1 //===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ImutAVLTree and ImmutableSet classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_IMSET_H
15 #define LLVM_ADT_IMSET_H
16 
17 #include "llvm/Support/Allocator.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/System/DataTypes.h"
20 #include <cassert>
21 #include <functional>
22 
23 namespace llvm {
24 
25 //===----------------------------------------------------------------------===//
26 // Immutable AVL-Tree Definition.
27 //===----------------------------------------------------------------------===//
28 
29 template <typename ImutInfo> class ImutAVLFactory;
30 template <typename ImutInfo> class ImutIntervalAVLFactory;
31 template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
32 template <typename ImutInfo> class ImutAVLTreeGenericIterator;
33 
34 template <typename ImutInfo >
35 class ImutAVLTree : public FoldingSetNode {
36 public:
37   typedef typename ImutInfo::key_type_ref   key_type_ref;
38   typedef typename ImutInfo::value_type     value_type;
39   typedef typename ImutInfo::value_type_ref value_type_ref;
40 
41   typedef ImutAVLFactory<ImutInfo>          Factory;
42   friend class ImutAVLFactory<ImutInfo>;
43   friend class ImutIntervalAVLFactory<ImutInfo>;
44 
45   friend class ImutAVLTreeGenericIterator<ImutInfo>;
46   friend class FoldingSet<ImutAVLTree>;
47 
48   typedef ImutAVLTreeInOrderIterator<ImutInfo>  iterator;
49 
50   //===----------------------------------------------------===//
51   // Public Interface.
52   //===----------------------------------------------------===//
53 
54   /// getLeft - Returns a pointer to the left subtree.  This value
55   ///  is NULL if there is no left subtree.
getLeft()56   ImutAVLTree *getLeft() const { return Left; }
57 
58   /// getRight - Returns a pointer to the right subtree.  This value is
59   ///  NULL if there is no right subtree.
getRight()60   ImutAVLTree *getRight() const { return Right; }
61 
62   /// getHeight - Returns the height of the tree.  A tree with no subtrees
63   ///  has a height of 1.
getHeight()64   unsigned getHeight() const { return Height; }
65 
66   /// getValue - Returns the data value associated with the tree node.
getValue()67   const value_type& getValue() const { return Value; }
68 
69   /// find - Finds the subtree associated with the specified key value.
70   ///  This method returns NULL if no matching subtree is found.
find(key_type_ref K)71   ImutAVLTree* find(key_type_ref K) {
72     ImutAVLTree *T = this;
73 
74     while (T) {
75       key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
76 
77       if (ImutInfo::isEqual(K,CurrentKey))
78         return T;
79       else if (ImutInfo::isLess(K,CurrentKey))
80         T = T->getLeft();
81       else
82         T = T->getRight();
83     }
84 
85     return NULL;
86   }
87 
88   /// getMaxElement - Find the subtree associated with the highest ranged
89   ///  key value.
getMaxElement()90   ImutAVLTree* getMaxElement() {
91     ImutAVLTree *T = this;
92     ImutAVLTree *Right = T->getRight();
93     while (Right) { T = Right; Right = T->getRight(); }
94     return T;
95   }
96 
97   /// size - Returns the number of nodes in the tree, which includes
98   ///  both leaves and non-leaf nodes.
size()99   unsigned size() const {
100     unsigned n = 1;
101 
102     if (const ImutAVLTree* L = getLeft())  n += L->size();
103     if (const ImutAVLTree* R = getRight()) n += R->size();
104 
105     return n;
106   }
107 
108   /// begin - Returns an iterator that iterates over the nodes of the tree
109   ///  in an inorder traversal.  The returned iterator thus refers to the
110   ///  the tree node with the minimum data element.
begin()111   iterator begin() const { return iterator(this); }
112 
113   /// end - Returns an iterator for the tree that denotes the end of an
114   ///  inorder traversal.
end()115   iterator end() const { return iterator(); }
116 
ElementEqual(value_type_ref V)117   bool ElementEqual(value_type_ref V) const {
118     // Compare the keys.
119     if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
120                            ImutInfo::KeyOfValue(V)))
121       return false;
122 
123     // Also compare the data values.
