2509 return;
2510 }
2511
2512 Expr *E = Attr.getArgAsExpr(0);
2513 uint32_t prioritynum;
2514 if (!checkUInt32Argument(S, Attr, E, prioritynum)) {
2515 Attr.setInvalid();
2516 return;
2517 }
2518
2519 if (prioritynum < 101 || prioritynum > 65535) {
2520 S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
2521 << E->getSourceRange();
2522 Attr.setInvalid();
2523 return;
2524 }
2525 D->addAttr(::new (S.Context)
2526 InitPriorityAttr(Attr.getRange(), S.Context, prioritynum,
2527 Attr.getAttributeSpellingListIndex()));
2528 }
2529
mergeFormatAttr(Decl * D,SourceRange Range,IdentifierInfo * Format,int FormatIdx,int FirstArg,unsigned AttrSpellingListIndex)2530 FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range,
2531 IdentifierInfo *Format, int FormatIdx,
2532 int FirstArg,
2533 unsigned AttrSpellingListIndex) {
2534 // Check whether we already have an equivalent format attribute.
2535 for (auto *F : D->specific_attrs<FormatAttr>()) {
2536 if (F->getType() == Format &&
2537 F->getFormatIdx() == FormatIdx &&
2538 F->getFirstArg() == FirstArg) {
2539 // If we don't have a valid location for this attribute, adopt the
2540 // location.
2541 if (F->getLocation().isInvalid())
2542 F->setRange(Range);
2543 return nullptr;
2544 }
2545 }
2546
2547 return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx,
2548 FirstArg, AttrSpellingListIndex);
2549 }
2550
2551 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
2552 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
handleFormatAttr(Sema & S,Decl * D,const AttributeList & Attr)2553 static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2554 if (!Attr.isArgIdent(0)) {
2555 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2556 << Attr.getName() << 1 << AANT_ArgumentIdentifier;
2557 return;
2558 }
2559
2560 // In C++ the implicit 'this' function parameter also counts, and they are
2561 // counted from one.
2562 bool HasImplicitThisParam = isInstanceMethod(D);
2563 unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
2564
2565 IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident;
2566 StringRef Format = II->getName();
2567
2568 // Normalize the argument, __foo__ becomes foo.
2569 if (Format.startswith("__") && Format.endswith("__")) {
2570 Format = Format.substr(2, Format.size() - 4);
2571 // If we've modified the string name, we need a new identifier for it.
2572 II = &S.Context.Idents.get(Format);
2573 }
2574
2575 // Check for supported formats.
2576 FormatAttrKind Kind = getFormatAttrKind(Format);
2577
2578 if (Kind == IgnoredFormat)
2579 return;
2580
2581 if (Kind == InvalidFormat) {
2582 S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
2583 << Attr.getName() << II->getName();
2584 return;
2585 }
2586
2587 // checks for the 2nd argument
2588 Expr *IdxExpr = Attr.getArgAsExpr(1);
2589 uint32_t Idx;
2590 if (!checkUInt32Argument(S, Attr, IdxExpr, Idx, 2))
2591 return;
2592
2593 if (Idx < 1 || Idx > NumArgs) {
2594 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2595 << Attr.getName() << 2 << IdxExpr->getSourceRange();
2596 return;
2597 }
2598
2599 // FIXME: Do we need to bounds check?
2600 unsigned ArgIdx = Idx - 1;
2601
2602 if (HasImplicitThisParam) {
2603 if (ArgIdx == 0) {
2604 S.Diag(Attr.getLoc(),
2605 diag::err_format_attribute_implicit_this_format_string)
2606 << IdxExpr->getSourceRange();
2607 return;
2608 }
2609 ArgIdx--;
2610 }
2611
2612 // make sure the format string is really a string
2613 QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
2614
2615 if (Kind == CFStringFormat) {
2616 if (!isCFStringType(Ty, S.Context)) {
2617 S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2618 << "a CFString" << IdxExpr->getSourceRange()
2619 << getFunctionOrMethodParamRange(D, ArgIdx);
2620 return;
2621 }
2622 } else if (Kind == NSStringFormat) {
2623 // FIXME: do we need to check if the type is NSString*? What are the
2624 // semantics?
2625 if (!isNSStringType(Ty, S.Context)) {
2626 S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2627 << "an NSString" << IdxExpr->getSourceRange()
2628 << getFunctionOrMethodParamRange(D, ArgIdx);
2629 return;
2630 }
2631 } else if (!Ty->isPointerType() ||
2632 !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
2633 S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2634 << "a string type" << IdxExpr->getSourceRange()
2635 << getFunctionOrMethodParamRange(D, ArgIdx);
2636 return;
2637 }
2638
2639 // check the 3rd argument
2640 Expr *FirstArgExpr = Attr.getArgAsExpr(2);
2641 uint32_t FirstArg;
2642 if (!checkUInt32Argument(S, Attr, FirstArgExpr, FirstArg, 3))
2643 return;
2644
2645 // check if the function is variadic if the 3rd argument non-zero
2646 if (FirstArg != 0) {
2647 if (isFunctionOrMethodVariadic(D)) {
2648 ++NumArgs; // +1 for ...
2649 } else {
2650 S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
2651 return;
2652 }
2653 }
2654
2655 // strftime requires FirstArg to be 0 because it doesn't read from any
2656 // variable the input is just the current time + the format string.
2657 if (Kind == StrftimeFormat) {
2658 if (FirstArg != 0) {
2659 S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
2660 << FirstArgExpr->getSourceRange();
2661 return;
2662 }
2663 // if 0 it disables parameter checking (to use with e.g. va_list)
2664 } else if (FirstArg != 0 && FirstArg != NumArgs) {
2665 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2666 << Attr.getName() << 3 << FirstArgExpr->getSourceRange();
2667 return;
2668 }
2669
2670 FormatAttr *NewAttr = S.mergeFormatAttr(D, Attr.getRange(), II,
2671 Idx, FirstArg,
2672 Attr.getAttributeSpellingListIndex());
2673 if (NewAttr)
2674 D->addAttr(NewAttr);
2675 }
2676
handleTransparentUnionAttr(Sema & S,Decl * D,const AttributeList & Attr)2677 static void handleTransparentUnionAttr(Sema &S, Decl *D,
2678 const AttributeList &Attr) {
2679 // Try to find the underlying union declaration.
2680 RecordDecl *RD = nullptr;
2681 TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
2682 if (TD && TD->getUnderlyingType()->isUnionType())
2683 RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
2684 else
2685 RD = dyn_cast<RecordDecl>(D);
2686
2687 if (!RD || !RD->isUnion()) {
2688 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2689 << Attr.getName() << ExpectedUnion;
2690 return;
2691 }
2692
2693 if (!RD->isCompleteDefinition()) {
2694 S.Diag(Attr.getLoc(),
2695 diag::warn_transparent_union_attribute_not_definition);
2696 return;
2697 }
2698
2699 RecordDecl::field_iterator Field = RD->field_begin(),
2700 FieldEnd = RD->field_end();
2701 if (Field == FieldEnd) {
2702 S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
2703 return;
2704 }
2705
2706 FieldDecl *FirstField = *Field;
2707 QualType FirstType = FirstField->getType();
2708 if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
2709 S.Diag(FirstField->getLocation(),
2710 diag::warn_transparent_union_attribute_floating)
2711 << FirstType->isVectorType() << FirstType;
2712 return;
2713 }
2714
2715 uint64_t FirstSize = S.Context.getTypeSize(FirstType);
2716 uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
2717 for (; Field != FieldEnd; ++Field) {
2718 QualType FieldType = Field->getType();
2719 // FIXME: this isn't fully correct; we also need to test whether the
2720 // members of the union would all have the same calling convention as the
2721 // first member of the union. Checking just the size and alignment isn't
2722 // sufficient (consider structs passed on the stack instead of in registers
2723 // as an example).
2724 if (S.Context.getTypeSize(FieldType) != FirstSize ||
2725 S.Context.getTypeAlign(FieldType) > FirstAlign) {
2726 // Warn if we drop the attribute.
2727 bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
2728 unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
2729 : S.Context.getTypeAlign(FieldType);
2730 S.Diag(Field->getLocation(),
2731 diag::warn_transparent_union_attribute_field_size_align)
2732 << isSize << Field->getDeclName() << FieldBits;
2733 unsigned FirstBits = isSize? FirstSize : FirstAlign;
2734 S.Diag(FirstField->getLocation(),
2735 diag::note_transparent_union_first_field_size_align)
2736 << isSize << FirstBits;
2737 return;
2738 }
2739 }
2740
2741 RD->addAttr(::new (S.Context)
2742 TransparentUnionAttr(Attr.getRange(), S.Context,
2743 Attr.getAttributeSpellingListIndex()));
2744 }
2745
handleAnnotateAttr(Sema & S,Decl * D,const AttributeList & Attr)2746 static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2747 // Make sure that there is a string literal as the annotation's single
2748 // argument.
2749 StringRef Str;
2750 if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
2751 return;
2752
2753 // Don't duplicate annotations that are already set.
2754 for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2755 if (I->getAnnotation() == Str)
2756 return;
2757 }
2758
2759 D->addAttr(::new (S.Context)
2760 AnnotateAttr(Attr.getRange(), S.Context, Str,
2761 Attr.getAttributeSpellingListIndex()));
2762 }
2763
handleAlignValueAttr(Sema & S,Decl * D,const AttributeList & Attr)2764 static void handleAlignValueAttr(Sema &S, Decl *D,
2765 const AttributeList &Attr) {
2766 S.AddAlignValueAttr(Attr.getRange(), D, Attr.getArgAsExpr(0),
2767 Attr.getAttributeSpellingListIndex());
2768 }
2769
AddAlignValueAttr(SourceRange AttrRange,Decl * D,Expr * E,unsigned SpellingListIndex)2770 void Sema::AddAlignValueAttr(SourceRange AttrRange, Decl *D, Expr *E,
2771 unsigned SpellingListIndex) {
2772 AlignValueAttr TmpAttr(AttrRange, Context, E, SpellingListIndex);
2773 SourceLocation AttrLoc = AttrRange.getBegin();
2774
2775 QualType T;
2776 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
2777 T = TD->getUnderlyingType();
2778 else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
2779 T = VD->getType();
2780 else
2781 llvm_unreachable("Unknown decl type for align_value");
2782
2783 if (!T->isDependentType() && !T->isAnyPointerType() &&
2784 !T->isReferenceType() && !T->isMemberPointerType()) {
2785 Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
2786 << &TmpAttr /*TmpAttr.getName()*/ << T << D->getSourceRange();
2787 return;
2788 }
2789
2790 if (!E->isValueDependent()) {
2791 llvm::APSInt Alignment(32);
2792 ExprResult ICE
2793 = VerifyIntegerConstantExpression(E, &Alignment,
2794 diag::err_align_value_attribute_argument_not_int,
2795 /*AllowFold*/ false);
2796 if (ICE.isInvalid())
2797 return;
2798
2799 if (!Alignment.isPowerOf2()) {
2800 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
2801 << E->getSourceRange();
2802 return;
2803 }
2804
2805 D->addAttr(::new (Context)
2806 AlignValueAttr(AttrRange, Context, ICE.get(),
2807 SpellingListIndex));
2808 return;
2809 }
2810
2811 // Save dependent expressions in the AST to be instantiated.
2812 D->addAttr(::new (Context) AlignValueAttr(TmpAttr));
2813 return;
2814 }
2815
handleAlignedAttr(Sema & S,Decl * D,const AttributeList & Attr)2816 static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2817 // check the attribute arguments.
2818 if (Attr.getNumArgs() > 1) {
2819 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
2820 << Attr.getName() << 1;
2821 return;
2822 }
2823
2824 if (Attr.getNumArgs() == 0) {
2825 D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context,
2826 true, nullptr, Attr.getAttributeSpellingListIndex()));
2827 return;
2828 }
2829
2830 Expr *E = Attr.getArgAsExpr(0);
2831 if (Attr.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
2832 S.Diag(Attr.getEllipsisLoc(),
2833 diag::err_pack_expansion_without_parameter_packs);
2834 return;
2835 }
2836
2837 if (!Attr.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
2838 return;
2839
2840 S.AddAlignedAttr(Attr.getRange(), D, E, Attr.getAttributeSpellingListIndex(),
2841 Attr.isPackExpansion());
2842 }
2843
AddAlignedAttr(SourceRange AttrRange,Decl * D,Expr * E,unsigned SpellingListIndex,bool IsPackExpansion)2844 void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
2845 unsigned SpellingListIndex, bool IsPackExpansion) {
2846 AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex);
2847 SourceLocation AttrLoc = AttrRange.getBegin();
2848
2849 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
2850 if (TmpAttr.isAlignas()) {
2851 // C++11 [dcl.align]p1:
2852 // An alignment-specifier may be applied to a variable or to a class
2853 // data member, but it shall not be applied to a bit-field, a function
2854 // parameter, the formal parameter of a catch clause, or a variable
2855 // declared with the register storage class specifier. An
2856 // alignment-specifier may also be applied to the declaration of a class
2857 // or enumeration type.
2858 // C11 6.7.5/2:
2859 // An alignment attribute shall not be specified in a declaration of
2860 // a typedef, or a bit-field, or a function, or a parameter, or an
2861 // object declared with the register storage-class specifier.
