1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file promotes memory references to be register references. It promotes
10 // alloca instructions which only have loads and stores as uses. An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
13 // appropriate.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/IteratedDominanceFrontier.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DIBuilder.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <iterator>
51 #include <utility>
52 #include <vector>
53
54 using namespace llvm;
55
56 #define DEBUG_TYPE "mem2reg"
57
58 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
59 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
60 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
61 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
62
isAllocaPromotable(const AllocaInst * AI)63 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
64 // Only allow direct and non-volatile loads and stores...
65 for (const User *U : AI->users()) {
66 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
67 // Note that atomic loads can be transformed; atomic semantics do
68 // not have any meaning for a local alloca.
69 if (LI->isVolatile() || LI->getType() != AI->getAllocatedType())
70 return false;
71 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
72 if (SI->getValueOperand() == AI ||
73 SI->getValueOperand()->getType() != AI->getAllocatedType())
74 return false; // Don't allow a store OF the AI, only INTO the AI.
75 // Note that atomic stores can be transformed; atomic semantics do
76 // not have any meaning for a local alloca.
77 if (SI->isVolatile())
78 return false;
79 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
80 if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
81 return false;
82 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
83 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI))
84 return false;
85 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
86 if (!GEPI->hasAllZeroIndices())
87 return false;
88 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI))
89 return false;
90 } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) {
91 if (!onlyUsedByLifetimeMarkers(ASCI))
92 return false;
93 } else {
94 return false;
95 }
96 }
97
98 return true;
99 }
100
101 namespace {
102
103 /// Helper for updating assignment tracking debug info when promoting allocas.
104 class AssignmentTrackingInfo {
105 /// DbgAssignIntrinsics linked to the alloca with at most one per variable
106 /// fragment. (i.e. not be a comprehensive set if there are multiple
107 /// dbg.assigns for one variable fragment).
108 SmallVector<DbgVariableIntrinsic *> DbgAssigns;
109
110 public:
init(AllocaInst * AI)111 void init(AllocaInst *AI) {
112 SmallSet<DebugVariable, 2> Vars;
113 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(AI)) {
114 if (Vars.insert(DebugVariable(DAI)).second)
115 DbgAssigns.push_back(DAI);
116 }
117 }
118
119 /// Update assignment tracking debug info given for the to-be-deleted store
120 /// \p ToDelete that stores to this alloca.
updateForDeletedStore(StoreInst * ToDelete,DIBuilder & DIB) const121 void updateForDeletedStore(StoreInst *ToDelete, DIBuilder &DIB) const {
122 // There's nothing to do if the alloca doesn't have any variables using
123 // assignment tracking.
124 if (DbgAssigns.empty()) {
125 assert(at::getAssignmentMarkers(ToDelete).empty());
126 return;
127 }
128
129 // Just leave dbg.assign intrinsics in place and remember that we've seen
130 // one for each variable fragment.
131 SmallSet<DebugVariable, 2> VarHasDbgAssignForStore;
132 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(ToDelete))
133 VarHasDbgAssignForStore.insert(DebugVariable(DAI));
134
135 // It's possible for variables using assignment tracking to have no
136 // dbg.assign linked to this store. These are variables in DbgAssigns that
137 // are missing from VarHasDbgAssignForStore. Since there isn't a dbg.assign
138 // to mark the assignment - and the store is going to be deleted - insert a
139 // dbg.value to do that now. An untracked store may be either one that
140 // cannot be represented using assignment tracking (non-const offset or
141 // size) or one that is trackable but has had its DIAssignID attachment
142 // dropped accidentally.
143 for (auto *DAI : DbgAssigns) {
144 if (VarHasDbgAssignForStore.contains(DebugVariable(DAI)))
145 continue;
146 ConvertDebugDeclareToDebugValue(DAI, ToDelete, DIB);
147 }
148 }
149
150 /// Update assignment tracking debug info given for the newly inserted PHI \p
151 /// NewPhi.
updateForNewPhi(PHINode * NewPhi,DIBuilder & DIB) const152 void updateForNewPhi(PHINode *NewPhi, DIBuilder &DIB) const {
153 // Regardless of the position of dbg.assigns relative to stores, the
154 // incoming values into a new PHI should be the same for the (imaginary)
155 // debug-phi.
156 for (auto *DAI : DbgAssigns)
157 ConvertDebugDeclareToDebugValue(DAI, NewPhi, DIB);
158 }
159
clear()160 void clear() { DbgAssigns.clear(); }
empty()161 bool empty() { return DbgAssigns.empty(); }
162 };
163
164 struct AllocaInfo {
165 using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>;
166
167 SmallVector<BasicBlock *, 32> DefiningBlocks;
168 SmallVector<BasicBlock *, 32> UsingBlocks;
169
170 StoreInst *OnlyStore;
171 BasicBlock *OnlyBlock;
172 bool OnlyUsedInOneBlock;
173
174 /// Debug users of the alloca - does not include dbg.assign intrinsics.
175 DbgUserVec DbgUsers;
176 /// Helper to update assignment tracking debug info.