124     if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
125                                ImutInfo::DataOfValue(V)))
126       return false;
127 
128     return true;
129   }
130 
ElementEqual(const ImutAVLTree * RHS)131   bool ElementEqual(const ImutAVLTree* RHS) const {
132     return ElementEqual(RHS->getValue());
133   }
134 
135   /// isEqual - Compares two trees for structural equality and returns true
136   ///   if they are equal.  This worst case performance of this operation is
137   //    linear in the sizes of the trees.
isEqual(const ImutAVLTree & RHS)138   bool isEqual(const ImutAVLTree& RHS) const {
139     if (&RHS == this)
140       return true;
141 
142     iterator LItr = begin(), LEnd = end();
143     iterator RItr = RHS.begin(), REnd = RHS.end();
144 
145     while (LItr != LEnd && RItr != REnd) {
146       if (*LItr == *RItr) {
147         LItr.SkipSubTree();
148         RItr.SkipSubTree();
149         continue;
150       }
151 
152       if (!LItr->ElementEqual(*RItr))
153         return false;
154 
155       ++LItr;
156       ++RItr;
157     }
158 
159     return LItr == LEnd && RItr == REnd;
160   }
161 
162   /// isNotEqual - Compares two trees for structural inequality.  Performance
163   ///  is the same is isEqual.
isNotEqual(const ImutAVLTree & RHS)164   bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
165 
166   /// contains - Returns true if this tree contains a subtree (node) that
167   ///  has an data element that matches the specified key.  Complexity
168   ///  is logarithmic in the size of the tree.
contains(key_type_ref K)169   bool contains(key_type_ref K) { return (bool) find(K); }
170 
171   /// foreach - A member template the accepts invokes operator() on a functor
172   ///  object (specifed by Callback) for every node/subtree in the tree.
173   ///  Nodes are visited using an inorder traversal.
174   template <typename Callback>
foreach(Callback & C)175   void foreach(Callback& C) {
176     if (ImutAVLTree* L = getLeft()) L->foreach(C);
177 
178     C(Value);
179 
180     if (ImutAVLTree* R = getRight()) R->foreach(C);
181   }
182 
183   /// verify - A utility method that checks that the balancing and
184   ///  ordering invariants of the tree are satisifed.  It is a recursive
185   ///  method that returns the height of the tree, which is then consumed
186   ///  by the enclosing verify call.  External callers should ignore the
187   ///  return value.  An invalid tree will cause an assertion to fire in
188   ///  a debug build.
verify()189   unsigned verify() const {
190     unsigned HL = getLeft() ? getLeft()->verify() : 0;
191     unsigned HR = getRight() ? getRight()->verify() : 0;
192     (void) HL;
193     (void) HR;
194 
195     assert(getHeight() == ( HL > HR ? HL : HR ) + 1
196             && "Height calculation wrong");
197 
198     assert((HL > HR ? HL-HR : HR-HL) <= 2
199            && "Balancing invariant violated");
200 
201     assert(!getLeft()
202            || ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
203                                ImutInfo::KeyOfValue(getValue()))
204            && "Value in left child is not less that current value");
205 
206 
207     assert(!getRight()
208            || ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
209                                ImutInfo::KeyOfValue(getRight()->getValue()))
210            && "Current value is not less that value of right child");
211 
212     return getHeight();
213   }
214 
215   /// Profile - Profiling for ImutAVLTree.
Profile(llvm::FoldingSetNodeID & ID)216   void Profile(llvm::FoldingSetNodeID& ID) {
217     ID.AddInteger(ComputeDigest());
218   }
219 
220   //===----------------------------------------------------===//
221   // Internal Values.
222   //===----------------------------------------------------===//
223 
224 private:
225   ImutAVLTree*     Left;
226   ImutAVLTree*     Right;
227   unsigned         Height       : 28;
228   unsigned         Mutable      : 1;
229   unsigned         CachedDigest : 1;
230   value_type       Value;
231   uint32_t         Digest;
232 
233   //===----------------------------------------------------===//
234   // Internal methods (node manipulation; used by Factory).
235   //===----------------------------------------------------===//
236 
237 private:
238   /// ImutAVLTree - Internal constructor that is only called by
239   ///   ImutAVLFactory.
ImutAVLTree(ImutAVLTree * l,ImutAVLTree * r,value_type_ref v,unsigned height)240   ImutAVLTree(ImutAVLTree* l, ImutAVLTree* r, value_type_ref v,
241               unsigned height)
242     : Left(l), Right(r), Height(height), Mutable(true), CachedDigest(false),
243       Value(v), Digest(0) {}
244 
245   /// isMutable - Returns true if the left and right subtree references
246   ///  (as well as height) can be changed.  If this method returns false,
247   ///  the tree is truly immutable.  Trees returned from an ImutAVLFactory
248   ///  object should always have this method return true.  Further, if this
249   ///  method returns false for an instance of ImutAVLTree, all subtrees
250   ///  will also have this method return false.  The converse is not true.
isMutable()251   bool isMutable() const { return Mutable; }
252 
253   /// hasCachedDigest - Returns true if the digest for this tree is cached.
