1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pattern matching instruction selector for PowerPC,
10 // converting from a legalized dag to a PPC dag.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MCTargetDesc/PPCMCTargetDesc.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCISelLowering.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCSubtarget.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/CodeGen/FunctionLoweringInfo.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/SelectionDAGISel.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/IntrinsicsPowerPC.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CodeGen.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/KnownBits.h"
56 #include "llvm/Support/MachineValueType.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <limits>
64 #include <memory>
65 #include <new>
66 #include <tuple>
67 #include <utility>
68
69 using namespace llvm;
70
71 #define DEBUG_TYPE "ppc-isel"
72 #define PASS_NAME "PowerPC DAG->DAG Pattern Instruction Selection"
73
74 STATISTIC(NumSextSetcc,
75 "Number of (sext(setcc)) nodes expanded into GPR sequence.");
76 STATISTIC(NumZextSetcc,
77 "Number of (zext(setcc)) nodes expanded into GPR sequence.");
78 STATISTIC(SignExtensionsAdded,
79 "Number of sign extensions for compare inputs added.");
80 STATISTIC(ZeroExtensionsAdded,
81 "Number of zero extensions for compare inputs added.");
82 STATISTIC(NumLogicOpsOnComparison,
83 "Number of logical ops on i1 values calculated in GPR.");
84 STATISTIC(OmittedForNonExtendUses,
85 "Number of compares not eliminated as they have non-extending uses.");
86 STATISTIC(NumP9Setb,
87 "Number of compares lowered to setb.");
88
89 // FIXME: Remove this once the bug has been fixed!
90 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
91 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
92
93 static cl::opt<bool>
94 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
95 cl::desc("use aggressive ppc isel for bit permutations"),
96 cl::Hidden);
97 static cl::opt<bool> BPermRewriterNoMasking(
98 "ppc-bit-perm-rewriter-stress-rotates",
99 cl::desc("stress rotate selection in aggressive ppc isel for "
100 "bit permutations"),
101 cl::Hidden);
102
103 static cl::opt<bool> EnableBranchHint(
104 "ppc-use-branch-hint", cl::init(true),
105 cl::desc("Enable static hinting of branches on ppc"),
106 cl::Hidden);
107
108 static cl::opt<bool> EnableTLSOpt(
109 "ppc-tls-opt", cl::init(true),
110 cl::desc("Enable tls optimization peephole"),
111 cl::Hidden);
112
113 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
114 ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
115 ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
116
117 static cl::opt<ICmpInGPRType> CmpInGPR(
118 "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
119 cl::desc("Specify the types of comparisons to emit GPR-only code for."),
120 cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
121 clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
122 clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
123 clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
124 clEnumValN(ICGPR_NonExtIn, "nonextin",
125 "Only comparisons where inputs don't need [sz]ext."),
126 clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
127 clEnumValN(ICGPR_ZextI32, "zexti32",
128 "Only i32 comparisons with zext result."),
129 clEnumValN(ICGPR_ZextI64, "zexti64",
130 "Only i64 comparisons with zext result."),
131 clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
132 clEnumValN(ICGPR_SextI32, "sexti32",
133 "Only i32 comparisons with sext result."),
134 clEnumValN(ICGPR_SextI64, "sexti64",
135 "Only i64 comparisons with sext result.")));
136 namespace {
137
138 //===--------------------------------------------------------------------===//
139 /// PPCDAGToDAGISel - PPC specific code to select PPC machine
140 /// instructions for SelectionDAG operations.
141 ///
142 class PPCDAGToDAGISel : public SelectionDAGISel {
143 const PPCTargetMachine &TM;
144 const PPCSubtarget *Subtarget = nullptr;
145 const PPCTargetLowering *PPCLowering = nullptr;
146 unsigned GlobalBaseReg = 0;
147
148 public:
149 static char ID;
150
151 PPCDAGToDAGISel() = delete;
152
PPCDAGToDAGISel(PPCTargetMachine & tm,CodeGenOpt::Level OptLevel)153 explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
154 : SelectionDAGISel(ID, tm, OptLevel), TM(tm) {}
155
runOnMachineFunction(MachineFunction & MF)156 bool runOnMachineFunction(MachineFunction &MF) override {
157 // Make sure we re-emit a set of the global base reg if necessary
158 GlobalBaseReg = 0;
159 Subtarget = &MF.getSubtarget<PPCSubtarget>();
160 PPCLowering = Subtarget->getTargetLowering();
161 if (Subtarget->hasROPProtect()) {
162 // Create a place on the stack for the ROP Protection Hash.
163 // The ROP Protection Hash will always be 8 bytes and aligned to 8
164 // bytes.
165 MachineFrameInfo &MFI = MF.getFrameInfo();
166 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
167 const int Result = MFI.CreateStackObject(8, Align(8), false);
168 FI->setROPProtectionHashSaveIndex(Result);
169 }
170 SelectionDAGISel::runOnMachineFunction(MF);
171
172 return true;
173 }
174
175 void PreprocessISelDAG() override;
176 void PostprocessISelDAG() override;
177
178 /// getI16Imm - Return a target constant with the specified value, of type
179 /// i16.
getI16Imm(unsigned Imm,const SDLoc & dl)180 inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
181 return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
182 }
183
184 /// getI32Imm - Return a target constant with the specified value, of type
185 /// i32.
getI32Imm(unsigned Imm,const SDLoc & dl)186 inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
187 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
188 }
189
190 /// getI64Imm - Return a target constant with the specified value, of type
191 /// i64.
getI64Imm(uint64_t Imm,const SDLoc & dl)192 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
193 return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
194 }
195
196 /// getSmallIPtrImm - Return a target constant of pointer type.
getSmallIPtrImm(uint64_t Imm,const SDLoc & dl)197 inline SDValue getSmallIPtrImm(uint64_t Imm, const SDLoc &dl) {
198 return CurDAG->getTargetConstant(
199 Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
200 }
201
202 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
203 /// rotate and mask opcode and mask operation.
204 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
205 unsigned &SH, unsigned &MB, unsigned &ME);
206
207 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
208 /// base register. Return the virtual register that holds this value.
209 SDNode *getGlobalBaseReg();
210
211 void selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset = 0);
212
213 // Select - Convert the specified operand from a target-independent to a
214 // target-specific node if it hasn't already been changed.
215 void Select(SDNode *N) override;
216
217 bool tryBitfieldInsert(SDNode *N);
218 bool tryBitPermutation(SDNode *N);
219 bool tryIntCompareInGPR(SDNode *N);
220
221 // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
222 // an X-Form load instruction with the offset being a relocation coming from
223 // the PPCISD::ADD_TLS.
224 bool tryTLSXFormLoad(LoadSDNode *N);
225 // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
226 // an X-Form store instruction with the offset being a relocation coming from
227 // the PPCISD::ADD_TLS.
228 bool tryTLSXFormStore(StoreSDNode *N);
229 /// SelectCC - Select a comparison of the specified values with the
230 /// specified condition code, returning the CR# of the expression.
231 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
232 const SDLoc &dl, SDValue Chain = SDValue());
233
234 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
235 /// immediate field. Note that the operand at this point is already the
236 /// result of a prior SelectAddressRegImm call.
SelectAddrImmOffs(SDValue N,SDValue & Out) const237 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
238 if (N.getOpcode() == ISD::TargetConstant ||
239 N.getOpcode() == ISD::TargetGlobalAddress) {
240 Out = N;
241 return true;
242 }
243
244 return false;
245 }
246
247 /// SelectDSForm - Returns true if address N can be represented by the
248 /// addressing mode of DSForm instructions (a base register, plus a signed
249 /// 16-bit displacement that is a multiple of 4.
SelectDSForm(SDNode * Parent,SDValue N,SDValue & Disp,SDValue & Base)250 bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
251 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
252 Align(4)) == PPC::AM_DSForm;
253 }
254
255 /// SelectDQForm - Returns true if address N can be represented by the
256 /// addressing mode of DQForm instructions (a base register, plus a signed
257 /// 16-bit displacement that is a multiple of 16.
SelectDQForm(SDNode * Parent,SDValue N,SDValue & Disp,SDValue & Base)258 bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
259 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
260 Align(16)) == PPC::AM_DQForm;
261 }
262
263 /// SelectDForm - Returns true if address N can be represented by
264 /// the addressing mode of DForm instructions (a base register, plus a
265 /// signed 16-bit immediate.
SelectDForm(SDNode * Parent,SDValue N,SDValue & Disp,SDValue & Base)266 bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
267 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
268 std::nullopt) == PPC::AM_DForm;
269 }
270
271 /// SelectPCRelForm - Returns true if address N can be represented by
272 /// PC-Relative addressing mode.
SelectPCRelForm(SDNode * Parent,SDValue N,SDValue & Disp,SDValue & Base)273 bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp,
274 SDValue &Base) {
275 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
276 std::nullopt) == PPC::AM_PCRel;
277 }
278
279 /// SelectPDForm - Returns true if address N can be represented by Prefixed
280 /// DForm addressing mode (a base register, plus a signed 34-bit immediate.
SelectPDForm(SDNode * Parent,SDValue N,SDValue & Disp,SDValue & Base)281 bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
282 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
283 std::nullopt) ==
284 PPC::AM_PrefixDForm;
285 }
286
287 /// SelectXForm - Returns true if address N can be represented by the
288 /// addressing mode of XForm instructions (an indexed [r+r] operation).
SelectXForm(SDNode * Parent,SDValue N,SDValue & Disp,SDValue & Base)289 bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
290 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
291 std::nullopt) == PPC::AM_XForm;
292 }
293
294 /// SelectForceXForm - Given the specified address, force it to be
295 /// represented as an indexed [r+r] operation (an XForm instruction).
SelectForceXForm(SDNode * Parent,SDValue N,SDValue & Disp,SDValue & Base)296 bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp,
297 SDValue &Base) {
298 return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) ==
299 PPC::AM_XForm;
300 }
301
302 /// SelectAddrIdx - Given the specified address, check to see if it can be
303 /// represented as an indexed [r+r] operation.
304 /// This is for xform instructions whose associated displacement form is D.
305 /// The last parameter \p 0 means associated D form has no requirment for 16
306 /// bit signed displacement.
307 /// Returns false if it can be represented by [r+imm], which are preferred.
SelectAddrIdx(SDValue N,SDValue & Base,SDValue & Index)308 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
309 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
310 std::nullopt);
311 }
312
313 /// SelectAddrIdx4 - Given the specified address, check to see if it can be
314 /// represented as an indexed [r+r] operation.
315 /// This is for xform instructions whose associated displacement form is DS.
316 /// The last parameter \p 4 means associated DS form 16 bit signed
317 /// displacement must be a multiple of 4.
318 /// Returns false if it can be represented by [r+imm], which are preferred.
SelectAddrIdxX4(SDValue N,SDValue & Base,SDValue & Index)319 bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) {
320 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
321 Align(4));
322 }
323
324 /// SelectAddrIdx16 - Given the specified address, check to see if it can be
325 /// represented as an indexed [r+r] operation.
326 /// This is for xform instructions whose associated displacement form is DQ.
327 /// The last parameter \p 16 means associated DQ form 16 bit signed
328 /// displacement must be a multiple of 16.
329 /// Returns false if it can be represented by [r+imm], which are preferred.
SelectAddrIdxX16(SDValue N,SDValue & Base,SDValue & Index)330 bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) {
331 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
332 Align(16));
333 }
334
335 /// SelectAddrIdxOnly - Given the specified address, force it to be
336 /// represented as an indexed [r+r] operation.
SelectAddrIdxOnly(SDValue N,SDValue & Base,SDValue & Index)337 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
338 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
339 }
340
341 /// SelectAddrImm - Returns true if the address N can be represented by
342 /// a base register plus a signed 16-bit displacement [r+imm].
343 /// The last parameter \p 0 means D form has no requirment for 16 bit signed
344 /// displacement.
SelectAddrImm(SDValue N,SDValue & Disp,SDValue & Base)345 bool SelectAddrImm(SDValue N, SDValue &Disp,
346 SDValue &Base) {
347 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
348 std::nullopt);
349 }
350
351 /// SelectAddrImmX4 - Returns true if the address N can be represented by
352 /// a base register plus a signed 16-bit displacement that is a multiple of
353 /// 4 (last parameter). Suitable for use by STD and friends.
SelectAddrImmX4(SDValue N,SDValue & Disp,SDValue & Base)354 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
355 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4));
356 }
357
358 /// SelectAddrImmX16 - Returns true if the address N can be represented by
359 /// a base register plus a signed 16-bit displacement that is a multiple of
360 /// 16(last parameter). Suitable for use by STXV and friends.
SelectAddrImmX16(SDValue N,SDValue & Disp,SDValue & Base)361 bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
362 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
363 Align(16));
364 }
365
366 /// SelectAddrImmX34 - Returns true if the address N can be represented by
367 /// a base register plus a signed 34-bit displacement. Suitable for use by
368 /// PSTXVP and friends.
SelectAddrImmX34(SDValue N,SDValue & Disp,SDValue & Base)369 bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) {
370 return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG);
371 }
372
373 // Select an address into a single register.
SelectAddr(SDValue N,SDValue & Base)374 bool SelectAddr(SDValue N, SDValue &Base) {
375 Base = N;
376 return true;
377 }
378
SelectAddrPCRel(SDValue N,SDValue & Base)379 bool SelectAddrPCRel(SDValue N, SDValue &Base) {
380 return PPCLowering->SelectAddressPCRel(N, Base);
381 }
382
383 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
384 /// inline asm expressions. It is always correct to compute the value into
385 /// a register. The case of adding a (possibly relocatable) constant to a
386 /// register can be improved, but it is wrong to substitute Reg+Reg for
387 /// Reg in an asm, because the load or store opcode would have to change.
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)388 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
389 unsigned ConstraintID,
390 std::vector<SDValue> &OutOps) override {
391 switch(ConstraintID) {
392 default:
393 errs() << "ConstraintID: " << ConstraintID << "\n";
394 llvm_unreachable("Unexpected asm memory constraint");
395 case InlineAsm::Constraint_es:
396 case InlineAsm::Constraint_m:
397 case InlineAsm::Constraint_o:
398 case InlineAsm::Constraint_Q:
399 case InlineAsm::Constraint_Z:
400 case InlineAsm::Constraint_Zy:
401 // We need to make sure that this one operand does not end up in r0
402 // (because we might end up lowering this as 0(%op)).
403 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
404 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
405 SDLoc dl(Op);
406 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
407 SDValue NewOp =
408 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
409 dl, Op.getValueType(),
410 Op, RC), 0);
411
412 OutOps.push_back(NewOp);
413 return false;
414 }
415 return true;
416 }
417
418 // Include the pieces autogenerated from the target description.
419 #include "PPCGenDAGISel.inc"
420
421 private:
422 bool trySETCC(SDNode *N);
423 bool tryFoldSWTestBRCC(SDNode *N);
424 bool trySelectLoopCountIntrinsic(SDNode *N);
425 bool tryAsSingleRLDICL(SDNode *N);
426 bool tryAsSingleRLDICR(SDNode *N);
427 bool tryAsSingleRLWINM(SDNode *N);
428 bool tryAsSingleRLWINM8(SDNode *N);
429 bool tryAsSingleRLWIMI(SDNode *N);
430 bool tryAsPairOfRLDICL(SDNode *N);
431 bool tryAsSingleRLDIMI(SDNode *N);
432
433 void PeepholePPC64();
434 void PeepholePPC64ZExt();
435 void PeepholeCROps();
436
437 SDValue combineToCMPB(SDNode *N);
438 void foldBoolExts(SDValue &Res, SDNode *&N);
439
440 bool AllUsersSelectZero(SDNode *N);
441 void SwapAllSelectUsers(SDNode *N);
442
443 bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
444 void transferMemOperands(SDNode *N, SDNode *Result);
445 };
446
447 } // end anonymous namespace
448
449 char PPCDAGToDAGISel::ID = 0;
450
INITIALIZE_PASS(PPCDAGToDAGISel,DEBUG_TYPE,PASS_NAME,false,false)451 INITIALIZE_PASS(PPCDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
452
453 /// getGlobalBaseReg - Output the instructions required to put the
454 /// base address to use for accessing globals into a register.
455 ///
456 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
457 if (!GlobalBaseReg) {
458 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
459 // Insert the set of GlobalBaseReg into the first MBB of the function
460 MachineBasicBlock &FirstMBB = MF->front();
461 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
462 const Module *M = MF->getFunction().getParent();
463 DebugLoc dl;
464
465 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
466 if (Subtarget->isTargetELF()) {
467 GlobalBaseReg = PPC::R30;
468 if (!Subtarget->isSecurePlt() &&
469 M->getPICLevel() == PICLevel::SmallPIC) {
470 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
471 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
472 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
473 } else {
474 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
475 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
476 Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
477 BuildMI(FirstMBB, MBBI, dl,
478 TII.get(PPC::UpdateGBR), GlobalBaseReg)
479 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
480 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
481 }
482 } else {
483 GlobalBaseReg =
484 RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
485 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
486 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
487 }
488 } else {
489 // We must ensure that this sequence is dominated by the prologue.
490 // FIXME: This is a bit of a big hammer since we don't get the benefits
491 // of shrink-wrapping whenever we emit this instruction. Considering
492 // this is used in any function where we emit a jump table, this may be
493 // a significant limitation. We should consider inserting this in the
494 // block where it is used and then commoning this sequence up if it
495 // appears in multiple places.
496 // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
497 // MovePCtoLR8.
498 MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
499 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
500 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
501 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
502 }
503 }
504 return CurDAG->getRegister(GlobalBaseReg,
505 PPCLowering->getPointerTy(CurDAG->getDataLayout()))
506 .getNode();
507 }
508
509 // Check if a SDValue has the toc-data attribute.
hasTocDataAttr(SDValue Val,unsigned PointerSize)510 static bool hasTocDataAttr(SDValue Val, unsigned PointerSize) {
511 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val);
512 if (!GA)
513 return false;
514
515 const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal());
516 if (!GV)
517 return false;
518
519 if (!GV->hasAttribute("toc-data"))
520 return false;
521
522 // TODO: These asserts should be updated as more support for the toc data
523 // transformation is added (struct support, etc.).
524
525 assert(
526 PointerSize >= GV->getAlign().valueOrOne().value() &&
527 "GlobalVariables with an alignment requirement stricter than TOC entry "
528 "size not supported by the toc data transformation.");
529
530 Type *GVType = GV->getValueType();
531
532 assert(GVType->isSized() && "A GlobalVariable's size must be known to be "
533 "supported by the toc data transformation.");
534
535 if (GVType->isVectorTy())
536 report_fatal_error("A GlobalVariable of Vector type is not currently "
537 "supported by the toc data transformation.");
538
539 if (GVType->isArrayTy())
540 report_fatal_error("A GlobalVariable of Array type is not currently "
541 "supported by the toc data transformation.");
542
543 if (GVType->isStructTy())
544 report_fatal_error("A GlobalVariable of Struct type is not currently "
545 "supported by the toc data transformation.");
546
547 assert(GVType->getPrimitiveSizeInBits() <= PointerSize * 8 &&
548 "A GlobalVariable with size larger than a TOC entry is not currently "
549 "supported by the toc data transformation.");
550
551 if (GV->hasLocalLinkage() || GV->hasPrivateLinkage())
552 report_fatal_error("A GlobalVariable with private or local linkage is not "
553 "currently supported by the toc data transformation.");
554
555 assert(!GV->hasCommonLinkage() &&
556 "Tentative definitions cannot have the mapping class XMC_TD.");
557
558 return true;
559 }
560
561 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
562 /// operand. If so Imm will receive the 32-bit value.
isInt32Immediate(SDNode * N,unsigned & Imm)563 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
564 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
565 Imm = cast<ConstantSDNode>(N)->getZExtValue();
566 return true;
567 }
568 return false;
569 }
570
571 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
572 /// operand. If so Imm will receive the 64-bit value.
isInt64Immediate(SDNode * N,uint64_t & Imm)573 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
574 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
575 Imm = cast<ConstantSDNode>(N)->getZExtValue();
576 return true;
577 }
578 return false;
579 }
580
581 // isInt32Immediate - This method tests to see if a constant operand.
582 // If so Imm will receive the 32 bit value.
isInt32Immediate(SDValue N,unsigned & Imm)583 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
584 return isInt32Immediate(N.getNode(), Imm);
585 }
586
587 /// isInt64Immediate - This method tests to see if the value is a 64-bit
588 /// constant operand. If so Imm will receive the 64-bit value.
isInt64Immediate(SDValue N,uint64_t & Imm)589 static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
590 return isInt64Immediate(N.getNode(), Imm);
591 }
592
getBranchHint(unsigned PCC,const FunctionLoweringInfo & FuncInfo,const SDValue & DestMBB)593 static unsigned getBranchHint(unsigned PCC,
594 const FunctionLoweringInfo &FuncInfo,
595 const SDValue &DestMBB) {
596 assert(isa<BasicBlockSDNode>(DestMBB));
597
598 if (!FuncInfo.BPI) return PPC::BR_NO_HINT;
599
600 const BasicBlock *BB = FuncInfo.MBB->getBasicBlock();
601 const Instruction *BBTerm = BB->getTerminator();
602
603 if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
604
605 const BasicBlock *TBB = BBTerm->getSuccessor(0);
606 const BasicBlock *FBB = BBTerm->getSuccessor(1);
607
608 auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB);
609 auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB);
610
611 // We only want to handle cases which are easy to predict at static time, e.g.
612 // C++ throw statement, that is very likely not taken, or calling never
613 // returned function, e.g. stdlib exit(). So we set Threshold to filter
614 // unwanted cases.
615 //
616 // Below is LLVM branch weight table, we only want to handle case 1, 2
617 //
618 // Case Taken:Nontaken Example
619 // 1. Unreachable 1048575:1 C++ throw, stdlib exit(),
620 // 2. Invoke-terminating 1:1048575
621 // 3. Coldblock 4:64 __builtin_expect
622 // 4. Loop Branch 124:4 For loop
623 // 5. PH/ZH/FPH 20:12
624 const uint32_t Threshold = 10000;
625
626 if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
627 return PPC::BR_NO_HINT;
628
629 LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName()
630 << "::" << BB->getName() << "'\n"
631 << " -> " << TBB->getName() << ": " << TProb << "\n"
632 << " -> " << FBB->getName() << ": " << FProb << "\n");
633
634 const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
635
636 // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
637 // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
638 if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
639 std::swap(TProb, FProb);
640
641 return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
642 }
643
644 // isOpcWithIntImmediate - This method tests to see if the node is a specific
645 // opcode and that it has a immediate integer right operand.
646 // If so Imm will receive the 32 bit value.
isOpcWithIntImmediate(SDNode * N,unsigned Opc,unsigned & Imm)647 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
648 return N->getOpcode() == Opc
649 && isInt32Immediate(N->getOperand(1).getNode(), Imm);
650 }
651
selectFrameIndex(SDNode * SN,SDNode * N,uint64_t Offset)652 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset) {
653 SDLoc dl(SN);
654 int FI = cast<FrameIndexSDNode>(N)->getIndex();
655 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
656 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
657 if (SN->hasOneUse())
658 CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
659 getSmallIPtrImm(Offset, dl));
660 else
661 ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
662 getSmallIPtrImm(Offset, dl)));
663 }
664
isRotateAndMask(SDNode * N,unsigned Mask,bool isShiftMask,unsigned & SH,unsigned & MB,unsigned & ME)665 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
666 bool isShiftMask, unsigned &SH,
667 unsigned &MB, unsigned &ME) {
668 // Don't even go down this path for i64, since different logic will be
669 // necessary for rldicl/rldicr/rldimi.
670 if (N->getValueType(0) != MVT::i32)
671 return false;
672
673 unsigned Shift = 32;
674 unsigned Indeterminant = ~0; // bit mask marking indeterminant results
675 unsigned Opcode = N->getOpcode();
676 if (N->getNumOperands() != 2 ||
677 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
678 return false;
679
680 if (Opcode == ISD::SHL) {
681 // apply shift left to mask if it comes first
682 if (isShiftMask) Mask = Mask << Shift;
683 // determine which bits are made indeterminant by shift
684 Indeterminant = ~(0xFFFFFFFFu << Shift);
685 } else if (Opcode == ISD::SRL) {
686 // apply shift right to mask if it comes first
687 if (isShiftMask) Mask = Mask >> Shift;
688 // determine which bits are made indeterminant by shift
689 Indeterminant = ~(0xFFFFFFFFu >> Shift);
690 // adjust for the left rotate
691 Shift = 32 - Shift;
692 } else if (Opcode == ISD::ROTL) {
693 Indeterminant = 0;
694 } else {
695 return false;
696 }
697
698 // if the mask doesn't intersect any Indeterminant bits
699 if (Mask && !(Mask & Indeterminant)) {
700 SH = Shift & 31;
701 // make sure the mask is still a mask (wrap arounds may not be)
702 return isRunOfOnes(Mask, MB, ME);
703 }
704 return false;
705 }
706
tryTLSXFormStore(StoreSDNode * ST)707 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
708 SDValue Base = ST->getBasePtr();
709 if (Base.getOpcode() != PPCISD::ADD_TLS)
710 return false;
711 SDValue Offset = ST->getOffset();
712 if (!Offset.isUndef())
713 return false;
714 if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
715 return false;
716
717 SDLoc dl(ST);
718 EVT MemVT = ST->getMemoryVT();
719 EVT RegVT = ST->getValue().getValueType();
720
721 unsigned Opcode;
722 switch (MemVT.getSimpleVT().SimpleTy) {
723 default:
724 return false;
725 case MVT::i8: {
726 Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
727 break;
728 }
729 case MVT::i16: {
730 Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
731 break;
732 }
733 case MVT::i32: {
734 Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
735 break;
736 }
737 case MVT::i64: {
738 Opcode = PPC::STDXTLS;
739 break;
740 }
741 }
742 SDValue Chain = ST->getChain();
743 SDVTList VTs = ST->getVTList();
744 SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
745 Chain};
746 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
747 transferMemOperands(ST, MN);
748 ReplaceNode(ST, MN);
749 return true;
750 }
751
tryTLSXFormLoad(LoadSDNode * LD)752 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
753 SDValue Base = LD->getBasePtr();
754 if (Base.getOpcode() != PPCISD::ADD_TLS)
755 return false;
756 SDValue Offset = LD->getOffset();
757 if (!Offset.isUndef())
758 return false;
759 if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
760 return false;
761
762 SDLoc dl(LD);
763 EVT MemVT = LD->getMemoryVT();
764 EVT RegVT = LD->getValueType(0);
765 unsigned Opcode;
766 switch (MemVT.getSimpleVT().SimpleTy) {
767 default:
768 return false;
769 case MVT::i8: {
770 Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
771 break;
772 }
773 case MVT::i16: {
774 Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS;
775 break;
776 }
777 case MVT::i32: {
778 Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS;
779 break;
780 }
781 case MVT::i64: {
782 Opcode = PPC::LDXTLS;
783 break;
784 }
785 }
786 SDValue Chain = LD->getChain();
787 SDVTList VTs = LD->getVTList();
788 SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
789 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
790 transferMemOperands(LD, MN);
791 ReplaceNode(LD, MN);
792 return true;
793 }
794
795 /// Turn an or of two masked values into the rotate left word immediate then
796 /// mask insert (rlwimi) instruction.
tryBitfieldInsert(SDNode * N)797 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
798 SDValue Op0 = N->getOperand(0);
799 SDValue Op1 = N->getOperand(1);
800 SDLoc dl(N);
801
802 KnownBits LKnown = CurDAG->computeKnownBits(Op0);
803 KnownBits RKnown = CurDAG->computeKnownBits(Op1);
804
805 unsigned TargetMask = LKnown.Zero.getZExtValue();
806 unsigned InsertMask = RKnown.Zero.getZExtValue();
807
808 if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
809 unsigned Op0Opc = Op0.getOpcode();
810 unsigned Op1Opc = Op1.getOpcode();
811 unsigned Value, SH = 0;
812 TargetMask = ~TargetMask;
813 InsertMask = ~InsertMask;
814
815 // If the LHS has a foldable shift and the RHS does not, then swap it to the
816 // RHS so that we can fold the shift into the insert.
817 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
818 if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
819 Op0.getOperand(0).getOpcode() == ISD::SRL) {
820 if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
821 Op1.getOperand(0).getOpcode() != ISD::SRL) {
822 std::swap(Op0, Op1);
823 std::swap(Op0Opc, Op1Opc);
824 std::swap(TargetMask, InsertMask);
825 }
826 }
827 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
828 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
829 Op1.getOperand(0).getOpcode() != ISD::SRL) {
830 std::swap(Op0, Op1);
831 std::swap(Op0Opc, Op1Opc);
832 std::swap(TargetMask, InsertMask);
833 }
834 }
835
836 unsigned MB, ME;
837 if (isRunOfOnes(InsertMask, MB, ME)) {
838 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
839 isInt32Immediate(Op1.getOperand(1), Value)) {
840 Op1 = Op1.getOperand(0);
841 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
842 }
843 if (Op1Opc == ISD::AND) {
844 // The AND mask might not be a constant, and we need to make sure that
845 // if we're going to fold the masking with the insert, all bits not
846 // know to be zero in the mask are known to be one.
847 KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1));
848 bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
849
850 unsigned SHOpc = Op1.getOperand(0).getOpcode();
851 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
852 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
853 // Note that Value must be in range here (less than 32) because
854 // otherwise there would not be any bits set in InsertMask.
855 Op1 = Op1.getOperand(0).getOperand(0);
856 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
857 }
858 }
859
860 SH &= 31;
861 SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
862 getI32Imm(ME, dl) };
863 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
864 return true;
865 }
866 }
867 return false;
868 }
869
allUsesTruncate(SelectionDAG * CurDAG,SDNode * N)870 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
871 unsigned MaxTruncation = 0;
872 // Cannot use range-based for loop here as we need the actual use (i.e. we
873 // need the operand number corresponding to the use). A range-based for
874 // will unbox the use and provide an SDNode*.
875 for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
876 Use != UseEnd; ++Use) {
877 unsigned Opc =
878 Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
879 switch (Opc) {
880 default: return 0;
881 case ISD::TRUNCATE:
882 if (Use->isMachineOpcode())
883 return 0;
884 MaxTruncation =
885 std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits());
886 continue;
887 case ISD::STORE: {
888 if (Use->isMachineOpcode())
889 return 0;
890 StoreSDNode *STN = cast<StoreSDNode>(*Use);
891 unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
892 if (MemVTSize == 64 || Use.getOperandNo() != 0)
893 return 0;
894 MaxTruncation = std::max(MaxTruncation, MemVTSize);
895 continue;
896 }
897 case PPC::STW8:
898 case PPC::STWX8:
899 case PPC::STWU8:
900 case PPC::STWUX8:
901 if (Use.getOperandNo() != 0)
902 return 0;
903 MaxTruncation = std::max(MaxTruncation, 32u);
904 continue;
905 case PPC::STH8:
906 case PPC::STHX8:
907 case PPC::STHU8:
908 case PPC::STHUX8:
909 if (Use.getOperandNo() != 0)
910 return 0;
911 MaxTruncation = std::max(MaxTruncation, 16u);
912 continue;
913 case PPC::STB8:
914 case PPC::STBX8:
915 case PPC::STBU8:
916 case PPC::STBUX8:
917 if (Use.getOperandNo() != 0)
918 return 0;
919 MaxTruncation = std::max(MaxTruncation, 8u);
920 continue;
921 }
922 }
923 return MaxTruncation;
924 }
925
926 // For any 32 < Num < 64, check if the Imm contains at least Num consecutive
927 // zeros and return the number of bits by the left of these consecutive zeros.
findContiguousZerosAtLeast(uint64_t Imm,unsigned Num)928 static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) {
929 unsigned HiTZ = countTrailingZeros<uint32_t>(Hi_32(Imm));
930 unsigned LoLZ = countLeadingZeros<uint32_t>(Lo_32(Imm));
931 if ((HiTZ + LoLZ) >= Num)
932 return (32 + HiTZ);
933 return 0;
934 }
935
936 // Direct materialization of 64-bit constants by enumerated patterns.
selectI64ImmDirect(SelectionDAG * CurDAG,const SDLoc & dl,uint64_t Imm,unsigned & InstCnt)937 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
938 uint64_t Imm, unsigned &InstCnt) {
939 unsigned TZ = countTrailingZeros<uint64_t>(Imm);
940 unsigned LZ = countLeadingZeros<uint64_t>(Imm);
941 unsigned TO = countTrailingOnes<uint64_t>(Imm);
942 unsigned LO = countLeadingOnes<uint64_t>(Imm);
943 unsigned Hi32 = Hi_32(Imm);
944 unsigned Lo32 = Lo_32(Imm);
945 SDNode *Result = nullptr;
946 unsigned Shift = 0;
947
948 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
949 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
950 };
951
952 // Following patterns use 1 instructions to materialize the Imm.
953 InstCnt = 1;
954 // 1-1) Patterns : {zeros}{15-bit valve}
955 // {ones}{15-bit valve}
956 if (isInt<16>(Imm)) {
957 SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64);
958 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
959 }
960 // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros}
961 // {ones}{15-bit valve}{16 zeros}
962 if (TZ > 15 && (LZ > 32 || LO > 32))
963 return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
964 getI32Imm((Imm >> 16) & 0xffff));
965
966 // Following patterns use 2 instructions to materialize the Imm.
967 InstCnt = 2;
968 assert(LZ < 64 && "Unexpected leading zeros here.");
969 // Count of ones follwing the leading zeros.
