1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ overloading.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/Overload.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/AST/TypeOrdering.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/Basic/DiagnosticOptions.h"
24 #include "clang/Basic/PartialDiagnostic.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Sema/Initialization.h"
27 #include "clang/Sema/Lookup.h"
28 #include "clang/Sema/SemaInternal.h"
29 #include "clang/Sema/Template.h"
30 #include "clang/Sema/TemplateDeduction.h"
31 #include "llvm/ADT/DenseSet.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallString.h"
35 #include <algorithm>
36 #include <cstdlib>
37
38 using namespace clang;
39 using namespace sema;
40
41 /// A convenience routine for creating a decayed reference to a function.
42 static ExprResult
CreateFunctionRefExpr(Sema & S,FunctionDecl * Fn,NamedDecl * FoundDecl,bool HadMultipleCandidates,SourceLocation Loc=SourceLocation (),const DeclarationNameLoc & LocInfo=DeclarationNameLoc ())43 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
44 bool HadMultipleCandidates,
45 SourceLocation Loc = SourceLocation(),
46 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
47 if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
48 return ExprError();
49 // If FoundDecl is different from Fn (such as if one is a template
50 // and the other a specialization), make sure DiagnoseUseOfDecl is
51 // called on both.
52 // FIXME: This would be more comprehensively addressed by modifying
53 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
54 // being used.
55 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
56 return ExprError();
57 DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
58 VK_LValue, Loc, LocInfo);
59 if (HadMultipleCandidates)
60 DRE->setHadMultipleCandidates(true);
61
62 S.MarkDeclRefReferenced(DRE);
63
64 ExprResult E = DRE;
65 E = S.DefaultFunctionArrayConversion(E.get());
66 if (E.isInvalid())
67 return ExprError();
68 return E;
69 }
70
71 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
72 bool InOverloadResolution,
73 StandardConversionSequence &SCS,
74 bool CStyle,
75 bool AllowObjCWritebackConversion);
76
77 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
78 QualType &ToType,
79 bool InOverloadResolution,
80 StandardConversionSequence &SCS,
81 bool CStyle);
82 static OverloadingResult
83 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
84 UserDefinedConversionSequence& User,
85 OverloadCandidateSet& Conversions,
86 bool AllowExplicit,
87 bool AllowObjCConversionOnExplicit);
88
89
90 static ImplicitConversionSequence::CompareKind
91 CompareStandardConversionSequences(Sema &S,
92 const StandardConversionSequence& SCS1,
93 const StandardConversionSequence& SCS2);
94
95 static ImplicitConversionSequence::CompareKind
96 CompareQualificationConversions(Sema &S,
97 const StandardConversionSequence& SCS1,
98 const StandardConversionSequence& SCS2);
99
100 static ImplicitConversionSequence::CompareKind
101 CompareDerivedToBaseConversions(Sema &S,
102 const StandardConversionSequence& SCS1,
103 const StandardConversionSequence& SCS2);
104
105 /// GetConversionRank - Retrieve the implicit conversion rank
106 /// corresponding to the given implicit conversion kind.
GetConversionRank(ImplicitConversionKind Kind)107 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
108 static const ImplicitConversionRank
109 Rank[(int)ICK_Num_Conversion_Kinds] = {
110 ICR_Exact_Match,
111 ICR_Exact_Match,
112 ICR_Exact_Match,
113 ICR_Exact_Match,
114 ICR_Exact_Match,
115 ICR_Exact_Match,
116 ICR_Promotion,
117 ICR_Promotion,
118 ICR_Promotion,
119 ICR_Conversion,
120 ICR_Conversion,
121 ICR_Conversion,
122 ICR_Conversion,
123 ICR_Conversion,
124 ICR_Conversion,
125 ICR_Conversion,
126 ICR_Conversion,
127 ICR_Conversion,
128 ICR_Conversion,
129 ICR_Conversion,
130 ICR_Complex_Real_Conversion,
131 ICR_Conversion,
132 ICR_Conversion,
133 ICR_Writeback_Conversion
134 };
135 return Rank[(int)Kind];
136 }
137
138 /// GetImplicitConversionName - Return the name of this kind of
139 /// implicit conversion.
GetImplicitConversionName(ImplicitConversionKind Kind)140 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
141 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
142 "No conversion",
143 "Lvalue-to-rvalue",
144 "Array-to-pointer",
145 "Function-to-pointer",
146 "Noreturn adjustment",
147 "Qualification",
148 "Integral promotion",
149 "Floating point promotion",
150 "Complex promotion",
151 "Integral conversion",
152 "Floating conversion",
153 "Complex conversion",
154 "Floating-integral conversion",
155 "Pointer conversion",
156 "Pointer-to-member conversion",
157 "Boolean conversion",
158 "Compatible-types conversion",
159 "Derived-to-base conversion",
160 "Vector conversion",
161 "Vector splat",
162 "Complex-real conversion",
163 "Block Pointer conversion",
164 "Transparent Union Conversion",
165 "Writeback conversion"
166 };
167 return Name[Kind];
168 }
169
170 /// StandardConversionSequence - Set the standard conversion
171 /// sequence to the identity conversion.
setAsIdentityConversion()172 void StandardConversionSequence::setAsIdentityConversion() {
173 First = ICK_Identity;
174 Second = ICK_Identity;
175 Third = ICK_Identity;
176 DeprecatedStringLiteralToCharPtr = false;
177 QualificationIncludesObjCLifetime = false;
178 ReferenceBinding = false;
179 DirectBinding = false;
180 IsLvalueReference = true;
181 BindsToFunctionLvalue = false;
182 BindsToRvalue = false;
183 BindsImplicitObjectArgumentWithoutRefQualifier = false;
184 ObjCLifetimeConversionBinding = false;
185 CopyConstructor = nullptr;
186 }
187
188 /// getRank - Retrieve the rank of this standard conversion sequence
189 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
190 /// implicit conversions.
getRank() const191 ImplicitConversionRank StandardConversionSequence::getRank() const {
192 ImplicitConversionRank Rank = ICR_Exact_Match;
193 if (GetConversionRank(First) > Rank)
194 Rank = GetConversionRank(First);
195 if (GetConversionRank(Second) > Rank)
196 Rank = GetConversionRank(Second);
197 if (GetConversionRank(Third) > Rank)
198 Rank = GetConversionRank(Third);
199 return Rank;
200 }
201
202 /// isPointerConversionToBool - Determines whether this conversion is
203 /// a conversion of a pointer or pointer-to-member to bool. This is
204 /// used as part of the ranking of standard conversion sequences
205 /// (C++ 13.3.3.2p4).
isPointerConversionToBool() const206 bool StandardConversionSequence::isPointerConversionToBool() const {
207 // Note that FromType has not necessarily been transformed by the
208 // array-to-pointer or function-to-pointer implicit conversions, so
209 // check for their presence as well as checking whether FromType is
210 // a pointer.
211 if (getToType(1)->isBooleanType() &&
212 (getFromType()->isPointerType() ||
213 getFromType()->isObjCObjectPointerType() ||
214 getFromType()->isBlockPointerType() ||
215 getFromType()->isNullPtrType() ||
216 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
217 return true;
218
219 return false;
220 }
221
222 /// isPointerConversionToVoidPointer - Determines whether this
223 /// conversion is a conversion of a pointer to a void pointer. This is
224 /// used as part of the ranking of standard conversion sequences (C++
225 /// 13.3.3.2p4).
226 bool
227 StandardConversionSequence::
isPointerConversionToVoidPointer(ASTContext & Context) const228 isPointerConversionToVoidPointer(ASTContext& Context) const {
229 QualType FromType = getFromType();
230 QualType ToType = getToType(1);
231
232 // Note that FromType has not necessarily been transformed by the
233 // array-to-pointer implicit conversion, so check for its presence
234 // and redo the conversion to get a pointer.
235 if (First == ICK_Array_To_Pointer)
236 FromType = Context.getArrayDecayedType(FromType);
237
238 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
239 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
240 return ToPtrType->getPointeeType()->isVoidType();
241
242 return false;
243 }
244
245 /// Skip any implicit casts which could be either part of a narrowing conversion
246 /// or after one in an implicit conversion.
IgnoreNarrowingConversion(const Expr * Converted)247 static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
248 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
249 switch (ICE->getCastKind()) {
250 case CK_NoOp:
251 case CK_IntegralCast:
252 case CK_IntegralToBoolean:
253 case CK_IntegralToFloating:
254 case CK_FloatingToIntegral:
255 case CK_FloatingToBoolean:
256 case CK_FloatingCast:
257 Converted = ICE->getSubExpr();
258 continue;
259
260 default:
261 return Converted;
262 }
263 }
264
265 return Converted;
266 }
267
268 /// Check if this standard conversion sequence represents a narrowing
269 /// conversion, according to C++11 [dcl.init.list]p7.
270 ///
271 /// \param Ctx The AST context.
272 /// \param Converted The result of applying this standard conversion sequence.
273 /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
274 /// value of the expression prior to the narrowing conversion.
275 /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
276 /// type of the expression prior to the narrowing conversion.
277 NarrowingKind
getNarrowingKind(ASTContext & Ctx,const Expr * Converted,APValue & ConstantValue,QualType & ConstantType) const278 StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
279 const Expr *Converted,
280 APValue &ConstantValue,
281 QualType &ConstantType) const {
282 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
283
284 // C++11 [dcl.init.list]p7:
285 // A narrowing conversion is an implicit conversion ...
286 QualType FromType = getToType(0);
287 QualType ToType = getToType(1);
288 switch (Second) {
289 // -- from a floating-point type to an integer type, or
290 //
291 // -- from an integer type or unscoped enumeration type to a floating-point
292 // type, except where the source is a constant expression and the actual
293 // value after conversion will fit into the target type and will produce
294 // the original value when converted back to the original type, or
295 case ICK_Floating_Integral:
296 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
297 return NK_Type_Narrowing;
298 } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
299 llvm::APSInt IntConstantValue;
300 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
301 if (Initializer &&
302 Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
303 // Convert the integer to the floating type.
304 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
305 Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
306 llvm::APFloat::rmNearestTiesToEven);
307 // And back.
308 llvm::APSInt ConvertedValue = IntConstantValue;
309 bool ignored;
310 Result.convertToInteger(ConvertedValue,
311 llvm::APFloat::rmTowardZero, &ignored);
312 // If the resulting value is different, this was a narrowing conversion.
313 if (IntConstantValue != ConvertedValue) {
314 ConstantValue = APValue(IntConstantValue);
315 ConstantType = Initializer->getType();
316 return NK_Constant_Narrowing;
317 }
318 } else {
319 // Variables are always narrowings.
320 return NK_Variable_Narrowing;
321 }
322 }
323 return NK_Not_Narrowing;
324
325 // -- from long double to double or float, or from double to float, except
326 // where the source is a constant expression and the actual value after
327 // conversion is within the range of values that can be represented (even
328 // if it cannot be represented exactly), or
329 case ICK_Floating_Conversion:
330 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
331 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
332 // FromType is larger than ToType.
333 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
334 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
335 // Constant!
336 assert(ConstantValue.isFloat());
337 llvm::APFloat FloatVal = ConstantValue.getFloat();
338 // Convert the source value into the target type.
339 bool ignored;
340 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
341 Ctx.getFloatTypeSemantics(ToType),
342 llvm::APFloat::rmNearestTiesToEven, &ignored);
343 // If there was no overflow, the source value is within the range of
344 // values that can be represented.
345 if (ConvertStatus & llvm::APFloat::opOverflow) {
346 ConstantType = Initializer->getType();
347 return NK_Constant_Narrowing;
348 }
349 } else {
350 return NK_Variable_Narrowing;
351 }
352 }
353 return NK_Not_Narrowing;
354
355 // -- from an integer type or unscoped enumeration type to an integer type
356 // that cannot represent all the values of the original type, except where
357 // the source is a constant expression and the actual value after
358 // conversion will fit into the target type and will produce the original
359 // value when converted back to the original type.
360 case ICK_Boolean_Conversion: // Bools are integers too.
361 if (!FromType->isIntegralOrUnscopedEnumerationType()) {
362 // Boolean conversions can be from pointers and pointers to members
363 // [conv.bool], and those aren't considered narrowing conversions.
364 return NK_Not_Narrowing;
365 } // Otherwise, fall through to the integral case.
366 case ICK_Integral_Conversion: {
367 assert(FromType->isIntegralOrUnscopedEnumerationType());
368 assert(ToType->isIntegralOrUnscopedEnumerationType());
369 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
370 const unsigned FromWidth = Ctx.getIntWidth(FromType);
371 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
372 const unsigned ToWidth = Ctx.getIntWidth(ToType);
373
374 if (FromWidth > ToWidth ||
375 (FromWidth == ToWidth && FromSigned != ToSigned) ||
376 (FromSigned && !ToSigned)) {
377 // Not all values of FromType can be represented in ToType.
378 llvm::APSInt InitializerValue;
379 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
380 if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
381 // Such conversions on variables are always narrowing.
382 return NK_Variable_Narrowing;
383 }
384 bool Narrowing = false;
385 if (FromWidth < ToWidth) {
386 // Negative -> unsigned is narrowing. Otherwise, more bits is never
387 // narrowing.
388 if (InitializerValue.isSigned() && InitializerValue.isNegative())
389 Narrowing = true;
390 } else {
391 // Add a bit to the InitializerValue so we don't have to worry about
392 // signed vs. unsigned comparisons.
393 InitializerValue = InitializerValue.extend(
394 InitializerValue.getBitWidth() + 1);
395 // Convert the initializer to and from the target width and signed-ness.
396 llvm::APSInt ConvertedValue = InitializerValue;
397 ConvertedValue = ConvertedValue.trunc(ToWidth);
398 ConvertedValue.setIsSigned(ToSigned);
399 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
400 ConvertedValue.setIsSigned(InitializerValue.isSigned());
401 // If the result is different, this was a narrowing conversion.
402 if (ConvertedValue != InitializerValue)
403 Narrowing = true;
404 }
405 if (Narrowing) {
406 ConstantType = Initializer->getType();
407 ConstantValue = APValue(InitializerValue);
408 return NK_Constant_Narrowing;
409 }
410 }
411 return NK_Not_Narrowing;
412 }
413
414 default:
415 // Other kinds of conversions are not narrowings.
416 return NK_Not_Narrowing;
417 }
418 }
419
420 /// dump - Print this standard conversion sequence to standard
421 /// error. Useful for debugging overloading issues.
dump() const422 void StandardConversionSequence::dump() const {
423 raw_ostream &OS = llvm::errs();
424 bool PrintedSomething = false;
425 if (First != ICK_Identity) {
426 OS << GetImplicitConversionName(First);
427 PrintedSomething = true;
428 }
429
430 if (Second != ICK_Identity) {
431 if (PrintedSomething) {
432 OS << " -> ";
433 }
434 OS << GetImplicitConversionName(Second);
435
436 if (CopyConstructor) {
437 OS << " (by copy constructor)";
438 } else if (DirectBinding) {
439 OS << " (direct reference binding)";
440 } else if (ReferenceBinding) {
441 OS << " (reference binding)";
442 }
443 PrintedSomething = true;
444 }
445
446 if (Third != ICK_Identity) {
447 if (PrintedSomething) {
448 OS << " -> ";
449 }
450 OS << GetImplicitConversionName(Third);
451 PrintedSomething = true;
452 }
453
454 if (!PrintedSomething) {
455 OS << "No conversions required";
456 }
457 }
458
459 /// dump - Print this user-defined conversion sequence to standard
460 /// error. Useful for debugging overloading issues.
dump() const461 void UserDefinedConversionSequence::dump() const {
462 raw_ostream &OS = llvm::errs();
463 if (Before.First || Before.Second || Before.Third) {
464 Before.dump();
465 OS << " -> ";
466 }
467 if (ConversionFunction)
468 OS << '\'' << *ConversionFunction << '\'';
469 else
470 OS << "aggregate initialization";
471 if (After.First || After.Second || After.Third) {
472 OS << " -> ";
473 After.dump();
474 }
475 }
476
477 /// dump - Print this implicit conversion sequence to standard
478 /// error. Useful for debugging overloading issues.
dump() const479 void ImplicitConversionSequence::dump() const {
480 raw_ostream &OS = llvm::errs();
481 if (isStdInitializerListElement())
482 OS << "Worst std::initializer_list element conversion: ";
483 switch (ConversionKind) {
484 case StandardConversion:
485 OS << "Standard conversion: ";
486 Standard.dump();
487 break;
488 case UserDefinedConversion:
489 OS << "User-defined conversion: ";
490 UserDefined.dump();
491 break;
492 case EllipsisConversion:
493 OS << "Ellipsis conversion";
494 break;
495 case AmbiguousConversion:
496 OS << "Ambiguous conversion";
497 break;
498 case BadConversion:
499 OS << "Bad conversion";
500 break;
501 }
502
503 OS << "\n";
504 }
505
construct()506 void AmbiguousConversionSequence::construct() {
507 new (&conversions()) ConversionSet();
508 }
509
destruct()510 void AmbiguousConversionSequence::destruct() {
511 conversions().~ConversionSet();
512 }
513
514 void
copyFrom(const AmbiguousConversionSequence & O)515 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
516 FromTypePtr = O.FromTypePtr;
517 ToTypePtr = O.ToTypePtr;
518 new (&conversions()) ConversionSet(O.conversions());
519 }
520
521 namespace {
522 // Structure used by DeductionFailureInfo to store
523 // template argument information.
524 struct DFIArguments {
525 TemplateArgument FirstArg;
526 TemplateArgument SecondArg;
527 };
528 // Structure used by DeductionFailureInfo to store
529 // template parameter and template argument information.
530 struct DFIParamWithArguments : DFIArguments {
531 TemplateParameter Param;
532 };
533 }
534
535 /// \brief Convert from Sema's representation of template deduction information
536 /// to the form used in overload-candidate information.
537 DeductionFailureInfo
MakeDeductionFailureInfo(ASTContext & Context,Sema::TemplateDeductionResult TDK,TemplateDeductionInfo & Info)538 clang::MakeDeductionFailureInfo(ASTContext &Context,
539 Sema::TemplateDeductionResult TDK,
540 TemplateDeductionInfo &Info) {
541 DeductionFailureInfo Result;
542 Result.Result = static_cast<unsigned>(TDK);
543 Result.HasDiagnostic = false;
544 Result.Data = nullptr;
545 switch (TDK) {
546 case Sema::TDK_Success:
547 case Sema::TDK_Invalid:
548 case Sema::TDK_InstantiationDepth:
549 case Sema::TDK_TooManyArguments:
550 case Sema::TDK_TooFewArguments:
551 break;
552
553 case Sema::TDK_Incomplete:
554 case Sema::TDK_InvalidExplicitArguments:
555 Result.Data = Info.Param.getOpaqueValue();
556 break;
557
558 case Sema::TDK_NonDeducedMismatch: {
559 // FIXME: Should allocate from normal heap so that we can free this later.
560 DFIArguments *Saved = new (Context) DFIArguments;
561 Saved->FirstArg = Info.FirstArg;
562 Saved->SecondArg = Info.SecondArg;
563 Result.Data = Saved;
564 break;
565 }
566
567 case Sema::TDK_Inconsistent:
568 case Sema::TDK_Underqualified: {
569 // FIXME: Should allocate from normal heap so that we can free this later.
570 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
571 Saved->Param = Info.Param;
572 Saved->FirstArg = Info.FirstArg;
573 Saved->SecondArg = Info.SecondArg;
574 Result.Data = Saved;
575 break;
576 }
577
578 case Sema::TDK_SubstitutionFailure:
579 Result.Data = Info.take();
580 if (Info.hasSFINAEDiagnostic()) {
581 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
582 SourceLocation(), PartialDiagnostic::NullDiagnostic());
583 Info.takeSFINAEDiagnostic(*Diag);
584 Result.HasDiagnostic = true;
585 }
586 break;
587
588 case Sema::TDK_FailedOverloadResolution:
589 Result.Data = Info.Expression;
590 break;
591
592 case Sema::TDK_MiscellaneousDeductionFailure:
593 break;
594 }
595
596 return Result;
597 }
598
Destroy()599 void DeductionFailureInfo::Destroy() {
600 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
601 case Sema::TDK_Success:
602 case Sema::TDK_Invalid:
603 case Sema::TDK_InstantiationDepth:
604 case Sema::TDK_Incomplete:
605 case Sema::TDK_TooManyArguments:
606 case Sema::TDK_TooFewArguments:
607 case Sema::TDK_InvalidExplicitArguments:
608 case Sema::TDK_FailedOverloadResolution:
609 break;
610
611 case Sema::TDK_Inconsistent:
612 case Sema::TDK_Underqualified:
613 case Sema::TDK_NonDeducedMismatch:
614 // FIXME: Destroy the data?
615 Data = nullptr;
616 break;
617
618 case Sema::TDK_SubstitutionFailure:
619 // FIXME: Destroy the template argument list?
620 Data = nullptr;
621 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
622 Diag->~PartialDiagnosticAt();
623 HasDiagnostic = false;
624 }
625 break;
626
627 // Unhandled
628 case Sema::TDK_MiscellaneousDeductionFailure:
629 break;
630 }
631 }
632
getSFINAEDiagnostic()633 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
634 if (HasDiagnostic)
635 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
636 return nullptr;
637 }
638
getTemplateParameter()639 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
640 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
641 case Sema::TDK_Success:
642 case Sema::TDK_Invalid:
643 case Sema::TDK_InstantiationDepth:
644 case Sema::TDK_TooManyArguments:
645 case Sema::TDK_TooFewArguments:
646 case Sema::TDK_SubstitutionFailure:
647 case Sema::TDK_NonDeducedMismatch:
648 case Sema::TDK_FailedOverloadResolution:
649 return TemplateParameter();
650
651 case Sema::TDK_Incomplete:
652 case Sema::TDK_InvalidExplicitArguments:
653 return TemplateParameter::getFromOpaqueValue(Data);
654
655 case Sema::TDK_Inconsistent:
656 case Sema::TDK_Underqualified:
657 return static_cast<DFIParamWithArguments*>(Data)->Param;
658
659 // Unhandled
660 case Sema::TDK_MiscellaneousDeductionFailure:
661 break;
662 }
663
664 return TemplateParameter();
665 }
666
getTemplateArgumentList()667 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
668 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
669 case Sema::TDK_Success:
670 case Sema::TDK_Invalid:
671 case Sema::TDK_InstantiationDepth:
672 case Sema::TDK_TooManyArguments:
673 case Sema::TDK_TooFewArguments:
674 case Sema::TDK_Incomplete:
675 case Sema::TDK_InvalidExplicitArguments:
676 case Sema::TDK_Inconsistent:
677 case Sema::TDK_Underqualified:
678 case Sema::TDK_NonDeducedMismatch:
679 case Sema::TDK_FailedOverloadResolution:
680 return nullptr;
681
682 case Sema::TDK_SubstitutionFailure:
683 return static_cast<TemplateArgumentList*>(Data);
684
685 // Unhandled
686 case Sema::TDK_MiscellaneousDeductionFailure:
687 break;
688 }
689
690 return nullptr;
691 }
692
getFirstArg()693 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
694 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
695 case Sema::TDK_Success:
696 case Sema::TDK_Invalid:
697 case Sema::TDK_InstantiationDepth:
698 case Sema::TDK_Incomplete:
699 case Sema::TDK_TooManyArguments:
700 case Sema::TDK_TooFewArguments:
701 case Sema::TDK_InvalidExplicitArguments:
702 case Sema::TDK_SubstitutionFailure:
703 case Sema::TDK_FailedOverloadResolution:
704 return nullptr;
705
706 case Sema::TDK_Inconsistent:
707 case Sema::TDK_Underqualified:
708 case Sema::TDK_NonDeducedMismatch:
709 return &static_cast<DFIArguments*>(Data)->FirstArg;
710
711 // Unhandled
712 case Sema::TDK_MiscellaneousDeductionFailure:
713 break;
714 }
715
716 return nullptr;
717 }
718
getSecondArg()719 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
720 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
721 case Sema::TDK_Success:
722 case Sema::TDK_Invalid:
723 case Sema::TDK_InstantiationDepth:
724 case Sema::TDK_Incomplete:
725 case Sema::TDK_TooManyArguments:
726 case Sema::TDK_TooFewArguments:
727 case Sema::TDK_InvalidExplicitArguments:
728 case Sema::TDK_SubstitutionFailure:
729 case Sema::TDK_FailedOverloadResolution:
730 return nullptr;
731
732 case Sema::TDK_Inconsistent:
733 case Sema::TDK_Underqualified:
734 case Sema::TDK_NonDeducedMismatch:
735 return &static_cast<DFIArguments*>(Data)->SecondArg;
736
737 // Unhandled
738 case Sema::TDK_MiscellaneousDeductionFailure:
739 break;
740 }
741
742 return nullptr;
743 }
744
getExpr()745 Expr *DeductionFailureInfo::getExpr() {
746 if (static_cast<Sema::TemplateDeductionResult>(Result) ==
747 Sema::TDK_FailedOverloadResolution)
748 return static_cast<Expr*>(Data);
749
750 return nullptr;
751 }
752
destroyCandidates()753 void OverloadCandidateSet::destroyCandidates() {
754 for (iterator i = begin(), e = end(); i != e; ++i) {
755 for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
756 i->Conversions[ii].~ImplicitConversionSequence();
757 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
758 i->DeductionFailure.Destroy();
759 }
760 }
761
clear()762 void OverloadCandidateSet::clear() {
763 destroyCandidates();
764 NumInlineSequences = 0;
765 Candidates.clear();
766 Functions.clear();
767 }
768
769 namespace {
770 class UnbridgedCastsSet {
771 struct Entry {
772 Expr **Addr;
773 Expr *Saved;
774 };
775 SmallVector<Entry, 2> Entries;
776
777 public:
save(Sema & S,Expr * & E)778 void save(Sema &S, Expr *&E) {
779 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
780 Entry entry = { &E, E };
781 Entries.push_back(entry);
782 E = S.stripARCUnbridgedCast(E);
783 }
784
restore()785 void restore() {
786 for (SmallVectorImpl<Entry>::iterator
787 i = Entries.begin(), e = Entries.end(); i != e; ++i)
788 *i->Addr = i->Saved;
789 }
790 };
791 }
792
793 /// checkPlaceholderForOverload - Do any interesting placeholder-like
794 /// preprocessing on the given expression.
795 ///
796 /// \param unbridgedCasts a collection to which to add unbridged casts;
797 /// without this, they will be immediately diagnosed as errors
798 ///
799 /// Return true on unrecoverable error.
800 static bool
checkPlaceholderForOverload(Sema & S,Expr * & E,UnbridgedCastsSet * unbridgedCasts=nullptr)801 checkPlaceholderForOverload(Sema &S, Expr *&E,
802 UnbridgedCastsSet *unbridgedCasts = nullptr) {
803 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
804 // We can't handle overloaded expressions here because overload
805 // resolution might reasonably tweak them.
806 if (placeholder->getKind() == BuiltinType::Overload) return false;
807
808 // If the context potentially accepts unbridged ARC casts, strip
809 // the unbridged cast and add it to the collection for later restoration.
810 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
811 unbridgedCasts) {
812 unbridgedCasts->save(S, E);
813 return false;
814 }
815
816 // Go ahead and check everything else.
817 ExprResult result = S.CheckPlaceholderExpr(E);
818 if (result.isInvalid())
819 return true;
820
821 E = result.get();
822 return false;
823 }
824
825 // Nothing to do.
826 return false;
827 }
828
829 /// checkArgPlaceholdersForOverload - Check a set of call operands for
830 /// placeholders.
checkArgPlaceholdersForOverload(Sema & S,MultiExprArg Args,UnbridgedCastsSet & unbridged)831 static bool checkArgPlaceholdersForOverload(Sema &S,
832 MultiExprArg Args,
833 UnbridgedCastsSet &unbridged) {
834 for (unsigned i = 0, e = Args.size(); i != e; ++i)
835 if (checkPlaceholderForOverload(S, Args[i], &unbridged))
836 return true;
837
838 return false;
839 }
840
841 // IsOverload - Determine whether the given New declaration is an
842 // overload of the declarations in Old. This routine returns false if
843 // New and Old cannot be overloaded, e.g., if New has the same
844 // signature as some function in Old (C++ 1.3.10) or if the Old
845 // declarations aren't functions (or function templates) at all. When
846 // it does return false, MatchedDecl will point to the decl that New
847 // cannot be overloaded with. This decl may be a UsingShadowDecl on
848 // top of the underlying declaration.
849 //
850 // Example: Given the following input:
851 //
852 // void f(int, float); // #1
853 // void f(int, int); // #2
854 // int f(int, int); // #3
855 //
856 // When we process #1, there is no previous declaration of "f",
857 // so IsOverload will not be used.
858 //
859 // When we process #2, Old contains only the FunctionDecl for #1. By
860 // comparing the parameter types, we see that #1 and #2 are overloaded
861 // (since they have different signatures), so this routine returns
862 // false; MatchedDecl is unchanged.
863 //
864 // When we process #3, Old is an overload set containing #1 and #2. We
865 // compare the signatures of #3 to #1 (they're overloaded, so we do
866 // nothing) and then #3 to #2. Since the signatures of #3 and #2 are
867 // identical (return types of functions are not part of the
868 // signature), IsOverload returns false and MatchedDecl will be set to
869 // point to the FunctionDecl for #2.
870 //
871 // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
872 // into a class by a using declaration. The rules for whether to hide
873 // shadow declarations ignore some properties which otherwise figure
874 // into a function template's signature.
875 Sema::OverloadKind
CheckOverload(Scope * S,FunctionDecl * New,const LookupResult & Old,NamedDecl * & Match,bool NewIsUsingDecl)876 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
877 NamedDecl *&Match, bool NewIsUsingDecl) {
878 for (LookupResult::iterator I = Old.begin(), E = Old.end();
879 I != E; ++I) {
880 NamedDecl *OldD = *I;
881
882 bool OldIsUsingDecl = false;
883 if (isa<UsingShadowDecl>(OldD)) {
884 OldIsUsingDecl = true;
885
886 // We can always introduce two using declarations into the same
887 // context, even if they have identical signatures.
888 if (NewIsUsingDecl) continue;
889
890 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
891 }
892
893 // If either declaration was introduced by a using declaration,
894 // we'll need to use slightly different rules for matching.
895 // Essentially, these rules are the normal rules, except that
896 // function templates hide function templates with different
897 // return types or template parameter lists.
898 bool UseMemberUsingDeclRules =
899 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
900 !New->getFriendObjectKind();
901
902 if (FunctionDecl *OldF = OldD->getAsFunction()) {
903 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
904 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
905 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
906 continue;
907 }
908
909 if (!isa<FunctionTemplateDecl>(OldD) &&
910 !shouldLinkPossiblyHiddenDecl(*I, New))
911 continue;
912
913 Match = *I;
914 return Ovl_Match;
915 }
916 } else if (isa<UsingDecl>(OldD)) {
917 // We can overload with these, which can show up when doing
918 // redeclaration checks for UsingDecls.
919 assert(Old.getLookupKind() == LookupUsingDeclName);
920 } else if (isa<TagDecl>(OldD)) {
921 // We can always overload with tags by hiding them.
922 } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
923 // Optimistically assume that an unresolved using decl will
924 // overload; if it doesn't, we'll have to diagnose during
925 // template instantiation.
926 } else {
927 // (C++ 13p1):
928 // Only function declarations can be overloaded; object and type
929 // declarations cannot be overloaded.
930 Match = *I;
931 return Ovl_NonFunction;
932 }
933 }
934
935 return Ovl_Overload;
936 }
937
IsOverload(FunctionDecl * New,FunctionDecl * Old,bool UseUsingDeclRules)938 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
939 bool UseUsingDeclRules) {
940 // C++ [basic.start.main]p2: This function shall not be overloaded.
941 if (New->isMain())
942 return false;
943
944 // MSVCRT user defined entry points cannot be overloaded.
945 if (New->isMSVCRTEntryPoint())
946 return false;
947
948 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
949 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
950
951 // C++ [temp.fct]p2:
952 // A function template can be overloaded with other function templates
953 // and with normal (non-template) functions.
954 if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
955 return true;
956
957 // Is the function New an overload of the function Old?
958 QualType OldQType = Context.getCanonicalType(Old->getType());
959 QualType NewQType = Context.getCanonicalType(New->getType());
960
961 // Compare the signatures (C++ 1.3.10) of the two functions to
962 // determine whether they are overloads. If we find any mismatch
963 // in the signature, they are overloads.
964
965 // If either of these functions is a K&R-style function (no
966 // prototype), then we consider them to have matching signatures.
967 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
968 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
969 return false;
970
971 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
972 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
973
974 // The signature of a function includes the types of its
975 // parameters (C++ 1.3.10), which includes the presence or absence
976 // of the ellipsis; see C++ DR 357).
977 if (OldQType != NewQType &&
978 (OldType->getNumParams() != NewType->getNumParams() ||
979 OldType->isVariadic() != NewType->isVariadic() ||
980 !FunctionParamTypesAreEqual(OldType, NewType)))
981 return true;
982
983 // C++ [temp.over.link]p4:
984 // The signature of a function template consists of its function
985 // signature, its return type and its template parameter list. The names
986 // of the template parameters are significant only for establishing the
987 // relationship between the template parameters and the rest of the
988 // signature.
989 //
990 // We check the return type and template parameter lists for function
991 // templates first; the remaining checks follow.
992 //
993 // However, we don't consider either of these when deciding whether
994 // a member introduced by a shadow declaration is hidden.
995 if (!UseUsingDeclRules && NewTemplate &&
996 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
997 OldTemplate->getTemplateParameters(),
998 false, TPL_TemplateMatch) ||
999 OldType->getReturnType() != NewType->getReturnType()))
1000 return true;
1001
1002 // If the function is a class member, its signature includes the
1003 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1004 //
1005 // As part of this, also check whether one of the member functions
1006 // is static, in which case they are not overloads (C++
1007 // 13.1p2). While not part of the definition of the signature,
1008 // this check is important to determine whether these functions
1009 // can be overloaded.
1010 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1011 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1012 if (OldMethod && NewMethod &&
1013 !OldMethod->isStatic() && !NewMethod->isStatic()) {
1014 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1015 if (!UseUsingDeclRules &&
1016 (OldMethod->getRefQualifier() == RQ_None ||
1017 NewMethod->getRefQualifier() == RQ_None)) {
1018 // C++0x [over.load]p2:
1019 // - Member function declarations with the same name and the same
1020 // parameter-type-list as well as member function template
1021 // declarations with the same name, the same parameter-type-list, and
1022 // the same template parameter lists cannot be overloaded if any of
1023 // them, but not all, have a ref-qualifier (8.3.5).
1024 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1025 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1026 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1027 }
1028 return true;
1029 }
1030
1031 // We may not have applied the implicit const for a constexpr member
1032 // function yet (because we haven't yet resolved whether this is a static
1033 // or non-static member function). Add it now, on the assumption that this
1034 // is a redeclaration of OldMethod.
1035 unsigned OldQuals = OldMethod->getTypeQualifiers();
1036 unsigned NewQuals = NewMethod->getTypeQualifiers();
1037 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1038 !isa<CXXConstructorDecl>(NewMethod))
1039 NewQuals |= Qualifiers::Const;
1040
1041 // We do not allow overloading based off of '__restrict'.
1042 OldQuals &= ~Qualifiers::Restrict;
1043 NewQuals &= ~Qualifiers::Restrict;
1044 if (OldQuals != NewQuals)
1045 return true;
1046 }
1047
1048 // enable_if attributes are an order-sensitive part of the signature.
1049 for (specific_attr_iterator<EnableIfAttr>
1050 NewI = New->specific_attr_begin<EnableIfAttr>(),
1051 NewE = New->specific_attr_end<EnableIfAttr>(),
1052 OldI = Old->specific_attr_begin<EnableIfAttr>(),
1053 OldE = Old->specific_attr_end<EnableIfAttr>();
1054 NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1055 if (NewI == NewE || OldI == OldE)
1056 return true;
1057 llvm::FoldingSetNodeID NewID, OldID;
1058 NewI->getCond()->Profile(NewID, Context, true);
1059 OldI->getCond()->Profile(OldID, Context, true);
1060 if (NewID != OldID)
1061 return true;
1062 }
1063
1064 // The signatures match; this is not an overload.
1065 return false;
1066 }
1067
1068 /// \brief Checks availability of the function depending on the current
1069 /// function context. Inside an unavailable function, unavailability is ignored.
1070 ///
1071 /// \returns true if \arg FD is unavailable and current context is inside
1072 /// an available function, false otherwise.
isFunctionConsideredUnavailable(FunctionDecl * FD)1073 bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
1074 return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
1075 }
1076
1077 /// \brief Tries a user-defined conversion from From to ToType.
1078 ///
1079 /// Produces an implicit conversion sequence for when a standard conversion
1080 /// is not an option. See TryImplicitConversion for more information.
1081 static ImplicitConversionSequence
TryUserDefinedConversion(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion,bool AllowObjCConversionOnExplicit)1082 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1083 bool SuppressUserConversions,
1084 bool AllowExplicit,
1085 bool InOverloadResolution,
1086 bool CStyle,
1087 bool AllowObjCWritebackConversion,
1088 bool AllowObjCConversionOnExplicit) {
1089 ImplicitConversionSequence ICS;
1090
1091 if (SuppressUserConversions) {
1092 // We're not in the case above, so there is no conversion that
1093 // we can perform.
1094 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1095 return ICS;
1096 }
1097
1098 // Attempt user-defined conversion.
1099 OverloadCandidateSet Conversions(From->getExprLoc(),
1100 OverloadCandidateSet::CSK_Normal);
1101 OverloadingResult UserDefResult
1102 = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
1103 AllowExplicit, AllowObjCConversionOnExplicit);
1104
1105 if (UserDefResult == OR_Success) {
1106 ICS.setUserDefined();
1107 ICS.UserDefined.Before.setAsIdentityConversion();
1108 // C++ [over.ics.user]p4:
1109 // A conversion of an expression of class type to the same class
1110 // type is given Exact Match rank, and a conversion of an
1111 // expression of class type to a base class of that type is
1112 // given Conversion rank, in spite of the fact that a copy
1113 // constructor (i.e., a user-defined conversion function) is
1114 // called for those cases.
1115 if (CXXConstructorDecl *Constructor
1116 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1117 QualType FromCanon
1118 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1119 QualType ToCanon
1120 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1121 if (Constructor->isCopyConstructor() &&
1122 (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
1123 // Turn this into a "standard" conversion sequence, so that it
1124 // gets ranked with standard conversion sequences.
1125 ICS.setStandard();
1126 ICS.Standard.setAsIdentityConversion();
1127 ICS.Standard.setFromType(From->getType());
1128 ICS.Standard.setAllToTypes(ToType);
1129 ICS.Standard.CopyConstructor = Constructor;
1130 if (ToCanon != FromCanon)
1131 ICS.Standard.Second = ICK_Derived_To_Base;
1132 }
1133 }
1134 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
1135 ICS.setAmbiguous();
1136 ICS.Ambiguous.setFromType(From->getType());
1137 ICS.Ambiguous.setToType(ToType);
1138 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1139 Cand != Conversions.end(); ++Cand)
1140 if (Cand->Viable)
1141 ICS.Ambiguous.addConversion(Cand->Function);
1142 } else {
1143 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1144 }
1145
1146 return ICS;
1147 }
1148
1149 /// TryImplicitConversion - Attempt to perform an implicit conversion
1150 /// from the given expression (Expr) to the given type (ToType). This
1151 /// function returns an implicit conversion sequence that can be used
1152 /// to perform the initialization. Given
1153 ///
1154 /// void f(float f);
1155 /// void g(int i) { f(i); }
1156 ///
1157 /// this routine would produce an implicit conversion sequence to
1158 /// describe the initialization of f from i, which will be a standard
1159 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
1160 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
1161 //
1162 /// Note that this routine only determines how the conversion can be
1163 /// performed; it does not actually perform the conversion. As such,
1164 /// it will not produce any diagnostics if no conversion is available,
1165 /// but will instead return an implicit conversion sequence of kind
1166 /// "BadConversion".
1167 ///
1168 /// If @p SuppressUserConversions, then user-defined conversions are
1169 /// not permitted.
1170 /// If @p AllowExplicit, then explicit user-defined conversions are
1171 /// permitted.
1172 ///
1173 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1174 /// writeback conversion, which allows __autoreleasing id* parameters to
1175 /// be initialized with __strong id* or __weak id* arguments.
1176 static ImplicitConversionSequence
TryImplicitConversion(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion,bool AllowObjCConversionOnExplicit)1177 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1178 bool SuppressUserConversions,
1179 bool AllowExplicit,
1180 bool InOverloadResolution,
1181 bool CStyle,
1182 bool AllowObjCWritebackConversion,
1183 bool AllowObjCConversionOnExplicit) {
1184 ImplicitConversionSequence ICS;
1185 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1186 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1187 ICS.setStandard();
1188 return ICS;
1189 }
1190
1191 if (!S.getLangOpts().CPlusPlus) {
1192 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1193 return ICS;
1194 }
1195
1196 // C++ [over.ics.user]p4:
1197 // A conversion of an expression of class type to the same class
1198 // type is given Exact Match rank, and a conversion of an
1199 // expression of class type to a base class of that type is
1200 // given Conversion rank, in spite of the fact that a copy/move
1201 // constructor (i.e., a user-defined conversion function) is
1202 // called for those cases.
1203 QualType FromType = From->getType();
1204 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1205 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1206 S.IsDerivedFrom(FromType, ToType))) {
1207 ICS.setStandard();
1208 ICS.Standard.setAsIdentityConversion();
1209 ICS.Standard.setFromType(FromType);
1210 ICS.Standard.setAllToTypes(ToType);
1211
1212 // We don't actually check at this point whether there is a valid
1213 // copy/move constructor, since overloading just assumes that it
1214 // exists. When we actually perform initialization, we'll find the
1215 // appropriate constructor to copy the returned object, if needed.
1216 ICS.Standard.CopyConstructor = nullptr;
1217
1218 // Determine whether this is considered a derived-to-base conversion.
1219 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1220 ICS.Standard.Second = ICK_Derived_To_Base;
1221
1222 return ICS;
1223 }
1224
1225 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1226 AllowExplicit, InOverloadResolution, CStyle,
1227 AllowObjCWritebackConversion,
1228 AllowObjCConversionOnExplicit);
1229 }
1230
1231 ImplicitConversionSequence
TryImplicitConversion(Expr * From,QualType ToType,bool SuppressUserConversions,bool AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion)1232 Sema::TryImplicitConversion(Expr *From, QualType ToType,
1233 bool SuppressUserConversions,
1234 bool AllowExplicit,
1235 bool InOverloadResolution,
1236 bool CStyle,
1237 bool AllowObjCWritebackConversion) {
1238 return ::TryImplicitConversion(*this, From, ToType,
1239 SuppressUserConversions, AllowExplicit,
1240 InOverloadResolution, CStyle,
1241 AllowObjCWritebackConversion,
1242 /*AllowObjCConversionOnExplicit=*/false);
1243 }
1244
1245 /// PerformImplicitConversion - Perform an implicit conversion of the
1246 /// expression From to the type ToType. Returns the
1247 /// converted expression. Flavor is the kind of conversion we're
1248 /// performing, used in the error message. If @p AllowExplicit,
1249 /// explicit user-defined conversions are permitted.
1250 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,AssignmentAction Action,bool AllowExplicit)1251 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1252 AssignmentAction Action, bool AllowExplicit) {
1253 ImplicitConversionSequence ICS;
1254 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1255 }
1256
1257 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,AssignmentAction Action,bool AllowExplicit,ImplicitConversionSequence & ICS)1258 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1259 AssignmentAction Action, bool AllowExplicit,
1260 ImplicitConversionSequence& ICS) {
1261 if (checkPlaceholderForOverload(*this, From))
1262 return ExprError();
1263
1264 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1265 bool AllowObjCWritebackConversion
1266 = getLangOpts().ObjCAutoRefCount &&
1267 (Action == AA_Passing || Action == AA_Sending);
1268 if (getLangOpts().ObjC1)
1269 CheckObjCBridgeRelatedConversions(From->getLocStart(),
1270 ToType, From->getType(), From);
1271 ICS = ::TryImplicitConversion(*this, From, ToType,
1272 /*SuppressUserConversions=*/false,
1273 AllowExplicit,
1274 /*InOverloadResolution=*/false,
1275 /*CStyle=*/false,
1276 AllowObjCWritebackConversion,
1277 /*AllowObjCConversionOnExplicit=*/false);
1278 return PerformImplicitConversion(From, ToType, ICS, Action);
1279 }
1280
1281 /// \brief Determine whether the conversion from FromType to ToType is a valid
1282 /// conversion that strips "noreturn" off the nested function type.
IsNoReturnConversion(QualType FromType,QualType ToType,QualType & ResultTy)1283 bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1284 QualType &ResultTy) {
1285 if (Context.hasSameUnqualifiedType(FromType, ToType))
1286 return false;
1287
1288 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1289 // where F adds one of the following at most once:
1290 // - a pointer
1291 // - a member pointer
1292 // - a block pointer
1293 CanQualType CanTo = Context.getCanonicalType(ToType);
1294 CanQualType CanFrom = Context.getCanonicalType(FromType);
1295 Type::TypeClass TyClass = CanTo->getTypeClass();
1296 if (TyClass != CanFrom->getTypeClass()) return false;
1297 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1298 if (TyClass == Type::Pointer) {
1299 CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1300 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1301 } else if (TyClass == Type::BlockPointer) {
1302 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1303 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1304 } else if (TyClass == Type::MemberPointer) {
1305 CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1306 CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1307 } else {
1308 return false;
1309 }
1310
1311 TyClass = CanTo->getTypeClass();
1312 if (TyClass != CanFrom->getTypeClass()) return false;
1313 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1314 return false;
1315 }
1316
1317 const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1318 FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1319 if (!EInfo.getNoReturn()) return false;
1320
1321 FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1322 assert(QualType(FromFn, 0).isCanonical());
1323 if (QualType(FromFn, 0) != CanTo) return false;
1324
1325 ResultTy = ToType;
1326 return true;
1327 }
1328
1329 /// \brief Determine whether the conversion from FromType to ToType is a valid
1330 /// vector conversion.
1331 ///
1332 /// \param ICK Will be set to the vector conversion kind, if this is a vector
1333 /// conversion.
IsVectorConversion(Sema & S,QualType FromType,QualType ToType,ImplicitConversionKind & ICK)1334 static bool IsVectorConversion(Sema &S, QualType FromType,
1335 QualType ToType, ImplicitConversionKind &ICK) {
1336 // We need at least one of these types to be a vector type to have a vector
1337 // conversion.
1338 if (!ToType->isVectorType() && !FromType->isVectorType())
1339 return false;
1340
1341 // Identical types require no conversions.
1342 if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1343 return false;
1344
1345 // There are no conversions between extended vector types, only identity.
1346 if (ToType->isExtVectorType()) {
1347 // There are no conversions between extended vector types other than the
1348 // identity conversion.
1349 if (FromType->isExtVectorType())
1350 return false;
1351
1352 // Vector splat from any arithmetic type to a vector.
1353 if (FromType->isArithmeticType()) {
1354 ICK = ICK_Vector_Splat;
1355 return true;
1356 }
1357 }
1358
1359 // We can perform the conversion between vector types in the following cases:
1360 // 1)vector types are equivalent AltiVec and GCC vector types
1361 // 2)lax vector conversions are permitted and the vector types are of the
1362 // same size
1363 if (ToType->isVectorType() && FromType->isVectorType()) {
1364 if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1365 S.isLaxVectorConversion(FromType, ToType)) {
1366 ICK = ICK_Vector_Conversion;
1367 return true;
1368 }
1369 }
1370
1371 return false;
1372 }
1373
1374 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1375 bool InOverloadResolution,
1376 StandardConversionSequence &SCS,
1377 bool CStyle);
1378
1379 /// IsStandardConversion - Determines whether there is a standard
1380 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1381 /// expression From to the type ToType. Standard conversion sequences
1382 /// only consider non-class types; for conversions that involve class
1383 /// types, use TryImplicitConversion. If a conversion exists, SCS will
1384 /// contain the standard conversion sequence required to perform this
1385 /// conversion and this routine will return true. Otherwise, this
1386 /// routine will return false and the value of SCS is unspecified.
IsStandardConversion(Sema & S,Expr * From,QualType ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle,bool AllowObjCWritebackConversion)1387 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1388 bool InOverloadResolution,
1389 StandardConversionSequence &SCS,
1390 bool CStyle,
1391 bool AllowObjCWritebackConversion) {
1392 QualType FromType = From->getType();
1393
1394 // Standard conversions (C++ [conv])
1395 SCS.setAsIdentityConversion();
1396 SCS.IncompatibleObjC = false;
1397 SCS.setFromType(FromType);
1398 SCS.CopyConstructor = nullptr;
1399
1400 // There are no standard conversions for class types in C++, so
1401 // abort early. When overloading in C, however, we do permit
1402 if (FromType->isRecordType() || ToType->isRecordType()) {
1403 if (S.getLangOpts().CPlusPlus)
1404 return false;
1405
1406 // When we're overloading in C, we allow, as standard conversions,
1407 }
1408
1409 // The first conversion can be an lvalue-to-rvalue conversion,
1410 // array-to-pointer conversion, or function-to-pointer conversion
1411 // (C++ 4p1).
1412
1413 if (FromType == S.Context.OverloadTy) {
1414 DeclAccessPair AccessPair;
1415 if (FunctionDecl *Fn
1416 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1417 AccessPair)) {
1418 // We were able to resolve the address of the overloaded function,
1419 // so we can convert to the type of that function.
1420 FromType = Fn->getType();
1421 SCS.setFromType(FromType);
1422
1423 // we can sometimes resolve &foo<int> regardless of ToType, so check
1424 // if the type matches (identity) or we are converting to bool
1425 if (!S.Context.hasSameUnqualifiedType(
1426 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1427 QualType resultTy;
1428 // if the function type matches except for [[noreturn]], it's ok
1429 if (!S.IsNoReturnConversion(FromType,
1430 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1431 // otherwise, only a boolean conversion is standard
1432 if (!ToType->isBooleanType())
1433 return false;
1434 }
1435
1436 // Check if the "from" expression is taking the address of an overloaded
1437 // function and recompute the FromType accordingly. Take advantage of the
1438 // fact that non-static member functions *must* have such an address-of
1439 // expression.
1440 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1441 if (Method && !Method->isStatic()) {
1442 assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1443 "Non-unary operator on non-static member address");
1444 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1445 == UO_AddrOf &&
1446 "Non-address-of operator on non-static member address");
1447 const Type *ClassType
1448 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1449 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1450 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1451 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1452 UO_AddrOf &&
1453 "Non-address-of operator for overloaded function expression");
1454 FromType = S.Context.getPointerType(FromType);
1455 }
1456
1457 // Check that we've computed the proper type after overload resolution.
1458 assert(S.Context.hasSameType(
1459 FromType,
1460 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1461 } else {
1462 return false;
1463 }
1464 }
1465 // Lvalue-to-rvalue conversion (C++11 4.1):
1466 // A glvalue (3.10) of a non-function, non-array type T can
1467 // be converted to a prvalue.
1468 bool argIsLValue = From->isGLValue();
1469 if (argIsLValue &&
1470 !FromType->isFunctionType() && !FromType->isArrayType() &&
1471 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1472 SCS.First = ICK_Lvalue_To_Rvalue;
1473
1474 // C11 6.3.2.1p2:
1475 // ... if the lvalue has atomic type, the value has the non-atomic version
1476 // of the type of the lvalue ...
1477 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1478 FromType = Atomic->getValueType();
1479
1480 // If T is a non-class type, the type of the rvalue is the
1481 // cv-unqualified version of T. Otherwise, the type of the rvalue
1482 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1483 // just strip the qualifiers because they don't matter.
1484 FromType = FromType.getUnqualifiedType();
1485 } else if (FromType->isArrayType()) {
1486 // Array-to-pointer conversion (C++ 4.2)
1487 SCS.First = ICK_Array_To_Pointer;
1488
1489 // An lvalue or rvalue of type "array of N T" or "array of unknown
1490 // bound of T" can be converted to an rvalue of type "pointer to
1491 // T" (C++ 4.2p1).
1492 FromType = S.Context.getArrayDecayedType(FromType);
1493
1494 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1495 // This conversion is deprecated in C++03 (D.4)
1496 SCS.DeprecatedStringLiteralToCharPtr = true;
1497
1498 // For the purpose of ranking in overload resolution
1499 // (13.3.3.1.1), this conversion is considered an
1500 // array-to-pointer conversion followed by a qualification
1501 // conversion (4.4). (C++ 4.2p2)
1502 SCS.Second = ICK_Identity;
1503 SCS.Third = ICK_Qualification;
1504 SCS.QualificationIncludesObjCLifetime = false;
1505 SCS.setAllToTypes(FromType);
1506 return true;
1507 }
1508 } else if (FromType->isFunctionType() && argIsLValue) {
1509 // Function-to-pointer conversion (C++ 4.3).
1510 SCS.First = ICK_Function_To_Pointer;
1511
1512 // An lvalue of function type T can be converted to an rvalue of
1513 // type "pointer to T." The result is a pointer to the
1514 // function. (C++ 4.3p1).
1515 FromType = S.Context.getPointerType(FromType);
1516 } else {
1517 // We don't require any conversions for the first step.
1518 SCS.First = ICK_Identity;
1519 }
1520 SCS.setToType(0, FromType);
1521
1522 // The second conversion can be an integral promotion, floating
1523 // point promotion, integral conversion, floating point conversion,
1524 // floating-integral conversion, pointer conversion,
1525 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1526 // For overloading in C, this can also be a "compatible-type"
1527 // conversion.
1528 bool IncompatibleObjC = false;
1529 ImplicitConversionKind SecondICK = ICK_Identity;
1530 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1531 // The unqualified versions of the types are the same: there's no
1532 // conversion to do.
1533 SCS.Second = ICK_Identity;
1534 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1535 // Integral promotion (C++ 4.5).
1536 SCS.Second = ICK_Integral_Promotion;
1537 FromType = ToType.getUnqualifiedType();
1538 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1539 // Floating point promotion (C++ 4.6).
1540 SCS.Second = ICK_Floating_Promotion;
1541 FromType = ToType.getUnqualifiedType();
1542 } else if (S.IsComplexPromotion(FromType, ToType)) {
1543 // Complex promotion (Clang extension)
1544 SCS.Second = ICK_Complex_Promotion;
1545 FromType = ToType.getUnqualifiedType();
1546 } else if (ToType->isBooleanType() &&
1547 (FromType->isArithmeticType() ||
1548 FromType->isAnyPointerType() ||
1549 FromType->isBlockPointerType() ||
1550 FromType->isMemberPointerType() ||
1551 FromType->isNullPtrType())) {
1552 // Boolean conversions (C++ 4.12).
1553 SCS.Second = ICK_Boolean_Conversion;
1554 FromType = S.Context.BoolTy;
1555 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1556 ToType->isIntegralType(S.Context)) {
1557 // Integral conversions (C++ 4.7).
1558 SCS.Second = ICK_Integral_Conversion;
1559 FromType = ToType.getUnqualifiedType();
1560 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1561 // Complex conversions (C99 6.3.1.6)
1562 SCS.Second = ICK_Complex_Conversion;
1563 FromType = ToType.getUnqualifiedType();
1564 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1565 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1566 // Complex-real conversions (C99 6.3.1.7)
1567 SCS.Second = ICK_Complex_Real;
1568 FromType = ToType.getUnqualifiedType();
1569 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1570 // Floating point conversions (C++ 4.8).
1571 SCS.Second = ICK_Floating_Conversion;
1572 FromType = ToType.getUnqualifiedType();
1573 } else if ((FromType->isRealFloatingType() &&
1574 ToType->isIntegralType(S.Context)) ||
1575 (FromType->isIntegralOrUnscopedEnumerationType() &&
1576 ToType->isRealFloatingType())) {
1577 // Floating-integral conversions (C++ 4.9).
1578 SCS.Second = ICK_Floating_Integral;
1579 FromType = ToType.getUnqualifiedType();
1580 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1581 SCS.Second = ICK_Block_Pointer_Conversion;
1582 } else if (AllowObjCWritebackConversion &&
1583 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1584 SCS.Second = ICK_Writeback_Conversion;
1585 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1586 FromType, IncompatibleObjC)) {
1587 // Pointer conversions (C++ 4.10).
1588 SCS.Second = ICK_Pointer_Conversion;
1589 SCS.IncompatibleObjC = IncompatibleObjC;
1590 FromType = FromType.getUnqualifiedType();
1591 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1592 InOverloadResolution, FromType)) {
1593 // Pointer to member conversions (4.11).
1594 SCS.Second = ICK_Pointer_Member;
1595 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1596 SCS.Second = SecondICK;
1597 FromType = ToType.getUnqualifiedType();
1598 } else if (!S.getLangOpts().CPlusPlus &&
1599 S.Context.typesAreCompatible(ToType, FromType)) {
1600 // Compatible conversions (Clang extension for C function overloading)
1601 SCS.Second = ICK_Compatible_Conversion;
1602 FromType = ToType.getUnqualifiedType();
1603 } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1604 // Treat a conversion that strips "noreturn" as an identity conversion.
1605 SCS.Second = ICK_NoReturn_Adjustment;
1606 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1607 InOverloadResolution,
1608 SCS, CStyle)) {
1609 SCS.Second = ICK_TransparentUnionConversion;
1610 FromType = ToType;
1611 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1612 CStyle)) {
1613 // tryAtomicConversion has updated the standard conversion sequence
1614 // appropriately.