2862 int DiagKind = -1;
2863 if (isa<ParmVarDecl>(D)) {
2864 DiagKind = 0;
2865 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2866 if (VD->getStorageClass() == SC_Register)
2867 DiagKind = 1;
2868 if (VD->isExceptionVariable())
2869 DiagKind = 2;
2870 } else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
2871 if (FD->isBitField())
2872 DiagKind = 3;
2873 } else if (!isa<TagDecl>(D)) {
2874 Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
2875 << (TmpAttr.isC11() ? ExpectedVariableOrField
2876 : ExpectedVariableFieldOrTag);
2877 return;
2878 }
2879 if (DiagKind != -1) {
2880 Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
2881 << &TmpAttr << DiagKind;
2882 return;
2883 }
2884 }
2885
2886 if (E->isTypeDependent() || E->isValueDependent()) {
2887 // Save dependent expressions in the AST to be instantiated.
2888 AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr);
2889 AA->setPackExpansion(IsPackExpansion);
2890 D->addAttr(AA);
2891 return;
2892 }
2893
2894 // FIXME: Cache the number on the Attr object?
2895 llvm::APSInt Alignment(32);
2896 ExprResult ICE
2897 = VerifyIntegerConstantExpression(E, &Alignment,
2898 diag::err_aligned_attribute_argument_not_int,
2899 /*AllowFold*/ false);
2900 if (ICE.isInvalid())
2901 return;
2902
2903 // C++11 [dcl.align]p2:
2904 // -- if the constant expression evaluates to zero, the alignment
2905 // specifier shall have no effect
2906 // C11 6.7.5p6:
2907 // An alignment specification of zero has no effect.
2908 if (!(TmpAttr.isAlignas() && !Alignment) &&
2909 !llvm::isPowerOf2_64(Alignment.getZExtValue())) {
2910 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
2911 << E->getSourceRange();
2912 return;
2913 }
2914
2915 // Alignment calculations can wrap around if it's greater than 2**28.
2916 unsigned MaxValidAlignment = TmpAttr.isDeclspec() ? 8192 : 268435456;
2917 if (Alignment.getZExtValue() > MaxValidAlignment) {
2918 Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaxValidAlignment
2919 << E->getSourceRange();
2920 return;
2921 }
2922
2923 AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true,
2924 ICE.get(), SpellingListIndex);
2925 AA->setPackExpansion(IsPackExpansion);
2926 D->addAttr(AA);
2927 }
2928
AddAlignedAttr(SourceRange AttrRange,Decl * D,TypeSourceInfo * TS,unsigned SpellingListIndex,bool IsPackExpansion)2929 void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS,
2930 unsigned SpellingListIndex, bool IsPackExpansion) {
2931 // FIXME: Cache the number on the Attr object if non-dependent?
2932 // FIXME: Perform checking of type validity
2933 AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS,
2934 SpellingListIndex);
2935 AA->setPackExpansion(IsPackExpansion);
2936 D->addAttr(AA);
2937 }
2938
CheckAlignasUnderalignment(Decl * D)2939 void Sema::CheckAlignasUnderalignment(Decl *D) {
2940 assert(D->hasAttrs() && "no attributes on decl");
2941
2942 QualType Ty;
2943 if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
2944 Ty = VD->getType();
2945 else
2946 Ty = Context.getTagDeclType(cast<TagDecl>(D));
2947 if (Ty->isDependentType() || Ty->isIncompleteType())
2948 return;
2949
2950 // C++11 [dcl.align]p5, C11 6.7.5/4:
2951 // The combined effect of all alignment attributes in a declaration shall
2952 // not specify an alignment that is less strict than the alignment that
2953 // would otherwise be required for the entity being declared.
2954 AlignedAttr *AlignasAttr = nullptr;
2955 unsigned Align = 0;
2956 for (auto *I : D->specific_attrs<AlignedAttr>()) {
2957 if (I->isAlignmentDependent())
2958 return;
2959 if (I->isAlignas())
2960 AlignasAttr = I;
2961 Align = std::max(Align, I->getAlignment(Context));
2962 }
2963
2964 if (AlignasAttr && Align) {
2965 CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
2966 CharUnits NaturalAlign = Context.getTypeAlignInChars(Ty);
2967 if (NaturalAlign > RequestedAlign)
2968 Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
2969 << Ty << (unsigned)NaturalAlign.getQuantity();
2970 }
2971 }
2972
checkMSInheritanceAttrOnDefinition(CXXRecordDecl * RD,SourceRange Range,bool BestCase,MSInheritanceAttr::Spelling SemanticSpelling)2973 bool Sema::checkMSInheritanceAttrOnDefinition(
2974 CXXRecordDecl *RD, SourceRange Range, bool BestCase,
2975 MSInheritanceAttr::Spelling SemanticSpelling) {
2976 assert(RD->hasDefinition() && "RD has no definition!");
2977
2978 // We may not have seen base specifiers or any virtual methods yet. We will
2979 // have to wait until the record is defined to catch any mismatches.
2980 if (!RD->getDefinition()->isCompleteDefinition())
2981 return false;
2982
2983 // The unspecified model never matches what a definition could need.
2984 if (SemanticSpelling == MSInheritanceAttr::Keyword_unspecified_inheritance)
2985 return false;
2986
2987 if (BestCase) {
2988 if (RD->calculateInheritanceModel() == SemanticSpelling)
2989 return false;
2990 } else {
2991 if (RD->calculateInheritanceModel() <= SemanticSpelling)
2992 return false;
2993 }
2994
2995 Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
2996 << 0 /*definition*/;
2997 Diag(RD->getDefinition()->getLocation(), diag::note_defined_here)
2998 << RD->getNameAsString();
2999 return true;
3000 }
3001
3002 /// handleModeAttr - This attribute modifies the width of a decl with primitive
3003 /// type.
3004 ///
3005 /// Despite what would be logical, the mode attribute is a decl attribute, not a
3006 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
3007 /// HImode, not an intermediate pointer.
handleModeAttr(Sema & S,Decl * D,const AttributeList & Attr)3008 static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3009 // This attribute isn't documented, but glibc uses it. It changes
3010 // the width of an int or unsigned int to the specified size.
3011 if (!Attr.isArgIdent(0)) {
3012 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
3013 << AANT_ArgumentIdentifier;
3014 return;
3015 }
3016
3017 IdentifierInfo *Name = Attr.getArgAsIdent(0)->Ident;
3018 StringRef Str = Name->getName();
3019
3020 // Normalize the attribute name, __foo__ becomes foo.
3021 if (Str.startswith("__") && Str.endswith("__"))
3022 Str = Str.substr(2, Str.size() - 4);
3023
3024 unsigned DestWidth = 0;
3025 bool IntegerMode = true;
3026 bool ComplexMode = false;
3027 switch (Str.size()) {
3028 case 2:
3029 switch (Str[0]) {
3030 case 'Q': DestWidth = 8; break;
3031 case 'H': DestWidth = 16; break;
3032 case 'S': DestWidth = 32; break;
3033 case 'D': DestWidth = 64; break;
3034 case 'X': DestWidth = 96; break;
3035 case 'T': DestWidth = 128; break;
3036 }
3037 if (Str[1] == 'F') {
3038 IntegerMode = false;
3039 } else if (Str[1] == 'C') {
3040 IntegerMode = false;
3041 ComplexMode = true;
3042 } else if (Str[1] != 'I') {
3043 DestWidth = 0;
3044 }
3045 break;
3046 case 4:
3047 // FIXME: glibc uses 'word' to define register_t; this is narrower than a
3048 // pointer on PIC16 and other embedded platforms.
3049 if (Str == "word")
3050 DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
3051 else if (Str == "byte")
3052 DestWidth = S.Context.getTargetInfo().getCharWidth();
3053 break;
3054 case 7:
3055 if (Str == "pointer")
3056 DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
3057 break;
3058 case 11:
3059 if (Str == "unwind_word")
3060 DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
3061 break;
3062 }
3063
3064 QualType OldTy;
3065 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
3066 OldTy = TD->getUnderlyingType();
3067 else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
3068 OldTy = VD->getType();
3069 else {
3070 S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
3071 << Attr.getName() << Attr.getRange();
3072 return;
3073 }
3074
3075 if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
3076 S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
3077 else if (IntegerMode) {
3078 if (!OldTy->isIntegralOrEnumerationType())
3079 S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
3080 } else if (ComplexMode) {
3081 if (!OldTy->isComplexType())
3082 S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
3083 } else {
3084 if (!OldTy->isFloatingType())
3085 S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
3086 }
3087
3088 // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
3089 // and friends, at least with glibc.
3090 // FIXME: Make sure floating-point mappings are accurate
3091 // FIXME: Support XF and TF types
3092 if (!DestWidth) {
3093 S.Diag(Attr.getLoc(), diag::err_machine_mode) << 0 /*Unknown*/ << Name;
3094 return;
3095 }
3096
3097 QualType NewTy;
3098
3099 if (IntegerMode)
3100 NewTy = S.Context.getIntTypeForBitwidth(DestWidth,
3101 OldTy->isSignedIntegerType());
3102 else
3103 NewTy = S.Context.getRealTypeForBitwidth(DestWidth);
3104
3105 if (NewTy.isNull()) {
3106 S.Diag(Attr.getLoc(), diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
3107 return;
3108 }
3109
3110 if (ComplexMode) {
3111 NewTy = S.Context.getComplexType(NewTy);
3112 }
3113
3114 // Install the new type.
3115 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
3116 TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
3117 else
3118 cast<ValueDecl>(D)->setType(NewTy);
3119
3120 D->addAttr(::new (S.Context)
3121 ModeAttr(Attr.getRange(), S.Context, Name,
3122 Attr.getAttributeSpellingListIndex()));
3123 }
3124
handleNoDebugAttr(Sema & S,Decl * D,const AttributeList & Attr)3125 static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3126 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3127 if (!VD->hasGlobalStorage())
3128 S.Diag(Attr.getLoc(),
3129 diag::warn_attribute_requires_functions_or_static_globals)
3130 << Attr.getName();
3131 } else if (!isFunctionOrMethod(D)) {
3132 S.Diag(Attr.getLoc(),
3133 diag::warn_attribute_requires_functions_or_static_globals)
3134 << Attr.getName();
3135 return;
3136 }
3137
3138 D->addAttr(::new (S.Context)
3139 NoDebugAttr(Attr.getRange(), S.Context,
3140 Attr.getAttributeSpellingListIndex()));
3141 }
3142
mergeAlwaysInlineAttr(Decl * D,SourceRange Range,IdentifierInfo * Ident,unsigned AttrSpellingListIndex)3143 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, SourceRange Range,
3144 IdentifierInfo *Ident,
3145 unsigned AttrSpellingListIndex) {
3146 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
3147 Diag(Range.getBegin(), diag::warn_attribute_ignored) << Ident;
3148 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
3149 return nullptr;
3150 }
3151
3152 if (D->hasAttr<AlwaysInlineAttr>())
3153 return nullptr;
3154
3155 return ::new (Context) AlwaysInlineAttr(Range, Context,
3156 AttrSpellingListIndex);
3157 }
3158
mergeMinSizeAttr(Decl * D,SourceRange Range,unsigned AttrSpellingListIndex)3159 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, SourceRange Range,
3160 unsigned AttrSpellingListIndex) {
3161 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
3162 Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'minsize'";
3163 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
3164 return nullptr;
3165 }
3166
3167 if (D->hasAttr<MinSizeAttr>())
3168 return nullptr;
3169
3170 return ::new (Context) MinSizeAttr(Range, Context, AttrSpellingListIndex);
3171 }
3172
mergeOptimizeNoneAttr(Decl * D,SourceRange Range,unsigned AttrSpellingListIndex)3173 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, SourceRange Range,
3174 unsigned AttrSpellingListIndex) {
3175 if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
3176 Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
3177 Diag(Range.getBegin(), diag::note_conflicting_attribute);
3178 D->dropAttr<AlwaysInlineAttr>();
3179 }
3180 if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
3181 Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
3182 Diag(Range.getBegin(), diag::note_conflicting_attribute);
3183 D->dropAttr<MinSizeAttr>();
3184 }
3185
3186 if (D->hasAttr<OptimizeNoneAttr>())
3187 return nullptr;
3188
3189 return ::new (Context) OptimizeNoneAttr(Range, Context,
3190 AttrSpellingListIndex);
3191 }
3192
handleAlwaysInlineAttr(Sema & S,Decl * D,const AttributeList & Attr)3193 static void handleAlwaysInlineAttr(Sema &S, Decl *D,
3194 const AttributeList &Attr) {
3195 if (AlwaysInlineAttr *Inline = S.mergeAlwaysInlineAttr(
3196 D, Attr.getRange(), Attr.getName(),
3197 Attr.getAttributeSpellingListIndex()))
3198 D->addAttr(Inline);
3199 }
3200
handleMinSizeAttr(Sema & S,Decl * D,const AttributeList & Attr)3201 static void handleMinSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3202 if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(
3203 D, Attr.getRange(), Attr.getAttributeSpellingListIndex()))
3204 D->addAttr(MinSize);
3205 }
3206
handleOptimizeNoneAttr(Sema & S,Decl * D,const AttributeList & Attr)3207 static void handleOptimizeNoneAttr(Sema &S, Decl *D,
3208 const AttributeList &Attr) {
3209 if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(
3210 D, Attr.getRange(), Attr.getAttributeSpellingListIndex()))
3211 D->addAttr(Optnone);
3212 }
3213
handleGlobalAttr(Sema & S,Decl * D,const AttributeList & Attr)3214 static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3215 FunctionDecl *FD = cast<FunctionDecl>(D);
3216 if (!FD->getReturnType()->isVoidType()) {
3217 SourceRange RTRange = FD->getReturnTypeSourceRange();
3218 S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
3219 << FD->getType()
3220 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
3221 : FixItHint());
3222 return;
3223 }
3224
3225 D->addAttr(::new (S.Context)
3226 CUDAGlobalAttr(Attr.getRange(), S.Context,
3227 Attr.getAttributeSpellingListIndex()));
3228 }
3229
handleGNUInlineAttr(Sema & S,Decl * D,const AttributeList & Attr)3230 static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3231 FunctionDecl *Fn = cast<FunctionDecl>(D);
3232 if (!Fn->isInlineSpecified()) {
3233 S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
3234 return;
3235 }
3236
3237 D->addAttr(::new (S.Context)
3238 GNUInlineAttr(Attr.getRange(), S.Context,
3239 Attr.getAttributeSpellingListIndex()));
3240 }
3241
handleCallConvAttr(Sema & S,Decl * D,const AttributeList & Attr)3242 static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3243 if (hasDeclarator(D)) return;
3244
3245 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3246 // Diagnostic is emitted elsewhere: here we store the (valid) Attr
3247 // in the Decl node for syntactic reasoning, e.g., pretty-printing.