970 unsigned FO = countLeadingOnes<uint64_t>(Imm << LZ);
971 // 2-1) Patterns : {zeros}{31-bit value}
972 // {ones}{31-bit value}
973 if (isInt<32>(Imm)) {
974 uint64_t ImmHi16 = (Imm >> 16) & 0xffff;
975 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
976 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
977 return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
978 getI32Imm(Imm & 0xffff));
979 }
980 // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros}
981 // {zeros}{15-bit value}{zeros}
982 // {zeros}{ones}{15-bit value}
983 // {ones}{15-bit value}{zeros}
984 // We can take advantage of LI's sign-extension semantics to generate leading
985 // ones, and then use RLDIC to mask off the ones in both sides after rotation.
986 if ((LZ + FO + TZ) > 48) {
987 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
988 getI32Imm((Imm >> TZ) & 0xffff));
989 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
990 getI32Imm(TZ), getI32Imm(LZ));
991 }
992 // 2-3) Pattern : {zeros}{15-bit value}{ones}
993 // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value,
994 // therefore we can take advantage of LI's sign-extension semantics, and then
995 // mask them off after rotation.
996 //
997 // +--LZ--||-15-bit-||--TO--+ +-------------|--16-bit--+
998 // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1|
999 // +------------------------+ +------------------------+
1000 // 63 0 63 0
1001 // Imm (Imm >> (48 - LZ) & 0xffff)
1002 // +----sext-----|--16-bit--+ +clear-|-----------------+
1003 // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111|
1004 // +------------------------+ +------------------------+
1005 // 63 0 63 0
1006 // LI8: sext many leading zeros RLDICL: rotate left (48 - LZ), clear left LZ
1007 if ((LZ + TO) > 48) {
1008 // Since the immediates with (LZ > 32) have been handled by previous
1009 // patterns, here we have (LZ <= 32) to make sure we will not shift right
1010 // the Imm by a negative value.
1011 assert(LZ <= 32 && "Unexpected shift value.");
1012 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1013 getI32Imm((Imm >> (48 - LZ) & 0xffff)));
1014 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1015 getI32Imm(48 - LZ), getI32Imm(LZ));
1016 }
1017 // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones}
1018 // {ones}{15-bit value}{ones}
1019 // We can take advantage of LI's sign-extension semantics to generate leading
1020 // ones, and then use RLDICL to mask off the ones in left sides (if required)
1021 // after rotation.
1022 //
1023 // +-LZ-FO||-15-bit-||--TO--+ +-------------|--16-bit--+
1024 // |00011110bbbbbbbbb1111111| -> |000000000011110bbbbbbbbb|
1025 // +------------------------+ +------------------------+
1026 // 63 0 63 0
1027 // Imm (Imm >> TO) & 0xffff
1028 // +----sext-----|--16-bit--+ +LZ|---------------------+
1029 // |111111111111110bbbbbbbbb| -> |00011110bbbbbbbbb1111111|
1030 // +------------------------+ +------------------------+
1031 // 63 0 63 0
1032 // LI8: sext many leading zeros RLDICL: rotate left TO, clear left LZ
1033 if ((LZ + FO + TO) > 48) {
1034 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1035 getI32Imm((Imm >> TO) & 0xffff));
1036 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1037 getI32Imm(TO), getI32Imm(LZ));
1038 }
1039 // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value}
1040 // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit
1041 // value, we can use LI for Lo16 without generating leading ones then add the
1042 // Hi16(in Lo32).
1043 if (LZ == 32 && ((Lo32 & 0x8000) == 0)) {
1044 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1045 getI32Imm(Lo32 & 0xffff));
1046 return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0),
1047 getI32Imm(Lo32 >> 16));
1048 }
1049 // 2-6) Patterns : {******}{49 zeros}{******}
1050 // {******}{49 ones}{******}
1051 // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15
1052 // bits remain on both sides. Rotate right the Imm to construct an int<16>
1053 // value, use LI for int<16> value and then use RLDICL without mask to rotate
1054 // it back.
1055 //
1056 // 1) findContiguousZerosAtLeast(Imm, 49)
1057 // +------|--zeros-|------+ +---ones--||---15 bit--+
1058 // |bbbbbb0000000000aaaaaa| -> |0000000000aaaaaabbbbbb|
1059 // +----------------------+ +----------------------+
1060 // 63 0 63 0
1061 //
1062 // 2) findContiguousZerosAtLeast(~Imm, 49)
1063 // +------|--ones--|------+ +---ones--||---15 bit--+
1064 // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb|
1065 // +----------------------+ +----------------------+
1066 // 63 0 63 0
1067 if ((Shift = findContiguousZerosAtLeast(Imm, 49)) ||
1068 (Shift = findContiguousZerosAtLeast(~Imm, 49))) {
1069 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1070 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1071 getI32Imm(RotImm & 0xffff));
1072 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1073 getI32Imm(Shift), getI32Imm(0));
1074 }
1075
1076 // Following patterns use 3 instructions to materialize the Imm.
1077 InstCnt = 3;
1078 // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros}
1079 // {zeros}{31-bit value}{zeros}
1080 // {zeros}{ones}{31-bit value}
1081 // {ones}{31-bit value}{zeros}
1082 // We can take advantage of LIS's sign-extension semantics to generate leading
1083 // ones, add the remaining bits with ORI, and then use RLDIC to mask off the
1084 // ones in both sides after rotation.
1085 if ((LZ + FO + TZ) > 32) {
1086 uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff;
1087 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1088 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1089 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1090 getI32Imm((Imm >> TZ) & 0xffff));
1091 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1092 getI32Imm(TZ), getI32Imm(LZ));
1093 }
1094 // 3-2) Pattern : {zeros}{31-bit value}{ones}
1095 // Shift right the Imm by (32 - LZ) bits to construct a negative 32 bits
1096 // value, therefore we can take advantage of LIS's sign-extension semantics,
1097 // add the remaining bits with ORI, and then mask them off after rotation.
1098 // This is similar to Pattern 2-3, please refer to the diagram there.
1099 if ((LZ + TO) > 32) {
1100 // Since the immediates with (LZ > 32) have been handled by previous
1101 // patterns, here we have (LZ <= 32) to make sure we will not shift right
1102 // the Imm by a negative value.
1103 assert(LZ <= 32 && "Unexpected shift value.");
1104 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1105 getI32Imm((Imm >> (48 - LZ)) & 0xffff));
1106 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1107 getI32Imm((Imm >> (32 - LZ)) & 0xffff));
1108 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1109 getI32Imm(32 - LZ), getI32Imm(LZ));
1110 }
1111 // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones}
1112 // {ones}{31-bit value}{ones}
1113 // We can take advantage of LIS's sign-extension semantics to generate leading
1114 // ones, add the remaining bits with ORI, and then use RLDICL to mask off the
1115 // ones in left sides (if required) after rotation.
1116 // This is similar to Pattern 2-4, please refer to the diagram there.
1117 if ((LZ + FO + TO) > 32) {
1118 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1119 getI32Imm((Imm >> (TO + 16)) & 0xffff));
1120 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1121 getI32Imm((Imm >> TO) & 0xffff));
1122 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1123 getI32Imm(TO), getI32Imm(LZ));
1124 }
1125 // 3-4) Patterns : High word == Low word
1126 if (Hi32 == Lo32) {
1127 // Handle the first 32 bits.
1128 uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff;
1129 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1130 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1131 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1132 getI32Imm(Lo32 & 0xffff));
1133 // Use rldimi to insert the Low word into High word.
1134 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1135 getI32Imm(0)};
1136 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1137 }
1138 // 3-5) Patterns : {******}{33 zeros}{******}
1139 // {******}{33 ones}{******}
1140 // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31
1141 // bits remain on both sides. Rotate right the Imm to construct an int<32>
1142 // value, use LIS + ORI for int<32> value and then use RLDICL without mask to
1143 // rotate it back.
1144 // This is similar to Pattern 2-6, please refer to the diagram there.
1145 if ((Shift = findContiguousZerosAtLeast(Imm, 33)) ||
1146 (Shift = findContiguousZerosAtLeast(~Imm, 33))) {
1147 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1148 uint64_t ImmHi16 = (RotImm >> 16) & 0xffff;
1149 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1150 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1151 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1152 getI32Imm(RotImm & 0xffff));
1153 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1154 getI32Imm(Shift), getI32Imm(0));
1155 }
1156
1157 InstCnt = 0;
1158 return nullptr;
1159 }
1160
1161 // Try to select instructions to generate a 64 bit immediate using prefix as
1162 // well as non prefix instructions. The function will return the SDNode
1163 // to materialize that constant or it will return nullptr if it does not
1164 // find one. The variable InstCnt is set to the number of instructions that
1165 // were selected.
selectI64ImmDirectPrefix(SelectionDAG * CurDAG,const SDLoc & dl,uint64_t Imm,unsigned & InstCnt)1166 static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl,
1167 uint64_t Imm, unsigned &InstCnt) {
1168 unsigned TZ = countTrailingZeros<uint64_t>(Imm);
1169 unsigned LZ = countLeadingZeros<uint64_t>(Imm);
1170 unsigned TO = countTrailingOnes<uint64_t>(Imm);
1171 unsigned FO = countLeadingOnes<uint64_t>(LZ == 64 ? 0 : (Imm << LZ));
1172 unsigned Hi32 = Hi_32(Imm);
1173 unsigned Lo32 = Lo_32(Imm);
1174
1175 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1176 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1177 };
1178
1179 auto getI64Imm = [CurDAG, dl](uint64_t Imm) {
1180 return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
1181 };
1182
1183 // Following patterns use 1 instruction to materialize Imm.
1184 InstCnt = 1;
1185
1186 // The pli instruction can materialize up to 34 bits directly.
1187 // If a constant fits within 34-bits, emit the pli instruction here directly.
1188 if (isInt<34>(Imm))
1189 return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1190 CurDAG->getTargetConstant(Imm, dl, MVT::i64));
1191
1192 // Require at least two instructions.
1193 InstCnt = 2;
1194 SDNode *Result = nullptr;
1195 // Patterns : {zeros}{ones}{33-bit value}{zeros}
1196 // {zeros}{33-bit value}{zeros}
1197 // {zeros}{ones}{33-bit value}
1198 // {ones}{33-bit value}{zeros}
1199 // We can take advantage of PLI's sign-extension semantics to generate leading
1200 // ones, and then use RLDIC to mask off the ones on both sides after rotation.
1201 if ((LZ + FO + TZ) > 30) {
1202 APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff);
1203 APInt Extended = SignedInt34.sext(64);
1204 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1205 getI64Imm(*Extended.getRawData()));
1206 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1207 getI32Imm(TZ), getI32Imm(LZ));
1208 }
1209 // Pattern : {zeros}{33-bit value}{ones}
1210 // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value,
1211 // therefore we can take advantage of PLI's sign-extension semantics, and then
1212 // mask them off after rotation.
1213 //
1214 // +--LZ--||-33-bit-||--TO--+ +-------------|--34-bit--+
1215 // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1|
1216 // +------------------------+ +------------------------+
1217 // 63 0 63 0
1218 //
1219 // +----sext-----|--34-bit--+ +clear-|-----------------+
1220 // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111|
1221 // +------------------------+ +------------------------+
1222 // 63 0 63 0
1223 if ((LZ + TO) > 30) {
1224 APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff);
1225 APInt Extended = SignedInt34.sext(64);
1226 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1227 getI64Imm(*Extended.getRawData()));
1228 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1229 getI32Imm(30 - LZ), getI32Imm(LZ));
1230 }
1231 // Patterns : {zeros}{ones}{33-bit value}{ones}
1232 // {ones}{33-bit value}{ones}
1233 // Similar to LI we can take advantage of PLI's sign-extension semantics to
1234 // generate leading ones, and then use RLDICL to mask off the ones in left
1235 // sides (if required) after rotation.
1236 if ((LZ + FO + TO) > 30) {
1237 APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff);
1238 APInt Extended = SignedInt34.sext(64);
1239 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1240 getI64Imm(*Extended.getRawData()));
1241 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1242 getI32Imm(TO), getI32Imm(LZ));
1243 }
1244 // Patterns : {******}{31 zeros}{******}
1245 // : {******}{31 ones}{******}
1246 // If Imm contains 31 consecutive zeros/ones then the remaining bit count
1247 // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI
1248 // for the int<33> value and then use RLDICL without a mask to rotate it back.
1249 //
1250 // +------|--ones--|------+ +---ones--||---33 bit--+
1251 // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb|
1252 // +----------------------+ +----------------------+
1253 // 63 0 63 0
1254 for (unsigned Shift = 0; Shift < 63; ++Shift) {
1255 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1256 if (isInt<34>(RotImm)) {
1257 Result =
1258 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm));
1259 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
1260 SDValue(Result, 0), getI32Imm(Shift),
1261 getI32Imm(0));
1262 }
1263 }
1264
1265 // Patterns : High word == Low word
1266 // This is basically a splat of a 32 bit immediate.
1267 if (Hi32 == Lo32) {
1268 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1269 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1270 getI32Imm(0)};
1271 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1272 }
1273
1274 InstCnt = 3;
1275 // Catch-all
1276 // This pattern can form any 64 bit immediate in 3 instructions.
1277 SDNode *ResultHi =
1278 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1279 SDNode *ResultLo =
1280 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32));
1281 SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32),
1282 getI32Imm(0)};
1283 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1284 }
1285
selectI64Imm(SelectionDAG * CurDAG,const SDLoc & dl,uint64_t Imm,unsigned * InstCnt=nullptr)1286 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm,
1287 unsigned *InstCnt = nullptr) {
1288 unsigned InstCntDirect = 0;
1289 // No more than 3 instructions are used if we can select the i64 immediate
1290 // directly.
1291 SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect);
1292
1293 const PPCSubtarget &Subtarget =
1294 CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>();
1295
1296 // If we have prefixed instructions and there is a chance we can
1297 // materialize the constant with fewer prefixed instructions than
1298 // non-prefixed, try that.
1299 if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) {
1300 unsigned InstCntDirectP = 0;
1301 SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP);
1302 // Use the prefix case in either of two cases:
1303 // 1) We have no result from the non-prefix case to use.
1304 // 2) The non-prefix case uses more instructions than the prefix case.
1305 // If the prefix and non-prefix cases use the same number of instructions
1306 // we will prefer the non-prefix case.
1307 if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) {
1308 if (InstCnt)
1309 *InstCnt = InstCntDirectP;
1310 return ResultP;
1311 }
1312 }
1313
1314 if (Result) {
1315 if (InstCnt)
1316 *InstCnt = InstCntDirect;
1317 return Result;
1318 }
1319 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1320 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1321 };
1322 // Handle the upper 32 bit value.
1323 Result =
1324 selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect);
1325 // Add in the last bits as required.
1326 if (uint32_t Hi16 = (Lo_32(Imm) >> 16) & 0xffff) {
1327 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
1328 SDValue(Result, 0), getI32Imm(Hi16));
1329 ++InstCntDirect;
1330 }
1331 if (uint32_t Lo16 = Lo_32(Imm) & 0xffff) {
1332 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1333 getI32Imm(Lo16));
1334 ++InstCntDirect;
1335 }
1336 if (InstCnt)
1337 *InstCnt = InstCntDirect;
1338 return Result;
1339 }
1340
1341 // Select a 64-bit constant.
selectI64Imm(SelectionDAG * CurDAG,SDNode * N)1342 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
1343 SDLoc dl(N);
1344
1345 // Get 64 bit value.
1346 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
1347 if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
1348 uint64_t SextImm = SignExtend64(Imm, MinSize);
1349 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
1350 if (isInt<16>(SextImm))
1351 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1352 }
1353 return selectI64Imm(CurDAG, dl, Imm);
1354 }
1355
1356 namespace {
1357
1358 class BitPermutationSelector {
1359 struct ValueBit {
1360 SDValue V;
1361
1362 // The bit number in the value, using a convention where bit 0 is the
1363 // lowest-order bit.
1364 unsigned Idx;
1365
1366 // ConstZero means a bit we need to mask off.
1367 // Variable is a bit comes from an input variable.
1368 // VariableKnownToBeZero is also a bit comes from an input variable,
1369 // but it is known to be already zero. So we do not need to mask them.
1370 enum Kind {
1371 ConstZero,
1372 Variable,
1373 VariableKnownToBeZero
1374 } K;
1375
ValueBit__anon3347df4d0611::BitPermutationSelector::ValueBit1376 ValueBit(SDValue V, unsigned I, Kind K = Variable)
1377 : V(V), Idx(I), K(K) {}
ValueBit__anon3347df4d0611::BitPermutationSelector::ValueBit1378 ValueBit(Kind K = Variable) : Idx(UINT32_MAX), K(K) {}
1379
isZero__anon3347df4d0611::BitPermutationSelector::ValueBit1380 bool isZero() const {
1381 return K == ConstZero || K == VariableKnownToBeZero;
1382 }
1383
hasValue__anon3347df4d0611::BitPermutationSelector::ValueBit1384 bool hasValue() const {
1385 return K == Variable || K == VariableKnownToBeZero;
1386 }
1387
getValue__anon3347df4d0611::BitPermutationSelector::ValueBit1388 SDValue getValue() const {
1389 assert(hasValue() && "Cannot get the value of a constant bit");
1390 return V;
1391 }
1392
getValueBitIndex__anon3347df4d0611::BitPermutationSelector::ValueBit1393 unsigned getValueBitIndex() const {
1394 assert(hasValue() && "Cannot get the value bit index of a constant bit");
1395 return Idx;
1396 }
1397 };
1398
1399 // A bit group has the same underlying value and the same rotate factor.
1400 struct BitGroup {
1401 SDValue V;
1402 unsigned RLAmt;
1403 unsigned StartIdx, EndIdx;
1404
1405 // This rotation amount assumes that the lower 32 bits of the quantity are
1406 // replicated in the high 32 bits by the rotation operator (which is done
1407 // by rlwinm and friends in 64-bit mode).
1408 bool Repl32;
1409 // Did converting to Repl32 == true change the rotation factor? If it did,
1410 // it decreased it by 32.
1411 bool Repl32CR;
1412 // Was this group coalesced after setting Repl32 to true?
1413 bool Repl32Coalesced;
1414
BitGroup__anon3347df4d0611::BitPermutationSelector::BitGroup1415 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
1416 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
1417 Repl32Coalesced(false) {
1418 LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
1419 << " [" << S << ", " << E << "]\n");
1420 }
1421 };
1422
1423 // Information on each (Value, RLAmt) pair (like the number of groups
1424 // associated with each) used to choose the lowering method.
1425 struct ValueRotInfo {
1426 SDValue V;
1427 unsigned RLAmt = std::numeric_limits<unsigned>::max();
1428 unsigned NumGroups = 0;
1429 unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
1430 bool Repl32 = false;
1431
1432 ValueRotInfo() = default;
1433
1434 // For sorting (in reverse order) by NumGroups, and then by
1435 // FirstGroupStartIdx.
operator <__anon3347df4d0611::BitPermutationSelector::ValueRotInfo1436 bool operator < (const ValueRotInfo &Other) const {
1437 // We need to sort so that the non-Repl32 come first because, when we're
1438 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
1439 // masking operation.
1440 if (Repl32 < Other.Repl32)
1441 return true;
1442 else if (Repl32 > Other.Repl32)
1443 return false;
1444 else if (NumGroups > Other.NumGroups)
1445 return true;
1446 else if (NumGroups < Other.NumGroups)
1447 return false;
1448 else if (RLAmt == 0 && Other.RLAmt != 0)
1449 return true;
1450 else if (RLAmt != 0 && Other.RLAmt == 0)
1451 return false;
1452 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
1453 return true;
1454 return false;
1455 }
1456 };
1457
1458 using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
1459 using ValueBitsMemoizer =
1460 DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
1461 ValueBitsMemoizer Memoizer;
1462
1463 // Return a pair of bool and a SmallVector pointer to a memoization entry.
1464 // The bool is true if something interesting was deduced, otherwise if we're
1465 // providing only a generic representation of V (or something else likewise
1466 // uninteresting for instruction selection) through the SmallVector.
getValueBits(SDValue V,unsigned NumBits)1467 std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
1468 unsigned NumBits) {
1469 auto &ValueEntry = Memoizer[V];
1470 if (ValueEntry)
1471 return std::make_pair(ValueEntry->first, &ValueEntry->second);
1472 ValueEntry.reset(new ValueBitsMemoizedValue());
1473 bool &Interesting = ValueEntry->first;
1474 SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
1475 Bits.resize(NumBits);
1476
1477 switch (V.getOpcode()) {
1478 default: break;
1479 case ISD::ROTL:
1480 if (isa<ConstantSDNode>(V.getOperand(1))) {
1481 unsigned RotAmt = V.getConstantOperandVal(1);
1482
1483 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1484
1485 for (unsigned i = 0; i < NumBits; ++i)
1486 Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
1487
1488 return std::make_pair(Interesting = true, &Bits);
1489 }
1490 break;
1491 case ISD::SHL:
1492 case PPCISD::SHL:
1493 if (isa<ConstantSDNode>(V.getOperand(1))) {
1494 unsigned ShiftAmt = V.getConstantOperandVal(1);
1495
1496 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1497
1498 for (unsigned i = ShiftAmt; i < NumBits; ++i)
1499 Bits[i] = LHSBits[i - ShiftAmt];
1500
1501 for (unsigned i = 0; i < ShiftAmt; ++i)
1502 Bits[i] = ValueBit(ValueBit::ConstZero);
1503
1504 return std::make_pair(Interesting = true, &Bits);
1505 }
1506 break;
1507 case ISD::SRL:
1508 case PPCISD::SRL:
1509 if (isa<ConstantSDNode>(V.getOperand(1))) {
1510 unsigned ShiftAmt = V.getConstantOperandVal(1);
1511
1512 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1513
1514 for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
1515 Bits[i] = LHSBits[i + ShiftAmt];
1516
1517 for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
1518 Bits[i] = ValueBit(ValueBit::ConstZero);
1519
1520 return std::make_pair(Interesting = true, &Bits);
1521 }
1522 break;
1523 case ISD::AND:
1524 if (isa<ConstantSDNode>(V.getOperand(1))) {
1525 uint64_t Mask = V.getConstantOperandVal(1);
1526
1527 const SmallVector<ValueBit, 64> *LHSBits;
1528 // Mark this as interesting, only if the LHS was also interesting. This
1529 // prevents the overall procedure from matching a single immediate 'and'
1530 // (which is non-optimal because such an and might be folded with other
1531 // things if we don't select it here).
1532 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
1533
1534 for (unsigned i = 0; i < NumBits; ++i)
1535 if (((Mask >> i) & 1) == 1)
1536 Bits[i] = (*LHSBits)[i];
1537 else {
1538 // AND instruction masks this bit. If the input is already zero,
1539 // we have nothing to do here. Otherwise, make the bit ConstZero.
1540 if ((*LHSBits)[i].isZero())
1541 Bits[i] = (*LHSBits)[i];
1542 else
1543 Bits[i] = ValueBit(ValueBit::ConstZero);
1544 }
1545
1546 return std::make_pair(Interesting, &Bits);
1547 }
1548 break;
1549 case ISD::OR: {
1550 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1551 const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1552
1553 bool AllDisjoint = true;
1554 SDValue LastVal = SDValue();
1555 unsigned LastIdx = 0;
1556 for (unsigned i = 0; i < NumBits; ++i) {
1557 if (LHSBits[i].isZero() && RHSBits[i].isZero()) {
1558 // If both inputs are known to be zero and one is ConstZero and
1559 // another is VariableKnownToBeZero, we can select whichever
1560 // we like. To minimize the number of bit groups, we select
1561 // VariableKnownToBeZero if this bit is the next bit of the same
1562 // input variable from the previous bit. Otherwise, we select
1563 // ConstZero.
1564 if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal &&
1565 LHSBits[i].getValueBitIndex() == LastIdx + 1)
1566 Bits[i] = LHSBits[i];
1567 else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal &&
1568 RHSBits[i].getValueBitIndex() == LastIdx + 1)
1569 Bits[i] = RHSBits[i];
1570 else
1571 Bits[i] = ValueBit(ValueBit::ConstZero);
1572 }
1573 else if (LHSBits[i].isZero())
1574 Bits[i] = RHSBits[i];
1575 else if (RHSBits[i].isZero())
1576 Bits[i] = LHSBits[i];
1577 else {
1578 AllDisjoint = false;
1579 break;
1580 }
1581 // We remember the value and bit index of this bit.
1582 if (Bits[i].hasValue()) {
1583 LastVal = Bits[i].getValue();
1584 LastIdx = Bits[i].getValueBitIndex();
1585 }
1586 else {
1587 if (LastVal) LastVal = SDValue();
1588 LastIdx = 0;
1589 }
1590 }
1591
1592 if (!AllDisjoint)
1593 break;
1594
1595 return std::make_pair(Interesting = true, &Bits);
1596 }
1597 case ISD::ZERO_EXTEND: {
1598 // We support only the case with zero extension from i32 to i64 so far.
1599 if (V.getValueType() != MVT::i64 ||
1600 V.getOperand(0).getValueType() != MVT::i32)
1601 break;
1602
1603 const SmallVector<ValueBit, 64> *LHSBits;
1604 const unsigned NumOperandBits = 32;
1605 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1606 NumOperandBits);
1607
1608 for (unsigned i = 0; i < NumOperandBits; ++i)
1609 Bits[i] = (*LHSBits)[i];
1610
1611 for (unsigned i = NumOperandBits; i < NumBits; ++i)
1612 Bits[i] = ValueBit(ValueBit::ConstZero);
1613
1614 return std::make_pair(Interesting, &Bits);
1615 }
1616 case ISD::TRUNCATE: {
1617 EVT FromType = V.getOperand(0).getValueType();
1618 EVT ToType = V.getValueType();
1619 // We support only the case with truncate from i64 to i32.
1620 if (FromType != MVT::i64 || ToType != MVT::i32)
1621 break;
1622 const unsigned NumAllBits = FromType.getSizeInBits();
1623 SmallVector<ValueBit, 64> *InBits;
1624 std::tie(Interesting, InBits) = getValueBits(V.getOperand(0),
1625 NumAllBits);
1626 const unsigned NumValidBits = ToType.getSizeInBits();
1627
1628 // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value.
1629 // So, we cannot include this truncate.
1630 bool UseUpper32bit = false;
1631 for (unsigned i = 0; i < NumValidBits; ++i)
1632 if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) {
1633 UseUpper32bit = true;
1634 break;
1635 }
1636 if (UseUpper32bit)
1637 break;
1638
1639 for (unsigned i = 0; i < NumValidBits; ++i)
1640 Bits[i] = (*InBits)[i];
1641
1642 return std::make_pair(Interesting, &Bits);
1643 }
1644 case ISD::AssertZext: {
1645 // For AssertZext, we look through the operand and
1646 // mark the bits known to be zero.
1647 const SmallVector<ValueBit, 64> *LHSBits;
1648 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1649 NumBits);
1650
1651 EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT();
1652 const unsigned NumValidBits = FromType.getSizeInBits();
1653 for (unsigned i = 0; i < NumValidBits; ++i)
1654 Bits[i] = (*LHSBits)[i];
1655
1656 // These bits are known to be zero but the AssertZext may be from a value
1657 // that already has some constant zero bits (i.e. from a masking and).
1658 for (unsigned i = NumValidBits; i < NumBits; ++i)
1659 Bits[i] = (*LHSBits)[i].hasValue()
1660 ? ValueBit((*LHSBits)[i].getValue(),
1661 (*LHSBits)[i].getValueBitIndex(),
1662 ValueBit::VariableKnownToBeZero)
1663 : ValueBit(ValueBit::ConstZero);
1664
1665 return std::make_pair(Interesting, &Bits);
1666 }
1667 case ISD::LOAD:
1668 LoadSDNode *LD = cast<LoadSDNode>(V);
1669 if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) {
1670 EVT VT = LD->getMemoryVT();
1671 const unsigned NumValidBits = VT.getSizeInBits();
1672
1673 for (unsigned i = 0; i < NumValidBits; ++i)
1674 Bits[i] = ValueBit(V, i);
1675
1676 // These bits are known to be zero.
1677 for (unsigned i = NumValidBits; i < NumBits; ++i)
1678 Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero);
1679
1680 // Zero-extending load itself cannot be optimized. So, it is not
1681 // interesting by itself though it gives useful information.
1682 return std::make_pair(Interesting = false, &Bits);
1683 }
1684 break;
1685 }
1686
1687 for (unsigned i = 0; i < NumBits; ++i)
1688 Bits[i] = ValueBit(V, i);
1689
1690 return std::make_pair(Interesting = false, &Bits);
1691 }
1692
1693 // For each value (except the constant ones), compute the left-rotate amount
1694 // to get it from its original to final position.
computeRotationAmounts()1695 void computeRotationAmounts() {
1696 NeedMask = false;
1697 RLAmt.resize(Bits.size());
1698 for (unsigned i = 0; i < Bits.size(); ++i)
1699 if (Bits[i].hasValue()) {
1700 unsigned VBI = Bits[i].getValueBitIndex();
1701 if (i >= VBI)
1702 RLAmt[i] = i - VBI;
1703 else
1704 RLAmt[i] = Bits.size() - (VBI - i);
1705 } else if (Bits[i].isZero()) {
1706 NeedMask = true;
1707 RLAmt[i] = UINT32_MAX;
1708 } else {
1709 llvm_unreachable("Unknown value bit type");
1710 }
1711 }
1712
1713 // Collect groups of consecutive bits with the same underlying value and
1714 // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1715 // they break up groups.
collectBitGroups(bool LateMask)1716 void collectBitGroups(bool LateMask) {
1717 BitGroups.clear();
1718
1719 unsigned LastRLAmt = RLAmt[0];
1720 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1721 unsigned LastGroupStartIdx = 0;
1722 bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1723 for (unsigned i = 1; i < Bits.size(); ++i) {
1724 unsigned ThisRLAmt = RLAmt[i];
1725 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1726 if (LateMask && !ThisValue) {
1727 ThisValue = LastValue;
1728 ThisRLAmt = LastRLAmt;
1729 // If we're doing late masking, then the first bit group always starts
1730 // at zero (even if the first bits were zero).
1731 if (BitGroups.empty())
1732 LastGroupStartIdx = 0;
1733 }
1734
1735 // If this bit is known to be zero and the current group is a bit group
1736 // of zeros, we do not need to terminate the current bit group even the
1737 // Value or RLAmt does not match here. Instead, we terminate this group
1738 // when the first non-zero bit appears later.
1739 if (IsGroupOfZeros && Bits[i].isZero())
1740 continue;
1741
1742 // If this bit has the same underlying value and the same rotate factor as
1743 // the last one, then they're part of the same group.
1744 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1745 // We cannot continue the current group if this bits is not known to
1746 // be zero in a bit group of zeros.
1747 if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero()))
1748 continue;
1749
1750 if (LastValue.getNode())
1751 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1752 i-1));
1753 LastRLAmt = ThisRLAmt;
1754 LastValue = ThisValue;
1755 LastGroupStartIdx = i;
1756 IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1757 }
1758 if (LastValue.getNode())
1759 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1760 Bits.size()-1));
1761
1762 if (BitGroups.empty())
1763 return;
1764
1765 // We might be able to combine the first and last groups.
1766 if (BitGroups.size() > 1) {
1767 // If the first and last groups are the same, then remove the first group
1768 // in favor of the last group, making the ending index of the last group
1769 // equal to the ending index of the to-be-removed first group.
1770 if (BitGroups[0].StartIdx == 0 &&
1771 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1772 BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1773 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1774 LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1775 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1776 BitGroups.erase(BitGroups.begin());
1777 }
1778 }
1779 }
1780
1781 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1782 // associated with each. If the number of groups are same, we prefer a group
1783 // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
1784 // instruction. If there is a degeneracy, pick the one that occurs
1785 // first (in the final value).
collectValueRotInfo()1786 void collectValueRotInfo() {
1787 ValueRots.clear();
1788
1789 for (auto &BG : BitGroups) {
1790 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1791 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1792 VRI.V = BG.V;
1793 VRI.RLAmt = BG.RLAmt;
1794 VRI.Repl32 = BG.Repl32;
1795 VRI.NumGroups += 1;
1796 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1797 }
1798
1799 // Now that we've collected the various ValueRotInfo instances, we need to
1800 // sort them.
1801 ValueRotsVec.clear();
1802 for (auto &I : ValueRots) {
1803 ValueRotsVec.push_back(I.second);
1804 }
1805 llvm::sort(ValueRotsVec);
1806 }
1807
1808 // In 64-bit mode, rlwinm and friends have a rotation operator that
1809 // replicates the low-order 32 bits into the high-order 32-bits. The mask
1810 // indices of these instructions can only be in the lower 32 bits, so they
1811 // can only represent some 64-bit bit groups. However, when they can be used,
1812 // the 32-bit replication can be used to represent, as a single bit group,
1813 // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1814 // groups when possible. Returns true if any of the bit groups were
1815 // converted.
assignRepl32BitGroups()1816 void assignRepl32BitGroups() {
1817 // If we have bits like this:
1818 //
1819 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1820 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24
1821 // Groups: | RLAmt = 8 | RLAmt = 40 |
1822 //
1823 // But, making use of a 32-bit operation that replicates the low-order 32
1824 // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1825 // of 8.