1615 return true;
1616 } else if (ToType->isEventT() &&
1617 From->isIntegerConstantExpr(S.getASTContext()) &&
1618 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1619 SCS.Second = ICK_Zero_Event_Conversion;
1620 FromType = ToType;
1621 } else {
1622 // No second conversion required.
1623 SCS.Second = ICK_Identity;
1624 }
1625 SCS.setToType(1, FromType);
1626
1627 QualType CanonFrom;
1628 QualType CanonTo;
1629 // The third conversion can be a qualification conversion (C++ 4p1).
1630 bool ObjCLifetimeConversion;
1631 if (S.IsQualificationConversion(FromType, ToType, CStyle,
1632 ObjCLifetimeConversion)) {
1633 SCS.Third = ICK_Qualification;
1634 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1635 FromType = ToType;
1636 CanonFrom = S.Context.getCanonicalType(FromType);
1637 CanonTo = S.Context.getCanonicalType(ToType);
1638 } else {
1639 // No conversion required
1640 SCS.Third = ICK_Identity;
1641
1642 // C++ [over.best.ics]p6:
1643 // [...] Any difference in top-level cv-qualification is
1644 // subsumed by the initialization itself and does not constitute
1645 // a conversion. [...]
1646 CanonFrom = S.Context.getCanonicalType(FromType);
1647 CanonTo = S.Context.getCanonicalType(ToType);
1648 if (CanonFrom.getLocalUnqualifiedType()
1649 == CanonTo.getLocalUnqualifiedType() &&
1650 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1651 FromType = ToType;
1652 CanonFrom = CanonTo;
1653 }
1654 }
1655 SCS.setToType(2, FromType);
1656
1657 // If we have not converted the argument type to the parameter type,
1658 // this is a bad conversion sequence.
1659 if (CanonFrom != CanonTo)
1660 return false;
1661
1662 return true;
1663 }
1664
1665 static bool
IsTransparentUnionStandardConversion(Sema & S,Expr * From,QualType & ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle)1666 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1667 QualType &ToType,
1668 bool InOverloadResolution,
1669 StandardConversionSequence &SCS,
1670 bool CStyle) {
1671
1672 const RecordType *UT = ToType->getAsUnionType();
1673 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1674 return false;
1675 // The field to initialize within the transparent union.
1676 RecordDecl *UD = UT->getDecl();
1677 // It's compatible if the expression matches any of the fields.
1678 for (const auto *it : UD->fields()) {
1679 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1680 CStyle, /*ObjCWritebackConversion=*/false)) {
1681 ToType = it->getType();
1682 return true;
1683 }
1684 }
1685 return false;
1686 }
1687
1688 /// IsIntegralPromotion - Determines whether the conversion from the
1689 /// expression From (whose potentially-adjusted type is FromType) to
1690 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
1691 /// sets PromotedType to the promoted type.
IsIntegralPromotion(Expr * From,QualType FromType,QualType ToType)1692 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1693 const BuiltinType *To = ToType->getAs<BuiltinType>();
1694 // All integers are built-in.
1695 if (!To) {
1696 return false;
1697 }
1698
1699 // An rvalue of type char, signed char, unsigned char, short int, or
1700 // unsigned short int can be converted to an rvalue of type int if
1701 // int can represent all the values of the source type; otherwise,
1702 // the source rvalue can be converted to an rvalue of type unsigned
1703 // int (C++ 4.5p1).
1704 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1705 !FromType->isEnumeralType()) {
1706 if (// We can promote any signed, promotable integer type to an int
1707 (FromType->isSignedIntegerType() ||
1708 // We can promote any unsigned integer type whose size is
1709 // less than int to an int.
1710 (!FromType->isSignedIntegerType() &&
1711 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1712 return To->getKind() == BuiltinType::Int;
1713 }
1714
1715 return To->getKind() == BuiltinType::UInt;
1716 }
1717
1718 // C++11 [conv.prom]p3:
1719 // A prvalue of an unscoped enumeration type whose underlying type is not
1720 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1721 // following types that can represent all the values of the enumeration
1722 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
1723 // unsigned int, long int, unsigned long int, long long int, or unsigned
1724 // long long int. If none of the types in that list can represent all the
1725 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1726 // type can be converted to an rvalue a prvalue of the extended integer type
1727 // with lowest integer conversion rank (4.13) greater than the rank of long
1728 // long in which all the values of the enumeration can be represented. If
1729 // there are two such extended types, the signed one is chosen.
1730 // C++11 [conv.prom]p4:
1731 // A prvalue of an unscoped enumeration type whose underlying type is fixed
1732 // can be converted to a prvalue of its underlying type. Moreover, if
1733 // integral promotion can be applied to its underlying type, a prvalue of an
1734 // unscoped enumeration type whose underlying type is fixed can also be
1735 // converted to a prvalue of the promoted underlying type.
1736 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1737 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1738 // provided for a scoped enumeration.
1739 if (FromEnumType->getDecl()->isScoped())
1740 return false;
1741
1742 // We can perform an integral promotion to the underlying type of the enum,
1743 // even if that's not the promoted type.
1744 if (FromEnumType->getDecl()->isFixed()) {
1745 QualType Underlying = FromEnumType->getDecl()->getIntegerType();
1746 return Context.hasSameUnqualifiedType(Underlying, ToType) ||
1747 IsIntegralPromotion(From, Underlying, ToType);
1748 }
1749
1750 // We have already pre-calculated the promotion type, so this is trivial.
1751 if (ToType->isIntegerType() &&
1752 !RequireCompleteType(From->getLocStart(), FromType, 0))
1753 return Context.hasSameUnqualifiedType(ToType,
1754 FromEnumType->getDecl()->getPromotionType());
1755 }
1756
1757 // C++0x [conv.prom]p2:
1758 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1759 // to an rvalue a prvalue of the first of the following types that can
1760 // represent all the values of its underlying type: int, unsigned int,
1761 // long int, unsigned long int, long long int, or unsigned long long int.
1762 // If none of the types in that list can represent all the values of its
1763 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
1764 // or wchar_t can be converted to an rvalue a prvalue of its underlying
1765 // type.
1766 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1767 ToType->isIntegerType()) {
1768 // Determine whether the type we're converting from is signed or
1769 // unsigned.
1770 bool FromIsSigned = FromType->isSignedIntegerType();
1771 uint64_t FromSize = Context.getTypeSize(FromType);
1772
1773 // The types we'll try to promote to, in the appropriate
1774 // order. Try each of these types.
1775 QualType PromoteTypes[6] = {
1776 Context.IntTy, Context.UnsignedIntTy,
1777 Context.LongTy, Context.UnsignedLongTy ,
1778 Context.LongLongTy, Context.UnsignedLongLongTy
1779 };
1780 for (int Idx = 0; Idx < 6; ++Idx) {
1781 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1782 if (FromSize < ToSize ||
1783 (FromSize == ToSize &&
1784 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1785 // We found the type that we can promote to. If this is the
1786 // type we wanted, we have a promotion. Otherwise, no
1787 // promotion.
1788 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1789 }
1790 }
1791 }
1792
1793 // An rvalue for an integral bit-field (9.6) can be converted to an
1794 // rvalue of type int if int can represent all the values of the
1795 // bit-field; otherwise, it can be converted to unsigned int if
1796 // unsigned int can represent all the values of the bit-field. If
1797 // the bit-field is larger yet, no integral promotion applies to
1798 // it. If the bit-field has an enumerated type, it is treated as any
1799 // other value of that type for promotion purposes (C++ 4.5p3).
1800 // FIXME: We should delay checking of bit-fields until we actually perform the
1801 // conversion.
1802 using llvm::APSInt;
1803 if (From)
1804 if (FieldDecl *MemberDecl = From->getSourceBitField()) {
1805 APSInt BitWidth;
1806 if (FromType->isIntegralType(Context) &&
1807 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1808 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1809 ToSize = Context.getTypeSize(ToType);
1810
1811 // Are we promoting to an int from a bitfield that fits in an int?
1812 if (BitWidth < ToSize ||
1813 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1814 return To->getKind() == BuiltinType::Int;
1815 }
1816
1817 // Are we promoting to an unsigned int from an unsigned bitfield
1818 // that fits into an unsigned int?
1819 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1820 return To->getKind() == BuiltinType::UInt;
1821 }
1822
1823 return false;
1824 }
1825 }
1826
1827 // An rvalue of type bool can be converted to an rvalue of type int,
1828 // with false becoming zero and true becoming one (C++ 4.5p4).
1829 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1830 return true;
1831 }
1832
1833 return false;
1834 }
1835
1836 /// IsFloatingPointPromotion - Determines whether the conversion from
1837 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1838 /// returns true and sets PromotedType to the promoted type.
IsFloatingPointPromotion(QualType FromType,QualType ToType)1839 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1840 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1841 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1842 /// An rvalue of type float can be converted to an rvalue of type
1843 /// double. (C++ 4.6p1).
1844 if (FromBuiltin->getKind() == BuiltinType::Float &&
1845 ToBuiltin->getKind() == BuiltinType::Double)
1846 return true;
1847
1848 // C99 6.3.1.5p1:
1849 // When a float is promoted to double or long double, or a
1850 // double is promoted to long double [...].
1851 if (!getLangOpts().CPlusPlus &&
1852 (FromBuiltin->getKind() == BuiltinType::Float ||
1853 FromBuiltin->getKind() == BuiltinType::Double) &&
1854 (ToBuiltin->getKind() == BuiltinType::LongDouble))
1855 return true;
1856
1857 // Half can be promoted to float.
1858 if (!getLangOpts().NativeHalfType &&
1859 FromBuiltin->getKind() == BuiltinType::Half &&
1860 ToBuiltin->getKind() == BuiltinType::Float)
1861 return true;
1862 }
1863
1864 return false;
1865 }
1866
1867 /// \brief Determine if a conversion is a complex promotion.
1868 ///
1869 /// A complex promotion is defined as a complex -> complex conversion
1870 /// where the conversion between the underlying real types is a
1871 /// floating-point or integral promotion.
IsComplexPromotion(QualType FromType,QualType ToType)1872 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1873 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1874 if (!FromComplex)
1875 return false;
1876
1877 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1878 if (!ToComplex)
1879 return false;
1880
1881 return IsFloatingPointPromotion(FromComplex->getElementType(),
1882 ToComplex->getElementType()) ||
1883 IsIntegralPromotion(nullptr, FromComplex->getElementType(),
1884 ToComplex->getElementType());
1885 }
1886
1887 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1888 /// the pointer type FromPtr to a pointer to type ToPointee, with the
1889 /// same type qualifiers as FromPtr has on its pointee type. ToType,
1890 /// if non-empty, will be a pointer to ToType that may or may not have
1891 /// the right set of qualifiers on its pointee.
1892 ///
1893 static QualType
BuildSimilarlyQualifiedPointerType(const Type * FromPtr,QualType ToPointee,QualType ToType,ASTContext & Context,bool StripObjCLifetime=false)1894 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1895 QualType ToPointee, QualType ToType,
1896 ASTContext &Context,
1897 bool StripObjCLifetime = false) {
1898 assert((FromPtr->getTypeClass() == Type::Pointer ||
1899 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1900 "Invalid similarly-qualified pointer type");
1901
1902 /// Conversions to 'id' subsume cv-qualifier conversions.
1903 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1904 return ToType.getUnqualifiedType();
1905
1906 QualType CanonFromPointee
1907 = Context.getCanonicalType(FromPtr->getPointeeType());
1908 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1909 Qualifiers Quals = CanonFromPointee.getQualifiers();
1910
1911 if (StripObjCLifetime)
1912 Quals.removeObjCLifetime();
1913
1914 // Exact qualifier match -> return the pointer type we're converting to.
1915 if (CanonToPointee.getLocalQualifiers() == Quals) {
1916 // ToType is exactly what we need. Return it.
1917 if (!ToType.isNull())
1918 return ToType.getUnqualifiedType();
1919
1920 // Build a pointer to ToPointee. It has the right qualifiers
1921 // already.
1922 if (isa<ObjCObjectPointerType>(ToType))
1923 return Context.getObjCObjectPointerType(ToPointee);
1924 return Context.getPointerType(ToPointee);
1925 }
1926
1927 // Just build a canonical type that has the right qualifiers.
1928 QualType QualifiedCanonToPointee
1929 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1930
1931 if (isa<ObjCObjectPointerType>(ToType))
1932 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1933 return Context.getPointerType(QualifiedCanonToPointee);
1934 }
1935
isNullPointerConstantForConversion(Expr * Expr,bool InOverloadResolution,ASTContext & Context)1936 static bool isNullPointerConstantForConversion(Expr *Expr,
1937 bool InOverloadResolution,
1938 ASTContext &Context) {
1939 // Handle value-dependent integral null pointer constants correctly.
1940 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1941 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1942 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1943 return !InOverloadResolution;
1944
1945 return Expr->isNullPointerConstant(Context,
1946 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1947 : Expr::NPC_ValueDependentIsNull);
1948 }
1949
1950 /// IsPointerConversion - Determines whether the conversion of the
1951 /// expression From, which has the (possibly adjusted) type FromType,
1952 /// can be converted to the type ToType via a pointer conversion (C++
1953 /// 4.10). If so, returns true and places the converted type (that
1954 /// might differ from ToType in its cv-qualifiers at some level) into
1955 /// ConvertedType.
1956 ///
1957 /// This routine also supports conversions to and from block pointers
1958 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
1959 /// pointers to interfaces. FIXME: Once we've determined the
1960 /// appropriate overloading rules for Objective-C, we may want to
1961 /// split the Objective-C checks into a different routine; however,
1962 /// GCC seems to consider all of these conversions to be pointer
1963 /// conversions, so for now they live here. IncompatibleObjC will be
1964 /// set if the conversion is an allowed Objective-C conversion that
1965 /// should result in a warning.
IsPointerConversion(Expr * From,QualType FromType,QualType ToType,bool InOverloadResolution,QualType & ConvertedType,bool & IncompatibleObjC)1966 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1967 bool InOverloadResolution,
1968 QualType& ConvertedType,
1969 bool &IncompatibleObjC) {
1970 IncompatibleObjC = false;
1971 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1972 IncompatibleObjC))
1973 return true;
1974
1975 // Conversion from a null pointer constant to any Objective-C pointer type.
1976 if (ToType->isObjCObjectPointerType() &&
1977 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1978 ConvertedType = ToType;
1979 return true;
1980 }
1981
1982 // Blocks: Block pointers can be converted to void*.
1983 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1984 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1985 ConvertedType = ToType;
1986 return true;
1987 }
1988 // Blocks: A null pointer constant can be converted to a block
1989 // pointer type.
1990 if (ToType->isBlockPointerType() &&
1991 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1992 ConvertedType = ToType;
1993 return true;
1994 }
1995
1996 // If the left-hand-side is nullptr_t, the right side can be a null
1997 // pointer constant.
1998 if (ToType->isNullPtrType() &&
1999 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2000 ConvertedType = ToType;
2001 return true;
2002 }
2003
2004 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2005 if (!ToTypePtr)
2006 return false;
2007
2008 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2009 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2010 ConvertedType = ToType;
2011 return true;
2012 }
2013
2014 // Beyond this point, both types need to be pointers
2015 // , including objective-c pointers.
2016 QualType ToPointeeType = ToTypePtr->getPointeeType();
2017 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2018 !getLangOpts().ObjCAutoRefCount) {
2019 ConvertedType = BuildSimilarlyQualifiedPointerType(
2020 FromType->getAs<ObjCObjectPointerType>(),
2021 ToPointeeType,
2022 ToType, Context);
2023 return true;
2024 }
2025 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2026 if (!FromTypePtr)
2027 return false;
2028
2029 QualType FromPointeeType = FromTypePtr->getPointeeType();
2030
2031 // If the unqualified pointee types are the same, this can't be a
2032 // pointer conversion, so don't do all of the work below.
2033 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2034 return false;
2035
2036 // An rvalue of type "pointer to cv T," where T is an object type,
2037 // can be converted to an rvalue of type "pointer to cv void" (C++
2038 // 4.10p2).
2039 if (FromPointeeType->isIncompleteOrObjectType() &&
2040 ToPointeeType->isVoidType()) {
2041 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2042 ToPointeeType,
2043 ToType, Context,
2044 /*StripObjCLifetime=*/true);
2045 return true;
2046 }
2047
2048 // MSVC allows implicit function to void* type conversion.
2049 if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
2050 ToPointeeType->isVoidType()) {
2051 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2052 ToPointeeType,
2053 ToType, Context);
2054 return true;
2055 }
2056
2057 // When we're overloading in C, we allow a special kind of pointer
2058 // conversion for compatible-but-not-identical pointee types.
2059 if (!getLangOpts().CPlusPlus &&
2060 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2061 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2062 ToPointeeType,
2063 ToType, Context);
2064 return true;
2065 }
2066
2067 // C++ [conv.ptr]p3:
2068 //
2069 // An rvalue of type "pointer to cv D," where D is a class type,
2070 // can be converted to an rvalue of type "pointer to cv B," where
2071 // B is a base class (clause 10) of D. If B is an inaccessible
2072 // (clause 11) or ambiguous (10.2) base class of D, a program that
2073 // necessitates this conversion is ill-formed. The result of the
2074 // conversion is a pointer to the base class sub-object of the
2075 // derived class object. The null pointer value is converted to
2076 // the null pointer value of the destination type.
2077 //
2078 // Note that we do not check for ambiguity or inaccessibility
2079 // here. That is handled by CheckPointerConversion.
2080 if (getLangOpts().CPlusPlus &&
2081 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2082 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2083 !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) &&
2084 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
2085 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2086 ToPointeeType,
2087 ToType, Context);
2088 return true;
2089 }
2090
2091 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2092 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2093 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2094 ToPointeeType,
2095 ToType, Context);
2096 return true;
2097 }
2098
2099 return false;
2100 }
2101
2102 /// \brief Adopt the given qualifiers for the given type.
AdoptQualifiers(ASTContext & Context,QualType T,Qualifiers Qs)2103 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2104 Qualifiers TQs = T.getQualifiers();
2105
2106 // Check whether qualifiers already match.
2107 if (TQs == Qs)
2108 return T;
2109
2110 if (Qs.compatiblyIncludes(TQs))
2111 return Context.getQualifiedType(T, Qs);
2112
2113 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2114 }
2115
2116 /// isObjCPointerConversion - Determines whether this is an
2117 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2118 /// with the same arguments and return values.
isObjCPointerConversion(QualType FromType,QualType ToType,QualType & ConvertedType,bool & IncompatibleObjC)2119 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2120 QualType& ConvertedType,
2121 bool &IncompatibleObjC) {
2122 if (!getLangOpts().ObjC1)
2123 return false;
2124
2125 // The set of qualifiers on the type we're converting from.
2126 Qualifiers FromQualifiers = FromType.getQualifiers();
2127
2128 // First, we handle all conversions on ObjC object pointer types.
2129 const ObjCObjectPointerType* ToObjCPtr =
2130 ToType->getAs<ObjCObjectPointerType>();
2131 const ObjCObjectPointerType *FromObjCPtr =
2132 FromType->getAs<ObjCObjectPointerType>();
2133
2134 if (ToObjCPtr && FromObjCPtr) {
2135 // If the pointee types are the same (ignoring qualifications),
2136 // then this is not a pointer conversion.
2137 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2138 FromObjCPtr->getPointeeType()))
2139 return false;
2140
2141 // Check for compatible
2142 // Objective C++: We're able to convert between "id" or "Class" and a
2143 // pointer to any interface (in both directions).
2144 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
2145 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2146 return true;
2147 }
2148 // Conversions with Objective-C's id<...>.
2149 if ((FromObjCPtr->isObjCQualifiedIdType() ||
2150 ToObjCPtr->isObjCQualifiedIdType()) &&
2151 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
2152 /*compare=*/false)) {
2153 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2154 return true;
2155 }
2156 // Objective C++: We're able to convert from a pointer to an
2157 // interface to a pointer to a different interface.
2158 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2159 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2160 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2161 if (getLangOpts().CPlusPlus && LHS && RHS &&
2162 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2163 FromObjCPtr->getPointeeType()))
2164 return false;
2165 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2166 ToObjCPtr->getPointeeType(),
2167 ToType, Context);
2168 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2169 return true;
2170 }
2171
2172 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2173 // Okay: this is some kind of implicit downcast of Objective-C
2174 // interfaces, which is permitted. However, we're going to
2175 // complain about it.
2176 IncompatibleObjC = true;
2177 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2178 ToObjCPtr->getPointeeType(),
2179 ToType, Context);
2180 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2181 return true;
2182 }
2183 }
2184 // Beyond this point, both types need to be C pointers or block pointers.
2185 QualType ToPointeeType;
2186 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2187 ToPointeeType = ToCPtr->getPointeeType();
2188 else if (const BlockPointerType *ToBlockPtr =
2189 ToType->getAs<BlockPointerType>()) {
2190 // Objective C++: We're able to convert from a pointer to any object
2191 // to a block pointer type.
2192 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2193 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2194 return true;
2195 }
2196 ToPointeeType = ToBlockPtr->getPointeeType();
2197 }
2198 else if (FromType->getAs<BlockPointerType>() &&
2199 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2200 // Objective C++: We're able to convert from a block pointer type to a
2201 // pointer to any object.
2202 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2203 return true;
2204 }
2205 else
2206 return false;
2207
2208 QualType FromPointeeType;
2209 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2210 FromPointeeType = FromCPtr->getPointeeType();
2211 else if (const BlockPointerType *FromBlockPtr =
2212 FromType->getAs<BlockPointerType>())
2213 FromPointeeType = FromBlockPtr->getPointeeType();
2214 else
2215 return false;
2216
2217 // If we have pointers to pointers, recursively check whether this
2218 // is an Objective-C conversion.
2219 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2220 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2221 IncompatibleObjC)) {
2222 // We always complain about this conversion.
2223 IncompatibleObjC = true;
2224 ConvertedType = Context.getPointerType(ConvertedType);
2225 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2226 return true;
2227 }
2228 // Allow conversion of pointee being objective-c pointer to another one;
2229 // as in I* to id.
2230 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2231 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2232 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2233 IncompatibleObjC)) {
2234
2235 ConvertedType = Context.getPointerType(ConvertedType);
2236 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2237 return true;
2238 }
2239
2240 // If we have pointers to functions or blocks, check whether the only
2241 // differences in the argument and result types are in Objective-C
2242 // pointer conversions. If so, we permit the conversion (but
2243 // complain about it).
2244 const FunctionProtoType *FromFunctionType
2245 = FromPointeeType->getAs<FunctionProtoType>();
2246 const FunctionProtoType *ToFunctionType
2247 = ToPointeeType->getAs<FunctionProtoType>();
2248 if (FromFunctionType && ToFunctionType) {
2249 // If the function types are exactly the same, this isn't an
2250 // Objective-C pointer conversion.
2251 if (Context.getCanonicalType(FromPointeeType)
2252 == Context.getCanonicalType(ToPointeeType))
2253 return false;
2254
2255 // Perform the quick checks that will tell us whether these
2256 // function types are obviously different.
2257 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2258 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2259 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2260 return false;
2261
2262 bool HasObjCConversion = false;
2263 if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2264 Context.getCanonicalType(ToFunctionType->getReturnType())) {
2265 // Okay, the types match exactly. Nothing to do.
2266 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2267 ToFunctionType->getReturnType(),
2268 ConvertedType, IncompatibleObjC)) {
2269 // Okay, we have an Objective-C pointer conversion.
2270 HasObjCConversion = true;
2271 } else {
2272 // Function types are too different. Abort.
2273 return false;
2274 }
2275
2276 // Check argument types.
2277 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2278 ArgIdx != NumArgs; ++ArgIdx) {
2279 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2280 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2281 if (Context.getCanonicalType(FromArgType)
2282 == Context.getCanonicalType(ToArgType)) {
2283 // Okay, the types match exactly. Nothing to do.
2284 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2285 ConvertedType, IncompatibleObjC)) {
2286 // Okay, we have an Objective-C pointer conversion.
2287 HasObjCConversion = true;
2288 } else {
2289 // Argument types are too different. Abort.
2290 return false;
2291 }
2292 }
2293
2294 if (HasObjCConversion) {
2295 // We had an Objective-C conversion. Allow this pointer
2296 // conversion, but complain about it.
2297 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2298 IncompatibleObjC = true;
2299 return true;
2300 }
2301 }
2302
2303 return false;
2304 }
2305
2306 /// \brief Determine whether this is an Objective-C writeback conversion,
2307 /// used for parameter passing when performing automatic reference counting.
2308 ///
2309 /// \param FromType The type we're converting form.
2310 ///
2311 /// \param ToType The type we're converting to.
2312 ///
2313 /// \param ConvertedType The type that will be produced after applying
2314 /// this conversion.
isObjCWritebackConversion(QualType FromType,QualType ToType,QualType & ConvertedType)2315 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2316 QualType &ConvertedType) {
2317 if (!getLangOpts().ObjCAutoRefCount ||
2318 Context.hasSameUnqualifiedType(FromType, ToType))
2319 return false;
2320
2321 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2322 QualType ToPointee;
2323 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2324 ToPointee = ToPointer->getPointeeType();
2325 else
2326 return false;
2327
2328 Qualifiers ToQuals = ToPointee.getQualifiers();
2329 if (!ToPointee->isObjCLifetimeType() ||
2330 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2331 !ToQuals.withoutObjCLifetime().empty())
2332 return false;
2333
2334 // Argument must be a pointer to __strong to __weak.
2335 QualType FromPointee;
2336 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2337 FromPointee = FromPointer->getPointeeType();
2338 else
2339 return false;
2340
2341 Qualifiers FromQuals = FromPointee.getQualifiers();
2342 if (!FromPointee->isObjCLifetimeType() ||
2343 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2344 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2345 return false;
2346
2347 // Make sure that we have compatible qualifiers.
2348 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2349 if (!ToQuals.compatiblyIncludes(FromQuals))
2350 return false;
2351
2352 // Remove qualifiers from the pointee type we're converting from; they
2353 // aren't used in the compatibility check belong, and we'll be adding back
2354 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2355 FromPointee = FromPointee.getUnqualifiedType();
2356
2357 // The unqualified form of the pointee types must be compatible.
2358 ToPointee = ToPointee.getUnqualifiedType();
2359 bool IncompatibleObjC;
2360 if (Context.typesAreCompatible(FromPointee, ToPointee))
2361 FromPointee = ToPointee;
2362 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2363 IncompatibleObjC))
2364 return false;
2365
2366 /// \brief Construct the type we're converting to, which is a pointer to
2367 /// __autoreleasing pointee.
2368 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2369 ConvertedType = Context.getPointerType(FromPointee);
2370 return true;
2371 }
2372
IsBlockPointerConversion(QualType FromType,QualType ToType,QualType & ConvertedType)2373 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2374 QualType& ConvertedType) {
2375 QualType ToPointeeType;
2376 if (const BlockPointerType *ToBlockPtr =
2377 ToType->getAs<BlockPointerType>())
2378 ToPointeeType = ToBlockPtr->getPointeeType();
2379 else
2380 return false;
2381
2382 QualType FromPointeeType;
2383 if (const BlockPointerType *FromBlockPtr =
2384 FromType->getAs<BlockPointerType>())
2385 FromPointeeType = FromBlockPtr->getPointeeType();
2386 else
2387 return false;
2388 // We have pointer to blocks, check whether the only
2389 // differences in the argument and result types are in Objective-C
2390 // pointer conversions. If so, we permit the conversion.
2391
2392 const FunctionProtoType *FromFunctionType
2393 = FromPointeeType->getAs<FunctionProtoType>();
2394 const FunctionProtoType *ToFunctionType
2395 = ToPointeeType->getAs<FunctionProtoType>();
2396
2397 if (!FromFunctionType || !ToFunctionType)
2398 return false;
2399
2400 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2401 return true;
2402
2403 // Perform the quick checks that will tell us whether these
2404 // function types are obviously different.
2405 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2406 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2407 return false;
2408
2409 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2410 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2411 if (FromEInfo != ToEInfo)
2412 return false;
2413
2414 bool IncompatibleObjC = false;
2415 if (Context.hasSameType(FromFunctionType->getReturnType(),
2416 ToFunctionType->getReturnType())) {
2417 // Okay, the types match exactly. Nothing to do.
2418 } else {
2419 QualType RHS = FromFunctionType->getReturnType();
2420 QualType LHS = ToFunctionType->getReturnType();
2421 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2422 !RHS.hasQualifiers() && LHS.hasQualifiers())
2423 LHS = LHS.getUnqualifiedType();
2424
2425 if (Context.hasSameType(RHS,LHS)) {
2426 // OK exact match.
2427 } else if (isObjCPointerConversion(RHS, LHS,
2428 ConvertedType, IncompatibleObjC)) {
2429 if (IncompatibleObjC)
2430 return false;
2431 // Okay, we have an Objective-C pointer conversion.
2432 }
2433 else
2434 return false;
2435 }
2436
2437 // Check argument types.
2438 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2439 ArgIdx != NumArgs; ++ArgIdx) {
2440 IncompatibleObjC = false;
2441 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2442 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2443 if (Context.hasSameType(FromArgType, ToArgType)) {
2444 // Okay, the types match exactly. Nothing to do.
2445 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2446 ConvertedType, IncompatibleObjC)) {
2447 if (IncompatibleObjC)
2448 return false;
2449 // Okay, we have an Objective-C pointer conversion.
2450 } else
2451 // Argument types are too different. Abort.
2452 return false;
2453 }
2454 if (LangOpts.ObjCAutoRefCount &&
2455 !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
2456 ToFunctionType))
2457 return false;
2458
2459 ConvertedType = ToType;
2460 return true;
2461 }
2462
2463 enum {
2464 ft_default,
2465 ft_different_class,
2466 ft_parameter_arity,
2467 ft_parameter_mismatch,
2468 ft_return_type,
2469 ft_qualifer_mismatch
2470 };
2471
2472 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2473 /// function types. Catches different number of parameter, mismatch in
2474 /// parameter types, and different return types.
HandleFunctionTypeMismatch(PartialDiagnostic & PDiag,QualType FromType,QualType ToType)2475 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2476 QualType FromType, QualType ToType) {
2477 // If either type is not valid, include no extra info.
2478 if (FromType.isNull() || ToType.isNull()) {
2479 PDiag << ft_default;
2480 return;
2481 }
2482
2483 // Get the function type from the pointers.
2484 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2485 const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2486 *ToMember = ToType->getAs<MemberPointerType>();
2487 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2488 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2489 << QualType(FromMember->getClass(), 0);
2490 return;
2491 }
2492 FromType = FromMember->getPointeeType();
2493 ToType = ToMember->getPointeeType();
2494 }
2495
2496 if (FromType->isPointerType())
2497 FromType = FromType->getPointeeType();
2498 if (ToType->isPointerType())
2499 ToType = ToType->getPointeeType();
2500
2501 // Remove references.
2502 FromType = FromType.getNonReferenceType();
2503 ToType = ToType.getNonReferenceType();
2504
2505 // Don't print extra info for non-specialized template functions.
2506 if (FromType->isInstantiationDependentType() &&
2507 !FromType->getAs<TemplateSpecializationType>()) {
2508 PDiag << ft_default;
2509 return;
2510 }
2511
2512 // No extra info for same types.
2513 if (Context.hasSameType(FromType, ToType)) {
2514 PDiag << ft_default;
2515 return;
2516 }
2517
2518 const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
2519 *ToFunction = ToType->getAs<FunctionProtoType>();
2520
2521 // Both types need to be function types.
2522 if (!FromFunction || !ToFunction) {
2523 PDiag << ft_default;
2524 return;
2525 }
2526
2527 if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2528 PDiag << ft_parameter_arity << ToFunction->getNumParams()
2529 << FromFunction->getNumParams();
2530 return;
2531 }
2532
2533 // Handle different parameter types.
2534 unsigned ArgPos;
2535 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2536 PDiag << ft_parameter_mismatch << ArgPos + 1
2537 << ToFunction->getParamType(ArgPos)
2538 << FromFunction->getParamType(ArgPos);
2539 return;
2540 }
2541
2542 // Handle different return type.
2543 if (!Context.hasSameType(FromFunction->getReturnType(),
2544 ToFunction->getReturnType())) {
2545 PDiag << ft_return_type << ToFunction->getReturnType()
2546 << FromFunction->getReturnType();
2547 return;
2548 }
2549
2550 unsigned FromQuals = FromFunction->getTypeQuals(),
2551 ToQuals = ToFunction->getTypeQuals();
2552 if (FromQuals != ToQuals) {
2553 PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2554 return;
2555 }
2556
2557 // Unable to find a difference, so add no extra info.
2558 PDiag << ft_default;
2559 }
2560
2561 /// FunctionParamTypesAreEqual - This routine checks two function proto types
2562 /// for equality of their argument types. Caller has already checked that
2563 /// they have same number of arguments. If the parameters are different,
2564 /// ArgPos will have the parameter index of the first different parameter.
FunctionParamTypesAreEqual(const FunctionProtoType * OldType,const FunctionProtoType * NewType,unsigned * ArgPos)2565 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2566 const FunctionProtoType *NewType,
2567 unsigned *ArgPos) {
2568 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2569 N = NewType->param_type_begin(),
2570 E = OldType->param_type_end();
2571 O && (O != E); ++O, ++N) {
2572 if (!Context.hasSameType(O->getUnqualifiedType(),
2573 N->getUnqualifiedType())) {
2574 if (ArgPos)
2575 *ArgPos = O - OldType->param_type_begin();
2576 return false;
2577 }
2578 }
2579 return true;
2580 }
2581
2582 /// CheckPointerConversion - Check the pointer conversion from the
2583 /// expression From to the type ToType. This routine checks for
2584 /// ambiguous or inaccessible derived-to-base pointer
2585 /// conversions for which IsPointerConversion has already returned
2586 /// true. It returns true and produces a diagnostic if there was an
2587 /// error, or returns false otherwise.
CheckPointerConversion(Expr * From,QualType ToType,CastKind & Kind,CXXCastPath & BasePath,bool IgnoreBaseAccess)2588 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2589 CastKind &Kind,
2590 CXXCastPath& BasePath,
2591 bool IgnoreBaseAccess) {
2592 QualType FromType = From->getType();
2593 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2594
2595 Kind = CK_BitCast;
2596
2597 if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2598 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2599 Expr::NPCK_ZeroExpression) {
2600 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2601 DiagRuntimeBehavior(From->getExprLoc(), From,
2602 PDiag(diag::warn_impcast_bool_to_null_pointer)
2603 << ToType << From->getSourceRange());
2604 else if (!isUnevaluatedContext())
2605 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2606 << ToType << From->getSourceRange();
2607 }
2608 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2609 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2610 QualType FromPointeeType = FromPtrType->getPointeeType(),
2611 ToPointeeType = ToPtrType->getPointeeType();
2612
2613 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2614 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2615 // We must have a derived-to-base conversion. Check an
2616 // ambiguous or inaccessible conversion.
2617 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2618 From->getExprLoc(),
2619 From->getSourceRange(), &BasePath,
2620 IgnoreBaseAccess))
2621 return true;
2622
2623 // The conversion was successful.
2624 Kind = CK_DerivedToBase;
2625 }
2626 }
2627 } else if (const ObjCObjectPointerType *ToPtrType =
2628 ToType->getAs<ObjCObjectPointerType>()) {
2629 if (const ObjCObjectPointerType *FromPtrType =
2630 FromType->getAs<ObjCObjectPointerType>()) {
2631 // Objective-C++ conversions are always okay.
2632 // FIXME: We should have a different class of conversions for the
2633 // Objective-C++ implicit conversions.
2634 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2635 return false;
2636 } else if (FromType->isBlockPointerType()) {
2637 Kind = CK_BlockPointerToObjCPointerCast;
2638 } else {
2639 Kind = CK_CPointerToObjCPointerCast;
2640 }
2641 } else if (ToType->isBlockPointerType()) {
2642 if (!FromType->isBlockPointerType())
2643 Kind = CK_AnyPointerToBlockPointerCast;
2644 }
2645
2646 // We shouldn't fall into this case unless it's valid for other
2647 // reasons.
2648 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2649 Kind = CK_NullToPointer;
2650
2651 return false;
2652 }
2653
2654 /// IsMemberPointerConversion - Determines whether the conversion of the
2655 /// expression From, which has the (possibly adjusted) type FromType, can be
2656 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
2657 /// If so, returns true and places the converted type (that might differ from
2658 /// ToType in its cv-qualifiers at some level) into ConvertedType.
IsMemberPointerConversion(Expr * From,QualType FromType,QualType ToType,bool InOverloadResolution,QualType & ConvertedType)2659 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2660 QualType ToType,
2661 bool InOverloadResolution,
2662 QualType &ConvertedType) {
2663 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2664 if (!ToTypePtr)
2665 return false;
2666
2667 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2668 if (From->isNullPointerConstant(Context,
2669 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2670 : Expr::NPC_ValueDependentIsNull)) {
2671 ConvertedType = ToType;
2672 return true;
2673 }
2674
2675 // Otherwise, both types have to be member pointers.
2676 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2677 if (!FromTypePtr)
2678 return false;
2679
2680 // A pointer to member of B can be converted to a pointer to member of D,
2681 // where D is derived from B (C++ 4.11p2).
2682 QualType FromClass(FromTypePtr->getClass(), 0);
2683 QualType ToClass(ToTypePtr->getClass(), 0);
2684
2685 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2686 !RequireCompleteType(From->getLocStart(), ToClass, 0) &&
2687 IsDerivedFrom(ToClass, FromClass)) {
2688 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2689 ToClass.getTypePtr());
2690 return true;
2691 }
2692
2693 return false;
2694 }
2695
2696 /// CheckMemberPointerConversion - Check the member pointer conversion from the
2697 /// expression From to the type ToType. This routine checks for ambiguous or
2698 /// virtual or inaccessible base-to-derived member pointer conversions
2699 /// for which IsMemberPointerConversion has already returned true. It returns
2700 /// true and produces a diagnostic if there was an error, or returns false
2701 /// otherwise.
CheckMemberPointerConversion(Expr * From,QualType ToType,CastKind & Kind,CXXCastPath & BasePath,bool IgnoreBaseAccess)2702 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2703 CastKind &Kind,
2704 CXXCastPath &BasePath,
2705 bool IgnoreBaseAccess) {
2706 QualType FromType = From->getType();
2707 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2708 if (!FromPtrType) {
2709 // This must be a null pointer to member pointer conversion
2710 assert(From->isNullPointerConstant(Context,
2711 Expr::NPC_ValueDependentIsNull) &&
2712 "Expr must be null pointer constant!");
2713 Kind = CK_NullToMemberPointer;
2714 return false;
2715 }
2716
2717 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2718 assert(ToPtrType && "No member pointer cast has a target type "
2719 "that is not a member pointer.");
2720
2721 QualType FromClass = QualType(FromPtrType->getClass(), 0);
2722 QualType ToClass = QualType(ToPtrType->getClass(), 0);
2723
2724 // FIXME: What about dependent types?
2725 assert(FromClass->isRecordType() && "Pointer into non-class.");
2726 assert(ToClass->isRecordType() && "Pointer into non-class.");
2727
2728 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2729 /*DetectVirtual=*/true);
2730 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2731 assert(DerivationOkay &&
2732 "Should not have been called if derivation isn't OK.");
2733 (void)DerivationOkay;
2734
2735 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2736 getUnqualifiedType())) {
2737 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2738 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2739 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2740 return true;
2741 }
2742
2743 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2744 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2745 << FromClass << ToClass << QualType(VBase, 0)
2746 << From->getSourceRange();
2747 return true;
2748 }
2749
2750 if (!IgnoreBaseAccess)
2751 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2752 Paths.front(),
2753 diag::err_downcast_from_inaccessible_base);
2754
2755 // Must be a base to derived member conversion.
2756 BuildBasePathArray(Paths, BasePath);
2757 Kind = CK_BaseToDerivedMemberPointer;
2758 return false;
2759 }
2760
2761 /// Determine whether the lifetime conversion between the two given
2762 /// qualifiers sets is nontrivial.
isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,Qualifiers ToQuals)2763 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
2764 Qualifiers ToQuals) {
2765 // Converting anything to const __unsafe_unretained is trivial.
2766 if (ToQuals.hasConst() &&
2767 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
2768 return false;
2769
2770 return true;
2771 }
2772
2773 /// IsQualificationConversion - Determines whether the conversion from
2774 /// an rvalue of type FromType to ToType is a qualification conversion
2775 /// (C++ 4.4).
2776 ///
2777 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2778 /// when the qualification conversion involves a change in the Objective-C
2779 /// object lifetime.
2780 bool
IsQualificationConversion(QualType FromType,QualType ToType,bool CStyle,bool & ObjCLifetimeConversion)2781 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2782 bool CStyle, bool &ObjCLifetimeConversion) {
2783 FromType = Context.getCanonicalType(FromType);
2784 ToType = Context.getCanonicalType(ToType);
2785 ObjCLifetimeConversion = false;
2786
2787 // If FromType and ToType are the same type, this is not a
2788 // qualification conversion.
2789 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2790 return false;
2791
2792 // (C++ 4.4p4):
2793 // A conversion can add cv-qualifiers at levels other than the first
2794 // in multi-level pointers, subject to the following rules: [...]
2795 bool PreviousToQualsIncludeConst = true;
2796 bool UnwrappedAnyPointer = false;
2797 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2798 // Within each iteration of the loop, we check the qualifiers to
2799 // determine if this still looks like a qualification
2800 // conversion. Then, if all is well, we unwrap one more level of
2801 // pointers or pointers-to-members and do it all again
2802 // until there are no more pointers or pointers-to-members left to
2803 // unwrap.
2804 UnwrappedAnyPointer = true;
2805
2806 Qualifiers FromQuals = FromType.getQualifiers();
2807 Qualifiers ToQuals = ToType.getQualifiers();
2808
2809 // Objective-C ARC:
2810 // Check Objective-C lifetime conversions.
2811 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2812 UnwrappedAnyPointer) {
2813 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2814 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
2815 ObjCLifetimeConversion = true;
2816 FromQuals.removeObjCLifetime();
2817 ToQuals.removeObjCLifetime();
2818 } else {
2819 // Qualification conversions cannot cast between different
2820 // Objective-C lifetime qualifiers.
2821 return false;
2822 }
2823 }
2824
2825 // Allow addition/removal of GC attributes but not changing GC attributes.
2826 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2827 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2828 FromQuals.removeObjCGCAttr();
2829 ToQuals.removeObjCGCAttr();
2830 }
2831
2832 // -- for every j > 0, if const is in cv 1,j then const is in cv
2833 // 2,j, and similarly for volatile.
2834 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2835 return false;
2836
2837 // -- if the cv 1,j and cv 2,j are different, then const is in
2838 // every cv for 0 < k < j.
2839 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2840 && !PreviousToQualsIncludeConst)
2841 return false;
2842
2843 // Keep track of whether all prior cv-qualifiers in the "to" type
2844 // include const.
2845 PreviousToQualsIncludeConst
2846 = PreviousToQualsIncludeConst && ToQuals.hasConst();
2847 }
2848
2849 // We are left with FromType and ToType being the pointee types
2850 // after unwrapping the original FromType and ToType the same number
2851 // of types. If we unwrapped any pointers, and if FromType and
2852 // ToType have the same unqualified type (since we checked
2853 // qualifiers above), then this is a qualification conversion.
2854 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2855 }
2856
2857 /// \brief - Determine whether this is a conversion from a scalar type to an
2858 /// atomic type.
2859 ///
2860 /// If successful, updates \c SCS's second and third steps in the conversion
2861 /// sequence to finish the conversion.
tryAtomicConversion(Sema & S,Expr * From,QualType ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle)2862 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
2863 bool InOverloadResolution,
2864 StandardConversionSequence &SCS,
2865 bool CStyle) {
2866 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
2867 if (!ToAtomic)
2868 return false;
2869
2870 StandardConversionSequence InnerSCS;
2871 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
2872 InOverloadResolution, InnerSCS,
2873 CStyle, /*AllowObjCWritebackConversion=*/false))
2874 return false;
2875
2876 SCS.Second = InnerSCS.Second;
2877 SCS.setToType(1, InnerSCS.getToType(1));
2878 SCS.Third = InnerSCS.Third;
2879 SCS.QualificationIncludesObjCLifetime
2880 = InnerSCS.QualificationIncludesObjCLifetime;
2881 SCS.setToType(2, InnerSCS.getToType(2));
2882 return true;
2883 }
2884
isFirstArgumentCompatibleWithType(ASTContext & Context,CXXConstructorDecl * Constructor,QualType Type)2885 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
2886 CXXConstructorDecl *Constructor,
2887 QualType Type) {
2888 const FunctionProtoType *CtorType =
2889 Constructor->getType()->getAs<FunctionProtoType>();
2890 if (CtorType->getNumParams() > 0) {
2891 QualType FirstArg = CtorType->getParamType(0);
2892 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
2893 return true;
2894 }
2895 return false;
2896 }
2897
2898 static OverloadingResult
IsInitializerListConstructorConversion(Sema & S,Expr * From,QualType ToType,CXXRecordDecl * To,UserDefinedConversionSequence & User,OverloadCandidateSet & CandidateSet,bool AllowExplicit)2899 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
2900 CXXRecordDecl *To,
2901 UserDefinedConversionSequence &User,
2902 OverloadCandidateSet &CandidateSet,
2903 bool AllowExplicit) {
2904 DeclContext::lookup_result R = S.LookupConstructors(To);
2905 for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
2906 Con != ConEnd; ++Con) {
2907 NamedDecl *D = *Con;
2908 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2909
2910 // Find the constructor (which may be a template).
2911 CXXConstructorDecl *Constructor = nullptr;
2912 FunctionTemplateDecl *ConstructorTmpl
2913 = dyn_cast<FunctionTemplateDecl>(D);
2914 if (ConstructorTmpl)
2915 Constructor
2916 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2917 else
2918 Constructor = cast<CXXConstructorDecl>(D);
2919
2920 bool Usable = !Constructor->isInvalidDecl() &&
2921 S.isInitListConstructor(Constructor) &&
2922 (AllowExplicit || !Constructor->isExplicit());
2923 if (Usable) {
2924 // If the first argument is (a reference to) the target type,
2925 // suppress conversions.
2926 bool SuppressUserConversions =
2927 isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
2928 if (ConstructorTmpl)
2929 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2930 /*ExplicitArgs*/ nullptr,
2931 From, CandidateSet,
2932 SuppressUserConversions);
2933 else
2934 S.AddOverloadCandidate(Constructor, FoundDecl,
2935 From, CandidateSet,
2936 SuppressUserConversions);
2937 }
2938 }
2939
2940 bool HadMultipleCandidates = (CandidateSet.size() > 1);
2941
2942 OverloadCandidateSet::iterator Best;
2943 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2944 case OR_Success: {
2945 // Record the standard conversion we used and the conversion function.
2946 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
2947 QualType ThisType = Constructor->getThisType(S.Context);
2948 // Initializer lists don't have conversions as such.
2949 User.Before.setAsIdentityConversion();
2950 User.HadMultipleCandidates = HadMultipleCandidates;
2951 User.ConversionFunction = Constructor;
2952 User.FoundConversionFunction = Best->FoundDecl;
2953 User.After.setAsIdentityConversion();
2954 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2955 User.After.setAllToTypes(ToType);
2956 return OR_Success;
2957 }
2958
2959 case OR_No_Viable_Function:
2960 return OR_No_Viable_Function;
2961 case OR_Deleted:
2962 return OR_Deleted;
2963 case OR_Ambiguous:
2964 return OR_Ambiguous;
2965 }
2966
2967 llvm_unreachable("Invalid OverloadResult!");
2968 }
2969
2970 /// Determines whether there is a user-defined conversion sequence
2971 /// (C++ [over.ics.user]) that converts expression From to the type
2972 /// ToType. If such a conversion exists, User will contain the
2973 /// user-defined conversion sequence that performs such a conversion
2974 /// and this routine will return true. Otherwise, this routine returns
2975 /// false and User is unspecified.
2976 ///
2977 /// \param AllowExplicit true if the conversion should consider C++0x
2978 /// "explicit" conversion functions as well as non-explicit conversion
2979 /// functions (C++0x [class.conv.fct]p2).
2980 ///
2981 /// \param AllowObjCConversionOnExplicit true if the conversion should
2982 /// allow an extra Objective-C pointer conversion on uses of explicit
2983 /// constructors. Requires \c AllowExplicit to also be set.
2984 static OverloadingResult
IsUserDefinedConversion(Sema & S,Expr * From,QualType ToType,UserDefinedConversionSequence & User,OverloadCandidateSet & CandidateSet,bool AllowExplicit,bool AllowObjCConversionOnExplicit)2985 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2986 UserDefinedConversionSequence &User,
2987 OverloadCandidateSet &CandidateSet,
2988 bool AllowExplicit,
2989 bool AllowObjCConversionOnExplicit) {
2990 assert(AllowExplicit || !AllowObjCConversionOnExplicit);
2991
2992 // Whether we will only visit constructors.
2993 bool ConstructorsOnly = false;
2994
2995 // If the type we are conversion to is a class type, enumerate its
2996 // constructors.
2997 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2998 // C++ [over.match.ctor]p1:
2999 // When objects of class type are direct-initialized (8.5), or
3000 // copy-initialized from an expression of the same or a
3001 // derived class type (8.5), overload resolution selects the
3002 // constructor. [...] For copy-initialization, the candidate
3003 // functions are all the converting constructors (12.3.1) of
3004 // that class. The argument list is the expression-list within
3005 // the parentheses of the initializer.
3006 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3007 (From->getType()->getAs<RecordType>() &&
3008 S.IsDerivedFrom(From->getType(), ToType)))
3009 ConstructorsOnly = true;
3010
3011 S.RequireCompleteType(From->getExprLoc(), ToType, 0);
3012 // RequireCompleteType may have returned true due to some invalid decl
3013 // during template instantiation, but ToType may be complete enough now
3014 // to try to recover.
3015 if (ToType->isIncompleteType()) {
3016 // We're not going to find any constructors.
3017 } else if (CXXRecordDecl *ToRecordDecl
3018 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3019
3020 Expr **Args = &From;
3021 unsigned NumArgs = 1;
3022 bool ListInitializing = false;
3023 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3024 // But first, see if there is an init-list-constructor that will work.
3025 OverloadingResult Result = IsInitializerListConstructorConversion(
3026 S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3027 if (Result != OR_No_Viable_Function)
3028 return Result;
3029 // Never mind.
3030 CandidateSet.clear();
3031
3032 // If we're list-initializing, we pass the individual elements as
3033 // arguments, not the entire list.
3034 Args = InitList->getInits();
3035 NumArgs = InitList->getNumInits();
3036 ListInitializing = true;
3037 }
3038
3039 DeclContext::lookup_result R = S.LookupConstructors(ToRecordDecl);
3040 for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
3041 Con != ConEnd; ++Con) {
3042 NamedDecl *D = *Con;
3043 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3044
3045 // Find the constructor (which may be a template).
3046 CXXConstructorDecl *Constructor = nullptr;
3047 FunctionTemplateDecl *ConstructorTmpl
3048 = dyn_cast<FunctionTemplateDecl>(D);
3049 if (ConstructorTmpl)
3050 Constructor
3051 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3052 else
3053 Constructor = cast<CXXConstructorDecl>(D);
3054
3055 bool Usable = !Constructor->isInvalidDecl();
3056 if (ListInitializing)
3057 Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
3058 else
3059 Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
3060 if (Usable) {
3061 bool SuppressUserConversions = !ConstructorsOnly;
3062 if (SuppressUserConversions && ListInitializing) {
3063 SuppressUserConversions = false;
3064 if (NumArgs == 1) {
3065 // If the first argument is (a reference to) the target type,
3066 // suppress conversions.
3067 SuppressUserConversions = isFirstArgumentCompatibleWithType(
3068 S.Context, Constructor, ToType);
3069 }
3070 }
3071 if (ConstructorTmpl)
3072 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3073 /*ExplicitArgs*/ nullptr,
3074 llvm::makeArrayRef(Args, NumArgs),
3075 CandidateSet, SuppressUserConversions);
3076 else
3077 // Allow one user-defined conversion when user specifies a
3078 // From->ToType conversion via an static cast (c-style, etc).
3079 S.AddOverloadCandidate(Constructor, FoundDecl,
3080 llvm::makeArrayRef(Args, NumArgs),
3081 CandidateSet, SuppressUserConversions);
3082 }
3083 }
3084 }
3085 }
3086
3087 // Enumerate conversion functions, if we're allowed to.
3088 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3089 } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) {
3090 // No conversion functions from incomplete types.
3091 } else if (const RecordType *FromRecordType
3092 = From->getType()->getAs<RecordType>()) {
3093 if (CXXRecordDecl *FromRecordDecl
3094 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3095 // Add all of the conversion functions as candidates.
3096 std::pair<CXXRecordDecl::conversion_iterator,
3097 CXXRecordDecl::conversion_iterator>
3098 Conversions = FromRecordDecl->getVisibleConversionFunctions();
3099 for (CXXRecordDecl::conversion_iterator
3100 I = Conversions.first, E = Conversions.second; I != E; ++I) {
3101 DeclAccessPair FoundDecl = I.getPair();
3102 NamedDecl *D = FoundDecl.getDecl();
3103 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3104 if (isa<UsingShadowDecl>(D))
3105 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3106
3107 CXXConversionDecl *Conv;
3108 FunctionTemplateDecl *ConvTemplate;
3109 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3110 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3111 else
3112 Conv = cast<CXXConversionDecl>(D);
3113
3114 if (AllowExplicit || !Conv->isExplicit()) {
3115 if (ConvTemplate)
3116 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3117 ActingContext, From, ToType,
3118 CandidateSet,
3119 AllowObjCConversionOnExplicit);
3120 else
3121 S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3122 From, ToType, CandidateSet,
3123 AllowObjCConversionOnExplicit);
3124 }
3125 }
3126 }
3127 }
3128
3129 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3130
3131 OverloadCandidateSet::iterator Best;
3132 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
3133 case OR_Success:
3134 // Record the standard conversion we used and the conversion function.
3135 if (CXXConstructorDecl *Constructor
3136 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3137 // C++ [over.ics.user]p1:
3138 // If the user-defined conversion is specified by a
3139 // constructor (12.3.1), the initial standard conversion
3140 // sequence converts the source type to the type required by
3141 // the argument of the constructor.
3142 //
3143 QualType ThisType = Constructor->getThisType(S.Context);
3144 if (isa<InitListExpr>(From)) {
3145 // Initializer lists don't have conversions as such.
3146 User.Before.setAsIdentityConversion();
3147 } else {
3148 if (Best->Conversions[0].isEllipsis())
3149 User.EllipsisConversion = true;
3150 else {
3151 User.Before = Best->Conversions[0].Standard;
3152 User.EllipsisConversion = false;
3153 }
3154 }
3155 User.HadMultipleCandidates = HadMultipleCandidates;
3156 User.ConversionFunction = Constructor;
3157 User.FoundConversionFunction = Best->FoundDecl;
3158 User.After.setAsIdentityConversion();
3159 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3160 User.After.setAllToTypes(ToType);
3161 return OR_Success;
3162 }
3163 if (CXXConversionDecl *Conversion
3164 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3165 // C++ [over.ics.user]p1:
3166 //
3167 // [...] If the user-defined conversion is specified by a
3168 // conversion function (12.3.2), the initial standard
3169 // conversion sequence converts the source type to the
3170 // implicit object parameter of the conversion function.
3171 User.Before = Best->Conversions[0].Standard;
3172 User.HadMultipleCandidates = HadMultipleCandidates;
3173 User.ConversionFunction = Conversion;
3174 User.FoundConversionFunction = Best->FoundDecl;
3175 User.EllipsisConversion = false;
3176
3177 // C++ [over.ics.user]p2:
3178 // The second standard conversion sequence converts the
3179 // result of the user-defined conversion to the target type
3180 // for the sequence. Since an implicit conversion sequence
3181 // is an initialization, the special rules for
3182 // initialization by user-defined conversion apply when
3183 // selecting the best user-defined conversion for a
3184 // user-defined conversion sequence (see 13.3.3 and
3185 // 13.3.3.1).
3186 User.After = Best->FinalConversion;
3187 return OR_Success;
3188 }
3189 llvm_unreachable("Not a constructor or conversion function?");
3190
3191 case OR_No_Viable_Function:
3192 return OR_No_Viable_Function;
3193 case OR_Deleted:
3194 // No conversion here! We're done.
3195 return OR_Deleted;
3196
3197 case OR_Ambiguous:
3198 return OR_Ambiguous;
3199 }
3200
3201 llvm_unreachable("Invalid OverloadResult!");
3202 }
3203
3204 bool
DiagnoseMultipleUserDefinedConversion(Expr * From,QualType ToType)3205 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3206 ImplicitConversionSequence ICS;
3207 OverloadCandidateSet CandidateSet(From->getExprLoc(),
3208 OverloadCandidateSet::CSK_Normal);
3209 OverloadingResult OvResult =
3210 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3211 CandidateSet, false, false);
3212 if (OvResult == OR_Ambiguous)
3213 Diag(From->getLocStart(), diag::err_typecheck_ambiguous_condition)
3214 << From->getType() << ToType << From->getSourceRange();
3215 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
3216 if (!RequireCompleteType(From->getLocStart(), ToType,
3217 diag::err_typecheck_nonviable_condition_incomplete,
3218 From->getType(), From->getSourceRange()))
3219 Diag(From->getLocStart(), diag::err_typecheck_nonviable_condition)
3220 << From->getType() << From->getSourceRange() << ToType;
3221 } else
3222 return false;
3223 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3224 return true;
3225 }
3226
3227 /// \brief Compare the user-defined conversion functions or constructors
3228 /// of two user-defined conversion sequences to determine whether any ordering
3229 /// is possible.