177 AssignmentTrackingInfo AssignmentTracking;
178
clear__anon4db403c20111::AllocaInfo179 void clear() {
180 DefiningBlocks.clear();
181 UsingBlocks.clear();
182 OnlyStore = nullptr;
183 OnlyBlock = nullptr;
184 OnlyUsedInOneBlock = true;
185 DbgUsers.clear();
186 AssignmentTracking.clear();
187 }
188
189 /// Scan the uses of the specified alloca, filling in the AllocaInfo used
190 /// by the rest of the pass to reason about the uses of this alloca.
AnalyzeAlloca__anon4db403c20111::AllocaInfo191 void AnalyzeAlloca(AllocaInst *AI) {
192 clear();
193
194 // As we scan the uses of the alloca instruction, keep track of stores,
195 // and decide whether all of the loads and stores to the alloca are within
196 // the same basic block.
197 for (User *U : AI->users()) {
198 Instruction *User = cast<Instruction>(U);
199
200 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
201 // Remember the basic blocks which define new values for the alloca
202 DefiningBlocks.push_back(SI->getParent());
203 OnlyStore = SI;
204 } else {
205 LoadInst *LI = cast<LoadInst>(User);
206 // Otherwise it must be a load instruction, keep track of variable
207 // reads.
208 UsingBlocks.push_back(LI->getParent());
209 }
210
211 if (OnlyUsedInOneBlock) {
212 if (!OnlyBlock)
213 OnlyBlock = User->getParent();
214 else if (OnlyBlock != User->getParent())
215 OnlyUsedInOneBlock = false;
216 }
217 }
218 DbgUserVec AllDbgUsers;
219 findDbgUsers(AllDbgUsers, AI);
220 std::copy_if(AllDbgUsers.begin(), AllDbgUsers.end(),
221 std::back_inserter(DbgUsers), [](DbgVariableIntrinsic *DII) {
222 return !isa<DbgAssignIntrinsic>(DII);
223 });
224 AssignmentTracking.init(AI);
225 }
226 };
227
228 /// Data package used by RenamePass().
229 struct RenamePassData {
230 using ValVector = std::vector<Value *>;
231 using LocationVector = std::vector<DebugLoc>;
232
RenamePassData__anon4db403c20111::RenamePassData233 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
234 : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
235
236 BasicBlock *BB;
237 BasicBlock *Pred;
238 ValVector Values;
239 LocationVector Locations;
240 };
241
242 /// This assigns and keeps a per-bb relative ordering of load/store
243 /// instructions in the block that directly load or store an alloca.
244 ///
245 /// This functionality is important because it avoids scanning large basic
246 /// blocks multiple times when promoting many allocas in the same block.
247 class LargeBlockInfo {
248 /// For each instruction that we track, keep the index of the
249 /// instruction.
250 ///
251 /// The index starts out as the number of the instruction from the start of
252 /// the block.
253 DenseMap<const Instruction *, unsigned> InstNumbers;
254
255 public:
256
257 /// This code only looks at accesses to allocas.
isInterestingInstruction(const Instruction * I)258 static bool isInterestingInstruction(const Instruction *I) {
259 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
260 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
261 }
262
263 /// Get or calculate the index of the specified instruction.
getInstructionIndex(const Instruction * I)264 unsigned getInstructionIndex(const Instruction *I) {
265 assert(isInterestingInstruction(I) &&
266 "Not a load/store to/from an alloca?");
267
268 // If we already have this instruction number, return it.
269 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
270 if (It != InstNumbers.end())
271 return It->second;
272
273 // Scan the whole block to get the instruction. This accumulates
274 // information for every interesting instruction in the block, in order to
275 // avoid gratuitus rescans.
276 const BasicBlock *BB = I->getParent();
277 unsigned InstNo = 0;
278 for (const Instruction &BBI : *BB)
279 if (isInterestingInstruction(&BBI))
280 InstNumbers[&BBI] = InstNo++;
281 It = InstNumbers.find(I);
282
283 assert(It != InstNumbers.end() && "Didn't insert instruction?");
284 return It->second;
285 }
286
deleteValue(const Instruction * I)287 void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
288
clear()289 void clear() { InstNumbers.clear(); }
290 };
291
292 struct PromoteMem2Reg {
293 /// The alloca instructions being promoted.
294 std::vector<AllocaInst *> Allocas;
295
296 DominatorTree &DT;
297 DIBuilder DIB;
298
299 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
300 AssumptionCache *AC;
301
302 const SimplifyQuery SQ;
303
304 /// Reverse mapping of Allocas.
305 DenseMap<AllocaInst *, unsigned> AllocaLookup;
306
307 /// The PhiNodes we're adding.
308 ///
309 /// That map is used to simplify some Phi nodes as we iterate over it, so
310 /// it should have deterministic iterators. We could use a MapVector, but
311 /// since we already maintain a map from BasicBlock* to a stable numbering
312 /// (BBNumbers), the DenseMap is more efficient (also supports removal).
313 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
314
315 /// For each PHI node, keep track of which entry in Allocas it corresponds
316 /// to.
317 DenseMap<PHINode *, unsigned> PhiToAllocaMap;
318
319 /// For each alloca, we keep track of the dbg.declare intrinsic that
320 /// describes it, if any, so that we can convert it to a dbg.value
321 /// intrinsic if the alloca gets promoted.