1826
1827 auto IsAllLow32 = [this](BitGroup & BG) {
1828 if (BG.StartIdx <= BG.EndIdx) {
1829 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1830 if (!Bits[i].hasValue())
1831 continue;
1832 if (Bits[i].getValueBitIndex() >= 32)
1833 return false;
1834 }
1835 } else {
1836 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1837 if (!Bits[i].hasValue())
1838 continue;
1839 if (Bits[i].getValueBitIndex() >= 32)
1840 return false;
1841 }
1842 for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1843 if (!Bits[i].hasValue())
1844 continue;
1845 if (Bits[i].getValueBitIndex() >= 32)
1846 return false;
1847 }
1848 }
1849
1850 return true;
1851 };
1852
1853 for (auto &BG : BitGroups) {
1854 // If this bit group has RLAmt of 0 and will not be merged with
1855 // another bit group, we don't benefit from Repl32. We don't mark
1856 // such group to give more freedom for later instruction selection.
1857 if (BG.RLAmt == 0) {
1858 auto PotentiallyMerged = [this](BitGroup & BG) {
1859 for (auto &BG2 : BitGroups)
1860 if (&BG != &BG2 && BG.V == BG2.V &&
1861 (BG2.RLAmt == 0 || BG2.RLAmt == 32))
1862 return true;
1863 return false;
1864 };
1865 if (!PotentiallyMerged(BG))
1866 continue;
1867 }
1868 if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1869 if (IsAllLow32(BG)) {
1870 if (BG.RLAmt >= 32) {
1871 BG.RLAmt -= 32;
1872 BG.Repl32CR = true;
1873 }
1874
1875 BG.Repl32 = true;
1876
1877 LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
1878 << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
1879 << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1880 }
1881 }
1882 }
1883
1884 // Now walk through the bit groups, consolidating where possible.
1885 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1886 // We might want to remove this bit group by merging it with the previous
1887 // group (which might be the ending group).
1888 auto IP = (I == BitGroups.begin()) ?
1889 std::prev(BitGroups.end()) : std::prev(I);
1890 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1891 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1892
1893 LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
1894 << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
1895 << I->StartIdx << ", " << I->EndIdx
1896 << "] with group with range [" << IP->StartIdx << ", "
1897 << IP->EndIdx << "]\n");
1898
1899 IP->EndIdx = I->EndIdx;
1900 IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1901 IP->Repl32Coalesced = true;
1902 I = BitGroups.erase(I);
1903 continue;
1904 } else {
1905 // There is a special case worth handling: If there is a single group
1906 // covering the entire upper 32 bits, and it can be merged with both
1907 // the next and previous groups (which might be the same group), then
1908 // do so. If it is the same group (so there will be only one group in
1909 // total), then we need to reverse the order of the range so that it
1910 // covers the entire 64 bits.
1911 if (I->StartIdx == 32 && I->EndIdx == 63) {
1912 assert(std::next(I) == BitGroups.end() &&
1913 "bit group ends at index 63 but there is another?");
1914 auto IN = BitGroups.begin();
1915
1916 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1917 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1918 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1919 IsAllLow32(*I)) {
1920
1921 LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
1922 << " RLAmt = " << I->RLAmt << " [" << I->StartIdx
1923 << ", " << I->EndIdx
1924 << "] with 32-bit replicated groups with ranges ["
1925 << IP->StartIdx << ", " << IP->EndIdx << "] and ["
1926 << IN->StartIdx << ", " << IN->EndIdx << "]\n");
1927
1928 if (IP == IN) {
1929 // There is only one other group; change it to cover the whole
1930 // range (backward, so that it can still be Repl32 but cover the
1931 // whole 64-bit range).
1932 IP->StartIdx = 31;
1933 IP->EndIdx = 30;
1934 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1935 IP->Repl32Coalesced = true;
1936 I = BitGroups.erase(I);
1937 } else {
1938 // There are two separate groups, one before this group and one
1939 // after us (at the beginning). We're going to remove this group,
1940 // but also the group at the very beginning.
1941 IP->EndIdx = IN->EndIdx;
1942 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1943 IP->Repl32Coalesced = true;
1944 I = BitGroups.erase(I);
1945 BitGroups.erase(BitGroups.begin());
1946 }
1947
1948 // This must be the last group in the vector (and we might have
1949 // just invalidated the iterator above), so break here.
1950 break;
1951 }
1952 }
1953 }
1954
1955 ++I;
1956 }
1957 }
1958
getI32Imm(unsigned Imm,const SDLoc & dl)1959 SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
1960 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1961 }
1962
getZerosMask()1963 uint64_t getZerosMask() {
1964 uint64_t Mask = 0;
1965 for (unsigned i = 0; i < Bits.size(); ++i) {
1966 if (Bits[i].hasValue())
1967 continue;
1968 Mask |= (UINT64_C(1) << i);
1969 }
1970
1971 return ~Mask;
1972 }
1973
1974 // This method extends an input value to 64 bit if input is 32-bit integer.
1975 // While selecting instructions in BitPermutationSelector in 64-bit mode,
1976 // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
1977 // In such case, we extend it to 64 bit to be consistent with other values.
ExtendToInt64(SDValue V,const SDLoc & dl)1978 SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
1979 if (V.getValueSizeInBits() == 64)
1980 return V;
1981
1982 assert(V.getValueSizeInBits() == 32);
1983 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1984 SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
1985 MVT::i64), 0);
1986 SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
1987 MVT::i64, ImDef, V,
1988 SubRegIdx), 0);
1989 return ExtVal;
1990 }
1991
TruncateToInt32(SDValue V,const SDLoc & dl)1992 SDValue TruncateToInt32(SDValue V, const SDLoc &dl) {
1993 if (V.getValueSizeInBits() == 32)
1994 return V;
1995
1996 assert(V.getValueSizeInBits() == 64);
1997 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1998 SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl,
1999 MVT::i32, V, SubRegIdx), 0);
2000 return SubVal;
2001 }
2002
2003 // Depending on the number of groups for a particular value, it might be
2004 // better to rotate, mask explicitly (using andi/andis), and then or the
2005 // result. Select this part of the result first.
SelectAndParts32(const SDLoc & dl,SDValue & Res,unsigned * InstCnt)2006 void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2007 if (BPermRewriterNoMasking)
2008 return;
2009
2010 for (ValueRotInfo &VRI : ValueRotsVec) {
2011 unsigned Mask = 0;
2012 for (unsigned i = 0; i < Bits.size(); ++i) {
2013 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
2014 continue;
2015 if (RLAmt[i] != VRI.RLAmt)
2016 continue;
2017 Mask |= (1u << i);
2018 }
2019
2020 // Compute the masks for andi/andis that would be necessary.
2021 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2022 assert((ANDIMask != 0 || ANDISMask != 0) &&
2023 "No set bits in mask for value bit groups");
2024 bool NeedsRotate = VRI.RLAmt != 0;
2025
2026 // We're trying to minimize the number of instructions. If we have one
2027 // group, using one of andi/andis can break even. If we have three
2028 // groups, we can use both andi and andis and break even (to use both
2029 // andi and andis we also need to or the results together). We need four
2030 // groups if we also need to rotate. To use andi/andis we need to do more
2031 // than break even because rotate-and-mask instructions tend to be easier
2032 // to schedule.
2033
2034 // FIXME: We've biased here against using andi/andis, which is right for
2035 // POWER cores, but not optimal everywhere. For example, on the A2,
2036 // andi/andis have single-cycle latency whereas the rotate-and-mask
2037 // instructions take two cycles, and it would be better to bias toward
2038 // andi/andis in break-even cases.
2039
2040 unsigned NumAndInsts = (unsigned) NeedsRotate +
2041 (unsigned) (ANDIMask != 0) +
2042 (unsigned) (ANDISMask != 0) +
2043 (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
2044 (unsigned) (bool) Res;
2045
2046 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2047 << " RL: " << VRI.RLAmt << ":"
2048 << "\n\t\t\tisel using masking: " << NumAndInsts
2049 << " using rotates: " << VRI.NumGroups << "\n");
2050
2051 if (NumAndInsts >= VRI.NumGroups)
2052 continue;
2053
2054 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2055
2056 if (InstCnt) *InstCnt += NumAndInsts;
2057
2058 SDValue VRot;
2059 if (VRI.RLAmt) {
2060 SDValue Ops[] =
2061 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2062 getI32Imm(0, dl), getI32Imm(31, dl) };
2063 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2064 Ops), 0);
2065 } else {
2066 VRot = TruncateToInt32(VRI.V, dl);
2067 }
2068
2069 SDValue ANDIVal, ANDISVal;
2070 if (ANDIMask != 0)
2071 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2072 VRot, getI32Imm(ANDIMask, dl)),
2073 0);
2074 if (ANDISMask != 0)
2075 ANDISVal =
2076 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot,
2077 getI32Imm(ANDISMask, dl)),
2078 0);
2079
2080 SDValue TotalVal;
2081 if (!ANDIVal)
2082 TotalVal = ANDISVal;
2083 else if (!ANDISVal)
2084 TotalVal = ANDIVal;
2085 else
2086 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2087 ANDIVal, ANDISVal), 0);
2088
2089 if (!Res)
2090 Res = TotalVal;
2091 else
2092 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2093 Res, TotalVal), 0);
2094
2095 // Now, remove all groups with this underlying value and rotation
2096 // factor.
2097 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2098 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2099 });
2100 }
2101 }
2102
2103 // Instruction selection for the 32-bit case.
Select32(SDNode * N,bool LateMask,unsigned * InstCnt)2104 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
2105 SDLoc dl(N);
2106 SDValue Res;
2107
2108 if (InstCnt) *InstCnt = 0;
2109
2110 // Take care of cases that should use andi/andis first.
2111 SelectAndParts32(dl, Res, InstCnt);
2112
2113 // If we've not yet selected a 'starting' instruction, and we have no zeros
2114 // to fill in, select the (Value, RLAmt) with the highest priority (largest
2115 // number of groups), and start with this rotated value.
2116 if ((!NeedMask || LateMask) && !Res) {
2117 ValueRotInfo &VRI = ValueRotsVec[0];
2118 if (VRI.RLAmt) {
2119 if (InstCnt) *InstCnt += 1;
2120 SDValue Ops[] =
2121 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2122 getI32Imm(0, dl), getI32Imm(31, dl) };
2123 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
2124 0);
2125 } else {
2126 Res = TruncateToInt32(VRI.V, dl);
2127 }
2128
2129 // Now, remove all groups with this underlying value and rotation factor.
2130 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2131 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2132 });
2133 }
2134
2135 if (InstCnt) *InstCnt += BitGroups.size();
2136
2137 // Insert the other groups (one at a time).
2138 for (auto &BG : BitGroups) {
2139 if (!Res) {
2140 SDValue Ops[] =
2141 { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2142 getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2143 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2144 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2145 } else {
2146 SDValue Ops[] =
2147 { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2148 getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2149 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2150 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
2151 }
2152 }
2153
2154 if (LateMask) {
2155 unsigned Mask = (unsigned) getZerosMask();
2156
2157 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2158 assert((ANDIMask != 0 || ANDISMask != 0) &&
2159 "No set bits in zeros mask?");
2160
2161 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2162 (unsigned) (ANDISMask != 0) +
2163 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2164
2165 SDValue ANDIVal, ANDISVal;
2166 if (ANDIMask != 0)
2167 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2168 Res, getI32Imm(ANDIMask, dl)),
2169 0);
2170 if (ANDISMask != 0)
2171 ANDISVal =
2172 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res,
2173 getI32Imm(ANDISMask, dl)),
2174 0);
2175
2176 if (!ANDIVal)
2177 Res = ANDISVal;
2178 else if (!ANDISVal)
2179 Res = ANDIVal;
2180 else
2181 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2182 ANDIVal, ANDISVal), 0);
2183 }
2184
2185 return Res.getNode();
2186 }
2187
SelectRotMask64Count(unsigned RLAmt,bool Repl32,unsigned MaskStart,unsigned MaskEnd,bool IsIns)2188 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
2189 unsigned MaskStart, unsigned MaskEnd,
2190 bool IsIns) {
2191 // In the notation used by the instructions, 'start' and 'end' are reversed
2192 // because bits are counted from high to low order.
2193 unsigned InstMaskStart = 64 - MaskEnd - 1,
2194 InstMaskEnd = 64 - MaskStart - 1;
2195
2196 if (Repl32)
2197 return 1;
2198
2199 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
2200 InstMaskEnd == 63 - RLAmt)
2201 return 1;
2202
2203 return 2;
2204 }
2205
2206 // For 64-bit values, not all combinations of rotates and masks are
2207 // available. Produce one if it is available.
SelectRotMask64(SDValue V,const SDLoc & dl,unsigned RLAmt,bool Repl32,unsigned MaskStart,unsigned MaskEnd,unsigned * InstCnt=nullptr)2208 SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
2209 bool Repl32, unsigned MaskStart, unsigned MaskEnd,
2210 unsigned *InstCnt = nullptr) {
2211 // In the notation used by the instructions, 'start' and 'end' are reversed
2212 // because bits are counted from high to low order.
2213 unsigned InstMaskStart = 64 - MaskEnd - 1,
2214 InstMaskEnd = 64 - MaskStart - 1;
2215
2216 if (InstCnt) *InstCnt += 1;
2217
2218 if (Repl32) {
2219 // This rotation amount assumes that the lower 32 bits of the quantity
2220 // are replicated in the high 32 bits by the rotation operator (which is
2221 // done by rlwinm and friends).
2222 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2223 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
2224 SDValue Ops[] =
2225 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2226 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2227 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
2228 Ops), 0);
2229 }
2230
2231 if (InstMaskEnd == 63) {
2232 SDValue Ops[] =
2233 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2234 getI32Imm(InstMaskStart, dl) };
2235 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
2236 }
2237
2238 if (InstMaskStart == 0) {
2239 SDValue Ops[] =
2240 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2241 getI32Imm(InstMaskEnd, dl) };
2242 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
2243 }
2244
2245 if (InstMaskEnd == 63 - RLAmt) {
2246 SDValue Ops[] =
2247 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2248 getI32Imm(InstMaskStart, dl) };
2249 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
2250 }
2251
2252 // We cannot do this with a single instruction, so we'll use two. The
2253 // problem is that we're not free to choose both a rotation amount and mask
2254 // start and end independently. We can choose an arbitrary mask start and
2255 // end, but then the rotation amount is fixed. Rotation, however, can be
2256 // inverted, and so by applying an "inverse" rotation first, we can get the
2257 // desired result.
2258 if (InstCnt) *InstCnt += 1;
2259
2260 // The rotation mask for the second instruction must be MaskStart.
2261 unsigned RLAmt2 = MaskStart;
2262 // The first instruction must rotate V so that the overall rotation amount
2263 // is RLAmt.
2264 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2265 if (RLAmt1)
2266 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2267 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
2268 }
2269
2270 // For 64-bit values, not all combinations of rotates and masks are
2271 // available. Produce a rotate-mask-and-insert if one is available.
SelectRotMaskIns64(SDValue Base,SDValue V,const SDLoc & dl,unsigned RLAmt,bool Repl32,unsigned MaskStart,unsigned MaskEnd,unsigned * InstCnt=nullptr)2272 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
2273 unsigned RLAmt, bool Repl32, unsigned MaskStart,
2274 unsigned MaskEnd, unsigned *InstCnt = nullptr) {
2275 // In the notation used by the instructions, 'start' and 'end' are reversed
2276 // because bits are counted from high to low order.
2277 unsigned InstMaskStart = 64 - MaskEnd - 1,
2278 InstMaskEnd = 64 - MaskStart - 1;
2279
2280 if (InstCnt) *InstCnt += 1;
2281
2282 if (Repl32) {
2283 // This rotation amount assumes that the lower 32 bits of the quantity
2284 // are replicated in the high 32 bits by the rotation operator (which is
2285 // done by rlwinm and friends).
2286 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2287 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
2288 SDValue Ops[] =
2289 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2290 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2291 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
2292 Ops), 0);
2293 }
2294
2295 if (InstMaskEnd == 63 - RLAmt) {
2296 SDValue Ops[] =
2297 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2298 getI32Imm(InstMaskStart, dl) };
2299 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
2300 }
2301
2302 // We cannot do this with a single instruction, so we'll use two. The
2303 // problem is that we're not free to choose both a rotation amount and mask
2304 // start and end independently. We can choose an arbitrary mask start and
2305 // end, but then the rotation amount is fixed. Rotation, however, can be
2306 // inverted, and so by applying an "inverse" rotation first, we can get the
2307 // desired result.
2308 if (InstCnt) *InstCnt += 1;
2309
2310 // The rotation mask for the second instruction must be MaskStart.
2311 unsigned RLAmt2 = MaskStart;
2312 // The first instruction must rotate V so that the overall rotation amount
2313 // is RLAmt.
2314 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2315 if (RLAmt1)
2316 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2317 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
2318 }
2319
SelectAndParts64(const SDLoc & dl,SDValue & Res,unsigned * InstCnt)2320 void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2321 if (BPermRewriterNoMasking)
2322 return;
2323
2324 // The idea here is the same as in the 32-bit version, but with additional
2325 // complications from the fact that Repl32 might be true. Because we
2326 // aggressively convert bit groups to Repl32 form (which, for small
2327 // rotation factors, involves no other change), and then coalesce, it might
2328 // be the case that a single 64-bit masking operation could handle both
2329 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
2330 // form allowed coalescing, then we must use a 32-bit rotaton in order to
2331 // completely capture the new combined bit group.
2332
2333 for (ValueRotInfo &VRI : ValueRotsVec) {
2334 uint64_t Mask = 0;
2335
2336 // We need to add to the mask all bits from the associated bit groups.
2337 // If Repl32 is false, we need to add bits from bit groups that have
2338 // Repl32 true, but are trivially convertable to Repl32 false. Such a
2339 // group is trivially convertable if it overlaps only with the lower 32
2340 // bits, and the group has not been coalesced.
2341 auto MatchingBG = [VRI](const BitGroup &BG) {
2342 if (VRI.V != BG.V)
2343 return false;
2344
2345 unsigned EffRLAmt = BG.RLAmt;
2346 if (!VRI.Repl32 && BG.Repl32) {
2347 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
2348 !BG.Repl32Coalesced) {
2349 if (BG.Repl32CR)
2350 EffRLAmt += 32;
2351 } else {
2352 return false;
2353 }
2354 } else if (VRI.Repl32 != BG.Repl32) {
2355 return false;
2356 }
2357
2358 return VRI.RLAmt == EffRLAmt;
2359 };
2360
2361 for (auto &BG : BitGroups) {
2362 if (!MatchingBG(BG))
2363 continue;
2364
2365 if (BG.StartIdx <= BG.EndIdx) {
2366 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
2367 Mask |= (UINT64_C(1) << i);
2368 } else {
2369 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
2370 Mask |= (UINT64_C(1) << i);
2371 for (unsigned i = 0; i <= BG.EndIdx; ++i)
2372 Mask |= (UINT64_C(1) << i);
2373 }
2374 }
2375
2376 // We can use the 32-bit andi/andis technique if the mask does not
2377 // require any higher-order bits. This can save an instruction compared
2378 // to always using the general 64-bit technique.
2379 bool Use32BitInsts = isUInt<32>(Mask);
2380 // Compute the masks for andi/andis that would be necessary.
2381 unsigned ANDIMask = (Mask & UINT16_MAX),
2382 ANDISMask = (Mask >> 16) & UINT16_MAX;
2383
2384 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
2385
2386 unsigned NumAndInsts = (unsigned) NeedsRotate +
2387 (unsigned) (bool) Res;
2388 unsigned NumOfSelectInsts = 0;
2389 selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts);
2390 assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant.");
2391 if (Use32BitInsts)
2392 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
2393 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2394 else
2395 NumAndInsts += NumOfSelectInsts + /* and */ 1;
2396
2397 unsigned NumRLInsts = 0;
2398 bool FirstBG = true;
2399 bool MoreBG = false;
2400 for (auto &BG : BitGroups) {
2401 if (!MatchingBG(BG)) {
2402 MoreBG = true;
2403 continue;
2404 }
2405 NumRLInsts +=
2406 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
2407 !FirstBG);
2408 FirstBG = false;
2409 }
2410
2411 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2412 << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
2413 << "\n\t\t\tisel using masking: " << NumAndInsts
2414 << " using rotates: " << NumRLInsts << "\n");
2415
2416 // When we'd use andi/andis, we bias toward using the rotates (andi only
2417 // has a record form, and is cracked on POWER cores). However, when using
2418 // general 64-bit constant formation, bias toward the constant form,
2419 // because that exposes more opportunities for CSE.
2420 if (NumAndInsts > NumRLInsts)
2421 continue;
2422 // When merging multiple bit groups, instruction or is used.
2423 // But when rotate is used, rldimi can inert the rotated value into any
2424 // register, so instruction or can be avoided.
2425 if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
2426 continue;
2427
2428 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2429
2430 if (InstCnt) *InstCnt += NumAndInsts;
2431
2432 SDValue VRot;
2433 // We actually need to generate a rotation if we have a non-zero rotation
2434 // factor or, in the Repl32 case, if we care about any of the
2435 // higher-order replicated bits. In the latter case, we generate a mask
2436 // backward so that it actually includes the entire 64 bits.
2437 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
2438 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2439 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
2440 else
2441 VRot = VRI.V;
2442
2443 SDValue TotalVal;
2444 if (Use32BitInsts) {
2445 assert((ANDIMask != 0 || ANDISMask != 0) &&
2446 "No set bits in mask when using 32-bit ands for 64-bit value");
2447
2448 SDValue ANDIVal, ANDISVal;
2449 if (ANDIMask != 0)
2450 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2451 ExtendToInt64(VRot, dl),
2452 getI32Imm(ANDIMask, dl)),
2453 0);
2454 if (ANDISMask != 0)
2455 ANDISVal =
2456 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2457 ExtendToInt64(VRot, dl),
2458 getI32Imm(ANDISMask, dl)),
2459 0);
2460
2461 if (!ANDIVal)
2462 TotalVal = ANDISVal;
2463 else if (!ANDISVal)
2464 TotalVal = ANDIVal;
2465 else
2466 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2467 ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2468 } else {
2469 TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2470 TotalVal =
2471 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2472 ExtendToInt64(VRot, dl), TotalVal),
2473 0);
2474 }
2475
2476 if (!Res)
2477 Res = TotalVal;
2478 else
2479 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2480 ExtendToInt64(Res, dl), TotalVal),
2481 0);
2482
2483 // Now, remove all groups with this underlying value and rotation
2484 // factor.
2485 eraseMatchingBitGroups(MatchingBG);
2486 }
2487 }
2488
2489 // Instruction selection for the 64-bit case.
Select64(SDNode * N,bool LateMask,unsigned * InstCnt)2490 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
2491 SDLoc dl(N);
2492 SDValue Res;
2493
2494 if (InstCnt) *InstCnt = 0;
2495
2496 // Take care of cases that should use andi/andis first.
2497 SelectAndParts64(dl, Res, InstCnt);
2498
2499 // If we've not yet selected a 'starting' instruction, and we have no zeros
2500 // to fill in, select the (Value, RLAmt) with the highest priority (largest
2501 // number of groups), and start with this rotated value.
2502 if ((!NeedMask || LateMask) && !Res) {
2503 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
2504 // groups will come first, and so the VRI representing the largest number
2505 // of groups might not be first (it might be the first Repl32 groups).
2506 unsigned MaxGroupsIdx = 0;
2507 if (!ValueRotsVec[0].Repl32) {
2508 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
2509 if (ValueRotsVec[i].Repl32) {
2510 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
2511 MaxGroupsIdx = i;
2512 break;
2513 }
2514 }
2515
2516 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
2517 bool NeedsRotate = false;
2518 if (VRI.RLAmt) {
2519 NeedsRotate = true;
2520 } else if (VRI.Repl32) {
2521 for (auto &BG : BitGroups) {
2522 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
2523 BG.Repl32 != VRI.Repl32)
2524 continue;
2525
2526 // We don't need a rotate if the bit group is confined to the lower
2527 // 32 bits.
2528 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
2529 continue;
2530
2531 NeedsRotate = true;
2532 break;
2533 }
2534 }
2535
2536 if (NeedsRotate)
2537 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2538 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
2539 InstCnt);
2540 else
2541 Res = VRI.V;
2542
2543 // Now, remove all groups with this underlying value and rotation factor.
2544 if (Res)
2545 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2546 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
2547 BG.Repl32 == VRI.Repl32;
2548 });
2549 }
2550
2551 // Because 64-bit rotates are more flexible than inserts, we might have a
2552 // preference regarding which one we do first (to save one instruction).
2553 if (!Res)
2554 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
2555 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2556 false) <
2557 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2558 true)) {
2559 if (I != BitGroups.begin()) {
2560 BitGroup BG = *I;
2561 BitGroups.erase(I);
2562 BitGroups.insert(BitGroups.begin(), BG);
2563 }
2564
2565 break;
2566 }
2567 }
2568
2569 // Insert the other groups (one at a time).
2570 for (auto &BG : BitGroups) {
2571 if (!Res)
2572 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
2573 BG.EndIdx, InstCnt);
2574 else
2575 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
2576 BG.StartIdx, BG.EndIdx, InstCnt);
2577 }
2578
2579 if (LateMask) {
2580 uint64_t Mask = getZerosMask();
2581
2582 // We can use the 32-bit andi/andis technique if the mask does not
2583 // require any higher-order bits. This can save an instruction compared
2584 // to always using the general 64-bit technique.
2585 bool Use32BitInsts = isUInt<32>(Mask);
2586 // Compute the masks for andi/andis that would be necessary.
2587 unsigned ANDIMask = (Mask & UINT16_MAX),
2588 ANDISMask = (Mask >> 16) & UINT16_MAX;
2589
2590 if (Use32BitInsts) {
2591 assert((ANDIMask != 0 || ANDISMask != 0) &&
2592 "No set bits in mask when using 32-bit ands for 64-bit value");
2593
2594 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2595 (unsigned) (ANDISMask != 0) +
2596 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2597
2598 SDValue ANDIVal, ANDISVal;
2599 if (ANDIMask != 0)
2600 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2601 ExtendToInt64(Res, dl),
2602 getI32Imm(ANDIMask, dl)),
2603 0);
2604 if (ANDISMask != 0)
2605 ANDISVal =
2606 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2607 ExtendToInt64(Res, dl),
2608 getI32Imm(ANDISMask, dl)),
2609 0);
2610
2611 if (!ANDIVal)
2612 Res = ANDISVal;
2613 else if (!ANDISVal)
2614 Res = ANDIVal;
2615 else
2616 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2617 ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2618 } else {
2619 unsigned NumOfSelectInsts = 0;
2620 SDValue MaskVal =
2621 SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0);
2622 Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2623 ExtendToInt64(Res, dl), MaskVal),
2624 0);
2625 if (InstCnt)
2626 *InstCnt += NumOfSelectInsts + /* and */ 1;
2627 }
2628 }
2629
2630 return Res.getNode();
2631 }
2632
Select(SDNode * N,bool LateMask,unsigned * InstCnt=nullptr)2633 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
2634 // Fill in BitGroups.
2635 collectBitGroups(LateMask);
2636 if (BitGroups.empty())
2637 return nullptr;
2638
2639 // For 64-bit values, figure out when we can use 32-bit instructions.
2640 if (Bits.size() == 64)
2641 assignRepl32BitGroups();
2642
2643 // Fill in ValueRotsVec.
2644 collectValueRotInfo();
2645
2646 if (Bits.size() == 32) {
2647 return Select32(N, LateMask, InstCnt);
2648 } else {
2649 assert(Bits.size() == 64 && "Not 64 bits here?");
2650 return Select64(N, LateMask, InstCnt);
2651 }
2652
2653 return nullptr;
2654 }
2655
eraseMatchingBitGroups(function_ref<bool (const BitGroup &)> F)2656 void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
2657 erase_if(BitGroups, F);
2658 }
2659
2660 SmallVector<ValueBit, 64> Bits;
2661
2662 bool NeedMask = false;
2663 SmallVector<unsigned, 64> RLAmt;
2664
2665 SmallVector<BitGroup, 16> BitGroups;
2666
2667 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
2668 SmallVector<ValueRotInfo, 16> ValueRotsVec;
2669
2670 SelectionDAG *CurDAG = nullptr;
2671
2672 public:
BitPermutationSelector(SelectionDAG * DAG)2673 BitPermutationSelector(SelectionDAG *DAG)
2674 : CurDAG(DAG) {}
2675
2676 // Here we try to match complex bit permutations into a set of
2677 // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2678 // known to produce optimal code for common cases (like i32 byte swapping).
Select(SDNode * N)2679 SDNode *Select(SDNode *N) {
2680 Memoizer.clear();
2681 auto Result =
2682 getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
2683 if (!Result.first)
2684 return nullptr;
2685 Bits = std::move(*Result.second);
2686
2687 LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
2688 " selection for: ");
2689 LLVM_DEBUG(N->dump(CurDAG));
2690
2691 // Fill it RLAmt and set NeedMask.
2692 computeRotationAmounts();
2693
2694 if (!NeedMask)
2695 return Select(N, false);
2696
2697 // We currently have two techniques for handling results with zeros: early
2698 // masking (the default) and late masking. Late masking is sometimes more
2699 // efficient, but because the structure of the bit groups is different, it
2700 // is hard to tell without generating both and comparing the results. With
2701 // late masking, we ignore zeros in the resulting value when inserting each
2702 // set of bit groups, and then mask in the zeros at the end. With early
2703 // masking, we only insert the non-zero parts of the result at every step.
2704
2705 unsigned InstCnt = 0, InstCntLateMask = 0;
2706 LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
2707 SDNode *RN = Select(N, false, &InstCnt);
2708 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
2709
2710 LLVM_DEBUG(dbgs() << "\tLate masking:\n");
2711 SDNode *RNLM = Select(N, true, &InstCntLateMask);
2712 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
2713 << " instructions\n");
2714
2715 if (InstCnt <= InstCntLateMask) {
2716 LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
2717 return RN;
2718 }
2719
2720 LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
2721 return RNLM;
2722 }
2723 };
2724
2725 class IntegerCompareEliminator {
2726 SelectionDAG *CurDAG;
2727 PPCDAGToDAGISel *S;
2728 // Conversion type for interpreting results of a 32-bit instruction as
2729 // a 64-bit value or vice versa.
2730 enum ExtOrTruncConversion { Ext, Trunc };
2731
2732 // Modifiers to guide how an ISD::SETCC node's result is to be computed
2733 // in a GPR.
2734 // ZExtOrig - use the original condition code, zero-extend value
2735 // ZExtInvert - invert the condition code, zero-extend value
2736 // SExtOrig - use the original condition code, sign-extend value
2737 // SExtInvert - invert the condition code, sign-extend value
2738 enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
2739
2740 // Comparisons against zero to emit GPR code sequences for. Each of these
2741 // sequences may need to be emitted for two or more equivalent patterns.
2742 // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
2743 // matters as well as the extension type: sext (-1/0), zext (1/0).
2744 // GEZExt - (zext (LHS >= 0))
2745 // GESExt - (sext (LHS >= 0))
2746 // LEZExt - (zext (LHS <= 0))
2747 // LESExt - (sext (LHS <= 0))
2748 enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
2749
2750 SDNode *tryEXTEND(SDNode *N);
2751 SDNode *tryLogicOpOfCompares(SDNode *N);
2752 SDValue computeLogicOpInGPR(SDValue LogicOp);
2753 SDValue signExtendInputIfNeeded(SDValue Input);
2754 SDValue zeroExtendInputIfNeeded(SDValue Input);
2755 SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
2756 SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2757 ZeroCompare CmpTy);
2758 SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2759 int64_t RHSValue, SDLoc dl);
2760 SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2761 int64_t RHSValue, SDLoc dl);
2762 SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2763 int64_t RHSValue, SDLoc dl);
2764 SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2765 int64_t RHSValue, SDLoc dl);
2766 SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
2767
2768 public:
IntegerCompareEliminator(SelectionDAG * DAG,PPCDAGToDAGISel * Sel)2769 IntegerCompareEliminator(SelectionDAG *DAG,
2770 PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
2771 assert(CurDAG->getTargetLoweringInfo()
2772 .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
2773 "Only expecting to use this on 64 bit targets.");
2774 }
Select(SDNode * N)2775 SDNode *Select(SDNode *N) {
2776 if (CmpInGPR == ICGPR_None)
2777 return nullptr;
2778 switch (N->getOpcode()) {
2779 default: break;
2780 case ISD::ZERO_EXTEND:
2781 if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
2782 CmpInGPR == ICGPR_SextI64)
2783 return nullptr;
2784 [[fallthrough]];
2785 case ISD::SIGN_EXTEND:
2786 if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
2787 CmpInGPR == ICGPR_ZextI64)
2788 return nullptr;
2789 return tryEXTEND(N);
2790 case ISD::AND:
2791 case ISD::OR:
2792 case ISD::XOR:
2793 return tryLogicOpOfCompares(N);
2794 }
2795 return nullptr;
2796 }
2797 };
2798
isLogicOp(unsigned Opc)2799 static bool isLogicOp(unsigned Opc) {
2800 return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR;
2801 }
2802 // The obvious case for wanting to keep the value in a GPR. Namely, the
2803 // result of the comparison is actually needed in a GPR.
tryEXTEND(SDNode * N)2804 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
2805 assert((N->getOpcode() == ISD::ZERO_EXTEND ||
2806 N->getOpcode() == ISD::SIGN_EXTEND) &&
2807 "Expecting a zero/sign extend node!");
2808 SDValue WideRes;
2809 // If we are zero-extending the result of a logical operation on i1
2810 // values, we can keep the values in GPRs.