3230 static ImplicitConversionSequence::CompareKind
compareConversionFunctions(Sema & S,FunctionDecl * Function1,FunctionDecl * Function2)3231 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3232 FunctionDecl *Function2) {
3233 if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
3234 return ImplicitConversionSequence::Indistinguishable;
3235
3236 // Objective-C++:
3237 // If both conversion functions are implicitly-declared conversions from
3238 // a lambda closure type to a function pointer and a block pointer,
3239 // respectively, always prefer the conversion to a function pointer,
3240 // because the function pointer is more lightweight and is more likely
3241 // to keep code working.
3242 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3243 if (!Conv1)
3244 return ImplicitConversionSequence::Indistinguishable;
3245
3246 CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3247 if (!Conv2)
3248 return ImplicitConversionSequence::Indistinguishable;
3249
3250 if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3251 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3252 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3253 if (Block1 != Block2)
3254 return Block1 ? ImplicitConversionSequence::Worse
3255 : ImplicitConversionSequence::Better;
3256 }
3257
3258 return ImplicitConversionSequence::Indistinguishable;
3259 }
3260
hasDeprecatedStringLiteralToCharPtrConversion(const ImplicitConversionSequence & ICS)3261 static bool hasDeprecatedStringLiteralToCharPtrConversion(
3262 const ImplicitConversionSequence &ICS) {
3263 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3264 (ICS.isUserDefined() &&
3265 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3266 }
3267
3268 /// CompareImplicitConversionSequences - Compare two implicit
3269 /// conversion sequences to determine whether one is better than the
3270 /// other or if they are indistinguishable (C++ 13.3.3.2).
3271 static ImplicitConversionSequence::CompareKind
CompareImplicitConversionSequences(Sema & S,const ImplicitConversionSequence & ICS1,const ImplicitConversionSequence & ICS2)3272 CompareImplicitConversionSequences(Sema &S,
3273 const ImplicitConversionSequence& ICS1,
3274 const ImplicitConversionSequence& ICS2)
3275 {
3276 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3277 // conversion sequences (as defined in 13.3.3.1)
3278 // -- a standard conversion sequence (13.3.3.1.1) is a better
3279 // conversion sequence than a user-defined conversion sequence or
3280 // an ellipsis conversion sequence, and
3281 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3282 // conversion sequence than an ellipsis conversion sequence
3283 // (13.3.3.1.3).
3284 //
3285 // C++0x [over.best.ics]p10:
3286 // For the purpose of ranking implicit conversion sequences as
3287 // described in 13.3.3.2, the ambiguous conversion sequence is
3288 // treated as a user-defined sequence that is indistinguishable
3289 // from any other user-defined conversion sequence.
3290
3291 // String literal to 'char *' conversion has been deprecated in C++03. It has
3292 // been removed from C++11. We still accept this conversion, if it happens at
3293 // the best viable function. Otherwise, this conversion is considered worse
3294 // than ellipsis conversion. Consider this as an extension; this is not in the
3295 // standard. For example:
3296 //
3297 // int &f(...); // #1
3298 // void f(char*); // #2
3299 // void g() { int &r = f("foo"); }
3300 //
3301 // In C++03, we pick #2 as the best viable function.
3302 // In C++11, we pick #1 as the best viable function, because ellipsis
3303 // conversion is better than string-literal to char* conversion (since there
3304 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3305 // convert arguments, #2 would be the best viable function in C++11.
3306 // If the best viable function has this conversion, a warning will be issued
3307 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3308
3309 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3310 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3311 hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3312 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3313 ? ImplicitConversionSequence::Worse
3314 : ImplicitConversionSequence::Better;
3315
3316 if (ICS1.getKindRank() < ICS2.getKindRank())
3317 return ImplicitConversionSequence::Better;
3318 if (ICS2.getKindRank() < ICS1.getKindRank())
3319 return ImplicitConversionSequence::Worse;
3320
3321 // The following checks require both conversion sequences to be of
3322 // the same kind.
3323 if (ICS1.getKind() != ICS2.getKind())
3324 return ImplicitConversionSequence::Indistinguishable;
3325
3326 ImplicitConversionSequence::CompareKind Result =
3327 ImplicitConversionSequence::Indistinguishable;
3328
3329 // Two implicit conversion sequences of the same form are
3330 // indistinguishable conversion sequences unless one of the
3331 // following rules apply: (C++ 13.3.3.2p3):
3332 if (ICS1.isStandard())
3333 Result = CompareStandardConversionSequences(S,
3334 ICS1.Standard, ICS2.Standard);
3335 else if (ICS1.isUserDefined()) {
3336 // User-defined conversion sequence U1 is a better conversion
3337 // sequence than another user-defined conversion sequence U2 if
3338 // they contain the same user-defined conversion function or
3339 // constructor and if the second standard conversion sequence of
3340 // U1 is better than the second standard conversion sequence of
3341 // U2 (C++ 13.3.3.2p3).
3342 if (ICS1.UserDefined.ConversionFunction ==
3343 ICS2.UserDefined.ConversionFunction)
3344 Result = CompareStandardConversionSequences(S,
3345 ICS1.UserDefined.After,
3346 ICS2.UserDefined.After);
3347 else
3348 Result = compareConversionFunctions(S,
3349 ICS1.UserDefined.ConversionFunction,
3350 ICS2.UserDefined.ConversionFunction);
3351 }
3352
3353 // List-initialization sequence L1 is a better conversion sequence than
3354 // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
3355 // for some X and L2 does not.
3356 if (Result == ImplicitConversionSequence::Indistinguishable &&
3357 !ICS1.isBad()) {
3358 if (ICS1.isStdInitializerListElement() &&
3359 !ICS2.isStdInitializerListElement())
3360 return ImplicitConversionSequence::Better;
3361 if (!ICS1.isStdInitializerListElement() &&
3362 ICS2.isStdInitializerListElement())
3363 return ImplicitConversionSequence::Worse;
3364 }
3365
3366 return Result;
3367 }
3368
hasSimilarType(ASTContext & Context,QualType T1,QualType T2)3369 static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3370 while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3371 Qualifiers Quals;
3372 T1 = Context.getUnqualifiedArrayType(T1, Quals);
3373 T2 = Context.getUnqualifiedArrayType(T2, Quals);
3374 }
3375
3376 return Context.hasSameUnqualifiedType(T1, T2);
3377 }
3378
3379 // Per 13.3.3.2p3, compare the given standard conversion sequences to
3380 // determine if one is a proper subset of the other.
3381 static ImplicitConversionSequence::CompareKind
compareStandardConversionSubsets(ASTContext & Context,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3382 compareStandardConversionSubsets(ASTContext &Context,
3383 const StandardConversionSequence& SCS1,
3384 const StandardConversionSequence& SCS2) {
3385 ImplicitConversionSequence::CompareKind Result
3386 = ImplicitConversionSequence::Indistinguishable;
3387
3388 // the identity conversion sequence is considered to be a subsequence of
3389 // any non-identity conversion sequence
3390 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3391 return ImplicitConversionSequence::Better;
3392 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3393 return ImplicitConversionSequence::Worse;
3394
3395 if (SCS1.Second != SCS2.Second) {
3396 if (SCS1.Second == ICK_Identity)
3397 Result = ImplicitConversionSequence::Better;
3398 else if (SCS2.Second == ICK_Identity)
3399 Result = ImplicitConversionSequence::Worse;
3400 else
3401 return ImplicitConversionSequence::Indistinguishable;
3402 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3403 return ImplicitConversionSequence::Indistinguishable;
3404
3405 if (SCS1.Third == SCS2.Third) {
3406 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3407 : ImplicitConversionSequence::Indistinguishable;
3408 }
3409
3410 if (SCS1.Third == ICK_Identity)
3411 return Result == ImplicitConversionSequence::Worse
3412 ? ImplicitConversionSequence::Indistinguishable
3413 : ImplicitConversionSequence::Better;
3414
3415 if (SCS2.Third == ICK_Identity)
3416 return Result == ImplicitConversionSequence::Better
3417 ? ImplicitConversionSequence::Indistinguishable
3418 : ImplicitConversionSequence::Worse;
3419
3420 return ImplicitConversionSequence::Indistinguishable;
3421 }
3422
3423 /// \brief Determine whether one of the given reference bindings is better
3424 /// than the other based on what kind of bindings they are.
3425 static bool
isBetterReferenceBindingKind(const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3426 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3427 const StandardConversionSequence &SCS2) {
3428 // C++0x [over.ics.rank]p3b4:
3429 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3430 // implicit object parameter of a non-static member function declared
3431 // without a ref-qualifier, and *either* S1 binds an rvalue reference
3432 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
3433 // lvalue reference to a function lvalue and S2 binds an rvalue
3434 // reference*.
3435 //
3436 // FIXME: Rvalue references. We're going rogue with the above edits,
3437 // because the semantics in the current C++0x working paper (N3225 at the
3438 // time of this writing) break the standard definition of std::forward
3439 // and std::reference_wrapper when dealing with references to functions.
3440 // Proposed wording changes submitted to CWG for consideration.
3441 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3442 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3443 return false;
3444
3445 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3446 SCS2.IsLvalueReference) ||
3447 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3448 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3449 }
3450
3451 /// CompareStandardConversionSequences - Compare two standard
3452 /// conversion sequences to determine whether one is better than the
3453 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
3454 static ImplicitConversionSequence::CompareKind
CompareStandardConversionSequences(Sema & S,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3455 CompareStandardConversionSequences(Sema &S,
3456 const StandardConversionSequence& SCS1,
3457 const StandardConversionSequence& SCS2)
3458 {
3459 // Standard conversion sequence S1 is a better conversion sequence
3460 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3461
3462 // -- S1 is a proper subsequence of S2 (comparing the conversion
3463 // sequences in the canonical form defined by 13.3.3.1.1,
3464 // excluding any Lvalue Transformation; the identity conversion
3465 // sequence is considered to be a subsequence of any
3466 // non-identity conversion sequence) or, if not that,
3467 if (ImplicitConversionSequence::CompareKind CK
3468 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3469 return CK;
3470
3471 // -- the rank of S1 is better than the rank of S2 (by the rules
3472 // defined below), or, if not that,
3473 ImplicitConversionRank Rank1 = SCS1.getRank();
3474 ImplicitConversionRank Rank2 = SCS2.getRank();
3475 if (Rank1 < Rank2)
3476 return ImplicitConversionSequence::Better;
3477 else if (Rank2 < Rank1)
3478 return ImplicitConversionSequence::Worse;
3479
3480 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3481 // are indistinguishable unless one of the following rules
3482 // applies:
3483
3484 // A conversion that is not a conversion of a pointer, or
3485 // pointer to member, to bool is better than another conversion
3486 // that is such a conversion.
3487 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3488 return SCS2.isPointerConversionToBool()
3489 ? ImplicitConversionSequence::Better
3490 : ImplicitConversionSequence::Worse;
3491
3492 // C++ [over.ics.rank]p4b2:
3493 //
3494 // If class B is derived directly or indirectly from class A,
3495 // conversion of B* to A* is better than conversion of B* to
3496 // void*, and conversion of A* to void* is better than conversion
3497 // of B* to void*.
3498 bool SCS1ConvertsToVoid
3499 = SCS1.isPointerConversionToVoidPointer(S.Context);
3500 bool SCS2ConvertsToVoid
3501 = SCS2.isPointerConversionToVoidPointer(S.Context);
3502 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3503 // Exactly one of the conversion sequences is a conversion to
3504 // a void pointer; it's the worse conversion.
3505 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3506 : ImplicitConversionSequence::Worse;
3507 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3508 // Neither conversion sequence converts to a void pointer; compare
3509 // their derived-to-base conversions.
3510 if (ImplicitConversionSequence::CompareKind DerivedCK
3511 = CompareDerivedToBaseConversions(S, SCS1, SCS2))
3512 return DerivedCK;
3513 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3514 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3515 // Both conversion sequences are conversions to void
3516 // pointers. Compare the source types to determine if there's an
3517 // inheritance relationship in their sources.
3518 QualType FromType1 = SCS1.getFromType();
3519 QualType FromType2 = SCS2.getFromType();
3520
3521 // Adjust the types we're converting from via the array-to-pointer
3522 // conversion, if we need to.
3523 if (SCS1.First == ICK_Array_To_Pointer)
3524 FromType1 = S.Context.getArrayDecayedType(FromType1);
3525 if (SCS2.First == ICK_Array_To_Pointer)
3526 FromType2 = S.Context.getArrayDecayedType(FromType2);
3527
3528 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3529 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3530
3531 if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3532 return ImplicitConversionSequence::Better;
3533 else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3534 return ImplicitConversionSequence::Worse;
3535
3536 // Objective-C++: If one interface is more specific than the
3537 // other, it is the better one.
3538 const ObjCObjectPointerType* FromObjCPtr1
3539 = FromType1->getAs<ObjCObjectPointerType>();
3540 const ObjCObjectPointerType* FromObjCPtr2
3541 = FromType2->getAs<ObjCObjectPointerType>();
3542 if (FromObjCPtr1 && FromObjCPtr2) {
3543 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3544 FromObjCPtr2);
3545 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3546 FromObjCPtr1);
3547 if (AssignLeft != AssignRight) {
3548 return AssignLeft? ImplicitConversionSequence::Better
3549 : ImplicitConversionSequence::Worse;
3550 }
3551 }
3552 }
3553
3554 // Compare based on qualification conversions (C++ 13.3.3.2p3,
3555 // bullet 3).
3556 if (ImplicitConversionSequence::CompareKind QualCK
3557 = CompareQualificationConversions(S, SCS1, SCS2))
3558 return QualCK;
3559
3560 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3561 // Check for a better reference binding based on the kind of bindings.
3562 if (isBetterReferenceBindingKind(SCS1, SCS2))
3563 return ImplicitConversionSequence::Better;
3564 else if (isBetterReferenceBindingKind(SCS2, SCS1))
3565 return ImplicitConversionSequence::Worse;
3566
3567 // C++ [over.ics.rank]p3b4:
3568 // -- S1 and S2 are reference bindings (8.5.3), and the types to
3569 // which the references refer are the same type except for
3570 // top-level cv-qualifiers, and the type to which the reference
3571 // initialized by S2 refers is more cv-qualified than the type
3572 // to which the reference initialized by S1 refers.
3573 QualType T1 = SCS1.getToType(2);
3574 QualType T2 = SCS2.getToType(2);
3575 T1 = S.Context.getCanonicalType(T1);
3576 T2 = S.Context.getCanonicalType(T2);
3577 Qualifiers T1Quals, T2Quals;
3578 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3579 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3580 if (UnqualT1 == UnqualT2) {
3581 // Objective-C++ ARC: If the references refer to objects with different
3582 // lifetimes, prefer bindings that don't change lifetime.
3583 if (SCS1.ObjCLifetimeConversionBinding !=
3584 SCS2.ObjCLifetimeConversionBinding) {
3585 return SCS1.ObjCLifetimeConversionBinding
3586 ? ImplicitConversionSequence::Worse
3587 : ImplicitConversionSequence::Better;
3588 }
3589
3590 // If the type is an array type, promote the element qualifiers to the
3591 // type for comparison.
3592 if (isa<ArrayType>(T1) && T1Quals)
3593 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3594 if (isa<ArrayType>(T2) && T2Quals)
3595 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3596 if (T2.isMoreQualifiedThan(T1))
3597 return ImplicitConversionSequence::Better;
3598 else if (T1.isMoreQualifiedThan(T2))
3599 return ImplicitConversionSequence::Worse;
3600 }
3601 }
3602
3603 // In Microsoft mode, prefer an integral conversion to a
3604 // floating-to-integral conversion if the integral conversion
3605 // is between types of the same size.
3606 // For example:
3607 // void f(float);
3608 // void f(int);
3609 // int main {
3610 // long a;
3611 // f(a);
3612 // }
3613 // Here, MSVC will call f(int) instead of generating a compile error
3614 // as clang will do in standard mode.
3615 if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
3616 SCS2.Second == ICK_Floating_Integral &&
3617 S.Context.getTypeSize(SCS1.getFromType()) ==
3618 S.Context.getTypeSize(SCS1.getToType(2)))
3619 return ImplicitConversionSequence::Better;
3620
3621 return ImplicitConversionSequence::Indistinguishable;
3622 }
3623
3624 /// CompareQualificationConversions - Compares two standard conversion
3625 /// sequences to determine whether they can be ranked based on their
3626 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3627 static ImplicitConversionSequence::CompareKind
CompareQualificationConversions(Sema & S,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3628 CompareQualificationConversions(Sema &S,
3629 const StandardConversionSequence& SCS1,
3630 const StandardConversionSequence& SCS2) {
3631 // C++ 13.3.3.2p3:
3632 // -- S1 and S2 differ only in their qualification conversion and
3633 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
3634 // cv-qualification signature of type T1 is a proper subset of
3635 // the cv-qualification signature of type T2, and S1 is not the
3636 // deprecated string literal array-to-pointer conversion (4.2).
3637 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3638 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3639 return ImplicitConversionSequence::Indistinguishable;
3640
3641 // FIXME: the example in the standard doesn't use a qualification
3642 // conversion (!)
3643 QualType T1 = SCS1.getToType(2);
3644 QualType T2 = SCS2.getToType(2);
3645 T1 = S.Context.getCanonicalType(T1);
3646 T2 = S.Context.getCanonicalType(T2);
3647 Qualifiers T1Quals, T2Quals;
3648 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3649 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3650
3651 // If the types are the same, we won't learn anything by unwrapped
3652 // them.
3653 if (UnqualT1 == UnqualT2)
3654 return ImplicitConversionSequence::Indistinguishable;
3655
3656 // If the type is an array type, promote the element qualifiers to the type
3657 // for comparison.
3658 if (isa<ArrayType>(T1) && T1Quals)
3659 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3660 if (isa<ArrayType>(T2) && T2Quals)
3661 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3662
3663 ImplicitConversionSequence::CompareKind Result
3664 = ImplicitConversionSequence::Indistinguishable;
3665
3666 // Objective-C++ ARC:
3667 // Prefer qualification conversions not involving a change in lifetime
3668 // to qualification conversions that do not change lifetime.
3669 if (SCS1.QualificationIncludesObjCLifetime !=
3670 SCS2.QualificationIncludesObjCLifetime) {
3671 Result = SCS1.QualificationIncludesObjCLifetime
3672 ? ImplicitConversionSequence::Worse
3673 : ImplicitConversionSequence::Better;
3674 }
3675
3676 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3677 // Within each iteration of the loop, we check the qualifiers to
3678 // determine if this still looks like a qualification
3679 // conversion. Then, if all is well, we unwrap one more level of
3680 // pointers or pointers-to-members and do it all again
3681 // until there are no more pointers or pointers-to-members left
3682 // to unwrap. This essentially mimics what
3683 // IsQualificationConversion does, but here we're checking for a
3684 // strict subset of qualifiers.
3685 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3686 // The qualifiers are the same, so this doesn't tell us anything
3687 // about how the sequences rank.
3688 ;
3689 else if (T2.isMoreQualifiedThan(T1)) {
3690 // T1 has fewer qualifiers, so it could be the better sequence.
3691 if (Result == ImplicitConversionSequence::Worse)
3692 // Neither has qualifiers that are a subset of the other's
3693 // qualifiers.
3694 return ImplicitConversionSequence::Indistinguishable;
3695
3696 Result = ImplicitConversionSequence::Better;
3697 } else if (T1.isMoreQualifiedThan(T2)) {
3698 // T2 has fewer qualifiers, so it could be the better sequence.
3699 if (Result == ImplicitConversionSequence::Better)
3700 // Neither has qualifiers that are a subset of the other's
3701 // qualifiers.
3702 return ImplicitConversionSequence::Indistinguishable;
3703
3704 Result = ImplicitConversionSequence::Worse;
3705 } else {
3706 // Qualifiers are disjoint.
3707 return ImplicitConversionSequence::Indistinguishable;
3708 }
3709
3710 // If the types after this point are equivalent, we're done.
3711 if (S.Context.hasSameUnqualifiedType(T1, T2))
3712 break;
3713 }
3714
3715 // Check that the winning standard conversion sequence isn't using
3716 // the deprecated string literal array to pointer conversion.
3717 switch (Result) {
3718 case ImplicitConversionSequence::Better:
3719 if (SCS1.DeprecatedStringLiteralToCharPtr)
3720 Result = ImplicitConversionSequence::Indistinguishable;
3721 break;
3722
3723 case ImplicitConversionSequence::Indistinguishable:
3724 break;
3725
3726 case ImplicitConversionSequence::Worse:
3727 if (SCS2.DeprecatedStringLiteralToCharPtr)
3728 Result = ImplicitConversionSequence::Indistinguishable;
3729 break;
3730 }
3731
3732 return Result;
3733 }
3734
3735 /// CompareDerivedToBaseConversions - Compares two standard conversion
3736 /// sequences to determine whether they can be ranked based on their
3737 /// various kinds of derived-to-base conversions (C++
3738 /// [over.ics.rank]p4b3). As part of these checks, we also look at
3739 /// conversions between Objective-C interface types.
3740 static ImplicitConversionSequence::CompareKind
CompareDerivedToBaseConversions(Sema & S,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3741 CompareDerivedToBaseConversions(Sema &S,
3742 const StandardConversionSequence& SCS1,
3743 const StandardConversionSequence& SCS2) {
3744 QualType FromType1 = SCS1.getFromType();
3745 QualType ToType1 = SCS1.getToType(1);
3746 QualType FromType2 = SCS2.getFromType();
3747 QualType ToType2 = SCS2.getToType(1);
3748
3749 // Adjust the types we're converting from via the array-to-pointer
3750 // conversion, if we need to.
3751 if (SCS1.First == ICK_Array_To_Pointer)
3752 FromType1 = S.Context.getArrayDecayedType(FromType1);
3753 if (SCS2.First == ICK_Array_To_Pointer)
3754 FromType2 = S.Context.getArrayDecayedType(FromType2);
3755
3756 // Canonicalize all of the types.
3757 FromType1 = S.Context.getCanonicalType(FromType1);
3758 ToType1 = S.Context.getCanonicalType(ToType1);
3759 FromType2 = S.Context.getCanonicalType(FromType2);
3760 ToType2 = S.Context.getCanonicalType(ToType2);
3761
3762 // C++ [over.ics.rank]p4b3:
3763 //
3764 // If class B is derived directly or indirectly from class A and
3765 // class C is derived directly or indirectly from B,
3766 //
3767 // Compare based on pointer conversions.
3768 if (SCS1.Second == ICK_Pointer_Conversion &&
3769 SCS2.Second == ICK_Pointer_Conversion &&
3770 /*FIXME: Remove if Objective-C id conversions get their own rank*/
3771 FromType1->isPointerType() && FromType2->isPointerType() &&
3772 ToType1->isPointerType() && ToType2->isPointerType()) {
3773 QualType FromPointee1
3774 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3775 QualType ToPointee1
3776 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3777 QualType FromPointee2
3778 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3779 QualType ToPointee2
3780 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3781
3782 // -- conversion of C* to B* is better than conversion of C* to A*,
3783 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3784 if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3785 return ImplicitConversionSequence::Better;
3786 else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3787 return ImplicitConversionSequence::Worse;
3788 }
3789
3790 // -- conversion of B* to A* is better than conversion of C* to A*,
3791 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3792 if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3793 return ImplicitConversionSequence::Better;
3794 else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3795 return ImplicitConversionSequence::Worse;
3796 }
3797 } else if (SCS1.Second == ICK_Pointer_Conversion &&
3798 SCS2.Second == ICK_Pointer_Conversion) {
3799 const ObjCObjectPointerType *FromPtr1
3800 = FromType1->getAs<ObjCObjectPointerType>();
3801 const ObjCObjectPointerType *FromPtr2
3802 = FromType2->getAs<ObjCObjectPointerType>();
3803 const ObjCObjectPointerType *ToPtr1
3804 = ToType1->getAs<ObjCObjectPointerType>();
3805 const ObjCObjectPointerType *ToPtr2
3806 = ToType2->getAs<ObjCObjectPointerType>();
3807
3808 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3809 // Apply the same conversion ranking rules for Objective-C pointer types
3810 // that we do for C++ pointers to class types. However, we employ the
3811 // Objective-C pseudo-subtyping relationship used for assignment of
3812 // Objective-C pointer types.
3813 bool FromAssignLeft
3814 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3815 bool FromAssignRight
3816 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3817 bool ToAssignLeft
3818 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3819 bool ToAssignRight
3820 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3821
3822 // A conversion to an a non-id object pointer type or qualified 'id'
3823 // type is better than a conversion to 'id'.
3824 if (ToPtr1->isObjCIdType() &&
3825 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3826 return ImplicitConversionSequence::Worse;
3827 if (ToPtr2->isObjCIdType() &&
3828 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3829 return ImplicitConversionSequence::Better;
3830
3831 // A conversion to a non-id object pointer type is better than a
3832 // conversion to a qualified 'id' type
3833 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3834 return ImplicitConversionSequence::Worse;
3835 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3836 return ImplicitConversionSequence::Better;
3837
3838 // A conversion to an a non-Class object pointer type or qualified 'Class'
3839 // type is better than a conversion to 'Class'.
3840 if (ToPtr1->isObjCClassType() &&
3841 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3842 return ImplicitConversionSequence::Worse;
3843 if (ToPtr2->isObjCClassType() &&
3844 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3845 return ImplicitConversionSequence::Better;
3846
3847 // A conversion to a non-Class object pointer type is better than a
3848 // conversion to a qualified 'Class' type.
3849 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3850 return ImplicitConversionSequence::Worse;
3851 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3852 return ImplicitConversionSequence::Better;
3853
3854 // -- "conversion of C* to B* is better than conversion of C* to A*,"
3855 if (S.Context.hasSameType(FromType1, FromType2) &&
3856 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3857 (ToAssignLeft != ToAssignRight))
3858 return ToAssignLeft? ImplicitConversionSequence::Worse
3859 : ImplicitConversionSequence::Better;
3860
3861 // -- "conversion of B* to A* is better than conversion of C* to A*,"
3862 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3863 (FromAssignLeft != FromAssignRight))
3864 return FromAssignLeft? ImplicitConversionSequence::Better
3865 : ImplicitConversionSequence::Worse;
3866 }
3867 }
3868
3869 // Ranking of member-pointer types.
3870 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3871 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3872 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3873 const MemberPointerType * FromMemPointer1 =
3874 FromType1->getAs<MemberPointerType>();
3875 const MemberPointerType * ToMemPointer1 =
3876 ToType1->getAs<MemberPointerType>();
3877 const MemberPointerType * FromMemPointer2 =
3878 FromType2->getAs<MemberPointerType>();
3879 const MemberPointerType * ToMemPointer2 =
3880 ToType2->getAs<MemberPointerType>();
3881 const Type *FromPointeeType1 = FromMemPointer1->getClass();
3882 const Type *ToPointeeType1 = ToMemPointer1->getClass();
3883 const Type *FromPointeeType2 = FromMemPointer2->getClass();
3884 const Type *ToPointeeType2 = ToMemPointer2->getClass();
3885 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3886 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3887 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3888 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3889 // conversion of A::* to B::* is better than conversion of A::* to C::*,
3890 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3891 if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3892 return ImplicitConversionSequence::Worse;
3893 else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3894 return ImplicitConversionSequence::Better;
3895 }
3896 // conversion of B::* to C::* is better than conversion of A::* to C::*
3897 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3898 if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3899 return ImplicitConversionSequence::Better;
3900 else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3901 return ImplicitConversionSequence::Worse;
3902 }
3903 }
3904
3905 if (SCS1.Second == ICK_Derived_To_Base) {
3906 // -- conversion of C to B is better than conversion of C to A,
3907 // -- binding of an expression of type C to a reference of type
3908 // B& is better than binding an expression of type C to a
3909 // reference of type A&,
3910 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3911 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3912 if (S.IsDerivedFrom(ToType1, ToType2))
3913 return ImplicitConversionSequence::Better;
3914 else if (S.IsDerivedFrom(ToType2, ToType1))
3915 return ImplicitConversionSequence::Worse;
3916 }
3917
3918 // -- conversion of B to A is better than conversion of C to A.
3919 // -- binding of an expression of type B to a reference of type
3920 // A& is better than binding an expression of type C to a
3921 // reference of type A&,
3922 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3923 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3924 if (S.IsDerivedFrom(FromType2, FromType1))
3925 return ImplicitConversionSequence::Better;
3926 else if (S.IsDerivedFrom(FromType1, FromType2))
3927 return ImplicitConversionSequence::Worse;
3928 }
3929 }
3930
3931 return ImplicitConversionSequence::Indistinguishable;
3932 }
3933
3934 /// \brief Determine whether the given type is valid, e.g., it is not an invalid
3935 /// C++ class.
isTypeValid(QualType T)3936 static bool isTypeValid(QualType T) {
3937 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3938 return !Record->isInvalidDecl();
3939
3940 return true;
3941 }
3942
3943 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
3944 /// determine whether they are reference-related,
3945 /// reference-compatible, reference-compatible with added
3946 /// qualification, or incompatible, for use in C++ initialization by
3947 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3948 /// type, and the first type (T1) is the pointee type of the reference
3949 /// type being initialized.
3950 Sema::ReferenceCompareResult
CompareReferenceRelationship(SourceLocation Loc,QualType OrigT1,QualType OrigT2,bool & DerivedToBase,bool & ObjCConversion,bool & ObjCLifetimeConversion)3951 Sema::CompareReferenceRelationship(SourceLocation Loc,
3952 QualType OrigT1, QualType OrigT2,
3953 bool &DerivedToBase,
3954 bool &ObjCConversion,
3955 bool &ObjCLifetimeConversion) {
3956 assert(!OrigT1->isReferenceType() &&
3957 "T1 must be the pointee type of the reference type");
3958 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3959
3960 QualType T1 = Context.getCanonicalType(OrigT1);
3961 QualType T2 = Context.getCanonicalType(OrigT2);
3962 Qualifiers T1Quals, T2Quals;
3963 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3964 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3965
3966 // C++ [dcl.init.ref]p4:
3967 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3968 // reference-related to "cv2 T2" if T1 is the same type as T2, or
3969 // T1 is a base class of T2.
3970 DerivedToBase = false;
3971 ObjCConversion = false;
3972 ObjCLifetimeConversion = false;
3973 if (UnqualT1 == UnqualT2) {
3974 // Nothing to do.
3975 } else if (!RequireCompleteType(Loc, OrigT2, 0) &&
3976 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
3977 IsDerivedFrom(UnqualT2, UnqualT1))
3978 DerivedToBase = true;
3979 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3980 UnqualT2->isObjCObjectOrInterfaceType() &&
3981 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3982 ObjCConversion = true;
3983 else
3984 return Ref_Incompatible;
3985
3986 // At this point, we know that T1 and T2 are reference-related (at
3987 // least).
3988
3989 // If the type is an array type, promote the element qualifiers to the type
3990 // for comparison.
3991 if (isa<ArrayType>(T1) && T1Quals)
3992 T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3993 if (isa<ArrayType>(T2) && T2Quals)
3994 T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3995
3996 // C++ [dcl.init.ref]p4:
3997 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3998 // reference-related to T2 and cv1 is the same cv-qualification
3999 // as, or greater cv-qualification than, cv2. For purposes of
4000 // overload resolution, cases for which cv1 is greater
4001 // cv-qualification than cv2 are identified as
4002 // reference-compatible with added qualification (see 13.3.3.2).
4003 //
4004 // Note that we also require equivalence of Objective-C GC and address-space
4005 // qualifiers when performing these computations, so that e.g., an int in
4006 // address space 1 is not reference-compatible with an int in address
4007 // space 2.
4008 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
4009 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
4010 if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
4011 ObjCLifetimeConversion = true;
4012
4013 T1Quals.removeObjCLifetime();
4014 T2Quals.removeObjCLifetime();
4015 }
4016
4017 if (T1Quals == T2Quals)
4018 return Ref_Compatible;
4019 else if (T1Quals.compatiblyIncludes(T2Quals))
4020 return Ref_Compatible_With_Added_Qualification;
4021 else
4022 return Ref_Related;
4023 }
4024
4025 /// \brief Look for a user-defined conversion to an value reference-compatible
4026 /// with DeclType. Return true if something definite is found.
4027 static bool
FindConversionForRefInit(Sema & S,ImplicitConversionSequence & ICS,QualType DeclType,SourceLocation DeclLoc,Expr * Init,QualType T2,bool AllowRvalues,bool AllowExplicit)4028 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4029 QualType DeclType, SourceLocation DeclLoc,
4030 Expr *Init, QualType T2, bool AllowRvalues,
4031 bool AllowExplicit) {
4032 assert(T2->isRecordType() && "Can only find conversions of record types.");
4033 CXXRecordDecl *T2RecordDecl
4034 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4035
4036 OverloadCandidateSet CandidateSet(DeclLoc, OverloadCandidateSet::CSK_Normal);
4037 std::pair<CXXRecordDecl::conversion_iterator,
4038 CXXRecordDecl::conversion_iterator>
4039 Conversions = T2RecordDecl->getVisibleConversionFunctions();
4040 for (CXXRecordDecl::conversion_iterator
4041 I = Conversions.first, E = Conversions.second; I != E; ++I) {
4042 NamedDecl *D = *I;
4043 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4044 if (isa<UsingShadowDecl>(D))
4045 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4046
4047 FunctionTemplateDecl *ConvTemplate
4048 = dyn_cast<FunctionTemplateDecl>(D);
4049 CXXConversionDecl *Conv;
4050 if (ConvTemplate)
4051 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4052 else
4053 Conv = cast<CXXConversionDecl>(D);
4054
4055 // If this is an explicit conversion, and we're not allowed to consider
4056 // explicit conversions, skip it.
4057 if (!AllowExplicit && Conv->isExplicit())
4058 continue;
4059
4060 if (AllowRvalues) {
4061 bool DerivedToBase = false;
4062 bool ObjCConversion = false;
4063 bool ObjCLifetimeConversion = false;
4064
4065 // If we are initializing an rvalue reference, don't permit conversion
4066 // functions that return lvalues.
4067 if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4068 const ReferenceType *RefType
4069 = Conv->getConversionType()->getAs<LValueReferenceType>();
4070 if (RefType && !RefType->getPointeeType()->isFunctionType())
4071 continue;
4072 }
4073
4074 if (!ConvTemplate &&
4075 S.CompareReferenceRelationship(
4076 DeclLoc,
4077 Conv->getConversionType().getNonReferenceType()
4078 .getUnqualifiedType(),
4079 DeclType.getNonReferenceType().getUnqualifiedType(),
4080 DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4081 Sema::Ref_Incompatible)
4082 continue;
4083 } else {
4084 // If the conversion function doesn't return a reference type,
4085 // it can't be considered for this conversion. An rvalue reference
4086 // is only acceptable if its referencee is a function type.
4087
4088 const ReferenceType *RefType =
4089 Conv->getConversionType()->getAs<ReferenceType>();
4090 if (!RefType ||
4091 (!RefType->isLValueReferenceType() &&
4092 !RefType->getPointeeType()->isFunctionType()))
4093 continue;
4094 }
4095
4096 if (ConvTemplate)
4097 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4098 Init, DeclType, CandidateSet,
4099 /*AllowObjCConversionOnExplicit=*/false);
4100 else
4101 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4102 DeclType, CandidateSet,
4103 /*AllowObjCConversionOnExplicit=*/false);
4104 }
4105
4106 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4107
4108 OverloadCandidateSet::iterator Best;
4109 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4110 case OR_Success:
4111 // C++ [over.ics.ref]p1:
4112 //
4113 // [...] If the parameter binds directly to the result of
4114 // applying a conversion function to the argument
4115 // expression, the implicit conversion sequence is a
4116 // user-defined conversion sequence (13.3.3.1.2), with the
4117 // second standard conversion sequence either an identity
4118 // conversion or, if the conversion function returns an
4119 // entity of a type that is a derived class of the parameter
4120 // type, a derived-to-base Conversion.
4121 if (!Best->FinalConversion.DirectBinding)
4122 return false;
4123
4124 ICS.setUserDefined();
4125 ICS.UserDefined.Before = Best->Conversions[0].Standard;
4126 ICS.UserDefined.After = Best->FinalConversion;
4127 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4128 ICS.UserDefined.ConversionFunction = Best->Function;
4129 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4130 ICS.UserDefined.EllipsisConversion = false;
4131 assert(ICS.UserDefined.After.ReferenceBinding &&
4132 ICS.UserDefined.After.DirectBinding &&
4133 "Expected a direct reference binding!");
4134 return true;
4135
4136 case OR_Ambiguous:
4137 ICS.setAmbiguous();
4138 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4139 Cand != CandidateSet.end(); ++Cand)
4140 if (Cand->Viable)
4141 ICS.Ambiguous.addConversion(Cand->Function);
4142 return true;
4143
4144 case OR_No_Viable_Function:
4145 case OR_Deleted:
4146 // There was no suitable conversion, or we found a deleted
4147 // conversion; continue with other checks.
4148 return false;
4149 }
4150
4151 llvm_unreachable("Invalid OverloadResult!");
4152 }
4153
4154 /// \brief Compute an implicit conversion sequence for reference
4155 /// initialization.
4156 static ImplicitConversionSequence
TryReferenceInit(Sema & S,Expr * Init,QualType DeclType,SourceLocation DeclLoc,bool SuppressUserConversions,bool AllowExplicit)4157 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4158 SourceLocation DeclLoc,
4159 bool SuppressUserConversions,
4160 bool AllowExplicit) {
4161 assert(DeclType->isReferenceType() && "Reference init needs a reference");
4162
4163 // Most paths end in a failed conversion.
4164 ImplicitConversionSequence ICS;
4165 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4166
4167 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4168 QualType T2 = Init->getType();
4169
4170 // If the initializer is the address of an overloaded function, try
4171 // to resolve the overloaded function. If all goes well, T2 is the
4172 // type of the resulting function.
4173 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4174 DeclAccessPair Found;
4175 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4176 false, Found))
4177 T2 = Fn->getType();
4178 }
4179
4180 // Compute some basic properties of the types and the initializer.
4181 bool isRValRef = DeclType->isRValueReferenceType();
4182 bool DerivedToBase = false;
4183 bool ObjCConversion = false;
4184 bool ObjCLifetimeConversion = false;
4185 Expr::Classification InitCategory = Init->Classify(S.Context);
4186 Sema::ReferenceCompareResult RefRelationship
4187 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4188 ObjCConversion, ObjCLifetimeConversion);
4189
4190
4191 // C++0x [dcl.init.ref]p5:
4192 // A reference to type "cv1 T1" is initialized by an expression
4193 // of type "cv2 T2" as follows:
4194
4195 // -- If reference is an lvalue reference and the initializer expression
4196 if (!isRValRef) {
4197 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4198 // reference-compatible with "cv2 T2," or
4199 //
4200 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4201 if (InitCategory.isLValue() &&
4202 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
4203 // C++ [over.ics.ref]p1:
4204 // When a parameter of reference type binds directly (8.5.3)
4205 // to an argument expression, the implicit conversion sequence
4206 // is the identity conversion, unless the argument expression
4207 // has a type that is a derived class of the parameter type,
4208 // in which case the implicit conversion sequence is a
4209 // derived-to-base Conversion (13.3.3.1).
4210 ICS.setStandard();
4211 ICS.Standard.First = ICK_Identity;
4212 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4213 : ObjCConversion? ICK_Compatible_Conversion
4214 : ICK_Identity;
4215 ICS.Standard.Third = ICK_Identity;
4216 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4217 ICS.Standard.setToType(0, T2);
4218 ICS.Standard.setToType(1, T1);
4219 ICS.Standard.setToType(2, T1);
4220 ICS.Standard.ReferenceBinding = true;
4221 ICS.Standard.DirectBinding = true;
4222 ICS.Standard.IsLvalueReference = !isRValRef;
4223 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4224 ICS.Standard.BindsToRvalue = false;
4225 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4226 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4227 ICS.Standard.CopyConstructor = nullptr;
4228 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4229
4230 // Nothing more to do: the inaccessibility/ambiguity check for
4231 // derived-to-base conversions is suppressed when we're
4232 // computing the implicit conversion sequence (C++
4233 // [over.best.ics]p2).
4234 return ICS;
4235 }
4236
4237 // -- has a class type (i.e., T2 is a class type), where T1 is
4238 // not reference-related to T2, and can be implicitly
4239 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4240 // is reference-compatible with "cv3 T3" 92) (this
4241 // conversion is selected by enumerating the applicable
4242 // conversion functions (13.3.1.6) and choosing the best
4243 // one through overload resolution (13.3)),
4244 if (!SuppressUserConversions && T2->isRecordType() &&
4245 !S.RequireCompleteType(DeclLoc, T2, 0) &&
4246 RefRelationship == Sema::Ref_Incompatible) {
4247 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4248 Init, T2, /*AllowRvalues=*/false,
4249 AllowExplicit))
4250 return ICS;
4251 }
4252 }
4253
4254 // -- Otherwise, the reference shall be an lvalue reference to a
4255 // non-volatile const type (i.e., cv1 shall be const), or the reference
4256 // shall be an rvalue reference.
4257 //
4258 // We actually handle one oddity of C++ [over.ics.ref] at this
4259 // point, which is that, due to p2 (which short-circuits reference
4260 // binding by only attempting a simple conversion for non-direct
4261 // bindings) and p3's strange wording, we allow a const volatile
4262 // reference to bind to an rvalue. Hence the check for the presence
4263 // of "const" rather than checking for "const" being the only
4264 // qualifier.
4265 // This is also the point where rvalue references and lvalue inits no longer
4266 // go together.
4267 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4268 return ICS;
4269
4270 // -- If the initializer expression
4271 //
4272 // -- is an xvalue, class prvalue, array prvalue or function
4273 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4274 if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
4275 (InitCategory.isXValue() ||
4276 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4277 (InitCategory.isLValue() && T2->isFunctionType()))) {
4278 ICS.setStandard();
4279 ICS.Standard.First = ICK_Identity;
4280 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4281 : ObjCConversion? ICK_Compatible_Conversion
4282 : ICK_Identity;
4283 ICS.Standard.Third = ICK_Identity;
4284 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4285 ICS.Standard.setToType(0, T2);
4286 ICS.Standard.setToType(1, T1);
4287 ICS.Standard.setToType(2, T1);
4288 ICS.Standard.ReferenceBinding = true;
4289 // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4290 // binding unless we're binding to a class prvalue.
4291 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4292 // allow the use of rvalue references in C++98/03 for the benefit of
4293 // standard library implementors; therefore, we need the xvalue check here.
4294 ICS.Standard.DirectBinding =
4295 S.getLangOpts().CPlusPlus11 ||
4296 !(InitCategory.isPRValue() || T2->isRecordType());
4297 ICS.Standard.IsLvalueReference = !isRValRef;
4298 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4299 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4300 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4301 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4302 ICS.Standard.CopyConstructor = nullptr;
4303 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4304 return ICS;
4305 }
4306
4307 // -- has a class type (i.e., T2 is a class type), where T1 is not
4308 // reference-related to T2, and can be implicitly converted to
4309 // an xvalue, class prvalue, or function lvalue of type
4310 // "cv3 T3", where "cv1 T1" is reference-compatible with
4311 // "cv3 T3",
4312 //
4313 // then the reference is bound to the value of the initializer
4314 // expression in the first case and to the result of the conversion
4315 // in the second case (or, in either case, to an appropriate base
4316 // class subobject).
4317 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4318 T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
4319 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4320 Init, T2, /*AllowRvalues=*/true,
4321 AllowExplicit)) {
4322 // In the second case, if the reference is an rvalue reference
4323 // and the second standard conversion sequence of the
4324 // user-defined conversion sequence includes an lvalue-to-rvalue
4325 // conversion, the program is ill-formed.
4326 if (ICS.isUserDefined() && isRValRef &&
4327 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4328 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4329
4330 return ICS;
4331 }
4332
4333 // A temporary of function type cannot be created; don't even try.
4334 if (T1->isFunctionType())
4335 return ICS;
4336
4337 // -- Otherwise, a temporary of type "cv1 T1" is created and
4338 // initialized from the initializer expression using the
4339 // rules for a non-reference copy initialization (8.5). The
4340 // reference is then bound to the temporary. If T1 is
4341 // reference-related to T2, cv1 must be the same
4342 // cv-qualification as, or greater cv-qualification than,
4343 // cv2; otherwise, the program is ill-formed.
4344 if (RefRelationship == Sema::Ref_Related) {
4345 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4346 // we would be reference-compatible or reference-compatible with
4347 // added qualification. But that wasn't the case, so the reference
4348 // initialization fails.
4349 //
4350 // Note that we only want to check address spaces and cvr-qualifiers here.
4351 // ObjC GC and lifetime qualifiers aren't important.
4352 Qualifiers T1Quals = T1.getQualifiers();
4353 Qualifiers T2Quals = T2.getQualifiers();
4354 T1Quals.removeObjCGCAttr();
4355 T1Quals.removeObjCLifetime();
4356 T2Quals.removeObjCGCAttr();
4357 T2Quals.removeObjCLifetime();
4358 if (!T1Quals.compatiblyIncludes(T2Quals))
4359 return ICS;
4360 }
4361
4362 // If at least one of the types is a class type, the types are not
4363 // related, and we aren't allowed any user conversions, the
4364 // reference binding fails. This case is important for breaking
4365 // recursion, since TryImplicitConversion below will attempt to
4366 // create a temporary through the use of a copy constructor.
4367 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4368 (T1->isRecordType() || T2->isRecordType()))
4369 return ICS;
4370
4371 // If T1 is reference-related to T2 and the reference is an rvalue
4372 // reference, the initializer expression shall not be an lvalue.
4373 if (RefRelationship >= Sema::Ref_Related &&
4374 isRValRef && Init->Classify(S.Context).isLValue())
4375 return ICS;
4376
4377 // C++ [over.ics.ref]p2:
4378 // When a parameter of reference type is not bound directly to
4379 // an argument expression, the conversion sequence is the one
4380 // required to convert the argument expression to the
4381 // underlying type of the reference according to
4382 // 13.3.3.1. Conceptually, this conversion sequence corresponds
4383 // to copy-initializing a temporary of the underlying type with
4384 // the argument expression. Any difference in top-level
4385 // cv-qualification is subsumed by the initialization itself
4386 // and does not constitute a conversion.
4387 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4388 /*AllowExplicit=*/false,
4389 /*InOverloadResolution=*/false,
4390 /*CStyle=*/false,
4391 /*AllowObjCWritebackConversion=*/false,
4392 /*AllowObjCConversionOnExplicit=*/false);
4393
4394 // Of course, that's still a reference binding.
4395 if (ICS.isStandard()) {
4396 ICS.Standard.ReferenceBinding = true;
4397 ICS.Standard.IsLvalueReference = !isRValRef;
4398 ICS.Standard.BindsToFunctionLvalue = false;
4399 ICS.Standard.BindsToRvalue = true;
4400 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4401 ICS.Standard.ObjCLifetimeConversionBinding = false;
4402 } else if (ICS.isUserDefined()) {
4403 const ReferenceType *LValRefType =
4404 ICS.UserDefined.ConversionFunction->getReturnType()
4405 ->getAs<LValueReferenceType>();
4406
4407 // C++ [over.ics.ref]p3:
4408 // Except for an implicit object parameter, for which see 13.3.1, a
4409 // standard conversion sequence cannot be formed if it requires [...]
4410 // binding an rvalue reference to an lvalue other than a function
4411 // lvalue.
4412 // Note that the function case is not possible here.
4413 if (DeclType->isRValueReferenceType() && LValRefType) {
4414 // FIXME: This is the wrong BadConversionSequence. The problem is binding
4415 // an rvalue reference to a (non-function) lvalue, not binding an lvalue
4416 // reference to an rvalue!
4417 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4418 return ICS;
4419 }
4420
4421 ICS.UserDefined.Before.setAsIdentityConversion();
4422 ICS.UserDefined.After.ReferenceBinding = true;
4423 ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4424 ICS.UserDefined.After.BindsToFunctionLvalue = false;
4425 ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4426 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4427 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4428 }
4429
4430 return ICS;
4431 }
4432
4433 static ImplicitConversionSequence
4434 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4435 bool SuppressUserConversions,
4436 bool InOverloadResolution,
4437 bool AllowObjCWritebackConversion,
4438 bool AllowExplicit = false);
4439
4440 /// TryListConversion - Try to copy-initialize a value of type ToType from the
4441 /// initializer list From.
4442 static ImplicitConversionSequence
TryListConversion(Sema & S,InitListExpr * From,QualType ToType,bool SuppressUserConversions,bool InOverloadResolution,bool AllowObjCWritebackConversion)4443 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4444 bool SuppressUserConversions,
4445 bool InOverloadResolution,
4446 bool AllowObjCWritebackConversion) {
4447 // C++11 [over.ics.list]p1:
4448 // When an argument is an initializer list, it is not an expression and
4449 // special rules apply for converting it to a parameter type.
4450
4451 ImplicitConversionSequence Result;
4452 Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4453
4454 // We need a complete type for what follows. Incomplete types can never be
4455 // initialized from init lists.
4456 if (S.RequireCompleteType(From->getLocStart(), ToType, 0))
4457 return Result;
4458
4459 // C++11 [over.ics.list]p2:
4460 // If the parameter type is std::initializer_list<X> or "array of X" and
4461 // all the elements can be implicitly converted to X, the implicit
4462 // conversion sequence is the worst conversion necessary to convert an
4463 // element of the list to X.
4464 bool toStdInitializerList = false;
4465 QualType X;
4466 if (ToType->isArrayType())
4467 X = S.Context.getAsArrayType(ToType)->getElementType();
4468 else
4469 toStdInitializerList = S.isStdInitializerList(ToType, &X);
4470 if (!X.isNull()) {
4471 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4472 Expr *Init = From->getInit(i);
4473 ImplicitConversionSequence ICS =
4474 TryCopyInitialization(S, Init, X, SuppressUserConversions,
4475 InOverloadResolution,
4476 AllowObjCWritebackConversion);
4477 // If a single element isn't convertible, fail.
4478 if (ICS.isBad()) {
4479 Result = ICS;
4480 break;
4481 }
4482 // Otherwise, look for the worst conversion.
4483 if (Result.isBad() ||
4484 CompareImplicitConversionSequences(S, ICS, Result) ==
4485 ImplicitConversionSequence::Worse)
4486 Result = ICS;
4487 }
4488
4489 // For an empty list, we won't have computed any conversion sequence.
4490 // Introduce the identity conversion sequence.
4491 if (From->getNumInits() == 0) {
4492 Result.setStandard();
4493 Result.Standard.setAsIdentityConversion();
4494 Result.Standard.setFromType(ToType);
4495 Result.Standard.setAllToTypes(ToType);
4496 }
4497
4498 Result.setStdInitializerListElement(toStdInitializerList);
4499 return Result;
4500 }
4501
4502 // C++11 [over.ics.list]p3:
4503 // Otherwise, if the parameter is a non-aggregate class X and overload
4504 // resolution chooses a single best constructor [...] the implicit
4505 // conversion sequence is a user-defined conversion sequence. If multiple
4506 // constructors are viable but none is better than the others, the
4507 // implicit conversion sequence is a user-defined conversion sequence.
4508 if (ToType->isRecordType() && !ToType->isAggregateType()) {
4509 // This function can deal with initializer lists.
4510 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4511 /*AllowExplicit=*/false,
4512 InOverloadResolution, /*CStyle=*/false,
4513 AllowObjCWritebackConversion,
4514 /*AllowObjCConversionOnExplicit=*/false);
4515 }
4516
4517 // C++11 [over.ics.list]p4:
4518 // Otherwise, if the parameter has an aggregate type which can be
4519 // initialized from the initializer list [...] the implicit conversion
4520 // sequence is a user-defined conversion sequence.
4521 if (ToType->isAggregateType()) {
4522 // Type is an aggregate, argument is an init list. At this point it comes
4523 // down to checking whether the initialization works.
4524 // FIXME: Find out whether this parameter is consumed or not.
4525 InitializedEntity Entity =
4526 InitializedEntity::InitializeParameter(S.Context, ToType,
4527 /*Consumed=*/false);
4528 if (S.CanPerformCopyInitialization(Entity, From)) {
4529 Result.setUserDefined();
4530 Result.UserDefined.Before.setAsIdentityConversion();
4531 // Initializer lists don't have a type.
4532 Result.UserDefined.Before.setFromType(QualType());
4533 Result.UserDefined.Before.setAllToTypes(QualType());
4534
4535 Result.UserDefined.After.setAsIdentityConversion();
4536 Result.UserDefined.After.setFromType(ToType);
4537 Result.UserDefined.After.setAllToTypes(ToType);
4538 Result.UserDefined.ConversionFunction = nullptr;
4539 }
4540 return Result;
4541 }
4542
4543 // C++11 [over.ics.list]p5:
4544 // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4545 if (ToType->isReferenceType()) {
4546 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4547 // mention initializer lists in any way. So we go by what list-
4548 // initialization would do and try to extrapolate from that.
4549
4550 QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4551
4552 // If the initializer list has a single element that is reference-related
4553 // to the parameter type, we initialize the reference from that.
4554 if (From->getNumInits() == 1) {
4555 Expr *Init = From->getInit(0);
4556
4557 QualType T2 = Init->getType();
4558
4559 // If the initializer is the address of an overloaded function, try
4560 // to resolve the overloaded function. If all goes well, T2 is the
4561 // type of the resulting function.
4562 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4563 DeclAccessPair Found;
4564 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4565 Init, ToType, false, Found))
4566 T2 = Fn->getType();
4567 }
4568
4569 // Compute some basic properties of the types and the initializer.
4570 bool dummy1 = false;
4571 bool dummy2 = false;
4572 bool dummy3 = false;
4573 Sema::ReferenceCompareResult RefRelationship
4574 = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4575 dummy2, dummy3);
4576
4577 if (RefRelationship >= Sema::Ref_Related) {
4578 return TryReferenceInit(S, Init, ToType, /*FIXME*/From->getLocStart(),
4579 SuppressUserConversions,
4580 /*AllowExplicit=*/false);
4581 }
4582 }
4583
4584 // Otherwise, we bind the reference to a temporary created from the
4585 // initializer list.
4586 Result = TryListConversion(S, From, T1, SuppressUserConversions,
4587 InOverloadResolution,
4588 AllowObjCWritebackConversion);
4589 if (Result.isFailure())
4590 return Result;
4591 assert(!Result.isEllipsis() &&
4592 "Sub-initialization cannot result in ellipsis conversion.");
4593
4594 // Can we even bind to a temporary?
4595 if (ToType->isRValueReferenceType() ||
4596 (T1.isConstQualified() && !T1.isVolatileQualified())) {
4597 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4598 Result.UserDefined.After;
4599 SCS.ReferenceBinding = true;
4600 SCS.IsLvalueReference = ToType->isLValueReferenceType();
4601 SCS.BindsToRvalue = true;
4602 SCS.BindsToFunctionLvalue = false;
4603 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4604 SCS.ObjCLifetimeConversionBinding = false;
4605 } else
4606 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4607 From, ToType);
4608 return Result;
4609 }
4610
4611 // C++11 [over.ics.list]p6:
4612 // Otherwise, if the parameter type is not a class:
4613 if (!ToType->isRecordType()) {
4614 // - if the initializer list has one element, the implicit conversion
4615 // sequence is the one required to convert the element to the
4616 // parameter type.
4617 unsigned NumInits = From->getNumInits();
4618 if (NumInits == 1)
4619 Result = TryCopyInitialization(S, From->getInit(0), ToType,
4620 SuppressUserConversions,
4621 InOverloadResolution,
4622 AllowObjCWritebackConversion);
4623 // - if the initializer list has no elements, the implicit conversion
4624 // sequence is the identity conversion.
4625 else if (NumInits == 0) {
4626 Result.setStandard();
4627 Result.Standard.setAsIdentityConversion();
4628 Result.Standard.setFromType(ToType);
4629 Result.Standard.setAllToTypes(ToType);
4630 }
4631 return Result;
4632 }
4633
4634 // C++11 [over.ics.list]p7:
4635 // In all cases other than those enumerated above, no conversion is possible
4636 return Result;
4637 }
4638
4639 /// TryCopyInitialization - Try to copy-initialize a value of type
4640 /// ToType from the expression From. Return the implicit conversion
4641 /// sequence required to pass this argument, which may be a bad
4642 /// conversion sequence (meaning that the argument cannot be passed to
4643 /// a parameter of this type). If @p SuppressUserConversions, then we
4644 /// do not permit any user-defined conversion sequences.
