1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 //===----------------------------------------------------------------------===//
9 //
10
11 #include "AMDGPU.h"
12 #include "GCNSubtarget.h"
13 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
14 #include "SIMachineFunctionInfo.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/CodeGen/MachineFunctionPass.h"
17
18 #define DEBUG_TYPE "si-fold-operands"
19 using namespace llvm;
20
21 namespace {
22
23 struct FoldCandidate {
24 MachineInstr *UseMI;
25 union {
26 MachineOperand *OpToFold;
27 uint64_t ImmToFold;
28 int FrameIndexToFold;
29 };
30 int ShrinkOpcode;
31 unsigned UseOpNo;
32 MachineOperand::MachineOperandType Kind;
33 bool Commuted;
34
FoldCandidate__anonf5b6cdd10111::FoldCandidate35 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
36 bool Commuted_ = false,
37 int ShrinkOp = -1) :
38 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
39 Kind(FoldOp->getType()),
40 Commuted(Commuted_) {
41 if (FoldOp->isImm()) {
42 ImmToFold = FoldOp->getImm();
43 } else if (FoldOp->isFI()) {
44 FrameIndexToFold = FoldOp->getIndex();
45 } else {
46 assert(FoldOp->isReg() || FoldOp->isGlobal());
47 OpToFold = FoldOp;
48 }
49 }
50
isFI__anonf5b6cdd10111::FoldCandidate51 bool isFI() const {
52 return Kind == MachineOperand::MO_FrameIndex;
53 }
54
isImm__anonf5b6cdd10111::FoldCandidate55 bool isImm() const {
56 return Kind == MachineOperand::MO_Immediate;
57 }
58
isReg__anonf5b6cdd10111::FoldCandidate59 bool isReg() const {
60 return Kind == MachineOperand::MO_Register;
61 }
62
isGlobal__anonf5b6cdd10111::FoldCandidate63 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; }
64
isCommuted__anonf5b6cdd10111::FoldCandidate65 bool isCommuted() const {
66 return Commuted;
67 }
68
needsShrink__anonf5b6cdd10111::FoldCandidate69 bool needsShrink() const {
70 return ShrinkOpcode != -1;
71 }
72
getShrinkOpcode__anonf5b6cdd10111::FoldCandidate73 int getShrinkOpcode() const {
74 return ShrinkOpcode;
75 }
76 };
77
78 class SIFoldOperands : public MachineFunctionPass {
79 public:
80 static char ID;
81 MachineRegisterInfo *MRI;
82 const SIInstrInfo *TII;
83 const SIRegisterInfo *TRI;
84 const GCNSubtarget *ST;
85 const SIMachineFunctionInfo *MFI;
86
87 void foldOperand(MachineOperand &OpToFold,
88 MachineInstr *UseMI,
89 int UseOpIdx,
90 SmallVectorImpl<FoldCandidate> &FoldList,
91 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
92
93 bool tryFoldCndMask(MachineInstr &MI) const;
94 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
95
96 const MachineOperand *isClamp(const MachineInstr &MI) const;
97 bool tryFoldClamp(MachineInstr &MI);
98
99 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
100 bool tryFoldOMod(MachineInstr &MI);
101 bool tryFoldRegSequence(MachineInstr &MI);
102 bool tryFoldLCSSAPhi(MachineInstr &MI);
103 bool tryFoldLoad(MachineInstr &MI);
104
105 public:
SIFoldOperands()106 SIFoldOperands() : MachineFunctionPass(ID) {
107 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
108 }
109
110 bool runOnMachineFunction(MachineFunction &MF) override;
111
getPassName() const112 StringRef getPassName() const override { return "SI Fold Operands"; }
113
getAnalysisUsage(AnalysisUsage & AU) const114 void getAnalysisUsage(AnalysisUsage &AU) const override {
115 AU.setPreservesCFG();
116 MachineFunctionPass::getAnalysisUsage(AU);
117 }
118 };
119
120 } // End anonymous namespace.
121
122 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
123 "SI Fold Operands", false, false)
124
125 char SIFoldOperands::ID = 0;
126
127 char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
128
129 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any.
macToMad(unsigned Opc)130 static unsigned macToMad(unsigned Opc) {
131 switch (Opc) {
132 case AMDGPU::V_MAC_F32_e64:
133 return AMDGPU::V_MAD_F32_e64;
134 case AMDGPU::V_MAC_F16_e64:
135 return AMDGPU::V_MAD_F16_e64;
136 case AMDGPU::V_FMAC_F32_e64:
137 return AMDGPU::V_FMA_F32_e64;
138 case AMDGPU::V_FMAC_F16_e64:
139 return AMDGPU::V_FMA_F16_gfx9_e64;
140 case AMDGPU::V_FMAC_LEGACY_F32_e64:
141 return AMDGPU::V_FMA_LEGACY_F32_e64;
142 case AMDGPU::V_FMAC_F64_e64:
143 return AMDGPU::V_FMA_F64_e64;
144 }
145 return AMDGPU::INSTRUCTION_LIST_END;
146 }
147
148 // Wrapper around isInlineConstant that understands special cases when
149 // instruction types are replaced during operand folding.
isInlineConstantIfFolded(const SIInstrInfo * TII,const MachineInstr & UseMI,unsigned OpNo,const MachineOperand & OpToFold)150 static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
151 const MachineInstr &UseMI,
152 unsigned OpNo,
153 const MachineOperand &OpToFold) {
154 if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
155 return true;
156
157 unsigned Opc = UseMI.getOpcode();
158 unsigned NewOpc = macToMad(Opc);
159 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) {
160 // Special case for mac. Since this is replaced with mad when folded into
161 // src2, we need to check the legality for the final instruction.
162 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
163 if (static_cast<int>(OpNo) == Src2Idx) {
164 const MCInstrDesc &MadDesc = TII->get(NewOpc);
165 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
166 }
167 }
168
169 return false;
170 }
171
172 // TODO: Add heuristic that the frame index might not fit in the addressing mode
173 // immediate offset to avoid materializing in loops.
frameIndexMayFold(const SIInstrInfo * TII,const MachineInstr & UseMI,int OpNo,const MachineOperand & OpToFold)174 static bool frameIndexMayFold(const SIInstrInfo *TII,
175 const MachineInstr &UseMI,
176 int OpNo,
177 const MachineOperand &OpToFold) {
178 if (!OpToFold.isFI())
179 return false;
180
181 if (TII->isMUBUF(UseMI))
182 return OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(),
183 AMDGPU::OpName::vaddr);
184 if (!TII->isFLATScratch(UseMI))
185 return false;
186
187 int SIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(),
188 AMDGPU::OpName::saddr);
189 if (OpNo == SIdx)
190 return true;
191
192 int VIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(),
193 AMDGPU::OpName::vaddr);
194 return OpNo == VIdx && SIdx == -1;
195 }
196
createSIFoldOperandsPass()197 FunctionPass *llvm::createSIFoldOperandsPass() {
198 return new SIFoldOperands();
199 }
200
updateOperand(FoldCandidate & Fold,const SIInstrInfo & TII,const TargetRegisterInfo & TRI,const GCNSubtarget & ST)201 static bool updateOperand(FoldCandidate &Fold,
202 const SIInstrInfo &TII,
203 const TargetRegisterInfo &TRI,
204 const GCNSubtarget &ST) {
205 MachineInstr *MI = Fold.UseMI;
206 MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
207 assert(Old.isReg());
208
209 if (Fold.isImm()) {
210 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked &&
211 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) &&
212 AMDGPU::isFoldableLiteralV216(Fold.ImmToFold,
213 ST.hasInv2PiInlineImm())) {
214 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
215 // already set.
216 unsigned Opcode = MI->getOpcode();
217 int OpNo = MI->getOperandNo(&Old);
218 int ModIdx = -1;
219 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
220 ModIdx = AMDGPU::OpName::src0_modifiers;
221 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
222 ModIdx = AMDGPU::OpName::src1_modifiers;
223 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
224 ModIdx = AMDGPU::OpName::src2_modifiers;
225 assert(ModIdx != -1);
226 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
227 MachineOperand &Mod = MI->getOperand(ModIdx);
228 unsigned Val = Mod.getImm();
229 if (!(Val & SISrcMods::OP_SEL_0) && (Val & SISrcMods::OP_SEL_1)) {
230 // Only apply the following transformation if that operand requries
231 // a packed immediate.