2811 if (isLogicOp(N->getOperand(0).getOpcode()) &&
2812 N->getOperand(0).getValueType() == MVT::i1 &&
2813 N->getOpcode() == ISD::ZERO_EXTEND)
2814 WideRes = computeLogicOpInGPR(N->getOperand(0));
2815 else if (N->getOperand(0).getOpcode() != ISD::SETCC)
2816 return nullptr;
2817 else
2818 WideRes =
2819 getSETCCInGPR(N->getOperand(0),
2820 N->getOpcode() == ISD::SIGN_EXTEND ?
2821 SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
2822
2823 if (!WideRes)
2824 return nullptr;
2825
2826 SDLoc dl(N);
2827 bool Input32Bit = WideRes.getValueType() == MVT::i32;
2828 bool Output32Bit = N->getValueType(0) == MVT::i32;
2829
2830 NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
2831 NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
2832
2833 SDValue ConvOp = WideRes;
2834 if (Input32Bit != Output32Bit)
2835 ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
2836 ExtOrTruncConversion::Trunc);
2837 return ConvOp.getNode();
2838 }
2839
2840 // Attempt to perform logical operations on the results of comparisons while
2841 // keeping the values in GPRs. Without doing so, these would end up being
2842 // lowered to CR-logical operations which suffer from significant latency and
2843 // low ILP.
tryLogicOpOfCompares(SDNode * N)2844 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
2845 if (N->getValueType(0) != MVT::i1)
2846 return nullptr;
2847 assert(isLogicOp(N->getOpcode()) &&
2848 "Expected a logic operation on setcc results.");
2849 SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
2850 if (!LoweredLogical)
2851 return nullptr;
2852
2853 SDLoc dl(N);
2854 bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
2855 unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
2856 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2857 SDValue LHS = LoweredLogical.getOperand(0);
2858 SDValue RHS = LoweredLogical.getOperand(1);
2859 SDValue WideOp;
2860 SDValue OpToConvToRecForm;
2861
2862 // Look through any 32-bit to 64-bit implicit extend nodes to find the
2863 // opcode that is input to the XORI.
2864 if (IsBitwiseNegate &&
2865 LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
2866 OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
2867 else if (IsBitwiseNegate)
2868 // If the input to the XORI isn't an extension, that's what we're after.
2869 OpToConvToRecForm = LoweredLogical.getOperand(0);
2870 else
2871 // If this is not an XORI, it is a reg-reg logical op and we can convert
2872 // it to record-form.
2873 OpToConvToRecForm = LoweredLogical;
2874
2875 // Get the record-form version of the node we're looking to use to get the
2876 // CR result from.
2877 uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
2878 int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
2879
2880 // Convert the right node to record-form. This is either the logical we're
2881 // looking at or it is the input node to the negation (if we're looking at
2882 // a bitwise negation).
2883 if (NewOpc != -1 && IsBitwiseNegate) {
2884 // The input to the XORI has a record-form. Use it.
2885 assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
2886 "Expected a PPC::XORI8 only for bitwise negation.");
2887 // Emit the record-form instruction.
2888 std::vector<SDValue> Ops;
2889 for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
2890 Ops.push_back(OpToConvToRecForm.getOperand(i));
2891
2892 WideOp =
2893 SDValue(CurDAG->getMachineNode(NewOpc, dl,
2894 OpToConvToRecForm.getValueType(),
2895 MVT::Glue, Ops), 0);
2896 } else {
2897 assert((NewOpc != -1 || !IsBitwiseNegate) &&
2898 "No record form available for AND8/OR8/XOR8?");
2899 WideOp =
2900 SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc,
2901 dl, MVT::i64, MVT::Glue, LHS, RHS),
2902 0);
2903 }
2904
2905 // Select this node to a single bit from CR0 set by the record-form node
2906 // just created. For bitwise negation, use the EQ bit which is the equivalent
2907 // of negating the result (i.e. it is a bit set when the result of the
2908 // operation is zero).
2909 SDValue SRIdxVal =
2910 CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
2911 SDValue CRBit =
2912 SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
2913 MVT::i1, CR0Reg, SRIdxVal,
2914 WideOp.getValue(1)), 0);
2915 return CRBit.getNode();
2916 }
2917
2918 // Lower a logical operation on i1 values into a GPR sequence if possible.
2919 // The result can be kept in a GPR if requested.
2920 // Three types of inputs can be handled:
2921 // - SETCC
2922 // - TRUNCATE
2923 // - Logical operation (AND/OR/XOR)
2924 // There is also a special case that is handled (namely a complement operation
2925 // achieved with xor %a, -1).
computeLogicOpInGPR(SDValue LogicOp)2926 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
2927 assert(isLogicOp(LogicOp.getOpcode()) &&
2928 "Can only handle logic operations here.");
2929 assert(LogicOp.getValueType() == MVT::i1 &&
2930 "Can only handle logic operations on i1 values here.");
2931 SDLoc dl(LogicOp);
2932 SDValue LHS, RHS;
2933
2934 // Special case: xor %a, -1
2935 bool IsBitwiseNegation = isBitwiseNot(LogicOp);
2936
2937 // Produces a GPR sequence for each operand of the binary logic operation.
2938 // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
2939 // the value in a GPR and for logic operations, it will recursively produce
2940 // a GPR sequence for the operation.
2941 auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
2942 unsigned OperandOpcode = Operand.getOpcode();
2943 if (OperandOpcode == ISD::SETCC)
2944 return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
2945 else if (OperandOpcode == ISD::TRUNCATE) {
2946 SDValue InputOp = Operand.getOperand(0);
2947 EVT InVT = InputOp.getValueType();
2948 return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
2949 PPC::RLDICL, dl, InVT, InputOp,
2950 S->getI64Imm(0, dl),
2951 S->getI64Imm(63, dl)), 0);
2952 } else if (isLogicOp(OperandOpcode))
2953 return computeLogicOpInGPR(Operand);
2954 return SDValue();
2955 };
2956 LHS = getLogicOperand(LogicOp.getOperand(0));
2957 RHS = getLogicOperand(LogicOp.getOperand(1));
2958
2959 // If a GPR sequence can't be produced for the LHS we can't proceed.
2960 // Not producing a GPR sequence for the RHS is only a problem if this isn't
2961 // a bitwise negation operation.
2962 if (!LHS || (!RHS && !IsBitwiseNegation))
2963 return SDValue();
2964
2965 NumLogicOpsOnComparison++;
2966
2967 // We will use the inputs as 64-bit values.
2968 if (LHS.getValueType() == MVT::i32)
2969 LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
2970 if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
2971 RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
2972
2973 unsigned NewOpc;
2974 switch (LogicOp.getOpcode()) {
2975 default: llvm_unreachable("Unknown logic operation.");
2976 case ISD::AND: NewOpc = PPC::AND8; break;
2977 case ISD::OR: NewOpc = PPC::OR8; break;
2978 case ISD::XOR: NewOpc = PPC::XOR8; break;
2979 }
2980
2981 if (IsBitwiseNegation) {
2982 RHS = S->getI64Imm(1, dl);
2983 NewOpc = PPC::XORI8;
2984 }
2985
2986 return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
2987
2988 }
2989
2990 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
2991 /// Otherwise just reinterpret it as a 64-bit value.
2992 /// Useful when emitting comparison code for 32-bit values without using
2993 /// the compare instruction (which only considers the lower 32-bits).
signExtendInputIfNeeded(SDValue Input)2994 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
2995 assert(Input.getValueType() == MVT::i32 &&
2996 "Can only sign-extend 32-bit values here.");
2997 unsigned Opc = Input.getOpcode();
2998
2999 // The value was sign extended and then truncated to 32-bits. No need to
3000 // sign extend it again.
3001 if (Opc == ISD::TRUNCATE &&
3002 (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
3003 Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
3004 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3005
3006 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3007 // The input is a sign-extending load. All ppc sign-extending loads
3008 // sign-extend to the full 64-bits.
3009 if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
3010 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3011
3012 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3013 // We don't sign-extend constants.
3014 if (InputConst)
3015 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3016
3017 SDLoc dl(Input);
3018 SignExtensionsAdded++;
3019 return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
3020 MVT::i64, Input), 0);
3021 }
3022
3023 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
3024 /// Otherwise just reinterpret it as a 64-bit value.
3025 /// Useful when emitting comparison code for 32-bit values without using
3026 /// the compare instruction (which only considers the lower 32-bits).
zeroExtendInputIfNeeded(SDValue Input)3027 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
3028 assert(Input.getValueType() == MVT::i32 &&
3029 "Can only zero-extend 32-bit values here.");
3030 unsigned Opc = Input.getOpcode();
3031
3032 // The only condition under which we can omit the actual extend instruction:
3033 // - The value is a positive constant
3034 // - The value comes from a load that isn't a sign-extending load
3035 // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
3036 bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
3037 (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
3038 Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
3039 if (IsTruncateOfZExt)
3040 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3041
3042 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3043 if (InputConst && InputConst->getSExtValue() >= 0)
3044 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3045
3046 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3047 // The input is a load that doesn't sign-extend (it will be zero-extended).
3048 if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
3049 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3050
3051 // None of the above, need to zero-extend.
3052 SDLoc dl(Input);
3053 ZeroExtensionsAdded++;
3054 return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
3055 S->getI64Imm(0, dl),
3056 S->getI64Imm(32, dl)), 0);
3057 }
3058
3059 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
3060 // course not actual zero/sign extensions that will generate machine code,
3061 // they're just a way to reinterpret a 32 bit value in a register as a
3062 // 64 bit value and vice-versa.
addExtOrTrunc(SDValue NatWidthRes,ExtOrTruncConversion Conv)3063 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
3064 ExtOrTruncConversion Conv) {
3065 SDLoc dl(NatWidthRes);
3066
3067 // For reinterpreting 32-bit values as 64 bit values, we generate
3068 // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
3069 if (Conv == ExtOrTruncConversion::Ext) {
3070 SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
3071 SDValue SubRegIdx =
3072 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3073 return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
3074 ImDef, NatWidthRes, SubRegIdx), 0);
3075 }
3076
3077 assert(Conv == ExtOrTruncConversion::Trunc &&
3078 "Unknown convertion between 32 and 64 bit values.");
3079 // For reinterpreting 64-bit values as 32-bit values, we just need to
3080 // EXTRACT_SUBREG (i.e. extract the low word).
3081 SDValue SubRegIdx =
3082 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3083 return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
3084 NatWidthRes, SubRegIdx), 0);
3085 }
3086
3087 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
3088 // Handle both zero-extensions and sign-extensions.
3089 SDValue
getCompoundZeroComparisonInGPR(SDValue LHS,SDLoc dl,ZeroCompare CmpTy)3090 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
3091 ZeroCompare CmpTy) {
3092 EVT InVT = LHS.getValueType();
3093 bool Is32Bit = InVT == MVT::i32;
3094 SDValue ToExtend;
3095
3096 // Produce the value that needs to be either zero or sign extended.
3097 switch (CmpTy) {
3098 case ZeroCompare::GEZExt:
3099 case ZeroCompare::GESExt:
3100 ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
3101 dl, InVT, LHS, LHS), 0);
3102 break;
3103 case ZeroCompare::LEZExt:
3104 case ZeroCompare::LESExt: {
3105 if (Is32Bit) {
3106 // Upper 32 bits cannot be undefined for this sequence.
3107 LHS = signExtendInputIfNeeded(LHS);
3108 SDValue Neg =
3109 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3110 ToExtend =
3111 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3112 Neg, S->getI64Imm(1, dl),
3113 S->getI64Imm(63, dl)), 0);
3114 } else {
3115 SDValue Addi =
3116 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3117 S->getI64Imm(~0ULL, dl)), 0);
3118 ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
3119 Addi, LHS), 0);
3120 }
3121 break;
3122 }
3123 }
3124
3125 // For 64-bit sequences, the extensions are the same for the GE/LE cases.
3126 if (!Is32Bit &&
3127 (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
3128 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3129 ToExtend, S->getI64Imm(1, dl),
3130 S->getI64Imm(63, dl)), 0);
3131 if (!Is32Bit &&
3132 (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
3133 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
3134 S->getI64Imm(63, dl)), 0);
3135
3136 assert(Is32Bit && "Should have handled the 32-bit sequences above.");
3137 // For 32-bit sequences, the extensions differ between GE/LE cases.
3138 switch (CmpTy) {
3139 case ZeroCompare::GEZExt: {
3140 SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3141 S->getI32Imm(31, dl) };
3142 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3143 ShiftOps), 0);
3144 }
3145 case ZeroCompare::GESExt:
3146 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
3147 S->getI32Imm(31, dl)), 0);
3148 case ZeroCompare::LEZExt:
3149 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
3150 S->getI32Imm(1, dl)), 0);
3151 case ZeroCompare::LESExt:
3152 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
3153 S->getI32Imm(-1, dl)), 0);
3154 }
3155
3156 // The above case covers all the enumerators so it can't have a default clause
3157 // to avoid compiler warnings.
3158 llvm_unreachable("Unknown zero-comparison type.");
3159 }
3160
3161 /// Produces a zero-extended result of comparing two 32-bit values according to
3162 /// the passed condition code.
3163 SDValue
get32BitZExtCompare(SDValue LHS,SDValue RHS,ISD::CondCode CC,int64_t RHSValue,SDLoc dl)3164 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
3165 ISD::CondCode CC,
3166 int64_t RHSValue, SDLoc dl) {
3167 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3168 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
3169 return SDValue();
3170 bool IsRHSZero = RHSValue == 0;
3171 bool IsRHSOne = RHSValue == 1;
3172 bool IsRHSNegOne = RHSValue == -1LL;
3173 switch (CC) {
3174 default: return SDValue();
3175 case ISD::SETEQ: {
3176 // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
3177 // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5)
3178 SDValue Xor = IsRHSZero ? LHS :
3179 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3180 SDValue Clz =
3181 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3182 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3183 S->getI32Imm(31, dl) };
3184 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3185 ShiftOps), 0);
3186 }
3187 case ISD::SETNE: {
3188 // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
3189 // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1)
3190 SDValue Xor = IsRHSZero ? LHS :
3191 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3192 SDValue Clz =
3193 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3194 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3195 S->getI32Imm(31, dl) };
3196 SDValue Shift =
3197 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3198 return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3199 S->getI32Imm(1, dl)), 0);
3200 }
3201 case ISD::SETGE: {
3202 // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
3203 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31)
3204 if(IsRHSZero)
3205 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3206
3207 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3208 // by swapping inputs and falling through.
3209 std::swap(LHS, RHS);
3210 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3211 IsRHSZero = RHSConst && RHSConst->isZero();
3212 [[fallthrough]];
3213 }
3214 case ISD::SETLE: {
3215 if (CmpInGPR == ICGPR_NonExtIn)
3216 return SDValue();
3217 // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
3218 // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1)
3219 if(IsRHSZero) {
3220 if (CmpInGPR == ICGPR_NonExtIn)
3221 return SDValue();
3222 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3223 }
3224
3225 // The upper 32-bits of the register can't be undefined for this sequence.
3226 LHS = signExtendInputIfNeeded(LHS);
3227 RHS = signExtendInputIfNeeded(RHS);
3228 SDValue Sub =
3229 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3230 SDValue Shift =
3231 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
3232 S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
3233 0);
3234 return
3235 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
3236 MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
3237 }
3238 case ISD::SETGT: {
3239 // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
3240 // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
3241 // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63)
3242 // Handle SETLT -1 (which is equivalent to SETGE 0).
3243 if (IsRHSNegOne)
3244 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3245
3246 if (IsRHSZero) {
3247 if (CmpInGPR == ICGPR_NonExtIn)
3248 return SDValue();
3249 // The upper 32-bits of the register can't be undefined for this sequence.
3250 LHS = signExtendInputIfNeeded(LHS);
3251 RHS = signExtendInputIfNeeded(RHS);
3252 SDValue Neg =
3253 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3254 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3255 Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
3256 }
3257 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3258 // (%b < %a) by swapping inputs and falling through.
3259 std::swap(LHS, RHS);
3260 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3261 IsRHSZero = RHSConst && RHSConst->isZero();
3262 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3263 [[fallthrough]];
3264 }
3265 case ISD::SETLT: {
3266 // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
3267 // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1)
3268 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31)
3269 // Handle SETLT 1 (which is equivalent to SETLE 0).
3270 if (IsRHSOne) {
3271 if (CmpInGPR == ICGPR_NonExtIn)
3272 return SDValue();
3273 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3274 }
3275
3276 if (IsRHSZero) {
3277 SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3278 S->getI32Imm(31, dl) };
3279 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3280 ShiftOps), 0);
3281 }
3282
3283 if (CmpInGPR == ICGPR_NonExtIn)
3284 return SDValue();
3285 // The upper 32-bits of the register can't be undefined for this sequence.
3286 LHS = signExtendInputIfNeeded(LHS);
3287 RHS = signExtendInputIfNeeded(RHS);
3288 SDValue SUBFNode =
3289 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3290 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3291 SUBFNode, S->getI64Imm(1, dl),
3292 S->getI64Imm(63, dl)), 0);
3293 }
3294 case ISD::SETUGE:
3295 // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
3296 // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
3297 std::swap(LHS, RHS);
3298 [[fallthrough]];
3299 case ISD::SETULE: {
3300 if (CmpInGPR == ICGPR_NonExtIn)
3301 return SDValue();
3302 // The upper 32-bits of the register can't be undefined for this sequence.
3303 LHS = zeroExtendInputIfNeeded(LHS);
3304 RHS = zeroExtendInputIfNeeded(RHS);
3305 SDValue Subtract =
3306 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3307 SDValue SrdiNode =
3308 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3309 Subtract, S->getI64Imm(1, dl),
3310 S->getI64Imm(63, dl)), 0);
3311 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
3312 S->getI32Imm(1, dl)), 0);
3313 }
3314 case ISD::SETUGT:
3315 // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
3316 // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
3317 std::swap(LHS, RHS);
3318 [[fallthrough]];
3319 case ISD::SETULT: {
3320 if (CmpInGPR == ICGPR_NonExtIn)
3321 return SDValue();
3322 // The upper 32-bits of the register can't be undefined for this sequence.
3323 LHS = zeroExtendInputIfNeeded(LHS);
3324 RHS = zeroExtendInputIfNeeded(RHS);
3325 SDValue Subtract =
3326 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3327 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3328 Subtract, S->getI64Imm(1, dl),
3329 S->getI64Imm(63, dl)), 0);
3330 }
3331 }
3332 }
3333
3334 /// Produces a sign-extended result of comparing two 32-bit values according to
3335 /// the passed condition code.
3336 SDValue
get32BitSExtCompare(SDValue LHS,SDValue RHS,ISD::CondCode CC,int64_t RHSValue,SDLoc dl)3337 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
3338 ISD::CondCode CC,
3339 int64_t RHSValue, SDLoc dl) {
3340 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3341 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
3342 return SDValue();
3343 bool IsRHSZero = RHSValue == 0;
3344 bool IsRHSOne = RHSValue == 1;
3345 bool IsRHSNegOne = RHSValue == -1LL;
3346
3347 switch (CC) {
3348 default: return SDValue();
3349 case ISD::SETEQ: {
3350 // (sext (setcc %a, %b, seteq)) ->
3351 // (ashr (shl (ctlz (xor %a, %b)), 58), 63)
3352 // (sext (setcc %a, 0, seteq)) ->
3353 // (ashr (shl (ctlz %a), 58), 63)
3354 SDValue CountInput = IsRHSZero ? LHS :
3355 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3356 SDValue Cntlzw =
3357 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
3358 SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
3359 S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3360 SDValue Slwi =
3361 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
3362 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
3363 }
3364 case ISD::SETNE: {
3365 // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
3366 // flip the bit, finally take 2's complement.
3367 // (sext (setcc %a, %b, setne)) ->
3368 // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
3369 // Same as above, but the first xor is not needed.
3370 // (sext (setcc %a, 0, setne)) ->
3371 // (neg (xor (lshr (ctlz %a), 5), 1))
3372 SDValue Xor = IsRHSZero ? LHS :
3373 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3374 SDValue Clz =
3375 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3376 SDValue ShiftOps[] =
3377 { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3378 SDValue Shift =
3379 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3380 SDValue Xori =
3381 SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3382 S->getI32Imm(1, dl)), 0);
3383 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
3384 }
3385 case ISD::SETGE: {
3386 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
3387 // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31)
3388 if (IsRHSZero)
3389 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3390
3391 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3392 // by swapping inputs and falling through.
3393 std::swap(LHS, RHS);
3394 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3395 IsRHSZero = RHSConst && RHSConst->isZero();
3396 [[fallthrough]];
3397 }
3398 case ISD::SETLE: {
3399 if (CmpInGPR == ICGPR_NonExtIn)
3400 return SDValue();
3401 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
3402 // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1)
3403 if (IsRHSZero)
3404 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3405
3406 // The upper 32-bits of the register can't be undefined for this sequence.
3407 LHS = signExtendInputIfNeeded(LHS);
3408 RHS = signExtendInputIfNeeded(RHS);
3409 SDValue SUBFNode =
3410 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
3411 LHS, RHS), 0);
3412 SDValue Srdi =
3413 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3414 SUBFNode, S->getI64Imm(1, dl),
3415 S->getI64Imm(63, dl)), 0);
3416 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
3417 S->getI32Imm(-1, dl)), 0);
3418 }
3419 case ISD::SETGT: {
3420 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
3421 // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
3422 // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63)
3423 if (IsRHSNegOne)
3424 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3425 if (IsRHSZero) {
3426 if (CmpInGPR == ICGPR_NonExtIn)
3427 return SDValue();
3428 // The upper 32-bits of the register can't be undefined for this sequence.
3429 LHS = signExtendInputIfNeeded(LHS);
3430 RHS = signExtendInputIfNeeded(RHS);
3431 SDValue Neg =
3432 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3433 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
3434 S->getI64Imm(63, dl)), 0);
3435 }
3436 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3437 // (%b < %a) by swapping inputs and falling through.
3438 std::swap(LHS, RHS);
3439 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3440 IsRHSZero = RHSConst && RHSConst->isZero();
3441 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3442 [[fallthrough]];
3443 }
3444 case ISD::SETLT: {
3445 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
3446 // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1)
3447 // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31)
3448 if (IsRHSOne) {
3449 if (CmpInGPR == ICGPR_NonExtIn)
3450 return SDValue();
3451 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3452 }
3453 if (IsRHSZero)
3454 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
3455 S->getI32Imm(31, dl)), 0);
3456
3457 if (CmpInGPR == ICGPR_NonExtIn)
3458 return SDValue();
3459 // The upper 32-bits of the register can't be undefined for this sequence.
3460 LHS = signExtendInputIfNeeded(LHS);
3461 RHS = signExtendInputIfNeeded(RHS);
3462 SDValue SUBFNode =
3463 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3464 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3465 SUBFNode, S->getI64Imm(63, dl)), 0);
3466 }
3467 case ISD::SETUGE:
3468 // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
3469 // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
3470 std::swap(LHS, RHS);
3471 [[fallthrough]];
3472 case ISD::SETULE: {
3473 if (CmpInGPR == ICGPR_NonExtIn)
3474 return SDValue();
3475 // The upper 32-bits of the register can't be undefined for this sequence.
3476 LHS = zeroExtendInputIfNeeded(LHS);
3477 RHS = zeroExtendInputIfNeeded(RHS);
3478 SDValue Subtract =
3479 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3480 SDValue Shift =
3481 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
3482 S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
3483 0);
3484 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
3485 S->getI32Imm(-1, dl)), 0);
3486 }
3487 case ISD::SETUGT:
3488 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
3489 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
3490 std::swap(LHS, RHS);
3491 [[fallthrough]];
3492 case ISD::SETULT: {
3493 if (CmpInGPR == ICGPR_NonExtIn)
3494 return SDValue();
3495 // The upper 32-bits of the register can't be undefined for this sequence.
3496 LHS = zeroExtendInputIfNeeded(LHS);
3497 RHS = zeroExtendInputIfNeeded(RHS);
3498 SDValue Subtract =
3499 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3500 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3501 Subtract, S->getI64Imm(63, dl)), 0);
3502 }
3503 }
3504 }
3505
3506 /// Produces a zero-extended result of comparing two 64-bit values according to
3507 /// the passed condition code.
3508 SDValue
get64BitZExtCompare(SDValue LHS,SDValue RHS,ISD::CondCode CC,int64_t RHSValue,SDLoc dl)3509 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
3510 ISD::CondCode CC,
3511 int64_t RHSValue, SDLoc dl) {
3512 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3513 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
3514 return SDValue();
3515 bool IsRHSZero = RHSValue == 0;
3516 bool IsRHSOne = RHSValue == 1;
3517 bool IsRHSNegOne = RHSValue == -1LL;
3518 switch (CC) {
3519 default: return SDValue();
3520 case ISD::SETEQ: {
3521 // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3522 // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6)
3523 SDValue Xor = IsRHSZero ? LHS :
3524 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3525 SDValue Clz =
3526 SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
3527 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
3528 S->getI64Imm(58, dl),
3529 S->getI64Imm(63, dl)), 0);
3530 }
3531 case ISD::SETNE: {
3532 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3533 // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3534 // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3535 // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3536 SDValue Xor = IsRHSZero ? LHS :
3537 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3538 SDValue AC =
3539 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3540 Xor, S->getI32Imm(~0U, dl)), 0);
3541 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
3542 Xor, AC.getValue(1)), 0);
3543 }
3544 case ISD::SETGE: {
3545 // {subc.reg, subc.CA} = (subcarry %a, %b)
3546 // (zext (setcc %a, %b, setge)) ->
3547 // (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
3548 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
3549 if (IsRHSZero)
3550 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3551 std::swap(LHS, RHS);
3552 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3553 IsRHSZero = RHSConst && RHSConst->isZero();
3554 [[fallthrough]];
3555 }
3556 case ISD::SETLE: {
3557 // {subc.reg, subc.CA} = (subcarry %b, %a)
3558 // (zext (setcc %a, %b, setge)) ->
3559 // (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
3560 // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
3561 if (IsRHSZero)
3562 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3563 SDValue ShiftL =
3564 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3565 S->getI64Imm(1, dl),
3566 S->getI64Imm(63, dl)), 0);
3567 SDValue ShiftR =
3568 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3569 S->getI64Imm(63, dl)), 0);
3570 SDValue SubtractCarry =
3571 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3572 LHS, RHS), 1);
3573 return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3574 ShiftR, ShiftL, SubtractCarry), 0);
3575 }
3576 case ISD::SETGT: {
3577 // {subc.reg, subc.CA} = (subcarry %b, %a)
3578 // (zext (setcc %a, %b, setgt)) ->
3579 // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3580 // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
3581 if (IsRHSNegOne)
3582 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3583 if (IsRHSZero) {
3584 SDValue Addi =
3585 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3586 S->getI64Imm(~0ULL, dl)), 0);
3587 SDValue Nor =
3588 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
3589 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
3590 S->getI64Imm(1, dl),
3591 S->getI64Imm(63, dl)), 0);
3592 }
3593 std::swap(LHS, RHS);
3594 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3595 IsRHSZero = RHSConst && RHSConst->isZero();
3596 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3597 [[fallthrough]];
3598 }
3599 case ISD::SETLT: {
3600 // {subc.reg, subc.CA} = (subcarry %a, %b)
3601 // (zext (setcc %a, %b, setlt)) ->
3602 // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3603 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
3604 if (IsRHSOne)
3605 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3606 if (IsRHSZero)
3607 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3608 S->getI64Imm(1, dl),
3609 S->getI64Imm(63, dl)), 0);
3610 SDValue SRADINode =
3611 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3612 LHS, S->getI64Imm(63, dl)), 0);
3613 SDValue SRDINode =
3614 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3615 RHS, S->getI64Imm(1, dl),
3616 S->getI64Imm(63, dl)), 0);
3617 SDValue SUBFC8Carry =
3618 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3619 RHS, LHS), 1);
3620 SDValue ADDE8Node =
3621 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3622 SRDINode, SRADINode, SUBFC8Carry), 0);
3623 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3624 ADDE8Node, S->getI64Imm(1, dl)), 0);
3625 }
3626 case ISD::SETUGE:
3627 // {subc.reg, subc.CA} = (subcarry %a, %b)
3628 // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
3629 std::swap(LHS, RHS);
3630 [[fallthrough]];
3631 case ISD::SETULE: {
3632 // {subc.reg, subc.CA} = (subcarry %b, %a)
3633 // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
3634 SDValue SUBFC8Carry =
3635 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3636 LHS, RHS), 1);
3637 SDValue SUBFE8Node =
3638 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
3639 LHS, LHS, SUBFC8Carry), 0);
3640 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
3641 SUBFE8Node, S->getI64Imm(1, dl)), 0);
3642 }
3643 case ISD::SETUGT:
3644 // {subc.reg, subc.CA} = (subcarry %b, %a)
3645 // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
3646 std::swap(LHS, RHS);
3647 [[fallthrough]];
3648 case ISD::SETULT: {
3649 // {subc.reg, subc.CA} = (subcarry %a, %b)
3650 // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
3651 SDValue SubtractCarry =
3652 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3653 RHS, LHS), 1);
3654 SDValue ExtSub =
3655 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3656 LHS, LHS, SubtractCarry), 0);
3657 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3658 ExtSub), 0);
3659 }
3660 }
3661 }
3662
3663 /// Produces a sign-extended result of comparing two 64-bit values according to
3664 /// the passed condition code.
3665 SDValue
get64BitSExtCompare(SDValue LHS,SDValue RHS,ISD::CondCode CC,int64_t RHSValue,SDLoc dl)3666 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
3667 ISD::CondCode CC,
3668 int64_t RHSValue, SDLoc dl) {
3669 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3670 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
3671 return SDValue();
3672 bool IsRHSZero = RHSValue == 0;
3673 bool IsRHSOne = RHSValue == 1;
3674 bool IsRHSNegOne = RHSValue == -1LL;
3675 switch (CC) {
3676 default: return SDValue();
3677 case ISD::SETEQ: {
3678 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3679 // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3680 // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3681 // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3682 SDValue AddInput = IsRHSZero ? LHS :
3683 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3684 SDValue Addic =
3685 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3686 AddInput, S->getI32Imm(~0U, dl)), 0);
3687 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
3688 Addic, Addic.getValue(1)), 0);
3689 }
3690 case ISD::SETNE: {
3691 // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3692 // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3693 // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3694 // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3695 SDValue Xor = IsRHSZero ? LHS :
3696 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3697 SDValue SC =
3698 SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
3699 Xor, S->getI32Imm(0, dl)), 0);
3700 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
3701 SC, SC.getValue(1)), 0);
3702 }
3703 case ISD::SETGE: {
3704 // {subc.reg, subc.CA} = (subcarry %a, %b)
3705 // (zext (setcc %a, %b, setge)) ->
3706 // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
3707 // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
3708 if (IsRHSZero)
3709 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3710 std::swap(LHS, RHS);
3711 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3712 IsRHSZero = RHSConst && RHSConst->isZero();
3713 [[fallthrough]];
3714 }
3715 case ISD::SETLE: {
3716 // {subc.reg, subc.CA} = (subcarry %b, %a)
3717 // (zext (setcc %a, %b, setge)) ->
3718 // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
3719 // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
3720 if (IsRHSZero)
3721 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3722 SDValue ShiftR =
3723 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3724 S->getI64Imm(63, dl)), 0);
3725 SDValue ShiftL =
3726 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3727 S->getI64Imm(1, dl),
3728 S->getI64Imm(63, dl)), 0);
3729 SDValue SubtractCarry =
3730 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3731 LHS, RHS), 1);
3732 SDValue Adde =
3733 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3734 ShiftR, ShiftL, SubtractCarry), 0);
3735 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
3736 }
3737 case ISD::SETGT: {
3738 // {subc.reg, subc.CA} = (subcarry %b, %a)
3739 // (zext (setcc %a, %b, setgt)) ->
3740 // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3741 // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
3742 if (IsRHSNegOne)
3743 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3744 if (IsRHSZero) {
3745 SDValue Add =
3746 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3747 S->getI64Imm(-1, dl)), 0);
3748 SDValue Nor =
3749 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
3750 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
3751 S->getI64Imm(63, dl)), 0);
3752 }
3753 std::swap(LHS, RHS);
3754 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3755 IsRHSZero = RHSConst && RHSConst->isZero();
3756 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3757 [[fallthrough]];
3758 }
3759 case ISD::SETLT: {
3760 // {subc.reg, subc.CA} = (subcarry %a, %b)
3761 // (zext (setcc %a, %b, setlt)) ->
3762 // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3763 // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
3764 if (IsRHSOne)
3765 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3766 if (IsRHSZero) {
3767 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
3768 S->getI64Imm(63, dl)), 0);
3769 }
3770 SDValue SRADINode =
3771 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3772 LHS, S->getI64Imm(63, dl)), 0);
3773 SDValue SRDINode =
3774 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3775 RHS, S->getI64Imm(1, dl),
3776 S->getI64Imm(63, dl)), 0);
3777 SDValue SUBFC8Carry =
3778 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3779 RHS, LHS), 1);
3780 SDValue ADDE8Node =
3781 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
3782 SRDINode, SRADINode, SUBFC8Carry), 0);
3783 SDValue XORI8Node =
3784 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3785 ADDE8Node, S->getI64Imm(1, dl)), 0);
3786 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3787 XORI8Node), 0);
3788 }
3789 case ISD::SETUGE:
3790 // {subc.reg, subc.CA} = (subcarry %a, %b)
3791 // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
3792 std::swap(LHS, RHS);
3793 [[fallthrough]];
3794 case ISD::SETULE: {
3795 // {subc.reg, subc.CA} = (subcarry %b, %a)
3796 // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
3797 SDValue SubtractCarry =
3798 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3799 LHS, RHS), 1);
3800 SDValue ExtSub =
3801 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
3802 LHS, SubtractCarry), 0);
3803 return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
3804 ExtSub, ExtSub), 0);
3805 }
3806 case ISD::SETUGT:
3807 // {subc.reg, subc.CA} = (subcarry %b, %a)
3808 // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
3809 std::swap(LHS, RHS);
3810 [[fallthrough]];
3811 case ISD::SETULT: {
3812 // {subc.reg, subc.CA} = (subcarry %a, %b)
3813 // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
3814 SDValue SubCarry =
3815 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3816 RHS, LHS), 1);
3817 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3818 LHS, LHS, SubCarry), 0);
3819 }
3820 }
3821 }
3822
3823 /// Do all uses of this SDValue need the result in a GPR?