4645 static ImplicitConversionSequence
TryCopyInitialization(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool InOverloadResolution,bool AllowObjCWritebackConversion,bool AllowExplicit)4646 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4647 bool SuppressUserConversions,
4648 bool InOverloadResolution,
4649 bool AllowObjCWritebackConversion,
4650 bool AllowExplicit) {
4651 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4652 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4653 InOverloadResolution,AllowObjCWritebackConversion);
4654
4655 if (ToType->isReferenceType())
4656 return TryReferenceInit(S, From, ToType,
4657 /*FIXME:*/From->getLocStart(),
4658 SuppressUserConversions,
4659 AllowExplicit);
4660
4661 return TryImplicitConversion(S, From, ToType,
4662 SuppressUserConversions,
4663 /*AllowExplicit=*/false,
4664 InOverloadResolution,
4665 /*CStyle=*/false,
4666 AllowObjCWritebackConversion,
4667 /*AllowObjCConversionOnExplicit=*/false);
4668 }
4669
TryCopyInitialization(const CanQualType FromQTy,const CanQualType ToQTy,Sema & S,SourceLocation Loc,ExprValueKind FromVK)4670 static bool TryCopyInitialization(const CanQualType FromQTy,
4671 const CanQualType ToQTy,
4672 Sema &S,
4673 SourceLocation Loc,
4674 ExprValueKind FromVK) {
4675 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4676 ImplicitConversionSequence ICS =
4677 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4678
4679 return !ICS.isBad();
4680 }
4681
4682 /// TryObjectArgumentInitialization - Try to initialize the object
4683 /// parameter of the given member function (@c Method) from the
4684 /// expression @p From.
4685 static ImplicitConversionSequence
TryObjectArgumentInitialization(Sema & S,QualType FromType,Expr::Classification FromClassification,CXXMethodDecl * Method,CXXRecordDecl * ActingContext)4686 TryObjectArgumentInitialization(Sema &S, QualType FromType,
4687 Expr::Classification FromClassification,
4688 CXXMethodDecl *Method,
4689 CXXRecordDecl *ActingContext) {
4690 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4691 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4692 // const volatile object.
4693 unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4694 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4695 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals);
4696
4697 // Set up the conversion sequence as a "bad" conversion, to allow us
4698 // to exit early.
4699 ImplicitConversionSequence ICS;
4700
4701 // We need to have an object of class type.
4702 if (const PointerType *PT = FromType->getAs<PointerType>()) {
4703 FromType = PT->getPointeeType();
4704
4705 // When we had a pointer, it's implicitly dereferenced, so we
4706 // better have an lvalue.
4707 assert(FromClassification.isLValue());
4708 }
4709
4710 assert(FromType->isRecordType());
4711
4712 // C++0x [over.match.funcs]p4:
4713 // For non-static member functions, the type of the implicit object
4714 // parameter is
4715 //
4716 // - "lvalue reference to cv X" for functions declared without a
4717 // ref-qualifier or with the & ref-qualifier
4718 // - "rvalue reference to cv X" for functions declared with the &&
4719 // ref-qualifier
4720 //
4721 // where X is the class of which the function is a member and cv is the
4722 // cv-qualification on the member function declaration.
4723 //
4724 // However, when finding an implicit conversion sequence for the argument, we
4725 // are not allowed to create temporaries or perform user-defined conversions
4726 // (C++ [over.match.funcs]p5). We perform a simplified version of
4727 // reference binding here, that allows class rvalues to bind to
4728 // non-constant references.
4729
4730 // First check the qualifiers.
4731 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4732 if (ImplicitParamType.getCVRQualifiers()
4733 != FromTypeCanon.getLocalCVRQualifiers() &&
4734 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4735 ICS.setBad(BadConversionSequence::bad_qualifiers,
4736 FromType, ImplicitParamType);
4737 return ICS;
4738 }
4739
4740 // Check that we have either the same type or a derived type. It
4741 // affects the conversion rank.
4742 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4743 ImplicitConversionKind SecondKind;
4744 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4745 SecondKind = ICK_Identity;
4746 } else if (S.IsDerivedFrom(FromType, ClassType))
4747 SecondKind = ICK_Derived_To_Base;
4748 else {
4749 ICS.setBad(BadConversionSequence::unrelated_class,
4750 FromType, ImplicitParamType);
4751 return ICS;
4752 }
4753
4754 // Check the ref-qualifier.
4755 switch (Method->getRefQualifier()) {
4756 case RQ_None:
4757 // Do nothing; we don't care about lvalueness or rvalueness.
4758 break;
4759
4760 case RQ_LValue:
4761 if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4762 // non-const lvalue reference cannot bind to an rvalue
4763 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4764 ImplicitParamType);
4765 return ICS;
4766 }
4767 break;
4768
4769 case RQ_RValue:
4770 if (!FromClassification.isRValue()) {
4771 // rvalue reference cannot bind to an lvalue
4772 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4773 ImplicitParamType);
4774 return ICS;
4775 }
4776 break;
4777 }
4778
4779 // Success. Mark this as a reference binding.
4780 ICS.setStandard();
4781 ICS.Standard.setAsIdentityConversion();
4782 ICS.Standard.Second = SecondKind;
4783 ICS.Standard.setFromType(FromType);
4784 ICS.Standard.setAllToTypes(ImplicitParamType);
4785 ICS.Standard.ReferenceBinding = true;
4786 ICS.Standard.DirectBinding = true;
4787 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4788 ICS.Standard.BindsToFunctionLvalue = false;
4789 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4790 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4791 = (Method->getRefQualifier() == RQ_None);
4792 return ICS;
4793 }
4794
4795 /// PerformObjectArgumentInitialization - Perform initialization of
4796 /// the implicit object parameter for the given Method with the given
4797 /// expression.
4798 ExprResult
PerformObjectArgumentInitialization(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,CXXMethodDecl * Method)4799 Sema::PerformObjectArgumentInitialization(Expr *From,
4800 NestedNameSpecifier *Qualifier,
4801 NamedDecl *FoundDecl,
4802 CXXMethodDecl *Method) {
4803 QualType FromRecordType, DestType;
4804 QualType ImplicitParamRecordType =
4805 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4806
4807 Expr::Classification FromClassification;
4808 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4809 FromRecordType = PT->getPointeeType();
4810 DestType = Method->getThisType(Context);
4811 FromClassification = Expr::Classification::makeSimpleLValue();
4812 } else {
4813 FromRecordType = From->getType();
4814 DestType = ImplicitParamRecordType;
4815 FromClassification = From->Classify(Context);
4816 }
4817
4818 // Note that we always use the true parent context when performing
4819 // the actual argument initialization.
4820 ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
4821 *this, From->getType(), FromClassification, Method, Method->getParent());
4822 if (ICS.isBad()) {
4823 if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4824 Qualifiers FromQs = FromRecordType.getQualifiers();
4825 Qualifiers ToQs = DestType.getQualifiers();
4826 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4827 if (CVR) {
4828 Diag(From->getLocStart(),
4829 diag::err_member_function_call_bad_cvr)
4830 << Method->getDeclName() << FromRecordType << (CVR - 1)
4831 << From->getSourceRange();
4832 Diag(Method->getLocation(), diag::note_previous_decl)
4833 << Method->getDeclName();
4834 return ExprError();
4835 }
4836 }
4837
4838 return Diag(From->getLocStart(),
4839 diag::err_implicit_object_parameter_init)
4840 << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
4841 }
4842
4843 if (ICS.Standard.Second == ICK_Derived_To_Base) {
4844 ExprResult FromRes =
4845 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
4846 if (FromRes.isInvalid())
4847 return ExprError();
4848 From = FromRes.get();
4849 }
4850
4851 if (!Context.hasSameType(From->getType(), DestType))
4852 From = ImpCastExprToType(From, DestType, CK_NoOp,
4853 From->getValueKind()).get();
4854 return From;
4855 }
4856
4857 /// TryContextuallyConvertToBool - Attempt to contextually convert the
4858 /// expression From to bool (C++0x [conv]p3).
4859 static ImplicitConversionSequence
TryContextuallyConvertToBool(Sema & S,Expr * From)4860 TryContextuallyConvertToBool(Sema &S, Expr *From) {
4861 return TryImplicitConversion(S, From, S.Context.BoolTy,
4862 /*SuppressUserConversions=*/false,
4863 /*AllowExplicit=*/true,
4864 /*InOverloadResolution=*/false,
4865 /*CStyle=*/false,
4866 /*AllowObjCWritebackConversion=*/false,
4867 /*AllowObjCConversionOnExplicit=*/false);
4868 }
4869
4870 /// PerformContextuallyConvertToBool - Perform a contextual conversion
4871 /// of the expression From to bool (C++0x [conv]p3).
PerformContextuallyConvertToBool(Expr * From)4872 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
4873 if (checkPlaceholderForOverload(*this, From))
4874 return ExprError();
4875
4876 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
4877 if (!ICS.isBad())
4878 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
4879
4880 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
4881 return Diag(From->getLocStart(),
4882 diag::err_typecheck_bool_condition)
4883 << From->getType() << From->getSourceRange();
4884 return ExprError();
4885 }
4886
4887 /// Check that the specified conversion is permitted in a converted constant
4888 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
4889 /// is acceptable.
CheckConvertedConstantConversions(Sema & S,StandardConversionSequence & SCS)4890 static bool CheckConvertedConstantConversions(Sema &S,
4891 StandardConversionSequence &SCS) {
4892 // Since we know that the target type is an integral or unscoped enumeration
4893 // type, most conversion kinds are impossible. All possible First and Third
4894 // conversions are fine.
4895 switch (SCS.Second) {
4896 case ICK_Identity:
4897 case ICK_NoReturn_Adjustment:
4898 case ICK_Integral_Promotion:
4899 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
4900 return true;
4901
4902 case ICK_Boolean_Conversion:
4903 // Conversion from an integral or unscoped enumeration type to bool is
4904 // classified as ICK_Boolean_Conversion, but it's also arguably an integral
4905 // conversion, so we allow it in a converted constant expression.
4906 //
4907 // FIXME: Per core issue 1407, we should not allow this, but that breaks
4908 // a lot of popular code. We should at least add a warning for this
4909 // (non-conforming) extension.
4910 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
4911 SCS.getToType(2)->isBooleanType();
4912
4913 case ICK_Pointer_Conversion:
4914 case ICK_Pointer_Member:
4915 // C++1z: null pointer conversions and null member pointer conversions are
4916 // only permitted if the source type is std::nullptr_t.
4917 return SCS.getFromType()->isNullPtrType();
4918
4919 case ICK_Floating_Promotion:
4920 case ICK_Complex_Promotion:
4921 case ICK_Floating_Conversion:
4922 case ICK_Complex_Conversion:
4923 case ICK_Floating_Integral:
4924 case ICK_Compatible_Conversion:
4925 case ICK_Derived_To_Base:
4926 case ICK_Vector_Conversion:
4927 case ICK_Vector_Splat:
4928 case ICK_Complex_Real:
4929 case ICK_Block_Pointer_Conversion:
4930 case ICK_TransparentUnionConversion:
4931 case ICK_Writeback_Conversion:
4932 case ICK_Zero_Event_Conversion:
4933 return false;
4934
4935 case ICK_Lvalue_To_Rvalue:
4936 case ICK_Array_To_Pointer:
4937 case ICK_Function_To_Pointer:
4938 llvm_unreachable("found a first conversion kind in Second");
4939
4940 case ICK_Qualification:
4941 llvm_unreachable("found a third conversion kind in Second");
4942
4943 case ICK_Num_Conversion_Kinds:
4944 break;
4945 }
4946
4947 llvm_unreachable("unknown conversion kind");
4948 }
4949
4950 /// CheckConvertedConstantExpression - Check that the expression From is a
4951 /// converted constant expression of type T, perform the conversion and produce
4952 /// the converted expression, per C++11 [expr.const]p3.
CheckConvertedConstantExpression(Sema & S,Expr * From,QualType T,APValue & Value,Sema::CCEKind CCE,bool RequireInt)4953 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
4954 QualType T, APValue &Value,
4955 Sema::CCEKind CCE,
4956 bool RequireInt) {
4957 assert(S.getLangOpts().CPlusPlus11 &&
4958 "converted constant expression outside C++11");
4959
4960 if (checkPlaceholderForOverload(S, From))
4961 return ExprError();
4962
4963 // C++1z [expr.const]p3:
4964 // A converted constant expression of type T is an expression,
4965 // implicitly converted to type T, where the converted
4966 // expression is a constant expression and the implicit conversion
4967 // sequence contains only [... list of conversions ...].
4968 ImplicitConversionSequence ICS =
4969 TryCopyInitialization(S, From, T,
4970 /*SuppressUserConversions=*/false,
4971 /*InOverloadResolution=*/false,
4972 /*AllowObjcWritebackConversion=*/false,
4973 /*AllowExplicit=*/false);
4974 StandardConversionSequence *SCS = nullptr;
4975 switch (ICS.getKind()) {
4976 case ImplicitConversionSequence::StandardConversion:
4977 SCS = &ICS.Standard;
4978 break;
4979 case ImplicitConversionSequence::UserDefinedConversion:
4980 // We are converting to a non-class type, so the Before sequence
4981 // must be trivial.
4982 SCS = &ICS.UserDefined.After;
4983 break;
4984 case ImplicitConversionSequence::AmbiguousConversion:
4985 case ImplicitConversionSequence::BadConversion:
4986 if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
4987 return S.Diag(From->getLocStart(),
4988 diag::err_typecheck_converted_constant_expression)
4989 << From->getType() << From->getSourceRange() << T;
4990 return ExprError();
4991
4992 case ImplicitConversionSequence::EllipsisConversion:
4993 llvm_unreachable("ellipsis conversion in converted constant expression");
4994 }
4995
4996 // Check that we would only use permitted conversions.
4997 if (!CheckConvertedConstantConversions(S, *SCS)) {
4998 return S.Diag(From->getLocStart(),
4999 diag::err_typecheck_converted_constant_expression_disallowed)
5000 << From->getType() << From->getSourceRange() << T;
5001 }
5002 // [...] and where the reference binding (if any) binds directly.
5003 if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5004 return S.Diag(From->getLocStart(),
5005 diag::err_typecheck_converted_constant_expression_indirect)
5006 << From->getType() << From->getSourceRange() << T;
5007 }
5008
5009 ExprResult Result =
5010 S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5011 if (Result.isInvalid())
5012 return Result;
5013
5014 // Check for a narrowing implicit conversion.
5015 APValue PreNarrowingValue;
5016 QualType PreNarrowingType;
5017 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5018 PreNarrowingType)) {
5019 case NK_Variable_Narrowing:
5020 // Implicit conversion to a narrower type, and the value is not a constant
5021 // expression. We'll diagnose this in a moment.
5022 case NK_Not_Narrowing:
5023 break;
5024
5025 case NK_Constant_Narrowing:
5026 S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
5027 << CCE << /*Constant*/1
5028 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5029 break;
5030
5031 case NK_Type_Narrowing:
5032 S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
5033 << CCE << /*Constant*/0 << From->getType() << T;
5034 break;
5035 }
5036
5037 // Check the expression is a constant expression.
5038 SmallVector<PartialDiagnosticAt, 8> Notes;
5039 Expr::EvalResult Eval;
5040 Eval.Diag = &Notes;
5041
5042 if ((T->isReferenceType()
5043 ? !Result.get()->EvaluateAsLValue(Eval, S.Context)
5044 : !Result.get()->EvaluateAsRValue(Eval, S.Context)) ||
5045 (RequireInt && !Eval.Val.isInt())) {
5046 // The expression can't be folded, so we can't keep it at this position in
5047 // the AST.
5048 Result = ExprError();
5049 } else {
5050 Value = Eval.Val;
5051
5052 if (Notes.empty()) {
5053 // It's a constant expression.
5054 return Result;
5055 }
5056 }
5057
5058 // It's not a constant expression. Produce an appropriate diagnostic.
5059 if (Notes.size() == 1 &&
5060 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5061 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5062 else {
5063 S.Diag(From->getLocStart(), diag::err_expr_not_cce)
5064 << CCE << From->getSourceRange();
5065 for (unsigned I = 0; I < Notes.size(); ++I)
5066 S.Diag(Notes[I].first, Notes[I].second);
5067 }
5068 return ExprError();
5069 }
5070
CheckConvertedConstantExpression(Expr * From,QualType T,APValue & Value,CCEKind CCE)5071 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5072 APValue &Value, CCEKind CCE) {
5073 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
5074 }
5075
CheckConvertedConstantExpression(Expr * From,QualType T,llvm::APSInt & Value,CCEKind CCE)5076 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5077 llvm::APSInt &Value,
5078 CCEKind CCE) {
5079 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
5080
5081 APValue V;
5082 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
5083 if (!R.isInvalid())
5084 Value = V.getInt();
5085 return R;
5086 }
5087
5088
5089 /// dropPointerConversions - If the given standard conversion sequence
5090 /// involves any pointer conversions, remove them. This may change
5091 /// the result type of the conversion sequence.
dropPointerConversion(StandardConversionSequence & SCS)5092 static void dropPointerConversion(StandardConversionSequence &SCS) {
5093 if (SCS.Second == ICK_Pointer_Conversion) {
5094 SCS.Second = ICK_Identity;
5095 SCS.Third = ICK_Identity;
5096 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5097 }
5098 }
5099
5100 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
5101 /// convert the expression From to an Objective-C pointer type.
5102 static ImplicitConversionSequence
TryContextuallyConvertToObjCPointer(Sema & S,Expr * From)5103 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5104 // Do an implicit conversion to 'id'.
5105 QualType Ty = S.Context.getObjCIdType();
5106 ImplicitConversionSequence ICS
5107 = TryImplicitConversion(S, From, Ty,
5108 // FIXME: Are these flags correct?
5109 /*SuppressUserConversions=*/false,
5110 /*AllowExplicit=*/true,
5111 /*InOverloadResolution=*/false,
5112 /*CStyle=*/false,
5113 /*AllowObjCWritebackConversion=*/false,
5114 /*AllowObjCConversionOnExplicit=*/true);
5115
5116 // Strip off any final conversions to 'id'.
5117 switch (ICS.getKind()) {
5118 case ImplicitConversionSequence::BadConversion:
5119 case ImplicitConversionSequence::AmbiguousConversion:
5120 case ImplicitConversionSequence::EllipsisConversion:
5121 break;
5122
5123 case ImplicitConversionSequence::UserDefinedConversion:
5124 dropPointerConversion(ICS.UserDefined.After);
5125 break;
5126
5127 case ImplicitConversionSequence::StandardConversion:
5128 dropPointerConversion(ICS.Standard);
5129 break;
5130 }
5131
5132 return ICS;
5133 }
5134
5135 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
5136 /// conversion of the expression From to an Objective-C pointer type.
PerformContextuallyConvertToObjCPointer(Expr * From)5137 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5138 if (checkPlaceholderForOverload(*this, From))
5139 return ExprError();
5140
5141 QualType Ty = Context.getObjCIdType();
5142 ImplicitConversionSequence ICS =
5143 TryContextuallyConvertToObjCPointer(*this, From);
5144 if (!ICS.isBad())
5145 return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5146 return ExprError();
5147 }
5148
5149 /// Determine whether the provided type is an integral type, or an enumeration
5150 /// type of a permitted flavor.
match(QualType T)5151 bool Sema::ICEConvertDiagnoser::match(QualType T) {
5152 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5153 : T->isIntegralOrUnscopedEnumerationType();
5154 }
5155
5156 static ExprResult
diagnoseAmbiguousConversion(Sema & SemaRef,SourceLocation Loc,Expr * From,Sema::ContextualImplicitConverter & Converter,QualType T,UnresolvedSetImpl & ViableConversions)5157 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5158 Sema::ContextualImplicitConverter &Converter,
5159 QualType T, UnresolvedSetImpl &ViableConversions) {
5160
5161 if (Converter.Suppress)
5162 return ExprError();
5163
5164 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5165 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5166 CXXConversionDecl *Conv =
5167 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5168 QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5169 Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5170 }
5171 return From;
5172 }
5173
5174 static bool
diagnoseNoViableConversion(Sema & SemaRef,SourceLocation Loc,Expr * & From,Sema::ContextualImplicitConverter & Converter,QualType T,bool HadMultipleCandidates,UnresolvedSetImpl & ExplicitConversions)5175 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5176 Sema::ContextualImplicitConverter &Converter,
5177 QualType T, bool HadMultipleCandidates,
5178 UnresolvedSetImpl &ExplicitConversions) {
5179 if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5180 DeclAccessPair Found = ExplicitConversions[0];
5181 CXXConversionDecl *Conversion =
5182 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5183
5184 // The user probably meant to invoke the given explicit
5185 // conversion; use it.
5186 QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5187 std::string TypeStr;
5188 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5189
5190 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5191 << FixItHint::CreateInsertion(From->getLocStart(),
5192 "static_cast<" + TypeStr + ">(")
5193 << FixItHint::CreateInsertion(
5194 SemaRef.getLocForEndOfToken(From->getLocEnd()), ")");
5195 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5196
5197 // If we aren't in a SFINAE context, build a call to the
5198 // explicit conversion function.
5199 if (SemaRef.isSFINAEContext())
5200 return true;
5201
5202 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5203 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5204 HadMultipleCandidates);
5205 if (Result.isInvalid())
5206 return true;
5207 // Record usage of conversion in an implicit cast.
5208 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5209 CK_UserDefinedConversion, Result.get(),
5210 nullptr, Result.get()->getValueKind());
5211 }
5212 return false;
5213 }
5214
recordConversion(Sema & SemaRef,SourceLocation Loc,Expr * & From,Sema::ContextualImplicitConverter & Converter,QualType T,bool HadMultipleCandidates,DeclAccessPair & Found)5215 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5216 Sema::ContextualImplicitConverter &Converter,
5217 QualType T, bool HadMultipleCandidates,
5218 DeclAccessPair &Found) {
5219 CXXConversionDecl *Conversion =
5220 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5221 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5222
5223 QualType ToType = Conversion->getConversionType().getNonReferenceType();
5224 if (!Converter.SuppressConversion) {
5225 if (SemaRef.isSFINAEContext())
5226 return true;
5227
5228 Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5229 << From->getSourceRange();
5230 }
5231
5232 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5233 HadMultipleCandidates);
5234 if (Result.isInvalid())
5235 return true;
5236 // Record usage of conversion in an implicit cast.
5237 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5238 CK_UserDefinedConversion, Result.get(),
5239 nullptr, Result.get()->getValueKind());
5240 return false;
5241 }
5242
finishContextualImplicitConversion(Sema & SemaRef,SourceLocation Loc,Expr * From,Sema::ContextualImplicitConverter & Converter)5243 static ExprResult finishContextualImplicitConversion(
5244 Sema &SemaRef, SourceLocation Loc, Expr *From,
5245 Sema::ContextualImplicitConverter &Converter) {
5246 if (!Converter.match(From->getType()) && !Converter.Suppress)
5247 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5248 << From->getSourceRange();
5249
5250 return SemaRef.DefaultLvalueConversion(From);
5251 }
5252
5253 static void
collectViableConversionCandidates(Sema & SemaRef,Expr * From,QualType ToType,UnresolvedSetImpl & ViableConversions,OverloadCandidateSet & CandidateSet)5254 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5255 UnresolvedSetImpl &ViableConversions,
5256 OverloadCandidateSet &CandidateSet) {
5257 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5258 DeclAccessPair FoundDecl = ViableConversions[I];
5259 NamedDecl *D = FoundDecl.getDecl();
5260 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5261 if (isa<UsingShadowDecl>(D))
5262 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5263
5264 CXXConversionDecl *Conv;
5265 FunctionTemplateDecl *ConvTemplate;
5266 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5267 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5268 else
5269 Conv = cast<CXXConversionDecl>(D);
5270
5271 if (ConvTemplate)
5272 SemaRef.AddTemplateConversionCandidate(
5273 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
5274 /*AllowObjCConversionOnExplicit=*/false);
5275 else
5276 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5277 ToType, CandidateSet,
5278 /*AllowObjCConversionOnExplicit=*/false);
5279 }
5280 }
5281
5282 /// \brief Attempt to convert the given expression to a type which is accepted
5283 /// by the given converter.
5284 ///
5285 /// This routine will attempt to convert an expression of class type to a
5286 /// type accepted by the specified converter. In C++11 and before, the class
5287 /// must have a single non-explicit conversion function converting to a matching
5288 /// type. In C++1y, there can be multiple such conversion functions, but only
5289 /// one target type.
5290 ///
5291 /// \param Loc The source location of the construct that requires the
5292 /// conversion.
5293 ///
5294 /// \param From The expression we're converting from.
5295 ///
5296 /// \param Converter Used to control and diagnose the conversion process.
5297 ///
5298 /// \returns The expression, converted to an integral or enumeration type if
5299 /// successful.
PerformContextualImplicitConversion(SourceLocation Loc,Expr * From,ContextualImplicitConverter & Converter)5300 ExprResult Sema::PerformContextualImplicitConversion(
5301 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5302 // We can't perform any more checking for type-dependent expressions.
5303 if (From->isTypeDependent())
5304 return From;
5305
5306 // Process placeholders immediately.
5307 if (From->hasPlaceholderType()) {
5308 ExprResult result = CheckPlaceholderExpr(From);
5309 if (result.isInvalid())
5310 return result;
5311 From = result.get();
5312 }
5313
5314 // If the expression already has a matching type, we're golden.
5315 QualType T = From->getType();
5316 if (Converter.match(T))
5317 return DefaultLvalueConversion(From);
5318
5319 // FIXME: Check for missing '()' if T is a function type?
5320
5321 // We can only perform contextual implicit conversions on objects of class
5322 // type.
5323 const RecordType *RecordTy = T->getAs<RecordType>();
5324 if (!RecordTy || !getLangOpts().CPlusPlus) {
5325 if (!Converter.Suppress)
5326 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5327 return From;
5328 }
5329
5330 // We must have a complete class type.
5331 struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5332 ContextualImplicitConverter &Converter;
5333 Expr *From;
5334
5335 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5336 : TypeDiagnoser(Converter.Suppress), Converter(Converter), From(From) {}
5337
5338 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5339 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5340 }
5341 } IncompleteDiagnoser(Converter, From);
5342
5343 if (RequireCompleteType(Loc, T, IncompleteDiagnoser))
5344 return From;
5345
5346 // Look for a conversion to an integral or enumeration type.
5347 UnresolvedSet<4>
5348 ViableConversions; // These are *potentially* viable in C++1y.
5349 UnresolvedSet<4> ExplicitConversions;
5350 std::pair<CXXRecordDecl::conversion_iterator,
5351 CXXRecordDecl::conversion_iterator> Conversions =
5352 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5353
5354 bool HadMultipleCandidates =
5355 (std::distance(Conversions.first, Conversions.second) > 1);
5356
5357 // To check that there is only one target type, in C++1y:
5358 QualType ToType;
5359 bool HasUniqueTargetType = true;
5360
5361 // Collect explicit or viable (potentially in C++1y) conversions.
5362 for (CXXRecordDecl::conversion_iterator I = Conversions.first,
5363 E = Conversions.second;
5364 I != E; ++I) {
5365 NamedDecl *D = (*I)->getUnderlyingDecl();
5366 CXXConversionDecl *Conversion;
5367 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5368 if (ConvTemplate) {
5369 if (getLangOpts().CPlusPlus14)
5370 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5371 else
5372 continue; // C++11 does not consider conversion operator templates(?).
5373 } else
5374 Conversion = cast<CXXConversionDecl>(D);
5375
5376 assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
5377 "Conversion operator templates are considered potentially "
5378 "viable in C++1y");
5379
5380 QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5381 if (Converter.match(CurToType) || ConvTemplate) {
5382
5383 if (Conversion->isExplicit()) {
5384 // FIXME: For C++1y, do we need this restriction?
5385 // cf. diagnoseNoViableConversion()
5386 if (!ConvTemplate)
5387 ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5388 } else {
5389 if (!ConvTemplate && getLangOpts().CPlusPlus14) {
5390 if (ToType.isNull())
5391 ToType = CurToType.getUnqualifiedType();
5392 else if (HasUniqueTargetType &&
5393 (CurToType.getUnqualifiedType() != ToType))
5394 HasUniqueTargetType = false;
5395 }
5396 ViableConversions.addDecl(I.getDecl(), I.getAccess());
5397 }
5398 }
5399 }
5400
5401 if (getLangOpts().CPlusPlus14) {
5402 // C++1y [conv]p6:
5403 // ... An expression e of class type E appearing in such a context
5404 // is said to be contextually implicitly converted to a specified
5405 // type T and is well-formed if and only if e can be implicitly
5406 // converted to a type T that is determined as follows: E is searched
5407 // for conversion functions whose return type is cv T or reference to
5408 // cv T such that T is allowed by the context. There shall be
5409 // exactly one such T.
5410
5411 // If no unique T is found:
5412 if (ToType.isNull()) {
5413 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5414 HadMultipleCandidates,
5415 ExplicitConversions))
5416 return ExprError();
5417 return finishContextualImplicitConversion(*this, Loc, From, Converter);
5418 }
5419
5420 // If more than one unique Ts are found:
5421 if (!HasUniqueTargetType)
5422 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5423 ViableConversions);
5424
5425 // If one unique T is found:
5426 // First, build a candidate set from the previously recorded
5427 // potentially viable conversions.
5428 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5429 collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5430 CandidateSet);
5431
5432 // Then, perform overload resolution over the candidate set.
5433 OverloadCandidateSet::iterator Best;
5434 switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
5435 case OR_Success: {
5436 // Apply this conversion.
5437 DeclAccessPair Found =
5438 DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
5439 if (recordConversion(*this, Loc, From, Converter, T,
5440 HadMultipleCandidates, Found))
5441 return ExprError();
5442 break;
5443 }
5444 case OR_Ambiguous:
5445 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5446 ViableConversions);
5447 case OR_No_Viable_Function:
5448 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5449 HadMultipleCandidates,
5450 ExplicitConversions))
5451 return ExprError();
5452 // fall through 'OR_Deleted' case.
5453 case OR_Deleted:
5454 // We'll complain below about a non-integral condition type.
5455 break;
5456 }
5457 } else {
5458 switch (ViableConversions.size()) {
5459 case 0: {
5460 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5461 HadMultipleCandidates,
5462 ExplicitConversions))
5463 return ExprError();
5464
5465 // We'll complain below about a non-integral condition type.
5466 break;
5467 }
5468 case 1: {
5469 // Apply this conversion.
5470 DeclAccessPair Found = ViableConversions[0];
5471 if (recordConversion(*this, Loc, From, Converter, T,
5472 HadMultipleCandidates, Found))
5473 return ExprError();
5474 break;
5475 }
5476 default:
5477 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5478 ViableConversions);
5479 }
5480 }
5481
5482 return finishContextualImplicitConversion(*this, Loc, From, Converter);
5483 }
5484
5485 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
5486 /// an acceptable non-member overloaded operator for a call whose
5487 /// arguments have types T1 (and, if non-empty, T2). This routine
5488 /// implements the check in C++ [over.match.oper]p3b2 concerning
5489 /// enumeration types.
IsAcceptableNonMemberOperatorCandidate(ASTContext & Context,FunctionDecl * Fn,ArrayRef<Expr * > Args)5490 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
5491 FunctionDecl *Fn,
5492 ArrayRef<Expr *> Args) {
5493 QualType T1 = Args[0]->getType();
5494 QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
5495
5496 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
5497 return true;
5498
5499 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
5500 return true;
5501
5502 const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
5503 if (Proto->getNumParams() < 1)
5504 return false;
5505
5506 if (T1->isEnumeralType()) {
5507 QualType ArgType = Proto->getParamType(0).getNonReferenceType();
5508 if (Context.hasSameUnqualifiedType(T1, ArgType))
5509 return true;
5510 }
5511
5512 if (Proto->getNumParams() < 2)
5513 return false;
5514
5515 if (!T2.isNull() && T2->isEnumeralType()) {
5516 QualType ArgType = Proto->getParamType(1).getNonReferenceType();
5517 if (Context.hasSameUnqualifiedType(T2, ArgType))
5518 return true;
5519 }
5520
5521 return false;
5522 }
5523
5524 /// AddOverloadCandidate - Adds the given function to the set of
5525 /// candidate functions, using the given function call arguments. If
5526 /// @p SuppressUserConversions, then don't allow user-defined
5527 /// conversions via constructors or conversion operators.
5528 ///
5529 /// \param PartialOverloading true if we are performing "partial" overloading
5530 /// based on an incomplete set of function arguments. This feature is used by
5531 /// code completion.
5532 void
AddOverloadCandidate(FunctionDecl * Function,DeclAccessPair FoundDecl,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading,bool AllowExplicit)5533 Sema::AddOverloadCandidate(FunctionDecl *Function,
5534 DeclAccessPair FoundDecl,
5535 ArrayRef<Expr *> Args,
5536 OverloadCandidateSet &CandidateSet,
5537 bool SuppressUserConversions,
5538 bool PartialOverloading,
5539 bool AllowExplicit) {
5540 const FunctionProtoType *Proto
5541 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5542 assert(Proto && "Functions without a prototype cannot be overloaded");
5543 assert(!Function->getDescribedFunctionTemplate() &&
5544 "Use AddTemplateOverloadCandidate for function templates");
5545
5546 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5547 if (!isa<CXXConstructorDecl>(Method)) {
5548 // If we get here, it's because we're calling a member function
5549 // that is named without a member access expression (e.g.,
5550 // "this->f") that was either written explicitly or created
5551 // implicitly. This can happen with a qualified call to a member
5552 // function, e.g., X::f(). We use an empty type for the implied
5553 // object argument (C++ [over.call.func]p3), and the acting context
5554 // is irrelevant.
5555 AddMethodCandidate(Method, FoundDecl, Method->getParent(),
5556 QualType(), Expr::Classification::makeSimpleLValue(),
5557 Args, CandidateSet, SuppressUserConversions);
5558 return;
5559 }
5560 // We treat a constructor like a non-member function, since its object
5561 // argument doesn't participate in overload resolution.
5562 }
5563
5564 if (!CandidateSet.isNewCandidate(Function))
5565 return;
5566
5567 // C++ [over.match.oper]p3:
5568 // if no operand has a class type, only those non-member functions in the
5569 // lookup set that have a first parameter of type T1 or "reference to
5570 // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
5571 // is a right operand) a second parameter of type T2 or "reference to
5572 // (possibly cv-qualified) T2", when T2 is an enumeration type, are
5573 // candidate functions.
5574 if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
5575 !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
5576 return;
5577
5578 // C++11 [class.copy]p11: [DR1402]
5579 // A defaulted move constructor that is defined as deleted is ignored by
5580 // overload resolution.
5581 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
5582 if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
5583 Constructor->isMoveConstructor())
5584 return;
5585
5586 // Overload resolution is always an unevaluated context.
5587 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5588
5589 // Add this candidate
5590 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
5591 Candidate.FoundDecl = FoundDecl;
5592 Candidate.Function = Function;
5593 Candidate.Viable = true;
5594 Candidate.IsSurrogate = false;
5595 Candidate.IgnoreObjectArgument = false;
5596 Candidate.ExplicitCallArguments = Args.size();
5597
5598 if (Constructor) {
5599 // C++ [class.copy]p3:
5600 // A member function template is never instantiated to perform the copy
5601 // of a class object to an object of its class type.
5602 QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5603 if (Args.size() == 1 &&
5604 Constructor->isSpecializationCopyingObject() &&
5605 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5606 IsDerivedFrom(Args[0]->getType(), ClassType))) {
5607 Candidate.Viable = false;
5608 Candidate.FailureKind = ovl_fail_illegal_constructor;
5609 return;
5610 }
5611 }
5612
5613 unsigned NumParams = Proto->getNumParams();
5614
5615 // (C++ 13.3.2p2): A candidate function having fewer than m
5616 // parameters is viable only if it has an ellipsis in its parameter
5617 // list (8.3.5).
5618 if ((Args.size() + (PartialOverloading && Args.size())) > NumParams &&
5619 !Proto->isVariadic()) {
5620 Candidate.Viable = false;
5621 Candidate.FailureKind = ovl_fail_too_many_arguments;
5622 return;
5623 }
5624
5625 // (C++ 13.3.2p2): A candidate function having more than m parameters
5626 // is viable only if the (m+1)st parameter has a default argument
5627 // (8.3.6). For the purposes of overload resolution, the
5628 // parameter list is truncated on the right, so that there are
5629 // exactly m parameters.
5630 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5631 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
5632 // Not enough arguments.
5633 Candidate.Viable = false;
5634 Candidate.FailureKind = ovl_fail_too_few_arguments;
5635 return;
5636 }
5637
5638 // (CUDA B.1): Check for invalid calls between targets.
5639 if (getLangOpts().CUDA)
5640 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5641 // Skip the check for callers that are implicit members, because in this
5642 // case we may not yet know what the member's target is; the target is
5643 // inferred for the member automatically, based on the bases and fields of
5644 // the class.
5645 if (!Caller->isImplicit() && CheckCUDATarget(Caller, Function)) {
5646 Candidate.Viable = false;
5647 Candidate.FailureKind = ovl_fail_bad_target;
5648 return;
5649 }
5650
5651 // Determine the implicit conversion sequences for each of the
5652 // arguments.
5653 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5654 if (ArgIdx < NumParams) {
5655 // (C++ 13.3.2p3): for F to be a viable function, there shall
5656 // exist for each argument an implicit conversion sequence
5657 // (13.3.3.1) that converts that argument to the corresponding
5658 // parameter of F.
5659 QualType ParamType = Proto->getParamType(ArgIdx);
5660 Candidate.Conversions[ArgIdx]
5661 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5662 SuppressUserConversions,
5663 /*InOverloadResolution=*/true,
5664 /*AllowObjCWritebackConversion=*/
5665 getLangOpts().ObjCAutoRefCount,
5666 AllowExplicit);
5667 if (Candidate.Conversions[ArgIdx].isBad()) {
5668 Candidate.Viable = false;
5669 Candidate.FailureKind = ovl_fail_bad_conversion;
5670 return;
5671 }
5672 } else {
5673 // (C++ 13.3.2p2): For the purposes of overload resolution, any
5674 // argument for which there is no corresponding parameter is
5675 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5676 Candidate.Conversions[ArgIdx].setEllipsis();
5677 }
5678 }
5679
5680 if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
5681 Candidate.Viable = false;
5682 Candidate.FailureKind = ovl_fail_enable_if;
5683 Candidate.DeductionFailure.Data = FailedAttr;
5684 return;
5685 }
5686 }
5687
SelectBestMethod(Selector Sel,MultiExprArg Args,bool IsInstance)5688 ObjCMethodDecl *Sema::SelectBestMethod(Selector Sel, MultiExprArg Args,
5689 bool IsInstance) {
5690 SmallVector<ObjCMethodDecl*, 4> Methods;
5691 if (!CollectMultipleMethodsInGlobalPool(Sel, Methods, IsInstance))
5692 return nullptr;
5693
5694 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
5695 bool Match = true;
5696 ObjCMethodDecl *Method = Methods[b];
5697 unsigned NumNamedArgs = Sel.getNumArgs();
5698 // Method might have more arguments than selector indicates. This is due
5699 // to addition of c-style arguments in method.
5700 if (Method->param_size() > NumNamedArgs)
5701 NumNamedArgs = Method->param_size();
5702 if (Args.size() < NumNamedArgs)
5703 continue;
5704
5705 for (unsigned i = 0; i < NumNamedArgs; i++) {
5706 // We can't do any type-checking on a type-dependent argument.
5707 if (Args[i]->isTypeDependent()) {
5708 Match = false;
5709 break;
5710 }
5711
5712 ParmVarDecl *param = Method->parameters()[i];
5713 Expr *argExpr = Args[i];
5714 assert(argExpr && "SelectBestMethod(): missing expression");
5715
5716 // Strip the unbridged-cast placeholder expression off unless it's
5717 // a consumed argument.
5718 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
5719 !param->hasAttr<CFConsumedAttr>())
5720 argExpr = stripARCUnbridgedCast(argExpr);
5721
5722 // If the parameter is __unknown_anytype, move on to the next method.
5723 if (param->getType() == Context.UnknownAnyTy) {
5724 Match = false;
5725 break;
5726 }
5727
5728 ImplicitConversionSequence ConversionState
5729 = TryCopyInitialization(*this, argExpr, param->getType(),
5730 /*SuppressUserConversions*/false,
5731 /*InOverloadResolution=*/true,
5732 /*AllowObjCWritebackConversion=*/
5733 getLangOpts().ObjCAutoRefCount,
5734 /*AllowExplicit*/false);
5735 if (ConversionState.isBad()) {
5736 Match = false;
5737 break;
5738 }
5739 }
5740 // Promote additional arguments to variadic methods.
5741 if (Match && Method->isVariadic()) {
5742 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
5743 if (Args[i]->isTypeDependent()) {
5744 Match = false;
5745 break;
5746 }
5747 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
5748 nullptr);
5749 if (Arg.isInvalid()) {
5750 Match = false;
5751 break;
5752 }
5753 }
5754 } else {
5755 // Check for extra arguments to non-variadic methods.
5756 if (Args.size() != NumNamedArgs)
5757 Match = false;
5758 else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
5759 // Special case when selectors have no argument. In this case, select
5760 // one with the most general result type of 'id'.
5761 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
5762 QualType ReturnT = Methods[b]->getReturnType();
5763 if (ReturnT->isObjCIdType())
5764 return Methods[b];
5765 }
5766 }
5767 }
5768
5769 if (Match)
5770 return Method;
5771 }
5772 return nullptr;
5773 }
5774
IsNotEnableIfAttr(Attr * A)5775 static bool IsNotEnableIfAttr(Attr *A) { return !isa<EnableIfAttr>(A); }
5776
CheckEnableIf(FunctionDecl * Function,ArrayRef<Expr * > Args,bool MissingImplicitThis)5777 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
5778 bool MissingImplicitThis) {
5779 // FIXME: specific_attr_iterator<EnableIfAttr> iterates in reverse order, but
5780 // we need to find the first failing one.
5781 if (!Function->hasAttrs())
5782 return nullptr;
5783 AttrVec Attrs = Function->getAttrs();
5784 AttrVec::iterator E = std::remove_if(Attrs.begin(), Attrs.end(),
5785 IsNotEnableIfAttr);
5786 if (Attrs.begin() == E)
5787 return nullptr;
5788 std::reverse(Attrs.begin(), E);
5789
5790 SFINAETrap Trap(*this);
5791
5792 // Convert the arguments.
5793 SmallVector<Expr *, 16> ConvertedArgs;
5794 bool InitializationFailed = false;
5795 bool ContainsValueDependentExpr = false;
5796 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5797 if (i == 0 && !MissingImplicitThis && isa<CXXMethodDecl>(Function) &&
5798 !cast<CXXMethodDecl>(Function)->isStatic() &&
5799 !isa<CXXConstructorDecl>(Function)) {
5800 CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
5801 ExprResult R =
5802 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
5803 Method, Method);
5804 if (R.isInvalid()) {
5805 InitializationFailed = true;
5806 break;
5807 }
5808 ContainsValueDependentExpr |= R.get()->isValueDependent();
5809 ConvertedArgs.push_back(R.get());
5810 } else {
5811 ExprResult R =
5812 PerformCopyInitialization(InitializedEntity::InitializeParameter(
5813 Context,
5814 Function->getParamDecl(i)),
5815 SourceLocation(),
5816 Args[i]);
5817 if (R.isInvalid()) {
5818 InitializationFailed = true;
5819 break;
5820 }
5821 ContainsValueDependentExpr |= R.get()->isValueDependent();
5822 ConvertedArgs.push_back(R.get());
5823 }
5824 }
5825
5826 if (InitializationFailed || Trap.hasErrorOccurred())
5827 return cast<EnableIfAttr>(Attrs[0]);
5828
5829 for (AttrVec::iterator I = Attrs.begin(); I != E; ++I) {
5830 APValue Result;
5831 EnableIfAttr *EIA = cast<EnableIfAttr>(*I);
5832 if (EIA->getCond()->isValueDependent()) {
5833 // Don't even try now, we'll examine it after instantiation.
5834 continue;
5835 }
5836
5837 if (!EIA->getCond()->EvaluateWithSubstitution(
5838 Result, Context, Function, llvm::makeArrayRef(ConvertedArgs))) {
5839 if (!ContainsValueDependentExpr)
5840 return EIA;
5841 } else if (!Result.isInt() || !Result.getInt().getBoolValue()) {
5842 return EIA;
5843 }
5844 }
5845 return nullptr;
5846 }
5847
5848 /// \brief Add all of the function declarations in the given function set to
5849 /// the overload candidate set.
AddFunctionCandidates(const UnresolvedSetImpl & Fns,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,TemplateArgumentListInfo * ExplicitTemplateArgs)5850 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
5851 ArrayRef<Expr *> Args,
5852 OverloadCandidateSet& CandidateSet,
5853 bool SuppressUserConversions,
5854 TemplateArgumentListInfo *ExplicitTemplateArgs) {
5855 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
5856 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
5857 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5858 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
5859 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
5860 cast<CXXMethodDecl>(FD)->getParent(),
5861 Args[0]->getType(), Args[0]->Classify(Context),
5862 Args.slice(1), CandidateSet,
5863 SuppressUserConversions);
5864 else
5865 AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
5866 SuppressUserConversions);
5867 } else {
5868 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
5869 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
5870 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
5871 AddMethodTemplateCandidate(FunTmpl, F.getPair(),
5872 cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
5873 ExplicitTemplateArgs,
5874 Args[0]->getType(),
5875 Args[0]->Classify(Context), Args.slice(1),
5876 CandidateSet, SuppressUserConversions);
5877 else
5878 AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
5879 ExplicitTemplateArgs, Args,
5880 CandidateSet, SuppressUserConversions);
5881 }
5882 }
5883 }
5884
5885 /// AddMethodCandidate - Adds a named decl (which is some kind of
5886 /// method) as a method candidate to the given overload set.
AddMethodCandidate(DeclAccessPair FoundDecl,QualType ObjectType,Expr::Classification ObjectClassification,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)5887 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
5888 QualType ObjectType,
5889 Expr::Classification ObjectClassification,
5890 ArrayRef<Expr *> Args,
5891 OverloadCandidateSet& CandidateSet,
5892 bool SuppressUserConversions) {
5893 NamedDecl *Decl = FoundDecl.getDecl();
5894 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
5895
5896 if (isa<UsingShadowDecl>(Decl))
5897 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
5898
5899 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
5900 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
5901 "Expected a member function template");
5902 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
5903 /*ExplicitArgs*/ nullptr,
5904 ObjectType, ObjectClassification,
5905 Args, CandidateSet,
5906 SuppressUserConversions);
5907 } else {
5908 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
5909 ObjectType, ObjectClassification,
5910 Args,
5911 CandidateSet, SuppressUserConversions);
5912 }
5913 }
5914
5915 /// AddMethodCandidate - Adds the given C++ member function to the set
5916 /// of candidate functions, using the given function call arguments
5917 /// and the object argument (@c Object). For example, in a call
5918 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
5919 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
5920 /// allow user-defined conversions via constructors or conversion
5921 /// operators.
5922 void
AddMethodCandidate(CXXMethodDecl * Method,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,QualType ObjectType,Expr::Classification ObjectClassification,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)5923 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
5924 CXXRecordDecl *ActingContext, QualType ObjectType,
5925 Expr::Classification ObjectClassification,
5926 ArrayRef<Expr *> Args,
5927 OverloadCandidateSet &CandidateSet,
5928 bool SuppressUserConversions) {
5929 const FunctionProtoType *Proto
5930 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
5931 assert(Proto && "Methods without a prototype cannot be overloaded");
5932 assert(!isa<CXXConstructorDecl>(Method) &&
5933 "Use AddOverloadCandidate for constructors");
5934
5935 if (!CandidateSet.isNewCandidate(Method))
5936 return;
5937
5938 // C++11 [class.copy]p23: [DR1402]
5939 // A defaulted move assignment operator that is defined as deleted is
5940 // ignored by overload resolution.
5941 if (Method->isDefaulted() && Method->isDeleted() &&
5942 Method->isMoveAssignmentOperator())
5943 return;
5944
5945 // Overload resolution is always an unevaluated context.
5946 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5947
5948 // Add this candidate
5949 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5950 Candidate.FoundDecl = FoundDecl;
5951 Candidate.Function = Method;
5952 Candidate.IsSurrogate = false;
5953 Candidate.IgnoreObjectArgument = false;
5954 Candidate.ExplicitCallArguments = Args.size();
5955
5956 unsigned NumParams = Proto->getNumParams();
5957
5958 // (C++ 13.3.2p2): A candidate function having fewer than m
5959 // parameters is viable only if it has an ellipsis in its parameter
5960 // list (8.3.5).
5961 if (Args.size() > NumParams && !Proto->isVariadic()) {
5962 Candidate.Viable = false;
5963 Candidate.FailureKind = ovl_fail_too_many_arguments;
5964 return;
5965 }
5966
5967 // (C++ 13.3.2p2): A candidate function having more than m parameters
5968 // is viable only if the (m+1)st parameter has a default argument
5969 // (8.3.6). For the purposes of overload resolution, the
5970 // parameter list is truncated on the right, so that there are
5971 // exactly m parameters.
5972 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
5973 if (Args.size() < MinRequiredArgs) {
5974 // Not enough arguments.
5975 Candidate.Viable = false;
5976 Candidate.FailureKind = ovl_fail_too_few_arguments;
5977 return;
5978 }
5979
5980 Candidate.Viable = true;
5981
5982 if (Method->isStatic() || ObjectType.isNull())
5983 // The implicit object argument is ignored.
5984 Candidate.IgnoreObjectArgument = true;
5985 else {
5986 // Determine the implicit conversion sequence for the object
5987 // parameter.
5988 Candidate.Conversions[0]
5989 = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
5990 Method, ActingContext);
5991 if (Candidate.Conversions[0].isBad()) {
5992 Candidate.Viable = false;
5993 Candidate.FailureKind = ovl_fail_bad_conversion;
5994 return;
5995 }
5996 }
5997
5998 // (CUDA B.1): Check for invalid calls between targets.
5999 if (getLangOpts().CUDA)
6000 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6001 if (CheckCUDATarget(Caller, Method)) {
6002 Candidate.Viable = false;
6003 Candidate.FailureKind = ovl_fail_bad_target;
6004 return;
6005 }
6006
6007 // Determine the implicit conversion sequences for each of the
6008 // arguments.
6009 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6010 if (ArgIdx < NumParams) {
6011 // (C++ 13.3.2p3): for F to be a viable function, there shall
6012 // exist for each argument an implicit conversion sequence
6013 // (13.3.3.1) that converts that argument to the corresponding
6014 // parameter of F.
6015 QualType ParamType = Proto->getParamType(ArgIdx);
6016 Candidate.Conversions[ArgIdx + 1]
6017 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6018 SuppressUserConversions,
6019 /*InOverloadResolution=*/true,
6020 /*AllowObjCWritebackConversion=*/
6021 getLangOpts().ObjCAutoRefCount);
6022 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6023 Candidate.Viable = false;
6024 Candidate.FailureKind = ovl_fail_bad_conversion;
6025 return;
6026 }
6027 } else {
6028 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6029 // argument for which there is no corresponding parameter is
6030 // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6031 Candidate.Conversions[ArgIdx + 1].setEllipsis();
6032 }
6033 }
6034
6035 if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
6036 Candidate.Viable = false;
6037 Candidate.FailureKind = ovl_fail_enable_if;
6038 Candidate.DeductionFailure.Data = FailedAttr;
6039 return;
6040 }
6041 }
6042
6043 /// \brief Add a C++ member function template as a candidate to the candidate
6044 /// set, using template argument deduction to produce an appropriate member
6045 /// function template specialization.
6046 void
AddMethodTemplateCandidate(FunctionTemplateDecl * MethodTmpl,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ObjectType,Expr::Classification ObjectClassification,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)6047 Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
6048 DeclAccessPair FoundDecl,
6049 CXXRecordDecl *ActingContext,
6050 TemplateArgumentListInfo *ExplicitTemplateArgs,
6051 QualType ObjectType,
6052 Expr::Classification ObjectClassification,
6053 ArrayRef<Expr *> Args,
6054 OverloadCandidateSet& CandidateSet,
6055 bool SuppressUserConversions) {
6056 if (!CandidateSet.isNewCandidate(MethodTmpl))
6057 return;
6058
6059 // C++ [over.match.funcs]p7:
6060 // In each case where a candidate is a function template, candidate
6061 // function template specializations are generated using template argument
6062 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
6063 // candidate functions in the usual way.113) A given name can refer to one
6064 // or more function templates and also to a set of overloaded non-template
6065 // functions. In such a case, the candidate functions generated from each
6066 // function template are combined with the set of non-template candidate
6067 // functions.
6068 TemplateDeductionInfo Info(CandidateSet.getLocation());
6069 FunctionDecl *Specialization = nullptr;
6070 if (TemplateDeductionResult Result
6071 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
6072 Specialization, Info)) {
6073 OverloadCandidate &Candidate = CandidateSet.addCandidate();
6074 Candidate.FoundDecl = FoundDecl;
6075 Candidate.Function = MethodTmpl->getTemplatedDecl();
6076 Candidate.Viable = false;
6077 Candidate.FailureKind = ovl_fail_bad_deduction;
6078 Candidate.IsSurrogate = false;
6079 Candidate.IgnoreObjectArgument = false;
6080 Candidate.ExplicitCallArguments = Args.size();
6081 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6082 Info);
6083 return;
6084 }
6085
6086 // Add the function template specialization produced by template argument
6087 // deduction as a candidate.
6088 assert(Specialization && "Missing member function template specialization?");
6089 assert(isa<CXXMethodDecl>(Specialization) &&
6090 "Specialization is not a member function?");
6091 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
6092 ActingContext, ObjectType, ObjectClassification, Args,
6093 CandidateSet, SuppressUserConversions);
6094 }
6095
6096 /// \brief Add a C++ function template specialization as a candidate
6097 /// in the candidate set, using template argument deduction to produce
6098 /// an appropriate function template specialization.
6099 void
AddTemplateOverloadCandidate(FunctionTemplateDecl * FunctionTemplate,DeclAccessPair FoundDecl,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)6100 Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
6101 DeclAccessPair FoundDecl,
6102 TemplateArgumentListInfo *ExplicitTemplateArgs,
6103 ArrayRef<Expr *> Args,
6104 OverloadCandidateSet& CandidateSet,
6105 bool SuppressUserConversions) {
6106 if (!CandidateSet.isNewCandidate(FunctionTemplate))
6107 return;
6108
6109 // C++ [over.match.funcs]p7:
6110 // In each case where a candidate is a function template, candidate
6111 // function template specializations are generated using template argument
6112 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
6113 // candidate functions in the usual way.113) A given name can refer to one
6114 // or more function templates and also to a set of overloaded non-template
6115 // functions. In such a case, the candidate functions generated from each
6116 // function template are combined with the set of non-template candidate
6117 // functions.
6118 TemplateDeductionInfo Info(CandidateSet.getLocation());
6119 FunctionDecl *Specialization = nullptr;
6120 if (TemplateDeductionResult Result
6121 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
6122 Specialization, Info)) {
6123 OverloadCandidate &Candidate = CandidateSet.addCandidate();
6124 Candidate.FoundDecl = FoundDecl;
6125 Candidate.Function = FunctionTemplate->getTemplatedDecl();
6126 Candidate.Viable = false;
6127 Candidate.FailureKind = ovl_fail_bad_deduction;
6128 Candidate.IsSurrogate = false;
6129 Candidate.IgnoreObjectArgument = false;
6130 Candidate.ExplicitCallArguments = Args.size();
6131 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6132 Info);
6133 return;
6134 }
6135
6136 // Add the function template specialization produced by template argument
6137 // deduction as a candidate.
6138 assert(Specialization && "Missing function template specialization?");
6139 AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
6140 SuppressUserConversions);
6141 }
6142
6143 /// Determine whether this is an allowable conversion from the result
6144 /// of an explicit conversion operator to the expected type, per C++
6145 /// [over.match.conv]p1 and [over.match.ref]p1.
6146 ///
6147 /// \param ConvType The return type of the conversion function.
6148 ///
6149 /// \param ToType The type we are converting to.
6150 ///
6151 /// \param AllowObjCPointerConversion Allow a conversion from one
6152 /// Objective-C pointer to another.
6153 ///
6154 /// \returns true if the conversion is allowable, false otherwise.
isAllowableExplicitConversion(Sema & S,QualType ConvType,QualType ToType,bool AllowObjCPointerConversion)6155 static bool isAllowableExplicitConversion(Sema &S,
6156 QualType ConvType, QualType ToType,
6157 bool AllowObjCPointerConversion) {
6158 QualType ToNonRefType = ToType.getNonReferenceType();
6159
6160 // Easy case: the types are the same.
6161 if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
6162 return true;
6163
6164 // Allow qualification conversions.
6165 bool ObjCLifetimeConversion;
6166 if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
6167 ObjCLifetimeConversion))
6168 return true;
6169
6170 // If we're not allowed to consider Objective-C pointer conversions,
6171 // we're done.
6172 if (!AllowObjCPointerConversion)
6173 return false;
6174
6175 // Is this an Objective-C pointer conversion?
6176 bool IncompatibleObjC = false;
6177 QualType ConvertedType;
6178 return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
6179 IncompatibleObjC);
6180 }
6181
6182 /// AddConversionCandidate - Add a C++ conversion function as a
6183 /// candidate in the candidate set (C++ [over.match.conv],
6184 /// C++ [over.match.copy]). From is the expression we're converting from,
6185 /// and ToType is the type that we're eventually trying to convert to
6186 /// (which may or may not be the same type as the type that the
6187 /// conversion function produces).