3248 CallingConv CC;
3249 if (S.CheckCallingConvAttr(Attr, CC, FD))
3250 return;
3251
3252 if (!isa<ObjCMethodDecl>(D)) {
3253 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3254 << Attr.getName() << ExpectedFunctionOrMethod;
3255 return;
3256 }
3257
3258 switch (Attr.getKind()) {
3259 case AttributeList::AT_FastCall:
3260 D->addAttr(::new (S.Context)
3261 FastCallAttr(Attr.getRange(), S.Context,
3262 Attr.getAttributeSpellingListIndex()));
3263 return;
3264 case AttributeList::AT_StdCall:
3265 D->addAttr(::new (S.Context)
3266 StdCallAttr(Attr.getRange(), S.Context,
3267 Attr.getAttributeSpellingListIndex()));
3268 return;
3269 case AttributeList::AT_ThisCall:
3270 D->addAttr(::new (S.Context)
3271 ThisCallAttr(Attr.getRange(), S.Context,
3272 Attr.getAttributeSpellingListIndex()));
3273 return;
3274 case AttributeList::AT_CDecl:
3275 D->addAttr(::new (S.Context)
3276 CDeclAttr(Attr.getRange(), S.Context,
3277 Attr.getAttributeSpellingListIndex()));
3278 return;
3279 case AttributeList::AT_Pascal:
3280 D->addAttr(::new (S.Context)
3281 PascalAttr(Attr.getRange(), S.Context,
3282 Attr.getAttributeSpellingListIndex()));
3283 return;
3284 case AttributeList::AT_VectorCall:
3285 D->addAttr(::new (S.Context)
3286 VectorCallAttr(Attr.getRange(), S.Context,
3287 Attr.getAttributeSpellingListIndex()));
3288 return;
3289 case AttributeList::AT_MSABI:
3290 D->addAttr(::new (S.Context)
3291 MSABIAttr(Attr.getRange(), S.Context,
3292 Attr.getAttributeSpellingListIndex()));
3293 return;
3294 case AttributeList::AT_SysVABI:
3295 D->addAttr(::new (S.Context)
3296 SysVABIAttr(Attr.getRange(), S.Context,
3297 Attr.getAttributeSpellingListIndex()));
3298 return;
3299 case AttributeList::AT_Pcs: {
3300 PcsAttr::PCSType PCS;
3301 switch (CC) {
3302 case CC_AAPCS:
3303 PCS = PcsAttr::AAPCS;
3304 break;
3305 case CC_AAPCS_VFP:
3306 PCS = PcsAttr::AAPCS_VFP;
3307 break;
3308 default:
3309 llvm_unreachable("unexpected calling convention in pcs attribute");
3310 }
3311
3312 D->addAttr(::new (S.Context)
3313 PcsAttr(Attr.getRange(), S.Context, PCS,
3314 Attr.getAttributeSpellingListIndex()));
3315 return;
3316 }
3317 case AttributeList::AT_PnaclCall:
3318 D->addAttr(::new (S.Context)
3319 PnaclCallAttr(Attr.getRange(), S.Context,
3320 Attr.getAttributeSpellingListIndex()));
3321 return;
3322 case AttributeList::AT_IntelOclBicc:
3323 D->addAttr(::new (S.Context)
3324 IntelOclBiccAttr(Attr.getRange(), S.Context,
3325 Attr.getAttributeSpellingListIndex()));
3326 return;
3327
3328 default:
3329 llvm_unreachable("unexpected attribute kind");
3330 }
3331 }
3332
CheckCallingConvAttr(const AttributeList & attr,CallingConv & CC,const FunctionDecl * FD)3333 bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC,
3334 const FunctionDecl *FD) {
3335 if (attr.isInvalid())
3336 return true;
3337
3338 unsigned ReqArgs = attr.getKind() == AttributeList::AT_Pcs ? 1 : 0;
3339 if (!checkAttributeNumArgs(*this, attr, ReqArgs)) {
3340 attr.setInvalid();
3341 return true;
3342 }
3343
3344 // TODO: diagnose uses of these conventions on the wrong target.
3345 switch (attr.getKind()) {
3346 case AttributeList::AT_CDecl: CC = CC_C; break;
3347 case AttributeList::AT_FastCall: CC = CC_X86FastCall; break;
3348 case AttributeList::AT_StdCall: CC = CC_X86StdCall; break;
3349 case AttributeList::AT_ThisCall: CC = CC_X86ThisCall; break;
3350 case AttributeList::AT_Pascal: CC = CC_X86Pascal; break;
3351 case AttributeList::AT_VectorCall: CC = CC_X86VectorCall; break;
3352 case AttributeList::AT_MSABI:
3353 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
3354 CC_X86_64Win64;
3355 break;
3356 case AttributeList::AT_SysVABI:
3357 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
3358 CC_C;
3359 break;
3360 case AttributeList::AT_Pcs: {
3361 StringRef StrRef;
3362 if (!checkStringLiteralArgumentAttr(attr, 0, StrRef)) {
3363 attr.setInvalid();
3364 return true;
3365 }
3366 if (StrRef == "aapcs") {
3367 CC = CC_AAPCS;
3368 break;
3369 } else if (StrRef == "aapcs-vfp") {
3370 CC = CC_AAPCS_VFP;
3371 break;
3372 }
3373
3374 attr.setInvalid();
3375 Diag(attr.getLoc(), diag::err_invalid_pcs);
3376 return true;
3377 }
3378 case AttributeList::AT_PnaclCall: CC = CC_PnaclCall; break;
3379 case AttributeList::AT_IntelOclBicc: CC = CC_IntelOclBicc; break;
3380 default: llvm_unreachable("unexpected attribute kind");
3381 }
3382
3383 const TargetInfo &TI = Context.getTargetInfo();
3384 TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC);
3385 if (A == TargetInfo::CCCR_Warning) {
3386 Diag(attr.getLoc(), diag::warn_cconv_ignored) << attr.getName();
3387
3388 TargetInfo::CallingConvMethodType MT = TargetInfo::CCMT_Unknown;
3389 if (FD)
3390 MT = FD->isCXXInstanceMember() ? TargetInfo::CCMT_Member :
3391 TargetInfo::CCMT_NonMember;
3392 CC = TI.getDefaultCallingConv(MT);
3393 }
3394
3395 return false;
3396 }
3397
3398 /// Checks a regparm attribute, returning true if it is ill-formed and
3399 /// otherwise setting numParams to the appropriate value.
CheckRegparmAttr(const AttributeList & Attr,unsigned & numParams)3400 bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
3401 if (Attr.isInvalid())
3402 return true;
3403
3404 if (!checkAttributeNumArgs(*this, Attr, 1)) {
3405 Attr.setInvalid();
3406 return true;
3407 }
3408
3409 uint32_t NP;
3410 Expr *NumParamsExpr = Attr.getArgAsExpr(0);
3411 if (!checkUInt32Argument(*this, Attr, NumParamsExpr, NP)) {
3412 Attr.setInvalid();
3413 return true;
3414 }
3415
3416 if (Context.getTargetInfo().getRegParmMax() == 0) {
3417 Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
3418 << NumParamsExpr->getSourceRange();
3419 Attr.setInvalid();
3420 return true;
3421 }
3422
3423 numParams = NP;
3424 if (numParams > Context.getTargetInfo().getRegParmMax()) {
3425 Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
3426 << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
3427 Attr.setInvalid();
3428 return true;
3429 }
3430
3431 return false;
3432 }
3433
handleLaunchBoundsAttr(Sema & S,Decl * D,const AttributeList & Attr)3434 static void handleLaunchBoundsAttr(Sema &S, Decl *D,
3435 const AttributeList &Attr) {
3436 uint32_t MaxThreads, MinBlocks = 0;
3437 if (!checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), MaxThreads, 1))
3438 return;
3439 if (Attr.getNumArgs() > 1 && !checkUInt32Argument(S, Attr,
3440 Attr.getArgAsExpr(1),
3441 MinBlocks, 2))
3442 return;
3443
3444 D->addAttr(::new (S.Context)
3445 CUDALaunchBoundsAttr(Attr.getRange(), S.Context,
3446 MaxThreads, MinBlocks,
3447 Attr.getAttributeSpellingListIndex()));
3448 }
3449
handleArgumentWithTypeTagAttr(Sema & S,Decl * D,const AttributeList & Attr)3450 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
3451 const AttributeList &Attr) {
3452 if (!Attr.isArgIdent(0)) {
3453 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
3454 << Attr.getName() << /* arg num = */ 1 << AANT_ArgumentIdentifier;
3455 return;
3456 }
3457
3458 if (!checkAttributeNumArgs(S, Attr, 3))
3459 return;
3460
3461 IdentifierInfo *ArgumentKind = Attr.getArgAsIdent(0)->Ident;
3462
3463 if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
3464 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
3465 << Attr.getName() << ExpectedFunctionOrMethod;
3466 return;
3467 }
3468
3469 uint64_t ArgumentIdx;
3470 if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 2, Attr.getArgAsExpr(1),
3471 ArgumentIdx))
3472 return;
3473
3474 uint64_t TypeTagIdx;
3475 if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 3, Attr.getArgAsExpr(2),
3476 TypeTagIdx))
3477 return;
3478
3479 bool IsPointer = (Attr.getName()->getName() == "pointer_with_type_tag");
3480 if (IsPointer) {
3481 // Ensure that buffer has a pointer type.
3482 QualType BufferTy = getFunctionOrMethodParamType(D, ArgumentIdx);
3483 if (!BufferTy->isPointerType()) {
3484 S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
3485 << Attr.getName();
3486 }
3487 }
3488
3489 D->addAttr(::new (S.Context)
3490 ArgumentWithTypeTagAttr(Attr.getRange(), S.Context, ArgumentKind,
3491 ArgumentIdx, TypeTagIdx, IsPointer,
3492 Attr.getAttributeSpellingListIndex()));
3493 }
3494
handleTypeTagForDatatypeAttr(Sema & S,Decl * D,const AttributeList & Attr)3495 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
3496 const AttributeList &Attr) {
3497 if (!Attr.isArgIdent(0)) {
3498 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
3499 << Attr.getName() << 1 << AANT_ArgumentIdentifier;
3500 return;
3501 }
3502
3503 if (!checkAttributeNumArgs(S, Attr, 1))
3504 return;
3505
3506 if (!isa<VarDecl>(D)) {
3507 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
3508 << Attr.getName() << ExpectedVariable;
3509 return;
3510 }
3511
3512 IdentifierInfo *PointerKind = Attr.getArgAsIdent(0)->Ident;
3513 TypeSourceInfo *MatchingCTypeLoc = nullptr;
3514 S.GetTypeFromParser(Attr.getMatchingCType(), &MatchingCTypeLoc);
3515 assert(MatchingCTypeLoc && "no type source info for attribute argument");
3516
3517 D->addAttr(::new (S.Context)
3518 TypeTagForDatatypeAttr(Attr.getRange(), S.Context, PointerKind,
3519 MatchingCTypeLoc,
3520 Attr.getLayoutCompatible(),
3521 Attr.getMustBeNull(),
3522 Attr.getAttributeSpellingListIndex()));
3523 }
3524
3525 //===----------------------------------------------------------------------===//
3526 // Checker-specific attribute handlers.