254   ///  This can only be true if the tree is immutable.
hasCachedDigest()255   bool hasCachedDigest() const { return CachedDigest; }
256 
257   //===----------------------------------------------------===//
258   // Mutating operations.  A tree root can be manipulated as
259   // long as its reference has not "escaped" from internal
260   // methods of a factory object (see below).  When a tree
261   // pointer is externally viewable by client code, the
262   // internal "mutable bit" is cleared to mark the tree
263   // immutable.  Note that a tree that still has its mutable
264   // bit set may have children (subtrees) that are themselves
265   // immutable.
266   //===----------------------------------------------------===//
267 
268   /// MarkImmutable - Clears the mutable flag for a tree.  After this happens,
269   ///   it is an error to call setLeft(), setRight(), and setHeight().
MarkImmutable()270   void MarkImmutable() {
271     assert(isMutable() && "Mutable flag already removed.");
272     Mutable = false;
273   }
274 
275   /// MarkedCachedDigest - Clears the NoCachedDigest flag for a tree.
MarkedCachedDigest()276   void MarkedCachedDigest() {
277     assert(!hasCachedDigest() && "NoCachedDigest flag already removed.");
278     CachedDigest = true;
279   }
280 
281   /// setLeft - Changes the reference of the left subtree.  Used internally
282   ///   by ImutAVLFactory.
setLeft(ImutAVLTree * NewLeft)283   void setLeft(ImutAVLTree* NewLeft) {
284     assert(isMutable() &&
285            "Only a mutable tree can have its left subtree changed.");
286     Left = NewLeft;
287     CachedDigest = false;
288   }
289 
290   /// setRight - Changes the reference of the right subtree.  Used internally
291   ///  by ImutAVLFactory.
setRight(ImutAVLTree * NewRight)292   void setRight(ImutAVLTree* NewRight) {
293     assert(isMutable() &&
294            "Only a mutable tree can have its right subtree changed.");
295 
296     Right = NewRight;
297     CachedDigest = false;
298   }
299 
300   /// setHeight - Changes the height of the tree.  Used internally by
301   ///  ImutAVLFactory.
setHeight(unsigned h)302   void setHeight(unsigned h) {
303     assert(isMutable() && "Only a mutable tree can have its height changed.");
304     Height = h;
305   }
306 
307   static inline
ComputeDigest(ImutAVLTree * L,ImutAVLTree * R,value_type_ref V)308   uint32_t ComputeDigest(ImutAVLTree* L, ImutAVLTree* R, value_type_ref V) {
309     uint32_t digest = 0;
310 
311     if (L)
312       digest += L->ComputeDigest();
313 
314     // Compute digest of stored data.
315     FoldingSetNodeID ID;
316     ImutInfo::Profile(ID,V);
317     digest += ID.ComputeHash();
318 
319     if (R)
320       digest += R->ComputeDigest();
321 
322     return digest;
323   }
324 
ComputeDigest()325   inline uint32_t ComputeDigest() {
326     // Check the lowest bit to determine if digest has actually been
327     // pre-computed.
328     if (hasCachedDigest())
329       return Digest;
330 
331     uint32_t X = ComputeDigest(getLeft(), getRight(), getValue());
332     Digest = X;
333     MarkedCachedDigest();
334     return X;
335   }
336 };
337 
338 //===----------------------------------------------------------------------===//
339 // Immutable AVL-Tree Factory class.
340 //===----------------------------------------------------------------------===//
341 
342 template <typename ImutInfo >
343 class ImutAVLFactory {
344   typedef ImutAVLTree<ImutInfo> TreeTy;
345   typedef typename TreeTy::value_type_ref value_type_ref;
346   typedef typename TreeTy::key_type_ref   key_type_ref;
347 
348   typedef FoldingSet<TreeTy> CacheTy;
349 
350   CacheTy Cache;
351   uintptr_t Allocator;
352 
ownsAllocator()353   bool ownsAllocator() const {
354     return Allocator & 0x1 ? false : true;
355   }
356 
getAllocator()357   BumpPtrAllocator& getAllocator() const {
358     return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
359   }
360 
361   //===--------------------------------------------------===//
362   // Public interface.
363   //===--------------------------------------------------===//
364 
365 public:
ImutAVLFactory()366   ImutAVLFactory()
367     : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
368 
ImutAVLFactory(BumpPtrAllocator & Alloc)369   ImutAVLFactory(BumpPtrAllocator& Alloc)
370     : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
371 
~ImutAVLFactory()372   ~ImutAVLFactory() {
373     if (ownsAllocator()) delete &getAllocator();
374   }
375 
Add(TreeTy * T,value_type_ref V)376   TreeTy* Add(TreeTy* T, value_type_ref V) {
377     T = Add_internal(V,T);
378     MarkImmutable(T);
379     return T;
380   }
381 
Remove(TreeTy * T,key_type_ref V)382   TreeTy* Remove(TreeTy* T, key_type_ref V) {
383     T = Remove_internal(V,T);
384     MarkImmutable(T);
385     return T;
386   }
387 
GetEmptyTree()388   TreeTy* GetEmptyTree() const { return NULL; }
389 
390   //===--------------------------------------------------===//
391   // A bunch of quick helper functions used for reasoning
392   // about the properties of trees and their children.