232 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) {
233 case AMDGPU::OPERAND_REG_IMM_V2FP16:
234 case AMDGPU::OPERAND_REG_IMM_V2INT16:
235 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
236 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
237 // If upper part is all zero we do not need op_sel_hi.
238 if (!isUInt<16>(Fold.ImmToFold)) {
239 if (!(Fold.ImmToFold & 0xffff)) {
240 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
241 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
242 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
243 return true;
244 }
245 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
246 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff);
247 return true;
248 }
249 break;
250 default:
251 break;
252 }
253 }
254 }
255 }
256
257 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) {
258 MachineBasicBlock *MBB = MI->getParent();
259 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16);
260 if (Liveness != MachineBasicBlock::LQR_Dead) {
261 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n");
262 return false;
263 }
264
265 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
266 int Op32 = Fold.getShrinkOpcode();
267 MachineOperand &Dst0 = MI->getOperand(0);
268 MachineOperand &Dst1 = MI->getOperand(1);
269 assert(Dst0.isDef() && Dst1.isDef());
270
271 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg());
272
273 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg());
274 Register NewReg0 = MRI.createVirtualRegister(Dst0RC);
275
276 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32);
277
278 if (HaveNonDbgCarryUse) {
279 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg())
280 .addReg(AMDGPU::VCC, RegState::Kill);
281 }
282
283 // Keep the old instruction around to avoid breaking iterators, but
284 // replace it with a dummy instruction to remove uses.
285 //
286 // FIXME: We should not invert how this pass looks at operands to avoid
287 // this. Should track set of foldable movs instead of looking for uses
288 // when looking at a use.
289 Dst0.setReg(NewReg0);
290 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
291 MI->RemoveOperand(I);
292 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF));
293
294 if (Fold.isCommuted())
295 TII.commuteInstruction(*Inst32, false);
296 return true;
297 }
298
299 assert(!Fold.needsShrink() && "not handled");
300
301 if (Fold.isImm()) {
302 Old.ChangeToImmediate(Fold.ImmToFold);
303 return true;
304 }
305
306 if (Fold.isGlobal()) {
307 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(),
308 Fold.OpToFold->getTargetFlags());
309 return true;
310 }
311
312 if (Fold.isFI()) {
313 Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
314 return true;
315 }
316
317 MachineOperand *New = Fold.OpToFold;
318 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
319 Old.setIsUndef(New->isUndef());
320 return true;
321 }
322
isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,const MachineInstr * MI)323 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
324 const MachineInstr *MI) {
325 for (auto Candidate : FoldList) {
326 if (Candidate.UseMI == MI)
327 return true;
328 }
329 return false;
330 }
331
appendFoldCandidate(SmallVectorImpl<FoldCandidate> & FoldList,MachineInstr * MI,unsigned OpNo,MachineOperand * FoldOp,bool Commuted=false,int ShrinkOp=-1)332 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList,
333 MachineInstr *MI, unsigned OpNo,
334 MachineOperand *FoldOp, bool Commuted = false,
335 int ShrinkOp = -1) {
336 // Skip additional folding on the same operand.
337 for (FoldCandidate &Fold : FoldList)
338 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo)
339 return;
340 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal")
341 << " operand " << OpNo << "\n " << *MI);
342 FoldList.emplace_back(MI, OpNo, FoldOp, Commuted, ShrinkOp);
343 }
344
tryAddToFoldList(SmallVectorImpl<FoldCandidate> & FoldList,MachineInstr * MI,unsigned OpNo,MachineOperand * OpToFold,const SIInstrInfo * TII)345 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
346 MachineInstr *MI, unsigned OpNo,
347 MachineOperand *OpToFold,
348 const SIInstrInfo *TII) {
349 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
350 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
351 unsigned Opc = MI->getOpcode();
352 unsigned NewOpc = macToMad(Opc);
353 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) {
354 // Check if changing this to a v_mad_{f16, f32} instruction will allow us
355 // to fold the operand.
356 MI->setDesc(TII->get(NewOpc));
357 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
358 if (FoldAsMAD) {
359 MI->untieRegOperand(OpNo);
360 return true;
361 }
362 MI->setDesc(TII->get(Opc));
363 }
364
365 // Special case for s_setreg_b32
366 if (OpToFold->isImm()) {
367 unsigned ImmOpc = 0;
368 if (Opc == AMDGPU::S_SETREG_B32)
369 ImmOpc = AMDGPU::S_SETREG_IMM32_B32;
370 else if (Opc == AMDGPU::S_SETREG_B32_mode)
371 ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode;
372 if (ImmOpc) {
373 MI->setDesc(TII->get(ImmOpc));
374 appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
375 return true;
376 }
377 }
378
379 // If we are already folding into another operand of MI, then
380 // we can't commute the instruction, otherwise we risk making the
381 // other fold illegal.
382 if (isUseMIInFoldList(FoldList, MI))
383 return false;
384
385 unsigned CommuteOpNo = OpNo;
386
387 // Operand is not legal, so try to commute the instruction to
388 // see if this makes it possible to fold.
389 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
390 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
391 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
392
393 if (CanCommute) {
394 if (CommuteIdx0 == OpNo)
395 CommuteOpNo = CommuteIdx1;
396 else if (CommuteIdx1 == OpNo)
397 CommuteOpNo = CommuteIdx0;
398 }
399
400
401 // One of operands might be an Imm operand, and OpNo may refer to it after
402 // the call of commuteInstruction() below. Such situations are avoided
403 // here explicitly as OpNo must be a register operand to be a candidate
404 // for memory folding.
405 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
406 !MI->getOperand(CommuteIdx1).isReg()))
407 return false;
408
409 if (!CanCommute ||
410 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
411 return false;
412
413 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
414 if ((Opc == AMDGPU::V_ADD_CO_U32_e64 ||
415 Opc == AMDGPU::V_SUB_CO_U32_e64 ||
416 Opc == AMDGPU::V_SUBREV_CO_U32_e64) && // FIXME
417 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) {
418 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
419
420 // Verify the other operand is a VGPR, otherwise we would violate the
421 // constant bus restriction.
422 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0;
423 MachineOperand &OtherOp = MI->getOperand(OtherIdx);
424 if (!OtherOp.isReg() ||
425 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg()))
426 return false;
427
428 assert(MI->getOperand(1).isDef());
429
430 // Make sure to get the 32-bit version of the commuted opcode.
431 unsigned MaybeCommutedOpc = MI->getOpcode();
432 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc);
433
434 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32);
435 return true;
436 }
437
438 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
439 return false;
440 }
441
442 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true);
443 return true;
444 }
445
446 // Check the case where we might introduce a second constant operand to a
447 // scalar instruction
448 if (TII->isSALU(MI->getOpcode())) {
449 const MCInstrDesc &InstDesc = MI->getDesc();
450 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo];
451 const SIRegisterInfo &SRI = TII->getRegisterInfo();
452
453 // Fine if the operand can be encoded as an inline constant
454 if (OpToFold->isImm()) {
455 if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) ||
456 !TII->isInlineConstant(*OpToFold, OpInfo)) {
457 // Otherwise check for another constant
458 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) {
459 auto &Op = MI->getOperand(i);
460 if (OpNo != i &&
461 TII->isLiteralConstantLike(Op, OpInfo)) {
462 return false;
463 }
464 }
465 }
466 }
467 }
468
469 appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
470 return true;
471 }
472
473 // If the use operand doesn't care about the value, this may be an operand only
474 // used for register indexing, in which case it is unsafe to fold.
isUseSafeToFold(const SIInstrInfo * TII,const MachineInstr & MI,const MachineOperand & UseMO)475 static bool isUseSafeToFold(const SIInstrInfo *TII,
476 const MachineInstr &MI,
477 const MachineOperand &UseMO) {
478 if (UseMO.isUndef() || TII->isSDWA(MI))
479 return false;
480
481 switch (MI.getOpcode()) {
482 case AMDGPU::V_MOV_B32_e32:
483 case AMDGPU::V_MOV_B32_e64:
484 case AMDGPU::V_MOV_B64_PSEUDO:
485 // Do not fold into an indirect mov.