3824 /// This is meant to be used on values that have type i1 since
3825 /// it is somewhat meaningless to ask if values of other types
3826 /// should be kept in GPR's.
allUsesExtend(SDValue Compare,SelectionDAG * CurDAG)3827 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
3828 assert(Compare.getOpcode() == ISD::SETCC &&
3829 "An ISD::SETCC node required here.");
3830
3831 // For values that have a single use, the caller should obviously already have
3832 // checked if that use is an extending use. We check the other uses here.
3833 if (Compare.hasOneUse())
3834 return true;
3835 // We want the value in a GPR if it is being extended, used for a select, or
3836 // used in logical operations.
3837 for (auto *CompareUse : Compare.getNode()->uses())
3838 if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
3839 CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
3840 CompareUse->getOpcode() != ISD::SELECT &&
3841 !isLogicOp(CompareUse->getOpcode())) {
3842 OmittedForNonExtendUses++;
3843 return false;
3844 }
3845 return true;
3846 }
3847
3848 /// Returns an equivalent of a SETCC node but with the result the same width as
3849 /// the inputs. This can also be used for SELECT_CC if either the true or false
3850 /// values is a power of two while the other is zero.
getSETCCInGPR(SDValue Compare,SetccInGPROpts ConvOpts)3851 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
3852 SetccInGPROpts ConvOpts) {
3853 assert((Compare.getOpcode() == ISD::SETCC ||
3854 Compare.getOpcode() == ISD::SELECT_CC) &&
3855 "An ISD::SETCC node required here.");
3856
3857 // Don't convert this comparison to a GPR sequence because there are uses
3858 // of the i1 result (i.e. uses that require the result in the CR).
3859 if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
3860 return SDValue();
3861
3862 SDValue LHS = Compare.getOperand(0);
3863 SDValue RHS = Compare.getOperand(1);
3864
3865 // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
3866 int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
3867 ISD::CondCode CC =
3868 cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
3869 EVT InputVT = LHS.getValueType();
3870 if (InputVT != MVT::i32 && InputVT != MVT::i64)
3871 return SDValue();
3872
3873 if (ConvOpts == SetccInGPROpts::ZExtInvert ||
3874 ConvOpts == SetccInGPROpts::SExtInvert)
3875 CC = ISD::getSetCCInverse(CC, InputVT);
3876
3877 bool Inputs32Bit = InputVT == MVT::i32;
3878
3879 SDLoc dl(Compare);
3880 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3881 int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
3882 bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
3883 ConvOpts == SetccInGPROpts::SExtInvert;
3884
3885 if (IsSext && Inputs32Bit)
3886 return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3887 else if (Inputs32Bit)
3888 return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3889 else if (IsSext)
3890 return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3891 return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3892 }
3893
3894 } // end anonymous namespace
3895
tryIntCompareInGPR(SDNode * N)3896 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
3897 if (N->getValueType(0) != MVT::i32 &&
3898 N->getValueType(0) != MVT::i64)
3899 return false;
3900
3901 // This optimization will emit code that assumes 64-bit registers
3902 // so we don't want to run it in 32-bit mode. Also don't run it
3903 // on functions that are not to be optimized.
3904 if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
3905 return false;
3906
3907 // For POWER10, it is more profitable to use the set boolean extension
3908 // instructions rather than the integer compare elimination codegen.
3909 // Users can override this via the command line option, `--ppc-gpr-icmps`.
3910 if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1())
3911 return false;
3912
3913 switch (N->getOpcode()) {
3914 default: break;
3915 case ISD::ZERO_EXTEND:
3916 case ISD::SIGN_EXTEND:
3917 case ISD::AND:
3918 case ISD::OR:
3919 case ISD::XOR: {
3920 IntegerCompareEliminator ICmpElim(CurDAG, this);
3921 if (SDNode *New = ICmpElim.Select(N)) {
3922 ReplaceNode(N, New);
3923 return true;
3924 }
3925 }
3926 }
3927 return false;
3928 }
3929
tryBitPermutation(SDNode * N)3930 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
3931 if (N->getValueType(0) != MVT::i32 &&
3932 N->getValueType(0) != MVT::i64)
3933 return false;
3934
3935 if (!UseBitPermRewriter)
3936 return false;
3937
3938 switch (N->getOpcode()) {
3939 default: break;
3940 case ISD::SRL:
3941 // If we are on P10, we have a pattern for 32-bit (srl (bswap r), 16) that
3942 // uses the BRH instruction.
3943 if (Subtarget->isISA3_1() && N->getValueType(0) == MVT::i32 &&
3944 N->getOperand(0).getOpcode() == ISD::BSWAP) {
3945 auto &OpRight = N->getOperand(1);
3946 ConstantSDNode *SRLConst = dyn_cast<ConstantSDNode>(OpRight);
3947 if (SRLConst && SRLConst->getSExtValue() == 16)
3948 return false;
3949 }
3950 LLVM_FALLTHROUGH;
3951 case ISD::ROTL:
3952 case ISD::SHL:
3953 case ISD::AND:
3954 case ISD::OR: {
3955 BitPermutationSelector BPS(CurDAG);
3956 if (SDNode *New = BPS.Select(N)) {
3957 ReplaceNode(N, New);
3958 return true;
3959 }
3960 return false;
3961 }
3962 }
3963
3964 return false;
3965 }
3966
3967 /// SelectCC - Select a comparison of the specified values with the specified
3968 /// condition code, returning the CR# of the expression.
SelectCC(SDValue LHS,SDValue RHS,ISD::CondCode CC,const SDLoc & dl,SDValue Chain)3969 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3970 const SDLoc &dl, SDValue Chain) {
3971 // Always select the LHS.
3972 unsigned Opc;
3973
3974 if (LHS.getValueType() == MVT::i32) {
3975 unsigned Imm;
3976 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3977 if (isInt32Immediate(RHS, Imm)) {
3978 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
3979 if (isUInt<16>(Imm))
3980 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3981 getI32Imm(Imm & 0xFFFF, dl)),
3982 0);
3983 // If this is a 16-bit signed immediate, fold it.
3984 if (isInt<16>((int)Imm))
3985 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3986 getI32Imm(Imm & 0xFFFF, dl)),
3987 0);
3988
3989 // For non-equality comparisons, the default code would materialize the
3990 // constant, then compare against it, like this:
3991 // lis r2, 4660
3992 // ori r2, r2, 22136
3993 // cmpw cr0, r3, r2
3994 // Since we are just comparing for equality, we can emit this instead:
3995 // xoris r0,r3,0x1234
3996 // cmplwi cr0,r0,0x5678
3997 // beq cr0,L6
3998 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
3999 getI32Imm(Imm >> 16, dl)), 0);
4000 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
4001 getI32Imm(Imm & 0xFFFF, dl)), 0);
4002 }
4003 Opc = PPC::CMPLW;
4004 } else if (ISD::isUnsignedIntSetCC(CC)) {
4005 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
4006 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
4007 getI32Imm(Imm & 0xFFFF, dl)), 0);
4008 Opc = PPC::CMPLW;
4009 } else {
4010 int16_t SImm;
4011 if (isIntS16Immediate(RHS, SImm))
4012 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
4013 getI32Imm((int)SImm & 0xFFFF,
4014 dl)),
4015 0);
4016 Opc = PPC::CMPW;
4017 }
4018 } else if (LHS.getValueType() == MVT::i64) {
4019 uint64_t Imm;
4020 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
4021 if (isInt64Immediate(RHS.getNode(), Imm)) {
4022 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
4023 if (isUInt<16>(Imm))
4024 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4025 getI32Imm(Imm & 0xFFFF, dl)),
4026 0);
4027 // If this is a 16-bit signed immediate, fold it.
4028 if (isInt<16>(Imm))
4029 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4030 getI32Imm(Imm & 0xFFFF, dl)),
4031 0);
4032
4033 // For non-equality comparisons, the default code would materialize the
4034 // constant, then compare against it, like this:
4035 // lis r2, 4660
4036 // ori r2, r2, 22136
4037 // cmpd cr0, r3, r2
4038 // Since we are just comparing for equality, we can emit this instead:
4039 // xoris r0,r3,0x1234
4040 // cmpldi cr0,r0,0x5678
4041 // beq cr0,L6
4042 if (isUInt<32>(Imm)) {
4043 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
4044 getI64Imm(Imm >> 16, dl)), 0);
4045 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
4046 getI64Imm(Imm & 0xFFFF, dl)),
4047 0);
4048 }
4049 }
4050 Opc = PPC::CMPLD;
4051 } else if (ISD::isUnsignedIntSetCC(CC)) {
4052 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
4053 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4054 getI64Imm(Imm & 0xFFFF, dl)), 0);
4055 Opc = PPC::CMPLD;
4056 } else {
4057 int16_t SImm;
4058 if (isIntS16Immediate(RHS, SImm))
4059 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4060 getI64Imm(SImm & 0xFFFF, dl)),
4061 0);
4062 Opc = PPC::CMPD;
4063 }
4064 } else if (LHS.getValueType() == MVT::f32) {
4065 if (Subtarget->hasSPE()) {
4066 switch (CC) {
4067 default:
4068 case ISD::SETEQ:
4069 case ISD::SETNE:
4070 Opc = PPC::EFSCMPEQ;
4071 break;
4072 case ISD::SETLT:
4073 case ISD::SETGE:
4074 case ISD::SETOLT:
4075 case ISD::SETOGE:
4076 case ISD::SETULT:
4077 case ISD::SETUGE:
4078 Opc = PPC::EFSCMPLT;
4079 break;
4080 case ISD::SETGT:
4081 case ISD::SETLE:
4082 case ISD::SETOGT:
4083 case ISD::SETOLE:
4084 case ISD::SETUGT:
4085 case ISD::SETULE:
4086 Opc = PPC::EFSCMPGT;
4087 break;
4088 }
4089 } else
4090 Opc = PPC::FCMPUS;
4091 } else if (LHS.getValueType() == MVT::f64) {
4092 if (Subtarget->hasSPE()) {
4093 switch (CC) {
4094 default:
4095 case ISD::SETEQ:
4096 case ISD::SETNE:
4097 Opc = PPC::EFDCMPEQ;
4098 break;
4099 case ISD::SETLT:
4100 case ISD::SETGE:
4101 case ISD::SETOLT:
4102 case ISD::SETOGE:
4103 case ISD::SETULT:
4104 case ISD::SETUGE:
4105 Opc = PPC::EFDCMPLT;
4106 break;
4107 case ISD::SETGT:
4108 case ISD::SETLE:
4109 case ISD::SETOGT:
4110 case ISD::SETOLE:
4111 case ISD::SETUGT:
4112 case ISD::SETULE:
4113 Opc = PPC::EFDCMPGT;
4114 break;
4115 }
4116 } else
4117 Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
4118 } else {
4119 assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
4120 assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector");
4121 Opc = PPC::XSCMPUQP;
4122 }
4123 if (Chain)
4124 return SDValue(
4125 CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain),
4126 0);
4127 else
4128 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
4129 }
4130
getPredicateForSetCC(ISD::CondCode CC,const EVT & VT,const PPCSubtarget * Subtarget)4131 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT,
4132 const PPCSubtarget *Subtarget) {
4133 // For SPE instructions, the result is in GT bit of the CR
4134 bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint();
4135
4136 switch (CC) {
4137 case ISD::SETUEQ:
4138 case ISD::SETONE:
4139 case ISD::SETOLE:
4140 case ISD::SETOGE:
4141 llvm_unreachable("Should be lowered by legalize!");
4142 default: llvm_unreachable("Unknown condition!");
4143 case ISD::SETOEQ:
4144 case ISD::SETEQ:
4145 return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ;
4146 case ISD::SETUNE:
4147 case ISD::SETNE:
4148 return UseSPE ? PPC::PRED_LE : PPC::PRED_NE;
4149 case ISD::SETOLT:
4150 case ISD::SETLT:
4151 return UseSPE ? PPC::PRED_GT : PPC::PRED_LT;
4152 case ISD::SETULE:
4153 case ISD::SETLE:
4154 return PPC::PRED_LE;
4155 case ISD::SETOGT:
4156 case ISD::SETGT:
4157 return PPC::PRED_GT;
4158 case ISD::SETUGE:
4159 case ISD::SETGE:
4160 return UseSPE ? PPC::PRED_LE : PPC::PRED_GE;
4161 case ISD::SETO: return PPC::PRED_NU;
4162 case ISD::SETUO: return PPC::PRED_UN;
4163 // These two are invalid for floating point. Assume we have int.
4164 case ISD::SETULT: return PPC::PRED_LT;
4165 case ISD::SETUGT: return PPC::PRED_GT;
4166 }
4167 }
4168
4169 /// getCRIdxForSetCC - Return the index of the condition register field
4170 /// associated with the SetCC condition, and whether or not the field is
4171 /// treated as inverted. That is, lt = 0; ge = 0 inverted.
getCRIdxForSetCC(ISD::CondCode CC,bool & Invert)4172 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
4173 Invert = false;
4174 switch (CC) {
4175 default: llvm_unreachable("Unknown condition!");
4176 case ISD::SETOLT:
4177 case ISD::SETLT: return 0; // Bit #0 = SETOLT
4178 case ISD::SETOGT:
4179 case ISD::SETGT: return 1; // Bit #1 = SETOGT
4180 case ISD::SETOEQ:
4181 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
4182 case ISD::SETUO: return 3; // Bit #3 = SETUO
4183 case ISD::SETUGE:
4184 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
4185 case ISD::SETULE:
4186 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
4187 case ISD::SETUNE:
4188 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
4189 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
4190 case ISD::SETUEQ:
4191 case ISD::SETOGE:
4192 case ISD::SETOLE:
4193 case ISD::SETONE:
4194 llvm_unreachable("Invalid branch code: should be expanded by legalize");
4195 // These are invalid for floating point. Assume integer.
4196 case ISD::SETULT: return 0;
4197 case ISD::SETUGT: return 1;
4198 }
4199 }
4200
4201 // getVCmpInst: return the vector compare instruction for the specified
4202 // vector type and condition code. Since this is for altivec specific code,
4203 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128,
4204 // and v4f32).
getVCmpInst(MVT VecVT,ISD::CondCode CC,bool HasVSX,bool & Swap,bool & Negate)4205 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
4206 bool HasVSX, bool &Swap, bool &Negate) {
4207 Swap = false;
4208 Negate = false;
4209
4210 if (VecVT.isFloatingPoint()) {
4211 /* Handle some cases by swapping input operands. */
4212 switch (CC) {
4213 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
4214 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4215 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
4216 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
4217 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4218 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
4219 default: break;
4220 }
4221 /* Handle some cases by negating the result. */
4222 switch (CC) {
4223 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4224 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
4225 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
4226 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
4227 default: break;
4228 }
4229 /* We have instructions implementing the remaining cases. */
4230 switch (CC) {
4231 case ISD::SETEQ:
4232 case ISD::SETOEQ:
4233 if (VecVT == MVT::v4f32)
4234 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
4235 else if (VecVT == MVT::v2f64)
4236 return PPC::XVCMPEQDP;
4237 break;
4238 case ISD::SETGT:
4239 case ISD::SETOGT:
4240 if (VecVT == MVT::v4f32)
4241 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
4242 else if (VecVT == MVT::v2f64)
4243 return PPC::XVCMPGTDP;
4244 break;
4245 case ISD::SETGE:
4246 case ISD::SETOGE:
4247 if (VecVT == MVT::v4f32)
4248 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
4249 else if (VecVT == MVT::v2f64)
4250 return PPC::XVCMPGEDP;
4251 break;
4252 default:
4253 break;
4254 }
4255 llvm_unreachable("Invalid floating-point vector compare condition");
4256 } else {
4257 /* Handle some cases by swapping input operands. */
4258 switch (CC) {
4259 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
4260 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4261 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4262 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
4263 default: break;
4264 }
4265 /* Handle some cases by negating the result. */
4266 switch (CC) {
4267 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4268 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
4269 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
4270 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
4271 default: break;
4272 }
4273 /* We have instructions implementing the remaining cases. */
4274 switch (CC) {
4275 case ISD::SETEQ:
4276 case ISD::SETUEQ:
4277 if (VecVT == MVT::v16i8)
4278 return PPC::VCMPEQUB;
4279 else if (VecVT == MVT::v8i16)
4280 return PPC::VCMPEQUH;
4281 else if (VecVT == MVT::v4i32)
4282 return PPC::VCMPEQUW;
4283 else if (VecVT == MVT::v2i64)
4284 return PPC::VCMPEQUD;
4285 else if (VecVT == MVT::v1i128)
4286 return PPC::VCMPEQUQ;
4287 break;
4288 case ISD::SETGT:
4289 if (VecVT == MVT::v16i8)
4290 return PPC::VCMPGTSB;
4291 else if (VecVT == MVT::v8i16)
4292 return PPC::VCMPGTSH;
4293 else if (VecVT == MVT::v4i32)
4294 return PPC::VCMPGTSW;
4295 else if (VecVT == MVT::v2i64)
4296 return PPC::VCMPGTSD;
4297 else if (VecVT == MVT::v1i128)
4298 return PPC::VCMPGTSQ;
4299 break;
4300 case ISD::SETUGT:
4301 if (VecVT == MVT::v16i8)
4302 return PPC::VCMPGTUB;
4303 else if (VecVT == MVT::v8i16)
4304 return PPC::VCMPGTUH;
4305 else if (VecVT == MVT::v4i32)
4306 return PPC::VCMPGTUW;
4307 else if (VecVT == MVT::v2i64)
4308 return PPC::VCMPGTUD;
4309 else if (VecVT == MVT::v1i128)
4310 return PPC::VCMPGTUQ;
4311 break;
4312 default:
4313 break;
4314 }
4315 llvm_unreachable("Invalid integer vector compare condition");
4316 }
4317 }
4318
trySETCC(SDNode * N)4319 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
4320 SDLoc dl(N);
4321 unsigned Imm;
4322 bool IsStrict = N->isStrictFPOpcode();
4323 ISD::CondCode CC =
4324 cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get();
4325 EVT PtrVT =
4326 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4327 bool isPPC64 = (PtrVT == MVT::i64);
4328 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4329
4330 SDValue LHS = N->getOperand(IsStrict ? 1 : 0);
4331 SDValue RHS = N->getOperand(IsStrict ? 2 : 1);
4332
4333 if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) {
4334 // We can codegen setcc op, imm very efficiently compared to a brcond.
4335 // Check for those cases here.
4336 // setcc op, 0
4337 if (Imm == 0) {
4338 SDValue Op = LHS;
4339 switch (CC) {
4340 default: break;
4341 case ISD::SETEQ: {
4342 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
4343 SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
4344 getI32Imm(31, dl) };
4345 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4346 return true;
4347 }
4348 case ISD::SETNE: {
4349 if (isPPC64) break;
4350 SDValue AD =
4351 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4352 Op, getI32Imm(~0U, dl)), 0);
4353 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
4354 return true;
4355 }
4356 case ISD::SETLT: {
4357 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4358 getI32Imm(31, dl) };
4359 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4360 return true;
4361 }
4362 case ISD::SETGT: {
4363 SDValue T =
4364 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
4365 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
4366 SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
4367 getI32Imm(31, dl) };
4368 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4369 return true;
4370 }
4371 }
4372 } else if (Imm == ~0U) { // setcc op, -1
4373 SDValue Op = LHS;
4374 switch (CC) {
4375 default: break;
4376 case ISD::SETEQ:
4377 if (isPPC64) break;
4378 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4379 Op, getI32Imm(1, dl)), 0);
4380 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
4381 SDValue(CurDAG->getMachineNode(PPC::LI, dl,
4382 MVT::i32,
4383 getI32Imm(0, dl)),
4384 0), Op.getValue(1));
4385 return true;
4386 case ISD::SETNE: {
4387 if (isPPC64) break;
4388 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
4389 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4390 Op, getI32Imm(~0U, dl));
4391 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
4392 SDValue(AD, 1));
4393 return true;
4394 }
4395 case ISD::SETLT: {
4396 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
4397 getI32Imm(1, dl)), 0);
4398 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
4399 Op), 0);
4400 SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
4401 getI32Imm(31, dl) };
4402 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4403 return true;
4404 }
4405 case ISD::SETGT: {
4406 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4407 getI32Imm(31, dl) };
4408 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4409 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
4410 return true;
4411 }
4412 }
4413 }
4414 }
4415
4416 // Altivec Vector compare instructions do not set any CR register by default and
4417 // vector compare operations return the same type as the operands.
4418 if (!IsStrict && LHS.getValueType().isVector()) {
4419 if (Subtarget->hasSPE())
4420 return false;
4421
4422 EVT VecVT = LHS.getValueType();
4423 bool Swap, Negate;
4424 unsigned int VCmpInst =
4425 getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate);
4426 if (Swap)
4427 std::swap(LHS, RHS);
4428
4429 EVT ResVT = VecVT.changeVectorElementTypeToInteger();
4430 if (Negate) {
4431 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
4432 CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
4433 ResVT, VCmp, VCmp);
4434 return true;
4435 }
4436
4437 CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
4438 return true;
4439 }
4440
4441 if (Subtarget->useCRBits())
4442 return false;
4443
4444 bool Inv;
4445 unsigned Idx = getCRIdxForSetCC(CC, Inv);
4446 SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain);
4447 if (IsStrict)
4448 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1));
4449 SDValue IntCR;
4450
4451 // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
4452 // The correct compare instruction is already set by SelectCC()
4453 if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
4454 Idx = 1;
4455 }
4456
4457 // Force the ccreg into CR7.
4458 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
4459
4460 SDValue InFlag; // Null incoming flag value.
4461 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
4462 InFlag).getValue(1);
4463
4464 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
4465 CCReg), 0);
4466
4467 SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
4468 getI32Imm(31, dl), getI32Imm(31, dl) };
4469 if (!Inv) {
4470 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4471 return true;
4472 }
4473
4474 // Get the specified bit.
4475 SDValue Tmp =
4476 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4477 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
4478 return true;
4479 }
4480
4481 /// Does this node represent a load/store node whose address can be represented
4482 /// with a register plus an immediate that's a multiple of \p Val:
isOffsetMultipleOf(SDNode * N,unsigned Val) const4483 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
4484 LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
4485 StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
4486 MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N);
4487 SDValue AddrOp;
4488 if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT))
4489 AddrOp = N->getOperand(1);
4490 else if (STN)
4491 AddrOp = STN->getOperand(2);
4492
4493 // If the address points a frame object or a frame object with an offset,
4494 // we need to check the object alignment.
4495 short Imm = 0;
4496 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
4497 AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
4498 AddrOp)) {
4499 // If op0 is a frame index that is under aligned, we can't do it either,
4500 // because it is translated to r31 or r1 + slot + offset. We won't know the
4501 // slot number until the stack frame is finalized.
4502 const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
4503 unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value();
4504 if ((SlotAlign % Val) != 0)
4505 return false;
4506
4507 // If we have an offset, we need further check on the offset.
4508 if (AddrOp.getOpcode() != ISD::ADD)
4509 return true;
4510 }
4511
4512 if (AddrOp.getOpcode() == ISD::ADD)
4513 return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
4514
4515 // If the address comes from the outside, the offset will be zero.
4516 return AddrOp.getOpcode() == ISD::CopyFromReg;
4517 }
4518
transferMemOperands(SDNode * N,SDNode * Result)4519 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
4520 // Transfer memoperands.
4521 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
4522 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
4523 }
4524
mayUseP9Setb(SDNode * N,const ISD::CondCode & CC,SelectionDAG * DAG,bool & NeedSwapOps,bool & IsUnCmp)4525 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
4526 bool &NeedSwapOps, bool &IsUnCmp) {
4527
4528 assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.");
4529
4530 SDValue LHS = N->getOperand(0);
4531 SDValue RHS = N->getOperand(1);
4532 SDValue TrueRes = N->getOperand(2);
4533 SDValue FalseRes = N->getOperand(3);
4534 ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
4535 if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 &&
4536 N->getSimpleValueType(0) != MVT::i32))
4537 return false;
4538
4539 // We are looking for any of:
4540 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4541 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4542 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq)
4543 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq)
4544 int64_t TrueResVal = TrueConst->getSExtValue();
4545 if ((TrueResVal < -1 || TrueResVal > 1) ||
4546 (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) ||
4547 (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) ||
4548 (TrueResVal == 0 &&
4549 (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ)))
4550 return false;
4551
4552 SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC
4553 ? FalseRes
4554 : FalseRes.getOperand(0);
4555 bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC;
4556 if (SetOrSelCC.getOpcode() != ISD::SETCC &&
4557 SetOrSelCC.getOpcode() != ISD::SELECT_CC)
4558 return false;
4559
4560 // Without this setb optimization, the outer SELECT_CC will be manually
4561 // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass
4562 // transforms pseudo instruction to isel instruction. When there are more than
4563 // one use for result like zext/sext, with current optimization we only see
4564 // isel is replaced by setb but can't see any significant gain. Since
4565 // setb has longer latency than original isel, we should avoid this. Another
4566 // point is that setb requires comparison always kept, it can break the
4567 // opportunity to get the comparison away if we have in future.
4568 if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse()))
4569 return false;
4570
4571 SDValue InnerLHS = SetOrSelCC.getOperand(0);
4572 SDValue InnerRHS = SetOrSelCC.getOperand(1);
4573 ISD::CondCode InnerCC =
4574 cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get();
4575 // If the inner comparison is a select_cc, make sure the true/false values are
4576 // 1/-1 and canonicalize it if needed.
4577 if (InnerIsSel) {
4578 ConstantSDNode *SelCCTrueConst =
4579 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2));
4580 ConstantSDNode *SelCCFalseConst =
4581 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3));
4582 if (!SelCCTrueConst || !SelCCFalseConst)
4583 return false;
4584 int64_t SelCCTVal = SelCCTrueConst->getSExtValue();
4585 int64_t SelCCFVal = SelCCFalseConst->getSExtValue();
4586 // The values must be -1/1 (requiring a swap) or 1/-1.
4587 if (SelCCTVal == -1 && SelCCFVal == 1) {
4588 std::swap(InnerLHS, InnerRHS);
4589 } else if (SelCCTVal != 1 || SelCCFVal != -1)
4590 return false;
4591 }
4592
4593 // Canonicalize unsigned case
4594 if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) {
4595 IsUnCmp = true;
4596 InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT;
4597 }
4598
4599 bool InnerSwapped = false;
4600 if (LHS == InnerRHS && RHS == InnerLHS)
4601 InnerSwapped = true;
4602 else if (LHS != InnerLHS || RHS != InnerRHS)
4603 return false;
4604
4605 switch (CC) {
4606 // (select_cc lhs, rhs, 0, \
4607 // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq)
4608 case ISD::SETEQ:
4609 if (!InnerIsSel)
4610 return false;
4611 if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT)
4612 return false;
4613 NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped;
4614 break;
4615
4616 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4617 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt)
4618 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt)
4619 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4620 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt)
4621 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt)
4622 case ISD::SETULT:
4623 if (!IsUnCmp && InnerCC != ISD::SETNE)
4624 return false;
4625 IsUnCmp = true;
4626 [[fallthrough]];
4627 case ISD::SETLT:
4628 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) ||
4629 (InnerCC == ISD::SETLT && InnerSwapped))
4630 NeedSwapOps = (TrueResVal == 1);
4631 else
4632 return false;
4633 break;
4634
4635 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4636 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt)
4637 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt)
4638 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4639 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt)
4640 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt)
4641 case ISD::SETUGT:
4642 if (!IsUnCmp && InnerCC != ISD::SETNE)
4643 return false;
4644 IsUnCmp = true;
4645 [[fallthrough]];
4646 case ISD::SETGT:
4647 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) ||
4648 (InnerCC == ISD::SETGT && InnerSwapped))
4649 NeedSwapOps = (TrueResVal == -1);
4650 else
4651 return false;
4652 break;
4653
4654 default:
4655 return false;
4656 }
4657
4658 LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ");
4659 LLVM_DEBUG(N->dump());
4660
4661 return true;
4662 }
4663
4664 // Return true if it's a software square-root/divide operand.
isSWTestOp(SDValue N)4665 static bool isSWTestOp(SDValue N) {
4666 if (N.getOpcode() == PPCISD::FTSQRT)
4667 return true;
4668 if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)) ||
4669 N.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
4670 return false;
4671 switch (N.getConstantOperandVal(0)) {
4672 case Intrinsic::ppc_vsx_xvtdivdp:
4673 case Intrinsic::ppc_vsx_xvtdivsp:
4674 case Intrinsic::ppc_vsx_xvtsqrtdp:
4675 case Intrinsic::ppc_vsx_xvtsqrtsp:
4676 return true;
4677 }
4678 return false;
4679 }
4680
tryFoldSWTestBRCC(SDNode * N)4681 bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) {
4682 assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected.");
4683 // We are looking for following patterns, where `truncate to i1` actually has
4684 // the same semantic with `and 1`.
4685 // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp)
4686 // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp)
4687 // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp)
4688 // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp)
4689 // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp)
4690 // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp)
4691 // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp)
4692 // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp)
4693 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4694 if (CC != ISD::SETEQ && CC != ISD::SETNE)
4695 return false;
4696
4697 SDValue CmpRHS = N->getOperand(3);
4698 if (!isa<ConstantSDNode>(CmpRHS) ||
4699 cast<ConstantSDNode>(CmpRHS)->getSExtValue() != 0)
4700 return false;
4701
4702 SDValue CmpLHS = N->getOperand(2);
4703 if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0)))
4704 return false;
4705
4706 unsigned PCC = 0;
4707 bool IsCCNE = CC == ISD::SETNE;
4708 if (CmpLHS.getOpcode() == ISD::AND &&
4709 isa<ConstantSDNode>(CmpLHS.getOperand(1)))
4710 switch (CmpLHS.getConstantOperandVal(1)) {
4711 case 1:
4712 PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4713 break;
4714 case 2:
4715 PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE;
4716 break;
4717 case 4:
4718 PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE;
4719 break;
4720 case 8:
4721 PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE;
4722 break;
4723 default:
4724 return false;
4725 }
4726 else if (CmpLHS.getOpcode() == ISD::TRUNCATE &&
4727 CmpLHS.getValueType() == MVT::i1)
4728 PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4729
4730 if (PCC) {
4731 SDLoc dl(N);
4732 SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4),
4733 N->getOperand(0)};
4734 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
4735 return true;
4736 }
4737 return false;
4738 }
4739
trySelectLoopCountIntrinsic(SDNode * N)4740 bool PPCDAGToDAGISel::trySelectLoopCountIntrinsic(SDNode *N) {
4741 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
4742 // value, for example when crbits is disabled. If so, select the
4743 // loop_decrement intrinsics now.
4744 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4745 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4746
4747 if (LHS.getOpcode() != ISD::AND || !isa<ConstantSDNode>(LHS.getOperand(1)) ||
4748 isNullConstant(LHS.getOperand(1)))
4749 return false;
4750
4751 if (LHS.getOperand(0).getOpcode() != ISD::INTRINSIC_W_CHAIN ||
4752 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() !=
4753 Intrinsic::loop_decrement)
4754 return false;
4755
4756 if (!isa<ConstantSDNode>(RHS))
4757 return false;
4758
4759 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
4760 "Counter decrement comparison is not EQ or NE");
4761
4762 SDValue OldDecrement = LHS.getOperand(0);
4763 assert(OldDecrement.hasOneUse() && "loop decrement has more than one use!");
4764
4765 SDLoc DecrementLoc(OldDecrement);
4766 SDValue ChainInput = OldDecrement.getOperand(0);
4767 SDValue DecrementOps[] = {Subtarget->isPPC64() ? getI64Imm(1, DecrementLoc)
4768 : getI32Imm(1, DecrementLoc)};
4769 unsigned DecrementOpcode =
4770 Subtarget->isPPC64() ? PPC::DecreaseCTR8loop : PPC::DecreaseCTRloop;
4771 SDNode *NewDecrement = CurDAG->getMachineNode(DecrementOpcode, DecrementLoc,
4772 MVT::i1, DecrementOps);
4773
4774 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
4775 bool IsBranchOnTrue = (CC == ISD::SETEQ && Val) || (CC == ISD::SETNE && !Val);
4776 unsigned Opcode = IsBranchOnTrue ? PPC::BC : PPC::BCn;
4777
4778 ReplaceUses(LHS.getValue(0), LHS.getOperand(1));
4779 CurDAG->RemoveDeadNode(LHS.getNode());
4780
4781 // Mark the old loop_decrement intrinsic as dead.