3527 //===----------------------------------------------------------------------===//
3528
isValidSubjectOfNSReturnsRetainedAttribute(QualType type)3529 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType type) {
3530 return type->isDependentType() ||
3531 type->isObjCRetainableType();
3532 }
3533
isValidSubjectOfNSAttribute(Sema & S,QualType type)3534 static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
3535 return type->isDependentType() ||
3536 type->isObjCObjectPointerType() ||
3537 S.Context.isObjCNSObjectType(type);
3538 }
isValidSubjectOfCFAttribute(Sema & S,QualType type)3539 static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
3540 return type->isDependentType() ||
3541 type->isPointerType() ||
3542 isValidSubjectOfNSAttribute(S, type);
3543 }
3544
handleNSConsumedAttr(Sema & S,Decl * D,const AttributeList & Attr)3545 static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3546 ParmVarDecl *param = cast<ParmVarDecl>(D);
3547 bool typeOK, cf;
3548
3549 if (Attr.getKind() == AttributeList::AT_NSConsumed) {
3550 typeOK = isValidSubjectOfNSAttribute(S, param->getType());
3551 cf = false;
3552 } else {
3553 typeOK = isValidSubjectOfCFAttribute(S, param->getType());
3554 cf = true;
3555 }
3556
3557 if (!typeOK) {
3558 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
3559 << Attr.getRange() << Attr.getName() << cf;
3560 return;
3561 }
3562
3563 if (cf)
3564 param->addAttr(::new (S.Context)
3565 CFConsumedAttr(Attr.getRange(), S.Context,
3566 Attr.getAttributeSpellingListIndex()));
3567 else
3568 param->addAttr(::new (S.Context)
3569 NSConsumedAttr(Attr.getRange(), S.Context,
3570 Attr.getAttributeSpellingListIndex()));
3571 }
3572
handleNSReturnsRetainedAttr(Sema & S,Decl * D,const AttributeList & Attr)3573 static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
3574 const AttributeList &Attr) {
3575
3576 QualType returnType;
3577
3578 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
3579 returnType = MD->getReturnType();
3580 else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
3581 (Attr.getKind() == AttributeList::AT_NSReturnsRetained))
3582 return; // ignore: was handled as a type attribute
3583 else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
3584 returnType = PD->getType();
3585 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
3586 returnType = FD->getReturnType();
3587 else {
3588 S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
3589 << Attr.getRange() << Attr.getName()
3590 << ExpectedFunctionOrMethod;
3591 return;
3592 }
3593
3594 bool typeOK;
3595 bool cf;
3596 switch (Attr.getKind()) {
3597 default: llvm_unreachable("invalid ownership attribute");
3598 case AttributeList::AT_NSReturnsRetained:
3599 typeOK = isValidSubjectOfNSReturnsRetainedAttribute(returnType);
3600 cf = false;
3601 break;
3602
3603 case AttributeList::AT_NSReturnsAutoreleased:
3604 case AttributeList::AT_NSReturnsNotRetained:
3605 typeOK = isValidSubjectOfNSAttribute(S, returnType);
3606 cf = false;
3607 break;
3608
3609 case AttributeList::AT_CFReturnsRetained:
3610 case AttributeList::AT_CFReturnsNotRetained:
3611 typeOK = isValidSubjectOfCFAttribute(S, returnType);
3612 cf = true;
3613 break;
3614 }
3615
3616 if (!typeOK) {
3617 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
3618 << Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf;
3619 return;
3620 }
3621
3622 switch (Attr.getKind()) {
3623 default:
3624 llvm_unreachable("invalid ownership attribute");
3625 case AttributeList::AT_NSReturnsAutoreleased:
3626 D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(
3627 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
3628 return;
3629 case AttributeList::AT_CFReturnsNotRetained:
3630 D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(
3631 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
3632 return;
3633 case AttributeList::AT_NSReturnsNotRetained:
3634 D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(
3635 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
3636 return;
3637 case AttributeList::AT_CFReturnsRetained:
3638 D->addAttr(::new (S.Context) CFReturnsRetainedAttr(
3639 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
3640 return;
3641 case AttributeList::AT_NSReturnsRetained:
3642 D->addAttr(::new (S.Context) NSReturnsRetainedAttr(
3643 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
3644 return;
3645 };
3646 }
3647
handleObjCReturnsInnerPointerAttr(Sema & S,Decl * D,const AttributeList & attr)3648 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
3649 const AttributeList &attr) {
3650 const int EP_ObjCMethod = 1;
3651 const int EP_ObjCProperty = 2;
3652
3653 SourceLocation loc = attr.getLoc();
3654 QualType resultType;
3655 if (isa<ObjCMethodDecl>(D))
3656 resultType = cast<ObjCMethodDecl>(D)->getReturnType();
3657 else
3658 resultType = cast<ObjCPropertyDecl>(D)->getType();
3659
3660 if (!resultType->isReferenceType() &&
3661 (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
3662 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
3663 << SourceRange(loc)
3664 << attr.getName()
3665 << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
3666 << /*non-retainable pointer*/ 2;
3667
3668 // Drop the attribute.
3669 return;
3670 }
3671
3672 D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(
3673 attr.getRange(), S.Context, attr.getAttributeSpellingListIndex()));
3674 }
3675
handleObjCRequiresSuperAttr(Sema & S,Decl * D,const AttributeList & attr)3676 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
3677 const AttributeList &attr) {
3678 ObjCMethodDecl *method = cast<ObjCMethodDecl>(D);
3679
3680 DeclContext *DC = method->getDeclContext();
3681 if (const ObjCProtocolDecl *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
3682 S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
3683 << attr.getName() << 0;
3684 S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
3685 return;
3686 }
3687 if (method->getMethodFamily() == OMF_dealloc) {
3688 S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
3689 << attr.getName() << 1;
3690 return;
3691 }
3692
3693 method->addAttr(::new (S.Context)
3694 ObjCRequiresSuperAttr(attr.getRange(), S.Context,
3695 attr.getAttributeSpellingListIndex()));
3696 }
3697
handleCFAuditedTransferAttr(Sema & S,Decl * D,const AttributeList & Attr)3698 static void handleCFAuditedTransferAttr(Sema &S, Decl *D,
3699 const AttributeList &Attr) {
3700 if (checkAttrMutualExclusion<CFUnknownTransferAttr>(S, D, Attr))
3701 return;
3702
3703 D->addAttr(::new (S.Context)
3704 CFAuditedTransferAttr(Attr.getRange(), S.Context,
3705 Attr.getAttributeSpellingListIndex()));
3706 }
3707
handleCFUnknownTransferAttr(Sema & S,Decl * D,const AttributeList & Attr)3708 static void handleCFUnknownTransferAttr(Sema &S, Decl *D,
3709 const AttributeList &Attr) {
3710 if (checkAttrMutualExclusion<CFAuditedTransferAttr>(S, D, Attr))
3711 return;
3712
3713 D->addAttr(::new (S.Context)
3714 CFUnknownTransferAttr(Attr.getRange(), S.Context,
3715 Attr.getAttributeSpellingListIndex()));
3716 }
3717
handleObjCBridgeAttr(Sema & S,Scope * Sc,Decl * D,const AttributeList & Attr)3718 static void handleObjCBridgeAttr(Sema &S, Scope *Sc, Decl *D,
3719 const AttributeList &Attr) {
3720 IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : nullptr;
3721
3722 if (!Parm) {
3723 S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
3724 return;
3725 }
3726
3727 D->addAttr(::new (S.Context)
3728 ObjCBridgeAttr(Attr.getRange(), S.Context, Parm->Ident,
3729 Attr.getAttributeSpellingListIndex()));
3730 }
3731
handleObjCBridgeMutableAttr(Sema & S,Scope * Sc,Decl * D,const AttributeList & Attr)3732 static void handleObjCBridgeMutableAttr(Sema &S, Scope *Sc, Decl *D,
3733 const AttributeList &Attr) {
3734 IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : nullptr;
3735
3736 if (!Parm) {
3737 S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
3738 return;
3739 }
3740
3741 D->addAttr(::new (S.Context)
3742 ObjCBridgeMutableAttr(Attr.getRange(), S.Context, Parm->Ident,
3743 Attr.getAttributeSpellingListIndex()));
3744 }
3745
handleObjCBridgeRelatedAttr(Sema & S,Scope * Sc,Decl * D,const AttributeList & Attr)3746 static void handleObjCBridgeRelatedAttr(Sema &S, Scope *Sc, Decl *D,
3747 const AttributeList &Attr) {
3748 IdentifierInfo *RelatedClass =
3749 Attr.isArgIdent(0) ? Attr.getArgAsIdent(0)->Ident : nullptr;
3750 if (!RelatedClass) {
3751 S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
3752 return;
3753 }
3754 IdentifierInfo *ClassMethod =
3755 Attr.getArgAsIdent(1) ? Attr.getArgAsIdent(1)->Ident : nullptr;
3756 IdentifierInfo *InstanceMethod =
3757 Attr.getArgAsIdent(2) ? Attr.getArgAsIdent(2)->Ident : nullptr;
3758 D->addAttr(::new (S.Context)
3759 ObjCBridgeRelatedAttr(Attr.getRange(), S.Context, RelatedClass,
3760 ClassMethod, InstanceMethod,
3761 Attr.getAttributeSpellingListIndex()));
3762 }
3763
handleObjCDesignatedInitializer(Sema & S,Decl * D,const AttributeList & Attr)3764 static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
3765 const AttributeList &Attr) {
3766 ObjCInterfaceDecl *IFace;
3767 if (ObjCCategoryDecl *CatDecl =
3768 dyn_cast<ObjCCategoryDecl>(D->getDeclContext()))
3769 IFace = CatDecl->getClassInterface();
3770 else
3771 IFace = cast<ObjCInterfaceDecl>(D->getDeclContext());
3772 IFace->setHasDesignatedInitializers();
3773 D->addAttr(::new (S.Context)
3774 ObjCDesignatedInitializerAttr(Attr.getRange(), S.Context,
3775 Attr.getAttributeSpellingListIndex()));
3776 }
3777
handleObjCRuntimeName(Sema & S,Decl * D,const AttributeList & Attr)3778 static void handleObjCRuntimeName(Sema &S, Decl *D,
3779 const AttributeList &Attr) {
3780 StringRef MetaDataName;
3781 if (!S.checkStringLiteralArgumentAttr(Attr, 0, MetaDataName))
3782 return;
3783 D->addAttr(::new (S.Context)
3784 ObjCRuntimeNameAttr(Attr.getRange(), S.Context,
3785 MetaDataName,
3786 Attr.getAttributeSpellingListIndex()));
3787 }
3788
handleObjCOwnershipAttr(Sema & S,Decl * D,const AttributeList & Attr)3789 static void handleObjCOwnershipAttr(Sema &S, Decl *D,
3790 const AttributeList &Attr) {
3791 if (hasDeclarator(D)) return;
3792
3793 S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
3794 << Attr.getRange() << Attr.getName() << ExpectedVariable;
3795 }
3796
handleObjCPreciseLifetimeAttr(Sema & S,Decl * D,const AttributeList & Attr)3797 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
3798 const AttributeList &Attr) {
3799 ValueDecl *vd = cast<ValueDecl>(D);
3800 QualType type = vd->getType();
3801
3802 if (!type->isDependentType() &&
3803 !type->isObjCLifetimeType()) {
3804 S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
3805 << type;
3806 return;
3807 }
3808
3809 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3810
3811 // If we have no lifetime yet, check the lifetime we're presumably
3812 // going to infer.
3813 if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
3814 lifetime = type->getObjCARCImplicitLifetime();
3815
3816 switch (lifetime) {
3817 case Qualifiers::OCL_None:
3818 assert(type->isDependentType() &&
3819 "didn't infer lifetime for non-dependent type?");
3820 break;
3821
3822 case Qualifiers::OCL_Weak: // meaningful
3823 case Qualifiers::OCL_Strong: // meaningful
3824 break;
3825
3826 case Qualifiers::OCL_ExplicitNone:
3827 case Qualifiers::OCL_Autoreleasing:
3828 S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
3829 << (lifetime == Qualifiers::OCL_Autoreleasing);
3830 break;
3831 }
3832
3833 D->addAttr(::new (S.Context)
3834 ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context,
3835 Attr.getAttributeSpellingListIndex()));
3836 }
3837
3838 //===----------------------------------------------------------------------===//
3839 // Microsoft specific attribute handlers.
3840 //===----------------------------------------------------------------------===//
3841
handleUuidAttr(Sema & S,Decl * D,const AttributeList & Attr)3842 static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3843 if (!S.LangOpts.CPlusPlus) {
3844 S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
3845 << Attr.getName() << AttributeLangSupport::C;
3846 return;
3847 }
3848
3849 if (!isa<CXXRecordDecl>(D)) {
3850 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3851 << Attr.getName() << ExpectedClass;
3852 return;
3853 }
3854
3855 StringRef StrRef;
3856 SourceLocation LiteralLoc;
3857 if (!S.checkStringLiteralArgumentAttr(Attr, 0, StrRef, &LiteralLoc))
3858 return;
3859
3860 // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
3861 // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
3862 if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
3863 StrRef = StrRef.drop_front().drop_back();
3864
3865 // Validate GUID length.
3866 if (StrRef.size() != 36) {
3867 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
3868 return;
3869 }
3870
3871 for (unsigned i = 0; i < 36; ++i) {
3872 if (i == 8 || i == 13 || i == 18 || i == 23) {
3873 if (StrRef[i] != '-') {
3874 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
3875 return;
3876 }
3877 } else if (!isHexDigit(StrRef[i])) {
3878 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
3879 return;
3880 }
3881 }
3882
3883 D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context, StrRef,
3884 Attr.getAttributeSpellingListIndex()));
3885 }
3886
handleMSInheritanceAttr(Sema & S,Decl * D,const AttributeList & Attr)3887 static void handleMSInheritanceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3888 if (!S.LangOpts.CPlusPlus) {
3889 S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
3890 << Attr.getName() << AttributeLangSupport::C;
3891 return;
3892 }
3893 MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
3894 D, Attr.getRange(), /*BestCase=*/true,
3895 Attr.getAttributeSpellingListIndex(),
3896 (MSInheritanceAttr::Spelling)Attr.getSemanticSpelling());
3897 if (IA)
3898 D->addAttr(IA);
3899 }
3900
handleDeclspecThreadAttr(Sema & S,Decl * D,const AttributeList & Attr)3901 static void handleDeclspecThreadAttr(Sema &S, Decl *D,
3902 const AttributeList &Attr) {
3903 VarDecl *VD = cast<VarDecl>(D);
3904 if (!S.Context.getTargetInfo().isTLSSupported()) {
3905 S.Diag(Attr.getLoc(), diag::err_thread_unsupported);
3906 return;
3907 }
3908 if (VD->getTSCSpec() != TSCS_unspecified) {
3909 S.Diag(Attr.getLoc(), diag::err_declspec_thread_on_thread_variable);
3910 return;
3911 }
3912 if (VD->hasLocalStorage()) {
3913 S.Diag(Attr.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
3914 return;
3915 }
3916 VD->addAttr(::new (S.Context) ThreadAttr(
3917 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
3918 }
3919
handleARMInterruptAttr(Sema & S,Decl * D,const AttributeList & Attr)3920 static void handleARMInterruptAttr(Sema &S, Decl *D,
3921 const AttributeList &Attr) {
3922 // Check the attribute arguments.