393   // These have succinct names so that the balancing code
394   // is as terse (and readable) as possible.
395   //===--------------------------------------------------===//
396 protected:
397 
isEmpty(TreeTy * T)398   bool           isEmpty(TreeTy* T) const { return !T; }
Height(TreeTy * T)399   unsigned Height(TreeTy* T) const { return T ? T->getHeight() : 0; }
Left(TreeTy * T)400   TreeTy*           Left(TreeTy* T) const { return T->getLeft(); }
Right(TreeTy * T)401   TreeTy*          Right(TreeTy* T) const { return T->getRight(); }
Value(TreeTy * T)402   value_type_ref   Value(TreeTy* T) const { return T->Value; }
403 
IncrementHeight(TreeTy * L,TreeTy * R)404   unsigned IncrementHeight(TreeTy* L, TreeTy* R) const {
405     unsigned hl = Height(L);
406     unsigned hr = Height(R);
407     return (hl > hr ? hl : hr) + 1;
408   }
409 
CompareTreeWithSection(TreeTy * T,typename TreeTy::iterator & TI,typename TreeTy::iterator & TE)410   static bool CompareTreeWithSection(TreeTy* T,
411                                      typename TreeTy::iterator& TI,
412                                      typename TreeTy::iterator& TE) {
413 
414     typename TreeTy::iterator I = T->begin(), E = T->end();
415 
416     for ( ; I!=E ; ++I, ++TI)
417       if (TI == TE || !I->ElementEqual(*TI))
418         return false;
419 
420     return true;
421   }
422 
423   //===--------------------------------------------------===//
424   // "CreateNode" is used to generate new tree roots that link
425   // to other trees.  The functon may also simply move links
426   // in an existing root if that root is still marked mutable.
427   // This is necessary because otherwise our balancing code
428   // would leak memory as it would create nodes that are
429   // then discarded later before the finished tree is
430   // returned to the caller.
431   //===--------------------------------------------------===//
432 
CreateNode(TreeTy * L,value_type_ref V,TreeTy * R)433   TreeTy* CreateNode(TreeTy* L, value_type_ref V, TreeTy* R) {
434     BumpPtrAllocator& A = getAllocator();
435     TreeTy* T = (TreeTy*) A.Allocate<TreeTy>();
436     new (T) TreeTy(L, R, V, IncrementHeight(L,R));
437     return T;
438   }
439 
CreateNode(TreeTy * L,TreeTy * OldTree,TreeTy * R)440   TreeTy* CreateNode(TreeTy* L, TreeTy* OldTree, TreeTy* R) {
441     assert(!isEmpty(OldTree));
442 
443     if (OldTree->isMutable()) {
444       OldTree->setLeft(L);
445       OldTree->setRight(R);
446       OldTree->setHeight(IncrementHeight(L, R));
447       return OldTree;
448     }
449     else
450       return CreateNode(L, Value(OldTree), R);
451   }
452 
453   /// Balance - Used by Add_internal and Remove_internal to
454   ///  balance a newly created tree.
Balance(TreeTy * L,value_type_ref V,TreeTy * R)455   TreeTy* Balance(TreeTy* L, value_type_ref V, TreeTy* R) {
456 
457     unsigned hl = Height(L);
458     unsigned hr = Height(R);
459 
460     if (hl > hr + 2) {
461       assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");
462 
463       TreeTy* LL = Left(L);
464       TreeTy* LR = Right(L);
465 
466       if (Height(LL) >= Height(LR))
467         return CreateNode(LL, L, CreateNode(LR,V,R));
468 
469       assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");
470 
471       TreeTy* LRL = Left(LR);
472       TreeTy* LRR = Right(LR);
473 
474       return CreateNode(CreateNode(LL,L,LRL), LR, CreateNode(LRR,V,R));
475     }
476     else if (hr > hl + 2) {
477       assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");
478 
479       TreeTy* RL = Left(R);
480       TreeTy* RR = Right(R);
481 
482       if (Height(RR) >= Height(RL))
483         return CreateNode(CreateNode(L,V,RL), R, RR);
484 
485       assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");
486 
487       TreeTy* RLL = Left(RL);
488       TreeTy* RLR = Right(RL);
489 
490       return CreateNode(CreateNode(L,V,RLL), RL, CreateNode(RLR,R,RR));
491     }
492     else
493       return CreateNode(L,V,R);
494   }
495 
496   /// Add_internal - Creates a new tree that includes the specified
497   ///  data and the data from the original tree.  If the original tree
498   ///  already contained the data item, the original tree is returned.