6188 void
AddConversionCandidate(CXXConversionDecl * Conversion,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,Expr * From,QualType ToType,OverloadCandidateSet & CandidateSet,bool AllowObjCConversionOnExplicit)6189 Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
6190 DeclAccessPair FoundDecl,
6191 CXXRecordDecl *ActingContext,
6192 Expr *From, QualType ToType,
6193 OverloadCandidateSet& CandidateSet,
6194 bool AllowObjCConversionOnExplicit) {
6195 assert(!Conversion->getDescribedFunctionTemplate() &&
6196 "Conversion function templates use AddTemplateConversionCandidate");
6197 QualType ConvType = Conversion->getConversionType().getNonReferenceType();
6198 if (!CandidateSet.isNewCandidate(Conversion))
6199 return;
6200
6201 // If the conversion function has an undeduced return type, trigger its
6202 // deduction now.
6203 if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
6204 if (DeduceReturnType(Conversion, From->getExprLoc()))
6205 return;
6206 ConvType = Conversion->getConversionType().getNonReferenceType();
6207 }
6208
6209 // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
6210 // operator is only a candidate if its return type is the target type or
6211 // can be converted to the target type with a qualification conversion.
6212 if (Conversion->isExplicit() &&
6213 !isAllowableExplicitConversion(*this, ConvType, ToType,
6214 AllowObjCConversionOnExplicit))
6215 return;
6216
6217 // Overload resolution is always an unevaluated context.
6218 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6219
6220 // Add this candidate
6221 OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
6222 Candidate.FoundDecl = FoundDecl;
6223 Candidate.Function = Conversion;
6224 Candidate.IsSurrogate = false;
6225 Candidate.IgnoreObjectArgument = false;
6226 Candidate.FinalConversion.setAsIdentityConversion();
6227 Candidate.FinalConversion.setFromType(ConvType);
6228 Candidate.FinalConversion.setAllToTypes(ToType);
6229 Candidate.Viable = true;
6230 Candidate.ExplicitCallArguments = 1;
6231
6232 // C++ [over.match.funcs]p4:
6233 // For conversion functions, the function is considered to be a member of
6234 // the class of the implicit implied object argument for the purpose of
6235 // defining the type of the implicit object parameter.
6236 //
6237 // Determine the implicit conversion sequence for the implicit
6238 // object parameter.
6239 QualType ImplicitParamType = From->getType();
6240 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
6241 ImplicitParamType = FromPtrType->getPointeeType();
6242 CXXRecordDecl *ConversionContext
6243 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
6244
6245 Candidate.Conversions[0]
6246 = TryObjectArgumentInitialization(*this, From->getType(),
6247 From->Classify(Context),
6248 Conversion, ConversionContext);
6249
6250 if (Candidate.Conversions[0].isBad()) {
6251 Candidate.Viable = false;
6252 Candidate.FailureKind = ovl_fail_bad_conversion;
6253 return;
6254 }
6255
6256 // We won't go through a user-defined type conversion function to convert a
6257 // derived to base as such conversions are given Conversion Rank. They only
6258 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
6259 QualType FromCanon
6260 = Context.getCanonicalType(From->getType().getUnqualifiedType());
6261 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
6262 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
6263 Candidate.Viable = false;
6264 Candidate.FailureKind = ovl_fail_trivial_conversion;
6265 return;
6266 }
6267
6268 // To determine what the conversion from the result of calling the
6269 // conversion function to the type we're eventually trying to
6270 // convert to (ToType), we need to synthesize a call to the
6271 // conversion function and attempt copy initialization from it. This
6272 // makes sure that we get the right semantics with respect to
6273 // lvalues/rvalues and the type. Fortunately, we can allocate this
6274 // call on the stack and we don't need its arguments to be
6275 // well-formed.
6276 DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
6277 VK_LValue, From->getLocStart());
6278 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
6279 Context.getPointerType(Conversion->getType()),
6280 CK_FunctionToPointerDecay,
6281 &ConversionRef, VK_RValue);
6282
6283 QualType ConversionType = Conversion->getConversionType();
6284 if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
6285 Candidate.Viable = false;
6286 Candidate.FailureKind = ovl_fail_bad_final_conversion;
6287 return;
6288 }
6289
6290 ExprValueKind VK = Expr::getValueKindForType(ConversionType);
6291
6292 // Note that it is safe to allocate CallExpr on the stack here because
6293 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
6294 // allocator).
6295 QualType CallResultType = ConversionType.getNonLValueExprType(Context);
6296 CallExpr Call(Context, &ConversionFn, None, CallResultType, VK,
6297 From->getLocStart());
6298 ImplicitConversionSequence ICS =
6299 TryCopyInitialization(*this, &Call, ToType,
6300 /*SuppressUserConversions=*/true,
6301 /*InOverloadResolution=*/false,
6302 /*AllowObjCWritebackConversion=*/false);
6303
6304 switch (ICS.getKind()) {
6305 case ImplicitConversionSequence::StandardConversion:
6306 Candidate.FinalConversion = ICS.Standard;
6307
6308 // C++ [over.ics.user]p3:
6309 // If the user-defined conversion is specified by a specialization of a
6310 // conversion function template, the second standard conversion sequence
6311 // shall have exact match rank.
6312 if (Conversion->getPrimaryTemplate() &&
6313 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
6314 Candidate.Viable = false;
6315 Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
6316 return;
6317 }
6318
6319 // C++0x [dcl.init.ref]p5:
6320 // In the second case, if the reference is an rvalue reference and
6321 // the second standard conversion sequence of the user-defined
6322 // conversion sequence includes an lvalue-to-rvalue conversion, the
6323 // program is ill-formed.
6324 if (ToType->isRValueReferenceType() &&
6325 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6326 Candidate.Viable = false;
6327 Candidate.FailureKind = ovl_fail_bad_final_conversion;
6328 return;
6329 }
6330 break;
6331
6332 case ImplicitConversionSequence::BadConversion:
6333 Candidate.Viable = false;
6334 Candidate.FailureKind = ovl_fail_bad_final_conversion;
6335 return;
6336
6337 default:
6338 llvm_unreachable(
6339 "Can only end up with a standard conversion sequence or failure");
6340 }
6341
6342 if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
6343 Candidate.Viable = false;
6344 Candidate.FailureKind = ovl_fail_enable_if;
6345 Candidate.DeductionFailure.Data = FailedAttr;
6346 return;
6347 }
6348 }
6349
6350 /// \brief Adds a conversion function template specialization
6351 /// candidate to the overload set, using template argument deduction
6352 /// to deduce the template arguments of the conversion function
6353 /// template from the type that we are converting to (C++
6354 /// [temp.deduct.conv]).
6355 void
AddTemplateConversionCandidate(FunctionTemplateDecl * FunctionTemplate,DeclAccessPair FoundDecl,CXXRecordDecl * ActingDC,Expr * From,QualType ToType,OverloadCandidateSet & CandidateSet,bool AllowObjCConversionOnExplicit)6356 Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
6357 DeclAccessPair FoundDecl,
6358 CXXRecordDecl *ActingDC,
6359 Expr *From, QualType ToType,
6360 OverloadCandidateSet &CandidateSet,
6361 bool AllowObjCConversionOnExplicit) {
6362 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
6363 "Only conversion function templates permitted here");
6364
6365 if (!CandidateSet.isNewCandidate(FunctionTemplate))
6366 return;
6367
6368 TemplateDeductionInfo Info(CandidateSet.getLocation());
6369 CXXConversionDecl *Specialization = nullptr;
6370 if (TemplateDeductionResult Result
6371 = DeduceTemplateArguments(FunctionTemplate, ToType,
6372 Specialization, Info)) {
6373 OverloadCandidate &Candidate = CandidateSet.addCandidate();
6374 Candidate.FoundDecl = FoundDecl;
6375 Candidate.Function = FunctionTemplate->getTemplatedDecl();
6376 Candidate.Viable = false;
6377 Candidate.FailureKind = ovl_fail_bad_deduction;
6378 Candidate.IsSurrogate = false;
6379 Candidate.IgnoreObjectArgument = false;
6380 Candidate.ExplicitCallArguments = 1;
6381 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6382 Info);
6383 return;
6384 }
6385
6386 // Add the conversion function template specialization produced by
6387 // template argument deduction as a candidate.
6388 assert(Specialization && "Missing function template specialization?");
6389 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
6390 CandidateSet, AllowObjCConversionOnExplicit);
6391 }
6392
6393 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
6394 /// converts the given @c Object to a function pointer via the
6395 /// conversion function @c Conversion, and then attempts to call it
6396 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
6397 /// the type of function that we'll eventually be calling.
AddSurrogateCandidate(CXXConversionDecl * Conversion,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,const FunctionProtoType * Proto,Expr * Object,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)6398 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
6399 DeclAccessPair FoundDecl,
6400 CXXRecordDecl *ActingContext,
6401 const FunctionProtoType *Proto,
6402 Expr *Object,
6403 ArrayRef<Expr *> Args,
6404 OverloadCandidateSet& CandidateSet) {
6405 if (!CandidateSet.isNewCandidate(Conversion))
6406 return;
6407
6408 // Overload resolution is always an unevaluated context.
6409 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6410
6411 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
6412 Candidate.FoundDecl = FoundDecl;
6413 Candidate.Function = nullptr;
6414 Candidate.Surrogate = Conversion;
6415 Candidate.Viable = true;
6416 Candidate.IsSurrogate = true;
6417 Candidate.IgnoreObjectArgument = false;
6418 Candidate.ExplicitCallArguments = Args.size();
6419
6420 // Determine the implicit conversion sequence for the implicit
6421 // object parameter.
6422 ImplicitConversionSequence ObjectInit
6423 = TryObjectArgumentInitialization(*this, Object->getType(),
6424 Object->Classify(Context),
6425 Conversion, ActingContext);
6426 if (ObjectInit.isBad()) {
6427 Candidate.Viable = false;
6428 Candidate.FailureKind = ovl_fail_bad_conversion;
6429 Candidate.Conversions[0] = ObjectInit;
6430 return;
6431 }
6432
6433 // The first conversion is actually a user-defined conversion whose
6434 // first conversion is ObjectInit's standard conversion (which is
6435 // effectively a reference binding). Record it as such.
6436 Candidate.Conversions[0].setUserDefined();
6437 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
6438 Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
6439 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
6440 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
6441 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
6442 Candidate.Conversions[0].UserDefined.After
6443 = Candidate.Conversions[0].UserDefined.Before;
6444 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
6445
6446 // Find the
6447 unsigned NumParams = Proto->getNumParams();
6448
6449 // (C++ 13.3.2p2): A candidate function having fewer than m
6450 // parameters is viable only if it has an ellipsis in its parameter
6451 // list (8.3.5).
6452 if (Args.size() > NumParams && !Proto->isVariadic()) {
6453 Candidate.Viable = false;
6454 Candidate.FailureKind = ovl_fail_too_many_arguments;
6455 return;
6456 }
6457
6458 // Function types don't have any default arguments, so just check if
6459 // we have enough arguments.
6460 if (Args.size() < NumParams) {
6461 // Not enough arguments.
6462 Candidate.Viable = false;
6463 Candidate.FailureKind = ovl_fail_too_few_arguments;
6464 return;
6465 }
6466
6467 // Determine the implicit conversion sequences for each of the
6468 // arguments.
6469 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6470 if (ArgIdx < NumParams) {
6471 // (C++ 13.3.2p3): for F to be a viable function, there shall
6472 // exist for each argument an implicit conversion sequence
6473 // (13.3.3.1) that converts that argument to the corresponding
6474 // parameter of F.
6475 QualType ParamType = Proto->getParamType(ArgIdx);
6476 Candidate.Conversions[ArgIdx + 1]
6477 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6478 /*SuppressUserConversions=*/false,
6479 /*InOverloadResolution=*/false,
6480 /*AllowObjCWritebackConversion=*/
6481 getLangOpts().ObjCAutoRefCount);
6482 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6483 Candidate.Viable = false;
6484 Candidate.FailureKind = ovl_fail_bad_conversion;
6485 return;
6486 }
6487 } else {
6488 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6489 // argument for which there is no corresponding parameter is
6490 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6491 Candidate.Conversions[ArgIdx + 1].setEllipsis();
6492 }
6493 }
6494
6495 if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
6496 Candidate.Viable = false;
6497 Candidate.FailureKind = ovl_fail_enable_if;
6498 Candidate.DeductionFailure.Data = FailedAttr;
6499 return;
6500 }
6501 }
6502
6503 /// \brief Add overload candidates for overloaded operators that are
6504 /// member functions.
6505 ///
6506 /// Add the overloaded operator candidates that are member functions
6507 /// for the operator Op that was used in an operator expression such
6508 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
6509 /// CandidateSet will store the added overload candidates. (C++
6510 /// [over.match.oper]).
AddMemberOperatorCandidates(OverloadedOperatorKind Op,SourceLocation OpLoc,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,SourceRange OpRange)6511 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
6512 SourceLocation OpLoc,
6513 ArrayRef<Expr *> Args,
6514 OverloadCandidateSet& CandidateSet,
6515 SourceRange OpRange) {
6516 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6517
6518 // C++ [over.match.oper]p3:
6519 // For a unary operator @ with an operand of a type whose
6520 // cv-unqualified version is T1, and for a binary operator @ with
6521 // a left operand of a type whose cv-unqualified version is T1 and
6522 // a right operand of a type whose cv-unqualified version is T2,
6523 // three sets of candidate functions, designated member
6524 // candidates, non-member candidates and built-in candidates, are
6525 // constructed as follows:
6526 QualType T1 = Args[0]->getType();
6527
6528 // -- If T1 is a complete class type or a class currently being
6529 // defined, the set of member candidates is the result of the
6530 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
6531 // the set of member candidates is empty.
6532 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
6533 // Complete the type if it can be completed.
6534 RequireCompleteType(OpLoc, T1, 0);
6535 // If the type is neither complete nor being defined, bail out now.
6536 if (!T1Rec->getDecl()->getDefinition())
6537 return;
6538
6539 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
6540 LookupQualifiedName(Operators, T1Rec->getDecl());
6541 Operators.suppressDiagnostics();
6542
6543 for (LookupResult::iterator Oper = Operators.begin(),
6544 OperEnd = Operators.end();
6545 Oper != OperEnd;
6546 ++Oper)
6547 AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
6548 Args[0]->Classify(Context),
6549 Args.slice(1),
6550 CandidateSet,
6551 /* SuppressUserConversions = */ false);
6552 }
6553 }
6554
6555 /// AddBuiltinCandidate - Add a candidate for a built-in
6556 /// operator. ResultTy and ParamTys are the result and parameter types
6557 /// of the built-in candidate, respectively. Args and NumArgs are the
6558 /// arguments being passed to the candidate. IsAssignmentOperator
6559 /// should be true when this built-in candidate is an assignment
6560 /// operator. NumContextualBoolArguments is the number of arguments
6561 /// (at the beginning of the argument list) that will be contextually
6562 /// converted to bool.
AddBuiltinCandidate(QualType ResultTy,QualType * ParamTys,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool IsAssignmentOperator,unsigned NumContextualBoolArguments)6563 void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
6564 ArrayRef<Expr *> Args,
6565 OverloadCandidateSet& CandidateSet,
6566 bool IsAssignmentOperator,
6567 unsigned NumContextualBoolArguments) {
6568 // Overload resolution is always an unevaluated context.
6569 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6570
6571 // Add this candidate
6572 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
6573 Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
6574 Candidate.Function = nullptr;
6575 Candidate.IsSurrogate = false;
6576 Candidate.IgnoreObjectArgument = false;
6577 Candidate.BuiltinTypes.ResultTy = ResultTy;
6578 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
6579 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
6580
6581 // Determine the implicit conversion sequences for each of the
6582 // arguments.
6583 Candidate.Viable = true;
6584 Candidate.ExplicitCallArguments = Args.size();
6585 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6586 // C++ [over.match.oper]p4:
6587 // For the built-in assignment operators, conversions of the
6588 // left operand are restricted as follows:
6589 // -- no temporaries are introduced to hold the left operand, and
6590 // -- no user-defined conversions are applied to the left
6591 // operand to achieve a type match with the left-most
6592 // parameter of a built-in candidate.
6593 //
6594 // We block these conversions by turning off user-defined
6595 // conversions, since that is the only way that initialization of
6596 // a reference to a non-class type can occur from something that
6597 // is not of the same type.
6598 if (ArgIdx < NumContextualBoolArguments) {
6599 assert(ParamTys[ArgIdx] == Context.BoolTy &&
6600 "Contextual conversion to bool requires bool type");
6601 Candidate.Conversions[ArgIdx]
6602 = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
6603 } else {
6604 Candidate.Conversions[ArgIdx]
6605 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
6606 ArgIdx == 0 && IsAssignmentOperator,
6607 /*InOverloadResolution=*/false,
6608 /*AllowObjCWritebackConversion=*/
6609 getLangOpts().ObjCAutoRefCount);
6610 }
6611 if (Candidate.Conversions[ArgIdx].isBad()) {
6612 Candidate.Viable = false;
6613 Candidate.FailureKind = ovl_fail_bad_conversion;
6614 break;
6615 }
6616 }
6617 }
6618
6619 namespace {
6620
6621 /// BuiltinCandidateTypeSet - A set of types that will be used for the
6622 /// candidate operator functions for built-in operators (C++
6623 /// [over.built]). The types are separated into pointer types and
6624 /// enumeration types.
6625 class BuiltinCandidateTypeSet {
6626 /// TypeSet - A set of types.
6627 typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
6628
6629 /// PointerTypes - The set of pointer types that will be used in the
6630 /// built-in candidates.
6631 TypeSet PointerTypes;
6632
6633 /// MemberPointerTypes - The set of member pointer types that will be
6634 /// used in the built-in candidates.
6635 TypeSet MemberPointerTypes;
6636
6637 /// EnumerationTypes - The set of enumeration types that will be
6638 /// used in the built-in candidates.
6639 TypeSet EnumerationTypes;
6640
6641 /// \brief The set of vector types that will be used in the built-in
6642 /// candidates.
6643 TypeSet VectorTypes;
6644
6645 /// \brief A flag indicating non-record types are viable candidates
6646 bool HasNonRecordTypes;
6647
6648 /// \brief A flag indicating whether either arithmetic or enumeration types
6649 /// were present in the candidate set.
6650 bool HasArithmeticOrEnumeralTypes;
6651
6652 /// \brief A flag indicating whether the nullptr type was present in the
6653 /// candidate set.
6654 bool HasNullPtrType;
6655
6656 /// Sema - The semantic analysis instance where we are building the
6657 /// candidate type set.
6658 Sema &SemaRef;
6659
6660 /// Context - The AST context in which we will build the type sets.
6661 ASTContext &Context;
6662
6663 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6664 const Qualifiers &VisibleQuals);
6665 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
6666
6667 public:
6668 /// iterator - Iterates through the types that are part of the set.
6669 typedef TypeSet::iterator iterator;
6670
BuiltinCandidateTypeSet(Sema & SemaRef)6671 BuiltinCandidateTypeSet(Sema &SemaRef)
6672 : HasNonRecordTypes(false),
6673 HasArithmeticOrEnumeralTypes(false),
6674 HasNullPtrType(false),
6675 SemaRef(SemaRef),
6676 Context(SemaRef.Context) { }
6677
6678 void AddTypesConvertedFrom(QualType Ty,
6679 SourceLocation Loc,
6680 bool AllowUserConversions,
6681 bool AllowExplicitConversions,
6682 const Qualifiers &VisibleTypeConversionsQuals);
6683
6684 /// pointer_begin - First pointer type found;
pointer_begin()6685 iterator pointer_begin() { return PointerTypes.begin(); }
6686
6687 /// pointer_end - Past the last pointer type found;
pointer_end()6688 iterator pointer_end() { return PointerTypes.end(); }
6689
6690 /// member_pointer_begin - First member pointer type found;
member_pointer_begin()6691 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
6692
6693 /// member_pointer_end - Past the last member pointer type found;
member_pointer_end()6694 iterator member_pointer_end() { return MemberPointerTypes.end(); }
6695
6696 /// enumeration_begin - First enumeration type found;
enumeration_begin()6697 iterator enumeration_begin() { return EnumerationTypes.begin(); }
6698
6699 /// enumeration_end - Past the last enumeration type found;
enumeration_end()6700 iterator enumeration_end() { return EnumerationTypes.end(); }
6701
vector_begin()6702 iterator vector_begin() { return VectorTypes.begin(); }
vector_end()6703 iterator vector_end() { return VectorTypes.end(); }
6704
hasNonRecordTypes()6705 bool hasNonRecordTypes() { return HasNonRecordTypes; }
hasArithmeticOrEnumeralTypes()6706 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
hasNullPtrType() const6707 bool hasNullPtrType() const { return HasNullPtrType; }
6708 };
6709
6710 } // end anonymous namespace
6711
6712 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
6713 /// the set of pointer types along with any more-qualified variants of
6714 /// that type. For example, if @p Ty is "int const *", this routine
6715 /// will add "int const *", "int const volatile *", "int const
6716 /// restrict *", and "int const volatile restrict *" to the set of
6717 /// pointer types. Returns true if the add of @p Ty itself succeeded,
6718 /// false otherwise.
6719 ///
6720 /// FIXME: what to do about extended qualifiers?
6721 bool
AddPointerWithMoreQualifiedTypeVariants(QualType Ty,const Qualifiers & VisibleQuals)6722 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6723 const Qualifiers &VisibleQuals) {
6724
6725 // Insert this type.
6726 if (!PointerTypes.insert(Ty).second)
6727 return false;
6728
6729 QualType PointeeTy;
6730 const PointerType *PointerTy = Ty->getAs<PointerType>();
6731 bool buildObjCPtr = false;
6732 if (!PointerTy) {
6733 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
6734 PointeeTy = PTy->getPointeeType();
6735 buildObjCPtr = true;
6736 } else {
6737 PointeeTy = PointerTy->getPointeeType();
6738 }
6739
6740 // Don't add qualified variants of arrays. For one, they're not allowed
6741 // (the qualifier would sink to the element type), and for another, the
6742 // only overload situation where it matters is subscript or pointer +- int,
6743 // and those shouldn't have qualifier variants anyway.
6744 if (PointeeTy->isArrayType())
6745 return true;
6746
6747 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6748 bool hasVolatile = VisibleQuals.hasVolatile();
6749 bool hasRestrict = VisibleQuals.hasRestrict();
6750
6751 // Iterate through all strict supersets of BaseCVR.
6752 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6753 if ((CVR | BaseCVR) != CVR) continue;
6754 // Skip over volatile if no volatile found anywhere in the types.
6755 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
6756
6757 // Skip over restrict if no restrict found anywhere in the types, or if
6758 // the type cannot be restrict-qualified.
6759 if ((CVR & Qualifiers::Restrict) &&
6760 (!hasRestrict ||
6761 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
6762 continue;
6763
6764 // Build qualified pointee type.
6765 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6766
6767 // Build qualified pointer type.
6768 QualType QPointerTy;
6769 if (!buildObjCPtr)
6770 QPointerTy = Context.getPointerType(QPointeeTy);
6771 else
6772 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
6773
6774 // Insert qualified pointer type.
6775 PointerTypes.insert(QPointerTy);
6776 }
6777
6778 return true;
6779 }
6780
6781 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
6782 /// to the set of pointer types along with any more-qualified variants of
6783 /// that type. For example, if @p Ty is "int const *", this routine
6784 /// will add "int const *", "int const volatile *", "int const
6785 /// restrict *", and "int const volatile restrict *" to the set of
6786 /// pointer types. Returns true if the add of @p Ty itself succeeded,
6787 /// false otherwise.
6788 ///
6789 /// FIXME: what to do about extended qualifiers?
6790 bool
AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty)6791 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
6792 QualType Ty) {
6793 // Insert this type.
6794 if (!MemberPointerTypes.insert(Ty).second)
6795 return false;
6796
6797 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
6798 assert(PointerTy && "type was not a member pointer type!");
6799
6800 QualType PointeeTy = PointerTy->getPointeeType();
6801 // Don't add qualified variants of arrays. For one, they're not allowed
6802 // (the qualifier would sink to the element type), and for another, the
6803 // only overload situation where it matters is subscript or pointer +- int,
6804 // and those shouldn't have qualifier variants anyway.
6805 if (PointeeTy->isArrayType())
6806 return true;
6807 const Type *ClassTy = PointerTy->getClass();
6808
6809 // Iterate through all strict supersets of the pointee type's CVR
6810 // qualifiers.
6811 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6812 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6813 if ((CVR | BaseCVR) != CVR) continue;
6814
6815 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6816 MemberPointerTypes.insert(
6817 Context.getMemberPointerType(QPointeeTy, ClassTy));
6818 }
6819
6820 return true;
6821 }
6822
6823 /// AddTypesConvertedFrom - Add each of the types to which the type @p
6824 /// Ty can be implicit converted to the given set of @p Types. We're
6825 /// primarily interested in pointer types and enumeration types. We also
6826 /// take member pointer types, for the conditional operator.
6827 /// AllowUserConversions is true if we should look at the conversion
6828 /// functions of a class type, and AllowExplicitConversions if we
6829 /// should also include the explicit conversion functions of a class
6830 /// type.
6831 void
AddTypesConvertedFrom(QualType Ty,SourceLocation Loc,bool AllowUserConversions,bool AllowExplicitConversions,const Qualifiers & VisibleQuals)6832 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
6833 SourceLocation Loc,
6834 bool AllowUserConversions,
6835 bool AllowExplicitConversions,
6836 const Qualifiers &VisibleQuals) {
6837 // Only deal with canonical types.
6838 Ty = Context.getCanonicalType(Ty);
6839
6840 // Look through reference types; they aren't part of the type of an
6841 // expression for the purposes of conversions.
6842 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
6843 Ty = RefTy->getPointeeType();
6844
6845 // If we're dealing with an array type, decay to the pointer.
6846 if (Ty->isArrayType())
6847 Ty = SemaRef.Context.getArrayDecayedType(Ty);
6848
6849 // Otherwise, we don't care about qualifiers on the type.
6850 Ty = Ty.getLocalUnqualifiedType();
6851
6852 // Flag if we ever add a non-record type.
6853 const RecordType *TyRec = Ty->getAs<RecordType>();
6854 HasNonRecordTypes = HasNonRecordTypes || !TyRec;
6855
6856 // Flag if we encounter an arithmetic type.
6857 HasArithmeticOrEnumeralTypes =
6858 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
6859
6860 if (Ty->isObjCIdType() || Ty->isObjCClassType())
6861 PointerTypes.insert(Ty);
6862 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
6863 // Insert our type, and its more-qualified variants, into the set
6864 // of types.
6865 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
6866 return;
6867 } else if (Ty->isMemberPointerType()) {
6868 // Member pointers are far easier, since the pointee can't be converted.
6869 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
6870 return;
6871 } else if (Ty->isEnumeralType()) {
6872 HasArithmeticOrEnumeralTypes = true;
6873 EnumerationTypes.insert(Ty);
6874 } else if (Ty->isVectorType()) {
6875 // We treat vector types as arithmetic types in many contexts as an
6876 // extension.
6877 HasArithmeticOrEnumeralTypes = true;
6878 VectorTypes.insert(Ty);
6879 } else if (Ty->isNullPtrType()) {
6880 HasNullPtrType = true;
6881 } else if (AllowUserConversions && TyRec) {
6882 // No conversion functions in incomplete types.
6883 if (SemaRef.RequireCompleteType(Loc, Ty, 0))
6884 return;
6885
6886 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6887 std::pair<CXXRecordDecl::conversion_iterator,
6888 CXXRecordDecl::conversion_iterator>
6889 Conversions = ClassDecl->getVisibleConversionFunctions();
6890 for (CXXRecordDecl::conversion_iterator
6891 I = Conversions.first, E = Conversions.second; I != E; ++I) {
6892 NamedDecl *D = I.getDecl();
6893 if (isa<UsingShadowDecl>(D))
6894 D = cast<UsingShadowDecl>(D)->getTargetDecl();
6895
6896 // Skip conversion function templates; they don't tell us anything
6897 // about which builtin types we can convert to.
6898 if (isa<FunctionTemplateDecl>(D))
6899 continue;
6900
6901 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6902 if (AllowExplicitConversions || !Conv->isExplicit()) {
6903 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
6904 VisibleQuals);
6905 }
6906 }
6907 }
6908 }
6909
6910 /// \brief Helper function for AddBuiltinOperatorCandidates() that adds
6911 /// the volatile- and non-volatile-qualified assignment operators for the
6912 /// given type to the candidate set.
AddBuiltinAssignmentOperatorCandidates(Sema & S,QualType T,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)6913 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
6914 QualType T,
6915 ArrayRef<Expr *> Args,
6916 OverloadCandidateSet &CandidateSet) {
6917 QualType ParamTypes[2];
6918
6919 // T& operator=(T&, T)
6920 ParamTypes[0] = S.Context.getLValueReferenceType(T);
6921 ParamTypes[1] = T;
6922 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
6923 /*IsAssignmentOperator=*/true);
6924
6925 if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
6926 // volatile T& operator=(volatile T&, T)
6927 ParamTypes[0]
6928 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
6929 ParamTypes[1] = T;
6930 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
6931 /*IsAssignmentOperator=*/true);
6932 }
6933 }
6934
6935 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
6936 /// if any, found in visible type conversion functions found in ArgExpr's type.
CollectVRQualifiers(ASTContext & Context,Expr * ArgExpr)6937 static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
6938 Qualifiers VRQuals;
6939 const RecordType *TyRec;
6940 if (const MemberPointerType *RHSMPType =
6941 ArgExpr->getType()->getAs<MemberPointerType>())
6942 TyRec = RHSMPType->getClass()->getAs<RecordType>();
6943 else
6944 TyRec = ArgExpr->getType()->getAs<RecordType>();
6945 if (!TyRec) {
6946 // Just to be safe, assume the worst case.
6947 VRQuals.addVolatile();
6948 VRQuals.addRestrict();
6949 return VRQuals;
6950 }
6951
6952 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6953 if (!ClassDecl->hasDefinition())
6954 return VRQuals;
6955
6956 std::pair<CXXRecordDecl::conversion_iterator,
6957 CXXRecordDecl::conversion_iterator>
6958 Conversions = ClassDecl->getVisibleConversionFunctions();
6959
6960 for (CXXRecordDecl::conversion_iterator
6961 I = Conversions.first, E = Conversions.second; I != E; ++I) {
6962 NamedDecl *D = I.getDecl();
6963 if (isa<UsingShadowDecl>(D))
6964 D = cast<UsingShadowDecl>(D)->getTargetDecl();
6965 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
6966 QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
6967 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
6968 CanTy = ResTypeRef->getPointeeType();
6969 // Need to go down the pointer/mempointer chain and add qualifiers
6970 // as see them.
6971 bool done = false;
6972 while (!done) {
6973 if (CanTy.isRestrictQualified())
6974 VRQuals.addRestrict();
6975 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
6976 CanTy = ResTypePtr->getPointeeType();
6977 else if (const MemberPointerType *ResTypeMPtr =
6978 CanTy->getAs<MemberPointerType>())
6979 CanTy = ResTypeMPtr->getPointeeType();
6980 else
6981 done = true;
6982 if (CanTy.isVolatileQualified())
6983 VRQuals.addVolatile();
6984 if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
6985 return VRQuals;
6986 }
6987 }
6988 }
6989 return VRQuals;
6990 }
6991
6992 namespace {
6993
6994 /// \brief Helper class to manage the addition of builtin operator overload
6995 /// candidates. It provides shared state and utility methods used throughout
6996 /// the process, as well as a helper method to add each group of builtin
6997 /// operator overloads from the standard to a candidate set.
6998 class BuiltinOperatorOverloadBuilder {
6999 // Common instance state available to all overload candidate addition methods.
7000 Sema &S;
7001 ArrayRef<Expr *> Args;
7002 Qualifiers VisibleTypeConversionsQuals;
7003 bool HasArithmeticOrEnumeralCandidateType;
7004 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
7005 OverloadCandidateSet &CandidateSet;
7006
7007 // Define some constants used to index and iterate over the arithemetic types
7008 // provided via the getArithmeticType() method below.
7009 // The "promoted arithmetic types" are the arithmetic
7010 // types are that preserved by promotion (C++ [over.built]p2).
7011 static const unsigned FirstIntegralType = 3;
7012 static const unsigned LastIntegralType = 20;
7013 static const unsigned FirstPromotedIntegralType = 3,
7014 LastPromotedIntegralType = 11;
7015 static const unsigned FirstPromotedArithmeticType = 0,
7016 LastPromotedArithmeticType = 11;
7017 static const unsigned NumArithmeticTypes = 20;
7018
7019 /// \brief Get the canonical type for a given arithmetic type index.
getArithmeticType(unsigned index)7020 CanQualType getArithmeticType(unsigned index) {
7021 assert(index < NumArithmeticTypes);
7022 static CanQualType ASTContext::* const
7023 ArithmeticTypes[NumArithmeticTypes] = {
7024 // Start of promoted types.
7025 &ASTContext::FloatTy,
7026 &ASTContext::DoubleTy,
7027 &ASTContext::LongDoubleTy,
7028
7029 // Start of integral types.
7030 &ASTContext::IntTy,
7031 &ASTContext::LongTy,
7032 &ASTContext::LongLongTy,
7033 &ASTContext::Int128Ty,
7034 &ASTContext::UnsignedIntTy,
7035 &ASTContext::UnsignedLongTy,
7036 &ASTContext::UnsignedLongLongTy,
7037 &ASTContext::UnsignedInt128Ty,
7038 // End of promoted types.
7039
7040 &ASTContext::BoolTy,
7041 &ASTContext::CharTy,
7042 &ASTContext::WCharTy,
7043 &ASTContext::Char16Ty,
7044 &ASTContext::Char32Ty,
7045 &ASTContext::SignedCharTy,
7046 &ASTContext::ShortTy,
7047 &ASTContext::UnsignedCharTy,
7048 &ASTContext::UnsignedShortTy,
7049 // End of integral types.
7050 // FIXME: What about complex? What about half?
7051 };
7052 return S.Context.*ArithmeticTypes[index];
7053 }
7054
7055 /// \brief Gets the canonical type resulting from the usual arithemetic
7056 /// converions for the given arithmetic types.
getUsualArithmeticConversions(unsigned L,unsigned R)7057 CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
7058 // Accelerator table for performing the usual arithmetic conversions.
7059 // The rules are basically:
7060 // - if either is floating-point, use the wider floating-point
7061 // - if same signedness, use the higher rank
7062 // - if same size, use unsigned of the higher rank
7063 // - use the larger type
7064 // These rules, together with the axiom that higher ranks are
7065 // never smaller, are sufficient to precompute all of these results
7066 // *except* when dealing with signed types of higher rank.
7067 // (we could precompute SLL x UI for all known platforms, but it's
7068 // better not to make any assumptions).
7069 // We assume that int128 has a higher rank than long long on all platforms.
7070 enum PromotedType {
7071 Dep=-1,
7072 Flt, Dbl, LDbl, SI, SL, SLL, S128, UI, UL, ULL, U128
7073 };
7074 static const PromotedType ConversionsTable[LastPromotedArithmeticType]
7075 [LastPromotedArithmeticType] = {
7076 /* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt, Flt, Flt },
7077 /* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl },
7078 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
7079 /* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, S128, UI, UL, ULL, U128 },
7080 /* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, S128, Dep, UL, ULL, U128 },
7081 /* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, S128, Dep, Dep, ULL, U128 },
7082 /*S128*/ { Flt, Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
7083 /* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, S128, UI, UL, ULL, U128 },
7084 /* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, S128, UL, UL, ULL, U128 },
7085 /* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, S128, ULL, ULL, ULL, U128 },
7086 /*U128*/ { Flt, Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
7087 };
7088
7089 assert(L < LastPromotedArithmeticType);
7090 assert(R < LastPromotedArithmeticType);
7091 int Idx = ConversionsTable[L][R];
7092
7093 // Fast path: the table gives us a concrete answer.
7094 if (Idx != Dep) return getArithmeticType(Idx);
7095
7096 // Slow path: we need to compare widths.
7097 // An invariant is that the signed type has higher rank.
7098 CanQualType LT = getArithmeticType(L),
7099 RT = getArithmeticType(R);
7100 unsigned LW = S.Context.getIntWidth(LT),
7101 RW = S.Context.getIntWidth(RT);
7102
7103 // If they're different widths, use the signed type.
7104 if (LW > RW) return LT;
7105 else if (LW < RW) return RT;
7106
7107 // Otherwise, use the unsigned type of the signed type's rank.
7108 if (L == SL || R == SL) return S.Context.UnsignedLongTy;
7109 assert(L == SLL || R == SLL);
7110 return S.Context.UnsignedLongLongTy;
7111 }
7112
7113 /// \brief Helper method to factor out the common pattern of adding overloads
7114 /// for '++' and '--' builtin operators.
addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,bool HasVolatile,bool HasRestrict)7115 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
7116 bool HasVolatile,
7117 bool HasRestrict) {
7118 QualType ParamTypes[2] = {
7119 S.Context.getLValueReferenceType(CandidateTy),
7120 S.Context.IntTy
7121 };
7122
7123 // Non-volatile version.
7124 if (Args.size() == 1)
7125 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7126 else
7127 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7128
7129 // Use a heuristic to reduce number of builtin candidates in the set:
7130 // add volatile version only if there are conversions to a volatile type.
7131 if (HasVolatile) {
7132 ParamTypes[0] =
7133 S.Context.getLValueReferenceType(
7134 S.Context.getVolatileType(CandidateTy));
7135 if (Args.size() == 1)
7136 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7137 else
7138 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7139 }
7140
7141 // Add restrict version only if there are conversions to a restrict type
7142 // and our candidate type is a non-restrict-qualified pointer.
7143 if (HasRestrict && CandidateTy->isAnyPointerType() &&
7144 !CandidateTy.isRestrictQualified()) {
7145 ParamTypes[0]
7146 = S.Context.getLValueReferenceType(
7147 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
7148 if (Args.size() == 1)
7149 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7150 else
7151 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7152
7153 if (HasVolatile) {
7154 ParamTypes[0]
7155 = S.Context.getLValueReferenceType(
7156 S.Context.getCVRQualifiedType(CandidateTy,
7157 (Qualifiers::Volatile |
7158 Qualifiers::Restrict)));
7159 if (Args.size() == 1)
7160 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7161 else
7162 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7163 }
7164 }
7165
7166 }
7167
7168 public:
BuiltinOperatorOverloadBuilder(Sema & S,ArrayRef<Expr * > Args,Qualifiers VisibleTypeConversionsQuals,bool HasArithmeticOrEnumeralCandidateType,SmallVectorImpl<BuiltinCandidateTypeSet> & CandidateTypes,OverloadCandidateSet & CandidateSet)7169 BuiltinOperatorOverloadBuilder(
7170 Sema &S, ArrayRef<Expr *> Args,
7171 Qualifiers VisibleTypeConversionsQuals,
7172 bool HasArithmeticOrEnumeralCandidateType,
7173 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
7174 OverloadCandidateSet &CandidateSet)
7175 : S(S), Args(Args),
7176 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
7177 HasArithmeticOrEnumeralCandidateType(
7178 HasArithmeticOrEnumeralCandidateType),
7179 CandidateTypes(CandidateTypes),
7180 CandidateSet(CandidateSet) {
7181 // Validate some of our static helper constants in debug builds.
7182 assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
7183 "Invalid first promoted integral type");
7184 assert(getArithmeticType(LastPromotedIntegralType - 1)
7185 == S.Context.UnsignedInt128Ty &&
7186 "Invalid last promoted integral type");
7187 assert(getArithmeticType(FirstPromotedArithmeticType)
7188 == S.Context.FloatTy &&
7189 "Invalid first promoted arithmetic type");
7190 assert(getArithmeticType(LastPromotedArithmeticType - 1)
7191 == S.Context.UnsignedInt128Ty &&
7192 "Invalid last promoted arithmetic type");
7193 }
7194
7195 // C++ [over.built]p3:
7196 //
7197 // For every pair (T, VQ), where T is an arithmetic type, and VQ
7198 // is either volatile or empty, there exist candidate operator
7199 // functions of the form
7200 //
7201 // VQ T& operator++(VQ T&);
7202 // T operator++(VQ T&, int);
7203 //
7204 // C++ [over.built]p4:
7205 //
7206 // For every pair (T, VQ), where T is an arithmetic type other
7207 // than bool, and VQ is either volatile or empty, there exist
7208 // candidate operator functions of the form
7209 //
7210 // VQ T& operator--(VQ T&);
7211 // T operator--(VQ T&, int);
addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op)7212 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
7213 if (!HasArithmeticOrEnumeralCandidateType)
7214 return;
7215
7216 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
7217 Arith < NumArithmeticTypes; ++Arith) {
7218 addPlusPlusMinusMinusStyleOverloads(
7219 getArithmeticType(Arith),
7220 VisibleTypeConversionsQuals.hasVolatile(),
7221 VisibleTypeConversionsQuals.hasRestrict());
7222 }
7223 }
7224
7225 // C++ [over.built]p5:
7226 //
7227 // For every pair (T, VQ), where T is a cv-qualified or
7228 // cv-unqualified object type, and VQ is either volatile or
7229 // empty, there exist candidate operator functions of the form
7230 //
7231 // T*VQ& operator++(T*VQ&);
7232 // T*VQ& operator--(T*VQ&);
7233 // T* operator++(T*VQ&, int);
7234 // T* operator--(T*VQ&, int);
addPlusPlusMinusMinusPointerOverloads()7235 void addPlusPlusMinusMinusPointerOverloads() {
7236 for (BuiltinCandidateTypeSet::iterator
7237 Ptr = CandidateTypes[0].pointer_begin(),
7238 PtrEnd = CandidateTypes[0].pointer_end();
7239 Ptr != PtrEnd; ++Ptr) {
7240 // Skip pointer types that aren't pointers to object types.
7241 if (!(*Ptr)->getPointeeType()->isObjectType())
7242 continue;
7243
7244 addPlusPlusMinusMinusStyleOverloads(*Ptr,
7245 (!(*Ptr).isVolatileQualified() &&
7246 VisibleTypeConversionsQuals.hasVolatile()),
7247 (!(*Ptr).isRestrictQualified() &&
7248 VisibleTypeConversionsQuals.hasRestrict()));
7249 }
7250 }
7251
7252 // C++ [over.built]p6:
7253 // For every cv-qualified or cv-unqualified object type T, there
7254 // exist candidate operator functions of the form
7255 //
7256 // T& operator*(T*);
7257 //
7258 // C++ [over.built]p7:
7259 // For every function type T that does not have cv-qualifiers or a
7260 // ref-qualifier, there exist candidate operator functions of the form
7261 // T& operator*(T*);
addUnaryStarPointerOverloads()7262 void addUnaryStarPointerOverloads() {
7263 for (BuiltinCandidateTypeSet::iterator
7264 Ptr = CandidateTypes[0].pointer_begin(),
7265 PtrEnd = CandidateTypes[0].pointer_end();
7266 Ptr != PtrEnd; ++Ptr) {
7267 QualType ParamTy = *Ptr;
7268 QualType PointeeTy = ParamTy->getPointeeType();
7269 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
7270 continue;
7271
7272 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
7273 if (Proto->getTypeQuals() || Proto->getRefQualifier())
7274 continue;
7275
7276 S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
7277 &ParamTy, Args, CandidateSet);
7278 }
7279 }
7280
7281 // C++ [over.built]p9:
7282 // For every promoted arithmetic type T, there exist candidate
7283 // operator functions of the form
7284 //
7285 // T operator+(T);
7286 // T operator-(T);
addUnaryPlusOrMinusArithmeticOverloads()7287 void addUnaryPlusOrMinusArithmeticOverloads() {
7288 if (!HasArithmeticOrEnumeralCandidateType)
7289 return;
7290
7291 for (unsigned Arith = FirstPromotedArithmeticType;
7292 Arith < LastPromotedArithmeticType; ++Arith) {
7293 QualType ArithTy = getArithmeticType(Arith);
7294 S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, CandidateSet);
7295 }
7296
7297 // Extension: We also add these operators for vector types.
7298 for (BuiltinCandidateTypeSet::iterator
7299 Vec = CandidateTypes[0].vector_begin(),
7300 VecEnd = CandidateTypes[0].vector_end();
7301 Vec != VecEnd; ++Vec) {
7302 QualType VecTy = *Vec;
7303 S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
7304 }
7305 }
7306
7307 // C++ [over.built]p8:
7308 // For every type T, there exist candidate operator functions of
7309 // the form
7310 //
7311 // T* operator+(T*);
addUnaryPlusPointerOverloads()7312 void addUnaryPlusPointerOverloads() {
7313 for (BuiltinCandidateTypeSet::iterator
7314 Ptr = CandidateTypes[0].pointer_begin(),
7315 PtrEnd = CandidateTypes[0].pointer_end();
7316 Ptr != PtrEnd; ++Ptr) {
7317 QualType ParamTy = *Ptr;
7318 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet);
7319 }
7320 }
7321
7322 // C++ [over.built]p10:
7323 // For every promoted integral type T, there exist candidate
7324 // operator functions of the form
7325 //
7326 // T operator~(T);
addUnaryTildePromotedIntegralOverloads()7327 void addUnaryTildePromotedIntegralOverloads() {
7328 if (!HasArithmeticOrEnumeralCandidateType)
7329 return;
7330
7331 for (unsigned Int = FirstPromotedIntegralType;
7332 Int < LastPromotedIntegralType; ++Int) {
7333 QualType IntTy = getArithmeticType(Int);
7334 S.AddBuiltinCandidate(IntTy, &IntTy, Args, CandidateSet);
7335 }
7336
7337 // Extension: We also add this operator for vector types.
7338 for (BuiltinCandidateTypeSet::iterator
7339 Vec = CandidateTypes[0].vector_begin(),
7340 VecEnd = CandidateTypes[0].vector_end();
7341 Vec != VecEnd; ++Vec) {
7342 QualType VecTy = *Vec;
7343 S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
7344 }
7345 }
7346
7347 // C++ [over.match.oper]p16:
7348 // For every pointer to member type T, there exist candidate operator
7349 // functions of the form
7350 //
7351 // bool operator==(T,T);
7352 // bool operator!=(T,T);
addEqualEqualOrNotEqualMemberPointerOverloads()7353 void addEqualEqualOrNotEqualMemberPointerOverloads() {
7354 /// Set of (canonical) types that we've already handled.
7355 llvm::SmallPtrSet<QualType, 8> AddedTypes;
7356
7357 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7358 for (BuiltinCandidateTypeSet::iterator
7359 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7360 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7361 MemPtr != MemPtrEnd;
7362 ++MemPtr) {
7363 // Don't add the same builtin candidate twice.
7364 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
7365 continue;
7366
7367 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7368 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7369 }
7370 }
7371 }
7372
7373 // C++ [over.built]p15:
7374 //
7375 // For every T, where T is an enumeration type, a pointer type, or
7376 // std::nullptr_t, there exist candidate operator functions of the form
7377 //
7378 // bool operator<(T, T);
7379 // bool operator>(T, T);
7380 // bool operator<=(T, T);
7381 // bool operator>=(T, T);
7382 // bool operator==(T, T);
7383 // bool operator!=(T, T);
addRelationalPointerOrEnumeralOverloads()7384 void addRelationalPointerOrEnumeralOverloads() {
7385 // C++ [over.match.oper]p3:
7386 // [...]the built-in candidates include all of the candidate operator
7387 // functions defined in 13.6 that, compared to the given operator, [...]
7388 // do not have the same parameter-type-list as any non-template non-member
7389 // candidate.
7390 //
7391 // Note that in practice, this only affects enumeration types because there
7392 // aren't any built-in candidates of record type, and a user-defined operator
7393 // must have an operand of record or enumeration type. Also, the only other
7394 // overloaded operator with enumeration arguments, operator=,
7395 // cannot be overloaded for enumeration types, so this is the only place
7396 // where we must suppress candidates like this.
7397 llvm::DenseSet<std::pair<CanQualType, CanQualType> >
7398 UserDefinedBinaryOperators;
7399
7400 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7401 if (CandidateTypes[ArgIdx].enumeration_begin() !=
7402 CandidateTypes[ArgIdx].enumeration_end()) {
7403 for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
7404 CEnd = CandidateSet.end();
7405 C != CEnd; ++C) {
7406 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
7407 continue;
7408
7409 if (C->Function->isFunctionTemplateSpecialization())
7410 continue;
7411
7412 QualType FirstParamType =
7413 C->Function->getParamDecl(0)->getType().getUnqualifiedType();
7414 QualType SecondParamType =
7415 C->Function->getParamDecl(1)->getType().getUnqualifiedType();
7416
7417 // Skip if either parameter isn't of enumeral type.
7418 if (!FirstParamType->isEnumeralType() ||
7419 !SecondParamType->isEnumeralType())
7420 continue;
7421
7422 // Add this operator to the set of known user-defined operators.
7423 UserDefinedBinaryOperators.insert(
7424 std::make_pair(S.Context.getCanonicalType(FirstParamType),
7425 S.Context.getCanonicalType(SecondParamType)));
7426 }
7427 }
7428 }
7429
7430 /// Set of (canonical) types that we've already handled.
7431 llvm::SmallPtrSet<QualType, 8> AddedTypes;
7432
7433 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7434 for (BuiltinCandidateTypeSet::iterator
7435 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7436 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7437 Ptr != PtrEnd; ++Ptr) {
7438 // Don't add the same builtin candidate twice.
7439 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
7440 continue;
7441
7442 QualType ParamTypes[2] = { *Ptr, *Ptr };
7443 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7444 }
7445 for (BuiltinCandidateTypeSet::iterator
7446 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7447 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7448 Enum != EnumEnd; ++Enum) {
7449 CanQualType CanonType = S.Context.getCanonicalType(*Enum);
7450
7451 // Don't add the same builtin candidate twice, or if a user defined
7452 // candidate exists.
7453 if (!AddedTypes.insert(CanonType).second ||
7454 UserDefinedBinaryOperators.count(std::make_pair(CanonType,
7455 CanonType)))
7456 continue;
7457
7458 QualType ParamTypes[2] = { *Enum, *Enum };
7459 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7460 }
7461
7462 if (CandidateTypes[ArgIdx].hasNullPtrType()) {
7463 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
7464 if (AddedTypes.insert(NullPtrTy).second &&
7465 !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
7466 NullPtrTy))) {
7467 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
7468 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args,
7469 CandidateSet);
7470 }
7471 }
7472 }
7473 }
7474
7475 // C++ [over.built]p13:
7476 //
7477 // For every cv-qualified or cv-unqualified object type T
7478 // there exist candidate operator functions of the form
7479 //
7480 // T* operator+(T*, ptrdiff_t);
7481 // T& operator[](T*, ptrdiff_t); [BELOW]
7482 // T* operator-(T*, ptrdiff_t);
7483 // T* operator+(ptrdiff_t, T*);
7484 // T& operator[](ptrdiff_t, T*); [BELOW]
7485 //
7486 // C++ [over.built]p14:
7487 //
7488 // For every T, where T is a pointer to object type, there
7489 // exist candidate operator functions of the form
7490 //
7491 // ptrdiff_t operator-(T, T);
addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op)7492 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
7493 /// Set of (canonical) types that we've already handled.
7494 llvm::SmallPtrSet<QualType, 8> AddedTypes;
7495
7496 for (int Arg = 0; Arg < 2; ++Arg) {
7497 QualType AsymetricParamTypes[2] = {
7498 S.Context.getPointerDiffType(),
7499 S.Context.getPointerDiffType(),
7500 };
7501 for (BuiltinCandidateTypeSet::iterator
7502 Ptr = CandidateTypes[Arg].pointer_begin(),
7503 PtrEnd = CandidateTypes[Arg].pointer_end();
7504 Ptr != PtrEnd; ++Ptr) {
7505 QualType PointeeTy = (*Ptr)->getPointeeType();
7506 if (!PointeeTy->isObjectType())
7507 continue;
7508
7509 AsymetricParamTypes[Arg] = *Ptr;
7510 if (Arg == 0 || Op == OO_Plus) {
7511 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
7512 // T* operator+(ptrdiff_t, T*);
7513 S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, CandidateSet);
7514 }
7515 if (Op == OO_Minus) {
7516 // ptrdiff_t operator-(T, T);
7517 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
7518 continue;
7519
7520 QualType ParamTypes[2] = { *Ptr, *Ptr };
7521 S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
7522 Args, CandidateSet);
7523 }
7524 }
7525 }
7526 }
7527
7528 // C++ [over.built]p12:
7529 //
7530 // For every pair of promoted arithmetic types L and R, there
7531 // exist candidate operator functions of the form
7532 //
7533 // LR operator*(L, R);
7534 // LR operator/(L, R);
7535 // LR operator+(L, R);
7536 // LR operator-(L, R);
7537 // bool operator<(L, R);
7538 // bool operator>(L, R);
7539 // bool operator<=(L, R);
7540 // bool operator>=(L, R);
7541 // bool operator==(L, R);
7542 // bool operator!=(L, R);
7543 //
7544 // where LR is the result of the usual arithmetic conversions
7545 // between types L and R.
7546 //
7547 // C++ [over.built]p24:
7548 //
7549 // For every pair of promoted arithmetic types L and R, there exist
7550 // candidate operator functions of the form
7551 //
7552 // LR operator?(bool, L, R);
7553 //
7554 // where LR is the result of the usual arithmetic conversions
7555 // between types L and R.
7556 // Our candidates ignore the first parameter.
addGenericBinaryArithmeticOverloads(bool isComparison)7557 void addGenericBinaryArithmeticOverloads(bool isComparison) {
7558 if (!HasArithmeticOrEnumeralCandidateType)
7559 return;
7560
7561 for (unsigned Left = FirstPromotedArithmeticType;
7562 Left < LastPromotedArithmeticType; ++Left) {
7563 for (unsigned Right = FirstPromotedArithmeticType;
7564 Right < LastPromotedArithmeticType; ++Right) {
7565 QualType LandR[2] = { getArithmeticType(Left),
7566 getArithmeticType(Right) };
7567 QualType Result =
7568 isComparison ? S.Context.BoolTy
7569 : getUsualArithmeticConversions(Left, Right);
7570 S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7571 }
7572 }
7573
7574 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
7575 // conditional operator for vector types.
7576 for (BuiltinCandidateTypeSet::iterator
7577 Vec1 = CandidateTypes[0].vector_begin(),
7578 Vec1End = CandidateTypes[0].vector_end();
7579 Vec1 != Vec1End; ++Vec1) {
7580 for (BuiltinCandidateTypeSet::iterator
7581 Vec2 = CandidateTypes[1].vector_begin(),
7582 Vec2End = CandidateTypes[1].vector_end();
7583 Vec2 != Vec2End; ++Vec2) {
7584 QualType LandR[2] = { *Vec1, *Vec2 };
7585 QualType Result = S.Context.BoolTy;
7586 if (!isComparison) {
7587 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
7588 Result = *Vec1;
7589 else
7590 Result = *Vec2;
7591 }
7592
7593 S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7594 }
7595 }
7596 }
7597
7598 // C++ [over.built]p17:
7599 //
7600 // For every pair of promoted integral types L and R, there
7601 // exist candidate operator functions of the form
7602 //
7603 // LR operator%(L, R);
7604 // LR operator&(L, R);
7605 // LR operator^(L, R);
7606 // LR operator|(L, R);
7607 // L operator<<(L, R);
7608 // L operator>>(L, R);
7609 //
7610 // where LR is the result of the usual arithmetic conversions
7611 // between types L and R.
addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op)7612 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
7613 if (!HasArithmeticOrEnumeralCandidateType)
7614 return;
7615
7616 for (unsigned Left = FirstPromotedIntegralType;
7617 Left < LastPromotedIntegralType; ++Left) {
7618 for (unsigned Right = FirstPromotedIntegralType;
7619 Right < LastPromotedIntegralType; ++Right) {
7620 QualType LandR[2] = { getArithmeticType(Left),
7621 getArithmeticType(Right) };
7622 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
7623 ? LandR[0]
7624 : getUsualArithmeticConversions(Left, Right);
7625 S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7626 }
7627 }
7628 }
7629
7630 // C++ [over.built]p20:
7631 //
7632 // For every pair (T, VQ), where T is an enumeration or
7633 // pointer to member type and VQ is either volatile or
7634 // empty, there exist candidate operator functions of the form
7635 //
7636 // VQ T& operator=(VQ T&, T);
addAssignmentMemberPointerOrEnumeralOverloads()7637 void addAssignmentMemberPointerOrEnumeralOverloads() {
7638 /// Set of (canonical) types that we've already handled.
7639 llvm::SmallPtrSet<QualType, 8> AddedTypes;
7640
7641 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7642 for (BuiltinCandidateTypeSet::iterator
7643 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7644 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7645 Enum != EnumEnd; ++Enum) {
7646 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
7647 continue;
7648
7649 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
7650 }
7651
7652 for (BuiltinCandidateTypeSet::iterator
7653 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7654 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7655 MemPtr != MemPtrEnd; ++MemPtr) {
7656 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
7657 continue;
7658
7659 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
7660 }
7661 }
7662 }
7663
7664 // C++ [over.built]p19:
7665 //
7666 // For every pair (T, VQ), where T is any type and VQ is either
7667 // volatile or empty, there exist candidate operator functions
7668 // of the form
7669 //
7670 // T*VQ& operator=(T*VQ&, T*);
7671 //
7672 // C++ [over.built]p21:
7673 //
7674 // For every pair (T, VQ), where T is a cv-qualified or
7675 // cv-unqualified object type and VQ is either volatile or
7676 // empty, there exist candidate operator functions of the form
7677 //
7678 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
7679 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
addAssignmentPointerOverloads(bool isEqualOp)7680 void addAssignmentPointerOverloads(bool isEqualOp) {
7681 /// Set of (canonical) types that we've already handled.