3923 if (Attr.getNumArgs() > 1) {
3924 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments)
3925 << Attr.getName() << 1;
3926 return;
3927 }
3928
3929 StringRef Str;
3930 SourceLocation ArgLoc;
3931
3932 if (Attr.getNumArgs() == 0)
3933 Str = "";
3934 else if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &ArgLoc))
3935 return;
3936
3937 ARMInterruptAttr::InterruptType Kind;
3938 if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
3939 S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
3940 << Attr.getName() << Str << ArgLoc;
3941 return;
3942 }
3943
3944 unsigned Index = Attr.getAttributeSpellingListIndex();
3945 D->addAttr(::new (S.Context)
3946 ARMInterruptAttr(Attr.getLoc(), S.Context, Kind, Index));
3947 }
3948
handleMSP430InterruptAttr(Sema & S,Decl * D,const AttributeList & Attr)3949 static void handleMSP430InterruptAttr(Sema &S, Decl *D,
3950 const AttributeList &Attr) {
3951 if (!checkAttributeNumArgs(S, Attr, 1))
3952 return;
3953
3954 if (!Attr.isArgExpr(0)) {
3955 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
3956 << AANT_ArgumentIntegerConstant;
3957 return;
3958 }
3959
3960 // FIXME: Check for decl - it should be void ()(void).
3961
3962 Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
3963 llvm::APSInt NumParams(32);
3964 if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) {
3965 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
3966 << Attr.getName() << AANT_ArgumentIntegerConstant
3967 << NumParamsExpr->getSourceRange();
3968 return;
3969 }
3970
3971 unsigned Num = NumParams.getLimitedValue(255);
3972 if ((Num & 1) || Num > 30) {
3973 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
3974 << Attr.getName() << (int)NumParams.getSExtValue()
3975 << NumParamsExpr->getSourceRange();
3976 return;
3977 }
3978
3979 D->addAttr(::new (S.Context)
3980 MSP430InterruptAttr(Attr.getLoc(), S.Context, Num,
3981 Attr.getAttributeSpellingListIndex()));
3982 D->addAttr(UsedAttr::CreateImplicit(S.Context));
3983 }
3984
handleInterruptAttr(Sema & S,Decl * D,const AttributeList & Attr)3985 static void handleInterruptAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3986 // Dispatch the interrupt attribute based on the current target.
3987 if (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::msp430)
3988 handleMSP430InterruptAttr(S, D, Attr);
3989 else
3990 handleARMInterruptAttr(S, D, Attr);
3991 }
3992
handleAMDGPUNumVGPRAttr(Sema & S,Decl * D,const AttributeList & Attr)3993 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D,
3994 const AttributeList &Attr) {
3995 uint32_t NumRegs;
3996 Expr *NumRegsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
3997 if (!checkUInt32Argument(S, Attr, NumRegsExpr, NumRegs))
3998 return;
3999
4000 D->addAttr(::new (S.Context)
4001 AMDGPUNumVGPRAttr(Attr.getLoc(), S.Context,
4002 NumRegs,
4003 Attr.getAttributeSpellingListIndex()));
4004 }
4005
handleAMDGPUNumSGPRAttr(Sema & S,Decl * D,const AttributeList & Attr)4006 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D,
4007 const AttributeList &Attr) {
4008 uint32_t NumRegs;
4009 Expr *NumRegsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4010 if (!checkUInt32Argument(S, Attr, NumRegsExpr, NumRegs))
4011 return;
4012
4013 D->addAttr(::new (S.Context)
4014 AMDGPUNumSGPRAttr(Attr.getLoc(), S.Context,
4015 NumRegs,
4016 Attr.getAttributeSpellingListIndex()));
4017 }
4018
handleX86ForceAlignArgPointerAttr(Sema & S,Decl * D,const AttributeList & Attr)4019 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
4020 const AttributeList& Attr) {
4021 // If we try to apply it to a function pointer, don't warn, but don't
4022 // do anything, either. It doesn't matter anyway, because there's nothing
4023 // special about calling a force_align_arg_pointer function.
4024 ValueDecl *VD = dyn_cast<ValueDecl>(D);
4025 if (VD && VD->getType()->isFunctionPointerType())
4026 return;
4027 // Also don't warn on function pointer typedefs.
4028 TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
4029 if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
4030 TD->getUnderlyingType()->isFunctionType()))
4031 return;
4032 // Attribute can only be applied to function types.
4033 if (!isa<FunctionDecl>(D)) {
4034 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
4035 << Attr.getName() << /* function */0;
4036 return;
4037 }
4038
4039 D->addAttr(::new (S.Context)
4040 X86ForceAlignArgPointerAttr(Attr.getRange(), S.Context,
4041 Attr.getAttributeSpellingListIndex()));
4042 }
4043
mergeDLLImportAttr(Decl * D,SourceRange Range,unsigned AttrSpellingListIndex)4044 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, SourceRange Range,
4045 unsigned AttrSpellingListIndex) {
4046 if (D->hasAttr<DLLExportAttr>()) {
4047 Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'dllimport'";
4048 return nullptr;
4049 }
4050
4051 if (D->hasAttr<DLLImportAttr>())
4052 return nullptr;
4053
4054 return ::new (Context) DLLImportAttr(Range, Context, AttrSpellingListIndex);
4055 }
4056
mergeDLLExportAttr(Decl * D,SourceRange Range,unsigned AttrSpellingListIndex)4057 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, SourceRange Range,
4058 unsigned AttrSpellingListIndex) {
4059 if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
4060 Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
4061 D->dropAttr<DLLImportAttr>();
4062 }
4063
4064 if (D->hasAttr<DLLExportAttr>())
4065 return nullptr;
4066
4067 return ::new (Context) DLLExportAttr(Range, Context, AttrSpellingListIndex);
4068 }
4069
handleDLLAttr(Sema & S,Decl * D,const AttributeList & A)4070 static void handleDLLAttr(Sema &S, Decl *D, const AttributeList &A) {
4071 if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
4072 S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4073 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored)
4074 << A.getName();
4075 return;
4076 }
4077
4078 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4079 if (FD->isInlined() && A.getKind() == AttributeList::AT_DLLImport &&
4080 !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4081 // MinGW doesn't allow dllimport on inline functions.
4082 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
4083 << A.getName();
4084 return;
4085 }
4086 }
4087
4088 unsigned Index = A.getAttributeSpellingListIndex();
4089 Attr *NewAttr = A.getKind() == AttributeList::AT_DLLExport
4090 ? (Attr *)S.mergeDLLExportAttr(D, A.getRange(), Index)
4091 : (Attr *)S.mergeDLLImportAttr(D, A.getRange(), Index);
4092 if (NewAttr)
4093 D->addAttr(NewAttr);
4094 }
4095
4096 MSInheritanceAttr *
mergeMSInheritanceAttr(Decl * D,SourceRange Range,bool BestCase,unsigned AttrSpellingListIndex,MSInheritanceAttr::Spelling SemanticSpelling)4097 Sema::mergeMSInheritanceAttr(Decl *D, SourceRange Range, bool BestCase,
4098 unsigned AttrSpellingListIndex,
4099 MSInheritanceAttr::Spelling SemanticSpelling) {
4100 if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
4101 if (IA->getSemanticSpelling() == SemanticSpelling)
4102 return nullptr;
4103 Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
4104 << 1 /*previous declaration*/;
4105 Diag(Range.getBegin(), diag::note_previous_ms_inheritance);
4106 D->dropAttr<MSInheritanceAttr>();
4107 }
4108
4109 CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
4110 if (RD->hasDefinition()) {
4111 if (checkMSInheritanceAttrOnDefinition(RD, Range, BestCase,
4112 SemanticSpelling)) {
4113 return nullptr;
4114 }
4115 } else {
4116 if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
4117 Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
4118 << 1 /*partial specialization*/;
4119 return nullptr;
4120 }
4121 if (RD->getDescribedClassTemplate()) {
4122 Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
4123 << 0 /*primary template*/;
4124 return nullptr;
4125 }
4126 }
4127
4128 return ::new (Context)
4129 MSInheritanceAttr(Range, Context, BestCase, AttrSpellingListIndex);
4130 }
4131
handleCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)4132 static void handleCapabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4133 // The capability attributes take a single string parameter for the name of
4134 // the capability they represent. The lockable attribute does not take any
4135 // parameters. However, semantically, both attributes represent the same
4136 // concept, and so they use the same semantic attribute. Eventually, the
4137 // lockable attribute will be removed.
4138 //
4139 // For backward compatibility, any capability which has no specified string
4140 // literal will be considered a "mutex."
4141 StringRef N("mutex");
4142 SourceLocation LiteralLoc;
4143 if (Attr.getKind() == AttributeList::AT_Capability &&
4144 !S.checkStringLiteralArgumentAttr(Attr, 0, N, &LiteralLoc))
4145 return;
4146
4147 // Currently, there are only two names allowed for a capability: role and
4148 // mutex (case insensitive). Diagnose other capability names.
4149 if (!N.equals_lower("mutex") && !N.equals_lower("role"))
4150 S.Diag(LiteralLoc, diag::warn_invalid_capability_name) << N;
4151
4152 D->addAttr(::new (S.Context) CapabilityAttr(Attr.getRange(), S.Context, N,
4153 Attr.getAttributeSpellingListIndex()));
4154 }
4155
handleAssertCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)4156 static void handleAssertCapabilityAttr(Sema &S, Decl *D,
4157 const AttributeList &Attr) {
4158 D->addAttr(::new (S.Context) AssertCapabilityAttr(Attr.getRange(), S.Context,
4159 Attr.getArgAsExpr(0),
4160 Attr.getAttributeSpellingListIndex()));
4161 }
4162
handleAcquireCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)4163 static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
4164 const AttributeList &Attr) {
4165 SmallVector<Expr*, 1> Args;
4166 if (!checkLockFunAttrCommon(S, D, Attr, Args))
4167 return;
4168
4169 D->addAttr(::new (S.Context) AcquireCapabilityAttr(Attr.getRange(),
4170 S.Context,
4171 Args.data(), Args.size(),
4172 Attr.getAttributeSpellingListIndex()));
4173 }
4174
handleTryAcquireCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)4175 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
4176 const AttributeList &Attr) {
4177 SmallVector<Expr*, 2> Args;
4178 if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
4179 return;
4180
4181 D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(Attr.getRange(),
4182 S.Context,
4183 Attr.getArgAsExpr(0),
4184 Args.data(),
4185 Args.size(),
4186 Attr.getAttributeSpellingListIndex()));
4187 }
4188
handleReleaseCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)4189 static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
4190 const AttributeList &Attr) {
4191 // Check that all arguments are lockable objects.
4192 SmallVector<Expr *, 1> Args;
4193 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 0, true);
4194
4195 D->addAttr(::new (S.Context) ReleaseCapabilityAttr(
4196 Attr.getRange(), S.Context, Args.data(), Args.size(),
4197 Attr.getAttributeSpellingListIndex()));
4198 }
4199
handleRequiresCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)4200 static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
4201 const AttributeList &Attr) {
4202 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
4203 return;
4204
4205 // check that all arguments are lockable objects
4206 SmallVector<Expr*, 1> Args;
4207 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
4208 if (Args.empty())
4209 return;
4210
4211 RequiresCapabilityAttr *RCA = ::new (S.Context)
4212 RequiresCapabilityAttr(Attr.getRange(), S.Context, Args.data(),
4213 Args.size(), Attr.getAttributeSpellingListIndex());
4214
4215 D->addAttr(RCA);
4216 }
4217
handleDeprecatedAttr(Sema & S,Decl * D,const AttributeList & Attr)4218 static void handleDeprecatedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4219 if (auto *NSD = dyn_cast<NamespaceDecl>(D)) {
4220 if (NSD->isAnonymousNamespace()) {
4221 S.Diag(Attr.getLoc(), diag::warn_deprecated_anonymous_namespace);
4222 // Do not want to attach the attribute to the namespace because that will
4223 // cause confusing diagnostic reports for uses of declarations within the
4224 // namespace.
4225 return;
4226 }
4227 }
4228 handleAttrWithMessage<DeprecatedAttr>(S, D, Attr);
4229 }
4230
4231 /// Handles semantic checking for features that are common to all attributes,
4232 /// such as checking whether a parameter was properly specified, or the correct
4233 /// number of arguments were passed, etc.
handleCommonAttributeFeatures(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr)4234 static bool handleCommonAttributeFeatures(Sema &S, Scope *scope, Decl *D,
4235 const AttributeList &Attr) {
4236 // Several attributes carry different semantics than the parsing requires, so
4237 // those are opted out of the common handling.
4238 //
4239 // We also bail on unknown and ignored attributes because those are handled
4240 // as part of the target-specific handling logic.
4241 if (Attr.hasCustomParsing() ||
4242 Attr.getKind() == AttributeList::UnknownAttribute)
4243 return false;
4244
4245 // Check whether the attribute requires specific language extensions to be
4246 // enabled.
4247 if (!Attr.diagnoseLangOpts(S))
4248 return true;
4249
4250 if (Attr.getMinArgs() == Attr.getMaxArgs()) {
4251 // If there are no optional arguments, then checking for the argument count
4252 // is trivial.
4253 if (!checkAttributeNumArgs(S, Attr, Attr.getMinArgs()))
4254 return true;
4255 } else {
4256 // There are optional arguments, so checking is slightly more involved.
4257 if (Attr.getMinArgs() &&
4258 !checkAttributeAtLeastNumArgs(S, Attr, Attr.getMinArgs()))
4259 return true;
4260 else if (!Attr.hasVariadicArg() && Attr.getMaxArgs() &&
4261 !checkAttributeAtMostNumArgs(S, Attr, Attr.getMaxArgs()))
4262 return true;
4263 }
4264
4265 // Check whether the attribute appertains to the given subject.