486 return !MI.hasRegisterImplicitUseOperand(AMDGPU::M0);
487 }
488
489 return true;
490 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
491 }
492
493 // Find a def of the UseReg, check if it is a reg_sequence and find initializers
494 // for each subreg, tracking it to foldable inline immediate if possible.
495 // Returns true on success.
getRegSeqInit(SmallVectorImpl<std::pair<MachineOperand *,unsigned>> & Defs,Register UseReg,uint8_t OpTy,const SIInstrInfo * TII,const MachineRegisterInfo & MRI)496 static bool getRegSeqInit(
497 SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs,
498 Register UseReg, uint8_t OpTy,
499 const SIInstrInfo *TII, const MachineRegisterInfo &MRI) {
500 MachineInstr *Def = MRI.getVRegDef(UseReg);
501 if (!Def || !Def->isRegSequence())
502 return false;
503
504 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) {
505 MachineOperand *Sub = &Def->getOperand(I);
506 assert(Sub->isReg());
507
508 for (MachineInstr *SubDef = MRI.getVRegDef(Sub->getReg());
509 SubDef && Sub->isReg() && Sub->getReg().isVirtual() &&
510 !Sub->getSubReg() && TII->isFoldableCopy(*SubDef);
511 SubDef = MRI.getVRegDef(Sub->getReg())) {
512 MachineOperand *Op = &SubDef->getOperand(1);
513 if (Op->isImm()) {
514 if (TII->isInlineConstant(*Op, OpTy))
515 Sub = Op;
516 break;
517 }
518 if (!Op->isReg() || Op->getReg().isPhysical())
519 break;
520 Sub = Op;
521 }
522
523 Defs.emplace_back(Sub, Def->getOperand(I + 1).getImm());
524 }
525
526 return true;
527 }
528
tryToFoldACImm(const SIInstrInfo * TII,const MachineOperand & OpToFold,MachineInstr * UseMI,unsigned UseOpIdx,SmallVectorImpl<FoldCandidate> & FoldList)529 static bool tryToFoldACImm(const SIInstrInfo *TII,
530 const MachineOperand &OpToFold,
531 MachineInstr *UseMI,
532 unsigned UseOpIdx,
533 SmallVectorImpl<FoldCandidate> &FoldList) {
534 const MCInstrDesc &Desc = UseMI->getDesc();
535 const MCOperandInfo *OpInfo = Desc.OpInfo;
536 if (!OpInfo || UseOpIdx >= Desc.getNumOperands())
537 return false;
538
539 uint8_t OpTy = OpInfo[UseOpIdx].OperandType;
540 if ((OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST ||
541 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) &&
542 (OpTy < AMDGPU::OPERAND_REG_INLINE_C_FIRST ||
543 OpTy > AMDGPU::OPERAND_REG_INLINE_C_LAST))
544 return false;
545
546 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) &&
547 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) {
548 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm());
549 return true;
550 }
551
552 if (!OpToFold.isReg())
553 return false;
554
555 Register UseReg = OpToFold.getReg();
556 if (!UseReg.isVirtual())
557 return false;
558
559 if (isUseMIInFoldList(FoldList, UseMI))
560 return false;
561
562 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo();
563
564 // Maybe it is just a COPY of an immediate itself.
565 MachineInstr *Def = MRI.getVRegDef(UseReg);
566 MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
567 if (!UseOp.getSubReg() && Def && TII->isFoldableCopy(*Def)) {
568 MachineOperand &DefOp = Def->getOperand(1);
569 if (DefOp.isImm() && TII->isInlineConstant(DefOp, OpTy) &&
570 TII->isOperandLegal(*UseMI, UseOpIdx, &DefOp)) {
571 UseMI->getOperand(UseOpIdx).ChangeToImmediate(DefOp.getImm());
572 return true;
573 }
574 }
575
576 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
577 if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI))
578 return false;
579
580 int32_t Imm;
581 for (unsigned I = 0, E = Defs.size(); I != E; ++I) {
582 const MachineOperand *Op = Defs[I].first;
583 if (!Op->isImm())
584 return false;
585
586 auto SubImm = Op->getImm();
587 if (!I) {
588 Imm = SubImm;
589 if (!TII->isInlineConstant(*Op, OpTy) ||
590 !TII->isOperandLegal(*UseMI, UseOpIdx, Op))
591 return false;
592
593 continue;
594 }
595 if (Imm != SubImm)
596 return false; // Can only fold splat constants
597 }
598
599 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first);
600 return true;
601 }
602
foldOperand(MachineOperand & OpToFold,MachineInstr * UseMI,int UseOpIdx,SmallVectorImpl<FoldCandidate> & FoldList,SmallVectorImpl<MachineInstr * > & CopiesToReplace) const603 void SIFoldOperands::foldOperand(
604 MachineOperand &OpToFold,
605 MachineInstr *UseMI,
606 int UseOpIdx,
607 SmallVectorImpl<FoldCandidate> &FoldList,
608 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
609 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
610
611 if (!isUseSafeToFold(TII, *UseMI, UseOp))
612 return;
613
614 // FIXME: Fold operands with subregs.
615 if (UseOp.isReg() && OpToFold.isReg()) {
616 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
617 return;
618 }
619
620 // Special case for REG_SEQUENCE: We can't fold literals into
621 // REG_SEQUENCE instructions, so we have to fold them into the
622 // uses of REG_SEQUENCE.
623 if (UseMI->isRegSequence()) {
624 Register RegSeqDstReg = UseMI->getOperand(0).getReg();
625 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
626
627 for (auto &RSUse : make_early_inc_range(MRI->use_nodbg_operands(RegSeqDstReg))) {
628 MachineInstr *RSUseMI = RSUse.getParent();
629
630 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI,
631 RSUseMI->getOperandNo(&RSUse), FoldList))
632 continue;
633
634 if (RSUse.getSubReg() != RegSeqDstSubReg)
635 continue;
636
637 foldOperand(OpToFold, RSUseMI, RSUseMI->getOperandNo(&RSUse), FoldList,
638 CopiesToReplace);
639 }
640
641 return;
642 }
643
644 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList))
645 return;
646
647 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) {
648 // Sanity check that this is a stack access.
649 // FIXME: Should probably use stack pseudos before frame lowering.
650
651 if (TII->isMUBUF(*UseMI)) {
652 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() !=
653 MFI->getScratchRSrcReg())
654 return;
655
656 // Ensure this is either relative to the current frame or the current
657 // wave.
658 MachineOperand &SOff =
659 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset);
660 if (!SOff.isImm() || SOff.getImm() != 0)
661 return;
662 }
663
664 // A frame index will resolve to a positive constant, so it should always be
665 // safe to fold the addressing mode, even pre-GFX9.
666 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex());
667
668 if (TII->isFLATScratch(*UseMI) &&
669 AMDGPU::getNamedOperandIdx(UseMI->getOpcode(),
670 AMDGPU::OpName::vaddr) != -1) {
671 unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(UseMI->getOpcode());
672 UseMI->setDesc(TII->get(NewOpc));
673 }
674
675 return;
676 }
677
678 bool FoldingImmLike =
679 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
680
681 if (FoldingImmLike && UseMI->isCopy()) {
682 Register DestReg = UseMI->getOperand(0).getReg();
683 Register SrcReg = UseMI->getOperand(1).getReg();
684 assert(SrcReg.isVirtual());
685
686 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg);
687
688 // Don't fold into a copy to a physical register with the same class. Doing
689 // so would interfere with the register coalescer's logic which would avoid
690 // redundant initalizations.
691 if (DestReg.isPhysical() && SrcRC->contains(DestReg))
692 return;
693
694 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg);
695 if (!DestReg.isPhysical()) {
696 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) {
697 SmallVector<FoldCandidate, 4> CopyUses;
698 for (auto &Use : MRI->use_nodbg_operands(DestReg)) {
699 // There's no point trying to fold into an implicit operand.