322 SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers;
323
324 /// For each alloca, keep an instance of a helper class that gives us an easy
325 /// way to update assignment tracking debug info if the alloca is promoted.
326 SmallVector<AssignmentTrackingInfo, 8> AllocaATInfo;
327
328 /// The set of basic blocks the renamer has already visited.
329 SmallPtrSet<BasicBlock *, 16> Visited;
330
331 /// Contains a stable numbering of basic blocks to avoid non-determinstic
332 /// behavior.
333 DenseMap<BasicBlock *, unsigned> BBNumbers;
334
335 /// Lazily compute the number of predecessors a block has.
336 DenseMap<const BasicBlock *, unsigned> BBNumPreds;
337
338 public:
PromoteMem2Reg__anon4db403c20111::PromoteMem2Reg339 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
340 AssumptionCache *AC)
341 : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
342 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
343 AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
344 nullptr, &DT, AC) {}
345
346 void run();
347
348 private:
RemoveFromAllocasList__anon4db403c20111::PromoteMem2Reg349 void RemoveFromAllocasList(unsigned &AllocaIdx) {
350 Allocas[AllocaIdx] = Allocas.back();
351 Allocas.pop_back();
352 --AllocaIdx;
353 }
354
getNumPreds__anon4db403c20111::PromoteMem2Reg355 unsigned getNumPreds(const BasicBlock *BB) {
356 unsigned &NP = BBNumPreds[BB];
357 if (NP == 0)
358 NP = pred_size(BB) + 1;
359 return NP - 1;
360 }
361
362 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
363 const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
364 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
365 void RenamePass(BasicBlock *BB, BasicBlock *Pred,
366 RenamePassData::ValVector &IncVals,
367 RenamePassData::LocationVector &IncLocs,
368 std::vector<RenamePassData> &Worklist);
369 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
370 };
371
372 } // end anonymous namespace
373
374 /// Given a LoadInst LI this adds assume(LI != null) after it.
addAssumeNonNull(AssumptionCache * AC,LoadInst * LI)375 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
376 Function *AssumeIntrinsic =
377 Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
378 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
379 Constant::getNullValue(LI->getType()));
380 LoadNotNull->insertAfter(LI);
381 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
382 CI->insertAfter(LoadNotNull);
383 AC->registerAssumption(cast<AssumeInst>(CI));
384 }
385
convertMetadataToAssumes(LoadInst * LI,Value * Val,const DataLayout & DL,AssumptionCache * AC,const DominatorTree * DT)386 static void convertMetadataToAssumes(LoadInst *LI, Value *Val,
387 const DataLayout &DL, AssumptionCache *AC,
388 const DominatorTree *DT) {
389 // If the load was marked as nonnull we don't want to lose that information
390 // when we erase this Load. So we preserve it with an assume. As !nonnull
391 // returns poison while assume violations are immediate undefined behavior,
392 // we can only do this if the value is known non-poison.
393 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
394 LI->getMetadata(LLVMContext::MD_noundef) &&
395 !isKnownNonZero(Val, DL, 0, AC, LI, DT))
396 addAssumeNonNull(AC, LI);
397 }
398
removeIntrinsicUsers(AllocaInst * AI)399 static void removeIntrinsicUsers(AllocaInst *AI) {
400 // Knowing that this alloca is promotable, we know that it's safe to kill all
401 // instructions except for load and store.
402
403 for (Use &U : llvm::make_early_inc_range(AI->uses())) {
404 Instruction *I = cast<Instruction>(U.getUser());
405 if (isa<LoadInst>(I) || isa<StoreInst>(I))
406 continue;
407
408 // Drop the use of AI in droppable instructions.
409 if (I->isDroppable()) {
410 I->dropDroppableUse(U);
411 continue;
412 }
413
414 if (!I->getType()->isVoidTy()) {
415 // The only users of this bitcast/GEP instruction are lifetime intrinsics.
416 // Follow the use/def chain to erase them now instead of leaving it for
417 // dead code elimination later.
418 for (Use &UU : llvm::make_early_inc_range(I->uses())) {
419 Instruction *Inst = cast<Instruction>(UU.getUser());
420
421 // Drop the use of I in droppable instructions.
422 if (Inst->isDroppable()) {
423 Inst->dropDroppableUse(UU);
424 continue;
425 }
426 Inst->eraseFromParent();
427 }
428 }
429 I->eraseFromParent();
430 }
431 }
432
433 /// Rewrite as many loads as possible given a single store.
434 ///
435 /// When there is only a single store, we can use the domtree to trivially
436 /// replace all of the dominated loads with the stored value. Do so, and return
437 /// true if this has successfully promoted the alloca entirely. If this returns
438 /// false there were some loads which were not dominated by the single store
439 /// and thus must be phi-ed with undef. We fall back to the standard alloca
440 /// promotion algorithm in that case.
rewriteSingleStoreAlloca(AllocaInst * AI,AllocaInfo & Info,LargeBlockInfo & LBI,const DataLayout & DL,DominatorTree & DT,AssumptionCache * AC)441 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
442 LargeBlockInfo &LBI, const DataLayout &DL,
443 DominatorTree &DT, AssumptionCache *AC) {
444 StoreInst *OnlyStore = Info.OnlyStore;
445 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
446 BasicBlock *StoreBB = OnlyStore->getParent();
447 int StoreIndex = -1;
448
449 // Clear out UsingBlocks. We will reconstruct it here if needed.