4266 if (!Attr.diagnoseAppertainsTo(S, D))
4267 return true;
4268
4269 return false;
4270 }
4271
4272 //===----------------------------------------------------------------------===//
4273 // Top Level Sema Entry Points
4274 //===----------------------------------------------------------------------===//
4275
4276 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
4277 /// the attribute applies to decls. If the attribute is a type attribute, just
4278 /// silently ignore it if a GNU attribute.
ProcessDeclAttribute(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr,bool IncludeCXX11Attributes)4279 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
4280 const AttributeList &Attr,
4281 bool IncludeCXX11Attributes) {
4282 if (Attr.isInvalid() || Attr.getKind() == AttributeList::IgnoredAttribute)
4283 return;
4284
4285 // Ignore C++11 attributes on declarator chunks: they appertain to the type
4286 // instead.
4287 if (Attr.isCXX11Attribute() && !IncludeCXX11Attributes)
4288 return;
4289
4290 // Unknown attributes are automatically warned on. Target-specific attributes
4291 // which do not apply to the current target architecture are treated as
4292 // though they were unknown attributes.
4293 if (Attr.getKind() == AttributeList::UnknownAttribute ||
4294 !Attr.existsInTarget(S.Context.getTargetInfo().getTriple())) {
4295 S.Diag(Attr.getLoc(), Attr.isDeclspecAttribute()
4296 ? diag::warn_unhandled_ms_attribute_ignored
4297 : diag::warn_unknown_attribute_ignored)
4298 << Attr.getName();
4299 return;
4300 }
4301
4302 if (handleCommonAttributeFeatures(S, scope, D, Attr))
4303 return;
4304
4305 switch (Attr.getKind()) {
4306 default:
4307 // Type attributes are handled elsewhere; silently move on.
4308 assert(Attr.isTypeAttr() && "Non-type attribute not handled");
4309 break;
4310 case AttributeList::AT_Interrupt:
4311 handleInterruptAttr(S, D, Attr);
4312 break;
4313 case AttributeList::AT_X86ForceAlignArgPointer:
4314 handleX86ForceAlignArgPointerAttr(S, D, Attr);
4315 break;
4316 case AttributeList::AT_DLLExport:
4317 case AttributeList::AT_DLLImport:
4318 handleDLLAttr(S, D, Attr);
4319 break;
4320 case AttributeList::AT_Mips16:
4321 handleSimpleAttribute<Mips16Attr>(S, D, Attr);
4322 break;
4323 case AttributeList::AT_NoMips16:
4324 handleSimpleAttribute<NoMips16Attr>(S, D, Attr);
4325 break;
4326 case AttributeList::AT_AMDGPUNumVGPR:
4327 handleAMDGPUNumVGPRAttr(S, D, Attr);
4328 break;
4329 case AttributeList::AT_AMDGPUNumSGPR:
4330 handleAMDGPUNumSGPRAttr(S, D, Attr);
4331 break;
4332 case AttributeList::AT_IBAction:
4333 handleSimpleAttribute<IBActionAttr>(S, D, Attr);
4334 break;
4335 case AttributeList::AT_IBOutlet:
4336 handleIBOutlet(S, D, Attr);
4337 break;
4338 case AttributeList::AT_IBOutletCollection:
4339 handleIBOutletCollection(S, D, Attr);
4340 break;
4341 case AttributeList::AT_Alias:
4342 handleAliasAttr(S, D, Attr);
4343 break;
4344 case AttributeList::AT_Aligned:
4345 handleAlignedAttr(S, D, Attr);
4346 break;
4347 case AttributeList::AT_AlignValue:
4348 handleAlignValueAttr(S, D, Attr);
4349 break;
4350 case AttributeList::AT_AlwaysInline:
4351 handleAlwaysInlineAttr(S, D, Attr);
4352 break;
4353 case AttributeList::AT_AnalyzerNoReturn:
4354 handleAnalyzerNoReturnAttr(S, D, Attr);
4355 break;
4356 case AttributeList::AT_TLSModel:
4357 handleTLSModelAttr(S, D, Attr);
4358 break;
4359 case AttributeList::AT_Annotate:
4360 handleAnnotateAttr(S, D, Attr);
4361 break;
4362 case AttributeList::AT_Availability:
4363 handleAvailabilityAttr(S, D, Attr);
4364 break;
4365 case AttributeList::AT_CarriesDependency:
4366 handleDependencyAttr(S, scope, D, Attr);
4367 break;
4368 case AttributeList::AT_Common:
4369 handleCommonAttr(S, D, Attr);
4370 break;
4371 case AttributeList::AT_CUDAConstant:
4372 handleSimpleAttribute<CUDAConstantAttr>(S, D, Attr);
4373 break;
4374 case AttributeList::AT_Constructor:
4375 handleConstructorAttr(S, D, Attr);
4376 break;
4377 case AttributeList::AT_CXX11NoReturn:
4378 handleSimpleAttribute<CXX11NoReturnAttr>(S, D, Attr);
4379 break;
4380 case AttributeList::AT_Deprecated:
4381 handleDeprecatedAttr(S, D, Attr);
4382 break;
4383 case AttributeList::AT_Destructor:
4384 handleDestructorAttr(S, D, Attr);
4385 break;
4386 case AttributeList::AT_EnableIf:
4387 handleEnableIfAttr(S, D, Attr);
4388 break;
4389 case AttributeList::AT_ExtVectorType:
4390 handleExtVectorTypeAttr(S, scope, D, Attr);
4391 break;
4392 case AttributeList::AT_MinSize:
4393 handleMinSizeAttr(S, D, Attr);
4394 break;
4395 case AttributeList::AT_OptimizeNone:
4396 handleOptimizeNoneAttr(S, D, Attr);
4397 break;
4398 case AttributeList::AT_Flatten:
4399 handleSimpleAttribute<FlattenAttr>(S, D, Attr);
4400 break;
4401 case AttributeList::AT_Format:
4402 handleFormatAttr(S, D, Attr);
4403 break;
4404 case AttributeList::AT_FormatArg:
4405 handleFormatArgAttr(S, D, Attr);
4406 break;
4407 case AttributeList::AT_CUDAGlobal:
4408 handleGlobalAttr(S, D, Attr);
4409 break;
4410 case AttributeList::AT_CUDADevice:
4411 handleSimpleAttribute<CUDADeviceAttr>(S, D, Attr);
4412 break;
4413 case AttributeList::AT_CUDAHost:
4414 handleSimpleAttribute<CUDAHostAttr>(S, D, Attr);
4415 break;
4416 case AttributeList::AT_GNUInline:
4417 handleGNUInlineAttr(S, D, Attr);
4418 break;
4419 case AttributeList::AT_CUDALaunchBounds:
4420 handleLaunchBoundsAttr(S, D, Attr);
4421 break;
4422 case AttributeList::AT_Malloc:
4423 handleMallocAttr(S, D, Attr);
4424 break;
4425 case AttributeList::AT_MayAlias:
4426 handleSimpleAttribute<MayAliasAttr>(S, D, Attr);
4427 break;
4428 case AttributeList::AT_Mode:
4429 handleModeAttr(S, D, Attr);
4430 break;
4431 case AttributeList::AT_NoCommon:
4432 handleSimpleAttribute<NoCommonAttr>(S, D, Attr);
4433 break;
4434 case AttributeList::AT_NoSplitStack:
4435 handleSimpleAttribute<NoSplitStackAttr>(S, D, Attr);
4436 break;
4437 case AttributeList::AT_NonNull:
4438 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(D))
4439 handleNonNullAttrParameter(S, PVD, Attr);
4440 else
4441 handleNonNullAttr(S, D, Attr);
4442 break;
4443 case AttributeList::AT_ReturnsNonNull:
4444 handleReturnsNonNullAttr(S, D, Attr);
4445 break;
4446 case AttributeList::AT_AssumeAligned:
4447 handleAssumeAlignedAttr(S, D, Attr);
4448 break;
4449 case AttributeList::AT_Overloadable:
4450 handleSimpleAttribute<OverloadableAttr>(S, D, Attr);
4451 break;
4452 case AttributeList::AT_Ownership:
4453 handleOwnershipAttr(S, D, Attr);
4454 break;
4455 case AttributeList::AT_Cold:
4456 handleColdAttr(S, D, Attr);
4457 break;
4458 case AttributeList::AT_Hot:
4459 handleHotAttr(S, D, Attr);
4460 break;
4461 case AttributeList::AT_Naked:
4462 handleSimpleAttribute<NakedAttr>(S, D, Attr);
4463 break;
4464 case AttributeList::AT_NoReturn:
4465 handleNoReturnAttr(S, D, Attr);
4466 break;
4467 case AttributeList::AT_NoThrow:
4468 handleSimpleAttribute<NoThrowAttr>(S, D, Attr);
4469 break;
4470 case AttributeList::AT_CUDAShared:
4471 handleSimpleAttribute<CUDASharedAttr>(S, D, Attr);
4472 break;
4473 case AttributeList::AT_VecReturn:
4474 handleVecReturnAttr(S, D, Attr);
4475 break;
4476
4477 case AttributeList::AT_ObjCOwnership:
4478 handleObjCOwnershipAttr(S, D, Attr);
4479 break;
4480 case AttributeList::AT_ObjCPreciseLifetime:
4481 handleObjCPreciseLifetimeAttr(S, D, Attr);
4482 break;
4483
4484 case AttributeList::AT_ObjCReturnsInnerPointer:
4485 handleObjCReturnsInnerPointerAttr(S, D, Attr);
4486 break;
4487
4488 case AttributeList::AT_ObjCRequiresSuper:
4489 handleObjCRequiresSuperAttr(S, D, Attr);
4490 break;
4491
4492 case AttributeList::AT_ObjCBridge:
4493 handleObjCBridgeAttr(S, scope, D, Attr);
4494 break;
4495
4496 case AttributeList::AT_ObjCBridgeMutable:
4497 handleObjCBridgeMutableAttr(S, scope, D, Attr);
4498 break;
4499
4500 case AttributeList::AT_ObjCBridgeRelated:
4501 handleObjCBridgeRelatedAttr(S, scope, D, Attr);
4502 break;
4503
4504 case AttributeList::AT_ObjCDesignatedInitializer:
4505 handleObjCDesignatedInitializer(S, D, Attr);
4506 break;
4507
4508 case AttributeList::AT_ObjCRuntimeName:
4509 handleObjCRuntimeName(S, D, Attr);
4510 break;
4511
4512 case AttributeList::AT_CFAuditedTransfer:
4513 handleCFAuditedTransferAttr(S, D, Attr);
4514 break;
4515 case AttributeList::AT_CFUnknownTransfer:
4516 handleCFUnknownTransferAttr(S, D, Attr);
4517 break;
4518
4519 case AttributeList::AT_CFConsumed:
4520 case AttributeList::AT_NSConsumed:
4521 handleNSConsumedAttr(S, D, Attr);
4522 break;
4523 case AttributeList::AT_NSConsumesSelf:
4524 handleSimpleAttribute<NSConsumesSelfAttr>(S, D, Attr);
4525 break;
4526
4527 case AttributeList::AT_NSReturnsAutoreleased:
4528 case AttributeList::AT_NSReturnsNotRetained:
4529 case AttributeList::AT_CFReturnsNotRetained:
4530 case AttributeList::AT_NSReturnsRetained:
4531 case AttributeList::AT_CFReturnsRetained:
4532 handleNSReturnsRetainedAttr(S, D, Attr);
4533 break;
4534 case AttributeList::AT_WorkGroupSizeHint:
4535 handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, Attr);
4536 break;
4537 case AttributeList::AT_ReqdWorkGroupSize:
4538 handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, Attr);
4539 break;
4540 case AttributeList::AT_VecTypeHint:
4541 handleVecTypeHint(S, D, Attr);
4542 break;
4543
4544 case AttributeList::AT_InitPriority:
4545 handleInitPriorityAttr(S, D, Attr);
4546 break;
4547
4548 case AttributeList::AT_Packed:
4549 handlePackedAttr(S, D, Attr);
4550 break;
4551 case AttributeList::AT_Section:
4552 handleSectionAttr(S, D, Attr);
4553 break;
4554 case AttributeList::AT_Unavailable:
4555 handleAttrWithMessage<UnavailableAttr>(S, D, Attr);
4556 break;
4557 case AttributeList::AT_ArcWeakrefUnavailable:
4558 handleSimpleAttribute<ArcWeakrefUnavailableAttr>(S, D, Attr);
4559 break;
4560 case AttributeList::AT_ObjCRootClass:
4561 handleSimpleAttribute<ObjCRootClassAttr>(S, D, Attr);
4562 break;
4563 case AttributeList::AT_ObjCExplicitProtocolImpl:
4564 handleObjCSuppresProtocolAttr(S, D, Attr);
4565 break;
4566 case AttributeList::AT_ObjCRequiresPropertyDefs:
4567 handleSimpleAttribute<ObjCRequiresPropertyDefsAttr>(S, D, Attr);
4568 break;
4569 case AttributeList::AT_Unused:
4570 handleSimpleAttribute<UnusedAttr>(S, D, Attr);
4571 break;
4572 case AttributeList::AT_ReturnsTwice:
4573 handleSimpleAttribute<ReturnsTwiceAttr>(S, D, Attr);
4574 break;
4575 case AttributeList::AT_Used:
4576 handleUsedAttr(S, D, Attr);
4577 break;
4578 case AttributeList::AT_Visibility:
4579 handleVisibilityAttr(S, D, Attr, false);
4580 break;
4581 case AttributeList::AT_TypeVisibility:
4582 handleVisibilityAttr(S, D, Attr, true);
4583 break;
4584 case AttributeList::AT_WarnUnused:
4585 handleSimpleAttribute<WarnUnusedAttr>(S, D, Attr);
4586 break;
4587 case AttributeList::AT_WarnUnusedResult:
4588 handleWarnUnusedResult(S, D, Attr);
4589 break;
4590 case AttributeList::AT_Weak:
4591 handleSimpleAttribute<WeakAttr>(S, D, Attr);
4592 break;
4593 case AttributeList::AT_WeakRef:
4594 handleWeakRefAttr(S, D, Attr);
4595 break;
4596 case AttributeList::AT_WeakImport:
4597 handleWeakImportAttr(S, D, Attr);
4598 break;
4599 case AttributeList::AT_TransparentUnion:
4600 handleTransparentUnionAttr(S, D, Attr);
4601 break;
4602 case AttributeList::AT_ObjCException:
4603 handleSimpleAttribute<ObjCExceptionAttr>(S, D, Attr);
4604 break;
4605 case AttributeList::AT_ObjCMethodFamily:
4606 handleObjCMethodFamilyAttr(S, D, Attr);
4607 break;
4608 case AttributeList::AT_ObjCNSObject:
4609 handleObjCNSObject(S, D, Attr);
4610 break;
4611 case AttributeList::AT_Blocks:
4612 handleBlocksAttr(S, D, Attr);
4613 break;
4614 case AttributeList::AT_Sentinel:
4615 handleSentinelAttr(S, D, Attr);
4616 break;
4617 case AttributeList::AT_Const:
4618 handleSimpleAttribute<ConstAttr>(S, D, Attr);
4619 break;
4620 case AttributeList::AT_Pure:
4621 handleSimpleAttribute<PureAttr>(S, D, Attr);
4622 break;
4623 case AttributeList::AT_Cleanup:
4624 handleCleanupAttr(S, D, Attr);
4625 break;
4626 case AttributeList::AT_NoDebug:
4627 handleNoDebugAttr(S, D, Attr);
4628 break;
4629 case AttributeList::AT_NoDuplicate:
4630 handleSimpleAttribute<NoDuplicateAttr>(S, D, Attr);
4631 break;
4632 case AttributeList::AT_NoInline:
4633 handleSimpleAttribute<NoInlineAttr>(S, D, Attr);
4634 break;
4635 case AttributeList::AT_NoInstrumentFunction: // Interacts with -pg.