700 if (Use.isImplicit())
701 continue;
702
703 CopyUses.emplace_back(Use.getParent(),
704 Use.getParent()->getOperandNo(&Use),
705 &UseMI->getOperand(1));
706 }
707 for (auto &F : CopyUses) {
708 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, FoldList, CopiesToReplace);
709 }
710 }
711
712 if (DestRC == &AMDGPU::AGPR_32RegClass &&
713 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
714 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
715 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
716 CopiesToReplace.push_back(UseMI);
717 return;
718 }
719 }
720
721 // In order to fold immediates into copies, we need to change the
722 // copy to a MOV.
723
724 unsigned MovOp = TII->getMovOpcode(DestRC);
725 if (MovOp == AMDGPU::COPY)
726 return;
727
728 UseMI->setDesc(TII->get(MovOp));
729 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin();
730 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end();
731 while (ImpOpI != ImpOpE) {
732 MachineInstr::mop_iterator Tmp = ImpOpI;
733 ImpOpI++;
734 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp));
735 }
736 CopiesToReplace.push_back(UseMI);
737 } else {
738 if (UseMI->isCopy() && OpToFold.isReg() &&
739 UseMI->getOperand(0).getReg().isVirtual() &&
740 !UseMI->getOperand(1).getSubReg()) {
741 LLVM_DEBUG(dbgs() << "Folding " << OpToFold << "\n into " << *UseMI);
742 unsigned Size = TII->getOpSize(*UseMI, 1);
743 Register UseReg = OpToFold.getReg();
744 UseMI->getOperand(1).setReg(UseReg);
745 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
746 UseMI->getOperand(1).setIsKill(false);
747 CopiesToReplace.push_back(UseMI);
748 OpToFold.setIsKill(false);
749
750 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32
751 // can only accept VGPR or inline immediate. Recreate a reg_sequence with
752 // its initializers right here, so we will rematerialize immediates and
753 // avoid copies via different reg classes.
754 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
755 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
756 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII,
757 *MRI)) {
758 const DebugLoc &DL = UseMI->getDebugLoc();
759 MachineBasicBlock &MBB = *UseMI->getParent();
760
761 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE));
762 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I)
763 UseMI->RemoveOperand(I);
764
765 MachineInstrBuilder B(*MBB.getParent(), UseMI);
766 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies;
767 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs;
768 for (unsigned I = 0; I < Size / 4; ++I) {
769 MachineOperand *Def = Defs[I].first;
770 TargetInstrInfo::RegSubRegPair CopyToVGPR;
771 if (Def->isImm() &&
772 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
773 int64_t Imm = Def->getImm();
774
775 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
776 BuildMI(MBB, UseMI, DL,
777 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm);
778 B.addReg(Tmp);
779 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) {
780 auto Src = getRegSubRegPair(*Def);
781 Def->setIsKill(false);
782 if (!SeenAGPRs.insert(Src)) {
783 // We cannot build a reg_sequence out of the same registers, they
784 // must be copied. Better do it here before copyPhysReg() created
785 // several reads to do the AGPR->VGPR->AGPR copy.
786 CopyToVGPR = Src;
787 } else {
788 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0,
789 Src.SubReg);
790 }
791 } else {
792 assert(Def->isReg());
793 Def->setIsKill(false);
794 auto Src = getRegSubRegPair(*Def);
795
796 // Direct copy from SGPR to AGPR is not possible. To avoid creation
797 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later,
798 // create a copy here and track if we already have such a copy.
799 if (TRI->isSGPRReg(*MRI, Src.Reg)) {
800 CopyToVGPR = Src;
801 } else {
802 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
803 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def);
804 B.addReg(Tmp);
805 }
806 }
807
808 if (CopyToVGPR.Reg) {
809 Register Vgpr;
810 if (VGPRCopies.count(CopyToVGPR)) {
811 Vgpr = VGPRCopies[CopyToVGPR];
812 } else {
813 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
814 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def);
815 VGPRCopies[CopyToVGPR] = Vgpr;
816 }
817 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
818 BuildMI(MBB, UseMI, DL,
819 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr);
820 B.addReg(Tmp);
821 }
822
823 B.addImm(Defs[I].second);
824 }
825 LLVM_DEBUG(dbgs() << "Folded " << *UseMI);
826 return;
827 }
828
829 if (Size != 4)
830 return;
831 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
832 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg()))
833 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
834 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) &&
835 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg()))
836 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64));
837 else if (ST->hasGFX90AInsts() &&
838 TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
839 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg()))
840 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_MOV_B32));
841 return;
842 }
843
844 unsigned UseOpc = UseMI->getOpcode();
845 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 ||
846 (UseOpc == AMDGPU::V_READLANE_B32 &&
847 (int)UseOpIdx ==
848 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) {
849 // %vgpr = V_MOV_B32 imm
850 // %sgpr = V_READFIRSTLANE_B32 %vgpr
851 // =>
852 // %sgpr = S_MOV_B32 imm
853 if (FoldingImmLike) {
854 if (execMayBeModifiedBeforeUse(*MRI,
855 UseMI->getOperand(UseOpIdx).getReg(),
856 *OpToFold.getParent(),
857 *UseMI))
858 return;
859
860 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));
861
862 if (OpToFold.isImm())
863 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
864 else
865 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex());
866 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
867 return;
868 }
869
870 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) {
871 if (execMayBeModifiedBeforeUse(*MRI,
872 UseMI->getOperand(UseOpIdx).getReg(),
873 *OpToFold.getParent(),
874 *UseMI))
875 return;
876
877 // %vgpr = COPY %sgpr0
878 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr
879 // =>
880 // %sgpr1 = COPY %sgpr0
881 UseMI->setDesc(TII->get(AMDGPU::COPY));
882 UseMI->getOperand(1).setReg(OpToFold.getReg());
883 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
884 UseMI->getOperand(1).setIsKill(false);
885 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
886 return;
887 }
888 }
889
890 const MCInstrDesc &UseDesc = UseMI->getDesc();
891
892 // Don't fold into target independent nodes. Target independent opcodes
893 // don't have defined register classes.
894 if (UseDesc.isVariadic() ||
895 UseOp.isImplicit() ||
896 UseDesc.OpInfo[UseOpIdx].RegClass == -1)
897 return;
898 }
899
900 if (!FoldingImmLike) {
901 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
902
903 // FIXME: We could try to change the instruction from 64-bit to 32-bit
904 // to enable more folding opportunites. The shrink operands pass
905 // already does this.
906 return;
907 }
908
909
910 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
911 const TargetRegisterClass *FoldRC =
912 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
913
914 // Split 64-bit constants into 32-bits for folding.
915 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
916 Register UseReg = UseOp.getReg();
917 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg);
918
919 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
920 return;
921
922 APInt Imm(64, OpToFold.getImm());
923 if (UseOp.getSubReg() == AMDGPU::sub0) {
924 Imm = Imm.getLoBits(32);
925 } else {
926 assert(UseOp.getSubReg() == AMDGPU::sub1);
927 Imm = Imm.getHiBits(32);
928 }
929
930 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
931 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
932 return;
933 }
934
935
936
937 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
938 }
939
evalBinaryInstruction(unsigned Opcode,int32_t & Result,uint32_t LHS,uint32_t RHS)940 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
941 uint32_t LHS, uint32_t RHS) {
942 switch (Opcode) {
943 case AMDGPU::V_AND_B32_e64:
944 case AMDGPU::V_AND_B32_e32:
945 case AMDGPU::S_AND_B32:
946 Result = LHS & RHS;
947 return true;
948 case AMDGPU::V_OR_B32_e64:
949 case AMDGPU::V_OR_B32_e32:
950 case AMDGPU::S_OR_B32:
951 Result = LHS | RHS;
952 return true;
953 case AMDGPU::V_XOR_B32_e64:
954 case AMDGPU::V_XOR_B32_e32:
955 case AMDGPU::S_XOR_B32:
956 Result = LHS ^ RHS;
957 return true;
958 case AMDGPU::S_XNOR_B32:
959 Result = ~(LHS ^ RHS);
960 return true;
961 case AMDGPU::S_NAND_B32:
962 Result = ~(LHS & RHS);
963 return true;
964 case AMDGPU::S_NOR_B32:
965 Result = ~(LHS | RHS);
966 return true;
967 case AMDGPU::S_ANDN2_B32:
968 Result = LHS & ~RHS;
969 return true;
970 case AMDGPU::S_ORN2_B32:
971 Result = LHS | ~RHS;
972 return true;
973 case AMDGPU::V_LSHL_B32_e64:
974 case AMDGPU::V_LSHL_B32_e32:
975 case AMDGPU::S_LSHL_B32:
976 // The instruction ignores the high bits for out of bounds shifts.