7682 llvm::SmallPtrSet<QualType, 8> AddedTypes;
7683
7684 for (BuiltinCandidateTypeSet::iterator
7685 Ptr = CandidateTypes[0].pointer_begin(),
7686 PtrEnd = CandidateTypes[0].pointer_end();
7687 Ptr != PtrEnd; ++Ptr) {
7688 // If this is operator=, keep track of the builtin candidates we added.
7689 if (isEqualOp)
7690 AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
7691 else if (!(*Ptr)->getPointeeType()->isObjectType())
7692 continue;
7693
7694 // non-volatile version
7695 QualType ParamTypes[2] = {
7696 S.Context.getLValueReferenceType(*Ptr),
7697 isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
7698 };
7699 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7700 /*IsAssigmentOperator=*/ isEqualOp);
7701
7702 bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7703 VisibleTypeConversionsQuals.hasVolatile();
7704 if (NeedVolatile) {
7705 // volatile version
7706 ParamTypes[0] =
7707 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7708 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7709 /*IsAssigmentOperator=*/isEqualOp);
7710 }
7711
7712 if (!(*Ptr).isRestrictQualified() &&
7713 VisibleTypeConversionsQuals.hasRestrict()) {
7714 // restrict version
7715 ParamTypes[0]
7716 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7717 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7718 /*IsAssigmentOperator=*/isEqualOp);
7719
7720 if (NeedVolatile) {
7721 // volatile restrict version
7722 ParamTypes[0]
7723 = S.Context.getLValueReferenceType(
7724 S.Context.getCVRQualifiedType(*Ptr,
7725 (Qualifiers::Volatile |
7726 Qualifiers::Restrict)));
7727 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7728 /*IsAssigmentOperator=*/isEqualOp);
7729 }
7730 }
7731 }
7732
7733 if (isEqualOp) {
7734 for (BuiltinCandidateTypeSet::iterator
7735 Ptr = CandidateTypes[1].pointer_begin(),
7736 PtrEnd = CandidateTypes[1].pointer_end();
7737 Ptr != PtrEnd; ++Ptr) {
7738 // Make sure we don't add the same candidate twice.
7739 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
7740 continue;
7741
7742 QualType ParamTypes[2] = {
7743 S.Context.getLValueReferenceType(*Ptr),
7744 *Ptr,
7745 };
7746
7747 // non-volatile version
7748 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7749 /*IsAssigmentOperator=*/true);
7750
7751 bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7752 VisibleTypeConversionsQuals.hasVolatile();
7753 if (NeedVolatile) {
7754 // volatile version
7755 ParamTypes[0] =
7756 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7757 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7758 /*IsAssigmentOperator=*/true);
7759 }
7760
7761 if (!(*Ptr).isRestrictQualified() &&
7762 VisibleTypeConversionsQuals.hasRestrict()) {
7763 // restrict version
7764 ParamTypes[0]
7765 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7766 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7767 /*IsAssigmentOperator=*/true);
7768
7769 if (NeedVolatile) {
7770 // volatile restrict version
7771 ParamTypes[0]
7772 = S.Context.getLValueReferenceType(
7773 S.Context.getCVRQualifiedType(*Ptr,
7774 (Qualifiers::Volatile |
7775 Qualifiers::Restrict)));
7776 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7777 /*IsAssigmentOperator=*/true);
7778 }
7779 }
7780 }
7781 }
7782 }
7783
7784 // C++ [over.built]p18:
7785 //
7786 // For every triple (L, VQ, R), where L is an arithmetic type,
7787 // VQ is either volatile or empty, and R is a promoted
7788 // arithmetic type, there exist candidate operator functions of
7789 // the form
7790 //
7791 // VQ L& operator=(VQ L&, R);
7792 // VQ L& operator*=(VQ L&, R);
7793 // VQ L& operator/=(VQ L&, R);
7794 // VQ L& operator+=(VQ L&, R);
7795 // VQ L& operator-=(VQ L&, R);
addAssignmentArithmeticOverloads(bool isEqualOp)7796 void addAssignmentArithmeticOverloads(bool isEqualOp) {
7797 if (!HasArithmeticOrEnumeralCandidateType)
7798 return;
7799
7800 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
7801 for (unsigned Right = FirstPromotedArithmeticType;
7802 Right < LastPromotedArithmeticType; ++Right) {
7803 QualType ParamTypes[2];
7804 ParamTypes[1] = getArithmeticType(Right);
7805
7806 // Add this built-in operator as a candidate (VQ is empty).
7807 ParamTypes[0] =
7808 S.Context.getLValueReferenceType(getArithmeticType(Left));
7809 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7810 /*IsAssigmentOperator=*/isEqualOp);
7811
7812 // Add this built-in operator as a candidate (VQ is 'volatile').
7813 if (VisibleTypeConversionsQuals.hasVolatile()) {
7814 ParamTypes[0] =
7815 S.Context.getVolatileType(getArithmeticType(Left));
7816 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7817 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7818 /*IsAssigmentOperator=*/isEqualOp);
7819 }
7820 }
7821 }
7822
7823 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
7824 for (BuiltinCandidateTypeSet::iterator
7825 Vec1 = CandidateTypes[0].vector_begin(),
7826 Vec1End = CandidateTypes[0].vector_end();
7827 Vec1 != Vec1End; ++Vec1) {
7828 for (BuiltinCandidateTypeSet::iterator
7829 Vec2 = CandidateTypes[1].vector_begin(),
7830 Vec2End = CandidateTypes[1].vector_end();
7831 Vec2 != Vec2End; ++Vec2) {
7832 QualType ParamTypes[2];
7833 ParamTypes[1] = *Vec2;
7834 // Add this built-in operator as a candidate (VQ is empty).
7835 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
7836 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7837 /*IsAssigmentOperator=*/isEqualOp);
7838
7839 // Add this built-in operator as a candidate (VQ is 'volatile').
7840 if (VisibleTypeConversionsQuals.hasVolatile()) {
7841 ParamTypes[0] = S.Context.getVolatileType(*Vec1);
7842 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7843 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7844 /*IsAssigmentOperator=*/isEqualOp);
7845 }
7846 }
7847 }
7848 }
7849
7850 // C++ [over.built]p22:
7851 //
7852 // For every triple (L, VQ, R), where L is an integral type, VQ
7853 // is either volatile or empty, and R is a promoted integral
7854 // type, there exist candidate operator functions of the form
7855 //
7856 // VQ L& operator%=(VQ L&, R);
7857 // VQ L& operator<<=(VQ L&, R);
7858 // VQ L& operator>>=(VQ L&, R);
7859 // VQ L& operator&=(VQ L&, R);
7860 // VQ L& operator^=(VQ L&, R);
7861 // VQ L& operator|=(VQ L&, R);
addAssignmentIntegralOverloads()7862 void addAssignmentIntegralOverloads() {
7863 if (!HasArithmeticOrEnumeralCandidateType)
7864 return;
7865
7866 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
7867 for (unsigned Right = FirstPromotedIntegralType;
7868 Right < LastPromotedIntegralType; ++Right) {
7869 QualType ParamTypes[2];
7870 ParamTypes[1] = getArithmeticType(Right);
7871
7872 // Add this built-in operator as a candidate (VQ is empty).
7873 ParamTypes[0] =
7874 S.Context.getLValueReferenceType(getArithmeticType(Left));
7875 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7876 if (VisibleTypeConversionsQuals.hasVolatile()) {
7877 // Add this built-in operator as a candidate (VQ is 'volatile').
7878 ParamTypes[0] = getArithmeticType(Left);
7879 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
7880 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7881 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7882 }
7883 }
7884 }
7885 }
7886
7887 // C++ [over.operator]p23:
7888 //
7889 // There also exist candidate operator functions of the form
7890 //
7891 // bool operator!(bool);
7892 // bool operator&&(bool, bool);
7893 // bool operator||(bool, bool);
addExclaimOverload()7894 void addExclaimOverload() {
7895 QualType ParamTy = S.Context.BoolTy;
7896 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet,
7897 /*IsAssignmentOperator=*/false,
7898 /*NumContextualBoolArguments=*/1);
7899 }
addAmpAmpOrPipePipeOverload()7900 void addAmpAmpOrPipePipeOverload() {
7901 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
7902 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet,
7903 /*IsAssignmentOperator=*/false,
7904 /*NumContextualBoolArguments=*/2);
7905 }
7906
7907 // C++ [over.built]p13:
7908 //
7909 // For every cv-qualified or cv-unqualified object type T there
7910 // exist candidate operator functions of the form
7911 //
7912 // T* operator+(T*, ptrdiff_t); [ABOVE]
7913 // T& operator[](T*, ptrdiff_t);
7914 // T* operator-(T*, ptrdiff_t); [ABOVE]
7915 // T* operator+(ptrdiff_t, T*); [ABOVE]
7916 // T& operator[](ptrdiff_t, T*);
addSubscriptOverloads()7917 void addSubscriptOverloads() {
7918 for (BuiltinCandidateTypeSet::iterator
7919 Ptr = CandidateTypes[0].pointer_begin(),
7920 PtrEnd = CandidateTypes[0].pointer_end();
7921 Ptr != PtrEnd; ++Ptr) {
7922 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
7923 QualType PointeeType = (*Ptr)->getPointeeType();
7924 if (!PointeeType->isObjectType())
7925 continue;
7926
7927 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7928
7929 // T& operator[](T*, ptrdiff_t)
7930 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7931 }
7932
7933 for (BuiltinCandidateTypeSet::iterator
7934 Ptr = CandidateTypes[1].pointer_begin(),
7935 PtrEnd = CandidateTypes[1].pointer_end();
7936 Ptr != PtrEnd; ++Ptr) {
7937 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
7938 QualType PointeeType = (*Ptr)->getPointeeType();
7939 if (!PointeeType->isObjectType())
7940 continue;
7941
7942 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7943
7944 // T& operator[](ptrdiff_t, T*)
7945 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7946 }
7947 }
7948
7949 // C++ [over.built]p11:
7950 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
7951 // C1 is the same type as C2 or is a derived class of C2, T is an object
7952 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
7953 // there exist candidate operator functions of the form
7954 //
7955 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
7956 //
7957 // where CV12 is the union of CV1 and CV2.
addArrowStarOverloads()7958 void addArrowStarOverloads() {
7959 for (BuiltinCandidateTypeSet::iterator
7960 Ptr = CandidateTypes[0].pointer_begin(),
7961 PtrEnd = CandidateTypes[0].pointer_end();
7962 Ptr != PtrEnd; ++Ptr) {
7963 QualType C1Ty = (*Ptr);
7964 QualType C1;
7965 QualifierCollector Q1;
7966 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
7967 if (!isa<RecordType>(C1))
7968 continue;
7969 // heuristic to reduce number of builtin candidates in the set.
7970 // Add volatile/restrict version only if there are conversions to a
7971 // volatile/restrict type.
7972 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
7973 continue;
7974 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
7975 continue;
7976 for (BuiltinCandidateTypeSet::iterator
7977 MemPtr = CandidateTypes[1].member_pointer_begin(),
7978 MemPtrEnd = CandidateTypes[1].member_pointer_end();
7979 MemPtr != MemPtrEnd; ++MemPtr) {
7980 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
7981 QualType C2 = QualType(mptr->getClass(), 0);
7982 C2 = C2.getUnqualifiedType();
7983 if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
7984 break;
7985 QualType ParamTypes[2] = { *Ptr, *MemPtr };
7986 // build CV12 T&
7987 QualType T = mptr->getPointeeType();
7988 if (!VisibleTypeConversionsQuals.hasVolatile() &&
7989 T.isVolatileQualified())
7990 continue;
7991 if (!VisibleTypeConversionsQuals.hasRestrict() &&
7992 T.isRestrictQualified())
7993 continue;
7994 T = Q1.apply(S.Context, T);
7995 QualType ResultTy = S.Context.getLValueReferenceType(T);
7996 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7997 }
7998 }
7999 }
8000
8001 // Note that we don't consider the first argument, since it has been
8002 // contextually converted to bool long ago. The candidates below are
8003 // therefore added as binary.
8004 //
8005 // C++ [over.built]p25:
8006 // For every type T, where T is a pointer, pointer-to-member, or scoped
8007 // enumeration type, there exist candidate operator functions of the form
8008 //
8009 // T operator?(bool, T, T);
8010 //
addConditionalOperatorOverloads()8011 void addConditionalOperatorOverloads() {
8012 /// Set of (canonical) types that we've already handled.
8013 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8014
8015 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8016 for (BuiltinCandidateTypeSet::iterator
8017 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8018 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8019 Ptr != PtrEnd; ++Ptr) {
8020 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8021 continue;
8022
8023 QualType ParamTypes[2] = { *Ptr, *Ptr };
8024 S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, CandidateSet);
8025 }
8026
8027 for (BuiltinCandidateTypeSet::iterator
8028 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8029 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8030 MemPtr != MemPtrEnd; ++MemPtr) {
8031 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8032 continue;
8033
8034 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8035 S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, CandidateSet);
8036 }
8037
8038 if (S.getLangOpts().CPlusPlus11) {
8039 for (BuiltinCandidateTypeSet::iterator
8040 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8041 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8042 Enum != EnumEnd; ++Enum) {
8043 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
8044 continue;
8045
8046 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8047 continue;
8048
8049 QualType ParamTypes[2] = { *Enum, *Enum };
8050 S.AddBuiltinCandidate(*Enum, ParamTypes, Args, CandidateSet);
8051 }
8052 }
8053 }
8054 }
8055 };
8056
8057 } // end anonymous namespace
8058
8059 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
8060 /// operator overloads to the candidate set (C++ [over.built]), based
8061 /// on the operator @p Op and the arguments given. For example, if the
8062 /// operator is a binary '+', this routine might add "int
8063 /// operator+(int, int)" to cover integer addition.
AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,SourceLocation OpLoc,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)8064 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
8065 SourceLocation OpLoc,
8066 ArrayRef<Expr *> Args,
8067 OverloadCandidateSet &CandidateSet) {
8068 // Find all of the types that the arguments can convert to, but only
8069 // if the operator we're looking at has built-in operator candidates
8070 // that make use of these types. Also record whether we encounter non-record
8071 // candidate types or either arithmetic or enumeral candidate types.
8072 Qualifiers VisibleTypeConversionsQuals;
8073 VisibleTypeConversionsQuals.addConst();
8074 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
8075 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
8076
8077 bool HasNonRecordCandidateType = false;
8078 bool HasArithmeticOrEnumeralCandidateType = false;
8079 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
8080 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8081 CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
8082 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
8083 OpLoc,
8084 true,
8085 (Op == OO_Exclaim ||
8086 Op == OO_AmpAmp ||
8087 Op == OO_PipePipe),
8088 VisibleTypeConversionsQuals);
8089 HasNonRecordCandidateType = HasNonRecordCandidateType ||
8090 CandidateTypes[ArgIdx].hasNonRecordTypes();
8091 HasArithmeticOrEnumeralCandidateType =
8092 HasArithmeticOrEnumeralCandidateType ||
8093 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
8094 }
8095
8096 // Exit early when no non-record types have been added to the candidate set
8097 // for any of the arguments to the operator.
8098 //
8099 // We can't exit early for !, ||, or &&, since there we have always have
8100 // 'bool' overloads.
8101 if (!HasNonRecordCandidateType &&
8102 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
8103 return;
8104
8105 // Setup an object to manage the common state for building overloads.
8106 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
8107 VisibleTypeConversionsQuals,
8108 HasArithmeticOrEnumeralCandidateType,
8109 CandidateTypes, CandidateSet);
8110
8111 // Dispatch over the operation to add in only those overloads which apply.
8112 switch (Op) {
8113 case OO_None:
8114 case NUM_OVERLOADED_OPERATORS:
8115 llvm_unreachable("Expected an overloaded operator");
8116
8117 case OO_New:
8118 case OO_Delete:
8119 case OO_Array_New:
8120 case OO_Array_Delete:
8121 case OO_Call:
8122 llvm_unreachable(
8123 "Special operators don't use AddBuiltinOperatorCandidates");
8124
8125 case OO_Comma:
8126 case OO_Arrow:
8127 // C++ [over.match.oper]p3:
8128 // -- For the operator ',', the unary operator '&', or the
8129 // operator '->', the built-in candidates set is empty.
8130 break;
8131
8132 case OO_Plus: // '+' is either unary or binary
8133 if (Args.size() == 1)
8134 OpBuilder.addUnaryPlusPointerOverloads();
8135 // Fall through.
8136
8137 case OO_Minus: // '-' is either unary or binary
8138 if (Args.size() == 1) {
8139 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
8140 } else {
8141 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
8142 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8143 }
8144 break;
8145
8146 case OO_Star: // '*' is either unary or binary
8147 if (Args.size() == 1)
8148 OpBuilder.addUnaryStarPointerOverloads();
8149 else
8150 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8151 break;
8152
8153 case OO_Slash:
8154 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8155 break;
8156
8157 case OO_PlusPlus:
8158 case OO_MinusMinus:
8159 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
8160 OpBuilder.addPlusPlusMinusMinusPointerOverloads();
8161 break;
8162
8163 case OO_EqualEqual:
8164 case OO_ExclaimEqual:
8165 OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
8166 // Fall through.
8167
8168 case OO_Less:
8169 case OO_Greater:
8170 case OO_LessEqual:
8171 case OO_GreaterEqual:
8172 OpBuilder.addRelationalPointerOrEnumeralOverloads();
8173 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
8174 break;
8175
8176 case OO_Percent:
8177 case OO_Caret:
8178 case OO_Pipe:
8179 case OO_LessLess:
8180 case OO_GreaterGreater:
8181 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8182 break;
8183
8184 case OO_Amp: // '&' is either unary or binary
8185 if (Args.size() == 1)
8186 // C++ [over.match.oper]p3:
8187 // -- For the operator ',', the unary operator '&', or the
8188 // operator '->', the built-in candidates set is empty.
8189 break;
8190
8191 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8192 break;
8193
8194 case OO_Tilde:
8195 OpBuilder.addUnaryTildePromotedIntegralOverloads();
8196 break;
8197
8198 case OO_Equal:
8199 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
8200 // Fall through.
8201
8202 case OO_PlusEqual:
8203 case OO_MinusEqual:
8204 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
8205 // Fall through.
8206
8207 case OO_StarEqual:
8208 case OO_SlashEqual:
8209 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
8210 break;
8211
8212 case OO_PercentEqual:
8213 case OO_LessLessEqual:
8214 case OO_GreaterGreaterEqual:
8215 case OO_AmpEqual:
8216 case OO_CaretEqual:
8217 case OO_PipeEqual:
8218 OpBuilder.addAssignmentIntegralOverloads();
8219 break;
8220
8221 case OO_Exclaim:
8222 OpBuilder.addExclaimOverload();
8223 break;
8224
8225 case OO_AmpAmp:
8226 case OO_PipePipe:
8227 OpBuilder.addAmpAmpOrPipePipeOverload();
8228 break;
8229
8230 case OO_Subscript:
8231 OpBuilder.addSubscriptOverloads();
8232 break;
8233
8234 case OO_ArrowStar:
8235 OpBuilder.addArrowStarOverloads();
8236 break;
8237
8238 case OO_Conditional:
8239 OpBuilder.addConditionalOperatorOverloads();
8240 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8241 break;
8242 }
8243 }
8244
8245 /// \brief Add function candidates found via argument-dependent lookup
8246 /// to the set of overloading candidates.
8247 ///
8248 /// This routine performs argument-dependent name lookup based on the
8249 /// given function name (which may also be an operator name) and adds
8250 /// all of the overload candidates found by ADL to the overload
8251 /// candidate set (C++ [basic.lookup.argdep]).
8252 void
AddArgumentDependentLookupCandidates(DeclarationName Name,SourceLocation Loc,ArrayRef<Expr * > Args,TemplateArgumentListInfo * ExplicitTemplateArgs,OverloadCandidateSet & CandidateSet,bool PartialOverloading)8253 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
8254 SourceLocation Loc,
8255 ArrayRef<Expr *> Args,
8256 TemplateArgumentListInfo *ExplicitTemplateArgs,
8257 OverloadCandidateSet& CandidateSet,
8258 bool PartialOverloading) {
8259 ADLResult Fns;
8260
8261 // FIXME: This approach for uniquing ADL results (and removing
8262 // redundant candidates from the set) relies on pointer-equality,
8263 // which means we need to key off the canonical decl. However,
8264 // always going back to the canonical decl might not get us the
8265 // right set of default arguments. What default arguments are
8266 // we supposed to consider on ADL candidates, anyway?
8267
8268 // FIXME: Pass in the explicit template arguments?
8269 ArgumentDependentLookup(Name, Loc, Args, Fns);
8270
8271 // Erase all of the candidates we already knew about.
8272 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
8273 CandEnd = CandidateSet.end();
8274 Cand != CandEnd; ++Cand)
8275 if (Cand->Function) {
8276 Fns.erase(Cand->Function);
8277 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
8278 Fns.erase(FunTmpl);
8279 }
8280
8281 // For each of the ADL candidates we found, add it to the overload
8282 // set.
8283 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
8284 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
8285 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
8286 if (ExplicitTemplateArgs)
8287 continue;
8288
8289 AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
8290 PartialOverloading);
8291 } else
8292 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
8293 FoundDecl, ExplicitTemplateArgs,
8294 Args, CandidateSet);
8295 }
8296 }
8297
8298 /// isBetterOverloadCandidate - Determines whether the first overload
8299 /// candidate is a better candidate than the second (C++ 13.3.3p1).
isBetterOverloadCandidate(Sema & S,const OverloadCandidate & Cand1,const OverloadCandidate & Cand2,SourceLocation Loc,bool UserDefinedConversion)8300 bool clang::isBetterOverloadCandidate(Sema &S, const OverloadCandidate &Cand1,
8301 const OverloadCandidate &Cand2,
8302 SourceLocation Loc,
8303 bool UserDefinedConversion) {
8304 // Define viable functions to be better candidates than non-viable
8305 // functions.
8306 if (!Cand2.Viable)
8307 return Cand1.Viable;
8308 else if (!Cand1.Viable)
8309 return false;
8310
8311 // C++ [over.match.best]p1:
8312 //
8313 // -- if F is a static member function, ICS1(F) is defined such
8314 // that ICS1(F) is neither better nor worse than ICS1(G) for
8315 // any function G, and, symmetrically, ICS1(G) is neither
8316 // better nor worse than ICS1(F).
8317 unsigned StartArg = 0;
8318 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
8319 StartArg = 1;
8320
8321 // C++ [over.match.best]p1:
8322 // A viable function F1 is defined to be a better function than another
8323 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
8324 // conversion sequence than ICSi(F2), and then...
8325 unsigned NumArgs = Cand1.NumConversions;
8326 assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
8327 bool HasBetterConversion = false;
8328 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
8329 switch (CompareImplicitConversionSequences(S,
8330 Cand1.Conversions[ArgIdx],
8331 Cand2.Conversions[ArgIdx])) {
8332 case ImplicitConversionSequence::Better:
8333 // Cand1 has a better conversion sequence.
8334 HasBetterConversion = true;
8335 break;
8336
8337 case ImplicitConversionSequence::Worse:
8338 // Cand1 can't be better than Cand2.
8339 return false;
8340
8341 case ImplicitConversionSequence::Indistinguishable:
8342 // Do nothing.
8343 break;
8344 }
8345 }
8346
8347 // -- for some argument j, ICSj(F1) is a better conversion sequence than
8348 // ICSj(F2), or, if not that,
8349 if (HasBetterConversion)
8350 return true;
8351
8352 // -- the context is an initialization by user-defined conversion
8353 // (see 8.5, 13.3.1.5) and the standard conversion sequence
8354 // from the return type of F1 to the destination type (i.e.,
8355 // the type of the entity being initialized) is a better
8356 // conversion sequence than the standard conversion sequence
8357 // from the return type of F2 to the destination type.
8358 if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
8359 isa<CXXConversionDecl>(Cand1.Function) &&
8360 isa<CXXConversionDecl>(Cand2.Function)) {
8361 // First check whether we prefer one of the conversion functions over the
8362 // other. This only distinguishes the results in non-standard, extension
8363 // cases such as the conversion from a lambda closure type to a function
8364 // pointer or block.
8365 ImplicitConversionSequence::CompareKind Result =
8366 compareConversionFunctions(S, Cand1.Function, Cand2.Function);
8367 if (Result == ImplicitConversionSequence::Indistinguishable)
8368 Result = CompareStandardConversionSequences(S,
8369 Cand1.FinalConversion,
8370 Cand2.FinalConversion);
8371
8372 if (Result != ImplicitConversionSequence::Indistinguishable)
8373 return Result == ImplicitConversionSequence::Better;
8374
8375 // FIXME: Compare kind of reference binding if conversion functions
8376 // convert to a reference type used in direct reference binding, per
8377 // C++14 [over.match.best]p1 section 2 bullet 3.
8378 }
8379
8380 // -- F1 is a non-template function and F2 is a function template
8381 // specialization, or, if not that,
8382 bool Cand1IsSpecialization = Cand1.Function &&
8383 Cand1.Function->getPrimaryTemplate();
8384 bool Cand2IsSpecialization = Cand2.Function &&
8385 Cand2.Function->getPrimaryTemplate();
8386 if (Cand1IsSpecialization != Cand2IsSpecialization)
8387 return Cand2IsSpecialization;
8388
8389 // -- F1 and F2 are function template specializations, and the function
8390 // template for F1 is more specialized than the template for F2
8391 // according to the partial ordering rules described in 14.5.5.2, or,
8392 // if not that,
8393 if (Cand1IsSpecialization && Cand2IsSpecialization) {
8394 if (FunctionTemplateDecl *BetterTemplate
8395 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
8396 Cand2.Function->getPrimaryTemplate(),
8397 Loc,
8398 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
8399 : TPOC_Call,
8400 Cand1.ExplicitCallArguments,
8401 Cand2.ExplicitCallArguments))
8402 return BetterTemplate == Cand1.Function->getPrimaryTemplate();
8403 }
8404
8405 // Check for enable_if value-based overload resolution.
8406 if (Cand1.Function && Cand2.Function &&
8407 (Cand1.Function->hasAttr<EnableIfAttr>() ||
8408 Cand2.Function->hasAttr<EnableIfAttr>())) {
8409 // FIXME: The next several lines are just
8410 // specific_attr_iterator<EnableIfAttr> but going in declaration order,
8411 // instead of reverse order which is how they're stored in the AST.
8412 AttrVec Cand1Attrs;
8413 if (Cand1.Function->hasAttrs()) {
8414 Cand1Attrs = Cand1.Function->getAttrs();
8415 Cand1Attrs.erase(std::remove_if(Cand1Attrs.begin(), Cand1Attrs.end(),
8416 IsNotEnableIfAttr),
8417 Cand1Attrs.end());
8418 std::reverse(Cand1Attrs.begin(), Cand1Attrs.end());
8419 }
8420
8421 AttrVec Cand2Attrs;
8422 if (Cand2.Function->hasAttrs()) {
8423 Cand2Attrs = Cand2.Function->getAttrs();
8424 Cand2Attrs.erase(std::remove_if(Cand2Attrs.begin(), Cand2Attrs.end(),
8425 IsNotEnableIfAttr),
8426 Cand2Attrs.end());
8427 std::reverse(Cand2Attrs.begin(), Cand2Attrs.end());
8428 }
8429
8430 // Candidate 1 is better if it has strictly more attributes and
8431 // the common sequence is identical.
8432 if (Cand1Attrs.size() <= Cand2Attrs.size())
8433 return false;
8434
8435 auto Cand1I = Cand1Attrs.begin();
8436 for (auto &Cand2A : Cand2Attrs) {
8437 auto &Cand1A = *Cand1I++;
8438 llvm::FoldingSetNodeID Cand1ID, Cand2ID;
8439 cast<EnableIfAttr>(Cand1A)->getCond()->Profile(Cand1ID,
8440 S.getASTContext(), true);
8441 cast<EnableIfAttr>(Cand2A)->getCond()->Profile(Cand2ID,
8442 S.getASTContext(), true);
8443 if (Cand1ID != Cand2ID)
8444 return false;
8445 }
8446
8447 return true;
8448 }
8449
8450 return false;
8451 }
8452
8453 /// \brief Computes the best viable function (C++ 13.3.3)
8454 /// within an overload candidate set.
8455 ///
8456 /// \param Loc The location of the function name (or operator symbol) for
8457 /// which overload resolution occurs.
8458 ///
8459 /// \param Best If overload resolution was successful or found a deleted
8460 /// function, \p Best points to the candidate function found.
8461 ///
8462 /// \returns The result of overload resolution.
8463 OverloadingResult
BestViableFunction(Sema & S,SourceLocation Loc,iterator & Best,bool UserDefinedConversion)8464 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
8465 iterator &Best,
8466 bool UserDefinedConversion) {
8467 // Find the best viable function.
8468 Best = end();
8469 for (iterator Cand = begin(); Cand != end(); ++Cand) {
8470 if (Cand->Viable)
8471 if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
8472 UserDefinedConversion))
8473 Best = Cand;
8474 }
8475
8476 // If we didn't find any viable functions, abort.
8477 if (Best == end())
8478 return OR_No_Viable_Function;
8479
8480 // Make sure that this function is better than every other viable
8481 // function. If not, we have an ambiguity.
8482 for (iterator Cand = begin(); Cand != end(); ++Cand) {
8483 if (Cand->Viable &&
8484 Cand != Best &&
8485 !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
8486 UserDefinedConversion)) {
8487 Best = end();
8488 return OR_Ambiguous;
8489 }
8490 }
8491
8492 // Best is the best viable function.
8493 if (Best->Function &&
8494 (Best->Function->isDeleted() ||
8495 S.isFunctionConsideredUnavailable(Best->Function)))
8496 return OR_Deleted;
8497
8498 return OR_Success;
8499 }
8500
8501 namespace {
8502
8503 enum OverloadCandidateKind {
8504 oc_function,
8505 oc_method,
8506 oc_constructor,
8507 oc_function_template,
8508 oc_method_template,
8509 oc_constructor_template,
8510 oc_implicit_default_constructor,
8511 oc_implicit_copy_constructor,
8512 oc_implicit_move_constructor,
8513 oc_implicit_copy_assignment,
8514 oc_implicit_move_assignment,
8515 oc_implicit_inherited_constructor
8516 };
8517
ClassifyOverloadCandidate(Sema & S,FunctionDecl * Fn,std::string & Description)8518 OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
8519 FunctionDecl *Fn,
8520 std::string &Description) {
8521 bool isTemplate = false;
8522
8523 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
8524 isTemplate = true;
8525 Description = S.getTemplateArgumentBindingsText(
8526 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
8527 }
8528
8529 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
8530 if (!Ctor->isImplicit())
8531 return isTemplate ? oc_constructor_template : oc_constructor;
8532
8533 if (Ctor->getInheritedConstructor())
8534 return oc_implicit_inherited_constructor;
8535
8536 if (Ctor->isDefaultConstructor())
8537 return oc_implicit_default_constructor;
8538
8539 if (Ctor->isMoveConstructor())
8540 return oc_implicit_move_constructor;
8541
8542 assert(Ctor->isCopyConstructor() &&
8543 "unexpected sort of implicit constructor");
8544 return oc_implicit_copy_constructor;
8545 }
8546
8547 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
8548 // This actually gets spelled 'candidate function' for now, but
8549 // it doesn't hurt to split it out.
8550 if (!Meth->isImplicit())
8551 return isTemplate ? oc_method_template : oc_method;
8552
8553 if (Meth->isMoveAssignmentOperator())
8554 return oc_implicit_move_assignment;
8555
8556 if (Meth->isCopyAssignmentOperator())
8557 return oc_implicit_copy_assignment;
8558
8559 assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
8560 return oc_method;
8561 }
8562
8563 return isTemplate ? oc_function_template : oc_function;
8564 }
8565
MaybeEmitInheritedConstructorNote(Sema & S,Decl * Fn)8566 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *Fn) {
8567 const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
8568 if (!Ctor) return;
8569
8570 Ctor = Ctor->getInheritedConstructor();
8571 if (!Ctor) return;
8572
8573 S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
8574 }
8575
8576 } // end anonymous namespace
8577
8578 // Notes the location of an overload candidate.
NoteOverloadCandidate(FunctionDecl * Fn,QualType DestType)8579 void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
8580 std::string FnDesc;
8581 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
8582 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
8583 << (unsigned) K << FnDesc;
8584 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
8585 Diag(Fn->getLocation(), PD);
8586 MaybeEmitInheritedConstructorNote(*this, Fn);
8587 }
8588
8589 // Notes the location of all overload candidates designated through
8590 // OverloadedExpr
NoteAllOverloadCandidates(Expr * OverloadedExpr,QualType DestType)8591 void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
8592 assert(OverloadedExpr->getType() == Context.OverloadTy);
8593
8594 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
8595 OverloadExpr *OvlExpr = Ovl.Expression;
8596
8597 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
8598 IEnd = OvlExpr->decls_end();
8599 I != IEnd; ++I) {
8600 if (FunctionTemplateDecl *FunTmpl =
8601 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
8602 NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
8603 } else if (FunctionDecl *Fun
8604 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
8605 NoteOverloadCandidate(Fun, DestType);
8606 }
8607 }
8608 }
8609
8610 /// Diagnoses an ambiguous conversion. The partial diagnostic is the
8611 /// "lead" diagnostic; it will be given two arguments, the source and
8612 /// target types of the conversion.
DiagnoseAmbiguousConversion(Sema & S,SourceLocation CaretLoc,const PartialDiagnostic & PDiag) const8613 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
8614 Sema &S,
8615 SourceLocation CaretLoc,
8616 const PartialDiagnostic &PDiag) const {
8617 S.Diag(CaretLoc, PDiag)
8618 << Ambiguous.getFromType() << Ambiguous.getToType();
8619 // FIXME: The note limiting machinery is borrowed from
8620 // OverloadCandidateSet::NoteCandidates; there's an opportunity for
8621 // refactoring here.
8622 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
8623 unsigned CandsShown = 0;
8624 AmbiguousConversionSequence::const_iterator I, E;
8625 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
8626 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
8627 break;
8628 ++CandsShown;
8629 S.NoteOverloadCandidate(*I);
8630 }
8631 if (I != E)
8632 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
8633 }
8634
DiagnoseBadConversion(Sema & S,OverloadCandidate * Cand,unsigned I)8635 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
8636 unsigned I) {
8637 const ImplicitConversionSequence &Conv = Cand->Conversions[I];
8638 assert(Conv.isBad());
8639 assert(Cand->Function && "for now, candidate must be a function");
8640 FunctionDecl *Fn = Cand->Function;
8641
8642 // There's a conversion slot for the object argument if this is a
8643 // non-constructor method. Note that 'I' corresponds the
8644 // conversion-slot index.
8645 bool isObjectArgument = false;
8646 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
8647 if (I == 0)
8648 isObjectArgument = true;
8649 else
8650 I--;
8651 }
8652
8653 std::string FnDesc;
8654 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8655
8656 Expr *FromExpr = Conv.Bad.FromExpr;
8657 QualType FromTy = Conv.Bad.getFromType();
8658 QualType ToTy = Conv.Bad.getToType();
8659
8660 if (FromTy == S.Context.OverloadTy) {
8661 assert(FromExpr && "overload set argument came from implicit argument?");
8662 Expr *E = FromExpr->IgnoreParens();
8663 if (isa<UnaryOperator>(E))
8664 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
8665 DeclarationName Name = cast<OverloadExpr>(E)->getName();
8666
8667 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
8668 << (unsigned) FnKind << FnDesc
8669 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8670 << ToTy << Name << I+1;
8671 MaybeEmitInheritedConstructorNote(S, Fn);
8672 return;
8673 }
8674
8675 // Do some hand-waving analysis to see if the non-viability is due
8676 // to a qualifier mismatch.
8677 CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
8678 CanQualType CToTy = S.Context.getCanonicalType(ToTy);
8679 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
8680 CToTy = RT->getPointeeType();
8681 else {
8682 // TODO: detect and diagnose the full richness of const mismatches.
8683 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
8684 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
8685 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
8686 }
8687
8688 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
8689 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
8690 Qualifiers FromQs = CFromTy.getQualifiers();
8691 Qualifiers ToQs = CToTy.getQualifiers();
8692
8693 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
8694 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
8695 << (unsigned) FnKind << FnDesc
8696 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8697 << FromTy
8698 << FromQs.getAddressSpace() << ToQs.getAddressSpace()
8699 << (unsigned) isObjectArgument << I+1;
8700 MaybeEmitInheritedConstructorNote(S, Fn);
8701 return;
8702 }
8703
8704 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8705 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
8706 << (unsigned) FnKind << FnDesc
8707 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8708 << FromTy
8709 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
8710 << (unsigned) isObjectArgument << I+1;
8711 MaybeEmitInheritedConstructorNote(S, Fn);
8712 return;
8713 }
8714
8715 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
8716 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
8717 << (unsigned) FnKind << FnDesc
8718 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8719 << FromTy
8720 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
8721 << (unsigned) isObjectArgument << I+1;
8722 MaybeEmitInheritedConstructorNote(S, Fn);
8723 return;
8724 }
8725
8726 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
8727 assert(CVR && "unexpected qualifiers mismatch");
8728
8729 if (isObjectArgument) {
8730 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
8731 << (unsigned) FnKind << FnDesc
8732 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8733 << FromTy << (CVR - 1);
8734 } else {
8735 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
8736 << (unsigned) FnKind << FnDesc
8737 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8738 << FromTy << (CVR - 1) << I+1;
8739 }
8740 MaybeEmitInheritedConstructorNote(S, Fn);
8741 return;
8742 }
8743
8744 // Special diagnostic for failure to convert an initializer list, since
8745 // telling the user that it has type void is not useful.
8746 if (FromExpr && isa<InitListExpr>(FromExpr)) {
8747 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
8748 << (unsigned) FnKind << FnDesc
8749 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8750 << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8751 MaybeEmitInheritedConstructorNote(S, Fn);
8752 return;
8753 }
8754
8755 // Diagnose references or pointers to incomplete types differently,
8756 // since it's far from impossible that the incompleteness triggered
8757 // the failure.
8758 QualType TempFromTy = FromTy.getNonReferenceType();
8759 if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
8760 TempFromTy = PTy->getPointeeType();
8761 if (TempFromTy->isIncompleteType()) {
8762 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
8763 << (unsigned) FnKind << FnDesc
8764 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8765 << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8766 MaybeEmitInheritedConstructorNote(S, Fn);
8767 return;
8768 }
8769
8770 // Diagnose base -> derived pointer conversions.
8771 unsigned BaseToDerivedConversion = 0;
8772 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
8773 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
8774 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8775 FromPtrTy->getPointeeType()) &&
8776 !FromPtrTy->getPointeeType()->isIncompleteType() &&
8777 !ToPtrTy->getPointeeType()->isIncompleteType() &&
8778 S.IsDerivedFrom(ToPtrTy->getPointeeType(),
8779 FromPtrTy->getPointeeType()))
8780 BaseToDerivedConversion = 1;
8781 }
8782 } else if (const ObjCObjectPointerType *FromPtrTy
8783 = FromTy->getAs<ObjCObjectPointerType>()) {
8784 if (const ObjCObjectPointerType *ToPtrTy
8785 = ToTy->getAs<ObjCObjectPointerType>())
8786 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
8787 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
8788 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8789 FromPtrTy->getPointeeType()) &&
8790 FromIface->isSuperClassOf(ToIface))
8791 BaseToDerivedConversion = 2;
8792 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
8793 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
8794 !FromTy->isIncompleteType() &&
8795 !ToRefTy->getPointeeType()->isIncompleteType() &&
8796 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) {
8797 BaseToDerivedConversion = 3;
8798 } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
8799 ToTy.getNonReferenceType().getCanonicalType() ==
8800 FromTy.getNonReferenceType().getCanonicalType()) {
8801 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
8802 << (unsigned) FnKind << FnDesc
8803 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8804 << (unsigned) isObjectArgument << I + 1;
8805 MaybeEmitInheritedConstructorNote(S, Fn);
8806 return;
8807 }
8808 }
8809
8810 if (BaseToDerivedConversion) {
8811 S.Diag(Fn->getLocation(),
8812 diag::note_ovl_candidate_bad_base_to_derived_conv)
8813 << (unsigned) FnKind << FnDesc
8814 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8815 << (BaseToDerivedConversion - 1)
8816 << FromTy << ToTy << I+1;
8817 MaybeEmitInheritedConstructorNote(S, Fn);
8818 return;
8819 }
8820
8821 if (isa<ObjCObjectPointerType>(CFromTy) &&
8822 isa<PointerType>(CToTy)) {
8823 Qualifiers FromQs = CFromTy.getQualifiers();
8824 Qualifiers ToQs = CToTy.getQualifiers();
8825 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8826 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
8827 << (unsigned) FnKind << FnDesc
8828 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8829 << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8830 MaybeEmitInheritedConstructorNote(S, Fn);
8831 return;
8832 }
8833 }
8834
8835 // Emit the generic diagnostic and, optionally, add the hints to it.
8836 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
8837 FDiag << (unsigned) FnKind << FnDesc
8838 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8839 << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
8840 << (unsigned) (Cand->Fix.Kind);
8841
8842 // If we can fix the conversion, suggest the FixIts.
8843 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
8844 HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
8845 FDiag << *HI;
8846 S.Diag(Fn->getLocation(), FDiag);
8847
8848 MaybeEmitInheritedConstructorNote(S, Fn);
8849 }
8850
8851 /// Additional arity mismatch diagnosis specific to a function overload
8852 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
8853 /// over a candidate in any candidate set.
CheckArityMismatch(Sema & S,OverloadCandidate * Cand,unsigned NumArgs)8854 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
8855 unsigned NumArgs) {
8856 FunctionDecl *Fn = Cand->Function;
8857 unsigned MinParams = Fn->getMinRequiredArguments();
8858
8859 // With invalid overloaded operators, it's possible that we think we
8860 // have an arity mismatch when in fact it looks like we have the
8861 // right number of arguments, because only overloaded operators have
8862 // the weird behavior of overloading member and non-member functions.
8863 // Just don't report anything.
8864 if (Fn->isInvalidDecl() &&
8865 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
8866 return true;
8867
8868 if (NumArgs < MinParams) {
8869 assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
8870 (Cand->FailureKind == ovl_fail_bad_deduction &&
8871 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
8872 } else {
8873 assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
8874 (Cand->FailureKind == ovl_fail_bad_deduction &&
8875 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
8876 }
8877
8878 return false;
8879 }
8880
8881 /// General arity mismatch diagnosis over a candidate in a candidate set.
DiagnoseArityMismatch(Sema & S,Decl * D,unsigned NumFormalArgs)8882 static void DiagnoseArityMismatch(Sema &S, Decl *D, unsigned NumFormalArgs) {
8883 assert(isa<FunctionDecl>(D) &&
8884 "The templated declaration should at least be a function"
8885 " when diagnosing bad template argument deduction due to too many"
8886 " or too few arguments");
8887
8888 FunctionDecl *Fn = cast<FunctionDecl>(D);
8889
8890 // TODO: treat calls to a missing default constructor as a special case
8891 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
8892 unsigned MinParams = Fn->getMinRequiredArguments();
8893
8894 // at least / at most / exactly
8895 unsigned mode, modeCount;
8896 if (NumFormalArgs < MinParams) {
8897 if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
8898 FnTy->isTemplateVariadic())
8899 mode = 0; // "at least"
8900 else
8901 mode = 2; // "exactly"
8902 modeCount = MinParams;
8903 } else {
8904 if (MinParams != FnTy->getNumParams())
8905 mode = 1; // "at most"
8906 else
8907 mode = 2; // "exactly"
8908 modeCount = FnTy->getNumParams();
8909 }
8910
8911 std::string Description;
8912 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
8913
8914 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
8915 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
8916 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
8917 << mode << Fn->getParamDecl(0) << NumFormalArgs;
8918 else
8919 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
8920 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
8921 << mode << modeCount << NumFormalArgs;
8922 MaybeEmitInheritedConstructorNote(S, Fn);
8923 }
8924
8925 /// Arity mismatch diagnosis specific to a function overload candidate.
DiagnoseArityMismatch(Sema & S,OverloadCandidate * Cand,unsigned NumFormalArgs)8926 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
8927 unsigned NumFormalArgs) {
8928 if (!CheckArityMismatch(S, Cand, NumFormalArgs))
8929 DiagnoseArityMismatch(S, Cand->Function, NumFormalArgs);
8930 }
8931
getDescribedTemplate(Decl * Templated)8932 static TemplateDecl *getDescribedTemplate(Decl *Templated) {
8933 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Templated))
8934 return FD->getDescribedFunctionTemplate();
8935 else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Templated))
8936 return RD->getDescribedClassTemplate();
8937
8938 llvm_unreachable("Unsupported: Getting the described template declaration"
8939 " for bad deduction diagnosis");
8940 }
8941
8942 /// Diagnose a failed template-argument deduction.
DiagnoseBadDeduction(Sema & S,Decl * Templated,DeductionFailureInfo & DeductionFailure,unsigned NumArgs)8943 static void DiagnoseBadDeduction(Sema &S, Decl *Templated,
8944 DeductionFailureInfo &DeductionFailure,
8945 unsigned NumArgs) {
8946 TemplateParameter Param = DeductionFailure.getTemplateParameter();
8947 NamedDecl *ParamD;
8948 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
8949 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
8950 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
8951 switch (DeductionFailure.Result) {
8952 case Sema::TDK_Success:
8953 llvm_unreachable("TDK_success while diagnosing bad deduction");
8954
8955 case Sema::TDK_Incomplete: {
8956 assert(ParamD && "no parameter found for incomplete deduction result");
8957 S.Diag(Templated->getLocation(),
8958 diag::note_ovl_candidate_incomplete_deduction)
8959 << ParamD->getDeclName();
8960 MaybeEmitInheritedConstructorNote(S, Templated);
8961 return;
8962 }
8963
8964 case Sema::TDK_Underqualified: {
8965 assert(ParamD && "no parameter found for bad qualifiers deduction result");
8966 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
8967
8968 QualType Param = DeductionFailure.getFirstArg()->getAsType();
8969
8970 // Param will have been canonicalized, but it should just be a
8971 // qualified version of ParamD, so move the qualifiers to that.
8972 QualifierCollector Qs;
8973 Qs.strip(Param);
8974 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
8975 assert(S.Context.hasSameType(Param, NonCanonParam));
8976
8977 // Arg has also been canonicalized, but there's nothing we can do
8978 // about that. It also doesn't matter as much, because it won't
8979 // have any template parameters in it (because deduction isn't
8980 // done on dependent types).
8981 QualType Arg = DeductionFailure.getSecondArg()->getAsType();
8982
8983 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
8984 << ParamD->getDeclName() << Arg << NonCanonParam;
8985 MaybeEmitInheritedConstructorNote(S, Templated);
8986 return;
8987 }
8988
8989 case Sema::TDK_Inconsistent: {
8990 assert(ParamD && "no parameter found for inconsistent deduction result");
8991 int which = 0;
8992 if (isa<TemplateTypeParmDecl>(ParamD))
8993 which = 0;
8994 else if (isa<NonTypeTemplateParmDecl>(ParamD))
8995 which = 1;
8996 else {
8997 which = 2;
8998 }
8999
9000 S.Diag(Templated->getLocation(),
9001 diag::note_ovl_candidate_inconsistent_deduction)
9002 << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
9003 << *DeductionFailure.getSecondArg();
9004 MaybeEmitInheritedConstructorNote(S, Templated);
9005 return;
9006 }
9007
9008 case Sema::TDK_InvalidExplicitArguments:
9009 assert(ParamD && "no parameter found for invalid explicit arguments");
9010 if (ParamD->getDeclName())
9011 S.Diag(Templated->getLocation(),
9012 diag::note_ovl_candidate_explicit_arg_mismatch_named)
9013 << ParamD->getDeclName();
9014 else {
9015 int index = 0;
9016 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
9017 index = TTP->getIndex();
9018 else if (NonTypeTemplateParmDecl *NTTP
9019 = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
9020 index = NTTP->getIndex();
9021 else
9022 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
9023 S.Diag(Templated->getLocation(),
9024 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
9025 << (index + 1);
9026 }
9027 MaybeEmitInheritedConstructorNote(S, Templated);
9028 return;
9029
9030 case Sema::TDK_TooManyArguments:
9031 case Sema::TDK_TooFewArguments:
9032 DiagnoseArityMismatch(S, Templated, NumArgs);
9033 return;
9034
9035 case Sema::TDK_InstantiationDepth:
9036 S.Diag(Templated->getLocation(),
9037 diag::note_ovl_candidate_instantiation_depth);
9038 MaybeEmitInheritedConstructorNote(S, Templated);
9039 return;
9040
9041 case Sema::TDK_SubstitutionFailure: {
9042 // Format the template argument list into the argument string.
9043 SmallString<128> TemplateArgString;
9044 if (TemplateArgumentList *Args =
9045 DeductionFailure.getTemplateArgumentList()) {
9046 TemplateArgString = " ";
9047 TemplateArgString += S.getTemplateArgumentBindingsText(
9048 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
9049 }
9050
9051 // If this candidate was disabled by enable_if, say so.
9052 PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
9053 if (PDiag && PDiag->second.getDiagID() ==
9054 diag::err_typename_nested_not_found_enable_if) {
9055 // FIXME: Use the source range of the condition, and the fully-qualified
9056 // name of the enable_if template. These are both present in PDiag.
9057 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
9058 << "'enable_if'" << TemplateArgString;
9059 return;
9060 }
9061
9062 // Format the SFINAE diagnostic into the argument string.
9063 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
9064 // formatted message in another diagnostic.
9065 SmallString<128> SFINAEArgString;
9066 SourceRange R;
9067 if (PDiag) {
9068 SFINAEArgString = ": ";
9069 R = SourceRange(PDiag->first, PDiag->first);
9070 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
9071 }
9072
9073 S.Diag(Templated->getLocation(),
9074 diag::note_ovl_candidate_substitution_failure)
9075 << TemplateArgString << SFINAEArgString << R;
9076 MaybeEmitInheritedConstructorNote(S, Templated);
9077 return;
9078 }
9079
9080 case Sema::TDK_FailedOverloadResolution: {
9081 OverloadExpr::FindResult R = OverloadExpr::find(DeductionFailure.getExpr());
9082 S.Diag(Templated->getLocation(),
9083 diag::note_ovl_candidate_failed_overload_resolution)
9084 << R.Expression->getName();
9085 return;
9086 }
9087
9088 case Sema::TDK_NonDeducedMismatch: {
9089 // FIXME: Provide a source location to indicate what we couldn't match.
9090 TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
9091 TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
9092 if (FirstTA.getKind() == TemplateArgument::Template &&
9093 SecondTA.getKind() == TemplateArgument::Template) {
9094 TemplateName FirstTN = FirstTA.getAsTemplate();
9095 TemplateName SecondTN = SecondTA.getAsTemplate();
9096 if (FirstTN.getKind() == TemplateName::Template &&
9097 SecondTN.getKind() == TemplateName::Template) {
9098 if (FirstTN.getAsTemplateDecl()->getName() ==
9099 SecondTN.getAsTemplateDecl()->getName()) {
9100 // FIXME: This fixes a bad diagnostic where both templates are named
9101 // the same. This particular case is a bit difficult since:
9102 // 1) It is passed as a string to the diagnostic printer.
9103 // 2) The diagnostic printer only attempts to find a better
9104 // name for types, not decls.
9105 // Ideally, this should folded into the diagnostic printer.
9106 S.Diag(Templated->getLocation(),
9107 diag::note_ovl_candidate_non_deduced_mismatch_qualified)
9108 << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
9109 return;
9110 }
9111 }
9112 }
9113 // FIXME: For generic lambda parameters, check if the function is a lambda
9114 // call operator, and if so, emit a prettier and more informative
9115 // diagnostic that mentions 'auto' and lambda in addition to
9116 // (or instead of?) the canonical template type parameters.
9117 S.Diag(Templated->getLocation(),
9118 diag::note_ovl_candidate_non_deduced_mismatch)
9119 << FirstTA << SecondTA;
9120 return;
9121 }
9122 // TODO: diagnose these individually, then kill off
9123 // note_ovl_candidate_bad_deduction, which is uselessly vague.
9124 case Sema::TDK_MiscellaneousDeductionFailure:
9125 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
9126 MaybeEmitInheritedConstructorNote(S, Templated);
9127 return;
9128 }
9129 }
9130
9131 /// Diagnose a failed template-argument deduction, for function calls.
DiagnoseBadDeduction(Sema & S,OverloadCandidate * Cand,unsigned NumArgs)9132 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
9133 unsigned NumArgs) {
9134 unsigned TDK = Cand->DeductionFailure.Result;
9135 if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
9136 if (CheckArityMismatch(S, Cand, NumArgs))
9137 return;
9138 }
9139 DiagnoseBadDeduction(S, Cand->Function, // pattern
9140 Cand->DeductionFailure, NumArgs);
9141 }
9142
9143 /// CUDA: diagnose an invalid call across targets.
DiagnoseBadTarget(Sema & S,OverloadCandidate * Cand)9144 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
9145 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
9146 FunctionDecl *Callee = Cand->Function;
9147
9148 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
9149 CalleeTarget = S.IdentifyCUDATarget(Callee);
9150
9151 std::string FnDesc;
9152 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
9153
9154 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
9155 << (unsigned)FnKind << CalleeTarget << CallerTarget;
9156
9157 // This could be an implicit constructor for which we could not infer the
9158 // target due to a collsion. Diagnose that case.
9159 CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
9160 if (Meth != nullptr && Meth->isImplicit()) {
9161 CXXRecordDecl *ParentClass = Meth->getParent();
9162 Sema::CXXSpecialMember CSM;
9163
9164 switch (FnKind) {
9165 default:
9166 return;
9167 case oc_implicit_default_constructor:
9168 CSM = Sema::CXXDefaultConstructor;
9169 break;
9170 case oc_implicit_copy_constructor:
9171 CSM = Sema::CXXCopyConstructor;
9172 break;
9173 case oc_implicit_move_constructor:
9174 CSM = Sema::CXXMoveConstructor;
9175 break;
9176 case oc_implicit_copy_assignment:
9177 CSM = Sema::CXXCopyAssignment;
9178 break;
9179 case oc_implicit_move_assignment:
9180 CSM = Sema::CXXMoveAssignment;
9181 break;
9182 };
9183
9184 bool ConstRHS = false;
9185 if (Meth->getNumParams()) {
9186 if (const ReferenceType *RT =
9187 Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
9188 ConstRHS = RT->getPointeeType().isConstQualified();
9189 }
9190 }
9191
9192 S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
9193 /* ConstRHS */ ConstRHS,
9194 /* Diagnose */ true);
9195 }
9196 }
9197
DiagnoseFailedEnableIfAttr(Sema & S,OverloadCandidate * Cand)9198 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
9199 FunctionDecl *Callee = Cand->Function;
9200 EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
9201
9202 S.Diag(Callee->getLocation(),
9203 diag::note_ovl_candidate_disabled_by_enable_if_attr)
9204 << Attr->getCond()->getSourceRange() << Attr->getMessage();
9205 }
9206
9207 /// Generates a 'note' diagnostic for an overload candidate. We've
9208 /// already generated a primary error at the call site.
9209 ///
9210 /// It really does need to be a single diagnostic with its caret
9211 /// pointed at the candidate declaration. Yes, this creates some
9212 /// major challenges of technical writing. Yes, this makes pointing
9213 /// out problems with specific arguments quite awkward. It's still
9214 /// better than generating twenty screens of text for every failed
9215 /// overload.
9216 ///
9217 /// It would be great to be able to express per-candidate problems
9218 /// more richly for those diagnostic clients that cared, but we'd
9219 /// still have to be just as careful with the default diagnostics.
NoteFunctionCandidate(Sema & S,OverloadCandidate * Cand,unsigned NumArgs)9220 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
9221 unsigned NumArgs) {
9222 FunctionDecl *Fn = Cand->Function;
9223
9224 // Note deleted candidates, but only if they're viable.
9225 if (Cand->Viable && (Fn->isDeleted() ||
9226 S.isFunctionConsideredUnavailable(Fn))) {
9227 std::string FnDesc;
9228 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
9229
9230 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
9231 << FnKind << FnDesc
9232 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
9233 MaybeEmitInheritedConstructorNote(S, Fn);
9234 return;
9235 }
9236
9237 // We don't really have anything else to say about viable candidates.
9238 if (Cand->Viable) {
9239 S.NoteOverloadCandidate(Fn);
9240 return;
9241 }
9242
9243 switch (Cand->FailureKind) {
9244 case ovl_fail_too_many_arguments:
9245 case ovl_fail_too_few_arguments:
9246 return DiagnoseArityMismatch(S, Cand, NumArgs);
9247
9248 case ovl_fail_bad_deduction:
9249 return DiagnoseBadDeduction(S, Cand, NumArgs);
9250
9251 case ovl_fail_illegal_constructor: {
9252 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
9253 << (Fn->getPrimaryTemplate() ? 1 : 0);
9254 MaybeEmitInheritedConstructorNote(S, Fn);
9255 return;
9256 }
9257
9258 case ovl_fail_trivial_conversion:
9259 case ovl_fail_bad_final_conversion:
9260 case ovl_fail_final_conversion_not_exact:
9261 return S.NoteOverloadCandidate(Fn);
9262
9263 case ovl_fail_bad_conversion: {
9264 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
9265 for (unsigned N = Cand->NumConversions; I != N; ++I)
9266 if (Cand->Conversions[I].isBad())
9267 return DiagnoseBadConversion(S, Cand, I);
9268
9269 // FIXME: this currently happens when we're called from SemaInit
9270 // when user-conversion overload fails. Figure out how to handle
9271 // those conditions and diagnose them well.