4782 ReplaceUses(OldDecrement.getValue(1), ChainInput);
4783 CurDAG->RemoveDeadNode(OldDecrement.getNode());
4784
4785 SDValue Chain = CurDAG->getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
4786 ChainInput, N->getOperand(0));
4787
4788 CurDAG->SelectNodeTo(N, Opcode, MVT::Other, SDValue(NewDecrement, 0),
4789 N->getOperand(4), Chain);
4790 return true;
4791 }
4792
tryAsSingleRLWINM(SDNode * N)4793 bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) {
4794 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4795 unsigned Imm;
4796 if (!isInt32Immediate(N->getOperand(1), Imm))
4797 return false;
4798
4799 SDLoc dl(N);
4800 SDValue Val = N->getOperand(0);
4801 unsigned SH, MB, ME;
4802 // If this is an and of a value rotated between 0 and 31 bits and then and'd
4803 // with a mask, emit rlwinm
4804 if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) {
4805 Val = Val.getOperand(0);
4806 SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
4807 getI32Imm(ME, dl)};
4808 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4809 return true;
4810 }
4811
4812 // If this is just a masked value where the input is not handled, and
4813 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
4814 if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) {
4815 SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl),
4816 getI32Imm(ME, dl)};
4817 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4818 return true;
4819 }
4820
4821 // AND X, 0 -> 0, not "rlwinm 32".
4822 if (Imm == 0) {
4823 ReplaceUses(SDValue(N, 0), N->getOperand(1));
4824 return true;
4825 }
4826
4827 return false;
4828 }
4829
tryAsSingleRLWINM8(SDNode * N)4830 bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) {
4831 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4832 uint64_t Imm64;
4833 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4834 return false;
4835
4836 unsigned MB, ME;
4837 if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) {
4838 // MB ME
4839 // +----------------------+
4840 // |xxxxxxxxxxx00011111000|
4841 // +----------------------+
4842 // 0 32 64
4843 // We can only do it if the MB is larger than 32 and MB <= ME
4844 // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even
4845 // we didn't rotate it.
4846 SDLoc dl(N);
4847 SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl),
4848 getI64Imm(ME - 32, dl)};
4849 CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops);
4850 return true;
4851 }
4852
4853 return false;
4854 }
4855
tryAsPairOfRLDICL(SDNode * N)4856 bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) {
4857 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4858 uint64_t Imm64;
4859 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4860 return false;
4861
4862 // Do nothing if it is 16-bit imm as the pattern in the .td file handle
4863 // it well with "andi.".
4864 if (isUInt<16>(Imm64))
4865 return false;
4866
4867 SDLoc Loc(N);
4868 SDValue Val = N->getOperand(0);
4869
4870 // Optimized with two rldicl's as follows:
4871 // Add missing bits on left to the mask and check that the mask is a
4872 // wrapped run of ones, i.e.
4873 // Change pattern |0001111100000011111111|
4874 // to |1111111100000011111111|.
4875 unsigned NumOfLeadingZeros = countLeadingZeros(Imm64);
4876 if (NumOfLeadingZeros != 0)
4877 Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros);
4878
4879 unsigned MB, ME;
4880 if (!isRunOfOnes64(Imm64, MB, ME))
4881 return false;
4882
4883 // ME MB MB-ME+63
4884 // +----------------------+ +----------------------+
4885 // |1111111100000011111111| -> |0000001111111111111111|
4886 // +----------------------+ +----------------------+
4887 // 0 63 0 63
4888 // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between.
4889 unsigned OnesOnLeft = ME + 1;
4890 unsigned ZerosInBetween = (MB - ME + 63) & 63;
4891 // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear
4892 // on the left the bits that are already zeros in the mask.
4893 Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val,
4894 getI64Imm(OnesOnLeft, Loc),
4895 getI64Imm(ZerosInBetween, Loc)),
4896 0);
4897 // MB-ME+63 ME MB
4898 // +----------------------+ +----------------------+
4899 // |0000001111111111111111| -> |0001111100000011111111|
4900 // +----------------------+ +----------------------+
4901 // 0 63 0 63
4902 // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the
4903 // left the number of ones we previously added.
4904 SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc),
4905 getI64Imm(NumOfLeadingZeros, Loc)};
4906 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4907 return true;
4908 }
4909
tryAsSingleRLWIMI(SDNode * N)4910 bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) {
4911 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4912 unsigned Imm;
4913 if (!isInt32Immediate(N->getOperand(1), Imm))
4914 return false;
4915
4916 SDValue Val = N->getOperand(0);
4917 unsigned Imm2;
4918 // ISD::OR doesn't get all the bitfield insertion fun.
4919 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
4920 // bitfield insert.
4921 if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2))
4922 return false;
4923
4924 // The idea here is to check whether this is equivalent to:
4925 // (c1 & m) | (x & ~m)
4926 // where m is a run-of-ones mask. The logic here is that, for each bit in
4927 // c1 and c2:
4928 // - if both are 1, then the output will be 1.
4929 // - if both are 0, then the output will be 0.
4930 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
4931 // come from x.
4932 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
4933 // be 0.
4934 // If that last condition is never the case, then we can form m from the
4935 // bits that are the same between c1 and c2.
4936 unsigned MB, ME;
4937 if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) {
4938 SDLoc dl(N);
4939 SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl),
4940 getI32Imm(MB, dl), getI32Imm(ME, dl)};
4941 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
4942 return true;
4943 }
4944
4945 return false;
4946 }
4947
tryAsSingleRLDICL(SDNode * N)4948 bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) {
4949 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4950 uint64_t Imm64;
4951 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
4952 return false;
4953
4954 // If this is a 64-bit zero-extension mask, emit rldicl.
4955 unsigned MB = 64 - countTrailingOnes(Imm64);
4956 unsigned SH = 0;
4957 unsigned Imm;
4958 SDValue Val = N->getOperand(0);
4959 SDLoc dl(N);
4960
4961 if (Val.getOpcode() == ISD::ANY_EXTEND) {
4962 auto Op0 = Val.getOperand(0);
4963 if (Op0.getOpcode() == ISD::SRL &&
4964 isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
4965
4966 auto ResultType = Val.getNode()->getValueType(0);
4967 auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType);
4968 SDValue IDVal(ImDef, 0);
4969
4970 Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType,
4971 IDVal, Op0.getOperand(0),
4972 getI32Imm(1, dl)),
4973 0);
4974 SH = 64 - Imm;
4975 }
4976 }
4977
4978 // If the operand is a logical right shift, we can fold it into this
4979 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
4980 // for n <= mb. The right shift is really a left rotate followed by a
4981 // mask, and this mask is a more-restrictive sub-mask of the mask implied
4982 // by the shift.
4983 if (Val.getOpcode() == ISD::SRL &&
4984 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
4985 assert(Imm < 64 && "Illegal shift amount");
4986 Val = Val.getOperand(0);
4987 SH = 64 - Imm;
4988 }
4989
4990 SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)};
4991 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4992 return true;
4993 }
4994
tryAsSingleRLDICR(SDNode * N)4995 bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) {
4996 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4997 uint64_t Imm64;
4998 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
4999 !isMask_64(~Imm64))
5000 return false;
5001
5002 // If this is a negated 64-bit zero-extension mask,
5003 // i.e. the immediate is a sequence of ones from most significant side
5004 // and all zero for reminder, we should use rldicr.
5005 unsigned MB = 63 - countTrailingOnes(~Imm64);
5006 unsigned SH = 0;
5007 SDLoc dl(N);
5008 SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)};
5009 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
5010 return true;
5011 }
5012
tryAsSingleRLDIMI(SDNode * N)5013 bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) {
5014 assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected");
5015 uint64_t Imm64;
5016 unsigned MB, ME;
5017 SDValue N0 = N->getOperand(0);
5018
5019 // We won't get fewer instructions if the imm is 32-bit integer.
5020 // rldimi requires the imm to have consecutive ones with both sides zero.
5021 // Also, make sure the first Op has only one use, otherwise this may increase
5022 // register pressure since rldimi is destructive.
5023 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
5024 isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse())
5025 return false;
5026
5027 unsigned SH = 63 - ME;
5028 SDLoc Dl(N);
5029 // Use select64Imm for making LI instr instead of directly putting Imm64
5030 SDValue Ops[] = {
5031 N->getOperand(0),
5032 SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0),
5033 getI32Imm(SH, Dl), getI32Imm(MB, Dl)};
5034 CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops);
5035 return true;
5036 }
5037
5038 // Select - Convert the specified operand from a target-independent to a
5039 // target-specific node if it hasn't already been changed.
Select(SDNode * N)5040 void PPCDAGToDAGISel::Select(SDNode *N) {
5041 SDLoc dl(N);
5042 if (N->isMachineOpcode()) {
5043 N->setNodeId(-1);
5044 return; // Already selected.
5045 }
5046
5047 // In case any misguided DAG-level optimizations form an ADD with a
5048 // TargetConstant operand, crash here instead of miscompiling (by selecting
5049 // an r+r add instead of some kind of r+i add).
5050 if (N->getOpcode() == ISD::ADD &&
5051 N->getOperand(1).getOpcode() == ISD::TargetConstant)
5052 llvm_unreachable("Invalid ADD with TargetConstant operand");
5053
5054 // Try matching complex bit permutations before doing anything else.
5055 if (tryBitPermutation(N))
5056 return;
5057
5058 // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
5059 if (tryIntCompareInGPR(N))
5060 return;
5061
5062 switch (N->getOpcode()) {
5063 default: break;
5064
5065 case ISD::Constant:
5066 if (N->getValueType(0) == MVT::i64) {
5067 ReplaceNode(N, selectI64Imm(CurDAG, N));
5068 return;
5069 }
5070 break;
5071
5072 case ISD::INTRINSIC_VOID: {
5073 auto IntrinsicID = N->getConstantOperandVal(1);
5074 if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw &&
5075 IntrinsicID != Intrinsic::ppc_trapd &&
5076 IntrinsicID != Intrinsic::ppc_trap)
5077 break;
5078 unsigned Opcode = (IntrinsicID == Intrinsic::ppc_tdw ||
5079 IntrinsicID == Intrinsic::ppc_trapd)
5080 ? PPC::TDI
5081 : PPC::TWI;
5082 SmallVector<SDValue, 4> OpsWithMD;
5083 unsigned MDIndex;
5084 if (IntrinsicID == Intrinsic::ppc_tdw ||
5085 IntrinsicID == Intrinsic::ppc_tw) {
5086 SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)};
5087 int16_t SImmOperand2;
5088 int16_t SImmOperand3;
5089 int16_t SImmOperand4;
5090 bool isOperand2IntS16Immediate =
5091 isIntS16Immediate(N->getOperand(2), SImmOperand2);
5092 bool isOperand3IntS16Immediate =
5093 isIntS16Immediate(N->getOperand(3), SImmOperand3);
5094 // We will emit PPC::TD or PPC::TW if the 2nd and 3rd operands are reg +
5095 // reg or imm + imm. The imm + imm form will be optimized to either an
5096 // unconditional trap or a nop in a later pass.
5097 if (isOperand2IntS16Immediate == isOperand3IntS16Immediate)
5098 Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW;
5099 else if (isOperand3IntS16Immediate)
5100 // The 2nd and 3rd operands are reg + imm.
5101 Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl);
5102 else {
5103 // The 2nd and 3rd operands are imm + reg.
5104 bool isOperand4IntS16Immediate =
5105 isIntS16Immediate(N->getOperand(4), SImmOperand4);
5106 (void)isOperand4IntS16Immediate;
5107 assert(isOperand4IntS16Immediate &&
5108 "The 4th operand is not an Immediate");
5109 // We need to flip the condition immediate TO.
5110 int16_t TO = int(SImmOperand4) & 0x1F;
5111 // We swap the first and second bit of TO if they are not same.
5112 if ((TO & 0x1) != ((TO & 0x2) >> 1))
5113 TO = (TO & 0x1) ? TO + 1 : TO - 1;
5114 // We swap the fourth and fifth bit of TO if they are not same.
5115 if ((TO & 0x8) != ((TO & 0x10) >> 1))
5116 TO = (TO & 0x8) ? TO + 8 : TO - 8;
5117 Ops[0] = getI32Imm(TO, dl);
5118 Ops[1] = N->getOperand(3);
5119 Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl);
5120 }
5121 OpsWithMD = {Ops[0], Ops[1], Ops[2]};
5122 MDIndex = 5;
5123 } else {
5124 OpsWithMD = {getI32Imm(24, dl), N->getOperand(2), getI32Imm(0, dl)};
5125 MDIndex = 3;
5126 }
5127
5128 if (N->getNumOperands() > MDIndex) {
5129 SDValue MDV = N->getOperand(MDIndex);
5130 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
5131 assert(MD->getNumOperands() != 0 && "Empty MDNode in operands!");
5132 assert((isa<MDString>(MD->getOperand(0)) && cast<MDString>(
5133 MD->getOperand(0))->getString().equals("ppc-trap-reason"))
5134 && "Unsupported annotation data type!");
5135 for (unsigned i = 1; i < MD->getNumOperands(); i++) {
5136 assert(isa<MDString>(MD->getOperand(i)) &&
5137 "Invalid data type for annotation ppc-trap-reason!");
5138 OpsWithMD.push_back(
5139 getI32Imm(std::stoi(cast<MDString>(
5140 MD->getOperand(i))->getString().str()), dl));
5141 }
5142 }
5143 OpsWithMD.push_back(N->getOperand(0)); // chain
5144 CurDAG->SelectNodeTo(N, Opcode, MVT::Other, OpsWithMD);
5145 return;
5146 }
5147
5148 case ISD::INTRINSIC_WO_CHAIN: {
5149 // We emit the PPC::FSELS instruction here because of type conflicts with
5150 // the comparison operand. The FSELS instruction is defined to use an 8-byte
5151 // comparison like the FSELD version. The fsels intrinsic takes a 4-byte
5152 // value for the comparison. When selecting through a .td file, a type
5153 // error is raised. Must check this first so we never break on the
5154 // !Subtarget->isISA3_1() check.
5155 auto IntID = N->getConstantOperandVal(0);
5156 if (IntID == Intrinsic::ppc_fsels) {
5157 SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)};
5158 CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops);
5159 return;
5160 }
5161
5162 if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) {
5163 auto Pred = N->getConstantOperandVal(1);
5164 unsigned Opcode =
5165 IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec;
5166 unsigned SubReg = 0;
5167 unsigned ShiftVal = 0;
5168 bool Reverse = false;
5169 switch (Pred) {
5170 case 0:
5171 SubReg = PPC::sub_eq;
5172 ShiftVal = 1;
5173 break;
5174 case 1:
5175 SubReg = PPC::sub_eq;
5176 ShiftVal = 1;
5177 Reverse = true;
5178 break;
5179 case 2:
5180 SubReg = PPC::sub_lt;
5181 ShiftVal = 3;
5182 break;
5183 case 3:
5184 SubReg = PPC::sub_lt;
5185 ShiftVal = 3;
5186 Reverse = true;
5187 break;
5188 case 4:
5189 SubReg = PPC::sub_gt;
5190 ShiftVal = 2;
5191 break;
5192 case 5:
5193 SubReg = PPC::sub_gt;
5194 ShiftVal = 2;
5195 Reverse = true;
5196 break;
5197 case 6:
5198 SubReg = PPC::sub_un;
5199 break;
5200 case 7:
5201 SubReg = PPC::sub_un;
5202 Reverse = true;
5203 break;
5204 }
5205
5206 EVT VTs[] = {MVT::v16i8, MVT::Glue};
5207 SDValue Ops[] = {N->getOperand(2), N->getOperand(3),
5208 CurDAG->getTargetConstant(0, dl, MVT::i32)};
5209 SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0);
5210 SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5211 // On Power10, we can use SETBC[R]. On prior architectures, we have to use
5212 // MFOCRF and shift/negate the value.
5213 if (Subtarget->isISA3_1()) {
5214 SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32);
5215 SDValue CRBit = SDValue(
5216 CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5217 CR6Reg, SubRegIdx, BCDOp.getValue(1)),
5218 0);
5219 CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32,
5220 CRBit);
5221 } else {
5222 SDValue Move =
5223 SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg,
5224 BCDOp.getValue(1)),
5225 0);
5226 SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl),
5227 getI32Imm(31, dl), getI32Imm(31, dl)};
5228 if (!Reverse)
5229 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5230 else {
5231 SDValue Shift = SDValue(
5232 CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
5233 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl));
5234 }
5235 }
5236 return;
5237 }
5238
5239 if (!Subtarget->isISA3_1())
5240 break;
5241 unsigned Opcode = 0;
5242 switch (IntID) {
5243 default:
5244 break;
5245 case Intrinsic::ppc_altivec_vstribr_p:
5246 Opcode = PPC::VSTRIBR_rec;
5247 break;
5248 case Intrinsic::ppc_altivec_vstribl_p:
5249 Opcode = PPC::VSTRIBL_rec;
5250 break;
5251 case Intrinsic::ppc_altivec_vstrihr_p:
5252 Opcode = PPC::VSTRIHR_rec;
5253 break;
5254 case Intrinsic::ppc_altivec_vstrihl_p:
5255 Opcode = PPC::VSTRIHL_rec;
5256 break;
5257 }
5258 if (!Opcode)
5259 break;
5260
5261 // Generate the appropriate vector string isolate intrinsic to match.
5262 EVT VTs[] = {MVT::v16i8, MVT::Glue};
5263 SDValue VecStrOp =
5264 SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0);
5265 // Vector string isolate instructions update the EQ bit of CR6.
5266 // Generate a SETBC instruction to extract the bit and place it in a GPR.
5267 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32);
5268 SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5269 SDValue CRBit = SDValue(
5270 CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5271 CR6Reg, SubRegIdx, VecStrOp.getValue(1)),
5272 0);
5273 CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit);
5274 return;
5275 }
5276
5277 case ISD::SETCC:
5278 case ISD::STRICT_FSETCC:
5279 case ISD::STRICT_FSETCCS:
5280 if (trySETCC(N))
5281 return;
5282 break;
5283 // These nodes will be transformed into GETtlsADDR32 node, which
5284 // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT
5285 case PPCISD::ADDI_TLSLD_L_ADDR:
5286 case PPCISD::ADDI_TLSGD_L_ADDR: {
5287 const Module *Mod = MF->getFunction().getParent();
5288 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5289 !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() ||
5290 Mod->getPICLevel() == PICLevel::SmallPIC)
5291 break;
5292 // Attach global base pointer on GETtlsADDR32 node in order to
5293 // generate secure plt code for TLS symbols.
5294 getGlobalBaseReg();
5295 } break;
5296 case PPCISD::CALL:
5297 case PPCISD::CALL_RM: {
5298 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5299 !TM.isPositionIndependent() || !Subtarget->isSecurePlt() ||
5300 !Subtarget->isTargetELF())
5301 break;
5302
5303 SDValue Op = N->getOperand(1);
5304
5305 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5306 if (GA->getTargetFlags() == PPCII::MO_PLT)
5307 getGlobalBaseReg();
5308 }
5309 else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
5310 if (ES->getTargetFlags() == PPCII::MO_PLT)
5311 getGlobalBaseReg();
5312 }
5313 }
5314 break;
5315
5316 case PPCISD::GlobalBaseReg:
5317 ReplaceNode(N, getGlobalBaseReg());
5318 return;
5319
5320 case ISD::FrameIndex:
5321 selectFrameIndex(N, N);
5322 return;
5323
5324 case PPCISD::MFOCRF: {
5325 SDValue InFlag = N->getOperand(1);
5326 ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
5327 N->getOperand(0), InFlag));
5328 return;
5329 }
5330
5331 case PPCISD::READ_TIME_BASE:
5332 ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
5333 MVT::Other, N->getOperand(0)));
5334 return;
5335
5336 case PPCISD::SRA_ADDZE: {
5337 SDValue N0 = N->getOperand(0);
5338 SDValue ShiftAmt =
5339 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
5340 getConstantIntValue(), dl,
5341 N->getValueType(0));
5342 if (N->getValueType(0) == MVT::i64) {
5343 SDNode *Op =
5344 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
5345 N0, ShiftAmt);
5346 CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
5347 SDValue(Op, 1));
5348 return;
5349 } else {
5350 assert(N->getValueType(0) == MVT::i32 &&
5351 "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
5352 SDNode *Op =
5353 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
5354 N0, ShiftAmt);
5355 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
5356 SDValue(Op, 1));
5357 return;
5358 }
5359 }
5360
5361 case ISD::STORE: {
5362 // Change TLS initial-exec D-form stores to X-form stores.
5363 StoreSDNode *ST = cast<StoreSDNode>(N);
5364 if (EnableTLSOpt && Subtarget->isELFv2ABI() &&
5365 ST->getAddressingMode() != ISD::PRE_INC)
5366 if (tryTLSXFormStore(ST))
5367 return;
5368 break;
5369 }
5370 case ISD::LOAD: {
5371 // Handle preincrement loads.
5372 LoadSDNode *LD = cast<LoadSDNode>(N);
5373 EVT LoadedVT = LD->getMemoryVT();
5374
5375 // Normal loads are handled by code generated from the .td file.
5376 if (LD->getAddressingMode() != ISD::PRE_INC) {
5377 // Change TLS initial-exec D-form loads to X-form loads.
5378 if (EnableTLSOpt && Subtarget->isELFv2ABI())
5379 if (tryTLSXFormLoad(LD))
5380 return;
5381 break;
5382 }
5383
5384 SDValue Offset = LD->getOffset();
5385 if (Offset.getOpcode() == ISD::TargetConstant ||
5386 Offset.getOpcode() == ISD::TargetGlobalAddress) {
5387
5388 unsigned Opcode;
5389 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5390 if (LD->getValueType(0) != MVT::i64) {
5391 // Handle PPC32 integer and normal FP loads.
5392 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5393 switch (LoadedVT.getSimpleVT().SimpleTy) {
5394 default: llvm_unreachable("Invalid PPC load type!");
5395 case MVT::f64: Opcode = PPC::LFDU; break;
5396 case MVT::f32: Opcode = PPC::LFSU; break;
5397 case MVT::i32: Opcode = PPC::LWZU; break;
5398 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
5399 case MVT::i1:
5400 case MVT::i8: Opcode = PPC::LBZU; break;
5401 }
5402 } else {
5403 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5404 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5405 switch (LoadedVT.getSimpleVT().SimpleTy) {
5406 default: llvm_unreachable("Invalid PPC load type!");
5407 case MVT::i64: Opcode = PPC::LDU; break;
5408 case MVT::i32: Opcode = PPC::LWZU8; break;
5409 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
5410 case MVT::i1:
5411 case MVT::i8: Opcode = PPC::LBZU8; break;
5412 }
5413 }
5414
5415 SDValue Chain = LD->getChain();
5416 SDValue Base = LD->getBasePtr();
5417 SDValue Ops[] = { Offset, Base, Chain };
5418 SDNode *MN = CurDAG->getMachineNode(
5419 Opcode, dl, LD->getValueType(0),
5420 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5421 transferMemOperands(N, MN);
5422 ReplaceNode(N, MN);
5423 return;
5424 } else {
5425 unsigned Opcode;
5426 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5427 if (LD->getValueType(0) != MVT::i64) {
5428 // Handle PPC32 integer and normal FP loads.
5429 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5430 switch (LoadedVT.getSimpleVT().SimpleTy) {
5431 default: llvm_unreachable("Invalid PPC load type!");
5432 case MVT::f64: Opcode = PPC::LFDUX; break;
5433 case MVT::f32: Opcode = PPC::LFSUX; break;
5434 case MVT::i32: Opcode = PPC::LWZUX; break;
5435 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
5436 case MVT::i1:
5437 case MVT::i8: Opcode = PPC::LBZUX; break;
5438 }
5439 } else {
5440 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5441 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
5442 "Invalid sext update load");
5443 switch (LoadedVT.getSimpleVT().SimpleTy) {
5444 default: llvm_unreachable("Invalid PPC load type!");
5445 case MVT::i64: Opcode = PPC::LDUX; break;
5446 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break;
5447 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
5448 case MVT::i1:
5449 case MVT::i8: Opcode = PPC::LBZUX8; break;
5450 }
5451 }
5452
5453 SDValue Chain = LD->getChain();
5454 SDValue Base = LD->getBasePtr();
5455 SDValue Ops[] = { Base, Offset, Chain };
5456 SDNode *MN = CurDAG->getMachineNode(
5457 Opcode, dl, LD->getValueType(0),
5458 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5459 transferMemOperands(N, MN);
5460 ReplaceNode(N, MN);
5461 return;
5462 }
5463 }
5464
5465 case ISD::AND:
5466 // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr
5467 if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) ||
5468 tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N))
5469 return;
5470
5471 // Other cases are autogenerated.
5472 break;
5473 case ISD::OR: {
5474 if (N->getValueType(0) == MVT::i32)
5475 if (tryBitfieldInsert(N))
5476 return;
5477
5478 int16_t Imm;
5479 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5480 isIntS16Immediate(N->getOperand(1), Imm)) {
5481 KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0));
5482
5483 // If this is equivalent to an add, then we can fold it with the
5484 // FrameIndex calculation.
5485 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
5486 selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
5487 return;
5488 }
5489 }
5490
5491 // If this is 'or' against an imm with consecutive ones and both sides zero,
5492 // try to emit rldimi
5493 if (tryAsSingleRLDIMI(N))
5494 return;
5495
5496 // OR with a 32-bit immediate can be handled by ori + oris
5497 // without creating an immediate in a GPR.
5498 uint64_t Imm64 = 0;
5499 bool IsPPC64 = Subtarget->isPPC64();
5500 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5501 (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5502 // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
5503 uint64_t ImmHi = Imm64 >> 16;
5504 uint64_t ImmLo = Imm64 & 0xFFFF;
5505 if (ImmHi != 0 && ImmLo != 0) {
5506 SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
5507 N->getOperand(0),
5508 getI16Imm(ImmLo, dl));
5509 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5510 CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
5511 return;
5512 }
5513 }
5514
5515 // Other cases are autogenerated.
5516 break;
5517 }
5518 case ISD::XOR: {
5519 // XOR with a 32-bit immediate can be handled by xori + xoris
5520 // without creating an immediate in a GPR.
5521 uint64_t Imm64 = 0;
5522 bool IsPPC64 = Subtarget->isPPC64();
5523 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5524 (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5525 // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
5526 uint64_t ImmHi = Imm64 >> 16;
5527 uint64_t ImmLo = Imm64 & 0xFFFF;
5528 if (ImmHi != 0 && ImmLo != 0) {
5529 SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
5530 N->getOperand(0),
5531 getI16Imm(ImmLo, dl));
5532 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5533 CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
5534 return;
5535 }
5536 }
5537
5538 break;
5539 }
5540 case ISD::ADD: {
5541 int16_t Imm;
5542 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5543 isIntS16Immediate(N->getOperand(1), Imm)) {
5544 selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
5545 return;
5546 }
5547
5548 break;
5549 }
5550 case ISD::SHL: {
5551 unsigned Imm, SH, MB, ME;
5552 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5553 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5554 SDValue Ops[] = { N->getOperand(0).getOperand(0),
5555 getI32Imm(SH, dl), getI32Imm(MB, dl),
5556 getI32Imm(ME, dl) };
5557 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5558 return;
5559 }
5560
5561 // Other cases are autogenerated.
5562 break;
5563 }
5564 case ISD::SRL: {
5565 unsigned Imm, SH, MB, ME;
5566 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5567 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5568 SDValue Ops[] = { N->getOperand(0).getOperand(0),
5569 getI32Imm(SH, dl), getI32Imm(MB, dl),
5570 getI32Imm(ME, dl) };
5571 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5572 return;
5573 }
5574
5575 // Other cases are autogenerated.
5576 break;
5577 }
5578 case ISD::MUL: {
5579 SDValue Op1 = N->getOperand(1);
5580 if (Op1.getOpcode() != ISD::Constant ||
5581 (Op1.getValueType() != MVT::i64 && Op1.getValueType() != MVT::i32))
5582 break;
5583
5584 // If the multiplier fits int16, we can handle it with mulli.
5585 int64_t Imm = cast<ConstantSDNode>(Op1)->getZExtValue();
5586 unsigned Shift = countTrailingZeros<uint64_t>(Imm);
5587 if (isInt<16>(Imm) || !Shift)
5588 break;
5589
5590 // If the shifted value fits int16, we can do this transformation:
5591 // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to
5592 // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2).
5593 uint64_t ImmSh = Imm >> Shift;
5594 if (!isInt<16>(ImmSh))
5595 break;
5596
5597 uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16);
5598 if (Op1.getValueType() == MVT::i64) {
5599 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
5600 SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64,
5601 N->getOperand(0), SDImm);
5602
5603 SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
5604 getI32Imm(63 - Shift, dl)};
5605 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
5606 return;
5607 } else {
5608 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i32);
5609 SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI, dl, MVT::i32,
5610 N->getOperand(0), SDImm);
5611
5612 SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
5613 getI32Imm(0, dl), getI32Imm(31 - Shift, dl)};
5614 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5615 return;
5616 }
5617 break;
5618 }
5619 // FIXME: Remove this once the ANDI glue bug is fixed:
5620 case PPCISD::ANDI_rec_1_EQ_BIT:
5621 case PPCISD::ANDI_rec_1_GT_BIT: {
5622 if (!ANDIGlueBug)
5623 break;
5624
5625 EVT InVT = N->getOperand(0).getValueType();
5626 assert((InVT == MVT::i64 || InVT == MVT::i32) &&
5627 "Invalid input type for ANDI_rec_1_EQ_BIT");
5628
5629 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec;
5630 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
5631 N->getOperand(0),
5632 CurDAG->getTargetConstant(1, dl, InVT)),
5633 0);
5634 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
5635 SDValue SRIdxVal = CurDAG->getTargetConstant(
5636 N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt,
5637 dl, MVT::i32);
5638
5639 CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
5640 SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
5641 return;
5642 }
5643 case ISD::SELECT_CC: {
5644 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
5645 EVT PtrVT =
5646 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
5647 bool isPPC64 = (PtrVT == MVT::i64);
5648
5649 // If this is a select of i1 operands, we'll pattern match it.
5650 if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1)
5651 break;
5652
5653 if (Subtarget->isISA3_0() && Subtarget->isPPC64()) {
5654 bool NeedSwapOps = false;
5655 bool IsUnCmp = false;
5656 if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) {
5657 SDValue LHS = N->getOperand(0);
5658 SDValue RHS = N->getOperand(1);
5659 if (NeedSwapOps)
5660 std::swap(LHS, RHS);
5661
5662 // Make use of SelectCC to generate the comparison to set CR bits, for
5663 // equality comparisons having one literal operand, SelectCC probably
5664 // doesn't need to materialize the whole literal and just use xoris to
5665 // check it first, it leads the following comparison result can't
5666 // exactly represent GT/LT relationship. So to avoid this we specify
5667 // SETGT/SETUGT here instead of SETEQ.
5668 SDValue GenCC =
5669 SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl);
5670 CurDAG->SelectNodeTo(
5671 N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB,
5672 N->getValueType(0), GenCC);
5673 NumP9Setb++;
5674 return;
5675 }
5676 }
5677
5678 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
5679 if (!isPPC64)
5680 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
5681 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
5682 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
5683 if (N1C->isZero() && N3C->isZero() && N2C->getZExtValue() == 1ULL &&
5684 CC == ISD::SETNE &&
5685 // FIXME: Implement this optzn for PPC64.
5686 N->getValueType(0) == MVT::i32) {
5687 SDNode *Tmp =
5688 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
5689 N->getOperand(0), getI32Imm(~0U, dl));
5690 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
5691 N->getOperand(0), SDValue(Tmp, 1));
5692 return;
5693 }
5694
5695 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
5696
5697 if (N->getValueType(0) == MVT::i1) {
5698 // An i1 select is: (c & t) | (!c & f).
5699 bool Inv;
5700 unsigned Idx = getCRIdxForSetCC(CC, Inv);
5701
5702 unsigned SRI;
5703 switch (Idx) {
5704 default: llvm_unreachable("Invalid CC index");
5705 case 0: SRI = PPC::sub_lt; break;
5706 case 1: SRI = PPC::sub_gt; break;
5707 case 2: SRI = PPC::sub_eq; break;
5708 case 3: SRI = PPC::sub_un; break;
5709 }
5710
5711 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
5712
5713 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
5714 CCBit, CCBit), 0);
5715 SDValue C = Inv ? NotCCBit : CCBit,
5716 NotC = Inv ? CCBit : NotCCBit;
5717
5718 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5719 C, N->getOperand(2)), 0);
5720 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5721 NotC, N->getOperand(3)), 0);
5722
5723 CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
5724 return;
5725 }
5726
5727 unsigned BROpc =
5728 getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget);
5729
5730 unsigned SelectCCOp;
5731 if (N->getValueType(0) == MVT::i32)
5732 SelectCCOp = PPC::SELECT_CC_I4;
5733 else if (N->getValueType(0) == MVT::i64)
5734 SelectCCOp = PPC::SELECT_CC_I8;
5735 else if (N->getValueType(0) == MVT::f32) {
5736 if (Subtarget->hasP8Vector())
5737 SelectCCOp = PPC::SELECT_CC_VSSRC;
5738 else if (Subtarget->hasSPE())
5739 SelectCCOp = PPC::SELECT_CC_SPE4;
5740 else
5741 SelectCCOp = PPC::SELECT_CC_F4;
5742 } else if (N->getValueType(0) == MVT::f64) {
5743 if (Subtarget->hasVSX())
5744 SelectCCOp = PPC::SELECT_CC_VSFRC;
5745 else if (Subtarget->hasSPE())
5746 SelectCCOp = PPC::SELECT_CC_SPE;
5747 else
5748 SelectCCOp = PPC::SELECT_CC_F8;
5749 } else if (N->getValueType(0) == MVT::f128)
5750 SelectCCOp = PPC::SELECT_CC_F16;
5751 else if (Subtarget->hasSPE())
5752 SelectCCOp = PPC::SELECT_CC_SPE;
5753 else if (N->getValueType(0) == MVT::v2f64 ||
5754 N->getValueType(0) == MVT::v2i64)
5755 SelectCCOp = PPC::SELECT_CC_VSRC;
5756 else
5757 SelectCCOp = PPC::SELECT_CC_VRRC;
5758
5759 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
5760 getI32Imm(BROpc, dl) };
5761 CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
5762 return;
5763 }
5764 case ISD::VECTOR_SHUFFLE:
5765 if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
5766 N->getValueType(0) == MVT::v2i64)) {
5767 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5768
5769 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
5770 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
5771 unsigned DM[2];
5772
5773 for (int i = 0; i < 2; ++i)
5774 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
5775 DM[i] = 0;
5776 else
5777 DM[i] = 1;
5778
5779 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
5780 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5781 isa<LoadSDNode>(Op1.getOperand(0))) {
5782 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
5783 SDValue Base, Offset;
5784
5785 if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
5786 (LD->getMemoryVT() == MVT::f64 ||
5787 LD->getMemoryVT() == MVT::i64) &&
5788 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
5789 SDValue Chain = LD->getChain();
5790 SDValue Ops[] = { Base, Offset, Chain };
5791 MachineMemOperand *MemOp = LD->getMemOperand();
5792 SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
5793 N->getValueType(0), Ops);
5794 CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp});
5795 return;
5796 }
5797 }
5798
5799 // For little endian, we must swap the input operands and adjust
5800 // the mask elements (reverse and invert them).