977 Result = LHS << (RHS & 31);
978 return true;
979 case AMDGPU::V_LSHLREV_B32_e64:
980 case AMDGPU::V_LSHLREV_B32_e32:
981 Result = RHS << (LHS & 31);
982 return true;
983 case AMDGPU::V_LSHR_B32_e64:
984 case AMDGPU::V_LSHR_B32_e32:
985 case AMDGPU::S_LSHR_B32:
986 Result = LHS >> (RHS & 31);
987 return true;
988 case AMDGPU::V_LSHRREV_B32_e64:
989 case AMDGPU::V_LSHRREV_B32_e32:
990 Result = RHS >> (LHS & 31);
991 return true;
992 case AMDGPU::V_ASHR_I32_e64:
993 case AMDGPU::V_ASHR_I32_e32:
994 case AMDGPU::S_ASHR_I32:
995 Result = static_cast<int32_t>(LHS) >> (RHS & 31);
996 return true;
997 case AMDGPU::V_ASHRREV_I32_e64:
998 case AMDGPU::V_ASHRREV_I32_e32:
999 Result = static_cast<int32_t>(RHS) >> (LHS & 31);
1000 return true;
1001 default:
1002 return false;
1003 }
1004 }
1005
getMovOpc(bool IsScalar)1006 static unsigned getMovOpc(bool IsScalar) {
1007 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
1008 }
1009
1010 /// Remove any leftover implicit operands from mutating the instruction. e.g.
1011 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
1012 /// anymore.
stripExtraCopyOperands(MachineInstr & MI)1013 static void stripExtraCopyOperands(MachineInstr &MI) {
1014 const MCInstrDesc &Desc = MI.getDesc();
1015 unsigned NumOps = Desc.getNumOperands() +
1016 Desc.getNumImplicitUses() +
1017 Desc.getNumImplicitDefs();
1018
1019 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
1020 MI.RemoveOperand(I);
1021 }
1022
mutateCopyOp(MachineInstr & MI,const MCInstrDesc & NewDesc)1023 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
1024 MI.setDesc(NewDesc);
1025 stripExtraCopyOperands(MI);
1026 }
1027
getImmOrMaterializedImm(MachineRegisterInfo & MRI,MachineOperand & Op)1028 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
1029 MachineOperand &Op) {
1030 if (Op.isReg()) {
1031 // If this has a subregister, it obviously is a register source.
1032 if (Op.getSubReg() != AMDGPU::NoSubRegister || !Op.getReg().isVirtual())
1033 return &Op;
1034
1035 MachineInstr *Def = MRI.getVRegDef(Op.getReg());
1036 if (Def && Def->isMoveImmediate()) {
1037 MachineOperand &ImmSrc = Def->getOperand(1);
1038 if (ImmSrc.isImm())
1039 return &ImmSrc;
1040 }
1041 }
1042
1043 return &Op;
1044 }
1045
1046 // Try to simplify operations with a constant that may appear after instruction
1047 // selection.
1048 // TODO: See if a frame index with a fixed offset can fold.
tryConstantFoldOp(MachineRegisterInfo & MRI,const SIInstrInfo * TII,MachineInstr * MI)1049 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, const SIInstrInfo *TII,
1050 MachineInstr *MI) {
1051 unsigned Opc = MI->getOpcode();
1052
1053 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
1054 if (Src0Idx == -1)
1055 return false;
1056 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
1057
1058 if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
1059 Opc == AMDGPU::S_NOT_B32) &&
1060 Src0->isImm()) {
1061 MI->getOperand(1).ChangeToImmediate(~Src0->getImm());
1062 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
1063 return true;
1064 }
1065
1066 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
1067 if (Src1Idx == -1)
1068 return false;
1069 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
1070
1071 if (!Src0->isImm() && !Src1->isImm())
1072 return false;
1073
1074 // and k0, k1 -> v_mov_b32 (k0 & k1)
1075 // or k0, k1 -> v_mov_b32 (k0 | k1)
1076 // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
1077 if (Src0->isImm() && Src1->isImm()) {
1078 int32_t NewImm;
1079 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
1080 return false;
1081
1082 const SIRegisterInfo &TRI = TII->getRegisterInfo();
1083 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
1084
1085 // Be careful to change the right operand, src0 may belong to a different
1086 // instruction.
1087 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
1088 MI->RemoveOperand(Src1Idx);
1089 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
1090 return true;
1091 }
1092
1093 if (!MI->isCommutable())
1094 return false;
1095
1096 if (Src0->isImm() && !Src1->isImm()) {
1097 std::swap(Src0, Src1);
1098 std::swap(Src0Idx, Src1Idx);
1099 }
1100
1101 int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
1102 if (Opc == AMDGPU::V_OR_B32_e64 ||
1103 Opc == AMDGPU::V_OR_B32_e32 ||
1104 Opc == AMDGPU::S_OR_B32) {
1105 if (Src1Val == 0) {
1106 // y = or x, 0 => y = copy x
1107 MI->RemoveOperand(Src1Idx);
1108 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1109 } else if (Src1Val == -1) {
1110 // y = or x, -1 => y = v_mov_b32 -1
1111 MI->RemoveOperand(Src1Idx);
1112 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
1113 } else
1114 return false;
1115
1116 return true;
1117 }
1118
1119 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
1120 MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
1121 MI->getOpcode() == AMDGPU::S_AND_B32) {
1122 if (Src1Val == 0) {
1123 // y = and x, 0 => y = v_mov_b32 0
1124 MI->RemoveOperand(Src0Idx);
1125 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
1126 } else if (Src1Val == -1) {
1127 // y = and x, -1 => y = copy x
1128 MI->RemoveOperand(Src1Idx);
1129 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1130 stripExtraCopyOperands(*MI);
1131 } else
1132 return false;
1133
1134 return true;
1135 }
1136
1137 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
1138 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
1139 MI->getOpcode() == AMDGPU::S_XOR_B32) {
1140 if (Src1Val == 0) {
1141 // y = xor x, 0 => y = copy x
1142 MI->RemoveOperand(Src1Idx);
1143 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1144 return true;
1145 }
1146 }
1147
1148 return false;
1149 }
1150
1151 // Try to fold an instruction into a simpler one
tryFoldCndMask(MachineInstr & MI) const1152 bool SIFoldOperands::tryFoldCndMask(MachineInstr &MI) const {
1153 unsigned Opc = MI.getOpcode();
1154 if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 &&
1155 Opc != AMDGPU::V_CNDMASK_B64_PSEUDO)
1156 return false;
1157
1158 MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1159 MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1160 if (!Src1->isIdenticalTo(*Src0)) {
1161 auto *Src0Imm = getImmOrMaterializedImm(*MRI, *Src0);
1162 auto *Src1Imm = getImmOrMaterializedImm(*MRI, *Src1);
1163 if (!Src1Imm->isIdenticalTo(*Src0Imm))
1164 return false;
1165 }
1166
1167 int Src1ModIdx =
1168 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
1169 int Src0ModIdx =
1170 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
1171 if ((Src1ModIdx != -1 && MI.getOperand(Src1ModIdx).getImm() != 0) ||
1172 (Src0ModIdx != -1 && MI.getOperand(Src0ModIdx).getImm() != 0))
1173 return false;
1174
1175 LLVM_DEBUG(dbgs() << "Folded " << MI << " into ");
1176 auto &NewDesc =
1177 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
1178 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1179 if (Src2Idx != -1)
1180 MI.RemoveOperand(Src2Idx);
1181 MI.RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
1182 if (Src1ModIdx != -1)
1183 MI.RemoveOperand(Src1ModIdx);
1184 if (Src0ModIdx != -1)
1185 MI.RemoveOperand(Src0ModIdx);
1186 mutateCopyOp(MI, NewDesc);
1187 LLVM_DEBUG(dbgs() << MI);
1188 return true;
1189 }
1190
foldInstOperand(MachineInstr & MI,MachineOperand & OpToFold) const1191 void SIFoldOperands::foldInstOperand(MachineInstr &MI,
1192 MachineOperand &OpToFold) const {
1193 // We need mutate the operands of new mov instructions to add implicit
1194 // uses of EXEC, but adding them invalidates the use_iterator, so defer
1195 // this.