Add_internal(value_type_ref V,TreeTy * T)499   TreeTy* Add_internal(value_type_ref V, TreeTy* T) {
500     if (isEmpty(T))
501       return CreateNode(T, V, T);
502 
503     assert(!T->isMutable());
504 
505     key_type_ref K = ImutInfo::KeyOfValue(V);
506     key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T));
507 
508     if (ImutInfo::isEqual(K,KCurrent))
509       return CreateNode(Left(T), V, Right(T));
510     else if (ImutInfo::isLess(K,KCurrent))
511       return Balance(Add_internal(V,Left(T)), Value(T), Right(T));
512     else
513       return Balance(Left(T), Value(T), Add_internal(V,Right(T)));
514   }
515 
516   /// Remove_internal - Creates a new tree that includes all the data
517   ///  from the original tree except the specified data.  If the
518   ///  specified data did not exist in the original tree, the original
519   ///  tree is returned.
Remove_internal(key_type_ref K,TreeTy * T)520   TreeTy* Remove_internal(key_type_ref K, TreeTy* T) {
521     if (isEmpty(T))
522       return T;
523 
524     assert(!T->isMutable());
525 
526     key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T));
527 
528     if (ImutInfo::isEqual(K,KCurrent))
529       return CombineLeftRightTrees(Left(T),Right(T));
530     else if (ImutInfo::isLess(K,KCurrent))
531       return Balance(Remove_internal(K,Left(T)), Value(T), Right(T));
532     else
533       return Balance(Left(T), Value(T), Remove_internal(K,Right(T)));
534   }
535 
CombineLeftRightTrees(TreeTy * L,TreeTy * R)536   TreeTy* CombineLeftRightTrees(TreeTy* L, TreeTy* R) {
537     if (isEmpty(L)) return R;
538     if (isEmpty(R)) return L;
539 
540     TreeTy* OldNode;
541     TreeTy* NewRight = RemoveMinBinding(R,OldNode);
542     return Balance(L,Value(OldNode),NewRight);
543   }
544 
RemoveMinBinding(TreeTy * T,TreeTy * & NodeRemoved)545   TreeTy* RemoveMinBinding(TreeTy* T, TreeTy*& NodeRemoved) {
546     assert(!isEmpty(T));
547 
548     if (isEmpty(Left(T))) {
549       NodeRemoved = T;
550       return Right(T);
551     }
552 
553     return Balance(RemoveMinBinding(Left(T),NodeRemoved),Value(T),Right(T));
554   }
555 
556   /// MarkImmutable - Clears the mutable bits of a root and all of its
557   ///  descendants.
MarkImmutable(TreeTy * T)558   void MarkImmutable(TreeTy* T) {
559     if (!T || !T->isMutable())
560       return;
561 
562     T->MarkImmutable();
563     MarkImmutable(Left(T));
564     MarkImmutable(Right(T));
565   }
566 
567 public:
GetCanonicalTree(TreeTy * TNew)568   TreeTy *GetCanonicalTree(TreeTy *TNew) {
569     if (!TNew)
570       return NULL;
571 
572     // Search the FoldingSet bucket for a Tree with the same digest.
573     FoldingSetNodeID ID;
574     unsigned digest = TNew->ComputeDigest();
575     ID.AddInteger(digest);
576     unsigned hash = ID.ComputeHash();
577 
578     typename CacheTy::bucket_iterator I = Cache.bucket_begin(hash);
579     typename CacheTy::bucket_iterator E = Cache.bucket_end(hash);
580 
581     for (; I != E; ++I) {
582       TreeTy *T = &*I;
583 
584       if (T->ComputeDigest() != digest)
585         continue;
586 
587       // We found a collision.  Perform a comparison of Contents('T')
588       // with Contents('TNew')
589       typename TreeTy::iterator TI = T->begin(), TE = T->end();
590 
591       if (!CompareTreeWithSection(TNew, TI, TE))
592         continue;
593 
594       if (TI != TE)
595         continue; // T has more contents than TNew.
596 
597       // Trees did match!  Return 'T'.
598       return T;
599     }
600 
601     // 'TNew' is the only tree of its kind.  Return it.
602     Cache.InsertNode(TNew, (void*) &*Cache.bucket_end(hash));
603     return TNew;
604   }
605 };
606 
607 
608 //===----------------------------------------------------------------------===//
609 // Immutable AVL-Tree Iterators.