450 Info.UsingBlocks.clear();
451
452 for (User *U : make_early_inc_range(AI->users())) {
453 Instruction *UserInst = cast<Instruction>(U);
454 if (UserInst == OnlyStore)
455 continue;
456 LoadInst *LI = cast<LoadInst>(UserInst);
457
458 // Okay, if we have a load from the alloca, we want to replace it with the
459 // only value stored to the alloca. We can do this if the value is
460 // dominated by the store. If not, we use the rest of the mem2reg machinery
461 // to insert the phi nodes as needed.
462 if (!StoringGlobalVal) { // Non-instructions are always dominated.
463 if (LI->getParent() == StoreBB) {
464 // If we have a use that is in the same block as the store, compare the
465 // indices of the two instructions to see which one came first. If the
466 // load came before the store, we can't handle it.
467 if (StoreIndex == -1)
468 StoreIndex = LBI.getInstructionIndex(OnlyStore);
469
470 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
471 // Can't handle this load, bail out.
472 Info.UsingBlocks.push_back(StoreBB);
473 continue;
474 }
475 } else if (!DT.dominates(StoreBB, LI->getParent())) {
476 // If the load and store are in different blocks, use BB dominance to
477 // check their relationships. If the store doesn't dom the use, bail
478 // out.
479 Info.UsingBlocks.push_back(LI->getParent());
480 continue;
481 }
482 }
483
484 // Otherwise, we *can* safely rewrite this load.
485 Value *ReplVal = OnlyStore->getOperand(0);
486 // If the replacement value is the load, this must occur in unreachable
487 // code.
488 if (ReplVal == LI)
489 ReplVal = PoisonValue::get(LI->getType());
490
491 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT);
492 LI->replaceAllUsesWith(ReplVal);
493 LI->eraseFromParent();
494 LBI.deleteValue(LI);
495 }
496
497 // Finally, after the scan, check to see if the store is all that is left.
498 if (!Info.UsingBlocks.empty())
499 return false; // If not, we'll have to fall back for the remainder.
500
501 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
502 // Update assignment tracking info for the store we're going to delete.
503 Info.AssignmentTracking.updateForDeletedStore(Info.OnlyStore, DIB);
504
505 // Record debuginfo for the store and remove the declaration's
506 // debuginfo.
507 for (DbgVariableIntrinsic *DII : Info.DbgUsers) {
508 if (DII->isAddressOfVariable()) {
509 ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
510 DII->eraseFromParent();
511 } else if (DII->getExpression()->startsWithDeref()) {
512 DII->eraseFromParent();
513 }
514 }
515
516 // Remove dbg.assigns linked to the alloca as these are now redundant.
517 at::deleteAssignmentMarkers(AI);
518
519 // Remove the (now dead) store and alloca.
520 Info.OnlyStore->eraseFromParent();
521 LBI.deleteValue(Info.OnlyStore);
522
523 AI->eraseFromParent();
524 return true;
525 }
526
527 /// Many allocas are only used within a single basic block. If this is the
528 /// case, avoid traversing the CFG and inserting a lot of potentially useless
529 /// PHI nodes by just performing a single linear pass over the basic block
530 /// using the Alloca.
531 ///
532 /// If we cannot promote this alloca (because it is read before it is written),
533 /// return false. This is necessary in cases where, due to control flow, the
534 /// alloca is undefined only on some control flow paths. e.g. code like
535 /// this is correct in LLVM IR:
536 /// // A is an alloca with no stores so far
537 /// for (...) {
538 /// int t = *A;
539 /// if (!first_iteration)
540 /// use(t);
541 /// *A = 42;
542 /// }
promoteSingleBlockAlloca(AllocaInst * AI,const AllocaInfo & Info,LargeBlockInfo & LBI,const DataLayout & DL,DominatorTree & DT,AssumptionCache * AC)543 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
544 LargeBlockInfo &LBI,
545 const DataLayout &DL,
546 DominatorTree &DT,
547 AssumptionCache *AC) {
548 // The trickiest case to handle is when we have large blocks. Because of this,
549 // this code is optimized assuming that large blocks happen. This does not
550 // significantly pessimize the small block case. This uses LargeBlockInfo to
551 // make it efficient to get the index of various operations in the block.
552
553 // Walk the use-def list of the alloca, getting the locations of all stores.
554 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
555 StoresByIndexTy StoresByIndex;
556
557 for (User *U : AI->users())
558 if (StoreInst *SI = dyn_cast<StoreInst>(U))
559 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
560
561 // Sort the stores by their index, making it efficient to do a lookup with a
562 // binary search.
563 llvm::sort(StoresByIndex, less_first());
564
565 // Walk all of the loads from this alloca, replacing them with the nearest
566 // store above them, if any.