1196 SmallVector<MachineInstr *, 4> CopiesToReplace;
1197 SmallVector<FoldCandidate, 4> FoldList;
1198 MachineOperand &Dst = MI.getOperand(0);
1199
1200 if (OpToFold.isImm()) {
1201 for (auto &UseMI :
1202 make_early_inc_range(MRI->use_nodbg_instructions(Dst.getReg()))) {
1203 // Folding the immediate may reveal operations that can be constant
1204 // folded or replaced with a copy. This can happen for example after
1205 // frame indices are lowered to constants or from splitting 64-bit
1206 // constants.
1207 //
1208 // We may also encounter cases where one or both operands are
1209 // immediates materialized into a register, which would ordinarily not
1210 // be folded due to multiple uses or operand constraints.
1211 if (tryConstantFoldOp(*MRI, TII, &UseMI))
1212 LLVM_DEBUG(dbgs() << "Constant folded " << UseMI);
1213 }
1214 }
1215
1216 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1217 if (FoldingImm) {
1218 unsigned NumLiteralUses = 0;
1219 MachineOperand *NonInlineUse = nullptr;
1220 int NonInlineUseOpNo = -1;
1221
1222 for (auto &Use :
1223 make_early_inc_range(MRI->use_nodbg_operands(Dst.getReg()))) {
1224 MachineInstr *UseMI = Use.getParent();
1225 unsigned OpNo = UseMI->getOperandNo(&Use);
1226
1227 // Try to fold any inline immediate uses, and then only fold other
1228 // constants if they have one use.
1229 //
1230 // The legality of the inline immediate must be checked based on the use
1231 // operand, not the defining instruction, because 32-bit instructions
1232 // with 32-bit inline immediate sources may be used to materialize
1233 // constants used in 16-bit operands.
1234 //
1235 // e.g. it is unsafe to fold:
1236 // s_mov_b32 s0, 1.0 // materializes 0x3f800000
1237 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
1238
1239 // Folding immediates with more than one use will increase program size.
1240 // FIXME: This will also reduce register usage, which may be better
1241 // in some cases. A better heuristic is needed.
1242 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
1243 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
1244 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) {
1245 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
1246 } else {
1247 if (++NumLiteralUses == 1) {
1248 NonInlineUse = &Use;
1249 NonInlineUseOpNo = OpNo;
1250 }
1251 }
1252 }
1253
1254 if (NumLiteralUses == 1) {
1255 MachineInstr *UseMI = NonInlineUse->getParent();
1256 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
1257 }
1258 } else {
1259 // Folding register.
1260 SmallVector <MachineOperand *, 4> UsesToProcess;
1261 for (auto &Use : MRI->use_nodbg_operands(Dst.getReg()))
1262 UsesToProcess.push_back(&Use);
1263 for (auto U : UsesToProcess) {
1264 MachineInstr *UseMI = U->getParent();
1265
1266 foldOperand(OpToFold, UseMI, UseMI->getOperandNo(U),
1267 FoldList, CopiesToReplace);
1268 }
1269 }
1270
1271 MachineFunction *MF = MI.getParent()->getParent();
1272 // Make sure we add EXEC uses to any new v_mov instructions created.
1273 for (MachineInstr *Copy : CopiesToReplace)
1274 Copy->addImplicitDefUseOperands(*MF);
1275
1276 for (FoldCandidate &Fold : FoldList) {
1277 assert(!Fold.isReg() || Fold.OpToFold);
1278 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) {
1279 Register Reg = Fold.OpToFold->getReg();
1280 MachineInstr *DefMI = Fold.OpToFold->getParent();
1281 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) &&
1282 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI))
1283 continue;
1284 }
1285 if (updateOperand(Fold, *TII, *TRI, *ST)) {
1286 // Clear kill flags.
1287 if (Fold.isReg()) {
1288 assert(Fold.OpToFold && Fold.OpToFold->isReg());
1289 // FIXME: Probably shouldn't bother trying to fold if not an
1290 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
1291 // copies.
1292 MRI->clearKillFlags(Fold.OpToFold->getReg());
1293 }
1294 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
1295 << static_cast<int>(Fold.UseOpNo) << " of "
1296 << *Fold.UseMI);
1297 } else if (Fold.isCommuted()) {
1298 // Restoring instruction's original operand order if fold has failed.
1299 TII->commuteInstruction(*Fold.UseMI, false);
1300 }
1301 }
1302 }
1303
1304 // Clamp patterns are canonically selected to v_max_* instructions, so only
1305 // handle them.
isClamp(const MachineInstr & MI) const1306 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
1307 unsigned Op = MI.getOpcode();
1308 switch (Op) {
1309 case AMDGPU::V_MAX_F32_e64:
1310 case AMDGPU::V_MAX_F16_e64:
1311 case AMDGPU::V_MAX_F64_e64:
1312 case AMDGPU::V_PK_MAX_F16: {
1313 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
1314 return nullptr;
1315
1316 // Make sure sources are identical.
1317 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1318 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1319 if (!Src0->isReg() || !Src1->isReg() ||
1320 Src0->getReg() != Src1->getReg() ||
1321 Src0->getSubReg() != Src1->getSubReg() ||
1322 Src0->getSubReg() != AMDGPU::NoSubRegister)
1323 return nullptr;
1324
1325 // Can't fold up if we have modifiers.
1326 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1327 return nullptr;
1328
1329 unsigned Src0Mods
1330 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
1331 unsigned Src1Mods
1332 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
1333
1334 // Having a 0 op_sel_hi would require swizzling the output in the source
1335 // instruction, which we can't do.
1336 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
1337 : 0u;
1338 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
1339 return nullptr;
1340 return Src0;
1341 }
1342 default:
1343 return nullptr;
1344 }
1345 }
1346
1347 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
tryFoldClamp(MachineInstr & MI)1348 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
1349 const MachineOperand *ClampSrc = isClamp(MI);
1350 if (!ClampSrc || !MRI->hasOneNonDBGUser(ClampSrc->getReg()))
1351 return false;
1352
1353 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
1354
1355 // The type of clamp must be compatible.
1356 if (TII->getClampMask(*Def) != TII->getClampMask(MI))
1357 return false;
1358
1359 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
1360 if (!DefClamp)
1361 return false;
1362
1363 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def);
1364
1365 // Clamp is applied after omod, so it is OK if omod is set.
1366 DefClamp->setImm(1);
1367 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1368 MI.eraseFromParent();
1369 return true;
1370 }
1371
getOModValue(unsigned Opc,int64_t Val)1372 static int getOModValue(unsigned Opc, int64_t Val) {
1373 switch (Opc) {
1374 case AMDGPU::V_MUL_F64_e64: {
1375 switch (Val) {
1376 case 0x3fe0000000000000: // 0.5
1377 return SIOutMods::DIV2;
1378 case 0x4000000000000000: // 2.0
1379 return SIOutMods::MUL2;
1380 case 0x4010000000000000: // 4.0
1381 return SIOutMods::MUL4;
1382 default:
1383 return SIOutMods::NONE;
1384 }
1385 }
1386 case AMDGPU::V_MUL_F32_e64: {
1387 switch (static_cast<uint32_t>(Val)) {
1388 case 0x3f000000: // 0.5
1389 return SIOutMods::DIV2;
1390 case 0x40000000: // 2.0
1391 return SIOutMods::MUL2;
1392 case 0x40800000: // 4.0
1393 return SIOutMods::MUL4;
1394 default:
1395 return SIOutMods::NONE;
1396 }
1397 }
1398 case AMDGPU::V_MUL_F16_e64: {
1399 switch (static_cast<uint16_t>(Val)) {
1400 case 0x3800: // 0.5
1401 return SIOutMods::DIV2;
1402 case 0x4000: // 2.0
1403 return SIOutMods::MUL2;
1404 case 0x4400: // 4.0
1405 return SIOutMods::MUL4;
1406 default:
1407 return SIOutMods::NONE;
1408 }
1409 }
1410 default:
1411 llvm_unreachable("invalid mul opcode");
1412 }
1413 }
1414
1415 // FIXME: Does this really not support denormals with f16?