610 //===----------------------------------------------------------------------===//
611 
612 template <typename ImutInfo>
613 class ImutAVLTreeGenericIterator {
614   SmallVector<uintptr_t,20> stack;
615 public:
616   enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
617                    Flags=0x3 };
618 
619   typedef ImutAVLTree<ImutInfo> TreeTy;
620   typedef ImutAVLTreeGenericIterator<ImutInfo> _Self;
621 
ImutAVLTreeGenericIterator()622   inline ImutAVLTreeGenericIterator() {}
ImutAVLTreeGenericIterator(const TreeTy * Root)623   inline ImutAVLTreeGenericIterator(const TreeTy* Root) {
624     if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
625   }
626 
627   TreeTy* operator*() const {
628     assert(!stack.empty());
629     return reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
630   }
631 
getVisitState()632   uintptr_t getVisitState() {
633     assert(!stack.empty());
634     return stack.back() & Flags;
635   }
636 
637 
AtEnd()638   bool AtEnd() const { return stack.empty(); }
639 
AtBeginning()640   bool AtBeginning() const {
641     return stack.size() == 1 && getVisitState() == VisitedNone;
642   }
643 
SkipToParent()644   void SkipToParent() {
645     assert(!stack.empty());
646     stack.pop_back();
647 
648     if (stack.empty())
649       return;
650 
651     switch (getVisitState()) {
652       case VisitedNone:
653         stack.back() |= VisitedLeft;
654         break;
655       case VisitedLeft:
656         stack.back() |= VisitedRight;
657         break;
658       default:
659         assert(false && "Unreachable.");
660     }
661   }
662 
663   inline bool operator==(const _Self& x) const {
664     if (stack.size() != x.stack.size())
665       return false;
666 
667     for (unsigned i = 0 ; i < stack.size(); i++)
668       if (stack[i] != x.stack[i])
669         return false;
670 
671     return true;
672   }
673 
674   inline bool operator!=(const _Self& x) const { return !operator==(x); }
675 
676   _Self& operator++() {
677     assert(!stack.empty());
678 
679     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
680     assert(Current);
681 
682     switch (getVisitState()) {
683       case VisitedNone:
684         if (TreeTy* L = Current->getLeft())
685           stack.push_back(reinterpret_cast<uintptr_t>(L));
686         else
687           stack.back() |= VisitedLeft;
688 
689         break;
690 
691       case VisitedLeft:
692         if (TreeTy* R = Current->getRight())
693           stack.push_back(reinterpret_cast<uintptr_t>(R));
694         else
695           stack.back() |= VisitedRight;
696 
697         break;
698 
699       case VisitedRight:
700         SkipToParent();
701         break;
702 
703       default:
704         assert(false && "Unreachable.");
705     }
706 
707     return *this;
708   }
709 
710   _Self& operator--() {
711     assert(!stack.empty());
712 
713     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
714     assert(Current);
715 
716     switch (getVisitState()) {
717       case VisitedNone:
718         stack.pop_back();
719         break;
720 
721       case VisitedLeft:
722         stack.back() &= ~Flags; // Set state to "VisitedNone."
723 
724         if (TreeTy* L = Current->getLeft())
725           stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
726 
727         break;
728 
729       case VisitedRight:
730         stack.back() &= ~Flags;
731         stack.back() |= VisitedLeft;
732 
733         if (TreeTy* R = Current->getRight())
734           stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
735 
736         break;
737 
738       default:
739         assert(false && "Unreachable.");
740     }
741 
742     return *this;
743   }
744 };
745 
746 template <typename ImutInfo>
747 class ImutAVLTreeInOrderIterator {
748   typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy;
749   InternalIteratorTy InternalItr;
750 
751 public:
752   typedef ImutAVLTree<ImutInfo> TreeTy;
753   typedef ImutAVLTreeInOrderIterator<ImutInfo> _Self;
754 
ImutAVLTreeInOrderIterator(const TreeTy * Root)755   ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
756     if (Root) operator++(); // Advance to first element.
757   }
758 
ImutAVLTreeInOrderIterator()759   ImutAVLTreeInOrderIterator() : InternalItr() {}
760 
761   inline bool operator==(const _Self& x) const {
762     return InternalItr == x.InternalItr;
763   }
764 
765   inline bool operator!=(const _Self& x) const { return !operator==(x); }
766 
767   inline TreeTy* operator*() const { return *InternalItr; }
768   inline TreeTy* operator->() const { return *InternalItr; }
769 
770   inline _Self& operator++() {
771     do ++InternalItr;
772     while (!InternalItr.AtEnd() &&
773            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
774 
775     return *this;
776   }
777 
778   inline _Self& operator--() {
779     do --InternalItr;
780     while (!InternalItr.AtBeginning() &&
781            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
782 
783     return *this;
784   }
785 
SkipSubTree()786   inline void SkipSubTree() {
787     InternalItr.SkipToParent();
788 
789     while (!InternalItr.AtEnd() &&
790            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
791       ++InternalItr;
792   }
793 };
794 
795 //===----------------------------------------------------------------------===//
796 // Trait classes for Profile information.