5801 if (Subtarget->isLittleEndian()) {
5802 std::swap(Op1, Op2);
5803 unsigned tmp = DM[0];
5804 DM[0] = 1 - DM[1];
5805 DM[1] = 1 - tmp;
5806 }
5807
5808 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
5809 MVT::i32);
5810 SDValue Ops[] = { Op1, Op2, DMV };
5811 CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
5812 return;
5813 }
5814
5815 break;
5816 case PPCISD::BDNZ:
5817 case PPCISD::BDZ: {
5818 bool IsPPC64 = Subtarget->isPPC64();
5819 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
5820 CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
5821 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
5822 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
5823 MVT::Other, Ops);
5824 return;
5825 }
5826 case PPCISD::COND_BRANCH: {
5827 // Op #0 is the Chain.
5828 // Op #1 is the PPC::PRED_* number.
5829 // Op #2 is the CR#
5830 // Op #3 is the Dest MBB
5831 // Op #4 is the Flag.
5832 // Prevent PPC::PRED_* from being selected into LI.
5833 unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
5834 if (EnableBranchHint)
5835 PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3));
5836
5837 SDValue Pred = getI32Imm(PCC, dl);
5838 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
5839 N->getOperand(0), N->getOperand(4) };
5840 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5841 return;
5842 }
5843 case ISD::BR_CC: {
5844 if (tryFoldSWTestBRCC(N))
5845 return;
5846 if (trySelectLoopCountIntrinsic(N))
5847 return;
5848 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5849 unsigned PCC =
5850 getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget);
5851
5852 if (N->getOperand(2).getValueType() == MVT::i1) {
5853 unsigned Opc;
5854 bool Swap;
5855 switch (PCC) {
5856 default: llvm_unreachable("Unexpected Boolean-operand predicate");
5857 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break;
5858 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break;
5859 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break;
5860 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break;
5861 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
5862 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break;
5863 }
5864
5865 // A signed comparison of i1 values produces the opposite result to an
5866 // unsigned one if the condition code includes less-than or greater-than.
5867 // This is because 1 is the most negative signed i1 number and the most
5868 // positive unsigned i1 number. The CR-logical operations used for such
5869 // comparisons are non-commutative so for signed comparisons vs. unsigned
5870 // ones, the input operands just need to be swapped.
5871 if (ISD::isSignedIntSetCC(CC))
5872 Swap = !Swap;
5873
5874 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
5875 N->getOperand(Swap ? 3 : 2),
5876 N->getOperand(Swap ? 2 : 3)), 0);
5877 CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
5878 N->getOperand(0));
5879 return;
5880 }
5881
5882 if (EnableBranchHint)
5883 PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4));
5884
5885 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
5886 SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
5887 N->getOperand(4), N->getOperand(0) };
5888 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5889 return;
5890 }
5891 case ISD::BRIND: {
5892 // FIXME: Should custom lower this.
5893 SDValue Chain = N->getOperand(0);
5894 SDValue Target = N->getOperand(1);
5895 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
5896 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
5897 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
5898 Chain), 0);
5899 CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
5900 return;
5901 }
5902 case PPCISD::TOC_ENTRY: {
5903 const bool isPPC64 = Subtarget->isPPC64();
5904 const bool isELFABI = Subtarget->isSVR4ABI();
5905 const bool isAIXABI = Subtarget->isAIXABI();
5906
5907 // PowerPC only support small, medium and large code model.
5908 const CodeModel::Model CModel = TM.getCodeModel();
5909 assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) &&
5910 "PowerPC doesn't support tiny or kernel code models.");
5911
5912 if (isAIXABI && CModel == CodeModel::Medium)
5913 report_fatal_error("Medium code model is not supported on AIX.");
5914
5915 // For 64-bit ELF small code model, we allow SelectCodeCommon to handle
5916 // this, selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. For AIX
5917 // small code model, we need to check for a toc-data attribute.
5918 if (isPPC64 && !isAIXABI && CModel == CodeModel::Small)
5919 break;
5920
5921 auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry,
5922 EVT OperandTy) {
5923 SDValue GA = TocEntry->getOperand(0);
5924 SDValue TocBase = TocEntry->getOperand(1);
5925 SDNode *MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, GA, TocBase);
5926 transferMemOperands(TocEntry, MN);
5927 ReplaceNode(TocEntry, MN);
5928 };
5929
5930 // Handle 32-bit small code model.
5931 if (!isPPC64 && CModel == CodeModel::Small) {
5932 // Transforms the ISD::TOC_ENTRY node to passed in Opcode, either
5933 // PPC::ADDItoc, or PPC::LWZtoc
5934 if (isELFABI) {
5935 assert(TM.isPositionIndependent() &&
5936 "32-bit ELF can only have TOC entries in position independent"
5937 " code.");
5938 // 32-bit ELF always uses a small code model toc access.
5939 replaceWith(PPC::LWZtoc, N, MVT::i32);
5940 return;
5941 }
5942
5943 assert(isAIXABI && "ELF ABI already handled");
5944
5945 if (hasTocDataAttr(N->getOperand(0),
5946 CurDAG->getDataLayout().getPointerSize())) {
5947 replaceWith(PPC::ADDItoc, N, MVT::i32);
5948 return;
5949 }
5950
5951 replaceWith(PPC::LWZtoc, N, MVT::i32);
5952 return;
5953 }
5954
5955 if (isPPC64 && CModel == CodeModel::Small) {
5956 assert(isAIXABI && "ELF ABI handled in common SelectCode");
5957
5958 if (hasTocDataAttr(N->getOperand(0),
5959 CurDAG->getDataLayout().getPointerSize())) {
5960 replaceWith(PPC::ADDItoc8, N, MVT::i64);
5961 return;
5962 }
5963 // Break if it doesn't have toc data attribute. Proceed with common
5964 // SelectCode.
5965 break;
5966 }
5967
5968 assert(CModel != CodeModel::Small && "All small code models handled.");
5969
5970 assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit"
5971 " ELF/AIX or 32-bit AIX in the following.");
5972
5973 // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode
5974 // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We
5975 // generate two instructions as described below. The first source operand
5976 // is a symbol reference. If it must be toc-referenced according to
5977 // Subtarget, we generate:
5978 // [32-bit AIX]
5979 // LWZtocL(@sym, ADDIStocHA(%r2, @sym))
5980 // [64-bit ELF/AIX]
5981 // LDtocL(@sym, ADDIStocHA8(%x2, @sym))
5982 // Otherwise we generate:
5983 // ADDItocL(ADDIStocHA8(%x2, @sym), @sym)
5984 SDValue GA = N->getOperand(0);
5985 SDValue TOCbase = N->getOperand(1);
5986
5987 EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5988 SDNode *Tmp = CurDAG->getMachineNode(
5989 isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA);
5990
5991 if (PPCLowering->isAccessedAsGotIndirect(GA)) {
5992 // If it is accessed as got-indirect, we need an extra LWZ/LD to load
5993 // the address.
5994 SDNode *MN = CurDAG->getMachineNode(
5995 isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0));
5996
5997 transferMemOperands(N, MN);
5998 ReplaceNode(N, MN);
5999 return;
6000 }
6001
6002 // Build the address relative to the TOC-pointer.
6003 ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
6004 SDValue(Tmp, 0), GA));
6005 return;
6006 }
6007 case PPCISD::PPC32_PICGOT:
6008 // Generate a PIC-safe GOT reference.
6009 assert(Subtarget->is32BitELFABI() &&
6010 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
6011 CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
6012 PPCLowering->getPointerTy(CurDAG->getDataLayout()),
6013 MVT::i32);
6014 return;
6015
6016 case PPCISD::VADD_SPLAT: {
6017 // This expands into one of three sequences, depending on whether
6018 // the first operand is odd or even, positive or negative.
6019 assert(isa<ConstantSDNode>(N->getOperand(0)) &&
6020 isa<ConstantSDNode>(N->getOperand(1)) &&
6021 "Invalid operand on VADD_SPLAT!");
6022
6023 int Elt = N->getConstantOperandVal(0);
6024 int EltSize = N->getConstantOperandVal(1);
6025 unsigned Opc1, Opc2, Opc3;
6026 EVT VT;
6027
6028 if (EltSize == 1) {
6029 Opc1 = PPC::VSPLTISB;
6030 Opc2 = PPC::VADDUBM;
6031 Opc3 = PPC::VSUBUBM;
6032 VT = MVT::v16i8;
6033 } else if (EltSize == 2) {
6034 Opc1 = PPC::VSPLTISH;
6035 Opc2 = PPC::VADDUHM;
6036 Opc3 = PPC::VSUBUHM;
6037 VT = MVT::v8i16;
6038 } else {
6039 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
6040 Opc1 = PPC::VSPLTISW;
6041 Opc2 = PPC::VADDUWM;
6042 Opc3 = PPC::VSUBUWM;
6043 VT = MVT::v4i32;
6044 }
6045
6046 if ((Elt & 1) == 0) {
6047 // Elt is even, in the range [-32,-18] + [16,30].
6048 //
6049 // Convert: VADD_SPLAT elt, size
6050 // Into: tmp = VSPLTIS[BHW] elt
6051 // VADDU[BHW]M tmp, tmp
6052 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4
6053 SDValue EltVal = getI32Imm(Elt >> 1, dl);
6054 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6055 SDValue TmpVal = SDValue(Tmp, 0);
6056 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
6057 return;
6058 } else if (Elt > 0) {
6059 // Elt is odd and positive, in the range [17,31].
6060 //
6061 // Convert: VADD_SPLAT elt, size
6062 // Into: tmp1 = VSPLTIS[BHW] elt-16
6063 // tmp2 = VSPLTIS[BHW] -16
6064 // VSUBU[BHW]M tmp1, tmp2
6065 SDValue EltVal = getI32Imm(Elt - 16, dl);
6066 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6067 EltVal = getI32Imm(-16, dl);
6068 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6069 ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
6070 SDValue(Tmp2, 0)));
6071 return;
6072 } else {
6073 // Elt is odd and negative, in the range [-31,-17].
6074 //
6075 // Convert: VADD_SPLAT elt, size
6076 // Into: tmp1 = VSPLTIS[BHW] elt+16
6077 // tmp2 = VSPLTIS[BHW] -16
6078 // VADDU[BHW]M tmp1, tmp2
6079 SDValue EltVal = getI32Imm(Elt + 16, dl);
6080 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6081 EltVal = getI32Imm(-16, dl);
6082 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6083 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
6084 SDValue(Tmp2, 0)));
6085 return;
6086 }
6087 }
6088 case PPCISD::LD_SPLAT: {
6089 // Here we want to handle splat load for type v16i8 and v8i16 when there is
6090 // no direct move, we don't need to use stack for this case. If target has
6091 // direct move, we should be able to get the best selection in the .td file.
6092 if (!Subtarget->hasAltivec() || Subtarget->hasDirectMove())
6093 break;
6094
6095 EVT Type = N->getValueType(0);
6096 if (Type != MVT::v16i8 && Type != MVT::v8i16)
6097 break;
6098
6099 // If the alignment for the load is 16 or bigger, we don't need the
6100 // permutated mask to get the required value. The value must be the 0
6101 // element in big endian target or 7/15 in little endian target in the
6102 // result vsx register of lvx instruction.
6103 // Select the instruction in the .td file.
6104 if (cast<MemIntrinsicSDNode>(N)->getAlign() >= Align(16) &&
6105 isOffsetMultipleOf(N, 16))
6106 break;
6107
6108 SDValue ZeroReg =
6109 CurDAG->getRegister(Subtarget->isPPC64() ? PPC::ZERO8 : PPC::ZERO,
6110 Subtarget->isPPC64() ? MVT::i64 : MVT::i32);
6111 unsigned LIOpcode = Subtarget->isPPC64() ? PPC::LI8 : PPC::LI;
6112 // v16i8 LD_SPLAT addr
6113 // ======>
6114 // Mask = LVSR/LVSL 0, addr
6115 // LoadLow = LVX 0, addr
6116 // Perm = VPERM LoadLow, LoadLow, Mask
6117 // Splat = VSPLTB 15/0, Perm
6118 //
6119 // v8i16 LD_SPLAT addr
6120 // ======>
6121 // Mask = LVSR/LVSL 0, addr
6122 // LoadLow = LVX 0, addr
6123 // LoadHigh = LVX (LI, 1), addr
6124 // Perm = VPERM LoadLow, LoadHigh, Mask
6125 // Splat = VSPLTH 7/0, Perm
6126 unsigned SplatOp = (Type == MVT::v16i8) ? PPC::VSPLTB : PPC::VSPLTH;
6127 unsigned SplatElemIndex =
6128 Subtarget->isLittleEndian() ? ((Type == MVT::v16i8) ? 15 : 7) : 0;
6129
6130 SDNode *Mask = CurDAG->getMachineNode(
6131 Subtarget->isLittleEndian() ? PPC::LVSR : PPC::LVSL, dl, Type, ZeroReg,
6132 N->getOperand(1));
6133
6134 SDNode *LoadLow =
6135 CurDAG->getMachineNode(PPC::LVX, dl, MVT::v16i8, MVT::Other,
6136 {ZeroReg, N->getOperand(1), N->getOperand(0)});
6137
6138 SDNode *LoadHigh = LoadLow;
6139 if (Type == MVT::v8i16) {
6140 LoadHigh = CurDAG->getMachineNode(
6141 PPC::LVX, dl, MVT::v16i8, MVT::Other,
6142 {SDValue(CurDAG->getMachineNode(
6143 LIOpcode, dl, MVT::i32,
6144 CurDAG->getTargetConstant(1, dl, MVT::i8)),
6145 0),
6146 N->getOperand(1), SDValue(LoadLow, 1)});
6147 }
6148
6149 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(LoadHigh, 1));
6150 transferMemOperands(N, LoadHigh);
6151
6152 SDNode *Perm =
6153 CurDAG->getMachineNode(PPC::VPERM, dl, Type, SDValue(LoadLow, 0),
6154 SDValue(LoadHigh, 0), SDValue(Mask, 0));
6155 CurDAG->SelectNodeTo(N, SplatOp, Type,
6156 CurDAG->getTargetConstant(SplatElemIndex, dl, MVT::i8),
6157 SDValue(Perm, 0));
6158 return;
6159 }
6160 }
6161
6162 SelectCode(N);
6163 }
6164
6165 // If the target supports the cmpb instruction, do the idiom recognition here.
6166 // We don't do this as a DAG combine because we don't want to do it as nodes
6167 // are being combined (because we might miss part of the eventual idiom). We
6168 // don't want to do it during instruction selection because we want to reuse
6169 // the logic for lowering the masking operations already part of the
6170 // instruction selector.
combineToCMPB(SDNode * N)6171 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
6172 SDLoc dl(N);
6173
6174 assert(N->getOpcode() == ISD::OR &&
6175 "Only OR nodes are supported for CMPB");
6176
6177 SDValue Res;
6178 if (!Subtarget->hasCMPB())
6179 return Res;
6180
6181 if (N->getValueType(0) != MVT::i32 &&
6182 N->getValueType(0) != MVT::i64)
6183 return Res;
6184
6185 EVT VT = N->getValueType(0);
6186
6187 SDValue RHS, LHS;
6188 bool BytesFound[8] = {false, false, false, false, false, false, false, false};
6189 uint64_t Mask = 0, Alt = 0;
6190
6191 auto IsByteSelectCC = [this](SDValue O, unsigned &b,
6192 uint64_t &Mask, uint64_t &Alt,
6193 SDValue &LHS, SDValue &RHS) {
6194 if (O.getOpcode() != ISD::SELECT_CC)
6195 return false;
6196 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
6197
6198 if (!isa<ConstantSDNode>(O.getOperand(2)) ||
6199 !isa<ConstantSDNode>(O.getOperand(3)))
6200 return false;
6201
6202 uint64_t PM = O.getConstantOperandVal(2);
6203 uint64_t PAlt = O.getConstantOperandVal(3);
6204 for (b = 0; b < 8; ++b) {
6205 uint64_t Mask = UINT64_C(0xFF) << (8*b);
6206 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
6207 break;
6208 }
6209
6210 if (b == 8)
6211 return false;
6212 Mask |= PM;
6213 Alt |= PAlt;
6214
6215 if (!isa<ConstantSDNode>(O.getOperand(1)) ||
6216 O.getConstantOperandVal(1) != 0) {
6217 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
6218 if (Op0.getOpcode() == ISD::TRUNCATE)
6219 Op0 = Op0.getOperand(0);
6220 if (Op1.getOpcode() == ISD::TRUNCATE)
6221 Op1 = Op1.getOperand(0);
6222
6223 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
6224 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
6225 isa<ConstantSDNode>(Op0.getOperand(1))) {
6226
6227 unsigned Bits = Op0.getValueSizeInBits();
6228 if (b != Bits/8-1)
6229 return false;
6230 if (Op0.getConstantOperandVal(1) != Bits-8)
6231 return false;
6232
6233 LHS = Op0.getOperand(0);
6234 RHS = Op1.getOperand(0);
6235 return true;
6236 }
6237
6238 // When we have small integers (i16 to be specific), the form present
6239 // post-legalization uses SETULT in the SELECT_CC for the
6240 // higher-order byte, depending on the fact that the
6241 // even-higher-order bytes are known to all be zero, for example:
6242 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
6243 // (so when the second byte is the same, because all higher-order
6244 // bits from bytes 3 and 4 are known to be zero, the result of the
6245 // xor can be at most 255)
6246 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
6247 isa<ConstantSDNode>(O.getOperand(1))) {
6248
6249 uint64_t ULim = O.getConstantOperandVal(1);
6250 if (ULim != (UINT64_C(1) << b*8))
6251 return false;
6252
6253 // Now we need to make sure that the upper bytes are known to be
6254 // zero.
6255 unsigned Bits = Op0.getValueSizeInBits();
6256 if (!CurDAG->MaskedValueIsZero(
6257 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
6258 return false;
6259
6260 LHS = Op0.getOperand(0);
6261 RHS = Op0.getOperand(1);
6262 return true;
6263 }
6264
6265 return false;
6266 }
6267
6268 if (CC != ISD::SETEQ)
6269 return false;
6270
6271 SDValue Op = O.getOperand(0);
6272 if (Op.getOpcode() == ISD::AND) {
6273 if (!isa<ConstantSDNode>(Op.getOperand(1)))
6274 return false;
6275 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
6276 return false;
6277
6278 SDValue XOR = Op.getOperand(0);
6279 if (XOR.getOpcode() == ISD::TRUNCATE)
6280 XOR = XOR.getOperand(0);
6281 if (XOR.getOpcode() != ISD::XOR)
6282 return false;
6283
6284 LHS = XOR.getOperand(0);
6285 RHS = XOR.getOperand(1);
6286 return true;
6287 } else if (Op.getOpcode() == ISD::SRL) {
6288 if (!isa<ConstantSDNode>(Op.getOperand(1)))
6289 return false;
6290 unsigned Bits = Op.getValueSizeInBits();
6291 if (b != Bits/8-1)
6292 return false;
6293 if (Op.getConstantOperandVal(1) != Bits-8)
6294 return false;
6295
6296 SDValue XOR = Op.getOperand(0);
6297 if (XOR.getOpcode() == ISD::TRUNCATE)
6298 XOR = XOR.getOperand(0);
6299 if (XOR.getOpcode() != ISD::XOR)
6300 return false;
6301
6302 LHS = XOR.getOperand(0);
6303 RHS = XOR.getOperand(1);
6304 return true;
6305 }
6306
6307 return false;
6308 };
6309
6310 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
6311 while (!Queue.empty()) {
6312 SDValue V = Queue.pop_back_val();
6313
6314 for (const SDValue &O : V.getNode()->ops()) {
6315 unsigned b = 0;
6316 uint64_t M = 0, A = 0;
6317 SDValue OLHS, ORHS;
6318 if (O.getOpcode() == ISD::OR) {
6319 Queue.push_back(O);
6320 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
6321 if (!LHS) {
6322 LHS = OLHS;
6323 RHS = ORHS;
6324 BytesFound[b] = true;
6325 Mask |= M;
6326 Alt |= A;
6327 } else if ((LHS == ORHS && RHS == OLHS) ||
6328 (RHS == ORHS && LHS == OLHS)) {
6329 BytesFound[b] = true;
6330 Mask |= M;
6331 Alt |= A;
6332 } else {
6333 return Res;
6334 }
6335 } else {
6336 return Res;
6337 }
6338 }
6339 }
6340
6341 unsigned LastB = 0, BCnt = 0;
6342 for (unsigned i = 0; i < 8; ++i)
6343 if (BytesFound[LastB]) {
6344 ++BCnt;
6345 LastB = i;
6346 }
6347
6348 if (!LastB || BCnt < 2)
6349 return Res;
6350
6351 // Because we'll be zero-extending the output anyway if don't have a specific
6352 // value for each input byte (via the Mask), we can 'anyext' the inputs.
6353 if (LHS.getValueType() != VT) {
6354 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
6355 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
6356 }
6357
6358 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
6359
6360 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
6361 if (NonTrivialMask && !Alt) {
6362 // Res = Mask & CMPB
6363 Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6364 CurDAG->getConstant(Mask, dl, VT));
6365 } else if (Alt) {
6366 // Res = (CMPB & Mask) | (~CMPB & Alt)
6367 // Which, as suggested here:
6368 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
6369 // can be written as:
6370 // Res = Alt ^ ((Alt ^ Mask) & CMPB)
6371 // useful because the (Alt ^ Mask) can be pre-computed.
6372 Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6373 CurDAG->getConstant(Mask ^ Alt, dl, VT));
6374 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
6375 CurDAG->getConstant(Alt, dl, VT));
6376 }
6377
6378 return Res;
6379 }
6380
6381 // When CR bit registers are enabled, an extension of an i1 variable to a i32
6382 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
6383 // involves constant materialization of a 0 or a 1 or both. If the result of
6384 // the extension is then operated upon by some operator that can be constant
6385 // folded with a constant 0 or 1, and that constant can be materialized using
6386 // only one instruction (like a zero or one), then we should fold in those
6387 // operations with the select.
foldBoolExts(SDValue & Res,SDNode * & N)6388 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
6389 if (!Subtarget->useCRBits())
6390 return;
6391
6392 if (N->getOpcode() != ISD::ZERO_EXTEND &&
6393 N->getOpcode() != ISD::SIGN_EXTEND &&
6394 N->getOpcode() != ISD::ANY_EXTEND)
6395 return;
6396
6397 if (N->getOperand(0).getValueType() != MVT::i1)
6398 return;
6399
6400 if (!N->hasOneUse())
6401 return;
6402
6403 SDLoc dl(N);
6404 EVT VT = N->getValueType(0);
6405 SDValue Cond = N->getOperand(0);
6406 SDValue ConstTrue =
6407 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
6408 SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
6409
6410 do {
6411 SDNode *User = *N->use_begin();
6412 if (User->getNumOperands() != 2)
6413 break;
6414
6415 auto TryFold = [this, N, User, dl](SDValue Val) {
6416 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
6417 SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
6418 SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
6419
6420 return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
6421 User->getValueType(0), {O0, O1});
6422 };
6423
6424 // FIXME: When the semantics of the interaction between select and undef
6425 // are clearly defined, it may turn out to be unnecessary to break here.
6426 SDValue TrueRes = TryFold(ConstTrue);
6427 if (!TrueRes || TrueRes.isUndef())
6428 break;
6429 SDValue FalseRes = TryFold(ConstFalse);
6430 if (!FalseRes || FalseRes.isUndef())
6431 break;
6432
6433 // For us to materialize these using one instruction, we must be able to
6434 // represent them as signed 16-bit integers.
6435 uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
6436 False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
6437 if (!isInt<16>(True) || !isInt<16>(False))
6438 break;
6439
6440 // We can replace User with a new SELECT node, and try again to see if we
6441 // can fold the select with its user.
6442 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
6443 N = User;
6444 ConstTrue = TrueRes;
6445 ConstFalse = FalseRes;
6446 } while (N->hasOneUse());
6447 }
6448
PreprocessISelDAG()6449 void PPCDAGToDAGISel::PreprocessISelDAG() {
6450 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6451
6452 bool MadeChange = false;
6453 while (Position != CurDAG->allnodes_begin()) {
6454 SDNode *N = &*--Position;
6455 if (N->use_empty())
6456 continue;
6457
6458 SDValue Res;
6459 switch (N->getOpcode()) {
6460 default: break;
6461 case ISD::OR:
6462 Res = combineToCMPB(N);
6463 break;
6464 }
6465
6466 if (!Res)
6467 foldBoolExts(Res, N);
6468
6469 if (Res) {
6470 LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: ");
6471 LLVM_DEBUG(N->dump(CurDAG));
6472 LLVM_DEBUG(dbgs() << "\nNew: ");
6473 LLVM_DEBUG(Res.getNode()->dump(CurDAG));
6474 LLVM_DEBUG(dbgs() << "\n");
6475
6476 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
6477 MadeChange = true;
6478 }
6479 }
6480
6481 if (MadeChange)
6482 CurDAG->RemoveDeadNodes();
6483 }
6484
6485 /// PostprocessISelDAG - Perform some late peephole optimizations
6486 /// on the DAG representation.
PostprocessISelDAG()6487 void PPCDAGToDAGISel::PostprocessISelDAG() {
6488 // Skip peepholes at -O0.
6489 if (TM.getOptLevel() == CodeGenOpt::None)
6490 return;
6491
6492 PeepholePPC64();
6493 PeepholeCROps();
6494 PeepholePPC64ZExt();
6495 }
6496
6497 // Check if all users of this node will become isel where the second operand
6498 // is the constant zero. If this is so, and if we can negate the condition,
6499 // then we can flip the true and false operands. This will allow the zero to
6500 // be folded with the isel so that we don't need to materialize a register
6501 // containing zero.
AllUsersSelectZero(SDNode * N)6502 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
6503 for (const SDNode *User : N->uses()) {
6504 if (!User->isMachineOpcode())
6505 return false;
6506 if (User->getMachineOpcode() != PPC::SELECT_I4 &&
6507 User->getMachineOpcode() != PPC::SELECT_I8)
6508 return false;
6509
6510 SDNode *Op1 = User->getOperand(1).getNode();
6511 SDNode *Op2 = User->getOperand(2).getNode();
6512 // If we have a degenerate select with two equal operands, swapping will
6513 // not do anything, and we may run into an infinite loop.
6514 if (Op1 == Op2)
6515 return false;
6516
6517 if (!Op2->isMachineOpcode())
6518 return false;
6519
6520 if (Op2->getMachineOpcode() != PPC::LI &&
6521 Op2->getMachineOpcode() != PPC::LI8)
6522 return false;
6523
6524 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
6525 if (!C)
6526 return false;
6527
6528 if (!C->isZero())
6529 return false;
6530 }
6531
6532 return true;
6533 }
6534
SwapAllSelectUsers(SDNode * N)6535 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
6536 SmallVector<SDNode *, 4> ToReplace;
6537 for (SDNode *User : N->uses()) {
6538 assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
6539 User->getMachineOpcode() == PPC::SELECT_I8) &&
6540 "Must have all select users");
6541 ToReplace.push_back(User);
6542 }
6543
6544 for (SDNode *User : ToReplace) {
6545 SDNode *ResNode =
6546 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
6547 User->getValueType(0), User->getOperand(0),
6548 User->getOperand(2),
6549 User->getOperand(1));
6550
6551 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
6552 LLVM_DEBUG(User->dump(CurDAG));
6553 LLVM_DEBUG(dbgs() << "\nNew: ");
6554 LLVM_DEBUG(ResNode->dump(CurDAG));
6555 LLVM_DEBUG(dbgs() << "\n");
6556
6557 ReplaceUses(User, ResNode);
6558 }
6559 }
6560
PeepholeCROps()6561 void PPCDAGToDAGISel::PeepholeCROps() {
6562 bool IsModified;
6563 do {
6564 IsModified = false;
6565 for (SDNode &Node : CurDAG->allnodes()) {
6566 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
6567 if (!MachineNode || MachineNode->use_empty())
6568 continue;
6569 SDNode *ResNode = MachineNode;
6570
6571 bool Op1Set = false, Op1Unset = false,
6572 Op1Not = false,
6573 Op2Set = false, Op2Unset = false,
6574 Op2Not = false;
6575
6576 unsigned Opcode = MachineNode->getMachineOpcode();
6577 switch (Opcode) {
6578 default: break;
6579 case PPC::CRAND:
6580 case PPC::CRNAND:
6581 case PPC::CROR:
6582 case PPC::CRXOR:
6583 case PPC::CRNOR:
6584 case PPC::CREQV:
6585 case PPC::CRANDC:
6586 case PPC::CRORC: {
6587 SDValue Op = MachineNode->getOperand(1);
6588 if (Op.isMachineOpcode()) {
6589 if (Op.getMachineOpcode() == PPC::CRSET)
6590 Op2Set = true;
6591 else if (Op.getMachineOpcode() == PPC::CRUNSET)
6592 Op2Unset = true;
6593 else if ((Op.getMachineOpcode() == PPC::CRNOR &&
6594 Op.getOperand(0) == Op.getOperand(1)) ||
6595 Op.getMachineOpcode() == PPC::CRNOT)
6596 Op2Not = true;
6597 }
6598 [[fallthrough]];
6599 }
6600 case PPC::BC:
6601 case PPC::BCn:
6602 case PPC::SELECT_I4:
6603 case PPC::SELECT_I8:
6604 case PPC::SELECT_F4:
6605 case PPC::SELECT_F8:
6606 case PPC::SELECT_SPE:
6607 case PPC::SELECT_SPE4:
6608 case PPC::SELECT_VRRC:
6609 case PPC::SELECT_VSFRC:
6610 case PPC::SELECT_VSSRC:
6611 case PPC::SELECT_VSRC: {
6612 SDValue Op = MachineNode->getOperand(0);
6613 if (Op.isMachineOpcode()) {
6614 if (Op.getMachineOpcode() == PPC::CRSET)
6615 Op1Set = true;
6616 else if (Op.getMachineOpcode() == PPC::CRUNSET)
6617 Op1Unset = true;
6618 else if ((Op.getMachineOpcode() == PPC::CRNOR &&
6619 Op.getOperand(0) == Op.getOperand(1)) ||
6620 Op.getMachineOpcode() == PPC::CRNOT)
6621 Op1Not = true;
6622 }
6623 }
6624 break;
6625 }
6626
6627 bool SelectSwap = false;
6628 switch (Opcode) {
6629 default: break;
6630 case PPC::CRAND:
6631 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6632 // x & x = x
6633 ResNode = MachineNode->getOperand(0).getNode();
6634 else if (Op1Set)
6635 // 1 & y = y
6636 ResNode = MachineNode->getOperand(1).getNode();
6637 else if (Op2Set)
6638 // x & 1 = x
6639 ResNode = MachineNode->getOperand(0).getNode();
6640 else if (Op1Unset || Op2Unset)
6641 // x & 0 = 0 & y = 0
6642 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6643 MVT::i1);
6644 else if (Op1Not)
6645 // ~x & y = andc(y, x)
6646 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6647 MVT::i1, MachineNode->getOperand(1),
6648 MachineNode->getOperand(0).
6649 getOperand(0));
6650 else if (Op2Not)
6651 // x & ~y = andc(x, y)
6652 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6653 MVT::i1, MachineNode->getOperand(0),
6654 MachineNode->getOperand(1).
6655 getOperand(0));
6656 else if (AllUsersSelectZero(MachineNode)) {
6657 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
6658 MVT::i1, MachineNode->getOperand(0),
6659 MachineNode->getOperand(1));
6660 SelectSwap = true;
6661 }
6662 break;
6663 case PPC::CRNAND:
6664 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6665 // nand(x, x) -> nor(x, x)
6666 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6667 MVT::i1, MachineNode->getOperand(0),
6668 MachineNode->getOperand(0));
6669 else if (Op1Set)
6670 // nand(1, y) -> nor(y, y)
6671 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6672 MVT::i1, MachineNode->getOperand(1),
6673 MachineNode->getOperand(1));
6674 else if (Op2Set)
6675 // nand(x, 1) -> nor(x, x)
6676 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6677 MVT::i1, MachineNode->getOperand(0),
6678 MachineNode->getOperand(0));
6679 else if (Op1Unset || Op2Unset)
6680 // nand(x, 0) = nand(0, y) = 1
6681 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6682 MVT::i1);
6683 else if (Op1Not)
6684 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
6685 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6686 MVT::i1, MachineNode->getOperand(0).