1416 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
1417 // handled, so will anything other than that break?
1418 std::pair<const MachineOperand *, int>
isOMod(const MachineInstr & MI) const1419 SIFoldOperands::isOMod(const MachineInstr &MI) const {
1420 unsigned Op = MI.getOpcode();
1421 switch (Op) {
1422 case AMDGPU::V_MUL_F64_e64:
1423 case AMDGPU::V_MUL_F32_e64:
1424 case AMDGPU::V_MUL_F16_e64: {
1425 // If output denormals are enabled, omod is ignored.
1426 if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32OutputDenormals) ||
1427 ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F16_e64) &&
1428 MFI->getMode().FP64FP16OutputDenormals))
1429 return std::make_pair(nullptr, SIOutMods::NONE);
1430
1431 const MachineOperand *RegOp = nullptr;
1432 const MachineOperand *ImmOp = nullptr;
1433 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1434 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1435 if (Src0->isImm()) {
1436 ImmOp = Src0;
1437 RegOp = Src1;
1438 } else if (Src1->isImm()) {
1439 ImmOp = Src1;
1440 RegOp = Src0;
1441 } else
1442 return std::make_pair(nullptr, SIOutMods::NONE);
1443
1444 int OMod = getOModValue(Op, ImmOp->getImm());
1445 if (OMod == SIOutMods::NONE ||
1446 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
1447 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
1448 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
1449 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
1450 return std::make_pair(nullptr, SIOutMods::NONE);
1451
1452 return std::make_pair(RegOp, OMod);
1453 }
1454 case AMDGPU::V_ADD_F64_e64:
1455 case AMDGPU::V_ADD_F32_e64:
1456 case AMDGPU::V_ADD_F16_e64: {
1457 // If output denormals are enabled, omod is ignored.
1458 if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32OutputDenormals) ||
1459 ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F16_e64) &&
1460 MFI->getMode().FP64FP16OutputDenormals))
1461 return std::make_pair(nullptr, SIOutMods::NONE);
1462
1463 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
1464 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1465 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1466
1467 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
1468 Src0->getSubReg() == Src1->getSubReg() &&
1469 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
1470 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
1471 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
1472 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1473 return std::make_pair(Src0, SIOutMods::MUL2);
1474
1475 return std::make_pair(nullptr, SIOutMods::NONE);
1476 }
1477 default:
1478 return std::make_pair(nullptr, SIOutMods::NONE);
1479 }
1480 }
1481
1482 // FIXME: Does this need to check IEEE bit on function?
tryFoldOMod(MachineInstr & MI)1483 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
1484 const MachineOperand *RegOp;
1485 int OMod;
1486 std::tie(RegOp, OMod) = isOMod(MI);
1487 if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
1488 RegOp->getSubReg() != AMDGPU::NoSubRegister ||
1489 !MRI->hasOneNonDBGUser(RegOp->getReg()))
1490 return false;
1491
1492 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
1493 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
1494 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
1495 return false;
1496
1497 // Clamp is applied after omod. If the source already has clamp set, don't
1498 // fold it.
1499 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
1500 return false;
1501
1502 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def);
1503
1504 DefOMod->setImm(OMod);
1505 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1506 MI.eraseFromParent();
1507 return true;
1508 }
1509
1510 // Try to fold a reg_sequence with vgpr output and agpr inputs into an
1511 // instruction which can take an agpr. So far that means a store.
tryFoldRegSequence(MachineInstr & MI)1512 bool SIFoldOperands::tryFoldRegSequence(MachineInstr &MI) {
1513 assert(MI.isRegSequence());
1514 auto Reg = MI.getOperand(0).getReg();
1515
1516 if (!ST->hasGFX90AInsts() || !TRI->isVGPR(*MRI, Reg) ||
1517 !MRI->hasOneNonDBGUse(Reg))
1518 return false;
1519
1520 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
1521 if (!getRegSeqInit(Defs, Reg, MCOI::OPERAND_REGISTER, TII, *MRI))
1522 return false;
1523
1524 for (auto &Def : Defs) {
1525 const auto *Op = Def.first;
1526 if (!Op->isReg())
1527 return false;
1528 if (TRI->isAGPR(*MRI, Op->getReg()))
1529 continue;
1530 // Maybe this is a COPY from AREG
1531 const MachineInstr *SubDef = MRI->getVRegDef(Op->getReg());
1532 if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(1).getSubReg())
1533 return false;
1534 if (!TRI->isAGPR(*MRI, SubDef->getOperand(1).getReg()))
1535 return false;
1536 }
1537
1538 MachineOperand *Op = &*MRI->use_nodbg_begin(Reg);
1539 MachineInstr *UseMI = Op->getParent();
1540 while (UseMI->isCopy() && !Op->getSubReg()) {
1541 Reg = UseMI->getOperand(0).getReg();
1542 if (!TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg))
1543 return false;
1544 Op = &*MRI->use_nodbg_begin(Reg);
1545 UseMI = Op->getParent();
1546 }
1547
1548 if (Op->getSubReg())
1549 return false;
1550
1551 unsigned OpIdx = Op - &UseMI->getOperand(0);
1552 const MCInstrDesc &InstDesc = UseMI->getDesc();
1553 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx];
1554 switch (OpInfo.RegClass) {
1555 case AMDGPU::AV_32RegClassID: LLVM_FALLTHROUGH;
1556 case AMDGPU::AV_64RegClassID: LLVM_FALLTHROUGH;
1557 case AMDGPU::AV_96RegClassID: LLVM_FALLTHROUGH;
1558 case AMDGPU::AV_128RegClassID: LLVM_FALLTHROUGH;
1559 case AMDGPU::AV_160RegClassID:
1560 break;
1561 default:
1562 return false;
1563 }
1564
1565 const auto *NewDstRC = TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg));
1566 auto Dst = MRI->createVirtualRegister(NewDstRC);
1567 auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1568 TII->get(AMDGPU::REG_SEQUENCE), Dst);
1569
1570 for (unsigned I = 0; I < Defs.size(); ++I) {
1571 MachineOperand *Def = Defs[I].first;
1572 Def->setIsKill(false);
1573 if (TRI->isAGPR(*MRI, Def->getReg())) {
1574 RS.add(*Def);
1575 } else { // This is a copy
1576 MachineInstr *SubDef = MRI->getVRegDef(Def->getReg());
1577 SubDef->getOperand(1).setIsKill(false);
1578 RS.addReg(SubDef->getOperand(1).getReg(), 0, Def->getSubReg());
1579 }
1580 RS.addImm(Defs[I].second);
1581 }
1582
1583 Op->setReg(Dst);
1584 if (!TII->isOperandLegal(*UseMI, OpIdx, Op)) {
1585 Op->setReg(Reg);
1586 RS->eraseFromParent();
1587 return false;
1588 }
1589
1590 LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI);
1591
1592 // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users,
1593 // in which case we can erase them all later in runOnMachineFunction.
1594 if (MRI->use_nodbg_empty(MI.getOperand(0).getReg()))
1595 MI.eraseFromParentAndMarkDBGValuesForRemoval();
1596 return true;
1597 }
1598
1599 // Try to hoist an AGPR to VGPR copy out of the loop across a LCSSA PHI.
1600 // This should allow folding of an AGPR into a consumer which may support it.