797 //===----------------------------------------------------------------------===//
798 
799 /// Generic profile template.  The default behavior is to invoke the
800 /// profile method of an object.  Specializations for primitive integers
801 /// and generic handling of pointers is done below.
802 template <typename T>
803 struct ImutProfileInfo {
804   typedef const T  value_type;
805   typedef const T& value_type_ref;
806 
ProfileImutProfileInfo807   static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
808     FoldingSetTrait<T>::Profile(X,ID);
809   }
810 };
811 
812 /// Profile traits for integers.
813 template <typename T>
814 struct ImutProfileInteger {
815   typedef const T  value_type;
816   typedef const T& value_type_ref;
817 
ProfileImutProfileInteger818   static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
819     ID.AddInteger(X);
820   }
821 };
822 
823 #define PROFILE_INTEGER_INFO(X)\
824 template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
825 
826 PROFILE_INTEGER_INFO(char)
827 PROFILE_INTEGER_INFO(unsigned char)
828 PROFILE_INTEGER_INFO(short)
829 PROFILE_INTEGER_INFO(unsigned short)
830 PROFILE_INTEGER_INFO(unsigned)
831 PROFILE_INTEGER_INFO(signed)
832 PROFILE_INTEGER_INFO(long)
833 PROFILE_INTEGER_INFO(unsigned long)
834 PROFILE_INTEGER_INFO(long long)
835 PROFILE_INTEGER_INFO(unsigned long long)
836 
837 #undef PROFILE_INTEGER_INFO
838 
839 /// Generic profile trait for pointer types.  We treat pointers as
840 /// references to unique objects.
841 template <typename T>
842 struct ImutProfileInfo<T*> {
843   typedef const T*   value_type;
844   typedef value_type value_type_ref;
845 
846   static inline void Profile(FoldingSetNodeID &ID, value_type_ref X) {
847     ID.AddPointer(X);
848   }
849 };
850 
851 //===----------------------------------------------------------------------===//
852 // Trait classes that contain element comparison operators and type
853 //  definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap.  These
854 //  inherit from the profile traits (ImutProfileInfo) to include operations
855 //  for element profiling.
856 //===----------------------------------------------------------------------===//
857 
858 
859 /// ImutContainerInfo - Generic definition of comparison operations for
860 ///   elements of immutable containers that defaults to using
861 ///   std::equal_to<> and std::less<> to perform comparison of elements.
862 template <typename T>
863 struct ImutContainerInfo : public ImutProfileInfo<T> {
864   typedef typename ImutProfileInfo<T>::value_type      value_type;
865   typedef typename ImutProfileInfo<T>::value_type_ref  value_type_ref;
866   typedef value_type      key_type;
867   typedef value_type_ref  key_type_ref;
868   typedef bool            data_type;
869   typedef bool            data_type_ref;
870 
871   static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
872   static inline data_type_ref DataOfValue(value_type_ref) { return true; }
873 
874   static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) {
875     return std::equal_to<key_type>()(LHS,RHS);
876   }
877 
878   static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
879     return std::less<key_type>()(LHS,RHS);
880   }
881 
882   static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; }
883 };
884 
885 /// ImutContainerInfo - Specialization for pointer values to treat pointers
886 ///  as references to unique objects.  Pointers are thus compared by
887 ///  their addresses.
888 template <typename T>
889 struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
890   typedef typename ImutProfileInfo<T*>::value_type      value_type;
891   typedef typename ImutProfileInfo<T*>::value_type_ref  value_type_ref;
892   typedef value_type      key_type;
893   typedef value_type_ref  key_type_ref;
894   typedef bool            data_type;
895   typedef bool            data_type_ref;
896 
897   static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
898   static inline data_type_ref DataOfValue(value_type_ref) { return true; }
899 
900   static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) {
901     return LHS == RHS;
902   }
903 
904   static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
905     return LHS < RHS;
906   }
907 
908   static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; }
909 };
910 
911 //===----------------------------------------------------------------------===//
912 // Immutable Set
913 //===----------------------------------------------------------------------===//
914 
915 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
916 class ImmutableSet {
917 public:
918   typedef typename ValInfo::value_type      value_type;
919   typedef typename ValInfo::value_type_ref  value_type_ref;
920   typedef ImutAVLTree<ValInfo> TreeTy;
921 
922 private:
923   TreeTy *Root;
924 
925 public:
926   /// Constructs a set from a pointer to a tree root.  In general one
927   /// should use a Factory object to create sets instead of directly
928   /// invoking the constructor, but there are cases where make this
929   /// constructor public is useful.