4636 handleSimpleAttribute<NoInstrumentFunctionAttr>(S, D, Attr);
4637 break;
4638 case AttributeList::AT_StdCall:
4639 case AttributeList::AT_CDecl:
4640 case AttributeList::AT_FastCall:
4641 case AttributeList::AT_ThisCall:
4642 case AttributeList::AT_Pascal:
4643 case AttributeList::AT_VectorCall:
4644 case AttributeList::AT_MSABI:
4645 case AttributeList::AT_SysVABI:
4646 case AttributeList::AT_Pcs:
4647 case AttributeList::AT_PnaclCall:
4648 case AttributeList::AT_IntelOclBicc:
4649 handleCallConvAttr(S, D, Attr);
4650 break;
4651 case AttributeList::AT_OpenCLKernel:
4652 handleSimpleAttribute<OpenCLKernelAttr>(S, D, Attr);
4653 break;
4654 case AttributeList::AT_OpenCLImageAccess:
4655 handleSimpleAttribute<OpenCLImageAccessAttr>(S, D, Attr);
4656 break;
4657
4658 // Microsoft attributes:
4659 case AttributeList::AT_MsStruct:
4660 handleSimpleAttribute<MsStructAttr>(S, D, Attr);
4661 break;
4662 case AttributeList::AT_Uuid:
4663 handleUuidAttr(S, D, Attr);
4664 break;
4665 case AttributeList::AT_MSInheritance:
4666 handleMSInheritanceAttr(S, D, Attr);
4667 break;
4668 case AttributeList::AT_SelectAny:
4669 handleSimpleAttribute<SelectAnyAttr>(S, D, Attr);
4670 break;
4671 case AttributeList::AT_Thread:
4672 handleDeclspecThreadAttr(S, D, Attr);
4673 break;
4674
4675 // Thread safety attributes:
4676 case AttributeList::AT_AssertExclusiveLock:
4677 handleAssertExclusiveLockAttr(S, D, Attr);
4678 break;
4679 case AttributeList::AT_AssertSharedLock:
4680 handleAssertSharedLockAttr(S, D, Attr);
4681 break;
4682 case AttributeList::AT_GuardedVar:
4683 handleSimpleAttribute<GuardedVarAttr>(S, D, Attr);
4684 break;
4685 case AttributeList::AT_PtGuardedVar:
4686 handlePtGuardedVarAttr(S, D, Attr);
4687 break;
4688 case AttributeList::AT_ScopedLockable:
4689 handleSimpleAttribute<ScopedLockableAttr>(S, D, Attr);
4690 break;
4691 case AttributeList::AT_NoSanitizeAddress:
4692 handleSimpleAttribute<NoSanitizeAddressAttr>(S, D, Attr);
4693 break;
4694 case AttributeList::AT_NoThreadSafetyAnalysis:
4695 handleSimpleAttribute<NoThreadSafetyAnalysisAttr>(S, D, Attr);
4696 break;
4697 case AttributeList::AT_NoSanitizeThread:
4698 handleSimpleAttribute<NoSanitizeThreadAttr>(S, D, Attr);
4699 break;
4700 case AttributeList::AT_NoSanitizeMemory:
4701 handleSimpleAttribute<NoSanitizeMemoryAttr>(S, D, Attr);
4702 break;
4703 case AttributeList::AT_GuardedBy:
4704 handleGuardedByAttr(S, D, Attr);
4705 break;
4706 case AttributeList::AT_PtGuardedBy:
4707 handlePtGuardedByAttr(S, D, Attr);
4708 break;
4709 case AttributeList::AT_ExclusiveTrylockFunction:
4710 handleExclusiveTrylockFunctionAttr(S, D, Attr);
4711 break;
4712 case AttributeList::AT_LockReturned:
4713 handleLockReturnedAttr(S, D, Attr);
4714 break;
4715 case AttributeList::AT_LocksExcluded:
4716 handleLocksExcludedAttr(S, D, Attr);
4717 break;
4718 case AttributeList::AT_SharedTrylockFunction:
4719 handleSharedTrylockFunctionAttr(S, D, Attr);
4720 break;
4721 case AttributeList::AT_AcquiredBefore:
4722 handleAcquiredBeforeAttr(S, D, Attr);
4723 break;
4724 case AttributeList::AT_AcquiredAfter:
4725 handleAcquiredAfterAttr(S, D, Attr);
4726 break;
4727
4728 // Capability analysis attributes.
4729 case AttributeList::AT_Capability:
4730 case AttributeList::AT_Lockable:
4731 handleCapabilityAttr(S, D, Attr);
4732 break;
4733 case AttributeList::AT_RequiresCapability:
4734 handleRequiresCapabilityAttr(S, D, Attr);
4735 break;
4736
4737 case AttributeList::AT_AssertCapability:
4738 handleAssertCapabilityAttr(S, D, Attr);
4739 break;
4740 case AttributeList::AT_AcquireCapability:
4741 handleAcquireCapabilityAttr(S, D, Attr);
4742 break;
4743 case AttributeList::AT_ReleaseCapability:
4744 handleReleaseCapabilityAttr(S, D, Attr);
4745 break;
4746 case AttributeList::AT_TryAcquireCapability:
4747 handleTryAcquireCapabilityAttr(S, D, Attr);
4748 break;
4749
4750 // Consumed analysis attributes.
4751 case AttributeList::AT_Consumable:
4752 handleConsumableAttr(S, D, Attr);
4753 break;
4754 case AttributeList::AT_ConsumableAutoCast:
4755 handleSimpleAttribute<ConsumableAutoCastAttr>(S, D, Attr);
4756 break;
4757 case AttributeList::AT_ConsumableSetOnRead:
4758 handleSimpleAttribute<ConsumableSetOnReadAttr>(S, D, Attr);
4759 break;
4760 case AttributeList::AT_CallableWhen:
4761 handleCallableWhenAttr(S, D, Attr);
4762 break;
4763 case AttributeList::AT_ParamTypestate:
4764 handleParamTypestateAttr(S, D, Attr);
4765 break;
4766 case AttributeList::AT_ReturnTypestate:
4767 handleReturnTypestateAttr(S, D, Attr);
4768 break;
4769 case AttributeList::AT_SetTypestate:
4770 handleSetTypestateAttr(S, D, Attr);
4771 break;
4772 case AttributeList::AT_TestTypestate:
4773 handleTestTypestateAttr(S, D, Attr);
4774 break;
4775
4776 // Type safety attributes.
4777 case AttributeList::AT_ArgumentWithTypeTag:
4778 handleArgumentWithTypeTagAttr(S, D, Attr);
4779 break;
4780 case AttributeList::AT_TypeTagForDatatype:
4781 handleTypeTagForDatatypeAttr(S, D, Attr);
4782 break;
4783 }
4784 }
4785
4786 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
4787 /// attribute list to the specified decl, ignoring any type attributes.
ProcessDeclAttributeList(Scope * S,Decl * D,const AttributeList * AttrList,bool IncludeCXX11Attributes)4788 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
4789 const AttributeList *AttrList,
4790 bool IncludeCXX11Attributes) {
4791 for (const AttributeList* l = AttrList; l; l = l->getNext())
4792 ProcessDeclAttribute(*this, S, D, *l, IncludeCXX11Attributes);
4793
4794 // FIXME: We should be able to handle these cases in TableGen.
4795 // GCC accepts
4796 // static int a9 __attribute__((weakref));
4797 // but that looks really pointless. We reject it.
4798 if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
4799 Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias)
4800 << cast<NamedDecl>(D);
4801 D->dropAttr<WeakRefAttr>();
4802 return;
4803 }
4804
4805 // FIXME: We should be able to handle this in TableGen as well. It would be
4806 // good to have a way to specify "these attributes must appear as a group",
4807 // for these. Additionally, it would be good to have a way to specify "these
4808 // attribute must never appear as a group" for attributes like cold and hot.
4809 if (!D->hasAttr<OpenCLKernelAttr>()) {
4810 // These attributes cannot be applied to a non-kernel function.
4811 if (Attr *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
4812 // FIXME: This emits a different error message than
4813 // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
4814 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
4815 D->setInvalidDecl();
4816 } else if (Attr *A = D->getAttr<WorkGroupSizeHintAttr>()) {
4817 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
4818 D->setInvalidDecl();
4819 } else if (Attr *A = D->getAttr<VecTypeHintAttr>()) {
4820 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
4821 D->setInvalidDecl();
4822 } else if (Attr *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
4823 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
4824 << A << ExpectedKernelFunction;
4825 D->setInvalidDecl();
4826 } else if (Attr *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
4827 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
4828 << A << ExpectedKernelFunction;
4829 D->setInvalidDecl();
4830 }
4831 }
4832 }
4833
4834 // Annotation attributes are the only attributes allowed after an access
4835 // specifier.
ProcessAccessDeclAttributeList(AccessSpecDecl * ASDecl,const AttributeList * AttrList)4836 bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
4837 const AttributeList *AttrList) {
4838 for (const AttributeList* l = AttrList; l; l = l->getNext()) {
4839 if (l->getKind() == AttributeList::AT_Annotate) {
4840 ProcessDeclAttribute(*this, nullptr, ASDecl, *l, l->isCXX11Attribute());
4841 } else {
4842 Diag(l->getLoc(), diag::err_only_annotate_after_access_spec);
4843 return true;
4844 }
4845 }
4846
4847 return false;
4848 }
4849
4850 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
4851 /// contains any decl attributes that we should warn about.
checkUnusedDeclAttributes(Sema & S,const AttributeList * A)4852 static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) {
4853 for ( ; A; A = A->getNext()) {
4854 // Only warn if the attribute is an unignored, non-type attribute.
4855 if (A->isUsedAsTypeAttr() || A->isInvalid()) continue;
4856 if (A->getKind() == AttributeList::IgnoredAttribute) continue;
4857
4858 if (A->getKind() == AttributeList::UnknownAttribute) {
4859 S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored)
4860 << A->getName() << A->getRange();
4861 } else {
4862 S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl)
4863 << A->getName() << A->getRange();
4864 }
4865 }
4866 }
4867
4868 /// checkUnusedDeclAttributes - Given a declarator which is not being
4869 /// used to build a declaration, complain about any decl attributes
4870 /// which might be lying around on it.
checkUnusedDeclAttributes(Declarator & D)4871 void Sema::checkUnusedDeclAttributes(Declarator &D) {
4872 ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList());
4873 ::checkUnusedDeclAttributes(*this, D.getAttributes());
4874 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
4875 ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
4876 }
4877
4878 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
4879 /// \#pragma weak needs a non-definition decl and source may not have one.
DeclClonePragmaWeak(NamedDecl * ND,IdentifierInfo * II,SourceLocation Loc)4880 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
4881 SourceLocation Loc) {
4882 assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
4883 NamedDecl *NewD = nullptr;
4884 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
4885 FunctionDecl *NewFD;
4886 // FIXME: Missing call to CheckFunctionDeclaration().
4887 // FIXME: Mangling?
4888 // FIXME: Is the qualifier info correct?
4889 // FIXME: Is the DeclContext correct?