1601 // I.e.:
1602 //
1603 // loop: // loop:
1604 // %1:vreg = COPY %0:areg // exit:
1605 // exit: => // %1:areg = PHI %0:areg, %loop
1606 // %2:vreg = PHI %1:vreg, %loop // %2:vreg = COPY %1:areg
tryFoldLCSSAPhi(MachineInstr & PHI)1607 bool SIFoldOperands::tryFoldLCSSAPhi(MachineInstr &PHI) {
1608 assert(PHI.isPHI());
1609
1610 if (PHI.getNumExplicitOperands() != 3) // Single input LCSSA PHI
1611 return false;
1612
1613 Register PhiIn = PHI.getOperand(1).getReg();
1614 Register PhiOut = PHI.getOperand(0).getReg();
1615 if (PHI.getOperand(1).getSubReg() ||
1616 !TRI->isVGPR(*MRI, PhiIn) || !TRI->isVGPR(*MRI, PhiOut))
1617 return false;
1618
1619 // A single use should not matter for correctness, but if it has another use
1620 // inside the loop we may perform copy twice in a worst case.
1621 if (!MRI->hasOneNonDBGUse(PhiIn))
1622 return false;
1623
1624 MachineInstr *Copy = MRI->getVRegDef(PhiIn);
1625 if (!Copy || !Copy->isCopy())
1626 return false;
1627
1628 Register CopyIn = Copy->getOperand(1).getReg();
1629 if (!TRI->isAGPR(*MRI, CopyIn) || Copy->getOperand(1).getSubReg())
1630 return false;
1631
1632 const TargetRegisterClass *ARC = MRI->getRegClass(CopyIn);
1633 Register NewReg = MRI->createVirtualRegister(ARC);
1634 PHI.getOperand(1).setReg(CopyIn);
1635 PHI.getOperand(0).setReg(NewReg);
1636
1637 MachineBasicBlock *MBB = PHI.getParent();
1638 BuildMI(*MBB, MBB->getFirstNonPHI(), Copy->getDebugLoc(),
1639 TII->get(AMDGPU::COPY), PhiOut)
1640 .addReg(NewReg, RegState::Kill);
1641 Copy->eraseFromParent(); // We know this copy had a single use.
1642
1643 LLVM_DEBUG(dbgs() << "Folded " << PHI);
1644
1645 return true;
1646 }
1647
1648 // Attempt to convert VGPR load to an AGPR load.
tryFoldLoad(MachineInstr & MI)1649 bool SIFoldOperands::tryFoldLoad(MachineInstr &MI) {
1650 assert(MI.mayLoad());
1651 if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1)
1652 return false;
1653
1654 MachineOperand &Def = MI.getOperand(0);
1655 if (!Def.isDef())
1656 return false;
1657
1658 Register DefReg = Def.getReg();
1659
1660 if (DefReg.isPhysical() || !TRI->isVGPR(*MRI, DefReg))
1661 return false;
1662
1663 SmallVector<const MachineInstr*, 8> Users;
1664 SmallVector<Register, 8> MoveRegs;
1665 for (const MachineInstr &I : MRI->use_nodbg_instructions(DefReg)) {
1666 Users.push_back(&I);
1667 }
1668 if (Users.empty())
1669 return false;
1670
1671 // Check that all uses a copy to an agpr or a reg_sequence producing an agpr.
1672 while (!Users.empty()) {
1673 const MachineInstr *I = Users.pop_back_val();
1674 if (!I->isCopy() && !I->isRegSequence())
1675 return false;
1676 Register DstReg = I->getOperand(0).getReg();
1677 if (TRI->isAGPR(*MRI, DstReg))
1678 continue;
1679 MoveRegs.push_back(DstReg);
1680 for (const MachineInstr &U : MRI->use_nodbg_instructions(DstReg)) {
1681 Users.push_back(&U);
1682 }
1683 }
1684
1685 const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
1686 MRI->setRegClass(DefReg, TRI->getEquivalentAGPRClass(RC));
1687 if (!TII->isOperandLegal(MI, 0, &Def)) {
1688 MRI->setRegClass(DefReg, RC);
1689 return false;
1690 }
1691
1692 while (!MoveRegs.empty()) {
1693 Register Reg = MoveRegs.pop_back_val();
1694 MRI->setRegClass(Reg, TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg)));
1695 }
1696
1697 LLVM_DEBUG(dbgs() << "Folded " << MI);
1698
1699 return true;
1700 }
1701
runOnMachineFunction(MachineFunction & MF)1702 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
1703 if (skipFunction(MF.getFunction()))
1704 return false;
1705
1706 MRI = &MF.getRegInfo();
1707 ST = &MF.getSubtarget<GCNSubtarget>();
1708 TII = ST->getInstrInfo();
1709 TRI = &TII->getRegisterInfo();
1710 MFI = MF.getInfo<SIMachineFunctionInfo>();
1711
1712 // omod is ignored by hardware if IEEE bit is enabled. omod also does not
1713 // correctly handle signed zeros.
1714 //
1715 // FIXME: Also need to check strictfp
1716 bool IsIEEEMode = MFI->getMode().IEEE;
1717 bool HasNSZ = MFI->hasNoSignedZerosFPMath();
1718
1719 for (MachineBasicBlock *MBB : depth_first(&MF)) {
1720 MachineOperand *CurrentKnownM0Val = nullptr;
1721 for (auto &MI : make_early_inc_range(*MBB)) {
1722 tryFoldCndMask(MI);
1723
1724 if (MI.isRegSequence() && tryFoldRegSequence(MI))
1725 continue;
1726
1727 if (MI.isPHI() && tryFoldLCSSAPhi(MI))
1728 continue;
1729
1730 if (MI.mayLoad() && tryFoldLoad(MI))
1731 continue;
1732
1733 if (!TII->isFoldableCopy(MI)) {
1734 // Saw an unknown clobber of m0, so we no longer know what it is.
1735 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI))
1736 CurrentKnownM0Val = nullptr;
1737
1738 // TODO: Omod might be OK if there is NSZ only on the source
1739 // instruction, and not the omod multiply.
1740 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
1741 !tryFoldOMod(MI))
1742 tryFoldClamp(MI);
1743
1744 continue;
1745 }
1746
1747 // Specially track simple redefs of m0 to the same value in a block, so we
1748 // can erase the later ones.
1749 if (MI.getOperand(0).getReg() == AMDGPU::M0) {
1750 MachineOperand &NewM0Val = MI.getOperand(1);
1751 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) {
1752 MI.eraseFromParent();
1753 continue;
1754 }
1755
1756 // We aren't tracking other physical registers
1757 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ?
1758 nullptr : &NewM0Val;
1759 continue;
1760 }
1761
1762 MachineOperand &OpToFold = MI.getOperand(1);
1763 bool FoldingImm =
1764 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1765
1766 // FIXME: We could also be folding things like TargetIndexes.
1767 if (!FoldingImm && !OpToFold.isReg())
1768 continue;
1769
1770 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual())
1771 continue;
1772
1773 // Prevent folding operands backwards in the function. For example,
1774 // the COPY opcode must not be replaced by 1 in this example:
1775 //
1776 // %3 = COPY %vgpr0; VGPR_32:%3
1777 // ...
1778 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec
1779 if (!MI.getOperand(0).getReg().isVirtual())
1780 continue;
1781
1782 foldInstOperand(MI, OpToFold);
1783
1784 // If we managed to fold all uses of this copy then we might as well
1785 // delete it now.
1786 // The only reason we need to follow chains of copies here is that
1787 // tryFoldRegSequence looks forward through copies before folding a
1788 // REG_SEQUENCE into its eventual users.
1789 auto *InstToErase = &MI;
1790 while (MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) {
1791 auto &SrcOp = InstToErase->getOperand(1);
1792 auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register();
1793 InstToErase->eraseFromParentAndMarkDBGValuesForRemoval();
1794 InstToErase = nullptr;
1795 if (!SrcReg || SrcReg.isPhysical())
1796 break;
1797 InstToErase = MRI->getVRegDef(SrcReg);
1798 if (!InstToErase || !TII->isFoldableCopy(*InstToErase))
1799 break;
1800 }
1801 if (InstToErase && InstToErase->isRegSequence() &&
1802 MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg()))
1803 InstToErase->eraseFromParentAndMarkDBGValuesForRemoval();
1804 }
1805 }
1806 return true;
1807 }
1808