930   explicit ImmutableSet(TreeTy* R) : Root(R) {}
931 
932   class Factory {
933     typename TreeTy::Factory F;
934     const bool Canonicalize;
935 
936   public:
937     Factory(bool canonicalize = true)
938       : Canonicalize(canonicalize) {}
939 
940     Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
941       : F(Alloc), Canonicalize(canonicalize) {}
942 
943     /// GetEmptySet - Returns an immutable set that contains no elements.
944     ImmutableSet GetEmptySet() {
945       return ImmutableSet(F.GetEmptyTree());
946     }
947 
948     /// Add - Creates a new immutable set that contains all of the values
949     ///  of the original set with the addition of the specified value.  If
950     ///  the original set already included the value, then the original set is
951     ///  returned and no memory is allocated.  The time and space complexity
952     ///  of this operation is logarithmic in the size of the original set.
953     ///  The memory allocated to represent the set is released when the
954     ///  factory object that created the set is destroyed.
955     ImmutableSet Add(ImmutableSet Old, value_type_ref V) {
956       TreeTy *NewT = F.Add(Old.Root, V);
957       return ImmutableSet(Canonicalize ? F.GetCanonicalTree(NewT) : NewT);
958     }
959 
960     /// Remove - Creates a new immutable set that contains all of the values
961     ///  of the original set with the exception of the specified value.  If
962     ///  the original set did not contain the value, the original set is
963     ///  returned and no memory is allocated.  The time and space complexity
964     ///  of this operation is logarithmic in the size of the original set.
965     ///  The memory allocated to represent the set is released when the
966     ///  factory object that created the set is destroyed.
967     ImmutableSet Remove(ImmutableSet Old, value_type_ref V) {
968       TreeTy *NewT = F.Remove(Old.Root, V);
969       return ImmutableSet(Canonicalize ? F.GetCanonicalTree(NewT) : NewT);
970     }
971 
972     BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
973 
974   private:
975     Factory(const Factory& RHS); // DO NOT IMPLEMENT
976     void operator=(const Factory& RHS); // DO NOT IMPLEMENT
977   };
978 
979   friend class Factory;
980 
981   /// contains - Returns true if the set contains the specified value.
982   bool contains(value_type_ref V) const {
983     return Root ? Root->contains(V) : false;
984   }
985 
986   bool operator==(ImmutableSet RHS) const {
987     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
988   }
989 
990   bool operator!=(ImmutableSet RHS) const {
991     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
992   }
993 
994   TreeTy *getRoot() {
995     return Root;
996   }
997 
998   /// isEmpty - Return true if the set contains no elements.
999   bool isEmpty() const { return !Root; }
1000 
1001   /// isSingleton - Return true if the set contains exactly one element.
1002   ///   This method runs in constant time.
1003   bool isSingleton() const { return getHeight() == 1; }
1004 
1005   template <typename Callback>
1006   void foreach(Callback& C) { if (Root) Root->foreach(C); }
1007 
1008   template <typename Callback>
1009   void foreach() { if (Root) { Callback C; Root->foreach(C); } }
1010 
1011   //===--------------------------------------------------===//
1012   // Iterators.
1013   //===--------------------------------------------------===//
1014 
1015   class iterator {
1016     typename TreeTy::iterator itr;
1017     iterator(TreeTy* t) : itr(t) {}
1018     friend class ImmutableSet<ValT,ValInfo>;
1019   public:
1020     iterator() {}
1021     inline value_type_ref operator*() const { return itr->getValue(); }
1022     inline iterator& operator++() { ++itr; return *this; }
1023     inline iterator  operator++(int) { iterator tmp(*this); ++itr; return tmp; }
1024     inline iterator& operator--() { --itr; return *this; }
1025     inline iterator  operator--(int) { iterator tmp(*this); --itr; return tmp; }
1026     inline bool operator==(const iterator& RHS) const { return RHS.itr == itr; }
1027     inline bool operator!=(const iterator& RHS) const { return RHS.itr != itr; }
1028     inline value_type *operator->() const { return &(operator*()); }
1029   };
1030 
1031   iterator begin() const { return iterator(Root); }
1032   iterator end() const { return iterator(); }
1033 
1034   //===--------------------------------------------------===//
1035   // Utility methods.
1036   //===--------------------------------------------------===//
1037 
1038   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
1039 
1040   static inline void Profile(FoldingSetNodeID& ID, const ImmutableSet& S) {
1041     ID.AddPointer(S.Root);
1042   }
1043 
1044   inline void Profile(FoldingSetNodeID& ID) const {
1045     return Profile(ID,*this);
1046   }
1047 
1048   //===--------------------------------------------------===//
1049   // For testing.
1050   //===--------------------------------------------------===//
1051 
1052   void verify() const { if (Root) Root->verify(); }
1053 };
1054 
1055 } // end namespace llvm
1056 
1057 #endif
1058