4890 NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
4891 Loc, Loc, DeclarationName(II),
4892 FD->getType(), FD->getTypeSourceInfo(),
4893 SC_None, false/*isInlineSpecified*/,
4894 FD->hasPrototype(),
4895 false/*isConstexprSpecified*/);
4896 NewD = NewFD;
4897
4898 if (FD->getQualifier())
4899 NewFD->setQualifierInfo(FD->getQualifierLoc());
4900
4901 // Fake up parameter variables; they are declared as if this were
4902 // a typedef.
4903 QualType FDTy = FD->getType();
4904 if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) {
4905 SmallVector<ParmVarDecl*, 16> Params;
4906 for (const auto &AI : FT->param_types()) {
4907 ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
4908 Param->setScopeInfo(0, Params.size());
4909 Params.push_back(Param);
4910 }
4911 NewFD->setParams(Params);
4912 }
4913 } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
4914 NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
4915 VD->getInnerLocStart(), VD->getLocation(), II,
4916 VD->getType(), VD->getTypeSourceInfo(),
4917 VD->getStorageClass());
4918 if (VD->getQualifier()) {
4919 VarDecl *NewVD = cast<VarDecl>(NewD);
4920 NewVD->setQualifierInfo(VD->getQualifierLoc());
4921 }
4922 }
4923 return NewD;
4924 }
4925
4926 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
4927 /// applied to it, possibly with an alias.
DeclApplyPragmaWeak(Scope * S,NamedDecl * ND,WeakInfo & W)4928 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
4929 if (W.getUsed()) return; // only do this once
4930 W.setUsed(true);
4931 if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
4932 IdentifierInfo *NDId = ND->getIdentifier();
4933 NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
4934 NewD->addAttr(AliasAttr::CreateImplicit(Context, NDId->getName(),
4935 W.getLocation()));
4936 NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
4937 WeakTopLevelDecl.push_back(NewD);
4938 // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
4939 // to insert Decl at TU scope, sorry.
4940 DeclContext *SavedContext = CurContext;
4941 CurContext = Context.getTranslationUnitDecl();
4942 NewD->setDeclContext(CurContext);
4943 NewD->setLexicalDeclContext(CurContext);
4944 PushOnScopeChains(NewD, S);
4945 CurContext = SavedContext;
4946 } else { // just add weak to existing
4947 ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
4948 }
4949 }
4950
ProcessPragmaWeak(Scope * S,Decl * D)4951 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
4952 // It's valid to "forward-declare" #pragma weak, in which case we
4953 // have to do this.
4954 LoadExternalWeakUndeclaredIdentifiers();
4955 if (!WeakUndeclaredIdentifiers.empty()) {
4956 NamedDecl *ND = nullptr;
4957 if (VarDecl *VD = dyn_cast<VarDecl>(D))
4958 if (VD->isExternC())
4959 ND = VD;
4960 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
4961 if (FD->isExternC())
4962 ND = FD;
4963 if (ND) {
4964 if (IdentifierInfo *Id = ND->getIdentifier()) {
4965 llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I
4966 = WeakUndeclaredIdentifiers.find(Id);
4967 if (I != WeakUndeclaredIdentifiers.end()) {
4968 WeakInfo W = I->second;
4969 DeclApplyPragmaWeak(S, ND, W);
4970 WeakUndeclaredIdentifiers[Id] = W;
4971 }
4972 }
4973 }
4974 }
4975 }
4976
4977 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
4978 /// it, apply them to D. This is a bit tricky because PD can have attributes
4979 /// specified in many different places, and we need to find and apply them all.
ProcessDeclAttributes(Scope * S,Decl * D,const Declarator & PD)4980 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
4981 // Apply decl attributes from the DeclSpec if present.
4982 if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
4983 ProcessDeclAttributeList(S, D, Attrs);
4984
4985 // Walk the declarator structure, applying decl attributes that were in a type
4986 // position to the decl itself. This handles cases like:
4987 // int *__attr__(x)** D;
4988 // when X is a decl attribute.
4989 for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
4990 if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
4991 ProcessDeclAttributeList(S, D, Attrs, /*IncludeCXX11Attributes=*/false);
4992
4993 // Finally, apply any attributes on the decl itself.
4994 if (const AttributeList *Attrs = PD.getAttributes())
4995 ProcessDeclAttributeList(S, D, Attrs);
4996 }
4997
4998 /// Is the given declaration allowed to use a forbidden type?
isForbiddenTypeAllowed(Sema & S,Decl * decl)4999 static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) {
5000 // Private ivars are always okay. Unfortunately, people don't
5001 // always properly make their ivars private, even in system headers.
5002 // Plus we need to make fields okay, too.
5003 // Function declarations in sys headers will be marked unavailable.
5004 if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) &&
5005 !isa<FunctionDecl>(decl))
5006 return false;
5007
5008 // Require it to be declared in a system header.
5009 return S.Context.getSourceManager().isInSystemHeader(decl->getLocation());
5010 }
5011
5012 /// Handle a delayed forbidden-type diagnostic.
handleDelayedForbiddenType(Sema & S,DelayedDiagnostic & diag,Decl * decl)5013 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
5014 Decl *decl) {
5015 if (decl && isForbiddenTypeAllowed(S, decl)) {
5016 decl->addAttr(UnavailableAttr::CreateImplicit(S.Context,
5017 "this system declaration uses an unsupported type",
5018 diag.Loc));
5019 return;
5020 }
5021 if (S.getLangOpts().ObjCAutoRefCount)
5022 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) {
5023 // FIXME: we may want to suppress diagnostics for all
5024 // kind of forbidden type messages on unavailable functions.
5025 if (FD->hasAttr<UnavailableAttr>() &&
5026 diag.getForbiddenTypeDiagnostic() ==
5027 diag::err_arc_array_param_no_ownership) {
5028 diag.Triggered = true;
5029 return;
5030 }
5031 }
5032
5033 S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
5034 << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
5035 diag.Triggered = true;
5036 }
5037
5038
isDeclDeprecated(Decl * D)5039 static bool isDeclDeprecated(Decl *D) {
5040 do {
5041 if (D->isDeprecated())
5042 return true;
5043 // A category implicitly has the availability of the interface.
5044 if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
5045 return CatD->getClassInterface()->isDeprecated();
5046 } while ((D = cast_or_null<Decl>(D->getDeclContext())));
5047 return false;
5048 }
5049
isDeclUnavailable(Decl * D)5050 static bool isDeclUnavailable(Decl *D) {
5051 do {
5052 if (D->isUnavailable())
5053 return true;
5054 // A category implicitly has the availability of the interface.
5055 if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
5056 return CatD->getClassInterface()->isUnavailable();
5057 } while ((D = cast_or_null<Decl>(D->getDeclContext())));
5058 return false;
5059 }
5060
DoEmitAvailabilityWarning(Sema & S,DelayedDiagnostic::DDKind K,Decl * Ctx,const NamedDecl * D,StringRef Message,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass,const ObjCPropertyDecl * ObjCProperty,bool ObjCPropertyAccess)5061 static void DoEmitAvailabilityWarning(Sema &S, DelayedDiagnostic::DDKind K,
5062 Decl *Ctx, const NamedDecl *D,
5063 StringRef Message, SourceLocation Loc,
5064 const ObjCInterfaceDecl *UnknownObjCClass,
5065 const ObjCPropertyDecl *ObjCProperty,
5066 bool ObjCPropertyAccess) {
5067 // Diagnostics for deprecated or unavailable.
5068 unsigned diag, diag_message, diag_fwdclass_message;
5069
5070 // Matches 'diag::note_property_attribute' options.
5071 unsigned property_note_select;
5072
5073 // Matches diag::note_availability_specified_here.
5074 unsigned available_here_select_kind;
5075
5076 // Don't warn if our current context is deprecated or unavailable.
5077 switch (K) {
5078 case DelayedDiagnostic::Deprecation:
5079 if (isDeclDeprecated(Ctx))
5080 return;
5081 diag = !ObjCPropertyAccess ? diag::warn_deprecated
5082 : diag::warn_property_method_deprecated;
5083 diag_message = diag::warn_deprecated_message;
5084 diag_fwdclass_message = diag::warn_deprecated_fwdclass_message;
5085 property_note_select = /* deprecated */ 0;
5086 available_here_select_kind = /* deprecated */ 2;
5087 break;
5088
5089 case DelayedDiagnostic::Unavailable:
5090 if (isDeclUnavailable(Ctx))
5091 return;
5092 diag = !ObjCPropertyAccess ? diag::err_unavailable
5093 : diag::err_property_method_unavailable;
5094 diag_message = diag::err_unavailable_message;
5095 diag_fwdclass_message = diag::warn_unavailable_fwdclass_message;
5096 property_note_select = /* unavailable */ 1;
5097 available_here_select_kind = /* unavailable */ 0;
5098 break;
5099
5100 default:
5101 llvm_unreachable("Neither a deprecation or unavailable kind");
5102 }
5103
5104 if (!Message.empty()) {
5105 S.Diag(Loc, diag_message) << D << Message;
5106 if (ObjCProperty)
5107 S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
5108 << ObjCProperty->getDeclName() << property_note_select;
5109 } else if (!UnknownObjCClass) {
5110 S.Diag(Loc, diag) << D;
5111 if (ObjCProperty)
5112 S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
5113 << ObjCProperty->getDeclName() << property_note_select;
5114 } else {
5115 S.Diag(Loc, diag_fwdclass_message) << D;
5116 S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
5117 }
5118
5119 S.Diag(D->getLocation(), diag::note_availability_specified_here)
5120 << D << available_here_select_kind;
5121 }
5122
handleDelayedAvailabilityCheck(Sema & S,DelayedDiagnostic & DD,Decl * Ctx)5123 static void handleDelayedAvailabilityCheck(Sema &S, DelayedDiagnostic &DD,
5124 Decl *Ctx) {
5125 DD.Triggered = true;
5126 DoEmitAvailabilityWarning(S, (DelayedDiagnostic::DDKind)DD.Kind, Ctx,
5127 DD.getDeprecationDecl(), DD.getDeprecationMessage(),
5128 DD.Loc, DD.getUnknownObjCClass(),
5129 DD.getObjCProperty(), false);
5130 }
5131
PopParsingDeclaration(ParsingDeclState state,Decl * decl)5132 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
5133 assert(DelayedDiagnostics.getCurrentPool());
5134 DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
5135 DelayedDiagnostics.popWithoutEmitting(state);
5136
5137 // When delaying diagnostics to run in the context of a parsed
5138 // declaration, we only want to actually emit anything if parsing
5139 // succeeds.
5140 if (!decl) return;
5141
5142 // We emit all the active diagnostics in this pool or any of its
5143 // parents. In general, we'll get one pool for the decl spec
5144 // and a child pool for each declarator; in a decl group like:
5145 // deprecated_typedef foo, *bar, baz();
5146 // only the declarator pops will be passed decls. This is correct;
5147 // we really do need to consider delayed diagnostics from the decl spec
5148 // for each of the different declarations.
5149 const DelayedDiagnosticPool *pool = &poppedPool;
5150 do {
5151 for (DelayedDiagnosticPool::pool_iterator
5152 i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
5153 // This const_cast is a bit lame. Really, Triggered should be mutable.
5154 DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
5155 if (diag.Triggered)
5156 continue;
5157
5158 switch (diag.Kind) {
5159 case DelayedDiagnostic::Deprecation:
5160 case DelayedDiagnostic::Unavailable:
5161 // Don't bother giving deprecation/unavailable diagnostics if
5162 // the decl is invalid.
5163 if (!decl->isInvalidDecl())
5164 handleDelayedAvailabilityCheck(*this, diag, decl);
5165 break;
5166
5167 case DelayedDiagnostic::Access:
5168 HandleDelayedAccessCheck(diag, decl);
5169 break;
5170
5171 case DelayedDiagnostic::ForbiddenType:
5172 handleDelayedForbiddenType(*this, diag, decl);
5173 break;
5174 }
5175 }
5176 } while ((pool = pool->getParent()));
5177 }
5178
5179 /// Given a set of delayed diagnostics, re-emit them as if they had
5180 /// been delayed in the current context instead of in the given pool.
5181 /// Essentially, this just moves them to the current pool.
redelayDiagnostics(DelayedDiagnosticPool & pool)5182 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
5183 DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
5184 assert(curPool && "re-emitting in undelayed context not supported");
5185 curPool->steal(pool);
5186 }
5187
EmitAvailabilityWarning(AvailabilityDiagnostic AD,NamedDecl * D,StringRef Message,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass,const ObjCPropertyDecl * ObjCProperty,bool ObjCPropertyAccess)5188 void Sema::EmitAvailabilityWarning(AvailabilityDiagnostic AD,
5189 NamedDecl *D, StringRef Message,
5190 SourceLocation Loc,
5191 const ObjCInterfaceDecl *UnknownObjCClass,
5192 const ObjCPropertyDecl *ObjCProperty,
5193 bool ObjCPropertyAccess) {
5194 // Delay if we're currently parsing a declaration.
5195 if (DelayedDiagnostics.shouldDelayDiagnostics()) {
5196 DelayedDiagnostics.add(DelayedDiagnostic::makeAvailability(
5197 AD, Loc, D, UnknownObjCClass, ObjCProperty, Message,
5198 ObjCPropertyAccess));
5199 return;
5200 }
5201
5202 Decl *Ctx = cast<Decl>(getCurLexicalContext());
5203 DelayedDiagnostic::DDKind K;
5204 switch (AD) {
5205 case AD_Deprecation:
5206 K = DelayedDiagnostic::Deprecation;
5207 break;
5208 case AD_Unavailable:
5209 K = DelayedDiagnostic::Unavailable;
5210 break;
5211 }
5212
5213 DoEmitAvailabilityWarning(*this, K, Ctx, D, Message, Loc,
5214 UnknownObjCClass, ObjCProperty, ObjCPropertyAccess);
5215 }
5216