6687 getOperand(0),
6688 MachineNode->getOperand(1));
6689 else if (Op2Not)
6690 // nand(x, ~y) = ~x | y = orc(y, x)
6691 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6692 MVT::i1, MachineNode->getOperand(1).
6693 getOperand(0),
6694 MachineNode->getOperand(0));
6695 else if (AllUsersSelectZero(MachineNode)) {
6696 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
6697 MVT::i1, MachineNode->getOperand(0),
6698 MachineNode->getOperand(1));
6699 SelectSwap = true;
6700 }
6701 break;
6702 case PPC::CROR:
6703 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6704 // x | x = x
6705 ResNode = MachineNode->getOperand(0).getNode();
6706 else if (Op1Set || Op2Set)
6707 // x | 1 = 1 | y = 1
6708 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6709 MVT::i1);
6710 else if (Op1Unset)
6711 // 0 | y = y
6712 ResNode = MachineNode->getOperand(1).getNode();
6713 else if (Op2Unset)
6714 // x | 0 = x
6715 ResNode = MachineNode->getOperand(0).getNode();
6716 else if (Op1Not)
6717 // ~x | y = orc(y, x)
6718 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6719 MVT::i1, MachineNode->getOperand(1),
6720 MachineNode->getOperand(0).
6721 getOperand(0));
6722 else if (Op2Not)
6723 // x | ~y = orc(x, y)
6724 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6725 MVT::i1, MachineNode->getOperand(0),
6726 MachineNode->getOperand(1).
6727 getOperand(0));
6728 else if (AllUsersSelectZero(MachineNode)) {
6729 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6730 MVT::i1, MachineNode->getOperand(0),
6731 MachineNode->getOperand(1));
6732 SelectSwap = true;
6733 }
6734 break;
6735 case PPC::CRXOR:
6736 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6737 // xor(x, x) = 0
6738 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6739 MVT::i1);
6740 else if (Op1Set)
6741 // xor(1, y) -> nor(y, y)
6742 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6743 MVT::i1, MachineNode->getOperand(1),
6744 MachineNode->getOperand(1));
6745 else if (Op2Set)
6746 // xor(x, 1) -> nor(x, x)
6747 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6748 MVT::i1, MachineNode->getOperand(0),
6749 MachineNode->getOperand(0));
6750 else if (Op1Unset)
6751 // xor(0, y) = y
6752 ResNode = MachineNode->getOperand(1).getNode();
6753 else if (Op2Unset)
6754 // xor(x, 0) = x
6755 ResNode = MachineNode->getOperand(0).getNode();
6756 else if (Op1Not)
6757 // xor(~x, y) = eqv(x, y)
6758 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6759 MVT::i1, MachineNode->getOperand(0).
6760 getOperand(0),
6761 MachineNode->getOperand(1));
6762 else if (Op2Not)
6763 // xor(x, ~y) = eqv(x, y)
6764 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6765 MVT::i1, MachineNode->getOperand(0),
6766 MachineNode->getOperand(1).
6767 getOperand(0));
6768 else if (AllUsersSelectZero(MachineNode)) {
6769 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6770 MVT::i1, MachineNode->getOperand(0),
6771 MachineNode->getOperand(1));
6772 SelectSwap = true;
6773 }
6774 break;
6775 case PPC::CRNOR:
6776 if (Op1Set || Op2Set)
6777 // nor(1, y) -> 0
6778 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6779 MVT::i1);
6780 else if (Op1Unset)
6781 // nor(0, y) = ~y -> nor(y, y)
6782 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6783 MVT::i1, MachineNode->getOperand(1),
6784 MachineNode->getOperand(1));
6785 else if (Op2Unset)
6786 // nor(x, 0) = ~x
6787 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6788 MVT::i1, MachineNode->getOperand(0),
6789 MachineNode->getOperand(0));
6790 else if (Op1Not)
6791 // nor(~x, y) = andc(x, y)
6792 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6793 MVT::i1, MachineNode->getOperand(0).
6794 getOperand(0),
6795 MachineNode->getOperand(1));
6796 else if (Op2Not)
6797 // nor(x, ~y) = andc(y, x)
6798 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6799 MVT::i1, MachineNode->getOperand(1).
6800 getOperand(0),
6801 MachineNode->getOperand(0));
6802 else if (AllUsersSelectZero(MachineNode)) {
6803 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
6804 MVT::i1, MachineNode->getOperand(0),
6805 MachineNode->getOperand(1));
6806 SelectSwap = true;
6807 }
6808 break;
6809 case PPC::CREQV:
6810 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6811 // eqv(x, x) = 1
6812 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6813 MVT::i1);
6814 else if (Op1Set)
6815 // eqv(1, y) = y
6816 ResNode = MachineNode->getOperand(1).getNode();
6817 else if (Op2Set)
6818 // eqv(x, 1) = x
6819 ResNode = MachineNode->getOperand(0).getNode();
6820 else if (Op1Unset)
6821 // eqv(0, y) = ~y -> nor(y, y)
6822 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6823 MVT::i1, MachineNode->getOperand(1),
6824 MachineNode->getOperand(1));
6825 else if (Op2Unset)
6826 // eqv(x, 0) = ~x
6827 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6828 MVT::i1, MachineNode->getOperand(0),
6829 MachineNode->getOperand(0));
6830 else if (Op1Not)
6831 // eqv(~x, y) = xor(x, y)
6832 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6833 MVT::i1, MachineNode->getOperand(0).
6834 getOperand(0),
6835 MachineNode->getOperand(1));
6836 else if (Op2Not)
6837 // eqv(x, ~y) = xor(x, y)
6838 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6839 MVT::i1, MachineNode->getOperand(0),
6840 MachineNode->getOperand(1).
6841 getOperand(0));
6842 else if (AllUsersSelectZero(MachineNode)) {
6843 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6844 MVT::i1, MachineNode->getOperand(0),
6845 MachineNode->getOperand(1));
6846 SelectSwap = true;
6847 }
6848 break;
6849 case PPC::CRANDC:
6850 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6851 // andc(x, x) = 0
6852 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6853 MVT::i1);
6854 else if (Op1Set)
6855 // andc(1, y) = ~y
6856 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6857 MVT::i1, MachineNode->getOperand(1),
6858 MachineNode->getOperand(1));
6859 else if (Op1Unset || Op2Set)
6860 // andc(0, y) = andc(x, 1) = 0
6861 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6862 MVT::i1);
6863 else if (Op2Unset)
6864 // andc(x, 0) = x
6865 ResNode = MachineNode->getOperand(0).getNode();
6866 else if (Op1Not)
6867 // andc(~x, y) = ~(x | y) = nor(x, y)
6868 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6869 MVT::i1, MachineNode->getOperand(0).
6870 getOperand(0),
6871 MachineNode->getOperand(1));
6872 else if (Op2Not)
6873 // andc(x, ~y) = x & y
6874 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
6875 MVT::i1, MachineNode->getOperand(0),
6876 MachineNode->getOperand(1).
6877 getOperand(0));
6878 else if (AllUsersSelectZero(MachineNode)) {
6879 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6880 MVT::i1, MachineNode->getOperand(1),
6881 MachineNode->getOperand(0));
6882 SelectSwap = true;
6883 }
6884 break;
6885 case PPC::CRORC:
6886 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6887 // orc(x, x) = 1
6888 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6889 MVT::i1);
6890 else if (Op1Set || Op2Unset)
6891 // orc(1, y) = orc(x, 0) = 1
6892 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6893 MVT::i1);
6894 else if (Op2Set)
6895 // orc(x, 1) = x
6896 ResNode = MachineNode->getOperand(0).getNode();
6897 else if (Op1Unset)
6898 // orc(0, y) = ~y
6899 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6900 MVT::i1, MachineNode->getOperand(1),
6901 MachineNode->getOperand(1));
6902 else if (Op1Not)
6903 // orc(~x, y) = ~(x & y) = nand(x, y)
6904 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
6905 MVT::i1, MachineNode->getOperand(0).
6906 getOperand(0),
6907 MachineNode->getOperand(1));
6908 else if (Op2Not)
6909 // orc(x, ~y) = x | y
6910 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
6911 MVT::i1, MachineNode->getOperand(0),
6912 MachineNode->getOperand(1).
6913 getOperand(0));
6914 else if (AllUsersSelectZero(MachineNode)) {
6915 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6916 MVT::i1, MachineNode->getOperand(1),
6917 MachineNode->getOperand(0));
6918 SelectSwap = true;
6919 }
6920 break;
6921 case PPC::SELECT_I4:
6922 case PPC::SELECT_I8:
6923 case PPC::SELECT_F4:
6924 case PPC::SELECT_F8:
6925 case PPC::SELECT_SPE:
6926 case PPC::SELECT_SPE4:
6927 case PPC::SELECT_VRRC:
6928 case PPC::SELECT_VSFRC:
6929 case PPC::SELECT_VSSRC:
6930 case PPC::SELECT_VSRC:
6931 if (Op1Set)
6932 ResNode = MachineNode->getOperand(1).getNode();
6933 else if (Op1Unset)
6934 ResNode = MachineNode->getOperand(2).getNode();
6935 else if (Op1Not)
6936 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
6937 SDLoc(MachineNode),
6938 MachineNode->getValueType(0),
6939 MachineNode->getOperand(0).
6940 getOperand(0),
6941 MachineNode->getOperand(2),
6942 MachineNode->getOperand(1));
6943 break;
6944 case PPC::BC:
6945 case PPC::BCn:
6946 if (Op1Not)
6947 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
6948 PPC::BC,
6949 SDLoc(MachineNode),
6950 MVT::Other,
6951 MachineNode->getOperand(0).
6952 getOperand(0),
6953 MachineNode->getOperand(1),
6954 MachineNode->getOperand(2));
6955 // FIXME: Handle Op1Set, Op1Unset here too.
6956 break;
6957 }
6958
6959 // If we're inverting this node because it is used only by selects that
6960 // we'd like to swap, then swap the selects before the node replacement.
6961 if (SelectSwap)
6962 SwapAllSelectUsers(MachineNode);
6963
6964 if (ResNode != MachineNode) {
6965 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
6966 LLVM_DEBUG(MachineNode->dump(CurDAG));
6967 LLVM_DEBUG(dbgs() << "\nNew: ");
6968 LLVM_DEBUG(ResNode->dump(CurDAG));
6969 LLVM_DEBUG(dbgs() << "\n");
6970
6971 ReplaceUses(MachineNode, ResNode);
6972 IsModified = true;
6973 }
6974 }
6975 if (IsModified)
6976 CurDAG->RemoveDeadNodes();
6977 } while (IsModified);
6978 }
6979
6980 // Gather the set of 32-bit operations that are known to have their
6981 // higher-order 32 bits zero, where ToPromote contains all such operations.
PeepholePPC64ZExtGather(SDValue Op32,SmallPtrSetImpl<SDNode * > & ToPromote)6982 static bool PeepholePPC64ZExtGather(SDValue Op32,
6983 SmallPtrSetImpl<SDNode *> &ToPromote) {
6984 if (!Op32.isMachineOpcode())
6985 return false;
6986
6987 // First, check for the "frontier" instructions (those that will clear the
6988 // higher-order 32 bits.
6989
6990 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
6991 // around. If it does not, then these instructions will clear the
6992 // higher-order bits.
6993 if ((Op32.getMachineOpcode() == PPC::RLWINM ||
6994 Op32.getMachineOpcode() == PPC::RLWNM) &&
6995 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
6996 ToPromote.insert(Op32.getNode());
6997 return true;
6998 }
6999
7000 // SLW and SRW always clear the higher-order bits.
7001 if (Op32.getMachineOpcode() == PPC::SLW ||
7002 Op32.getMachineOpcode() == PPC::SRW) {
7003 ToPromote.insert(Op32.getNode());
7004 return true;
7005 }
7006
7007 // For LI and LIS, we need the immediate to be positive (so that it is not
7008 // sign extended).
7009 if (Op32.getMachineOpcode() == PPC::LI ||
7010 Op32.getMachineOpcode() == PPC::LIS) {
7011 if (!isUInt<15>(Op32.getConstantOperandVal(0)))
7012 return false;
7013
7014 ToPromote.insert(Op32.getNode());
7015 return true;
7016 }
7017
7018 // LHBRX and LWBRX always clear the higher-order bits.
7019 if (Op32.getMachineOpcode() == PPC::LHBRX ||
7020 Op32.getMachineOpcode() == PPC::LWBRX) {
7021 ToPromote.insert(Op32.getNode());
7022 return true;
7023 }
7024
7025 // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
7026 if (Op32.getMachineOpcode() == PPC::CNTLZW ||
7027 Op32.getMachineOpcode() == PPC::CNTTZW) {
7028 ToPromote.insert(Op32.getNode());
7029 return true;
7030 }
7031
7032 // Next, check for those instructions we can look through.
7033
7034 // Assuming the mask does not wrap around, then the higher-order bits are
7035 // taken directly from the first operand.
7036 if (Op32.getMachineOpcode() == PPC::RLWIMI &&
7037 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
7038 SmallPtrSet<SDNode *, 16> ToPromote1;
7039 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
7040 return false;
7041
7042 ToPromote.insert(Op32.getNode());
7043 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7044 return true;
7045 }
7046
7047 // For OR, the higher-order bits are zero if that is true for both operands.
7048 // For SELECT_I4, the same is true (but the relevant operand numbers are
7049 // shifted by 1).
7050 if (Op32.getMachineOpcode() == PPC::OR ||
7051 Op32.getMachineOpcode() == PPC::SELECT_I4) {
7052 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
7053 SmallPtrSet<SDNode *, 16> ToPromote1;
7054 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
7055 return false;
7056 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
7057 return false;
7058
7059 ToPromote.insert(Op32.getNode());
7060 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7061 return true;
7062 }
7063
7064 // For ORI and ORIS, we need the higher-order bits of the first operand to be
7065 // zero, and also for the constant to be positive (so that it is not sign
7066 // extended).
7067 if (Op32.getMachineOpcode() == PPC::ORI ||
7068 Op32.getMachineOpcode() == PPC::ORIS) {
7069 SmallPtrSet<SDNode *, 16> ToPromote1;
7070 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
7071 return false;
7072 if (!isUInt<15>(Op32.getConstantOperandVal(1)))
7073 return false;
7074
7075 ToPromote.insert(Op32.getNode());
7076 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7077 return true;
7078 }
7079
7080 // The higher-order bits of AND are zero if that is true for at least one of
7081 // the operands.
7082 if (Op32.getMachineOpcode() == PPC::AND) {
7083 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
7084 bool Op0OK =
7085 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
7086 bool Op1OK =
7087 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
7088 if (!Op0OK && !Op1OK)
7089 return false;
7090
7091 ToPromote.insert(Op32.getNode());
7092
7093 if (Op0OK)
7094 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7095
7096 if (Op1OK)
7097 ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
7098
7099 return true;
7100 }
7101
7102 // For ANDI and ANDIS, the higher-order bits are zero if either that is true
7103 // of the first operand, or if the second operand is positive (so that it is
7104 // not sign extended).
7105 if (Op32.getMachineOpcode() == PPC::ANDI_rec ||
7106 Op32.getMachineOpcode() == PPC::ANDIS_rec) {
7107 SmallPtrSet<SDNode *, 16> ToPromote1;
7108 bool Op0OK =
7109 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
7110 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
7111 if (!Op0OK && !Op1OK)
7112 return false;
7113
7114 ToPromote.insert(Op32.getNode());
7115
7116 if (Op0OK)
7117 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7118
7119 return true;
7120 }
7121
7122 return false;
7123 }
7124
PeepholePPC64ZExt()7125 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
7126 if (!Subtarget->isPPC64())
7127 return;
7128
7129 // When we zero-extend from i32 to i64, we use a pattern like this:
7130 // def : Pat<(i64 (zext i32:$in)),
7131 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
7132 // 0, 32)>;
7133 // There are several 32-bit shift/rotate instructions, however, that will
7134 // clear the higher-order bits of their output, rendering the RLDICL
7135 // unnecessary. When that happens, we remove it here, and redefine the
7136 // relevant 32-bit operation to be a 64-bit operation.
7137
7138 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7139
7140 bool MadeChange = false;
7141 while (Position != CurDAG->allnodes_begin()) {
7142 SDNode *N = &*--Position;
7143 // Skip dead nodes and any non-machine opcodes.
7144 if (N->use_empty() || !N->isMachineOpcode())
7145 continue;
7146
7147 if (N->getMachineOpcode() != PPC::RLDICL)
7148 continue;
7149
7150 if (N->getConstantOperandVal(1) != 0 ||
7151 N->getConstantOperandVal(2) != 32)
7152 continue;
7153
7154 SDValue ISR = N->getOperand(0);
7155 if (!ISR.isMachineOpcode() ||
7156 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
7157 continue;
7158
7159 if (!ISR.hasOneUse())
7160 continue;
7161
7162 if (ISR.getConstantOperandVal(2) != PPC::sub_32)
7163 continue;
7164
7165 SDValue IDef = ISR.getOperand(0);
7166 if (!IDef.isMachineOpcode() ||
7167 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
7168 continue;
7169
7170 // We now know that we're looking at a canonical i32 -> i64 zext. See if we
7171 // can get rid of it.
7172
7173 SDValue Op32 = ISR->getOperand(1);
7174 if (!Op32.isMachineOpcode())
7175 continue;
7176
7177 // There are some 32-bit instructions that always clear the high-order 32
7178 // bits, there are also some instructions (like AND) that we can look
7179 // through.
7180 SmallPtrSet<SDNode *, 16> ToPromote;
7181 if (!PeepholePPC64ZExtGather(Op32, ToPromote))
7182 continue;
7183
7184 // If the ToPromote set contains nodes that have uses outside of the set
7185 // (except for the original INSERT_SUBREG), then abort the transformation.
7186 bool OutsideUse = false;
7187 for (SDNode *PN : ToPromote) {
7188 for (SDNode *UN : PN->uses()) {
7189 if (!ToPromote.count(UN) && UN != ISR.getNode()) {
7190 OutsideUse = true;
7191 break;
7192 }
7193 }
7194
7195 if (OutsideUse)
7196 break;
7197 }
7198 if (OutsideUse)
7199 continue;
7200
7201 MadeChange = true;
7202
7203 // We now know that this zero extension can be removed by promoting to
7204 // nodes in ToPromote to 64-bit operations, where for operations in the
7205 // frontier of the set, we need to insert INSERT_SUBREGs for their
7206 // operands.
7207 for (SDNode *PN : ToPromote) {
7208 unsigned NewOpcode;
7209 switch (PN->getMachineOpcode()) {
7210 default:
7211 llvm_unreachable("Don't know the 64-bit variant of this instruction");
7212 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break;
7213 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break;
7214 case PPC::SLW: NewOpcode = PPC::SLW8; break;
7215 case PPC::SRW: NewOpcode = PPC::SRW8; break;
7216 case PPC::LI: NewOpcode = PPC::LI8; break;
7217 case PPC::LIS: NewOpcode = PPC::LIS8; break;
7218 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break;
7219 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break;
7220 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break;
7221 case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break;
7222 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break;
7223 case PPC::OR: NewOpcode = PPC::OR8; break;
7224 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
7225 case PPC::ORI: NewOpcode = PPC::ORI8; break;
7226 case PPC::ORIS: NewOpcode = PPC::ORIS8; break;
7227 case PPC::AND: NewOpcode = PPC::AND8; break;
7228 case PPC::ANDI_rec:
7229 NewOpcode = PPC::ANDI8_rec;
7230 break;
7231 case PPC::ANDIS_rec:
7232 NewOpcode = PPC::ANDIS8_rec;
7233 break;
7234 }
7235
7236 // Note: During the replacement process, the nodes will be in an
7237 // inconsistent state (some instructions will have operands with values
7238 // of the wrong type). Once done, however, everything should be right
7239 // again.
7240
7241 SmallVector<SDValue, 4> Ops;
7242 for (const SDValue &V : PN->ops()) {
7243 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
7244 !isa<ConstantSDNode>(V)) {
7245 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
7246 SDNode *ReplOp =
7247 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
7248 ISR.getNode()->getVTList(), ReplOpOps);
7249 Ops.push_back(SDValue(ReplOp, 0));
7250 } else {
7251 Ops.push_back(V);
7252 }
7253 }
7254
7255 // Because all to-be-promoted nodes only have users that are other
7256 // promoted nodes (or the original INSERT_SUBREG), we can safely replace
7257 // the i32 result value type with i64.
7258
7259 SmallVector<EVT, 2> NewVTs;
7260 SDVTList VTs = PN->getVTList();
7261 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
7262 if (VTs.VTs[i] == MVT::i32)
7263 NewVTs.push_back(MVT::i64);
7264 else
7265 NewVTs.push_back(VTs.VTs[i]);
7266
7267 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: ");
7268 LLVM_DEBUG(PN->dump(CurDAG));
7269
7270 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
7271
7272 LLVM_DEBUG(dbgs() << "\nNew: ");
7273 LLVM_DEBUG(PN->dump(CurDAG));
7274 LLVM_DEBUG(dbgs() << "\n");
7275 }
7276
7277 // Now we replace the original zero extend and its associated INSERT_SUBREG
7278 // with the value feeding the INSERT_SUBREG (which has now been promoted to
7279 // return an i64).
7280
7281 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: ");
7282 LLVM_DEBUG(N->dump(CurDAG));
7283 LLVM_DEBUG(dbgs() << "\nNew: ");
7284 LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
7285 LLVM_DEBUG(dbgs() << "\n");
7286
7287 ReplaceUses(N, Op32.getNode());
7288 }
7289
7290 if (MadeChange)
7291 CurDAG->RemoveDeadNodes();
7292 }
7293
isVSXSwap(SDValue N)7294 static bool isVSXSwap(SDValue N) {
7295 if (!N->isMachineOpcode())
7296 return false;
7297 unsigned Opc = N->getMachineOpcode();
7298
7299 // Single-operand XXPERMDI or the regular XXPERMDI/XXSLDWI where the immediate
7300 // operand is 2.
7301 if (Opc == PPC::XXPERMDIs) {
7302 return isa<ConstantSDNode>(N->getOperand(1)) &&
7303 N->getConstantOperandVal(1) == 2;
7304 } else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) {
7305 return N->getOperand(0) == N->getOperand(1) &&
7306 isa<ConstantSDNode>(N->getOperand(2)) &&
7307 N->getConstantOperandVal(2) == 2;
7308 }
7309
7310 return false;
7311 }
7312
7313 // TODO: Make this complete and replace with a table-gen bit.
isLaneInsensitive(SDValue N)7314 static bool isLaneInsensitive(SDValue N) {
7315 if (!N->isMachineOpcode())
7316 return false;
7317 unsigned Opc = N->getMachineOpcode();
7318
7319 switch (Opc) {
7320 default:
7321 return false;
7322 case PPC::VAVGSB:
7323 case PPC::VAVGUB:
7324 case PPC::VAVGSH:
7325 case PPC::VAVGUH:
7326 case PPC::VAVGSW:
7327 case PPC::VAVGUW:
7328 case PPC::VMAXFP:
7329 case PPC::VMAXSB:
7330 case PPC::VMAXUB:
7331 case PPC::VMAXSH:
7332 case PPC::VMAXUH:
7333 case PPC::VMAXSW:
7334 case PPC::VMAXUW:
7335 case PPC::VMINFP:
7336 case PPC::VMINSB:
7337 case PPC::VMINUB:
7338 case PPC::VMINSH:
7339 case PPC::VMINUH:
7340 case PPC::VMINSW:
7341 case PPC::VMINUW:
7342 case PPC::VADDFP:
7343 case PPC::VADDUBM:
7344 case PPC::VADDUHM:
7345 case PPC::VADDUWM:
7346 case PPC::VSUBFP:
7347 case PPC::VSUBUBM:
7348 case PPC::VSUBUHM:
7349 case PPC::VSUBUWM:
7350 case PPC::VAND:
7351 case PPC::VANDC:
7352 case PPC::VOR:
7353 case PPC::VORC:
7354 case PPC::VXOR:
7355 case PPC::VNOR:
7356 case PPC::VMULUWM:
7357 return true;
7358 }
7359 }
7360
7361 // Try to simplify (xxswap (vec-op (xxswap) (xxswap))) where vec-op is
7362 // lane-insensitive.
reduceVSXSwap(SDNode * N,SelectionDAG * DAG)7363 static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) {
7364 // Our desired xxswap might be source of COPY_TO_REGCLASS.
7365 // TODO: Can we put this a common method for DAG?
7366 auto SkipRCCopy = [](SDValue V) {
7367 while (V->isMachineOpcode() &&
7368 V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) {
7369 // All values in the chain should have single use.
7370 if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode()))
7371 return SDValue();
7372 V = V->getOperand(0);
7373 }
7374 return V.hasOneUse() ? V : SDValue();
7375 };
7376
7377 SDValue VecOp = SkipRCCopy(N->getOperand(0));
7378 if (!VecOp || !isLaneInsensitive(VecOp))
7379 return;
7380
7381 SDValue LHS = SkipRCCopy(VecOp.getOperand(0)),
7382 RHS = SkipRCCopy(VecOp.getOperand(1));
7383 if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS))
7384 return;
7385
7386 // These swaps may still have chain-uses here, count on dead code elimination
7387 // in following passes to remove them.
7388 DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0));
7389 DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0));
7390 DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0));
7391 }
7392
PeepholePPC64()7393 void PPCDAGToDAGISel::PeepholePPC64() {
7394 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7395
7396 while (Position != CurDAG->allnodes_begin()) {
7397 SDNode *N = &*--Position;
7398 // Skip dead nodes and any non-machine opcodes.
7399 if (N->use_empty() || !N->isMachineOpcode())
7400 continue;
7401
7402 if (isVSXSwap(SDValue(N, 0)))
7403 reduceVSXSwap(N, CurDAG);
7404
7405 unsigned FirstOp;
7406 unsigned StorageOpcode = N->getMachineOpcode();
7407 bool RequiresMod4Offset = false;
7408
7409 switch (StorageOpcode) {
7410 default: continue;
7411
7412 case PPC::LWA:
7413 case PPC::LD:
7414 case PPC::DFLOADf64:
7415 case PPC::DFLOADf32:
7416 RequiresMod4Offset = true;
7417 [[fallthrough]];
7418 case PPC::LBZ:
7419 case PPC::LBZ8:
7420 case PPC::LFD:
7421 case PPC::LFS:
7422 case PPC::LHA:
7423 case PPC::LHA8:
7424 case PPC::LHZ:
7425 case PPC::LHZ8:
7426 case PPC::LWZ:
7427 case PPC::LWZ8:
7428 FirstOp = 0;
7429 break;
7430
7431 case PPC::STD:
7432 case PPC::DFSTOREf64:
7433 case PPC::DFSTOREf32:
7434 RequiresMod4Offset = true;
7435 [[fallthrough]];
7436 case PPC::STB:
7437 case PPC::STB8:
7438 case PPC::STFD:
7439 case PPC::STFS:
7440 case PPC::STH:
7441 case PPC::STH8:
7442 case PPC::STW:
7443 case PPC::STW8:
7444 FirstOp = 1;
7445 break;
7446 }
7447
7448 // If this is a load or store with a zero offset, or within the alignment,
7449 // we may be able to fold an add-immediate into the memory operation.
7450 // The check against alignment is below, as it can't occur until we check
7451 // the arguments to N
7452 if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
7453 continue;
7454
7455 SDValue Base = N->getOperand(FirstOp + 1);
7456 if (!Base.isMachineOpcode())
7457 continue;
7458
7459 unsigned Flags = 0;
7460 bool ReplaceFlags = true;
7461
7462 // When the feeding operation is an add-immediate of some sort,
7463 // determine whether we need to add relocation information to the
7464 // target flags on the immediate operand when we fold it into the
7465 // load instruction.
7466 //
7467 // For something like ADDItocL, the relocation information is
7468 // inferred from the opcode; when we process it in the AsmPrinter,
7469 // we add the necessary relocation there. A load, though, can receive
7470 // relocation from various flavors of ADDIxxx, so we need to carry
7471 // the relocation information in the target flags.
7472 switch (Base.getMachineOpcode()) {
7473 default: continue;
7474
7475 case PPC::ADDI8:
7476 case PPC::ADDI:
7477 // In some cases (such as TLS) the relocation information
7478 // is already in place on the operand, so copying the operand
7479 // is sufficient.
7480 ReplaceFlags = false;
7481 // For these cases, the immediate may not be divisible by 4, in
7482 // which case the fold is illegal for DS-form instructions. (The
7483 // other cases provide aligned addresses and are always safe.)
7484 if (RequiresMod4Offset &&
7485 (!isa<ConstantSDNode>(Base.getOperand(1)) ||
7486 Base.getConstantOperandVal(1) % 4 != 0))
7487 continue;
7488 break;
7489 case PPC::ADDIdtprelL:
7490 Flags = PPCII::MO_DTPREL_LO;
7491 break;
7492 case PPC::ADDItlsldL:
7493 Flags = PPCII::MO_TLSLD_LO;
7494 break;
7495 case PPC::ADDItocL:
7496 Flags = PPCII::MO_TOC_LO;
7497 break;
7498 }
7499
7500 SDValue ImmOpnd = Base.getOperand(1);
7501
7502 // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
7503 // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
7504 // we might have needed different @ha relocation values for the offset
7505 // pointers).
7506 int MaxDisplacement = 7;
7507 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7508 const GlobalValue *GV = GA->getGlobal();
7509 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7510 MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement);
7511 }
7512
7513 bool UpdateHBase = false;
7514 SDValue HBase = Base.getOperand(0);
7515
7516 int Offset = N->getConstantOperandVal(FirstOp);
7517 if (ReplaceFlags) {
7518 if (Offset < 0 || Offset > MaxDisplacement) {
7519 // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
7520 // one use, then we can do this for any offset, we just need to also
7521 // update the offset (i.e. the symbol addend) on the addis also.
7522 if (Base.getMachineOpcode() != PPC::ADDItocL)
7523 continue;
7524
7525 if (!HBase.isMachineOpcode() ||
7526 HBase.getMachineOpcode() != PPC::ADDIStocHA8)
7527 continue;
7528
7529 if (!Base.hasOneUse() || !HBase.hasOneUse())
7530 continue;
7531
7532 SDValue HImmOpnd = HBase.getOperand(1);
7533 if (HImmOpnd != ImmOpnd)
7534 continue;
7535
7536 UpdateHBase = true;
7537 }
7538 } else {
7539 // If we're directly folding the addend from an addi instruction, then:
7540 // 1. In general, the offset on the memory access must be zero.
7541 // 2. If the addend is a constant, then it can be combined with a
7542 // non-zero offset, but only if the result meets the encoding
7543 // requirements.
7544 if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
7545 Offset += C->getSExtValue();
7546
7547 if (RequiresMod4Offset && (Offset % 4) != 0)
7548 continue;
7549
7550 if (!isInt<16>(Offset))
7551 continue;
7552
7553 ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
7554 ImmOpnd.getValueType());
7555 } else if (Offset != 0) {
7556 continue;
7557 }
7558 }
7559
7560 // We found an opportunity. Reverse the operands from the add
7561 // immediate and substitute them into the load or store. If
7562 // needed, update the target flags for the immediate operand to
7563 // reflect the necessary relocation information.
7564 LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
7565 LLVM_DEBUG(Base->dump(CurDAG));
7566 LLVM_DEBUG(dbgs() << "\nN: ");
7567 LLVM_DEBUG(N->dump(CurDAG));
7568 LLVM_DEBUG(dbgs() << "\n");
7569
7570 // If the relocation information isn't already present on the
7571 // immediate operand, add it now.
7572 if (ReplaceFlags) {
7573 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7574 SDLoc dl(GA);
7575 const GlobalValue *GV = GA->getGlobal();
7576 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7577 // We can't perform this optimization for data whose alignment
7578 // is insufficient for the instruction encoding.
7579 if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) {
7580 LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
7581 continue;
7582 }
7583 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
7584 } else if (ConstantPoolSDNode *CP =
7585 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
7586 const Constant *C = CP->getConstVal();
7587 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(),
7588 Offset, Flags);
7589 }
7590 }
7591
7592 if (FirstOp == 1) // Store
7593 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
7594 Base.getOperand(0), N->getOperand(3));
7595 else // Load
7596 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
7597 N->getOperand(2));
7598
7599 if (UpdateHBase)
7600 (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
7601 ImmOpnd);
7602
7603 // The add-immediate may now be dead, in which case remove it.
7604 if (Base.getNode()->use_empty())
7605 CurDAG->RemoveDeadNode(Base.getNode());
7606 }
7607 }
7608
7609 /// createPPCISelDag - This pass converts a legalized DAG into a
7610 /// PowerPC-specific DAG, ready for instruction scheduling.
7611 ///
createPPCISelDag(PPCTargetMachine & TM,CodeGenOpt::Level OptLevel)7612 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
7613 CodeGenOpt::Level OptLevel) {
7614 return new PPCDAGToDAGISel(TM, OptLevel);
7615 }
7616