567 for (User *U : make_early_inc_range(AI->users())) {
568 LoadInst *LI = dyn_cast<LoadInst>(U);
569 if (!LI)
570 continue;
571
572 unsigned LoadIdx = LBI.getInstructionIndex(LI);
573
574 // Find the nearest store that has a lower index than this load.
575 StoresByIndexTy::iterator I = llvm::lower_bound(
576 StoresByIndex,
577 std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)),
578 less_first());
579 Value *ReplVal;
580 if (I == StoresByIndex.begin()) {
581 if (StoresByIndex.empty())
582 // If there are no stores, the load takes the undef value.
583 ReplVal = UndefValue::get(LI->getType());
584 else
585 // There is no store before this load, bail out (load may be affected
586 // by the following stores - see main comment).
587 return false;
588 } else {
589 // Otherwise, there was a store before this load, the load takes its
590 // value.
591 ReplVal = std::prev(I)->second->getOperand(0);
592 }
593
594 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT);
595
596 // If the replacement value is the load, this must occur in unreachable
597 // code.
598 if (ReplVal == LI)
599 ReplVal = PoisonValue::get(LI->getType());
600
601 LI->replaceAllUsesWith(ReplVal);
602 LI->eraseFromParent();
603 LBI.deleteValue(LI);
604 }
605
606 // Remove the (now dead) stores and alloca.
607 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
608 while (!AI->use_empty()) {
609 StoreInst *SI = cast<StoreInst>(AI->user_back());
610 // Update assignment tracking info for the store we're going to delete.
611 Info.AssignmentTracking.updateForDeletedStore(SI, DIB);
612 // Record debuginfo for the store before removing it.
613 for (DbgVariableIntrinsic *DII : Info.DbgUsers) {
614 if (DII->isAddressOfVariable()) {
615 ConvertDebugDeclareToDebugValue(DII, SI, DIB);
616 }
617 }
618 SI->eraseFromParent();
619 LBI.deleteValue(SI);
620 }
621
622 // Remove dbg.assigns linked to the alloca as these are now redundant.
623 at::deleteAssignmentMarkers(AI);
624 AI->eraseFromParent();
625
626 // The alloca's debuginfo can be removed as well.
627 for (DbgVariableIntrinsic *DII : Info.DbgUsers)
628 if (DII->isAddressOfVariable() || DII->getExpression()->startsWithDeref())
629 DII->eraseFromParent();
630
631 ++NumLocalPromoted;
632 return true;
633 }
634
run()635 void PromoteMem2Reg::run() {
636 Function &F = *DT.getRoot()->getParent();
637
638 AllocaDbgUsers.resize(Allocas.size());
639 AllocaATInfo.resize(Allocas.size());
640
641 AllocaInfo Info;
642 LargeBlockInfo LBI;
643 ForwardIDFCalculator IDF(DT);
644
645 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
646 AllocaInst *AI = Allocas[AllocaNum];
647
648 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
649 assert(AI->getParent()->getParent() == &F &&
650 "All allocas should be in the same function, which is same as DF!");
651
652 removeIntrinsicUsers(AI);
653
654 if (AI->use_empty()) {
655 // If there are no uses of the alloca, just delete it now.
656 AI->eraseFromParent();
657
658 // Remove the alloca from the Allocas list, since it has been processed
659 RemoveFromAllocasList(AllocaNum);
660 ++NumDeadAlloca;
661 continue;
662 }
663
664 // Calculate the set of read and write-locations for each alloca. This is
665 // analogous to finding the 'uses' and 'definitions' of each variable.
666 Info.AnalyzeAlloca(AI);
667
668 // If there is only a single store to this value, replace any loads of
669 // it that are directly dominated by the definition with the value stored.
670 if (Info.DefiningBlocks.size() == 1) {
671 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
672 // The alloca has been processed, move on.
673 RemoveFromAllocasList(AllocaNum);
674 ++NumSingleStore;
675 continue;
676 }
677 }
678
679 // If the alloca is only read and written in one basic block, just perform a
680 // linear sweep over the block to eliminate it.
681 if (Info.OnlyUsedInOneBlock &&
682 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
683 // The alloca has been processed, move on.
684 RemoveFromAllocasList(AllocaNum);
685 continue;
686 }
687
688 // If we haven't computed a numbering for the BB's in the function, do so
689 // now.
690 if (BBNumbers.empty()) {
691 unsigned ID = 0;
692 for (auto &BB : F)
693 BBNumbers[&BB] = ID++;
694 }
695
696 // Remember the dbg.declare intrinsic describing this alloca, if any.
697 if (!Info.DbgUsers.empty())
698 AllocaDbgUsers[AllocaNum] = Info.DbgUsers;
699 if (!Info.AssignmentTracking.empty())
700 AllocaATInfo[AllocaNum] = Info.AssignmentTracking;
701
702 // Keep the reverse mapping of the 'Allocas' array for the rename pass.
703 AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
704
705 // Unique the set of defining blocks for efficient lookup.
706 SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(),
707 Info.DefiningBlocks.end());
708
709 // Determine which blocks the value is live in. These are blocks which lead
710 // to uses.