9272 return S.NoteOverloadCandidate(Fn);
9273 }
9274
9275 case ovl_fail_bad_target:
9276 return DiagnoseBadTarget(S, Cand);
9277
9278 case ovl_fail_enable_if:
9279 return DiagnoseFailedEnableIfAttr(S, Cand);
9280 }
9281 }
9282
NoteSurrogateCandidate(Sema & S,OverloadCandidate * Cand)9283 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
9284 // Desugar the type of the surrogate down to a function type,
9285 // retaining as many typedefs as possible while still showing
9286 // the function type (and, therefore, its parameter types).
9287 QualType FnType = Cand->Surrogate->getConversionType();
9288 bool isLValueReference = false;
9289 bool isRValueReference = false;
9290 bool isPointer = false;
9291 if (const LValueReferenceType *FnTypeRef =
9292 FnType->getAs<LValueReferenceType>()) {
9293 FnType = FnTypeRef->getPointeeType();
9294 isLValueReference = true;
9295 } else if (const RValueReferenceType *FnTypeRef =
9296 FnType->getAs<RValueReferenceType>()) {
9297 FnType = FnTypeRef->getPointeeType();
9298 isRValueReference = true;
9299 }
9300 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
9301 FnType = FnTypePtr->getPointeeType();
9302 isPointer = true;
9303 }
9304 // Desugar down to a function type.
9305 FnType = QualType(FnType->getAs<FunctionType>(), 0);
9306 // Reconstruct the pointer/reference as appropriate.
9307 if (isPointer) FnType = S.Context.getPointerType(FnType);
9308 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
9309 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
9310
9311 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
9312 << FnType;
9313 MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
9314 }
9315
NoteBuiltinOperatorCandidate(Sema & S,StringRef Opc,SourceLocation OpLoc,OverloadCandidate * Cand)9316 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
9317 SourceLocation OpLoc,
9318 OverloadCandidate *Cand) {
9319 assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
9320 std::string TypeStr("operator");
9321 TypeStr += Opc;
9322 TypeStr += "(";
9323 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
9324 if (Cand->NumConversions == 1) {
9325 TypeStr += ")";
9326 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
9327 } else {
9328 TypeStr += ", ";
9329 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
9330 TypeStr += ")";
9331 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
9332 }
9333 }
9334
NoteAmbiguousUserConversions(Sema & S,SourceLocation OpLoc,OverloadCandidate * Cand)9335 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
9336 OverloadCandidate *Cand) {
9337 unsigned NoOperands = Cand->NumConversions;
9338 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
9339 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
9340 if (ICS.isBad()) break; // all meaningless after first invalid
9341 if (!ICS.isAmbiguous()) continue;
9342
9343 ICS.DiagnoseAmbiguousConversion(S, OpLoc,
9344 S.PDiag(diag::note_ambiguous_type_conversion));
9345 }
9346 }
9347
GetLocationForCandidate(const OverloadCandidate * Cand)9348 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
9349 if (Cand->Function)
9350 return Cand->Function->getLocation();
9351 if (Cand->IsSurrogate)
9352 return Cand->Surrogate->getLocation();
9353 return SourceLocation();
9354 }
9355
RankDeductionFailure(const DeductionFailureInfo & DFI)9356 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
9357 switch ((Sema::TemplateDeductionResult)DFI.Result) {
9358 case Sema::TDK_Success:
9359 llvm_unreachable("TDK_success while diagnosing bad deduction");
9360
9361 case Sema::TDK_Invalid:
9362 case Sema::TDK_Incomplete:
9363 return 1;
9364
9365 case Sema::TDK_Underqualified:
9366 case Sema::TDK_Inconsistent:
9367 return 2;
9368
9369 case Sema::TDK_SubstitutionFailure:
9370 case Sema::TDK_NonDeducedMismatch:
9371 case Sema::TDK_MiscellaneousDeductionFailure:
9372 return 3;
9373
9374 case Sema::TDK_InstantiationDepth:
9375 case Sema::TDK_FailedOverloadResolution:
9376 return 4;
9377
9378 case Sema::TDK_InvalidExplicitArguments:
9379 return 5;
9380
9381 case Sema::TDK_TooManyArguments:
9382 case Sema::TDK_TooFewArguments:
9383 return 6;
9384 }
9385 llvm_unreachable("Unhandled deduction result");
9386 }
9387
9388 namespace {
9389 struct CompareOverloadCandidatesForDisplay {
9390 Sema &S;
9391 size_t NumArgs;
9392
CompareOverloadCandidatesForDisplay__anonb968987c0711::CompareOverloadCandidatesForDisplay9393 CompareOverloadCandidatesForDisplay(Sema &S, size_t nArgs)
9394 : S(S), NumArgs(nArgs) {}
9395
operator ()__anonb968987c0711::CompareOverloadCandidatesForDisplay9396 bool operator()(const OverloadCandidate *L,
9397 const OverloadCandidate *R) {
9398 // Fast-path this check.
9399 if (L == R) return false;
9400
9401 // Order first by viability.
9402 if (L->Viable) {
9403 if (!R->Viable) return true;
9404
9405 // TODO: introduce a tri-valued comparison for overload
9406 // candidates. Would be more worthwhile if we had a sort
9407 // that could exploit it.
9408 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
9409 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
9410 } else if (R->Viable)
9411 return false;
9412
9413 assert(L->Viable == R->Viable);
9414
9415 // Criteria by which we can sort non-viable candidates:
9416 if (!L->Viable) {
9417 // 1. Arity mismatches come after other candidates.
9418 if (L->FailureKind == ovl_fail_too_many_arguments ||
9419 L->FailureKind == ovl_fail_too_few_arguments) {
9420 if (R->FailureKind == ovl_fail_too_many_arguments ||
9421 R->FailureKind == ovl_fail_too_few_arguments) {
9422 int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
9423 int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
9424 if (LDist == RDist) {
9425 if (L->FailureKind == R->FailureKind)
9426 // Sort non-surrogates before surrogates.
9427 return !L->IsSurrogate && R->IsSurrogate;
9428 // Sort candidates requiring fewer parameters than there were
9429 // arguments given after candidates requiring more parameters
9430 // than there were arguments given.
9431 return L->FailureKind == ovl_fail_too_many_arguments;
9432 }
9433 return LDist < RDist;
9434 }
9435 return false;
9436 }
9437 if (R->FailureKind == ovl_fail_too_many_arguments ||
9438 R->FailureKind == ovl_fail_too_few_arguments)
9439 return true;
9440
9441 // 2. Bad conversions come first and are ordered by the number
9442 // of bad conversions and quality of good conversions.
9443 if (L->FailureKind == ovl_fail_bad_conversion) {
9444 if (R->FailureKind != ovl_fail_bad_conversion)
9445 return true;
9446
9447 // The conversion that can be fixed with a smaller number of changes,
9448 // comes first.
9449 unsigned numLFixes = L->Fix.NumConversionsFixed;
9450 unsigned numRFixes = R->Fix.NumConversionsFixed;
9451 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
9452 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
9453 if (numLFixes != numRFixes) {
9454 if (numLFixes < numRFixes)
9455 return true;
9456 else
9457 return false;
9458 }
9459
9460 // If there's any ordering between the defined conversions...
9461 // FIXME: this might not be transitive.
9462 assert(L->NumConversions == R->NumConversions);
9463
9464 int leftBetter = 0;
9465 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
9466 for (unsigned E = L->NumConversions; I != E; ++I) {
9467 switch (CompareImplicitConversionSequences(S,
9468 L->Conversions[I],
9469 R->Conversions[I])) {
9470 case ImplicitConversionSequence::Better:
9471 leftBetter++;
9472 break;
9473
9474 case ImplicitConversionSequence::Worse:
9475 leftBetter--;
9476 break;
9477
9478 case ImplicitConversionSequence::Indistinguishable:
9479 break;
9480 }
9481 }
9482 if (leftBetter > 0) return true;
9483 if (leftBetter < 0) return false;
9484
9485 } else if (R->FailureKind == ovl_fail_bad_conversion)
9486 return false;
9487
9488 if (L->FailureKind == ovl_fail_bad_deduction) {
9489 if (R->FailureKind != ovl_fail_bad_deduction)
9490 return true;
9491
9492 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
9493 return RankDeductionFailure(L->DeductionFailure)
9494 < RankDeductionFailure(R->DeductionFailure);
9495 } else if (R->FailureKind == ovl_fail_bad_deduction)
9496 return false;
9497
9498 // TODO: others?
9499 }
9500
9501 // Sort everything else by location.
9502 SourceLocation LLoc = GetLocationForCandidate(L);
9503 SourceLocation RLoc = GetLocationForCandidate(R);
9504
9505 // Put candidates without locations (e.g. builtins) at the end.
9506 if (LLoc.isInvalid()) return false;
9507 if (RLoc.isInvalid()) return true;
9508
9509 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
9510 }
9511 };
9512 }
9513
9514 /// CompleteNonViableCandidate - Normally, overload resolution only
9515 /// computes up to the first. Produces the FixIt set if possible.
CompleteNonViableCandidate(Sema & S,OverloadCandidate * Cand,ArrayRef<Expr * > Args)9516 static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
9517 ArrayRef<Expr *> Args) {
9518 assert(!Cand->Viable);
9519
9520 // Don't do anything on failures other than bad conversion.
9521 if (Cand->FailureKind != ovl_fail_bad_conversion) return;
9522
9523 // We only want the FixIts if all the arguments can be corrected.
9524 bool Unfixable = false;
9525 // Use a implicit copy initialization to check conversion fixes.
9526 Cand->Fix.setConversionChecker(TryCopyInitialization);
9527
9528 // Skip forward to the first bad conversion.
9529 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
9530 unsigned ConvCount = Cand->NumConversions;
9531 while (true) {
9532 assert(ConvIdx != ConvCount && "no bad conversion in candidate");
9533 ConvIdx++;
9534 if (Cand->Conversions[ConvIdx - 1].isBad()) {
9535 Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
9536 break;
9537 }
9538 }
9539
9540 if (ConvIdx == ConvCount)
9541 return;
9542
9543 assert(!Cand->Conversions[ConvIdx].isInitialized() &&
9544 "remaining conversion is initialized?");
9545
9546 // FIXME: this should probably be preserved from the overload
9547 // operation somehow.
9548 bool SuppressUserConversions = false;
9549
9550 const FunctionProtoType* Proto;
9551 unsigned ArgIdx = ConvIdx;
9552
9553 if (Cand->IsSurrogate) {
9554 QualType ConvType
9555 = Cand->Surrogate->getConversionType().getNonReferenceType();
9556 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
9557 ConvType = ConvPtrType->getPointeeType();
9558 Proto = ConvType->getAs<FunctionProtoType>();
9559 ArgIdx--;
9560 } else if (Cand->Function) {
9561 Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
9562 if (isa<CXXMethodDecl>(Cand->Function) &&
9563 !isa<CXXConstructorDecl>(Cand->Function))
9564 ArgIdx--;
9565 } else {
9566 // Builtin binary operator with a bad first conversion.
9567 assert(ConvCount <= 3);
9568 for (; ConvIdx != ConvCount; ++ConvIdx)
9569 Cand->Conversions[ConvIdx]
9570 = TryCopyInitialization(S, Args[ConvIdx],
9571 Cand->BuiltinTypes.ParamTypes[ConvIdx],
9572 SuppressUserConversions,
9573 /*InOverloadResolution*/ true,
9574 /*AllowObjCWritebackConversion=*/
9575 S.getLangOpts().ObjCAutoRefCount);
9576 return;
9577 }
9578
9579 // Fill in the rest of the conversions.
9580 unsigned NumParams = Proto->getNumParams();
9581 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
9582 if (ArgIdx < NumParams) {
9583 Cand->Conversions[ConvIdx] = TryCopyInitialization(
9584 S, Args[ArgIdx], Proto->getParamType(ArgIdx), SuppressUserConversions,
9585 /*InOverloadResolution=*/true,
9586 /*AllowObjCWritebackConversion=*/
9587 S.getLangOpts().ObjCAutoRefCount);
9588 // Store the FixIt in the candidate if it exists.
9589 if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
9590 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
9591 }
9592 else
9593 Cand->Conversions[ConvIdx].setEllipsis();
9594 }
9595 }
9596
9597 /// PrintOverloadCandidates - When overload resolution fails, prints
9598 /// diagnostic messages containing the candidates in the candidate
9599 /// set.
NoteCandidates(Sema & S,OverloadCandidateDisplayKind OCD,ArrayRef<Expr * > Args,StringRef Opc,SourceLocation OpLoc)9600 void OverloadCandidateSet::NoteCandidates(Sema &S,
9601 OverloadCandidateDisplayKind OCD,
9602 ArrayRef<Expr *> Args,
9603 StringRef Opc,
9604 SourceLocation OpLoc) {
9605 // Sort the candidates by viability and position. Sorting directly would
9606 // be prohibitive, so we make a set of pointers and sort those.
9607 SmallVector<OverloadCandidate*, 32> Cands;
9608 if (OCD == OCD_AllCandidates) Cands.reserve(size());
9609 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
9610 if (Cand->Viable)
9611 Cands.push_back(Cand);
9612 else if (OCD == OCD_AllCandidates) {
9613 CompleteNonViableCandidate(S, Cand, Args);
9614 if (Cand->Function || Cand->IsSurrogate)
9615 Cands.push_back(Cand);
9616 // Otherwise, this a non-viable builtin candidate. We do not, in general,
9617 // want to list every possible builtin candidate.
9618 }
9619 }
9620
9621 std::sort(Cands.begin(), Cands.end(),
9622 CompareOverloadCandidatesForDisplay(S, Args.size()));
9623
9624 bool ReportedAmbiguousConversions = false;
9625
9626 SmallVectorImpl<OverloadCandidate*>::iterator I, E;
9627 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9628 unsigned CandsShown = 0;
9629 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
9630 OverloadCandidate *Cand = *I;
9631
9632 // Set an arbitrary limit on the number of candidate functions we'll spam
9633 // the user with. FIXME: This limit should depend on details of the
9634 // candidate list.
9635 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
9636 break;
9637 }
9638 ++CandsShown;
9639
9640 if (Cand->Function)
9641 NoteFunctionCandidate(S, Cand, Args.size());
9642 else if (Cand->IsSurrogate)
9643 NoteSurrogateCandidate(S, Cand);
9644 else {
9645 assert(Cand->Viable &&
9646 "Non-viable built-in candidates are not added to Cands.");
9647 // Generally we only see ambiguities including viable builtin
9648 // operators if overload resolution got screwed up by an
9649 // ambiguous user-defined conversion.
9650 //
9651 // FIXME: It's quite possible for different conversions to see
9652 // different ambiguities, though.
9653 if (!ReportedAmbiguousConversions) {
9654 NoteAmbiguousUserConversions(S, OpLoc, Cand);
9655 ReportedAmbiguousConversions = true;
9656 }
9657
9658 // If this is a viable builtin, print it.
9659 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
9660 }
9661 }
9662
9663 if (I != E)
9664 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
9665 }
9666
9667 static SourceLocation
GetLocationForCandidate(const TemplateSpecCandidate * Cand)9668 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
9669 return Cand->Specialization ? Cand->Specialization->getLocation()
9670 : SourceLocation();
9671 }
9672
9673 namespace {
9674 struct CompareTemplateSpecCandidatesForDisplay {
9675 Sema &S;
CompareTemplateSpecCandidatesForDisplay__anonb968987c0811::CompareTemplateSpecCandidatesForDisplay9676 CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
9677
operator ()__anonb968987c0811::CompareTemplateSpecCandidatesForDisplay9678 bool operator()(const TemplateSpecCandidate *L,
9679 const TemplateSpecCandidate *R) {
9680 // Fast-path this check.
9681 if (L == R)
9682 return false;
9683
9684 // Assuming that both candidates are not matches...
9685
9686 // Sort by the ranking of deduction failures.
9687 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
9688 return RankDeductionFailure(L->DeductionFailure) <
9689 RankDeductionFailure(R->DeductionFailure);
9690
9691 // Sort everything else by location.
9692 SourceLocation LLoc = GetLocationForCandidate(L);
9693 SourceLocation RLoc = GetLocationForCandidate(R);
9694
9695 // Put candidates without locations (e.g. builtins) at the end.
9696 if (LLoc.isInvalid())
9697 return false;
9698 if (RLoc.isInvalid())
9699 return true;
9700
9701 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
9702 }
9703 };
9704 }
9705
9706 /// Diagnose a template argument deduction failure.
9707 /// We are treating these failures as overload failures due to bad
9708 /// deductions.
NoteDeductionFailure(Sema & S)9709 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S) {
9710 DiagnoseBadDeduction(S, Specialization, // pattern
9711 DeductionFailure, /*NumArgs=*/0);
9712 }
9713
destroyCandidates()9714 void TemplateSpecCandidateSet::destroyCandidates() {
9715 for (iterator i = begin(), e = end(); i != e; ++i) {
9716 i->DeductionFailure.Destroy();
9717 }
9718 }
9719
clear()9720 void TemplateSpecCandidateSet::clear() {
9721 destroyCandidates();
9722 Candidates.clear();
9723 }
9724
9725 /// NoteCandidates - When no template specialization match is found, prints
9726 /// diagnostic messages containing the non-matching specializations that form
9727 /// the candidate set.
9728 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
9729 /// OCD == OCD_AllCandidates and Cand->Viable == false.
NoteCandidates(Sema & S,SourceLocation Loc)9730 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
9731 // Sort the candidates by position (assuming no candidate is a match).
9732 // Sorting directly would be prohibitive, so we make a set of pointers
9733 // and sort those.
9734 SmallVector<TemplateSpecCandidate *, 32> Cands;
9735 Cands.reserve(size());
9736 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
9737 if (Cand->Specialization)
9738 Cands.push_back(Cand);
9739 // Otherwise, this is a non-matching builtin candidate. We do not,
9740 // in general, want to list every possible builtin candidate.
9741 }
9742
9743 std::sort(Cands.begin(), Cands.end(),
9744 CompareTemplateSpecCandidatesForDisplay(S));
9745
9746 // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
9747 // for generalization purposes (?).
9748 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9749
9750 SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
9751 unsigned CandsShown = 0;
9752 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
9753 TemplateSpecCandidate *Cand = *I;
9754
9755 // Set an arbitrary limit on the number of candidates we'll spam
9756 // the user with. FIXME: This limit should depend on details of the
9757 // candidate list.
9758 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
9759 break;
9760 ++CandsShown;
9761
9762 assert(Cand->Specialization &&
9763 "Non-matching built-in candidates are not added to Cands.");
9764 Cand->NoteDeductionFailure(S);
9765 }
9766
9767 if (I != E)
9768 S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
9769 }
9770
9771 // [PossiblyAFunctionType] --> [Return]
9772 // NonFunctionType --> NonFunctionType
9773 // R (A) --> R(A)
9774 // R (*)(A) --> R (A)
9775 // R (&)(A) --> R (A)
9776 // R (S::*)(A) --> R (A)
ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType)9777 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
9778 QualType Ret = PossiblyAFunctionType;
9779 if (const PointerType *ToTypePtr =
9780 PossiblyAFunctionType->getAs<PointerType>())
9781 Ret = ToTypePtr->getPointeeType();
9782 else if (const ReferenceType *ToTypeRef =
9783 PossiblyAFunctionType->getAs<ReferenceType>())
9784 Ret = ToTypeRef->getPointeeType();
9785 else if (const MemberPointerType *MemTypePtr =
9786 PossiblyAFunctionType->getAs<MemberPointerType>())
9787 Ret = MemTypePtr->getPointeeType();
9788 Ret =
9789 Context.getCanonicalType(Ret).getUnqualifiedType();
9790 return Ret;
9791 }
9792
9793 namespace {
9794 // A helper class to help with address of function resolution
9795 // - allows us to avoid passing around all those ugly parameters
9796 class AddressOfFunctionResolver {
9797 Sema& S;
9798 Expr* SourceExpr;
9799 const QualType& TargetType;
9800 QualType TargetFunctionType; // Extracted function type from target type
9801
9802 bool Complain;
9803 //DeclAccessPair& ResultFunctionAccessPair;
9804 ASTContext& Context;
9805
9806 bool TargetTypeIsNonStaticMemberFunction;
9807 bool FoundNonTemplateFunction;
9808 bool StaticMemberFunctionFromBoundPointer;
9809
9810 OverloadExpr::FindResult OvlExprInfo;
9811 OverloadExpr *OvlExpr;
9812 TemplateArgumentListInfo OvlExplicitTemplateArgs;
9813 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
9814 TemplateSpecCandidateSet FailedCandidates;
9815
9816 public:
AddressOfFunctionResolver(Sema & S,Expr * SourceExpr,const QualType & TargetType,bool Complain)9817 AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
9818 const QualType &TargetType, bool Complain)
9819 : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
9820 Complain(Complain), Context(S.getASTContext()),
9821 TargetTypeIsNonStaticMemberFunction(
9822 !!TargetType->getAs<MemberPointerType>()),
9823 FoundNonTemplateFunction(false),
9824 StaticMemberFunctionFromBoundPointer(false),
9825 OvlExprInfo(OverloadExpr::find(SourceExpr)),
9826 OvlExpr(OvlExprInfo.Expression),
9827 FailedCandidates(OvlExpr->getNameLoc()) {
9828 ExtractUnqualifiedFunctionTypeFromTargetType();
9829
9830 if (TargetFunctionType->isFunctionType()) {
9831 if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
9832 if (!UME->isImplicitAccess() &&
9833 !S.ResolveSingleFunctionTemplateSpecialization(UME))
9834 StaticMemberFunctionFromBoundPointer = true;
9835 } else if (OvlExpr->hasExplicitTemplateArgs()) {
9836 DeclAccessPair dap;
9837 if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
9838 OvlExpr, false, &dap)) {
9839 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
9840 if (!Method->isStatic()) {
9841 // If the target type is a non-function type and the function found
9842 // is a non-static member function, pretend as if that was the
9843 // target, it's the only possible type to end up with.
9844 TargetTypeIsNonStaticMemberFunction = true;
9845
9846 // And skip adding the function if its not in the proper form.
9847 // We'll diagnose this due to an empty set of functions.
9848 if (!OvlExprInfo.HasFormOfMemberPointer)
9849 return;
9850 }
9851
9852 Matches.push_back(std::make_pair(dap, Fn));
9853 }
9854 return;
9855 }
9856
9857 if (OvlExpr->hasExplicitTemplateArgs())
9858 OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
9859
9860 if (FindAllFunctionsThatMatchTargetTypeExactly()) {
9861 // C++ [over.over]p4:
9862 // If more than one function is selected, [...]
9863 if (Matches.size() > 1) {
9864 if (FoundNonTemplateFunction)
9865 EliminateAllTemplateMatches();
9866 else
9867 EliminateAllExceptMostSpecializedTemplate();
9868 }
9869 }
9870 }
9871
9872 private:
isTargetTypeAFunction() const9873 bool isTargetTypeAFunction() const {
9874 return TargetFunctionType->isFunctionType();
9875 }
9876
9877 // [ToType] [Return]
9878
9879 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
9880 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
9881 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
ExtractUnqualifiedFunctionTypeFromTargetType()9882 void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
9883 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
9884 }
9885
9886 // return true if any matching specializations were found
AddMatchingTemplateFunction(FunctionTemplateDecl * FunctionTemplate,const DeclAccessPair & CurAccessFunPair)9887 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
9888 const DeclAccessPair& CurAccessFunPair) {
9889 if (CXXMethodDecl *Method
9890 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
9891 // Skip non-static function templates when converting to pointer, and
9892 // static when converting to member pointer.
9893 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
9894 return false;
9895 }
9896 else if (TargetTypeIsNonStaticMemberFunction)
9897 return false;
9898
9899 // C++ [over.over]p2:
9900 // If the name is a function template, template argument deduction is
9901 // done (14.8.2.2), and if the argument deduction succeeds, the
9902 // resulting template argument list is used to generate a single
9903 // function template specialization, which is added to the set of
9904 // overloaded functions considered.
9905 FunctionDecl *Specialization = nullptr;
9906 TemplateDeductionInfo Info(FailedCandidates.getLocation());
9907 if (Sema::TemplateDeductionResult Result
9908 = S.DeduceTemplateArguments(FunctionTemplate,
9909 &OvlExplicitTemplateArgs,
9910 TargetFunctionType, Specialization,
9911 Info, /*InOverloadResolution=*/true)) {
9912 // Make a note of the failed deduction for diagnostics.
9913 FailedCandidates.addCandidate()
9914 .set(FunctionTemplate->getTemplatedDecl(),
9915 MakeDeductionFailureInfo(Context, Result, Info));
9916 return false;
9917 }
9918
9919 // Template argument deduction ensures that we have an exact match or
9920 // compatible pointer-to-function arguments that would be adjusted by ICS.
9921 // This function template specicalization works.
9922 Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
9923 assert(S.isSameOrCompatibleFunctionType(
9924 Context.getCanonicalType(Specialization->getType()),
9925 Context.getCanonicalType(TargetFunctionType)));
9926 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
9927 return true;
9928 }
9929
AddMatchingNonTemplateFunction(NamedDecl * Fn,const DeclAccessPair & CurAccessFunPair)9930 bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
9931 const DeclAccessPair& CurAccessFunPair) {
9932 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9933 // Skip non-static functions when converting to pointer, and static
9934 // when converting to member pointer.
9935 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
9936 return false;
9937 }
9938 else if (TargetTypeIsNonStaticMemberFunction)
9939 return false;
9940
9941 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
9942 if (S.getLangOpts().CUDA)
9943 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
9944 if (!Caller->isImplicit() && S.CheckCUDATarget(Caller, FunDecl))
9945 return false;
9946
9947 // If any candidate has a placeholder return type, trigger its deduction
9948 // now.
9949 if (S.getLangOpts().CPlusPlus14 &&
9950 FunDecl->getReturnType()->isUndeducedType() &&
9951 S.DeduceReturnType(FunDecl, SourceExpr->getLocStart(), Complain))
9952 return false;
9953
9954 QualType ResultTy;
9955 if (Context.hasSameUnqualifiedType(TargetFunctionType,
9956 FunDecl->getType()) ||
9957 S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
9958 ResultTy)) {
9959 Matches.push_back(std::make_pair(CurAccessFunPair,
9960 cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
9961 FoundNonTemplateFunction = true;
9962 return true;
9963 }
9964 }
9965
9966 return false;
9967 }
9968
FindAllFunctionsThatMatchTargetTypeExactly()9969 bool FindAllFunctionsThatMatchTargetTypeExactly() {
9970 bool Ret = false;
9971
9972 // If the overload expression doesn't have the form of a pointer to
9973 // member, don't try to convert it to a pointer-to-member type.
9974 if (IsInvalidFormOfPointerToMemberFunction())
9975 return false;
9976
9977 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9978 E = OvlExpr->decls_end();
9979 I != E; ++I) {
9980 // Look through any using declarations to find the underlying function.
9981 NamedDecl *Fn = (*I)->getUnderlyingDecl();
9982
9983 // C++ [over.over]p3:
9984 // Non-member functions and static member functions match
9985 // targets of type "pointer-to-function" or "reference-to-function."
9986 // Nonstatic member functions match targets of
9987 // type "pointer-to-member-function."
9988 // Note that according to DR 247, the containing class does not matter.
9989 if (FunctionTemplateDecl *FunctionTemplate
9990 = dyn_cast<FunctionTemplateDecl>(Fn)) {
9991 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
9992 Ret = true;
9993 }
9994 // If we have explicit template arguments supplied, skip non-templates.
9995 else if (!OvlExpr->hasExplicitTemplateArgs() &&
9996 AddMatchingNonTemplateFunction(Fn, I.getPair()))
9997 Ret = true;
9998 }
9999 assert(Ret || Matches.empty());
10000 return Ret;
10001 }
10002
EliminateAllExceptMostSpecializedTemplate()10003 void EliminateAllExceptMostSpecializedTemplate() {
10004 // [...] and any given function template specialization F1 is
10005 // eliminated if the set contains a second function template
10006 // specialization whose function template is more specialized
10007 // than the function template of F1 according to the partial
10008 // ordering rules of 14.5.5.2.
10009
10010 // The algorithm specified above is quadratic. We instead use a
10011 // two-pass algorithm (similar to the one used to identify the
10012 // best viable function in an overload set) that identifies the
10013 // best function template (if it exists).
10014
10015 UnresolvedSet<4> MatchesCopy; // TODO: avoid!
10016 for (unsigned I = 0, E = Matches.size(); I != E; ++I)
10017 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
10018
10019 // TODO: It looks like FailedCandidates does not serve much purpose
10020 // here, since the no_viable diagnostic has index 0.
10021 UnresolvedSetIterator Result = S.getMostSpecialized(
10022 MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
10023 SourceExpr->getLocStart(), S.PDiag(),
10024 S.PDiag(diag::err_addr_ovl_ambiguous) << Matches[0]
10025 .second->getDeclName(),
10026 S.PDiag(diag::note_ovl_candidate) << (unsigned)oc_function_template,
10027 Complain, TargetFunctionType);
10028
10029 if (Result != MatchesCopy.end()) {
10030 // Make it the first and only element
10031 Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
10032 Matches[0].second = cast<FunctionDecl>(*Result);
10033 Matches.resize(1);
10034 }
10035 }
10036
EliminateAllTemplateMatches()10037 void EliminateAllTemplateMatches() {
10038 // [...] any function template specializations in the set are
10039 // eliminated if the set also contains a non-template function, [...]
10040 for (unsigned I = 0, N = Matches.size(); I != N; ) {
10041 if (Matches[I].second->getPrimaryTemplate() == nullptr)
10042 ++I;
10043 else {
10044 Matches[I] = Matches[--N];
10045 Matches.set_size(N);
10046 }
10047 }
10048 }
10049
10050 public:
ComplainNoMatchesFound() const10051 void ComplainNoMatchesFound() const {
10052 assert(Matches.empty());
10053 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
10054 << OvlExpr->getName() << TargetFunctionType
10055 << OvlExpr->getSourceRange();
10056 if (FailedCandidates.empty())
10057 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
10058 else {
10059 // We have some deduction failure messages. Use them to diagnose
10060 // the function templates, and diagnose the non-template candidates
10061 // normally.
10062 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
10063 IEnd = OvlExpr->decls_end();
10064 I != IEnd; ++I)
10065 if (FunctionDecl *Fun =
10066 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
10067 S.NoteOverloadCandidate(Fun, TargetFunctionType);
10068 FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart());
10069 }
10070 }
10071
IsInvalidFormOfPointerToMemberFunction() const10072 bool IsInvalidFormOfPointerToMemberFunction() const {
10073 return TargetTypeIsNonStaticMemberFunction &&
10074 !OvlExprInfo.HasFormOfMemberPointer;
10075 }
10076
ComplainIsInvalidFormOfPointerToMemberFunction() const10077 void ComplainIsInvalidFormOfPointerToMemberFunction() const {
10078 // TODO: Should we condition this on whether any functions might
10079 // have matched, or is it more appropriate to do that in callers?
10080 // TODO: a fixit wouldn't hurt.
10081 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
10082 << TargetType << OvlExpr->getSourceRange();
10083 }
10084
IsStaticMemberFunctionFromBoundPointer() const10085 bool IsStaticMemberFunctionFromBoundPointer() const {
10086 return StaticMemberFunctionFromBoundPointer;
10087 }
10088
ComplainIsStaticMemberFunctionFromBoundPointer() const10089 void ComplainIsStaticMemberFunctionFromBoundPointer() const {
10090 S.Diag(OvlExpr->getLocStart(),
10091 diag::err_invalid_form_pointer_member_function)
10092 << OvlExpr->getSourceRange();
10093 }
10094
ComplainOfInvalidConversion() const10095 void ComplainOfInvalidConversion() const {
10096 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
10097 << OvlExpr->getName() << TargetType;
10098 }
10099
ComplainMultipleMatchesFound() const10100 void ComplainMultipleMatchesFound() const {
10101 assert(Matches.size() > 1);
10102 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
10103 << OvlExpr->getName()
10104 << OvlExpr->getSourceRange();
10105 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
10106 }
10107
hadMultipleCandidates() const10108 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
10109
getNumMatches() const10110 int getNumMatches() const { return Matches.size(); }
10111
getMatchingFunctionDecl() const10112 FunctionDecl* getMatchingFunctionDecl() const {
10113 if (Matches.size() != 1) return nullptr;
10114 return Matches[0].second;
10115 }
10116
getMatchingFunctionAccessPair() const10117 const DeclAccessPair* getMatchingFunctionAccessPair() const {
10118 if (Matches.size() != 1) return nullptr;
10119 return &Matches[0].first;
10120 }
10121 };
10122 }
10123
10124 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
10125 /// an overloaded function (C++ [over.over]), where @p From is an
10126 /// expression with overloaded function type and @p ToType is the type
10127 /// we're trying to resolve to. For example:
10128 ///
10129 /// @code
10130 /// int f(double);
10131 /// int f(int);
10132 ///
10133 /// int (*pfd)(double) = f; // selects f(double)
10134 /// @endcode
10135 ///
10136 /// This routine returns the resulting FunctionDecl if it could be
10137 /// resolved, and NULL otherwise. When @p Complain is true, this
10138 /// routine will emit diagnostics if there is an error.
10139 FunctionDecl *
ResolveAddressOfOverloadedFunction(Expr * AddressOfExpr,QualType TargetType,bool Complain,DeclAccessPair & FoundResult,bool * pHadMultipleCandidates)10140 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
10141 QualType TargetType,
10142 bool Complain,
10143 DeclAccessPair &FoundResult,
10144 bool *pHadMultipleCandidates) {
10145 assert(AddressOfExpr->getType() == Context.OverloadTy);
10146
10147 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
10148 Complain);
10149 int NumMatches = Resolver.getNumMatches();
10150 FunctionDecl *Fn = nullptr;
10151 if (NumMatches == 0 && Complain) {
10152 if (Resolver.IsInvalidFormOfPointerToMemberFunction())
10153 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
10154 else
10155 Resolver.ComplainNoMatchesFound();
10156 }
10157 else if (NumMatches > 1 && Complain)
10158 Resolver.ComplainMultipleMatchesFound();
10159 else if (NumMatches == 1) {
10160 Fn = Resolver.getMatchingFunctionDecl();
10161 assert(Fn);
10162 FoundResult = *Resolver.getMatchingFunctionAccessPair();
10163 if (Complain) {
10164 if (Resolver.IsStaticMemberFunctionFromBoundPointer())
10165 Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
10166 else
10167 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
10168 }
10169 }
10170
10171 if (pHadMultipleCandidates)
10172 *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
10173 return Fn;
10174 }
10175
10176 /// \brief Given an expression that refers to an overloaded function, try to
10177 /// resolve that overloaded function expression down to a single function.
10178 ///
10179 /// This routine can only resolve template-ids that refer to a single function
10180 /// template, where that template-id refers to a single template whose template
10181 /// arguments are either provided by the template-id or have defaults,
10182 /// as described in C++0x [temp.arg.explicit]p3.
10183 ///
10184 /// If no template-ids are found, no diagnostics are emitted and NULL is
10185 /// returned.
10186 FunctionDecl *
ResolveSingleFunctionTemplateSpecialization(OverloadExpr * ovl,bool Complain,DeclAccessPair * FoundResult)10187 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
10188 bool Complain,
10189 DeclAccessPair *FoundResult) {
10190 // C++ [over.over]p1:
10191 // [...] [Note: any redundant set of parentheses surrounding the
10192 // overloaded function name is ignored (5.1). ]
10193 // C++ [over.over]p1:
10194 // [...] The overloaded function name can be preceded by the &
10195 // operator.
10196
10197 // If we didn't actually find any template-ids, we're done.
10198 if (!ovl->hasExplicitTemplateArgs())
10199 return nullptr;
10200
10201 TemplateArgumentListInfo ExplicitTemplateArgs;
10202 ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
10203 TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
10204
10205 // Look through all of the overloaded functions, searching for one
10206 // whose type matches exactly.
10207 FunctionDecl *Matched = nullptr;
10208 for (UnresolvedSetIterator I = ovl->decls_begin(),
10209 E = ovl->decls_end(); I != E; ++I) {
10210 // C++0x [temp.arg.explicit]p3:
10211 // [...] In contexts where deduction is done and fails, or in contexts
10212 // where deduction is not done, if a template argument list is
10213 // specified and it, along with any default template arguments,
10214 // identifies a single function template specialization, then the
10215 // template-id is an lvalue for the function template specialization.
10216 FunctionTemplateDecl *FunctionTemplate
10217 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
10218
10219 // C++ [over.over]p2:
10220 // If the name is a function template, template argument deduction is
10221 // done (14.8.2.2), and if the argument deduction succeeds, the
10222 // resulting template argument list is used to generate a single
10223 // function template specialization, which is added to the set of
10224 // overloaded functions considered.
10225 FunctionDecl *Specialization = nullptr;
10226 TemplateDeductionInfo Info(FailedCandidates.getLocation());
10227 if (TemplateDeductionResult Result
10228 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
10229 Specialization, Info,
10230 /*InOverloadResolution=*/true)) {
10231 // Make a note of the failed deduction for diagnostics.
10232 // TODO: Actually use the failed-deduction info?
10233 FailedCandidates.addCandidate()
10234 .set(FunctionTemplate->getTemplatedDecl(),
10235 MakeDeductionFailureInfo(Context, Result, Info));
10236 continue;
10237 }
10238
10239 assert(Specialization && "no specialization and no error?");
10240
10241 // Multiple matches; we can't resolve to a single declaration.
10242 if (Matched) {
10243 if (Complain) {
10244 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
10245 << ovl->getName();
10246 NoteAllOverloadCandidates(ovl);
10247 }
10248 return nullptr;
10249 }
10250
10251 Matched = Specialization;
10252 if (FoundResult) *FoundResult = I.getPair();
10253 }
10254
10255 if (Matched && getLangOpts().CPlusPlus14 &&
10256 Matched->getReturnType()->isUndeducedType() &&
10257 DeduceReturnType(Matched, ovl->getExprLoc(), Complain))
10258 return nullptr;
10259
10260 return Matched;
10261 }
10262
10263
10264
10265
10266 // Resolve and fix an overloaded expression that can be resolved
10267 // because it identifies a single function template specialization.
10268 //
10269 // Last three arguments should only be supplied if Complain = true
10270 //
10271 // Return true if it was logically possible to so resolve the
10272 // expression, regardless of whether or not it succeeded. Always
10273 // returns true if 'complain' is set.
ResolveAndFixSingleFunctionTemplateSpecialization(ExprResult & SrcExpr,bool doFunctionPointerConverion,bool complain,const SourceRange & OpRangeForComplaining,QualType DestTypeForComplaining,unsigned DiagIDForComplaining)10274 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
10275 ExprResult &SrcExpr, bool doFunctionPointerConverion,
10276 bool complain, const SourceRange& OpRangeForComplaining,
10277 QualType DestTypeForComplaining,
10278 unsigned DiagIDForComplaining) {
10279 assert(SrcExpr.get()->getType() == Context.OverloadTy);
10280
10281 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
10282
10283 DeclAccessPair found;
10284 ExprResult SingleFunctionExpression;
10285 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
10286 ovl.Expression, /*complain*/ false, &found)) {
10287 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
10288 SrcExpr = ExprError();
10289 return true;
10290 }
10291
10292 // It is only correct to resolve to an instance method if we're
10293 // resolving a form that's permitted to be a pointer to member.
10294 // Otherwise we'll end up making a bound member expression, which
10295 // is illegal in all the contexts we resolve like this.
10296 if (!ovl.HasFormOfMemberPointer &&
10297 isa<CXXMethodDecl>(fn) &&
10298 cast<CXXMethodDecl>(fn)->isInstance()) {
10299 if (!complain) return false;
10300
10301 Diag(ovl.Expression->getExprLoc(),
10302 diag::err_bound_member_function)
10303 << 0 << ovl.Expression->getSourceRange();
10304
10305 // TODO: I believe we only end up here if there's a mix of
10306 // static and non-static candidates (otherwise the expression
10307 // would have 'bound member' type, not 'overload' type).
10308 // Ideally we would note which candidate was chosen and why
10309 // the static candidates were rejected.
10310 SrcExpr = ExprError();
10311 return true;
10312 }
10313
10314 // Fix the expression to refer to 'fn'.
10315 SingleFunctionExpression =
10316 FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
10317
10318 // If desired, do function-to-pointer decay.
10319 if (doFunctionPointerConverion) {
10320 SingleFunctionExpression =
10321 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
10322 if (SingleFunctionExpression.isInvalid()) {
10323 SrcExpr = ExprError();
10324 return true;
10325 }
10326 }
10327 }
10328
10329 if (!SingleFunctionExpression.isUsable()) {
10330 if (complain) {
10331 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
10332 << ovl.Expression->getName()
10333 << DestTypeForComplaining
10334 << OpRangeForComplaining
10335 << ovl.Expression->getQualifierLoc().getSourceRange();
10336 NoteAllOverloadCandidates(SrcExpr.get());
10337
10338 SrcExpr = ExprError();
10339 return true;
10340 }
10341
10342 return false;
10343 }
10344
10345 SrcExpr = SingleFunctionExpression;
10346 return true;
10347 }
10348
10349 /// \brief Add a single candidate to the overload set.
AddOverloadedCallCandidate(Sema & S,DeclAccessPair FoundDecl,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool PartialOverloading,bool KnownValid)10350 static void AddOverloadedCallCandidate(Sema &S,
10351 DeclAccessPair FoundDecl,
10352 TemplateArgumentListInfo *ExplicitTemplateArgs,
10353 ArrayRef<Expr *> Args,
10354 OverloadCandidateSet &CandidateSet,
10355 bool PartialOverloading,
10356 bool KnownValid) {
10357 NamedDecl *Callee = FoundDecl.getDecl();
10358 if (isa<UsingShadowDecl>(Callee))
10359 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
10360
10361 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
10362 if (ExplicitTemplateArgs) {
10363 assert(!KnownValid && "Explicit template arguments?");
10364 return;
10365 }
10366 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
10367 PartialOverloading);
10368 return;
10369 }
10370
10371 if (FunctionTemplateDecl *FuncTemplate
10372 = dyn_cast<FunctionTemplateDecl>(Callee)) {
10373 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
10374 ExplicitTemplateArgs, Args, CandidateSet);
10375 return;
10376 }
10377
10378 assert(!KnownValid && "unhandled case in overloaded call candidate");
10379 }
10380
10381 /// \brief Add the overload candidates named by callee and/or found by argument
10382 /// dependent lookup to the given overload set.
AddOverloadedCallCandidates(UnresolvedLookupExpr * ULE,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool PartialOverloading)10383 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
10384 ArrayRef<Expr *> Args,
10385 OverloadCandidateSet &CandidateSet,
10386 bool PartialOverloading) {
10387
10388 #ifndef NDEBUG
10389 // Verify that ArgumentDependentLookup is consistent with the rules
10390 // in C++0x [basic.lookup.argdep]p3:
10391 //
10392 // Let X be the lookup set produced by unqualified lookup (3.4.1)
10393 // and let Y be the lookup set produced by argument dependent
10394 // lookup (defined as follows). If X contains
10395 //
10396 // -- a declaration of a class member, or
10397 //
10398 // -- a block-scope function declaration that is not a
10399 // using-declaration, or
10400 //
10401 // -- a declaration that is neither a function or a function
10402 // template
10403 //
10404 // then Y is empty.
10405
10406 if (ULE->requiresADL()) {
10407 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
10408 E = ULE->decls_end(); I != E; ++I) {
10409 assert(!(*I)->getDeclContext()->isRecord());
10410 assert(isa<UsingShadowDecl>(*I) ||
10411 !(*I)->getDeclContext()->isFunctionOrMethod());
10412 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
10413 }
10414 }
10415 #endif
10416
10417 // It would be nice to avoid this copy.
10418 TemplateArgumentListInfo TABuffer;
10419 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
10420 if (ULE->hasExplicitTemplateArgs()) {
10421 ULE->copyTemplateArgumentsInto(TABuffer);
10422 ExplicitTemplateArgs = &TABuffer;
10423 }
10424
10425 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
10426 E = ULE->decls_end(); I != E; ++I)
10427 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
10428 CandidateSet, PartialOverloading,
10429 /*KnownValid*/ true);
10430
10431 if (ULE->requiresADL())
10432 AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
10433 Args, ExplicitTemplateArgs,
10434 CandidateSet, PartialOverloading);
10435 }
10436
10437 /// Determine whether a declaration with the specified name could be moved into
10438 /// a different namespace.
canBeDeclaredInNamespace(const DeclarationName & Name)10439 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
10440 switch (Name.getCXXOverloadedOperator()) {
10441 case OO_New: case OO_Array_New:
10442 case OO_Delete: case OO_Array_Delete:
10443 return false;
10444
10445 default:
10446 return true;
10447 }
10448 }
10449
10450 /// Attempt to recover from an ill-formed use of a non-dependent name in a
10451 /// template, where the non-dependent name was declared after the template
10452 /// was defined. This is common in code written for a compilers which do not
10453 /// correctly implement two-stage name lookup.
10454 ///
10455 /// Returns true if a viable candidate was found and a diagnostic was issued.
10456 static bool
DiagnoseTwoPhaseLookup(Sema & SemaRef,SourceLocation FnLoc,const CXXScopeSpec & SS,LookupResult & R,OverloadCandidateSet::CandidateSetKind CSK,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args)10457 DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
10458 const CXXScopeSpec &SS, LookupResult &R,
10459 OverloadCandidateSet::CandidateSetKind CSK,
10460 TemplateArgumentListInfo *ExplicitTemplateArgs,
10461 ArrayRef<Expr *> Args) {
10462 if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
10463 return false;
10464
10465 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
10466 if (DC->isTransparentContext())
10467 continue;
10468
10469 SemaRef.LookupQualifiedName(R, DC);
10470
10471 if (!R.empty()) {
10472 R.suppressDiagnostics();
10473
10474 if (isa<CXXRecordDecl>(DC)) {
10475 // Don't diagnose names we find in classes; we get much better
10476 // diagnostics for these from DiagnoseEmptyLookup.
10477 R.clear();
10478 return false;
10479 }
10480
10481 OverloadCandidateSet Candidates(FnLoc, CSK);
10482 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
10483 AddOverloadedCallCandidate(SemaRef, I.getPair(),
10484 ExplicitTemplateArgs, Args,
10485 Candidates, false, /*KnownValid*/ false);
10486
10487 OverloadCandidateSet::iterator Best;
10488 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
10489 // No viable functions. Don't bother the user with notes for functions
10490 // which don't work and shouldn't be found anyway.
10491 R.clear();
10492 return false;
10493 }
10494
10495 // Find the namespaces where ADL would have looked, and suggest
10496 // declaring the function there instead.
10497 Sema::AssociatedNamespaceSet AssociatedNamespaces;
10498 Sema::AssociatedClassSet AssociatedClasses;
10499 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
10500 AssociatedNamespaces,
10501 AssociatedClasses);
10502 Sema::AssociatedNamespaceSet SuggestedNamespaces;
10503 if (canBeDeclaredInNamespace(R.getLookupName())) {
10504 DeclContext *Std = SemaRef.getStdNamespace();
10505 for (Sema::AssociatedNamespaceSet::iterator
10506 it = AssociatedNamespaces.begin(),
10507 end = AssociatedNamespaces.end(); it != end; ++it) {
10508 // Never suggest declaring a function within namespace 'std'.
10509 if (Std && Std->Encloses(*it))
10510 continue;
10511
10512 // Never suggest declaring a function within a namespace with a
10513 // reserved name, like __gnu_cxx.
10514 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
10515 if (NS &&
10516 NS->getQualifiedNameAsString().find("__") != std::string::npos)
10517 continue;
10518
10519 SuggestedNamespaces.insert(*it);
10520 }
10521 }
10522
10523 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
10524 << R.getLookupName();
10525 if (SuggestedNamespaces.empty()) {
10526 SemaRef.Diag(Best->Function->getLocation(),
10527 diag::note_not_found_by_two_phase_lookup)
10528 << R.getLookupName() << 0;
10529 } else if (SuggestedNamespaces.size() == 1) {
10530 SemaRef.Diag(Best->Function->getLocation(),
10531 diag::note_not_found_by_two_phase_lookup)
10532 << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
10533 } else {
10534 // FIXME: It would be useful to list the associated namespaces here,
10535 // but the diagnostics infrastructure doesn't provide a way to produce
10536 // a localized representation of a list of items.
10537 SemaRef.Diag(Best->Function->getLocation(),
10538 diag::note_not_found_by_two_phase_lookup)
10539 << R.getLookupName() << 2;
10540 }
10541
10542 // Try to recover by calling this function.
10543 return true;
10544 }
10545
10546 R.clear();
10547 }
10548
10549 return false;
10550 }
10551
10552 /// Attempt to recover from ill-formed use of a non-dependent operator in a
10553 /// template, where the non-dependent operator was declared after the template
10554 /// was defined.
10555 ///
10556 /// Returns true if a viable candidate was found and a diagnostic was issued.
10557 static bool
DiagnoseTwoPhaseOperatorLookup(Sema & SemaRef,OverloadedOperatorKind Op,SourceLocation OpLoc,ArrayRef<Expr * > Args)10558 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
10559 SourceLocation OpLoc,
10560 ArrayRef<Expr *> Args) {
10561 DeclarationName OpName =
10562 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
10563 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
10564 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
10565 OverloadCandidateSet::CSK_Operator,
10566 /*ExplicitTemplateArgs=*/nullptr, Args);
10567 }
10568
10569 namespace {
10570 class BuildRecoveryCallExprRAII {
10571 Sema &SemaRef;
10572 public:
BuildRecoveryCallExprRAII(Sema & S)10573 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
10574 assert(SemaRef.IsBuildingRecoveryCallExpr == false);
10575 SemaRef.IsBuildingRecoveryCallExpr = true;
10576 }
10577
~BuildRecoveryCallExprRAII()10578 ~BuildRecoveryCallExprRAII() {
10579 SemaRef.IsBuildingRecoveryCallExpr = false;
10580 }
10581 };
10582
10583 }
10584
10585 static std::unique_ptr<CorrectionCandidateCallback>
MakeValidator(Sema & SemaRef,MemberExpr * ME,size_t NumArgs,bool HasTemplateArgs,bool AllowTypoCorrection)10586 MakeValidator(Sema &SemaRef, MemberExpr *ME, size_t NumArgs,
10587 bool HasTemplateArgs, bool AllowTypoCorrection) {
10588 if (!AllowTypoCorrection)
10589 return llvm::make_unique<NoTypoCorrectionCCC>();
10590 return llvm::make_unique<FunctionCallFilterCCC>(SemaRef, NumArgs,
10591 HasTemplateArgs, ME);
10592 }
10593
10594 /// Attempts to recover from a call where no functions were found.
10595 ///
10596 /// Returns true if new candidates were found.
10597 static ExprResult
BuildRecoveryCallExpr(Sema & SemaRef,Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,MutableArrayRef<Expr * > Args,SourceLocation RParenLoc,bool EmptyLookup,bool AllowTypoCorrection)10598 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
10599 UnresolvedLookupExpr *ULE,
10600 SourceLocation LParenLoc,
10601 MutableArrayRef<Expr *> Args,
10602 SourceLocation RParenLoc,
10603 bool EmptyLookup, bool AllowTypoCorrection) {
10604 // Do not try to recover if it is already building a recovery call.
10605 // This stops infinite loops for template instantiations like
10606 //
10607 // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
10608 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
10609 //
10610 if (SemaRef.IsBuildingRecoveryCallExpr)
10611 return ExprError();
10612 BuildRecoveryCallExprRAII RCE(SemaRef);
10613
10614 CXXScopeSpec SS;
10615 SS.Adopt(ULE->getQualifierLoc());
10616 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
10617
10618 TemplateArgumentListInfo TABuffer;
10619 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
10620 if (ULE->hasExplicitTemplateArgs()) {
10621 ULE->copyTemplateArgumentsInto(TABuffer);
10622 ExplicitTemplateArgs = &TABuffer;
10623 }
10624
10625 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
10626 Sema::LookupOrdinaryName);
10627 if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
10628 OverloadCandidateSet::CSK_Normal,
10629 ExplicitTemplateArgs, Args) &&
10630 (!EmptyLookup ||
10631 SemaRef.DiagnoseEmptyLookup(
10632 S, SS, R,
10633 MakeValidator(SemaRef, dyn_cast<MemberExpr>(Fn), Args.size(),
10634 ExplicitTemplateArgs != nullptr, AllowTypoCorrection),
10635 ExplicitTemplateArgs, Args)))
10636 return ExprError();
10637
10638 assert(!R.empty() && "lookup results empty despite recovery");
10639
10640 // Build an implicit member call if appropriate. Just drop the
10641 // casts and such from the call, we don't really care.
10642 ExprResult NewFn = ExprError();
10643 if ((*R.begin())->isCXXClassMember())
10644 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
10645 R, ExplicitTemplateArgs);
10646 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
10647 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
10648 ExplicitTemplateArgs);
10649 else
10650 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
10651
10652 if (NewFn.isInvalid())
10653 return ExprError();
10654
10655 // This shouldn't cause an infinite loop because we're giving it
10656 // an expression with viable lookup results, which should never
10657 // end up here.
10658 return SemaRef.ActOnCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
10659 MultiExprArg(Args.data(), Args.size()),
10660 RParenLoc);
10661 }
10662
10663 /// \brief Constructs and populates an OverloadedCandidateSet from
10664 /// the given function.
10665 /// \returns true when an the ExprResult output parameter has been set.
buildOverloadedCallSet(Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,MultiExprArg Args,SourceLocation RParenLoc,OverloadCandidateSet * CandidateSet,ExprResult * Result)10666 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
10667 UnresolvedLookupExpr *ULE,
10668 MultiExprArg Args,
10669 SourceLocation RParenLoc,
10670 OverloadCandidateSet *CandidateSet,
10671 ExprResult *Result) {
10672 #ifndef NDEBUG
10673 if (ULE->requiresADL()) {
10674 // To do ADL, we must have found an unqualified name.
10675 assert(!ULE->getQualifier() && "qualified name with ADL");
10676
10677 // We don't perform ADL for implicit declarations of builtins.
10678 // Verify that this was correctly set up.
10679 FunctionDecl *F;
10680 if (ULE->decls_begin() + 1 == ULE->decls_end() &&
10681 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
10682 F->getBuiltinID() && F->isImplicit())
10683 llvm_unreachable("performing ADL for builtin");
10684
10685 // We don't perform ADL in C.
10686 assert(getLangOpts().CPlusPlus && "ADL enabled in C");
10687 }
10688 #endif
10689
10690 UnbridgedCastsSet UnbridgedCasts;
10691 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
10692 *Result = ExprError();
10693 return true;
10694 }
10695
10696 // Add the functions denoted by the callee to the set of candidate
10697 // functions, including those from argument-dependent lookup.
10698 AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
10699
10700 // If we found nothing, try to recover.
10701 // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
10702 // out if it fails.
10703 if (CandidateSet->empty()) {
10704 // In Microsoft mode, if we are inside a template class member function then
10705 // create a type dependent CallExpr. The goal is to postpone name lookup
10706 // to instantiation time to be able to search into type dependent base
10707 // classes.
10708 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
10709 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
10710 CallExpr *CE = new (Context) CallExpr(Context, Fn, Args,
10711 Context.DependentTy, VK_RValue,
10712 RParenLoc);
10713 CE->setTypeDependent(true);
10714 *Result = CE;
10715 return true;
10716 }
10717 return false;
10718 }
10719
10720 UnbridgedCasts.restore();
10721 return false;
10722 }
10723
10724 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
10725 /// the completed call expression. If overload resolution fails, emits
10726 /// diagnostics and returns ExprError()
FinishOverloadedCallExpr(Sema & SemaRef,Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig,OverloadCandidateSet * CandidateSet,OverloadCandidateSet::iterator * Best,OverloadingResult OverloadResult,bool AllowTypoCorrection)10727 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
10728 UnresolvedLookupExpr *ULE,
10729 SourceLocation LParenLoc,
10730 MultiExprArg Args,
10731 SourceLocation RParenLoc,
10732 Expr *ExecConfig,
10733 OverloadCandidateSet *CandidateSet,
10734 OverloadCandidateSet::iterator *Best,
10735 OverloadingResult OverloadResult,
10736 bool AllowTypoCorrection) {
10737 if (CandidateSet->empty())
10738 return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
10739 RParenLoc, /*EmptyLookup=*/true,
10740 AllowTypoCorrection);
10741
10742 switch (OverloadResult) {
10743 case OR_Success: {
10744 FunctionDecl *FDecl = (*Best)->Function;
10745 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
10746 if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
10747 return ExprError();
10748 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
10749 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
10750 ExecConfig);
10751 }
10752
10753 case OR_No_Viable_Function: {
10754 // Try to recover by looking for viable functions which the user might
10755 // have meant to call.
10756 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
10757 Args, RParenLoc,
10758 /*EmptyLookup=*/false,
10759 AllowTypoCorrection);
10760 if (!Recovery.isInvalid())
10761 return Recovery;
10762
10763 SemaRef.Diag(Fn->getLocStart(),
10764 diag::err_ovl_no_viable_function_in_call)
10765 << ULE->getName() << Fn->getSourceRange();
10766 CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
10767 break;
10768 }
10769
10770 case OR_Ambiguous:
10771 SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
10772 << ULE->getName() << Fn->getSourceRange();
10773 CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
10774 break;
10775
10776 case OR_Deleted: {
10777 SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
10778 << (*Best)->Function->isDeleted()
10779 << ULE->getName()
10780 << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
10781 << Fn->getSourceRange();
10782 CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
10783
10784 // We emitted an error for the unvailable/deleted function call but keep
10785 // the call in the AST.