711 SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
712 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
713
714 // At this point, we're committed to promoting the alloca using IDF's, and
715 // the standard SSA construction algorithm. Determine which blocks need phi
716 // nodes and see if we can optimize out some work by avoiding insertion of
717 // dead phi nodes.
718 IDF.setLiveInBlocks(LiveInBlocks);
719 IDF.setDefiningBlocks(DefBlocks);
720 SmallVector<BasicBlock *, 32> PHIBlocks;
721 IDF.calculate(PHIBlocks);
722 llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
723 return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
724 });
725
726 unsigned CurrentVersion = 0;
727 for (BasicBlock *BB : PHIBlocks)
728 QueuePhiNode(BB, AllocaNum, CurrentVersion);
729 }
730
731 if (Allocas.empty())
732 return; // All of the allocas must have been trivial!
733
734 LBI.clear();
735
736 // Set the incoming values for the basic block to be null values for all of
737 // the alloca's. We do this in case there is a load of a value that has not
738 // been stored yet. In this case, it will get this null value.
739 RenamePassData::ValVector Values(Allocas.size());
740 for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
741 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
742
743 // When handling debug info, treat all incoming values as if they have unknown
744 // locations until proven otherwise.
745 RenamePassData::LocationVector Locations(Allocas.size());
746
747 // Walks all basic blocks in the function performing the SSA rename algorithm
748 // and inserting the phi nodes we marked as necessary
749 std::vector<RenamePassData> RenamePassWorkList;
750 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
751 std::move(Locations));
752 do {
753 RenamePassData RPD = std::move(RenamePassWorkList.back());
754 RenamePassWorkList.pop_back();
755 // RenamePass may add new worklist entries.
756 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
757 } while (!RenamePassWorkList.empty());
758
759 // The renamer uses the Visited set to avoid infinite loops. Clear it now.
760 Visited.clear();
761
762 // Remove the allocas themselves from the function.
763 for (Instruction *A : Allocas) {
764 // Remove dbg.assigns linked to the alloca as these are now redundant.
765 at::deleteAssignmentMarkers(A);
766 // If there are any uses of the alloca instructions left, they must be in
767 // unreachable basic blocks that were not processed by walking the dominator
768 // tree. Just delete the users now.
769 if (!A->use_empty())
770 A->replaceAllUsesWith(PoisonValue::get(A->getType()));
771 A->eraseFromParent();
772 }
773
774 // Remove alloca's dbg.declare intrinsics from the function.
775 for (auto &DbgUsers : AllocaDbgUsers) {
776 for (auto *DII : DbgUsers)
777 if (DII->isAddressOfVariable() || DII->getExpression()->startsWithDeref())
778 DII->eraseFromParent();
779 }
780
781 // Loop over all of the PHI nodes and see if there are any that we can get
782 // rid of because they merge all of the same incoming values. This can
783 // happen due to undef values coming into the PHI nodes. This process is
784 // iterative, because eliminating one PHI node can cause others to be removed.
785 bool EliminatedAPHI = true;
786 while (EliminatedAPHI) {
787 EliminatedAPHI = false;
788
789 // Iterating over NewPhiNodes is deterministic, so it is safe to try to
790 // simplify and RAUW them as we go. If it was not, we could add uses to
791 // the values we replace with in a non-deterministic order, thus creating
792 // non-deterministic def->use chains.
793 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
794 I = NewPhiNodes.begin(),
795 E = NewPhiNodes.end();
796 I != E;) {
797 PHINode *PN = I->second;
798
799 // If this PHI node merges one value and/or undefs, get the value.
800 if (Value *V = simplifyInstruction(PN, SQ)) {
801 PN->replaceAllUsesWith(V);
802 PN->eraseFromParent();
803 NewPhiNodes.erase(I++);
804 EliminatedAPHI = true;
805 continue;
806 }
807 ++I;
808 }
809 }
810
811 // At this point, the renamer has added entries to PHI nodes for all reachable
812 // code. Unfortunately, there may be unreachable blocks which the renamer
813 // hasn't traversed. If this is the case, the PHI nodes may not
814 // have incoming values for all predecessors. Loop over all PHI nodes we have
815 // created, inserting undef values if they are missing any incoming values.
816 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
817 I = NewPhiNodes.begin(),
818 E = NewPhiNodes.end();
819 I != E; ++I) {
820 // We want to do this once per basic block. As such, only process a block
821 // when we find the PHI that is the first entry in the block.
822 PHINode *SomePHI = I->second;
823 BasicBlock *BB = SomePHI->getParent();
824 if (&BB->front() != SomePHI)
825 continue;
826
827 // Only do work here if there the PHI nodes are missing incoming values. We
828 // know that all PHI nodes that were inserted in a block will have the same
829 // number of incoming values, so we can just check any of them.
830 if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
831 continue;
832
833 // Get the preds for BB.
834 SmallVector<BasicBlock *, 16> Preds(predecessors(BB));
835
836 // Ok, now we know that all of the PHI nodes are missing entries for some
837 // basic blocks. Start by sorting the incoming predecessors for efficient
838 // access.
839 auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
840 return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
841 };
842 llvm::sort(Preds, CompareBBNumbers);
843
844 // Now we loop through all BB's which have entries in SomePHI and remove
845 // them from the Preds list.
846 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
847 // Do a log(n) search of the Preds list for the entry we want.
848 SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound(
849 Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers);
850 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
851 "PHI node has entry for a block which is not a predecessor!");
852
853 // Remove the entry
854 Preds.erase(EntIt);
855 }
856
857 // At this point, the blocks left in the preds list must have dummy
858 // entries inserted into every PHI nodes for the block. Update all the phi
859 // nodes in this block that we are inserting (there could be phis before
860 // mem2reg runs).
861 unsigned NumBadPreds = SomePHI->getNumIncomingValues();
862 BasicBlock::iterator BBI = BB->begin();
863 while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
864 SomePHI->getNumIncomingValues() == NumBadPreds) {
865 Value *UndefVal = UndefValue::get(SomePHI->getType());
866 for (BasicBlock *Pred : Preds)
867 SomePHI->addIncoming(UndefVal, Pred);
868 }
869 }
870
871 NewPhiNodes.clear();
872 }
873
874 /// Determine which blocks the value is live in.
875 ///
876 /// These are blocks which lead to uses. Knowing this allows us to avoid
877 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
878 /// inserted phi nodes would be dead).
ComputeLiveInBlocks(AllocaInst * AI,AllocaInfo & Info,const SmallPtrSetImpl<BasicBlock * > & DefBlocks,SmallPtrSetImpl<BasicBlock * > & LiveInBlocks)879 void PromoteMem2Reg::ComputeLiveInBlocks(
880 AllocaInst *AI, AllocaInfo &Info,
881 const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
882 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
883 // To determine liveness, we must iterate through the predecessors of blocks
884 // where the def is live. Blocks are added to the worklist if we need to
885 // check their predecessors. Start with all the using blocks.
886 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
887 Info.UsingBlocks.end());
888
889 // If any of the using blocks is also a definition block, check to see if the
890 // definition occurs before or after the use. If it happens before the use,
891 // the value isn't really live-in.
892 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
893 BasicBlock *BB = LiveInBlockWorklist[i];
894 if (!DefBlocks.count(BB))
895 continue;
896
897 // Okay, this is a block that both uses and defines the value. If the first
898 // reference to the alloca is a def (store), then we know it isn't live-in.
899 for (BasicBlock::iterator I = BB->begin();; ++I) {
900 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
901 if (SI->getOperand(1) != AI)
902 continue;
903
904 // We found a store to the alloca before a load. The alloca is not
905 // actually live-in here.
906 LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
907 LiveInBlockWorklist.pop_back();
908 --i;
909 --e;
910 break;
911 }
912
913 if (LoadInst *LI = dyn_cast<LoadInst>(I))
914 // Okay, we found a load before a store to the alloca. It is actually
915 // live into this block.
916 if (LI->getOperand(0) == AI)
917 break;
918 }
919 }
920
921 // Now that we have a set of blocks where the phi is live-in, recursively add
922 // their predecessors until we find the full region the value is live.
923 while (!LiveInBlockWorklist.empty()) {
924 BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
925
926 // The block really is live in here, insert it into the set. If already in
927 // the set, then it has already been processed.
928 if (!LiveInBlocks.insert(BB).second)
929 continue;
930
931 // Since the value is live into BB, it is either defined in a predecessor or
932 // live into it to. Add the preds to the worklist unless they are a
933 // defining block.
934 for (BasicBlock *P : predecessors(BB)) {
935 // The value is not live into a predecessor if it defines the value.
936 if (DefBlocks.count(P))
937 continue;
938
939 // Otherwise it is, add to the worklist.
940 LiveInBlockWorklist.push_back(P);
941 }
942 }
943 }
944
945 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
946 ///
947 /// Returns true if there wasn't already a phi-node for that variable
QueuePhiNode(BasicBlock * BB,unsigned AllocaNo,unsigned & Version)948 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
949 unsigned &Version) {
950 // Look up the basic-block in question.
951 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
952
953 // If the BB already has a phi node added for the i'th alloca then we're done!
954 if (PN)
955 return false;
956
957 // Create a PhiNode using the dereferenced type... and add the phi-node to the
958 // BasicBlock.
959 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
960 Allocas[AllocaNo]->getName() + "." + Twine(Version++),
961 &BB->front());
962 ++NumPHIInsert;
963 PhiToAllocaMap[PN] = AllocaNo;
964 return true;
965 }
966
967 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
968 /// create a merged location incorporating \p DL, or to set \p DL directly.
updateForIncomingValueLocation(PHINode * PN,DebugLoc DL,bool ApplyMergedLoc)969 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
970 bool ApplyMergedLoc) {
971 if (ApplyMergedLoc)
972 PN->applyMergedLocation(PN->getDebugLoc(), DL);
973 else
974 PN->setDebugLoc(DL);
975 }
976
977 /// Recursively traverse the CFG of the function, renaming loads and
978 /// stores to the allocas which we are promoting.
979 ///
980 /// IncomingVals indicates what value each Alloca contains on exit from the
981 /// predecessor block Pred.