10786 FunctionDecl *FDecl = (*Best)->Function;
10787 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
10788 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
10789 ExecConfig);
10790 }
10791 }
10792
10793 // Overload resolution failed.
10794 return ExprError();
10795 }
10796
10797 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
10798 /// (which eventually refers to the declaration Func) and the call
10799 /// arguments Args/NumArgs, attempt to resolve the function call down
10800 /// to a specific function. If overload resolution succeeds, returns
10801 /// the call expression produced by overload resolution.
10802 /// Otherwise, emits diagnostics and returns ExprError.
BuildOverloadedCallExpr(Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig,bool AllowTypoCorrection)10803 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
10804 UnresolvedLookupExpr *ULE,
10805 SourceLocation LParenLoc,
10806 MultiExprArg Args,
10807 SourceLocation RParenLoc,
10808 Expr *ExecConfig,
10809 bool AllowTypoCorrection) {
10810 OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
10811 OverloadCandidateSet::CSK_Normal);
10812 ExprResult result;
10813
10814 if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
10815 &result))
10816 return result;
10817
10818 OverloadCandidateSet::iterator Best;
10819 OverloadingResult OverloadResult =
10820 CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
10821
10822 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
10823 RParenLoc, ExecConfig, &CandidateSet,
10824 &Best, OverloadResult,
10825 AllowTypoCorrection);
10826 }
10827
IsOverloaded(const UnresolvedSetImpl & Functions)10828 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
10829 return Functions.size() > 1 ||
10830 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
10831 }
10832
10833 /// \brief Create a unary operation that may resolve to an overloaded
10834 /// operator.
10835 ///
10836 /// \param OpLoc The location of the operator itself (e.g., '*').
10837 ///
10838 /// \param OpcIn The UnaryOperator::Opcode that describes this
10839 /// operator.
10840 ///
10841 /// \param Fns The set of non-member functions that will be
10842 /// considered by overload resolution. The caller needs to build this
10843 /// set based on the context using, e.g.,
10844 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
10845 /// set should not contain any member functions; those will be added
10846 /// by CreateOverloadedUnaryOp().
10847 ///
10848 /// \param Input The input argument.
10849 ExprResult
CreateOverloadedUnaryOp(SourceLocation OpLoc,unsigned OpcIn,const UnresolvedSetImpl & Fns,Expr * Input)10850 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
10851 const UnresolvedSetImpl &Fns,
10852 Expr *Input) {
10853 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
10854
10855 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
10856 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
10857 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
10858 // TODO: provide better source location info.
10859 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
10860
10861 if (checkPlaceholderForOverload(*this, Input))
10862 return ExprError();
10863
10864 Expr *Args[2] = { Input, nullptr };
10865 unsigned NumArgs = 1;
10866
10867 // For post-increment and post-decrement, add the implicit '0' as
10868 // the second argument, so that we know this is a post-increment or
10869 // post-decrement.
10870 if (Opc == UO_PostInc || Opc == UO_PostDec) {
10871 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
10872 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
10873 SourceLocation());
10874 NumArgs = 2;
10875 }
10876
10877 ArrayRef<Expr *> ArgsArray(Args, NumArgs);
10878
10879 if (Input->isTypeDependent()) {
10880 if (Fns.empty())
10881 return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
10882 VK_RValue, OK_Ordinary, OpLoc);
10883
10884 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
10885 UnresolvedLookupExpr *Fn
10886 = UnresolvedLookupExpr::Create(Context, NamingClass,
10887 NestedNameSpecifierLoc(), OpNameInfo,
10888 /*ADL*/ true, IsOverloaded(Fns),
10889 Fns.begin(), Fns.end());
10890 return new (Context)
10891 CXXOperatorCallExpr(Context, Op, Fn, ArgsArray, Context.DependentTy,
10892 VK_RValue, OpLoc, false);
10893 }
10894
10895 // Build an empty overload set.
10896 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
10897
10898 // Add the candidates from the given function set.
10899 AddFunctionCandidates(Fns, ArgsArray, CandidateSet, false);
10900
10901 // Add operator candidates that are member functions.
10902 AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
10903
10904 // Add candidates from ADL.
10905 AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
10906 /*ExplicitTemplateArgs*/nullptr,
10907 CandidateSet);
10908
10909 // Add builtin operator candidates.
10910 AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
10911
10912 bool HadMultipleCandidates = (CandidateSet.size() > 1);
10913
10914 // Perform overload resolution.
10915 OverloadCandidateSet::iterator Best;
10916 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10917 case OR_Success: {
10918 // We found a built-in operator or an overloaded operator.
10919 FunctionDecl *FnDecl = Best->Function;
10920
10921 if (FnDecl) {
10922 // We matched an overloaded operator. Build a call to that
10923 // operator.
10924
10925 // Convert the arguments.
10926 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10927 CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
10928
10929 ExprResult InputRes =
10930 PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
10931 Best->FoundDecl, Method);
10932 if (InputRes.isInvalid())
10933 return ExprError();
10934 Input = InputRes.get();
10935 } else {
10936 // Convert the arguments.
10937 ExprResult InputInit
10938 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10939 Context,
10940 FnDecl->getParamDecl(0)),
10941 SourceLocation(),
10942 Input);
10943 if (InputInit.isInvalid())
10944 return ExprError();
10945 Input = InputInit.get();
10946 }
10947
10948 // Build the actual expression node.
10949 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
10950 HadMultipleCandidates, OpLoc);
10951 if (FnExpr.isInvalid())
10952 return ExprError();
10953
10954 // Determine the result type.
10955 QualType ResultTy = FnDecl->getReturnType();
10956 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10957 ResultTy = ResultTy.getNonLValueExprType(Context);
10958
10959 Args[0] = Input;
10960 CallExpr *TheCall =
10961 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(), ArgsArray,
10962 ResultTy, VK, OpLoc, false);
10963
10964 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
10965 return ExprError();
10966
10967 return MaybeBindToTemporary(TheCall);
10968 } else {
10969 // We matched a built-in operator. Convert the arguments, then
10970 // break out so that we will build the appropriate built-in
10971 // operator node.
10972 ExprResult InputRes =
10973 PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
10974 Best->Conversions[0], AA_Passing);
10975 if (InputRes.isInvalid())
10976 return ExprError();
10977 Input = InputRes.get();
10978 break;
10979 }
10980 }
10981
10982 case OR_No_Viable_Function:
10983 // This is an erroneous use of an operator which can be overloaded by
10984 // a non-member function. Check for non-member operators which were
10985 // defined too late to be candidates.
10986 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
10987 // FIXME: Recover by calling the found function.
10988 return ExprError();
10989
10990 // No viable function; fall through to handling this as a
10991 // built-in operator, which will produce an error message for us.
10992 break;
10993
10994 case OR_Ambiguous:
10995 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
10996 << UnaryOperator::getOpcodeStr(Opc)
10997 << Input->getType()
10998 << Input->getSourceRange();
10999 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
11000 UnaryOperator::getOpcodeStr(Opc), OpLoc);
11001 return ExprError();
11002
11003 case OR_Deleted:
11004 Diag(OpLoc, diag::err_ovl_deleted_oper)
11005 << Best->Function->isDeleted()
11006 << UnaryOperator::getOpcodeStr(Opc)
11007 << getDeletedOrUnavailableSuffix(Best->Function)
11008 << Input->getSourceRange();
11009 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
11010 UnaryOperator::getOpcodeStr(Opc), OpLoc);
11011 return ExprError();
11012 }
11013
11014 // Either we found no viable overloaded operator or we matched a
11015 // built-in operator. In either case, fall through to trying to
11016 // build a built-in operation.
11017 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11018 }
11019
11020 /// \brief Create a binary operation that may resolve to an overloaded
11021 /// operator.
11022 ///
11023 /// \param OpLoc The location of the operator itself (e.g., '+').
11024 ///
11025 /// \param OpcIn The BinaryOperator::Opcode that describes this
11026 /// operator.
11027 ///
11028 /// \param Fns The set of non-member functions that will be
11029 /// considered by overload resolution. The caller needs to build this
11030 /// set based on the context using, e.g.,
11031 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
11032 /// set should not contain any member functions; those will be added
11033 /// by CreateOverloadedBinOp().
11034 ///
11035 /// \param LHS Left-hand argument.
11036 /// \param RHS Right-hand argument.
11037 ExprResult
CreateOverloadedBinOp(SourceLocation OpLoc,unsigned OpcIn,const UnresolvedSetImpl & Fns,Expr * LHS,Expr * RHS)11038 Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
11039 unsigned OpcIn,
11040 const UnresolvedSetImpl &Fns,
11041 Expr *LHS, Expr *RHS) {
11042 Expr *Args[2] = { LHS, RHS };
11043 LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
11044
11045 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
11046 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
11047 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
11048
11049 // If either side is type-dependent, create an appropriate dependent
11050 // expression.
11051 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
11052 if (Fns.empty()) {
11053 // If there are no functions to store, just build a dependent
11054 // BinaryOperator or CompoundAssignment.
11055 if (Opc <= BO_Assign || Opc > BO_OrAssign)
11056 return new (Context) BinaryOperator(
11057 Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
11058 OpLoc, FPFeatures.fp_contract);
11059
11060 return new (Context) CompoundAssignOperator(
11061 Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
11062 Context.DependentTy, Context.DependentTy, OpLoc,
11063 FPFeatures.fp_contract);
11064 }
11065
11066 // FIXME: save results of ADL from here?
11067 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
11068 // TODO: provide better source location info in DNLoc component.
11069 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
11070 UnresolvedLookupExpr *Fn
11071 = UnresolvedLookupExpr::Create(Context, NamingClass,
11072 NestedNameSpecifierLoc(), OpNameInfo,
11073 /*ADL*/ true, IsOverloaded(Fns),
11074 Fns.begin(), Fns.end());
11075 return new (Context)
11076 CXXOperatorCallExpr(Context, Op, Fn, Args, Context.DependentTy,
11077 VK_RValue, OpLoc, FPFeatures.fp_contract);
11078 }
11079
11080 // Always do placeholder-like conversions on the RHS.
11081 if (checkPlaceholderForOverload(*this, Args[1]))
11082 return ExprError();
11083
11084 // Do placeholder-like conversion on the LHS; note that we should
11085 // not get here with a PseudoObject LHS.
11086 assert(Args[0]->getObjectKind() != OK_ObjCProperty);
11087 if (checkPlaceholderForOverload(*this, Args[0]))
11088 return ExprError();
11089
11090 // If this is the assignment operator, we only perform overload resolution
11091 // if the left-hand side is a class or enumeration type. This is actually
11092 // a hack. The standard requires that we do overload resolution between the
11093 // various built-in candidates, but as DR507 points out, this can lead to
11094 // problems. So we do it this way, which pretty much follows what GCC does.
11095 // Note that we go the traditional code path for compound assignment forms.
11096 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
11097 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11098
11099 // If this is the .* operator, which is not overloadable, just
11100 // create a built-in binary operator.
11101 if (Opc == BO_PtrMemD)
11102 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11103
11104 // Build an empty overload set.
11105 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
11106
11107 // Add the candidates from the given function set.
11108 AddFunctionCandidates(Fns, Args, CandidateSet, false);
11109
11110 // Add operator candidates that are member functions.
11111 AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
11112
11113 // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
11114 // performed for an assignment operator (nor for operator[] nor operator->,
11115 // which don't get here).
11116 if (Opc != BO_Assign)
11117 AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
11118 /*ExplicitTemplateArgs*/ nullptr,
11119 CandidateSet);
11120
11121 // Add builtin operator candidates.
11122 AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
11123
11124 bool HadMultipleCandidates = (CandidateSet.size() > 1);
11125
11126 // Perform overload resolution.
11127 OverloadCandidateSet::iterator Best;
11128 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
11129 case OR_Success: {
11130 // We found a built-in operator or an overloaded operator.
11131 FunctionDecl *FnDecl = Best->Function;
11132
11133 if (FnDecl) {
11134 // We matched an overloaded operator. Build a call to that
11135 // operator.
11136
11137 // Convert the arguments.
11138 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
11139 // Best->Access is only meaningful for class members.
11140 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
11141
11142 ExprResult Arg1 =
11143 PerformCopyInitialization(
11144 InitializedEntity::InitializeParameter(Context,
11145 FnDecl->getParamDecl(0)),
11146 SourceLocation(), Args[1]);
11147 if (Arg1.isInvalid())
11148 return ExprError();
11149
11150 ExprResult Arg0 =
11151 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
11152 Best->FoundDecl, Method);
11153 if (Arg0.isInvalid())
11154 return ExprError();
11155 Args[0] = Arg0.getAs<Expr>();
11156 Args[1] = RHS = Arg1.getAs<Expr>();
11157 } else {
11158 // Convert the arguments.
11159 ExprResult Arg0 = PerformCopyInitialization(
11160 InitializedEntity::InitializeParameter(Context,
11161 FnDecl->getParamDecl(0)),
11162 SourceLocation(), Args[0]);
11163 if (Arg0.isInvalid())
11164 return ExprError();
11165
11166 ExprResult Arg1 =
11167 PerformCopyInitialization(
11168 InitializedEntity::InitializeParameter(Context,
11169 FnDecl->getParamDecl(1)),
11170 SourceLocation(), Args[1]);
11171 if (Arg1.isInvalid())
11172 return ExprError();
11173 Args[0] = LHS = Arg0.getAs<Expr>();
11174 Args[1] = RHS = Arg1.getAs<Expr>();
11175 }
11176
11177 // Build the actual expression node.
11178 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
11179 Best->FoundDecl,
11180 HadMultipleCandidates, OpLoc);
11181 if (FnExpr.isInvalid())
11182 return ExprError();
11183
11184 // Determine the result type.
11185 QualType ResultTy = FnDecl->getReturnType();
11186 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11187 ResultTy = ResultTy.getNonLValueExprType(Context);
11188
11189 CXXOperatorCallExpr *TheCall =
11190 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(),
11191 Args, ResultTy, VK, OpLoc,
11192 FPFeatures.fp_contract);
11193
11194 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
11195 FnDecl))
11196 return ExprError();
11197
11198 ArrayRef<const Expr *> ArgsArray(Args, 2);
11199 // Cut off the implicit 'this'.
11200 if (isa<CXXMethodDecl>(FnDecl))
11201 ArgsArray = ArgsArray.slice(1);
11202
11203 // Check for a self move.
11204 if (Op == OO_Equal)
11205 DiagnoseSelfMove(Args[0], Args[1], OpLoc);
11206
11207 checkCall(FnDecl, ArgsArray, 0, isa<CXXMethodDecl>(FnDecl), OpLoc,
11208 TheCall->getSourceRange(), VariadicDoesNotApply);
11209
11210 return MaybeBindToTemporary(TheCall);
11211 } else {
11212 // We matched a built-in operator. Convert the arguments, then
11213 // break out so that we will build the appropriate built-in
11214 // operator node.
11215 ExprResult ArgsRes0 =
11216 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
11217 Best->Conversions[0], AA_Passing);
11218 if (ArgsRes0.isInvalid())
11219 return ExprError();
11220 Args[0] = ArgsRes0.get();
11221
11222 ExprResult ArgsRes1 =
11223 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
11224 Best->Conversions[1], AA_Passing);
11225 if (ArgsRes1.isInvalid())
11226 return ExprError();
11227 Args[1] = ArgsRes1.get();
11228 break;
11229 }
11230 }
11231
11232 case OR_No_Viable_Function: {
11233 // C++ [over.match.oper]p9:
11234 // If the operator is the operator , [...] and there are no
11235 // viable functions, then the operator is assumed to be the
11236 // built-in operator and interpreted according to clause 5.
11237 if (Opc == BO_Comma)
11238 break;
11239
11240 // For class as left operand for assignment or compound assigment
11241 // operator do not fall through to handling in built-in, but report that
11242 // no overloaded assignment operator found
11243 ExprResult Result = ExprError();
11244 if (Args[0]->getType()->isRecordType() &&
11245 Opc >= BO_Assign && Opc <= BO_OrAssign) {
11246 Diag(OpLoc, diag::err_ovl_no_viable_oper)
11247 << BinaryOperator::getOpcodeStr(Opc)
11248 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11249 if (Args[0]->getType()->isIncompleteType()) {
11250 Diag(OpLoc, diag::note_assign_lhs_incomplete)
11251 << Args[0]->getType()
11252 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11253 }
11254 } else {
11255 // This is an erroneous use of an operator which can be overloaded by
11256 // a non-member function. Check for non-member operators which were
11257 // defined too late to be candidates.
11258 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
11259 // FIXME: Recover by calling the found function.
11260 return ExprError();
11261
11262 // No viable function; try to create a built-in operation, which will
11263 // produce an error. Then, show the non-viable candidates.
11264 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11265 }
11266 assert(Result.isInvalid() &&
11267 "C++ binary operator overloading is missing candidates!");
11268 if (Result.isInvalid())
11269 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11270 BinaryOperator::getOpcodeStr(Opc), OpLoc);
11271 return Result;
11272 }
11273
11274 case OR_Ambiguous:
11275 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary)
11276 << BinaryOperator::getOpcodeStr(Opc)
11277 << Args[0]->getType() << Args[1]->getType()
11278 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11279 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
11280 BinaryOperator::getOpcodeStr(Opc), OpLoc);
11281 return ExprError();
11282
11283 case OR_Deleted:
11284 if (isImplicitlyDeleted(Best->Function)) {
11285 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11286 Diag(OpLoc, diag::err_ovl_deleted_special_oper)
11287 << Context.getRecordType(Method->getParent())
11288 << getSpecialMember(Method);
11289
11290 // The user probably meant to call this special member. Just
11291 // explain why it's deleted.
11292 NoteDeletedFunction(Method);
11293 return ExprError();
11294 } else {
11295 Diag(OpLoc, diag::err_ovl_deleted_oper)
11296 << Best->Function->isDeleted()
11297 << BinaryOperator::getOpcodeStr(Opc)
11298 << getDeletedOrUnavailableSuffix(Best->Function)
11299 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11300 }
11301 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11302 BinaryOperator::getOpcodeStr(Opc), OpLoc);
11303 return ExprError();
11304 }
11305
11306 // We matched a built-in operator; build it.
11307 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11308 }
11309
11310 ExprResult
CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,SourceLocation RLoc,Expr * Base,Expr * Idx)11311 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
11312 SourceLocation RLoc,
11313 Expr *Base, Expr *Idx) {
11314 Expr *Args[2] = { Base, Idx };
11315 DeclarationName OpName =
11316 Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
11317
11318 // If either side is type-dependent, create an appropriate dependent
11319 // expression.
11320 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
11321
11322 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
11323 // CHECKME: no 'operator' keyword?
11324 DeclarationNameInfo OpNameInfo(OpName, LLoc);
11325 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
11326 UnresolvedLookupExpr *Fn
11327 = UnresolvedLookupExpr::Create(Context, NamingClass,
11328 NestedNameSpecifierLoc(), OpNameInfo,
11329 /*ADL*/ true, /*Overloaded*/ false,
11330 UnresolvedSetIterator(),
11331 UnresolvedSetIterator());
11332 // Can't add any actual overloads yet
11333
11334 return new (Context)
11335 CXXOperatorCallExpr(Context, OO_Subscript, Fn, Args,
11336 Context.DependentTy, VK_RValue, RLoc, false);
11337 }
11338
11339 // Handle placeholders on both operands.
11340 if (checkPlaceholderForOverload(*this, Args[0]))
11341 return ExprError();
11342 if (checkPlaceholderForOverload(*this, Args[1]))
11343 return ExprError();
11344
11345 // Build an empty overload set.
11346 OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
11347
11348 // Subscript can only be overloaded as a member function.
11349
11350 // Add operator candidates that are member functions.
11351 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
11352
11353 // Add builtin operator candidates.
11354 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
11355
11356 bool HadMultipleCandidates = (CandidateSet.size() > 1);
11357
11358 // Perform overload resolution.
11359 OverloadCandidateSet::iterator Best;
11360 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
11361 case OR_Success: {
11362 // We found a built-in operator or an overloaded operator.
11363 FunctionDecl *FnDecl = Best->Function;
11364
11365 if (FnDecl) {
11366 // We matched an overloaded operator. Build a call to that
11367 // operator.
11368
11369 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
11370
11371 // Convert the arguments.
11372 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
11373 ExprResult Arg0 =
11374 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
11375 Best->FoundDecl, Method);
11376 if (Arg0.isInvalid())
11377 return ExprError();
11378 Args[0] = Arg0.get();
11379
11380 // Convert the arguments.
11381 ExprResult InputInit
11382 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
11383 Context,
11384 FnDecl->getParamDecl(0)),
11385 SourceLocation(),
11386 Args[1]);
11387 if (InputInit.isInvalid())
11388 return ExprError();
11389
11390 Args[1] = InputInit.getAs<Expr>();
11391
11392 // Build the actual expression node.
11393 DeclarationNameInfo OpLocInfo(OpName, LLoc);
11394 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
11395 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
11396 Best->FoundDecl,
11397 HadMultipleCandidates,
11398 OpLocInfo.getLoc(),
11399 OpLocInfo.getInfo());
11400 if (FnExpr.isInvalid())
11401 return ExprError();
11402
11403 // Determine the result type
11404 QualType ResultTy = FnDecl->getReturnType();
11405 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11406 ResultTy = ResultTy.getNonLValueExprType(Context);
11407
11408 CXXOperatorCallExpr *TheCall =
11409 new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
11410 FnExpr.get(), Args,
11411 ResultTy, VK, RLoc,
11412 false);
11413
11414 if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
11415 return ExprError();
11416
11417 return MaybeBindToTemporary(TheCall);
11418 } else {
11419 // We matched a built-in operator. Convert the arguments, then
11420 // break out so that we will build the appropriate built-in
11421 // operator node.
11422 ExprResult ArgsRes0 =
11423 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
11424 Best->Conversions[0], AA_Passing);
11425 if (ArgsRes0.isInvalid())
11426 return ExprError();
11427 Args[0] = ArgsRes0.get();
11428
11429 ExprResult ArgsRes1 =
11430 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
11431 Best->Conversions[1], AA_Passing);
11432 if (ArgsRes1.isInvalid())
11433 return ExprError();
11434 Args[1] = ArgsRes1.get();
11435
11436 break;
11437 }
11438 }
11439
11440 case OR_No_Viable_Function: {
11441 if (CandidateSet.empty())
11442 Diag(LLoc, diag::err_ovl_no_oper)
11443 << Args[0]->getType() << /*subscript*/ 0
11444 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11445 else
11446 Diag(LLoc, diag::err_ovl_no_viable_subscript)
11447 << Args[0]->getType()
11448 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11449 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11450 "[]", LLoc);
11451 return ExprError();
11452 }
11453
11454 case OR_Ambiguous:
11455 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary)
11456 << "[]"
11457 << Args[0]->getType() << Args[1]->getType()
11458 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11459 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
11460 "[]", LLoc);
11461 return ExprError();
11462
11463 case OR_Deleted:
11464 Diag(LLoc, diag::err_ovl_deleted_oper)
11465 << Best->Function->isDeleted() << "[]"
11466 << getDeletedOrUnavailableSuffix(Best->Function)
11467 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11468 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11469 "[]", LLoc);
11470 return ExprError();
11471 }
11472
11473 // We matched a built-in operator; build it.
11474 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
11475 }
11476
11477 /// BuildCallToMemberFunction - Build a call to a member
11478 /// function. MemExpr is the expression that refers to the member
11479 /// function (and includes the object parameter), Args/NumArgs are the
11480 /// arguments to the function call (not including the object
11481 /// parameter). The caller needs to validate that the member
11482 /// expression refers to a non-static member function or an overloaded
11483 /// member function.
11484 ExprResult
BuildCallToMemberFunction(Scope * S,Expr * MemExprE,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc)11485 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
11486 SourceLocation LParenLoc,
11487 MultiExprArg Args,
11488 SourceLocation RParenLoc) {
11489 assert(MemExprE->getType() == Context.BoundMemberTy ||
11490 MemExprE->getType() == Context.OverloadTy);
11491
11492 // Dig out the member expression. This holds both the object
11493 // argument and the member function we're referring to.
11494 Expr *NakedMemExpr = MemExprE->IgnoreParens();
11495
11496 // Determine whether this is a call to a pointer-to-member function.
11497 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
11498 assert(op->getType() == Context.BoundMemberTy);
11499 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
11500
11501 QualType fnType =
11502 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
11503
11504 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
11505 QualType resultType = proto->getCallResultType(Context);
11506 ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
11507
11508 // Check that the object type isn't more qualified than the
11509 // member function we're calling.
11510 Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
11511
11512 QualType objectType = op->getLHS()->getType();
11513 if (op->getOpcode() == BO_PtrMemI)
11514 objectType = objectType->castAs<PointerType>()->getPointeeType();
11515 Qualifiers objectQuals = objectType.getQualifiers();
11516
11517 Qualifiers difference = objectQuals - funcQuals;
11518 difference.removeObjCGCAttr();
11519 difference.removeAddressSpace();
11520 if (difference) {
11521 std::string qualsString = difference.getAsString();
11522 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
11523 << fnType.getUnqualifiedType()
11524 << qualsString
11525 << (qualsString.find(' ') == std::string::npos ? 1 : 2);
11526 }
11527
11528 if (resultType->isMemberPointerType())
11529 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
11530 RequireCompleteType(LParenLoc, resultType, 0);
11531
11532 CXXMemberCallExpr *call
11533 = new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
11534 resultType, valueKind, RParenLoc);
11535
11536 if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getLocStart(),
11537 call, nullptr))
11538 return ExprError();
11539
11540 if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
11541 return ExprError();
11542
11543 if (CheckOtherCall(call, proto))
11544 return ExprError();
11545
11546 return MaybeBindToTemporary(call);
11547 }
11548
11549 UnbridgedCastsSet UnbridgedCasts;
11550 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
11551 return ExprError();
11552
11553 MemberExpr *MemExpr;
11554 CXXMethodDecl *Method = nullptr;
11555 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
11556 NestedNameSpecifier *Qualifier = nullptr;
11557 if (isa<MemberExpr>(NakedMemExpr)) {
11558 MemExpr = cast<MemberExpr>(NakedMemExpr);
11559 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
11560 FoundDecl = MemExpr->getFoundDecl();
11561 Qualifier = MemExpr->getQualifier();
11562 UnbridgedCasts.restore();
11563 } else {
11564 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
11565 Qualifier = UnresExpr->getQualifier();
11566
11567 QualType ObjectType = UnresExpr->getBaseType();
11568 Expr::Classification ObjectClassification
11569 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
11570 : UnresExpr->getBase()->Classify(Context);
11571
11572 // Add overload candidates
11573 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
11574 OverloadCandidateSet::CSK_Normal);
11575
11576 // FIXME: avoid copy.
11577 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
11578 if (UnresExpr->hasExplicitTemplateArgs()) {
11579 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
11580 TemplateArgs = &TemplateArgsBuffer;
11581 }
11582
11583 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
11584 E = UnresExpr->decls_end(); I != E; ++I) {
11585
11586 NamedDecl *Func = *I;
11587 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
11588 if (isa<UsingShadowDecl>(Func))
11589 Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
11590
11591
11592 // Microsoft supports direct constructor calls.
11593 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
11594 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
11595 Args, CandidateSet);
11596 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
11597 // If explicit template arguments were provided, we can't call a
11598 // non-template member function.
11599 if (TemplateArgs)
11600 continue;
11601
11602 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
11603 ObjectClassification, Args, CandidateSet,
11604 /*SuppressUserConversions=*/false);
11605 } else {
11606 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
11607 I.getPair(), ActingDC, TemplateArgs,
11608 ObjectType, ObjectClassification,
11609 Args, CandidateSet,
11610 /*SuppressUsedConversions=*/false);
11611 }
11612 }
11613
11614 DeclarationName DeclName = UnresExpr->getMemberName();
11615
11616 UnbridgedCasts.restore();
11617
11618 OverloadCandidateSet::iterator Best;
11619 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
11620 Best)) {
11621 case OR_Success:
11622 Method = cast<CXXMethodDecl>(Best->Function);
11623 FoundDecl = Best->FoundDecl;
11624 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
11625 if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
11626 return ExprError();
11627 // If FoundDecl is different from Method (such as if one is a template
11628 // and the other a specialization), make sure DiagnoseUseOfDecl is
11629 // called on both.
11630 // FIXME: This would be more comprehensively addressed by modifying
11631 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
11632 // being used.
11633 if (Method != FoundDecl.getDecl() &&
11634 DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
11635 return ExprError();
11636 break;
11637
11638 case OR_No_Viable_Function:
11639 Diag(UnresExpr->getMemberLoc(),
11640 diag::err_ovl_no_viable_member_function_in_call)
11641 << DeclName << MemExprE->getSourceRange();
11642 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11643 // FIXME: Leaking incoming expressions!
11644 return ExprError();
11645
11646 case OR_Ambiguous:
11647 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
11648 << DeclName << MemExprE->getSourceRange();
11649 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11650 // FIXME: Leaking incoming expressions!
11651 return ExprError();
11652
11653 case OR_Deleted:
11654 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
11655 << Best->Function->isDeleted()
11656 << DeclName
11657 << getDeletedOrUnavailableSuffix(Best->Function)
11658 << MemExprE->getSourceRange();
11659 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11660 // FIXME: Leaking incoming expressions!
11661 return ExprError();
11662 }
11663
11664 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
11665
11666 // If overload resolution picked a static member, build a
11667 // non-member call based on that function.
11668 if (Method->isStatic()) {
11669 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
11670 RParenLoc);
11671 }
11672
11673 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
11674 }
11675
11676 QualType ResultType = Method->getReturnType();
11677 ExprValueKind VK = Expr::getValueKindForType(ResultType);
11678 ResultType = ResultType.getNonLValueExprType(Context);
11679
11680 assert(Method && "Member call to something that isn't a method?");
11681 CXXMemberCallExpr *TheCall =
11682 new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
11683 ResultType, VK, RParenLoc);
11684
11685 // (CUDA B.1): Check for invalid calls between targets.
11686 if (getLangOpts().CUDA) {
11687 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) {
11688 if (CheckCUDATarget(Caller, Method)) {
11689 Diag(MemExpr->getMemberLoc(), diag::err_ref_bad_target)
11690 << IdentifyCUDATarget(Method) << Method->getIdentifier()
11691 << IdentifyCUDATarget(Caller);
11692 return ExprError();
11693 }
11694 }
11695 }
11696
11697 // Check for a valid return type.
11698 if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
11699 TheCall, Method))
11700 return ExprError();
11701
11702 // Convert the object argument (for a non-static member function call).
11703 // We only need to do this if there was actually an overload; otherwise
11704 // it was done at lookup.
11705 if (!Method->isStatic()) {
11706 ExprResult ObjectArg =
11707 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
11708 FoundDecl, Method);
11709 if (ObjectArg.isInvalid())
11710 return ExprError();
11711 MemExpr->setBase(ObjectArg.get());
11712 }
11713
11714 // Convert the rest of the arguments
11715 const FunctionProtoType *Proto =
11716 Method->getType()->getAs<FunctionProtoType>();
11717 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
11718 RParenLoc))
11719 return ExprError();
11720
11721 DiagnoseSentinelCalls(Method, LParenLoc, Args);
11722
11723 if (CheckFunctionCall(Method, TheCall, Proto))
11724 return ExprError();
11725
11726 if ((isa<CXXConstructorDecl>(CurContext) ||
11727 isa<CXXDestructorDecl>(CurContext)) &&
11728 TheCall->getMethodDecl()->isPure()) {
11729 const CXXMethodDecl *MD = TheCall->getMethodDecl();
11730
11731 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
11732 Diag(MemExpr->getLocStart(),
11733 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
11734 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
11735 << MD->getParent()->getDeclName();
11736
11737 Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
11738 }
11739 }
11740 return MaybeBindToTemporary(TheCall);
11741 }
11742
11743 /// BuildCallToObjectOfClassType - Build a call to an object of class
11744 /// type (C++ [over.call.object]), which can end up invoking an
11745 /// overloaded function call operator (@c operator()) or performing a
11746 /// user-defined conversion on the object argument.
11747 ExprResult
BuildCallToObjectOfClassType(Scope * S,Expr * Obj,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc)11748 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
11749 SourceLocation LParenLoc,
11750 MultiExprArg Args,
11751 SourceLocation RParenLoc) {
11752 if (checkPlaceholderForOverload(*this, Obj))
11753 return ExprError();
11754 ExprResult Object = Obj;
11755
11756 UnbridgedCastsSet UnbridgedCasts;
11757 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
11758 return ExprError();
11759
11760 assert(Object.get()->getType()->isRecordType() &&
11761 "Requires object type argument");
11762 const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
11763
11764 // C++ [over.call.object]p1:
11765 // If the primary-expression E in the function call syntax
11766 // evaluates to a class object of type "cv T", then the set of
11767 // candidate functions includes at least the function call
11768 // operators of T. The function call operators of T are obtained by
11769 // ordinary lookup of the name operator() in the context of
11770 // (E).operator().
11771 OverloadCandidateSet CandidateSet(LParenLoc,
11772 OverloadCandidateSet::CSK_Operator);
11773 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
11774
11775 if (RequireCompleteType(LParenLoc, Object.get()->getType(),
11776 diag::err_incomplete_object_call, Object.get()))
11777 return true;
11778
11779 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
11780 LookupQualifiedName(R, Record->getDecl());
11781 R.suppressDiagnostics();
11782
11783 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
11784 Oper != OperEnd; ++Oper) {
11785 AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
11786 Object.get()->Classify(Context),
11787 Args, CandidateSet,
11788 /*SuppressUserConversions=*/ false);
11789 }
11790
11791 // C++ [over.call.object]p2:
11792 // In addition, for each (non-explicit in C++0x) conversion function
11793 // declared in T of the form
11794 //
11795 // operator conversion-type-id () cv-qualifier;
11796 //
11797 // where cv-qualifier is the same cv-qualification as, or a
11798 // greater cv-qualification than, cv, and where conversion-type-id
11799 // denotes the type "pointer to function of (P1,...,Pn) returning
11800 // R", or the type "reference to pointer to function of
11801 // (P1,...,Pn) returning R", or the type "reference to function
11802 // of (P1,...,Pn) returning R", a surrogate call function [...]
11803 // is also considered as a candidate function. Similarly,
11804 // surrogate call functions are added to the set of candidate
11805 // functions for each conversion function declared in an
11806 // accessible base class provided the function is not hidden
11807 // within T by another intervening declaration.
11808 std::pair<CXXRecordDecl::conversion_iterator,
11809 CXXRecordDecl::conversion_iterator> Conversions
11810 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
11811 for (CXXRecordDecl::conversion_iterator
11812 I = Conversions.first, E = Conversions.second; I != E; ++I) {
11813 NamedDecl *D = *I;
11814 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
11815 if (isa<UsingShadowDecl>(D))
11816 D = cast<UsingShadowDecl>(D)->getTargetDecl();
11817
11818 // Skip over templated conversion functions; they aren't
11819 // surrogates.
11820 if (isa<FunctionTemplateDecl>(D))
11821 continue;
11822
11823 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
11824 if (!Conv->isExplicit()) {
11825 // Strip the reference type (if any) and then the pointer type (if
11826 // any) to get down to what might be a function type.
11827 QualType ConvType = Conv->getConversionType().getNonReferenceType();
11828 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
11829 ConvType = ConvPtrType->getPointeeType();
11830
11831 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
11832 {
11833 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
11834 Object.get(), Args, CandidateSet);
11835 }
11836 }
11837 }
11838
11839 bool HadMultipleCandidates = (CandidateSet.size() > 1);
11840
11841 // Perform overload resolution.
11842 OverloadCandidateSet::iterator Best;
11843 switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
11844 Best)) {
11845 case OR_Success:
11846 // Overload resolution succeeded; we'll build the appropriate call
11847 // below.
11848 break;
11849
11850 case OR_No_Viable_Function:
11851 if (CandidateSet.empty())
11852 Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
11853 << Object.get()->getType() << /*call*/ 1
11854 << Object.get()->getSourceRange();
11855 else
11856 Diag(Object.get()->getLocStart(),
11857 diag::err_ovl_no_viable_object_call)
11858 << Object.get()->getType() << Object.get()->getSourceRange();
11859 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11860 break;
11861
11862 case OR_Ambiguous:
11863 Diag(Object.get()->getLocStart(),
11864 diag::err_ovl_ambiguous_object_call)
11865 << Object.get()->getType() << Object.get()->getSourceRange();
11866 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
11867 break;
11868
11869 case OR_Deleted:
11870 Diag(Object.get()->getLocStart(),
11871 diag::err_ovl_deleted_object_call)
11872 << Best->Function->isDeleted()
11873 << Object.get()->getType()
11874 << getDeletedOrUnavailableSuffix(Best->Function)
11875 << Object.get()->getSourceRange();
11876 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11877 break;
11878 }
11879
11880 if (Best == CandidateSet.end())
11881 return true;
11882
11883 UnbridgedCasts.restore();
11884
11885 if (Best->Function == nullptr) {
11886 // Since there is no function declaration, this is one of the
11887 // surrogate candidates. Dig out the conversion function.
11888 CXXConversionDecl *Conv
11889 = cast<CXXConversionDecl>(
11890 Best->Conversions[0].UserDefined.ConversionFunction);
11891
11892 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
11893 Best->FoundDecl);
11894 if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
11895 return ExprError();
11896 assert(Conv == Best->FoundDecl.getDecl() &&
11897 "Found Decl & conversion-to-functionptr should be same, right?!");
11898 // We selected one of the surrogate functions that converts the
11899 // object parameter to a function pointer. Perform the conversion
11900 // on the object argument, then let ActOnCallExpr finish the job.
11901
11902 // Create an implicit member expr to refer to the conversion operator.
11903 // and then call it.
11904 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
11905 Conv, HadMultipleCandidates);
11906 if (Call.isInvalid())
11907 return ExprError();
11908 // Record usage of conversion in an implicit cast.
11909 Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
11910 CK_UserDefinedConversion, Call.get(),
11911 nullptr, VK_RValue);
11912
11913 return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
11914 }
11915
11916 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
11917
11918 // We found an overloaded operator(). Build a CXXOperatorCallExpr
11919 // that calls this method, using Object for the implicit object
11920 // parameter and passing along the remaining arguments.
11921 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11922
11923 // An error diagnostic has already been printed when parsing the declaration.
11924 if (Method->isInvalidDecl())
11925 return ExprError();
11926
11927 const FunctionProtoType *Proto =
11928 Method->getType()->getAs<FunctionProtoType>();
11929
11930 unsigned NumParams = Proto->getNumParams();
11931
11932 DeclarationNameInfo OpLocInfo(
11933 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
11934 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
11935 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
11936 HadMultipleCandidates,
11937 OpLocInfo.getLoc(),
11938 OpLocInfo.getInfo());
11939 if (NewFn.isInvalid())
11940 return true;
11941
11942 // Build the full argument list for the method call (the implicit object
11943 // parameter is placed at the beginning of the list).
11944 std::unique_ptr<Expr * []> MethodArgs(new Expr *[Args.size() + 1]);
11945 MethodArgs[0] = Object.get();
11946 std::copy(Args.begin(), Args.end(), &MethodArgs[1]);
11947
11948 // Once we've built TheCall, all of the expressions are properly
11949 // owned.
11950 QualType ResultTy = Method->getReturnType();
11951 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11952 ResultTy = ResultTy.getNonLValueExprType(Context);
11953
11954 CXXOperatorCallExpr *TheCall = new (Context)
11955 CXXOperatorCallExpr(Context, OO_Call, NewFn.get(),
11956 llvm::makeArrayRef(MethodArgs.get(), Args.size() + 1),
11957 ResultTy, VK, RParenLoc, false);
11958 MethodArgs.reset();
11959
11960 if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
11961 return true;
11962
11963 // We may have default arguments. If so, we need to allocate more
11964 // slots in the call for them.
11965 if (Args.size() < NumParams)
11966 TheCall->setNumArgs(Context, NumParams + 1);
11967
11968 bool IsError = false;
11969
11970 // Initialize the implicit object parameter.
11971 ExprResult ObjRes =
11972 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
11973 Best->FoundDecl, Method);
11974 if (ObjRes.isInvalid())
11975 IsError = true;
11976 else
11977 Object = ObjRes;
11978 TheCall->setArg(0, Object.get());
11979
11980 // Check the argument types.
11981 for (unsigned i = 0; i != NumParams; i++) {
11982 Expr *Arg;
11983 if (i < Args.size()) {
11984 Arg = Args[i];
11985
11986 // Pass the argument.
11987
11988 ExprResult InputInit
11989 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
11990 Context,
11991 Method->getParamDecl(i)),
11992 SourceLocation(), Arg);
11993
11994 IsError |= InputInit.isInvalid();
11995 Arg = InputInit.getAs<Expr>();
11996 } else {
11997 ExprResult DefArg
11998 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
11999 if (DefArg.isInvalid()) {
12000 IsError = true;
12001 break;
12002 }
12003
12004 Arg = DefArg.getAs<Expr>();
12005 }
12006
12007 TheCall->setArg(i + 1, Arg);
12008 }
12009
12010 // If this is a variadic call, handle args passed through "...".
12011 if (Proto->isVariadic()) {
12012 // Promote the arguments (C99 6.5.2.2p7).
12013 for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
12014 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
12015 nullptr);
12016 IsError |= Arg.isInvalid();
12017 TheCall->setArg(i + 1, Arg.get());
12018 }
12019 }
12020
12021 if (IsError) return true;
12022
12023 DiagnoseSentinelCalls(Method, LParenLoc, Args);
12024
12025 if (CheckFunctionCall(Method, TheCall, Proto))
12026 return true;
12027
12028 return MaybeBindToTemporary(TheCall);
12029 }
12030
12031 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
12032 /// (if one exists), where @c Base is an expression of class type and
12033 /// @c Member is the name of the member we're trying to find.
12034 ExprResult
BuildOverloadedArrowExpr(Scope * S,Expr * Base,SourceLocation OpLoc,bool * NoArrowOperatorFound)12035 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
12036 bool *NoArrowOperatorFound) {
12037 assert(Base->getType()->isRecordType() &&
12038 "left-hand side must have class type");
12039
12040 if (checkPlaceholderForOverload(*this, Base))
12041 return ExprError();
12042
12043 SourceLocation Loc = Base->getExprLoc();
12044
12045 // C++ [over.ref]p1:
12046 //
12047 // [...] An expression x->m is interpreted as (x.operator->())->m
12048 // for a class object x of type T if T::operator->() exists and if
12049 // the operator is selected as the best match function by the
12050 // overload resolution mechanism (13.3).
12051 DeclarationName OpName =
12052 Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
12053 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
12054 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
12055
12056 if (RequireCompleteType(Loc, Base->getType(),
12057 diag::err_typecheck_incomplete_tag, Base))
12058 return ExprError();
12059
12060 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
12061 LookupQualifiedName(R, BaseRecord->getDecl());
12062 R.suppressDiagnostics();
12063
12064 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
12065 Oper != OperEnd; ++Oper) {
12066 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
12067 None, CandidateSet, /*SuppressUserConversions=*/false);
12068 }
12069
12070 bool HadMultipleCandidates = (CandidateSet.size() > 1);
12071
12072 // Perform overload resolution.
12073 OverloadCandidateSet::iterator Best;
12074 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12075 case OR_Success:
12076 // Overload resolution succeeded; we'll build the call below.
12077 break;
12078
12079 case OR_No_Viable_Function:
12080 if (CandidateSet.empty()) {
12081 QualType BaseType = Base->getType();
12082 if (NoArrowOperatorFound) {
12083 // Report this specific error to the caller instead of emitting a
12084 // diagnostic, as requested.
12085 *NoArrowOperatorFound = true;
12086 return ExprError();
12087 }
12088 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
12089 << BaseType << Base->getSourceRange();
12090 if (BaseType->isRecordType() && !BaseType->isPointerType()) {
12091 Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
12092 << FixItHint::CreateReplacement(OpLoc, ".");
12093 }
12094 } else
12095 Diag(OpLoc, diag::err_ovl_no_viable_oper)
12096 << "operator->" << Base->getSourceRange();
12097 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
12098 return ExprError();
12099
12100 case OR_Ambiguous:
12101 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
12102 << "->" << Base->getType() << Base->getSourceRange();
12103 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
12104 return ExprError();
12105
12106 case OR_Deleted:
12107 Diag(OpLoc, diag::err_ovl_deleted_oper)
12108 << Best->Function->isDeleted()
12109 << "->"
12110 << getDeletedOrUnavailableSuffix(Best->Function)
12111 << Base->getSourceRange();
12112 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
12113 return ExprError();
12114 }
12115
12116 CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
12117
12118 // Convert the object parameter.
12119 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
12120 ExprResult BaseResult =
12121 PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
12122 Best->FoundDecl, Method);
12123 if (BaseResult.isInvalid())
12124 return ExprError();
12125 Base = BaseResult.get();
12126
12127 // Build the operator call.
12128 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
12129 HadMultipleCandidates, OpLoc);
12130 if (FnExpr.isInvalid())
12131 return ExprError();
12132
12133 QualType ResultTy = Method->getReturnType();
12134 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12135 ResultTy = ResultTy.getNonLValueExprType(Context);
12136 CXXOperatorCallExpr *TheCall =
12137 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.get(),
12138 Base, ResultTy, VK, OpLoc, false);
12139
12140 if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
12141 return ExprError();
12142
12143 return MaybeBindToTemporary(TheCall);
12144 }
12145
12146 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
12147 /// a literal operator described by the provided lookup results.
BuildLiteralOperatorCall(LookupResult & R,DeclarationNameInfo & SuffixInfo,ArrayRef<Expr * > Args,SourceLocation LitEndLoc,TemplateArgumentListInfo * TemplateArgs)12148 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
12149 DeclarationNameInfo &SuffixInfo,
12150 ArrayRef<Expr*> Args,
12151 SourceLocation LitEndLoc,
12152 TemplateArgumentListInfo *TemplateArgs) {
12153 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
12154
12155 OverloadCandidateSet CandidateSet(UDSuffixLoc,
12156 OverloadCandidateSet::CSK_Normal);
12157 AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
12158 TemplateArgs);
12159
12160 bool HadMultipleCandidates = (CandidateSet.size() > 1);
12161
12162 // Perform overload resolution. This will usually be trivial, but might need
12163 // to perform substitutions for a literal operator template.
12164 OverloadCandidateSet::iterator Best;
12165 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
12166 case OR_Success:
12167 case OR_Deleted:
12168 break;
12169
12170 case OR_No_Viable_Function:
12171 Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
12172 << R.getLookupName();
12173 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12174 return ExprError();
12175
12176 case OR_Ambiguous:
12177 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
12178 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
12179 return ExprError();
12180 }
12181
12182 FunctionDecl *FD = Best->Function;
12183 ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
12184 HadMultipleCandidates,
12185 SuffixInfo.getLoc(),
12186 SuffixInfo.getInfo());
12187 if (Fn.isInvalid())
12188 return true;
12189
12190 // Check the argument types. This should almost always be a no-op, except
12191 // that array-to-pointer decay is applied to string literals.
12192 Expr *ConvArgs[2];
12193 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
12194 ExprResult InputInit = PerformCopyInitialization(
12195 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
12196 SourceLocation(), Args[ArgIdx]);
12197 if (InputInit.isInvalid())
12198 return true;
12199 ConvArgs[ArgIdx] = InputInit.get();
12200 }
12201
12202 QualType ResultTy = FD->getReturnType();
12203 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12204 ResultTy = ResultTy.getNonLValueExprType(Context);
12205
12206 UserDefinedLiteral *UDL =
12207 new (Context) UserDefinedLiteral(Context, Fn.get(),
12208 llvm::makeArrayRef(ConvArgs, Args.size()),
12209 ResultTy, VK, LitEndLoc, UDSuffixLoc);
12210
12211 if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
12212 return ExprError();
12213
12214 if (CheckFunctionCall(FD, UDL, nullptr))
12215 return ExprError();
12216
12217 return MaybeBindToTemporary(UDL);
12218 }
12219
12220 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
12221 /// given LookupResult is non-empty, it is assumed to describe a member which
12222 /// will be invoked. Otherwise, the function will be found via argument
12223 /// dependent lookup.
12224 /// CallExpr is set to a valid expression and FRS_Success returned on success,
12225 /// otherwise CallExpr is set to ExprError() and some non-success value
12226 /// is returned.
12227 Sema::ForRangeStatus
BuildForRangeBeginEndCall(Scope * S,SourceLocation Loc,SourceLocation RangeLoc,VarDecl * Decl,BeginEndFunction BEF,const DeclarationNameInfo & NameInfo,LookupResult & MemberLookup,OverloadCandidateSet * CandidateSet,Expr * Range,ExprResult * CallExpr)12228 Sema::BuildForRangeBeginEndCall(Scope *S, SourceLocation Loc,
12229 SourceLocation RangeLoc, VarDecl *Decl,
12230 BeginEndFunction BEF,
12231 const DeclarationNameInfo &NameInfo,
12232 LookupResult &MemberLookup,
12233 OverloadCandidateSet *CandidateSet,
12234 Expr *Range, ExprResult *CallExpr) {
12235 CandidateSet->clear();
12236 if (!MemberLookup.empty()) {
12237 ExprResult MemberRef =
12238 BuildMemberReferenceExpr(Range, Range->getType(), Loc,
12239 /*IsPtr=*/false, CXXScopeSpec(),
12240 /*TemplateKWLoc=*/SourceLocation(),
12241 /*FirstQualifierInScope=*/nullptr,
12242 MemberLookup,
12243 /*TemplateArgs=*/nullptr);
12244 if (MemberRef.isInvalid()) {
12245 *CallExpr = ExprError();
12246 Diag(Range->getLocStart(), diag::note_in_for_range)
12247 << RangeLoc << BEF << Range->getType();
12248 return FRS_DiagnosticIssued;
12249 }
12250 *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
12251 if (CallExpr->isInvalid()) {
12252 *CallExpr = ExprError();
12253 Diag(Range->getLocStart(), diag::note_in_for_range)
12254 << RangeLoc << BEF << Range->getType();
12255 return FRS_DiagnosticIssued;
12256 }
12257 } else {
12258 UnresolvedSet<0> FoundNames;
12259 UnresolvedLookupExpr *Fn =
12260 UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
12261 NestedNameSpecifierLoc(), NameInfo,
12262 /*NeedsADL=*/true, /*Overloaded=*/false,
12263 FoundNames.begin(), FoundNames.end());
12264
12265 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
12266 CandidateSet, CallExpr);
12267 if (CandidateSet->empty() || CandidateSetError) {
12268 *CallExpr = ExprError();
12269 return FRS_NoViableFunction;
12270 }
12271 OverloadCandidateSet::iterator Best;
12272 OverloadingResult OverloadResult =
12273 CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
12274
12275 if (OverloadResult == OR_No_Viable_Function) {
12276 *CallExpr = ExprError();
12277 return FRS_NoViableFunction;
12278 }
12279 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
12280 Loc, nullptr, CandidateSet, &Best,
12281 OverloadResult,
12282 /*AllowTypoCorrection=*/false);
12283 if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
12284 *CallExpr = ExprError();
12285 Diag(Range->getLocStart(), diag::note_in_for_range)
12286 << RangeLoc << BEF << Range->getType();
12287 return FRS_DiagnosticIssued;
12288 }
12289 }
12290 return FRS_Success;
12291 }
12292
12293
12294 /// FixOverloadedFunctionReference - E is an expression that refers to
12295 /// a C++ overloaded function (possibly with some parentheses and
12296 /// perhaps a '&' around it). We have resolved the overloaded function
12297 /// to the function declaration Fn, so patch up the expression E to
12298 /// refer (possibly indirectly) to Fn. Returns the new expr.
FixOverloadedFunctionReference(Expr * E,DeclAccessPair Found,FunctionDecl * Fn)12299 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
12300 FunctionDecl *Fn) {
12301 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
12302 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
12303 Found, Fn);
12304 if (SubExpr == PE->getSubExpr())
12305 return PE;
12306
12307 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
12308 }
12309
12310 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
12311 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
12312 Found, Fn);
12313 assert(Context.hasSameType(ICE->getSubExpr()->getType(),
12314 SubExpr->getType()) &&
12315 "Implicit cast type cannot be determined from overload");
12316 assert(ICE->path_empty() && "fixing up hierarchy conversion?");
12317 if (SubExpr == ICE->getSubExpr())
12318 return ICE;
12319
12320 return ImplicitCastExpr::Create(Context, ICE->getType(),
12321 ICE->getCastKind(),
12322 SubExpr, nullptr,
12323 ICE->getValueKind());
12324 }
12325
12326 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
12327 assert(UnOp->getOpcode() == UO_AddrOf &&
12328 "Can only take the address of an overloaded function");
12329 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
12330 if (Method->isStatic()) {
12331 // Do nothing: static member functions aren't any different
12332 // from non-member functions.
12333 } else {
12334 // Fix the subexpression, which really has to be an
12335 // UnresolvedLookupExpr holding an overloaded member function
12336 // or template.
12337 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
12338 Found, Fn);
12339 if (SubExpr == UnOp->getSubExpr())
12340 return UnOp;
12341
12342 assert(isa<DeclRefExpr>(SubExpr)
12343 && "fixed to something other than a decl ref");
12344 assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
12345 && "fixed to a member ref with no nested name qualifier");
12346
12347 // We have taken the address of a pointer to member
12348 // function. Perform the computation here so that we get the
12349 // appropriate pointer to member type.
12350 QualType ClassType
12351 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
12352 QualType MemPtrType
12353 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
12354
12355 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
12356 VK_RValue, OK_Ordinary,
12357 UnOp->getOperatorLoc());
12358 }
12359 }
12360 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
12361 Found, Fn);
12362 if (SubExpr == UnOp->getSubExpr())
12363 return UnOp;
12364
12365 return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
12366 Context.getPointerType(SubExpr->getType()),
12367 VK_RValue, OK_Ordinary,
12368 UnOp->getOperatorLoc());
12369 }
12370
12371 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
12372 // FIXME: avoid copy.
12373 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
12374 if (ULE->hasExplicitTemplateArgs()) {
12375 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
12376 TemplateArgs = &TemplateArgsBuffer;
12377 }
12378
12379 DeclRefExpr *DRE = DeclRefExpr::Create(Context,
12380 ULE->getQualifierLoc(),
12381 ULE->getTemplateKeywordLoc(),
12382 Fn,
12383 /*enclosing*/ false, // FIXME?
12384 ULE->getNameLoc(),
12385 Fn->getType(),
12386 VK_LValue,
12387 Found.getDecl(),
12388 TemplateArgs);
12389 MarkDeclRefReferenced(DRE);
12390 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
12391 return DRE;
12392 }
12393
12394 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
12395 // FIXME: avoid copy.
12396 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
12397 if (MemExpr->hasExplicitTemplateArgs()) {
12398 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
12399 TemplateArgs = &TemplateArgsBuffer;
12400 }
12401
12402 Expr *Base;
12403
12404 // If we're filling in a static method where we used to have an
12405 // implicit member access, rewrite to a simple decl ref.
12406 if (MemExpr->isImplicitAccess()) {
12407 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
12408 DeclRefExpr *DRE = DeclRefExpr::Create(Context,
12409 MemExpr->getQualifierLoc(),
12410 MemExpr->getTemplateKeywordLoc(),
12411 Fn,
12412 /*enclosing*/ false,
12413 MemExpr->getMemberLoc(),
12414 Fn->getType(),
12415 VK_LValue,
12416 Found.getDecl(),
12417 TemplateArgs);
12418 MarkDeclRefReferenced(DRE);
12419 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
12420 return DRE;
12421 } else {
12422 SourceLocation Loc = MemExpr->getMemberLoc();
12423 if (MemExpr->getQualifier())
12424 Loc = MemExpr->getQualifierLoc().getBeginLoc();
12425 CheckCXXThisCapture(Loc);
12426 Base = new (Context) CXXThisExpr(Loc,
12427 MemExpr->getBaseType(),
12428 /*isImplicit=*/true);
12429 }
12430 } else
12431 Base = MemExpr->getBase();
12432
12433 ExprValueKind valueKind;
12434 QualType type;
12435 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
12436 valueKind = VK_LValue;
12437 type = Fn->getType();
12438 } else {
12439 valueKind = VK_RValue;
12440 type = Context.BoundMemberTy;
12441 }
12442
12443 MemberExpr *ME = MemberExpr::Create(Context, Base,
12444 MemExpr->isArrow(),
12445 MemExpr->getQualifierLoc(),
12446 MemExpr->getTemplateKeywordLoc(),
12447 Fn,
12448 Found,
12449 MemExpr->getMemberNameInfo(),
12450 TemplateArgs,
12451 type, valueKind, OK_Ordinary);
12452 ME->setHadMultipleCandidates(true);
12453 MarkMemberReferenced(ME);
12454 return ME;
12455 }
12456
12457 llvm_unreachable("Invalid reference to overloaded function");
12458 }
12459
FixOverloadedFunctionReference(ExprResult E,DeclAccessPair Found,FunctionDecl * Fn)12460 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
12461 DeclAccessPair Found,
12462 FunctionDecl *Fn) {
12463 return FixOverloadedFunctionReference(E.get(), Found, Fn);
12464 }
12465