RenamePass(BasicBlock * BB,BasicBlock * Pred,RenamePassData::ValVector & IncomingVals,RenamePassData::LocationVector & IncomingLocs,std::vector<RenamePassData> & Worklist)982 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
983 RenamePassData::ValVector &IncomingVals,
984 RenamePassData::LocationVector &IncomingLocs,
985 std::vector<RenamePassData> &Worklist) {
986 NextIteration:
987 // If we are inserting any phi nodes into this BB, they will already be in the
988 // block.
989 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
990 // If we have PHI nodes to update, compute the number of edges from Pred to
991 // BB.
992 if (PhiToAllocaMap.count(APN)) {
993 // We want to be able to distinguish between PHI nodes being inserted by
994 // this invocation of mem2reg from those phi nodes that already existed in
995 // the IR before mem2reg was run. We determine that APN is being inserted
996 // because it is missing incoming edges. All other PHI nodes being
997 // inserted by this pass of mem2reg will have the same number of incoming
998 // operands so far. Remember this count.
999 unsigned NewPHINumOperands = APN->getNumOperands();
1000
1001 unsigned NumEdges = llvm::count(successors(Pred), BB);
1002 assert(NumEdges && "Must be at least one edge from Pred to BB!");
1003
1004 // Add entries for all the phis.
1005 BasicBlock::iterator PNI = BB->begin();
1006 do {
1007 unsigned AllocaNo = PhiToAllocaMap[APN];
1008
1009 // Update the location of the phi node.
1010 updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
1011 APN->getNumIncomingValues() > 0);
1012
1013 // Add N incoming values to the PHI node.
1014 for (unsigned i = 0; i != NumEdges; ++i)
1015 APN->addIncoming(IncomingVals[AllocaNo], Pred);
1016
1017 // The currently active variable for this block is now the PHI.
1018 IncomingVals[AllocaNo] = APN;
1019 AllocaATInfo[AllocaNo].updateForNewPhi(APN, DIB);
1020 for (DbgVariableIntrinsic *DII : AllocaDbgUsers[AllocaNo])
1021 if (DII->isAddressOfVariable())
1022 ConvertDebugDeclareToDebugValue(DII, APN, DIB);
1023
1024 // Get the next phi node.
1025 ++PNI;
1026 APN = dyn_cast<PHINode>(PNI);
1027 if (!APN)
1028 break;
1029
1030 // Verify that it is missing entries. If not, it is not being inserted
1031 // by this mem2reg invocation so we want to ignore it.
1032 } while (APN->getNumOperands() == NewPHINumOperands);
1033 }
1034 }
1035
1036 // Don't revisit blocks.
1037 if (!Visited.insert(BB).second)
1038 return;
1039
1040 for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
1041 Instruction *I = &*II++; // get the instruction, increment iterator
1042
1043 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1044 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1045 if (!Src)
1046 continue;
1047
1048 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
1049 if (AI == AllocaLookup.end())
1050 continue;
1051
1052 Value *V = IncomingVals[AI->second];
1053 convertMetadataToAssumes(LI, V, SQ.DL, AC, &DT);
1054
1055 // Anything using the load now uses the current value.
1056 LI->replaceAllUsesWith(V);
1057 LI->eraseFromParent();
1058 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1059 // Delete this instruction and mark the name as the current holder of the
1060 // value
1061 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1062 if (!Dest)
1063 continue;
1064
1065 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1066 if (ai == AllocaLookup.end())
1067 continue;
1068
1069 // what value were we writing?
1070 unsigned AllocaNo = ai->second;
1071 IncomingVals[AllocaNo] = SI->getOperand(0);
1072
1073 // Record debuginfo for the store before removing it.
1074 IncomingLocs[AllocaNo] = SI->getDebugLoc();
1075 AllocaATInfo[AllocaNo].updateForDeletedStore(SI, DIB);
1076 for (DbgVariableIntrinsic *DII : AllocaDbgUsers[ai->second])
1077 if (DII->isAddressOfVariable())
1078 ConvertDebugDeclareToDebugValue(DII, SI, DIB);
1079 SI->eraseFromParent();
1080 }
1081 }
1082
1083 // 'Recurse' to our successors.
1084 succ_iterator I = succ_begin(BB), E = succ_end(BB);
1085 if (I == E)
1086 return;
1087
1088 // Keep track of the successors so we don't visit the same successor twice
1089 SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1090
1091 // Handle the first successor without using the worklist.
1092 VisitedSuccs.insert(*I);
1093 Pred = BB;
1094 BB = *I;
1095 ++I;
1096
1097 for (; I != E; ++I)
1098 if (VisitedSuccs.insert(*I).second)
1099 Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
1100
1101 goto NextIteration;
1102 }
1103
PromoteMemToReg(ArrayRef<AllocaInst * > Allocas,DominatorTree & DT,AssumptionCache * AC)1104 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1105 AssumptionCache *AC) {
1106 // If there is nothing to do, bail out...
1107 if (Allocas.empty())
1108 return;
1109
1110 PromoteMem2Reg(Allocas, DT, AC).run();
1111 }
1112